
Preface

In these lecture notes, we will give a general introduction to the discontinuous
Galerkin (DG) methods for solving time-dependent, convection-dominated par-
tial differential equations (PDEs), including the hyperbolic conservation laws,
convection-diffusion equations, and PDEs containing higher-order spatial deriva-
tives such as the KdV equations and other nonlinear dispersive wave equations. We
will discuss cell entropy inequalities, nonlinear stability, and error estimates. The
important ingredient of the design of DG schemes, namely the adequate choice of
numerical fluxes, will be explained in detail. Issues related to the implementation
of the DG method will also be addressed.





Chapter 1

Introduction

Discontinuous Galerkin (DG) methods are a class of finite-element methods us-
ing completely discontinuous basis functions, which are usually chosen as piece-
wise polynomials. Since the basis functions can be completely discontinuous, these
methods have the flexibility which is not shared by typical finite-element meth-
ods, such as the allowance of arbitrary triangulation with hanging nodes, complete
freedom in changing the polynomial degrees in each element independent of that
in the neighbors (p adaptivity), and extremely local data structure (elements only
communicate with immediate neighbors regardless of the order of accuracy of the
scheme) and the resulting embarrassingly high parallel efficiency (usually more
than 99% for a fixed mesh, and more than 80% for a dynamic load balancing with
adaptive meshes which change often during time evolution), see, e.g. [5]. A very
good example to illustrate the capability of the discontinuous Galerkin method in
h-p adaptivity, efficiency in parallel dynamic load balancing, and excellent resolu-
tion properties is the successful simulation of the Rayleigh-Taylor flow instabilities
in [38].

The first discontinuous Galerkin method was introduced in 1973 by Reed
and Hill [37], in the framework of neutron transport, i.e., a time-independent
linear hyperbolic equation. A major development of the DG method is carried
out by Cockburn et al. in a series of papers [14, 13, 12, 10, 15], in which they
have established a framework to easily solve nonlinear time-dependent problems,
such as the Euler equations of gas dynamics, using explicit, nonlinearly stable
high-order Runge-Kutta time discretizations [44] and DG discretization in space
with exact or approximate Riemann solvers as interface fluxes and total variation
bounded (TVB) nonlinear limiters [41] to achieve non-oscillatory properties for
strong shocks.

The DG method has found rapid applications in such diverse areas as
aeroacoustics, electro-magnetism, gas dynamics, granular flows, magneto-
hydrodynamics, meteorology, modeling of shallow water, oceanography, oil re-
covery simulation, semiconductor device simulation, transport of contaminant in
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porous media, turbomachinery, turbulent flows, viscoelastic flows and weather fore-
casting, among many others. For more details, we refer to the survey paper [11],
and other papers in that Springer volume, which contains the conference proceed-
ings of the First International Symposium on Discontinuous Galerkin Methods
held at Newport, Rhode Island in 1999. The lecture notes [8] is a good reference
for many details, as well as the extensive review paper [17]. More recently, there
are two special issues devoted to the discontinuous Galerkin method [18, 19], which
contain many interesting papers in the development of the method in all aspects
including algorithm design, analysis, implementation and applications.



Chapter 2

Time Discretization

In these lecture notes, we will concentrate on the method of lines DG methods,
that is, we do not discretize the time variable. Therefore, we will briefly discuss
the issue of time discretization at the beginning.

For hyperbolic problems or convection-dominated problems such as Navier-
Stokes equations with high Reynolds numbers, we often use a class of high-order
nonlinearly stable Runge-Kutta time discretizations. A distinctive feature of this
class of time discretizations is that they are convex combinations of first-order
forward Euler steps, hence they maintain strong stability properties in any semi-
norm (total variation semi-norm, maximum norm, entropy condition, etc.) of the
forward Euler step. Thus one only needs to prove nonlinear stability for the first-
order forward Euler step, which is relatively easy in many situations (e.g., TVD
schemes, see for example Section 3.2.2 below), and one automatically obtains the
same strong stability property for the higher-order time discretizations in this
class. These methods were first developed in [44] and [42], and later generalized
in [20] and [21]. The most popular scheme in this class is the following third-order
Runge-Kutta method for solving

ut = L(u, t)

where L(u, t) is a spatial discretization operator (it does not need to be, and often
is not, linear!):

u(1) = un + ∆tL(un, tn),

u(2) =
3
4
un +

1
4
u(1) +

1
4
∆tL(u(1), tn + ∆t), (2.1)

un+1 =
1
3
un +

2
3
u(2) +

2
3
∆tL(u(2), tn +

1
2
∆t).

Schemes in this class which are higher order or are of low storage also exist. For
details, see the survey paper [43] and the review paper [21].
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If the PDEs contain high-order spatial derivatives with coefficients not very
small, then explicit time marching methods such as the Runge-Kutta methods
described above suffer from severe time-step restrictions. It is an important and
active research subject to study efficient time discretization for such situations,
while still maintaining the advantages of the DG methods, such as their local
nature and parallel efficiency. See, e.g. [46] for a study of several time discretization
techniques for such situations. We will not further discuss this important issue
though in these lectures.



Chapter 3

Discontinuous Galerkin Method
for Conservation Laws

The discontinuous Galerkin method was first designed as an effective numerical
method for solving hyperbolic conservation laws, which may have discontinuous
solutions. In this section we will discuss the algorithm formulation, stability anal-
ysis, and error estimates for the discontinuous Galerkin method solving hyperbolic
conservation laws.

3.1 Two-dimensional Steady-State Linear Equations

We now present the details of the original DG method in [37] for the two-dimen-
sional steady-state linear convection equation

aux + buy = f(x, y), 0 ≤ x, y ≤ 1, (3.1)

where a and b are constants. Without loss of generality we assume a > 0, b > 0.
The equation (3.1) is well posed when equipped with the inflow boundary condition

u(x, 0) = g1(x), 0 ≤ x ≤ 1 and u(0, y) = g2(y), 0 ≤ y ≤ 1. (3.2)

For simplicity, we assume a rectangular mesh to cover the computational domain
[0, 1]2, consisting of cells

Ii,j =
{

(x, y) : xi− 1
2
≤ x ≤ xi+ 1

2
, yj− 1

2
≤ y ≤ yj+ 1

2

}

for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny, where

0 = x 1
2

< x 3
2

< · · · < xNx+ 1
2

= 1
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and
0 = y 1

2
< y 3

2
< · · · < yNy+ 1

2
= 1

are discretizations in x and y over [0, 1]. We also denote

∆xi = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ Nx; ∆yj = yj+ 1

2
− yj− 1

2
, 1 ≤ j ≤ Ny;

and

h = max
(

max
1≤i≤Nx

∆xi, max
1≤j≤Ny

∆yj

)
.

We assume the mesh is regular, namely there is a constant c > 0 independent of
h such that

∆xi ≥ ch, 1 ≤ i ≤ Nx; ∆yj ≥ ch, 1 ≤ j ≤ Ny.

We define a finite-element space consisting of piecewise polynomials

V k
h =

{
v : v|Ii,j ∈ P k(Ii,j); 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
, (3.3)

where P k(Ii,j) denotes the set of polynomials of degree up to k defined on the cell
Ii,j . Notice that functions in V k

h may be discontinuous across cell interfaces.
The discontinuous Galerkin (DG) method for solving (3.1) is defined as fol-

lows: find the unique function uh ∈ V k
h such that, for all test functions vh ∈ V k

h

and all 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny, we have

−
∫ ∫

Ii,j

(auh(vh)x + buh(vh)y) dxdy + a

∫ y
j+ 1

2

y
j− 1

2

ûh(xi+ 1
2
, y)vh(x−

i+ 1
2
, y)dy

− a

∫ y
j+ 1

2

y
j− 1

2

ûh(xi− 1
2
, y)vh(x+

i− 1
2
, y)dy + b

∫ x
i+1

2

x
i− 1

2

ûh(x, yj+ 1
2
)vh(x, y−

j+ 1
2
)dx (3.4)

− b

∫ x
i+1

2

x
i− 1

2

ûh(x, yj− 1
2
)vh(x, y+

j− 1
2
)dx =

∫ ∫

Ii,j

f vh dxdy.

Here, ûh is the so-called “numerical flux”, which is a single-valued function defined
at the cell interfaces and in general depending on the values of the numerical
solution uh from both sides of the interface, since uh is discontinuous there. For
the simple linear convection PDE (3.1), the numerical flux can be chosen according
to the upwind principle, namely

ûh(xi+ 1
2
, y) = uh(x−

i+ 1
2
, y), ûh(x, yj+ 1

2
) = uh(x, y−

j+ 1
2
).

Notice that, for the boundary cell i = 1, the numerical flux for the left edge is
defined using the given boundary condition

ûh(x 1
2
, y) = g2(y).
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Likewise, for the boundary cell j = 1, the numerical flux for the bottom edge is
defined by

ûh(x, y 1
2
) = g1(x).

We now look at the implementation of the scheme (3.4). If a local basis of P k(Ii,j)
is chosen and denoted as ϕ�

i,j(x, y) for � = 1, 2, . . . , K = (k + 1)(k + 2)/2, we can
express the numerical solution as

uh(x, y) =
K∑

�=1

u�
i,jϕ

�
i,j(x, y), (x, y) ∈ Ii,j ,

and we should solve for the coefficients

ui,j =




u1
i,j
...

uK
i,j


 ,

which, according to the scheme (3.4), satisfies the linear equation

Ai,jui,j = rhs (3.5)

where Ai,j is a K × K matrix whose (�, m)-th entry is given by

a�,m
i,j = −

∫ ∫

Ii,j

(
aϕm

i,j(x, y)(ϕ�
i,j(x, y))x + bϕm

i,j(x, y)(ϕ�
i,j(x, y))y

)
dxdy (3.6)

+ a

∫ y
j+ 1

2

y
j− 1

2

ϕm
i,j(xi+ 1

2
, y)ϕ�

i,j(xi+ 1
2
, y)dy

+ b

∫ x
i+ 1

2

x
i− 1

2

ϕm
i,j(x, yj+ 1

2
)ϕ�

i,j(x, yj+ 1
2
)dx,

and the �-th entry of the right-hand side vector is given by

rhs� = a

∫ y
j+ 1

2

y
j− 1

2

uh(x−
i− 1

2
, y)ϕ�

i,j(xi− 1
2
, y)dy + b

∫ x
i+ 1

2

x
i− 1

2

uh(x, y−
j− 1

2
)ϕ�

i,j(x, yj− 1
2
)dx

+
∫

Ii,j

f ϕ�
i,j dxdy,

which depends on the information of uh in the left cell Ii−1,j and the bottom cell
Ii,j−1, if they are in the computational domain, or on the boundary condition,
if one or both of these cells are outside the computational domain. It is easy to
verify that the matrix Ai,j in (3.5) with entries given by (3.6) is invertible, hence
the numerical solution uh in the cell Ii,j can be easily obtained by solving the
small linear system (3.5), once the solution at the left and bottom cells Ii−1,j
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and Ii,j−1 are already known, or if one or both of these cells are outside the
computational domain. Therefore, we can obtain the numerical solution uh in the
following ordering: first we obtain it in the cell I1,1, since both its left and bottom
boundaries are equipped with the prescribed boundary conditions (3.2). We then
obtain the solution in the cells I2,1 and I1,2. For I2,1, the numerical solution uh in
its left cell I1,1 is already available, and its bottom boundary is equipped with the
prescribed boundary condition (3.2). Similar argument goes for the cell I1,2. The
next group of cells to be solved are I3,1, I2,2, I1,3. It is clear that we can obtain
the solution uh sequentially in this way for all cells in the computational domain.

Clearly, this method does not involve any large system solvers and is very easy
to implement. In [25], Lesaint and Raviart proved that this method is convergent
with the optimal order of accuracy, namely O(hk+1), in L2-norm, when piecewise
tensor product polynomials of degree k are used as basis functions. Numerical
experiments indicate that the convergence rate is also optimal when the usual
piecewise polynomials of degree k given by (3.3) are used instead.

Notice that, even though the method (3.4) is designed for the steady-state
problem (3.1), it can be easily used on initial-boundary value problems of linear
time-dependent hyperbolic equations: we just need to identify the time variable t
as one of the spatial variables. It is also easily generalizable to higher dimensions.

The method described above can be easily designed and efficiently imple-
mented on arbitrary triangulations. L2-error estimates of O(hk+1/2) where k is
again the polynomial degree and h is the mesh size can be obtained when the so-
lution is sufficiently smooth, for arbitrary meshes, see, e.g., [24]. This estimate is
actually sharp for the most general situation [33], however in many cases the opti-
mal O(hk+1) error bound can be proved [39, 9]. In actual numerical computations,
one almost always observes the optimal O(hk+1) accuracy.

Unfortunately, even though the method (3.4) is easy to implement, accurate,
and efficient, it cannot be easily generalized to linear systems, where the char-
acteristic information comes from different directions, or to nonlinear problems,
where the characteristic wind direction depends on the solution itself.

3.2 One-dimensional Time-dependent

Conservation Laws

The difficulties mentioned at the end of the last subsection can be by-passed
when the DG discretization is only used for the spatial variables, and the time
discretization is achieved by explicit Runge-Kutta methods such as (2.1). This
is the approach of the so-called Runge-Kutta discontinuous Galerkin (RKDG)
method [14, 13, 12, 10, 15].

We start our discussion with the one-dimensional conservation law

ut + f(u)x = 0. (3.7)
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As before, we assume the following mesh to cover the computational domain [0, 1],
consisting of cells Ii = [xi− 1

2
, xi+ 1

2
], for 1 ≤ i ≤ N , where

0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 1.

We again denote

∆xi = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ N ; h = max

1≤i≤N
∆xi.

We assume the mesh is regular, namely there is a constant c > 0 independent of
h such that

∆xi ≥ ch, 1 ≤ i ≤ N.

We define a finite-element space consisting of piecewise polynomials

V k
h =

{
v : v|Ii ∈ P k(Ii); 1 ≤ i ≤ N

}
, (3.8)

where P k(Ii) denotes the set of polynomials of degree up to k defined on the cell
Ii. The semi-discrete DG method for solving (3.7) is defined as follows: find the
unique function uh = uh(t) ∈ V k

h such that, for all test functions vh ∈ V k
h and all

1 ≤ i ≤ N , we have
∫

Ii

(uh)t(vh)dx −
∫

Ii

f(uh)(vh)xdx + f̂i+ 1
2
vh(x−

i+ 1
2
) − f̂i− 1

2
vh(x+

i− 1
2
) = 0. (3.9)

Here, f̂i+ 1
2

is again the numerical flux, which is a single-valued function defined at
the cell interfaces and in general depends on the values of the numerical solution
uh from both sides of the interface

f̂i+ 1
2

= f̂(uh(x−
i+ 1

2
, t), uh(x+

i+ 1
2
, t)).

We use the so-called monotone fluxes from finite-difference and finite-volume
schemes for solving conservation laws, which satisfy the following conditions:

• Consistency: f̂(u, u) = f(u).

• Continuity: f̂(u−, u+) is at least Lipschitz continuous with respect to both
arguments u− and u+.

• Monotonicity: f̂(u−, u+) is a non-decreasing function of its first argument
u− and a non-increasing function of its second argument u+. Symbolically
f̂(↑, ↓).

Well-known monotone fluxes include the Lax-Friedrichs flux

f̂LF (u−, u+) =
1
2

(
f(u−) + f(u+) − α(u+ − u−)

)
, α = max

u
|f ′(u)|;
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the Godunov flux

f̂God(u−, u+) =

{
minu−≤u≤u+ f(u), if u− < u+,

maxu+≤u≤u− f(u), if u− ≥ u+;

and the Engquist-Osher flux

f̂EO =
∫ u−

0

max(f ′(u), 0)du +
∫ u+

0

min(f ′(u), 0)du + f(0).

We refer to, e.g., [26] for more details about monotone fluxes.

3.2.1 Cell Entropy Inequality and L2-Stability

It is well known that weak solutions of (3.7) may not be unique and the unique,
physically relevant weak solution (the so-called entropy solution) satisfies the fol-
lowing entropy inequality

U(u)t + F (u)x ≤ 0 (3.10)

in distribution sense, for any convex entropy U(u) satisfying U ′′(u) ≥ 0 and the
corresponding entropy flux F (u) =

∫ u
U ′(u)f ′(u)du. It will be nice if a numerical

approximation to (3.7) also shares a similar entropy inequality as (3.10). It is
usually quite difficult to prove a discrete entropy inequality for finite-difference
or finite-volume schemes, especially for high-order schemes and when the flux
function f(u) in (3.7) is not convex or concave, see, e.g., [28, 32]. However, it
turns out that it is easy to prove that the DG scheme (3.9) satisfies a cell entropy
inequality [23].

Proposition 3.1. The solution uh to the semi-discrete DG scheme (3.9) satisfies
the following cell entropy inequality

d

dt

∫

Ii

U(uh) dx + F̂i+ 1
2
− F̂i− 1

2
≤ 0 (3.11)

for the square entropy U(u) = u2

2 , for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x−
i+ 1

2
, t), uh(x+

i+ 1
2
, t))

satisfying F̂ (u, u) = F (u).

Proof. We introduce a short-hand notation

Bi(uh; vh) =
∫

Ii

(uh)t(vh)dx −
∫

Ii

f(uh)(vh)xdx

+ f̂i+ 1
2
vh(x−

i+ 1
2
) − f̂i− 1

2
vh(x+

i− 1
2
). (3.12)
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If we take vh = uh in the scheme (3.9), we obtain

Bi(uh; uh)=
∫

Ii

(uh)t(uh)dx −
∫

Ii

f(uh)(uh)xdx

+ f̂i+ 1
2
uh(x−

i+ 1
2
) − f̂i− 1

2
uh(x+

i− 1
2
) = 0. (3.13)

If we denote F̃ (u) =
∫ u

f(u)du, then (3.13) becomes

Bi(uh; uh) =
∫

Ii

U(uh)tdx − F̃ (uh(x−
i+ 1

2
))

+ F̃ (uh(x+
i− 1

2
)) + f̂i+ 1

2
uh(x−

i+ 1
2
) − f̂i− 1

2
uh(x+

i− 1
2
) = 0,

or
Bi(uh; uh) =

∫

Ii

U(uh)tdx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
= 0, (3.14)

where
F̂i+ 1

2
= −F̃ (uh(x−

i+ 1
2
)) + f̂i+ 1

2
uh(x−

i+ 1
2
), (3.15)

and

Θi− 1
2

= −F̃ (uh(x−
i− 1

2
)) + f̂i− 1

2
uh(x−

i− 1
2
) + F̃ (uh(x+

i− 1
2
)) − f̂i− 1

2
uh(x+

i− 1
2
). (3.16)

It is easy to verify that the numerical entropy flux F̂ defined by (3.15) is consistent
with the entropy flux F (u) =

∫ u
U ′(u)f ′(u)du for U(u) = u2

2 . It is also easy to
verify

Θ = −F̃ (u−
h ) + f̂u−

h + F̃ (u+
h ) − f̂u+

h = (u+
h − u−

h )(F̃ ′(ξ) − f̂) ≥ 0,

where we have dropped the subscript i− 1
2 since all quantities are evaluated there

in Θi− 1
2
. A mean value theorem is applied and ξ is a value between u− and u+,

and we have used the fact F̃ ′(ξ) = f(ξ) and the monotonicity of the flux function
f̂ to obtain the last inequality. This finishes the proof of the cell entropy inequality
(3.11). �

We note that the proof does not depend on the accuracy of the scheme,
namely it holds for the piecewise polynomial space (3.8) with any degree k. Also,
the same proof can be given for the multi-dimensional DG scheme on any trian-
gulation.

The cell entropy inequality trivially implies an L2-stability of the numerical
solution.

Proposition 3.2. For periodic or compactly supported boundary conditions, the so-
lution uh to the semi-discrete DG scheme (3.9) satisfies the following L2-stability

d

dt

∫ 1

0

(uh)2dx ≤ 0, (3.17)



164 Chapter 3. Discontinuous Galerkin Method for Conservation Laws

or
‖uh(·, t)‖ ≤ ‖uh(·, 0)‖. (3.18)

Here and below, an unmarked norm is the usual L2-norm.

Proof. We simply sum up the cell entropy inequality (3.11) over i. The flux terms
telescope and there is no boundary term left because of the periodic or compact
supported boundary condition. (3.17), and hence (3.18), are now immediate. �

Notice that both the cell entropy inequality (3.11) and the L2-stability (3.17)
are valid even when the exact solution of the conservation law (3.7) is discontinu-
ous.

3.2.2 Limiters and Total Variation Stability

For discontinuous solutions, the cell entropy inequality (3.11) and the L2-stability
(3.17), although helpful, are not enough to control spurious numerical oscillations
near discontinuities. In practice, especially for problems containing strong discon-
tinuities, we often need to apply nonlinear limiters to control these oscillations
and to obtain provable total variation stability.

For simplicity, we first consider the forward Euler time discretization of the
semi-discrete DG scheme (3.9). Starting from a preliminary solution un,pre

h ∈ V k
h

at time level n (for the initial condition, u0,pre
h is taken to be the L2-projection of

the analytical initial condition u(·, 0) into V k
h ), we would like to “limit” or ”pre-

process” it to obtain a new function un
h ∈ V k

h before advancing it to the next
time level: find un+1,pre

h ∈ V k
h such that, for all test functions vh ∈ V k

h and all
1 ≤ i ≤ N , we have

∫

Ii

un+1,pre
h − un

h

∆t
vhdx −

∫

Ii

f(un
h)(vh)xdx + f̂n

i+ 1
2
vh(x−

i+ 1
2
) − f̂n

i− 1
2
vh(x+

i− 1
2
) = 0,

(3.19)
where ∆t = tn+1 − tn is the time step. This limiting procedure to go from un,pre

h

to un
h should satisfy the following two conditions:

• It should not change the cell averages of un,pre
h . That is, the cell averages of

un
h and un,pre

h are the same. This is for the conservation property of the DG
method.

• It should not affect the accuracy of the scheme in smooth regions. That is,
in the smooth regions this limiter does not change the solution, un

h(x) =
un,pre

h (x).

There are many limiters discussed in the literature, and this is still an active
research area, especially for multi-dimensional systems, see, e.g., [60]. We will only
present an example [13] here.
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We denote the cell average of the solution uh as

ūi =
1

∆xi

∫

Ii

uhdx, (3.20)

and we further denote

ũi = uh(x−
i+ 1

2
) − ūi, ˜̃ui = ūi − uh(x+

i− 1
2
). (3.21)

The limiter should not change ūi but it may change ũi and/or ˜̃ui. In particular,
the minmod limiter [13] changes ũi and ˜̃ui into

ũ
(mod)
i = m(ũi, ∆+ūi, ∆−ūi), ˜̃u(mod)

i = m(˜̃ui, ∆+ūi, ∆−ūi), (3.22)

where
∆+ūi = ūi+1 − ūi, ∆−ūi = ūi − ūi−1,

and the minmod function m is defined by

m(a1, · · · , a�) =

{
s min(|a1|, · · · , |a�|), if s = sign(a1) = · · · sign(a�),
0, otherwise.

(3.23)
The limited function u

(mod)
h is then recovered to maintain the old cell average

(3.20) and the new point values given by (3.22), that is

u
(mod)
h (x−

i+ 1
2
) = ūi + ũ

(mod)
i , u

(mod)
h (x+

i− 1
2
) = ūi − ˜̃u(mod)

i , (3.24)

by the definition (3.21). This recovery is unique for P k polynomials with k ≤ 2.
For k > 2, we have extra freedom in obtaining u

(mod)
h . We could for example choose

u
(mod)
h to be the unique P 2 polynomial satisfying (3.20) and (3.24).

Before discussing the total variation stability of the DG scheme (3.19) with
the pre-processing, we first present a simple lemma due to Harten [22].

Lemma 3.1 (Harten). If a scheme can be written in the form

un+1
i = un

i + Ci+ 1
2
∆+un

i − Di− 1
2
∆−un

i (3.25)

with periodic or compactly supported boundary conditions, where Ci+ 1
2

and Di− 1
2

may be nonlinear functions of the grid values un
j for j = i− p, . . . , i + q with some

p, q ≥ 0, satisfying

Ci+ 1
2
≥ 0, Di+ 1

2
≥ 0, Ci+ 1

2
+ Di+ 1

2
≤ 1, ∀i, (3.26)

then the scheme is TVD
TV (un+1) ≤ TV (un),

where the total variation seminorm is defined by

TV (u) =
∑

i

|∆+ui|.
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Proof. Taking the forward difference operation on (3.25) yields

∆+un+1
i = ∆+un

i + Ci+ 3
2
∆+un

i+1 − Ci+ 1
2
∆+un

i − Di+ 1
2
∆+un

i + Di− 1
2
∆−un

i

= (1 − Ci+ 1
2
− Di+ 1

2
)∆+un

i + Ci+ 3
2
∆+un

i+1 + Di− 1
2
∆−un

i .

Thanks to (3.26) and using the periodic or compactly supported boundary condi-
tion, we can take the absolute value on both sides of the above equality and sum
up over i to obtain

∑
i

|∆+un+1
i | ≤

∑
i

(1 − Ci+ 1
2
− Di+ 1

2
)|∆+un

i |

+
∑

i

Ci+ 1
2
|∆+un

i | +
∑

i

Di+ 1
2
|∆+un

i | =
∑

i

|∆+un
i |.

This finishes the proof. �
We define the “total variation in the means” semi-norm, or TVM, as

TVM(uh) =
∑

i

|∆+ūi|.

We then have the following stability result.

Proposition 3.3. For periodic or compactly supported boundary conditions, the so-
lution un

h of the DG scheme (3.19), with the “pre-processing” by the limiter, is
total variation diminishing in the means (TVDM), that is

TVM(un+1
h ) ≤ TVM(un

h). (3.27)

Proof. Taking vh = 1 for x ∈ Ii in (3.19) and dividing both sides by ∆xi, we
obtain, by noticing (3.24),

ūn+1,pre
i = ūi − λi

(
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi−1 + ũi−1, ūi − ˜̃ui)

)
,

where λi = ∆t
∆xi

, and all quantities on the right-hand side are at the time level n.
We can write the right hand side of the above equality in the Harten form (3.25)
if we define Ci+ 1

2
and Di− 1

2
as follows

Ci+ 1
2

= −λi
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi + ũi, ūi − ˜̃ui)

∆+ūi
, (3.28)

Di− 1
2

= λi
f̂(ūi + ũi, ūi − ˜̃ui) − f̂(ūi−1 + ũi−1, ūi − ˜̃ui)

∆−ūi
.

We now need to verify that Ci+ 1
2

and Di− 1
2

defined in (3.28) satisfy (3.26). Indeed,
we can write Ci+ 1

2
as

Ci+ 1
2

= −λif̂2

[
1 −

˜̃ui+1

∆+ūi
+

˜̃ui

∆+ūi

]
, (3.29)
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in which f̂2 is defined as

f̂2 =
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi + ũi, ūi − ˜̃ui)

(ūi+1 − ˜̃ui+1) − (ūi − ˜̃ui)
,

and hence

0 ≤ −λif̂2 = −λi
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi + ũi, ūi − ˜̃ui)

(ūi+1 − ˜̃ui+1) − (ūi − ˜̃ui)
≤ λiL2, (3.30)

where we have used the monotonicity and Lipschitz continuity of f̂ , and L2 is the
Lipschitz constant of f̂ with respect to its second argument. Also, since un

h is the
pre-processed solution by the minmod limiter, ˜̃ui+1 and ˜̃ui are the modified values
defined by (3.22), hence

0 ≤
˜̃ui+1

∆+ūi
≤ 1, 0 ≤

˜̃ui

∆+ūi
≤ 1. (3.31)

Therefore, we have, by (3.29), (3.30) and (3.31),

0 ≤ Ci+ 1
2
≤ 2λiL2.

Similarly, we can show that

0 ≤ Di+ 1
2
≤ 2λi+1L1

where L1 is the Lipschitz constant of f̂ with respect to its first argument. This
proves (3.26) if we take the time step so that

λ ≤ 1
2(L1 + L2)

where λ = maxi λi. The TVDM property (3.27) then follows from the Harten
Lemma and the fact that the limiter does not change cell averages, hence
TVM(un+1

h ) = TVM(un+1,pre
h ). �

Even though the previous proposition is proved only for the first-order Euler
forward time discretization, the special TVD (or strong stability preserving, SSP)
Runge-Kutta time discretizations [44, 21] allow us to obtain the same stability
result for the fully discretized RKDG schemes.

Proposition 3.4. Under the same conditions as those in Proposition 3.3, the solu-
tion un

h of the DG scheme (3.19), with the Euler forward time discretization re-
placed by any SSP Runge-Kutta time discretization [21] such as (2.1), is TVDM.

�
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We still need to verify that the limiter (3.22) does not affect accuracy in
smooth regions. If uh is an approximation to a (locally) smooth function u, then
a simple Taylor expansion gives

ũi =
1
2
ux(xi)∆xi + O(h2), ˜̃ui =

1
2
ux(xi)∆xi + O(h2),

while

∆+ūi =
1
2
ux(xi)(∆xi+∆xi+1)+O(h2), ∆−ūi =

1
2
ux(xi)(∆xi+∆xi−1)+O(h2).

Clearly, when we are in a smooth and monotone region, namely when ux(xi) is
away from zero, the first argument in the minmod function (3.22) is of the same
sign as the second and third arguments and is smaller in magnitude (for a uniform
mesh it is about half of their magnitude), when h is small. Therefore, since the
minmod function (3.23) picks the smallest argument (in magnitude) when all the

arguments are of the same sign, the modified values ũ
(mod)
i and ˜̃u(mod)

i in (3.22)
will take the unmodified values ũi and ˜̃ui, respectively. That is, the limiter does
not affect accuracy in smooth, monotone regions.

On the other hand, the TVD limiter (3.22) does kill accuracy at smooth
extrema. This is demonstrated by numerical results and is a consequence of the
general results about TVD schemes, that they are at most second-order accurate
for smooth but non-monotone solutions [31]. Therefore, in practice we often use a
total variation bounded (TVB) corrected limiter

m̃(a1, · · · , a�) =

{
a1, if |a1| ≤ Mh2,

m(a1, . . . , a�), otherwise,

instead of the original minmod function (3.23), where the TVB parameter M
has to be chosen adequately [13]. The DG scheme would then be total variation
bounded in the means (TVBM) and uniformly high-order accurate for smooth
solutions. We will not discuss more details here and refer the readers to [13].

We would like to remark that the limiters discussed in this subsection were
first used for finite-volume schemes [30]. When discussing limiters, the DG methods
and finite-volume schemes have many similarities.

3.2.3 Error Estimates for Smooth Solutions

If we assume the exact solution of (3.7) is smooth, we can obtain optimal L2-
error estimates. Such error estimates can be obtained for the general nonlinear
conservation law (3.7) and for fully discretized RKDG methods, see [58]. However,
for simplicity we will give here the proof only for the semi-discrete DG scheme and
the linear version of (3.7):

ut + ux = 0, (3.32)

for which the monotone flux is taken as the simple upwind flux f̂(u−, u+) = u−.
Of course the proof is the same for ut + aux = 0 with any constant a.
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Proposition 3.5. The solution uh of the DG scheme (3.9) for the PDE (3.32) with
a smooth solution u satisfies the error estimate

‖u − uh‖ ≤ Chk+1 (3.33)

where C depends on u and its derivatives but is independent of h.

Proof. The DG scheme (3.9), when using the notation in (3.12), can be written as

Bi(uh; vh) = 0, (3.34)

for all vh ∈ Vh and for all i. It is easy to verify that the exact solution of the PDE
(3.32) also satisfies

Bi(u; vh) = 0, (3.35)

for all vh ∈ Vh and for all i. Subtracting (3.34) from (3.35) and using the linearity
of Bi with respect to its first argument, we obtain the error equation

Bi(u − uh; vh) = 0, (3.36)

for all vh ∈ Vh and for all i.
We now define a special projection P into Vh. For a given smooth function

w, the projection Pw is the unique function in Vh which satisfies, for each i,
∫

Ii

(Pw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k−1(Ii); Pw(x−
i+ 1

2
) = w(xi+ 1

2
).

(3.37)
Standard approximation theory [7] implies, for a smooth function w,

‖Pw(x) − w(x)‖ ≤ Chk+1 (3.38)

where here and below C is a generic constant depending on w and its derivatives
but independent of h (which may not have the same value in different places).
In particular, in (3.38), C = C̃‖w‖Hk+1 where ‖w‖Hk+1 is the standard Sobolev
(k + 1) norm and C̃ is a constant independent of w.

We now take:
vh = Pu − uh (3.39)

in the error equation (3.36), and denote

eh = Pu − uh, εh = u − Pu (3.40)

to obtain
Bi(eh; eh) = −Bi(εh; eh). (3.41)

For the left-hand side of (3.41), we use the cell entropy inequality (see (3.14)) to
obtain

Bi(eh; eh) =
1
2

d

dt

∫

Ii

(eh)2dx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
, (3.42)
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where Θi− 1
2
≥ 0. As to the right-hand side of (3.41), we first write out all the

terms

−Bi(εh; eh) = −
∫

Ii

(εh)tehdx +
∫

Ii

εh(eh)xdx− (εh)−
i+ 1

2
(eh)−

i+ 1
2

+ (εh)−
i− 1

2
(eh)+

i+ 1
2
.

Noticing the properties (3.37) of the projection P , we have
∫

Ii

εh(eh)xdx = 0

because (eh)x is a polynomial of degree at most k − 1, and

(εh)−
i+ 1

2
= ui+ 1

2
− (Pu)−

i+ 1
2

= 0

for all i. Therefore, the right-hand side of (3.41) becomes

−Bi(εh; eh) = −
∫

Ii

(εh)tehdx ≤ 1
2

(∫

Ii

((εh)t)2dx +
∫

Ii

(eh)2dx

)
. (3.43)

Plugging (3.42) and (3.43) into the equality (3.41), summing up over i, and using
the approximation result (3.38), we obtain

d

dt

∫ 1

0

(eh)2dx ≤
∫ 1

0

(eh)2dx + Ch2k+2.

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0) − uh(·, 0)‖ ≤ Chk+1

(usually the initial condition uh(·, 0) is taken as the L2-projection of the analytical
initial condition u(·, 0)), and the approximation result (3.38) finally give us the
error estimate (3.33). �

3.3 Comments for Multi-dimensional Cases

Even though we have only discussed the two-dimensional steady-state and one-
dimensional time-dependent cases in previous subsections, most of the results also
hold for multi-dimensional cases with arbitrary triangulations. For example, the
semi-discrete DG method for the two-dimensional time-dependent conservation
law

ut + f(u)x + g(u)y = 0 (3.44)

is defined as follows. The computational domain is partitioned into a collection
of cells �i, which in 2D could be rectangles, triangles, etc., and the numerical
solution is a polynomial of degree k in each cell �i. The degree k could change
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with the cell, and there is no continuity requirement of the two polynomials along
an interface of two cells. Thus, instead of only one degree of freedom per cell
as in a finite-volume scheme, namely the cell average of the solution, there are
now K = (k+1)(k+2)

2 degrees of freedom per cell for a DG method using piecewise
k-th degree polynomials in 2D. These K degrees of freedom are chosen as the
coefficients of the polynomial when expanded in a local basis. One could use a
locally orthogonal basis to simplify the computation, but this is not essential.

The DG method is obtained by multiplying (3.44) by a test function v(x, y)
(which is also a polynomial of degree k in the cell), integrating over the cell �j ,
and integrating by parts:

d

dt

∫

�j

u(x, y, t)v(x, y)dxdy−
∫

�j

F (u) ·∇v dxdy +
∫

∂�j

F (u) ·n v ds = 0, (3.45)

where F = (f, g), and n is the outward unit normal of the cell boundary ∂�j .
The line integral in (3.45) is typically discretized by a Gaussian quadrature of
sufficiently high order of accuracy,

∫

∂�j

F · n v ds ≈ |∂�j|
q∑

k=1

ωkF (u(Gk, t)) · n v(Gk),

where F (u(Gk, t)) · n is replaced by a numerical flux (approximate or exact Rie-
mann solvers). For scalar equations the numerical flux can be taken as any of the
monotone fluxes discussed in Section 3.2 along the normal direction of the cell
boundary. For example, one could use the simple Lax-Friedrichs flux, which is
given by

F (u(Gk, t))·n ≈ 1
2
[(

F (u−(Gk, t))+F (u+(Gk, t))
) · n−α

(
u+(Gk, t)−u−(Gk, t)

)]
,

where α is taken as an upper bound for the eigenvalues of the Jacobian in the n
direction, and u− and u+ are the values of u inside the cell �j and outside the
cell �j (inside the neighboring cell) at the Gaussian point Gk. v(Gk) is taken as
v−(Gk), namely the value of v inside the cell �j at the Gaussian point Gk. The
volume integral term

∫
�j

F (u) · ∇v dxdy can be computed either by a numerical
quadrature or by a quadrature free implementation [2] for special systems such
as the compressible Euler equations. Notice that if a locally orthogonal basis is
chosen, the time derivative term d

dt

∫
�j

u(x, y, t)v(x, y)dxdy would be explicit and
there is no mass matrix to invert. However, even if the local basis is not orthogonal,
one still only needs to invert a small K×K local mass matrix (by hand) and there
is never a global mass matrix to invert as in a typical finite-element method.

For scalar equations (3.44), the cell entropy inequality described in Propo-
sition 3.1 holds for arbitrary triangulation. The limiter described in Section 3.2.2
can also be defined for arbitrary triangulation, see [10]. Instead of the TVDM
property given in Proposition 3.3, for multi-dimensional cases one can prove the
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maximum norm stability of the limited scheme, see [10]. The optimal error esti-
mate given in Proposition 3.5 can be proved for tensor product meshes and basis
functions, and for certain specific triangulations when the usual piecewise k-th de-
gree polynomial approximation spaces are used [39, 9]. For the most general cases,
an L2-error estimate of half an order lower O(hk+ 1

2 ) can be proved [24], which is
actually sharp [33].

For nonlinear hyperbolic equations including symmetrizable systems, if the
solution of the PDE is smooth, L2-error estimates of O(hk+1/2 + ∆t2) where ∆t
is the time step can be obtained for the fully discrete Runge-Kutta discontinuous
Galerkin method with second-order Runge-Kutta time discretization. For upwind
fluxes the optimal O(hk+1 + ∆t2) error estimate can be obtained. See [58, 59].

As an example of the excellent numerical performance of the RKDG scheme,
we show in Figures 3.1 and 3.2 the solution of the second order (piecewise linear)
and seventh order (piecewise polynomial of degree 6) DG methods for the linear
transport equation

ut + ux = 0, or ut + ux + uy = 0,

on the domain (0, 2π)× (0, T ) or (0, 2π)2 × (0, T ) with the characteristic function
of the interval (π

2 , 3π
2 ) or the square (π

2 , 3π
2 )2 as initial condition and periodic

boundary conditions [17]. Notice that the solution is for a very long time, t = 100π
(50 time periods), with a relatively coarse mesh. We can see that the second-order
scheme smears the fronts, however the seventh-order scheme maintains the shape
of the solution almost as well as the initial condition! The excellent performance
can be achieved by the DG method on multi-dimensional linear systems using
unstructured meshes, hence it is a very good method for solving, e.g. Maxwell
equations of electromagnetism and linearized Euler equations of aeroacoustics.

To demonstrate that the DG method also works well for nonlinear systems,
we show in Figure 3.3 the DG solution of the forward facing step problem by
solving the compressible Euler equations of gas dynamics [15]. We can see that
the roll-ups of the contact line caused by a physical instability are resolved well,
especially by the third-order DG scheme.

In summary, we can say the following about the discontinuous Galerkin meth-
ods for conservation laws:

1. They can be used for arbitrary triangulation, including those with hanging
nodes. Moreover, the degree of the polynomial, hence the order of accuracy,
in each cell can be independently decided. Thus the method is ideally suited
for h-p (mesh size and order of accuracy) refinements and adaptivity.

2. The methods have excellent parallel efficiency. Even with space time adap-
tivity and load balancing the parallel efficiency can still be over 80%, see
[38].

3. They should be the methods of choice if geometry is complicated or if adaptiv-
ity is important, especially for problems with long time evolution of smooth
solutions.
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Figure 3.1: Transport equation: Comparison of the exact and the RKDG solutions
at T = 100π with second order (P 1, left) and seventh order (P 6, right) RKDG
methods. One-dimensional results with 40 cells, exact solution (solid line) and
numerical solution (dashed line and symbols, one point per cell).
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Figure 3.2: Transport equation: Comparison of the exact and the RKDG solutions
at T = 100π with second order (P 1, left) and seventh order (P 6, right) RKDG
methods. Two-dimensional results with 40 × 40 cells.

4. For problems containing strong shocks, the nonlinear limiters are still less
robust than the advanced WENO philosophy. There is a parameter (the
TVB constant) for the user to tune for each problem, see [13, 10, 15]. For
rectangular meshes the limiters work better than for triangular ones. In recent
years, WENO based limiters have been investigated [35, 34, 36].
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Chapter 4

Discontinuous Galerkin Method
for Convection-Diffusion
Equations

In this section we discuss the discontinuous Galerkin method for time-dependent
convection-diffusion equations

ut +
d∑

i=1

fi(u)xi −
d∑

i=1

d∑
j=1

(aij(u)uxj )xi = 0, (4.1)

where (aij(u)) is a symmetric, semi-positive definite matrix. There are several
different formulations of discontinuous Galerkin methods for solving such equa-
tions, e.g., [1, 4, 6, 29, 45], however in this section we will only discuss the local
discontinuous Galerkin (LDG) method [16].

For equations containing higher-order spatial derivatives, such as the convec-
tion-diffusion equation (4.1), discontinuous Galerkin methods cannot be directly
applied. This is because the solution space, which consists of piecewise polynomials
discontinuous at the element interfaces, is not regular enough to handle higher
derivatives. This is a typical “non-conforming” case in finite elements. A naive
and careless application of the discontinuous Galerkin method directly to the heat
equation containing second derivatives could yield a method which behaves nicely
in the computation but is “inconsistent” with the original equation and has O(1)
errors to the exact solution [17, 57].

The idea of local discontinuous Galerkin methods for time-dependent par-
tial differential equations with higher derivatives, such as the convection-diffusion
equation (4.1), is to rewrite the equation into a first-order system, then apply the
discontinuous Galerkin method on the system. A key ingredient for the success of
such methods is the correct design of interface numerical fluxes. These fluxes must
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be designed to guarantee stability and local solvability of all the auxiliary variables
introduced to approximate the derivatives of the solution. The local solvability of
all the auxiliary variables is why the method is called a “local” discontinuous
Galerkin method in [16].

The first local discontinuous Galerkin method was developed by Cockburn
and Shu [16], for the convection-diffusion equation (4.1) containing second deriva-
tives. Their work was motivated by the successful numerical experiments of Bassi
and Rebay [3] for the compressible Navier-Stokes equations.

In the following we will discuss the stability and error estimates for the LDG
method for convection-diffusion equations. We present details only for the one-
dimensional case and will mention briefly the generalization to multi-dimensions
in Section 4.4.

4.1 LDG Scheme Formulation

We consider the one-dimensional convection-diffusion equation

ut + f(u)x = (a(u)ux)x (4.2)

with a(u) ≥ 0. We rewrite this equation as the system

ut + f(u)x = (b(u)q)x, q − B(u)x = 0, (4.3)

where

b(u) =
√

a(u), B(u) =
∫ u

b(u)du. (4.4)

The finite-element space is still given by (3.8). The semi-discrete LDG scheme is
defined as follows. Find uh, qh ∈ V k

h such that, for all test functions vh, ph ∈ V k
h

and all 1 ≤ i ≤ N , we have
∫

Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) − b(uh)qh)(vh)xdx

+ (f̂ − b̂q̂)i+ 1
2
(vh)−

i+ 1
2
− (f̂ − b̂q̂)i− 1

2
(vh)+

i− 1
2

= 0, (4.5)

∫

Ii

qhphdx +
∫

Ii

B(uh)(ph)xdx − B̂i+ 1
2
(ph)−

i+ 1
2

+ B̂i− 1
2
(ph)+

i− 1
2

= 0.

Here, all the “hat” terms are the numerical fluxes, namely single-valued functions
defined at the cell interfaces which typically depend on the discontinuous numerical
solution from both sides of the interface. We already know from Section 3 that the
convection flux f̂ should be chosen as a monotone flux. However, the upwinding
principle is no longer a valid guiding principle for the design of the diffusion fluxes
b̂, q̂ and B̂. In [16], sufficient conditions for the choices of these diffusion fluxes
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to guarantee the stability of the scheme (4.5) are given. Here, we will discuss a
particularly attractive choice, called “alternating fluxes”, defined as

b̂ =
B(u+

h ) − B(u−
h )

u+
h − u−

h

, q̂ = q+
h , B̂ = B(u−

h ). (4.6)

The important point is that q̂ and B̂ should be chosen from different directions.
Thus, the choice

b̂ =
B(u+

h ) − B(u−
h )

u+
h − u−

h

, q̂ = q−h , B̂ = B(u+
h )

is also fine.
Notice that, from the second equation in the scheme (4.5), we can solve qh

explicitly and locally (in cell Ii) in terms of uh, by inverting the small mass matrix
inside the cell Ii. This is why the method is referred to as the “local” discontinuous
Galerkin method.

4.2 Stability Analysis

Similar to the case for hyperbolic conservation laws, we have the following “cell
entropy inequality” for the LDG method (4.5).

Proposition 4.1. The solution uh, qh to the semi-discrete LDG scheme (4.5) sat-
isfies the following “cell entropy inequality”

1
2

d

dt

∫

Ii

(uh)2 dx +
∫

Ii

(qh)2dx + F̂i+ 1
2
− F̂i− 1

2
≤ 0 (4.7)

for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x−
i+ 1

2
, t), qh(x−

i+ 1
2
, t); uh(x+

i+ 1
2
, t), qh(x+

i+ 1
2
))

satisfying F̂ (u, u) = F (u) − ub(u)q where, as before, F (u) =
∫ u

uf ′(u)du.

Proof. We introduce a short-hand notation

Bi(uh, qh; vh, ph) =
∫

Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) − b(uh)qh)(vh)xdx

+ (f̂ − b̂q̂)i+ 1
2
(vh)−

i+ 1
2
− (f̂ − b̂q̂)i− 1

2
(vh)+

i− 1
2

(4.8)

+
∫

Ii

qhphdx+
∫

Ii

B(uh)(ph)xdx−B̂i+ 1
2
(ph)−

i+ 1
2
+B̂i− 1

2
(ph)+

i− 1
2
.
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If we take vh = uh, ph = qh in the scheme (4.5), we obtain

Bi(uh, qh; uh, qh) =
∫

Ii

(uh)t(uh)dx (4.9)

−
∫

Ii

(f(uh) − b(uh)qh)(uh)xdx

+ (f̂ − b̂q̂)i+ 1
2
(uh)−

i+ 1
2
− (f̂ − b̂q̂)i− 1

2
(uh)+

i− 1
2

(4.10)

+
∫

Ii

(qh)2dx +
∫

Ii

B(uh)(qh)xdx − B̂i+ 1
2
(qh)−

i+ 1
2

+ B̂i− 1
2
(qh)+

i− 1
2

= 0.

If we denote F̃ (u) =
∫ u

f(u)du, then (4.9) becomes

Bi(uh, qh; uh, qh) =
1
2

d

dt

∫

Ii

(uh)2 dx +
∫

Ii

(qh)2dx

+ F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
= 0, (4.11)

where
F̂ = −F̃ (u−

h ) + f̂u−
h − b̂q+

h u−
h (4.12)

and
Θ = −F̃ (u−

h ) + f̂u−
h + F̃ (u+

h ) − f̂u+
h , (4.13)

where we have used the definition of the numerical fluxes (4.6). Notice that we
have omitted the subindex i− 1

2 in the definitions of F̂ and Θ. It is easy to verify
that the numerical entropy flux F̂ defined by (4.12) is consistent with the entropy
flux F (u)−ub(u)q. As Θ in (4.13) is the same as that in (3.16) for the conservation
law case, we readily have Θ ≥ 0. This finishes the proof of (4.7). �

We again note that the proof does not depend on the accuracy of the scheme,
namely it holds for the piecewise polynomial space (3.8) with any degree k. Also,
the same proof can be given for multi-dimensional LDG schemes on any triangu-
lation.

As before, the cell entropy inequality trivially implies an L2-stability of the
numerical solution.

Proposition 4.2. For periodic or compactly supported boundary conditions, the so-
lution uh, qh to the semi-discrete LDG scheme (4.5) satisfies the following L2-
stability

d

dt

∫ 1

0

(uh)2dx + 2
∫ 1

0

(qh)2dx ≤ 0, (4.14)

or

‖uh(·, t)‖ + 2
∫ t

0

‖qh(·, τ)‖dτ ≤ ‖uh(·, 0)‖. (4.15)

�
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Notice that both the cell entropy inequality (4.7) and the L2-stability (4.14)
are valid regardless of whether the convection-diffusion equation (4.2) is convection-
dominated or diffusion-dominated and regardless of whether the exact solution is
smooth or not. The diffusion coefficient a(u) can be degenerate (equal to zero) in
any part of the domain. The LDG method is particularly attractive for convection-
dominated convection-diffusion equations, when traditional continuous finite-element
methods are less stable.

4.3 Error Estimates

Again, if we assume the exact solution of (4.2) is smooth, we can obtain optimal
L2-error estimates. Such error estimates can be obtained for the general nonlinear
convection-diffusion equation (4.2), see [53]. However, for simplicity we will give
here the proof only for the heat equation:

ut = uxx (4.16)

defined on [0, 1] with periodic boundary conditions.

Proposition 4.3. The solution uh and qh to the semi-discrete DG scheme (4.5) for
the PDE (4.16) with a smooth solution u satisfies the error estimate

∫ 1

0

(u(x, t) − uh(x, t))2 dx +
∫ t

0

∫ 1

0

(ux(x, τ) − qh(x, τ))2 dxdτ ≤ Ch2(k+1),

(4.17)
where C depends on u and its derivatives but is independent of h.

Proof. The DG scheme (4.5), when using the notation in (4.8), can be written as

Bi(uh, qh; vh, ph) = 0, (4.18)

for all vh, ph ∈ Vh and for all i. It is easy to verify that the exact solution u and
q = ux of the PDE (4.16) also satisfies

Bi(u, q; vh, ph) = 0, (4.19)

for all vh, ph ∈ Vh and for all i. Subtracting (4.18) from (4.19) and using the
linearity of Bi with respect to its first two arguments, we obtain the error equation

Bi(u − uh, q − qh; vh, ph) = 0, (4.20)

for all vh, ph ∈ Vh and for all i.
Recall the special projection P defined in (3.37). We also define another

special projection Q as follows. For a given smooth function w, the projection Qw
is the unique function in Vh which satisfies, for each i,
∫

Ii

(Qw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k−1(Ii); Qw(x+
i− 1

2
) = w(xi− 1

2
).

(4.21)



180 Chapter 4. Discontinuous Galerkin Method for Convection-Diffusion Eqs

Similar to P , we also have, by standard approximation theory [7], that

‖Qw(x) − w(x)‖ ≤ Chk+1, ∀w ∈ Hk+1(Ω), (4.22)

where C is a constant depending on w and its derivatives but independent of h.
We now take

vh = Pu − uh, ph = Qq − qh (4.23)

in the error equation (4.20), and denote

eh = Pu − uh, ēh = Qq − qh; εh = u − Pu, ε̄h = q − Qq, (4.24)

to obtain
Bi(eh, ēh; eh, ēh) = −Bi(εh, ε̄h; eh, ēh). (4.25)

For the left-hand side of (4.25), we use the cell entropy inequality (see (4.11)) to
obtain

Bi(eh, ēh; eh, ēh) =
1
2

d

dt

∫

Ii

(eh)2dx +
∫

Ii

(ēh)2dx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
, (4.26)

where Θi− 1
2
≥ 0 (in fact we can easily verify, from (4.13), that Θi− 1

2
= 0 for the

special case of the heat equation (4.16)). As to the right-hand side of (4.25), we
first write out all the terms

−Bi(εh, ε̄h; eh, ēh) = −
∫

Ii

(εh)tehdx

−
∫

Ii

ε̄h(eh)xdx + (ε̄h)+
i+ 1

2
(eh)−

i+ 1
2
− (ε̄h)+

i− 1
2
(eh)+

i− 1
2

−
∫

Ii

ε̄hēhdx

−
∫

Ii

εh(ēh)xdx + (εh)−
i+ 1

2
(ēh)−

i+ 1
2
− (εh)−

i− 1
2
(ēh)+

i− 1
2
.

Noticing the properties (3.37) and (4.21) of the projections P and Q, we have
∫

Ii

ε̄h(eh)xdx = 0,

∫

Ii

εh(ēh)xdx = 0,

because (eh)x and (ēh)x are polynomials of degree at most k − 1, and

(εh)−
i+ 1

2
= ui+ 1

2
− (Pu)−

i+ 1
2

= 0, (ε̄h)+
i+ 1

2
= qi+ 1

2
− (Qq)+

i+ 1
2

= 0,

for all i. Therefore, the right-hand side of (4.25) becomes

−Bi(εh, ε̄h; eh, ēh) = −
∫

Ii

(εh)tehdx −
∫

Ii

ε̄hēhdx (4.27)

≤ 1
2

(∫

Ii

((εh)t)2dx +
∫

Ii

(eh)2dx +
∫

Ii

(ε̄h)2dx +
∫

Ii

(ēh)2dx

)
.
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Plugging (4.26) and (4.27) into the equality (4.25), summing up over i, and using
the approximation results (3.38) and (4.22), we obtain

d

dt

∫ 1

0

(eh)2dx +
∫ 1

0

(ēh)2dx ≤
∫ 1

0

(eh)2dx + Ch2k+2.

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0) − uh(·, 0)‖ ≤ Chk+1

and the approximation results (3.38) and (4.22) finally give us the error estimate
(4.17). �

4.4 Multi-Dimensions

Even though we have only discussed one-dimensional cases in this section, the algo-
rithm and its analysis can be easily generalized to the multi-dimensional equation
(4.1). The stability analysis is the same as for the one-dimensional case in Sec-
tion 4.2. The optimal O(hk+1) error estimates can be obtained on tensor product
meshes and polynomial spaces, along the same line as that in Section 4.3. For
general triangulations and piecewise polynomials of degree k, a sub-optimal error
estimate of O(hk) can be obtained. We will not provide the details here and refer
to [16, 53].





Chapter 5

Discontinuous Galerkin Method
for PDEs Containing
Higher-Order Spatial
Derivatives

We now consider the DG method for solving PDEs containing higher-order spatial
derivatives. Even though there are other possible DG schemes for such PDEs, e.g.
those designed in [6], we will only discuss the local discontinuous Galerkin (LDG)
method in this section.

5.1 LDG Scheme for the KdV Equations

We first consider PDEs containing third spatial derivatives. These are usually
nonlinear dispersive wave equations, for example the following general KdV-type
equations

ut +
d∑

i=1

fi(u)xi +
d∑

i=1

(
r′i(u)

d∑
j=1

gij(ri(u)xi)xj

)
xi

= 0, (5.1)

where fi(u), ri(u) and gij(q) are arbitrary (smooth) nonlinear functions. The one-
dimensional KdV equation

ut + (αu + βu2)x + σuxxx = 0, (5.2)

where α, β and σ are constants, is a special case of the general class (5.1).
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Stable LDG schemes for solving (5.1) were first designed in [55]. We will
concentrate our discussion on the one-dimensional case. For the one-dimensional
generalized KdV-type equations

ut + f(u)x + (r′(u)g(r(u)x)x)x = 0, (5.3)

where f(u), r(u) and g(q) are arbitrary (smooth) nonlinear functions, the LDG
method is based on rewriting it as the following system,

ut + (f(u) + r′(u)p)x = 0, p − g(q)x = 0, q − r(u)x = 0. (5.4)

The finite-element space is still given by (3.8). The semi-discrete LDG scheme is
defined as follows. Find uh, ph, qh ∈ V k

h such that, for all test functions vh, wh, zh ∈
V k

h and all 1 ≤ i ≤ N , we have
∫

Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) + r′(uh)ph)(vh)xdx

+ (f̂ + r̂′p̂)i+ 1
2
(vh)−

i+ 1
2
− (f̂ + r̂′p̂)i− 1

2
(vh)+

i− 1
2

= 0, (5.5)
∫

Ii

phwhdx +
∫

Ii

g(qh)(wh)xdx − ĝi+ 1
2
(wh)−

i+ 1
2

+ ĝi− 1
2
(wh)+

i− 1
2

= 0,

∫

Ii

qhzhdx +
∫

Ii

r(uh)(zh)xdx − r̂i+ 1
2
(zh)−

i+ 1
2

+ r̂i− 1
2
(zh)+

i− 1
2

= 0.

Here again, all the “hat” terms are the numerical fluxes, namely single-valued
functions defined at the cell interfaces which typically depend on the discontinuous
numerical solution from both sides of the interface. We already know from Section
3 that the convection flux f̂ should be chosen as a monotone flux. It is important
to design the other fluxes suitably in order to guarantee stability of the resulting
LDG scheme. In fact, the upwinding principle is still a valid guiding principle here,
since the KdV-type equation (5.3) is a dispersive wave equation for which waves
are propagating with a direction. For example, the simple linear equation

ut + uxxx = 0,

which corresponds to (5.3) with f(u) = 0, r(u) = u and g(q) = q, admits the
following simple wave solution

u(x, t) = sin(x + t),

that is, information propagates from right to left. This motivates the following
choice of numerical fluxes, discovered in [55]:

r̂′ =
r(u+

h ) − r(u−
h )

u+
h − u−

h

, p̂ = p+
h , ĝ = ĝ(q−h , q+

h ), r̂ = r(u−
h ). (5.6)
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Here, −ĝ(q−h , q+
h ) is a monotone flux for −g(q), namely ĝ is a non-increasing func-

tion in the first argument and a non-decreasing function in the second argument.
The important point is again the “alternating fluxes”, namely p̂ and r̂ should come
from opposite sides. Thus

r̂′ =
r(u+

h ) − r(u−
h )

u+
h − u−

h

, p̂ = p−h , ĝ = ĝ(q−h , q+
h ), r̂ = r(u+

h )

would also work.

Notice that, from the third equation in the scheme (5.5), we can solve qh

explicitly and locally (in cell Ii) in terms of uh, by inverting the small mass matrix
inside the cell Ii. Then, from the second equation in the scheme (5.5), we can
solve ph explicitly and locally (in cell Ii) in terms of qh. Thus only uh is the
global unknown and the auxiliary variables qh and ph can be solved in terms of uh

locally. This is why the method is referred to as the “local” discontinuous Galerkin
method.

5.1.1 Stability Analysis

Similar to the case for hyperbolic conservation laws and convection-diffusion equa-
tions, we have the following “cell entropy inequality” for the LDG method (5.5).

Proposition 5.1. The solution uh to the semi-discrete LDG scheme (5.5) satisfies
the following “cell entropy inequality”

1
2

d

dt

∫

Ii

(uh)2 dx + F̂i+ 1
2
− F̂i− 1

2
≤ 0 (5.7)

for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x−
i+ 1

2
, t), ph(x−

i+ 1
2
, t), qh(x−

i+ 1
2
, t); uh(x+

i+ 1
2
, t), ph(x+

i+ 1
2
, t), qh(x+

i+ 1
2
))

satisfying F̂ (u, u) = F (u)+ur′(u)p−G(q) where F (u) =
∫ u

uf ′(u)du and G(q) =∫ q
qg(q)dq.
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Proof. We introduce a short-hand notation

Bi(uh, ph, qh; vh, wh, zh) =
∫

Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) + r′(uh)ph)(vh)xdx

+ (f̂ + r̂′p̂)i+ 1
2
(vh)−

i+ 1
2
− (f̂ + r̂′p̂)i− 1

2
(vh)+

i− 1
2

(5.8)

+
∫

Ii

phwhdx

+
∫

Ii

g(qh)(wh)xdx − ĝi+ 1
2
(wh)−

i+ 1
2

+ ĝi− 1
2
(wh)+

i− 1
2

+
∫

Ii

qhzhdx

+
∫

Ii

r(uh)(zh)xdx − r̂i+ 1
2
(zh)−

i+ 1
2

+ r̂i− 1
2
(zh)+

i− 1
2
.

If we take vh = uh, wh = qh and zh = −ph in the scheme (5.5), we obtain

Bi(uh, ph, qh; uh, qh,−ph) =
∫

Ii

(uh)t(uh)dx

−
∫

Ii

(f(uh) + r′(uh)ph)(uh)xdx

+ (f̂ + r̂′p̂)i+ 1
2
(uh)−

i+ 1
2

(5.9)

− (f̂ + r̂′p̂)i− 1
2
(uh)+

i− 1
2

+
∫

Ii

phqhdx

+
∫

Ii

g(qh)(qh)xdx − ĝi+ 1
2
(qh)−

i+ 1
2

+ ĝi− 1
2
(qh)+

i− 1
2

−
∫

Ii

qhphdx

−
∫

Ii

r(uh)(ph)xdx + r̂i+ 1
2
(ph)−

i+ 1
2
− r̂i− 1

2
(ph)+

i− 1
2

= 0.

If we denote F̃ (u) =
∫ u

f(u)du and G̃(q) =
∫ q

g(q)dq, then (5.9) becomes

Bi(uh, ph, qh; uh, qh,−ph) =
1
2

d

dt

∫

Ii

(uh)2 dx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
= 0, (5.10)

where
F̂ = −F̃ (u−

h ) + f̂u−
h + G̃(q−h ) + r̂′p+

h u−
h − ĝq−h , (5.11)
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and

Θ =
(
−F̃ (u−

h ) + f̂u−
h + F̃ (u+

h ) − f̂u+
h

)
+

(
G̃(q−h ) − ĝq−h − G̃(q+

h ) + ĝq+
h

)
, (5.12)

where we have used the definition of the numerical fluxes (5.6). Notice that we
have omitted the subindex i− 1

2 in the definitions of F̂ and Θ. It is easy to verify
that the numerical entropy flux F̂ defined by (5.11) is consistent with the entropy
flux F (u) + ur′(u)p − G(q). The terms inside the first parenthesis for Θ in (5.12)
are the same as that in (3.16) for the conservation law case; those inside the second
parenthesis are the same as those inside the first parenthesis, if we replace qh by
uh, −G̃ by F̃ , and −ĝ by f̂ (recall that −ĝ is a monotone flux). We therefore
readily have Θ ≥ 0. This finishes the proof of (5.7). �

We observe once more that the proof does not depend on the accuracy of the
scheme, namely it holds for the piecewise polynomial space (3.8) with any degree
k. Also, the same proof can be given for the multi-dimensional LDG scheme solving
(5.1) on any triangulation.

As before, the cell entropy inequality trivially implies an L2-stability of the
numerical solution.

Proposition 5.2. For periodic or compactly supported boundary conditions, the so-
lution uh to the semi-discrete LDG scheme (5.5) satisfies the L2-stability

d

dt

∫ 1

0

(uh)2dx ≤ 0, (5.13)

or
‖uh(·, t)‖ ≤ ‖uh(·, 0)‖. (5.14)

�
Again, both the cell entropy inequality (5.7) and the L2-stability (5.13) are

valid regardless of whether the KdV-type equation (5.3) is convection-dominated
or dispersion-dominated and regardless of whether the exact solution is smooth or
not. The dispersion flux r′(u)g(r(u)x)x can be degenerate (equal to zero) in any
part of the domain. The LDG method is particularly attractive for convection-
dominated convection-dispersion equations, when traditional continuous finite-
element methods may be less stable. In [55], this LDG method is used to study the
dispersion limit of the Burgers equation, for which the third derivative dispersion
term in (5.3) has a small coefficient which tends to zero.

5.1.2 Error Estimates

For error estimates we once again assume the exact solution of (5.3) is smooth.
The error estimates can be obtained for a general class of nonlinear convection-
dispersion equations which is a subclass of (5.3), see [53]. However, for simplicity
we will give here only the proof for the linear equation

ut + ux + uxxx = 0 (5.15)
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defined on [0, 1] with periodic boundary conditions.

Proposition 5.3. The solution uh to the semi-discrete LDG scheme (5.5) for the
PDE (5.15) with a smooth solution u satisfies the following error estimate

‖u − uh‖ ≤ Chk+ 1
2 , (5.16)

where C depends on u and its derivatives but is independent of h.

Proof. The LDG scheme (5.5), when using the notation in (5.8), can be written
as

Bi(uh, ph, qh; vh, wh, zh) = 0, (5.17)

for all vh, wh, zh ∈ Vh and for all i. It is easy to verify that the exact solution u,
q = ux and p = uxx of the PDE (5.15) also satisfies

Bi(u, p, q; vh, wh, zh) = 0, (5.18)

for all vh, wh, zh ∈ Vh and for all i. Subtracting (5.17) from (5.18) and using
the linearity of Bi with respect to its first three arguments, we obtain the error
equation

Bi(u − uh, p − ph, q − qh; vh, wh, zh) = 0, (5.19)

for all vh, wh, zh ∈ Vh and for all i.
Recall the special projection P defined in (3.37). We also denote the standard

L2-projection as R: for a given smooth function w, the projection Rw is the unique
function in Vh which satisfies, for each i,

∫

Ii

(Rw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k(Ii). (5.20)

Similar to P , we also have, by the standard approximation theory [7], that

‖Rw(x) − w(x)‖ +
√

h‖Rw(x) − w(x)‖Γ ≤ Chk+1 (5.21)

for a smooth function w, where C is a constant depending on w and its derivatives
but independent of h, and ‖v‖Γ is the usual L2-norm on the cell interfaces of the
mesh, which for this one-dimensional case is

‖v‖2
Γ =

∑
i

(
(v−

i+ 1
2
)2 + (v+

i− 1
2
)2

)
.

We now take

vh = Pu − uh, wh = Rq − qh, zh = ph − Rp (5.22)

in the error equation (5.19), and denote

eh = Pu − uh, ēh = Rq − qh, (5.23)

¯̄eh = Rp − ph; εh = u − Pu, ε̄h = q − Rq, ¯̄εh = p − Rp,
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to obtain

Bi(eh, ¯̄eh, ēh, ; eh, ēh,−¯̄eh) = −Bi(εh, ¯̄εh, ε̄h; eh, ēh,−¯̄eh). (5.24)

For the left-hand side of (5.24), we use the cell entropy inequality (see (5.10)) to
obtain

Bi(eh, ¯̄eh, ēh, ; eh, ēh,−¯̄eh) =
1
2

d

dt

∫

Ii

(eh)2dx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
(5.25)

where we can easily verify, based on the formula (5.12) and for the PDE (5.15),
that

Θi− 1
2

=
1
2

(
(eh)+

i− 1
2
− (eh)−

i− 1
2

)2

+
1
2

(
(ēh)+

i− 1
2
− (ēh)−

i− 1
2

)2

. (5.26)

As to the right-hand side of (5.24), we first write out all the terms

−Bi(εh, ¯̄εh,ε̄h; eh, ēh,−¯̄eh)

= −
∫

Ii

(εh)tehdx

+
∫

Ii

(εh + ¯̄εh)(eh)xdx − (ε−h + ¯̄ε+
h )i+ 1

2
(eh)−

i+ 1
2

+ (ε−h + ¯̄ε+
h )i− 1

2
(eh)+

i− 1
2

−
∫

Ii

¯̄εhēhdx −
∫

Ii

ε̄h(ēh)xdx + (ε̄h)+
i+ 1

2
(ēh)−

i+ 1
2
− (ε̄h)+

i− 1
2
(ēh)+

i− 1
2

+
∫

Ii

ε̄h ¯̄ehdx +
∫

Ii

εh(¯̄eh)xdx − (εh)−
i+ 1

2
(¯̄eh)−

i+ 1
2

+ (εh)−
i− 1

2
(¯̄eh)+

i− 1
2
.

Noticing the properties (3.37) and (5.20) of the projections P and R, we have
∫

Ii

(εh + ¯̄εh)(eh)xdx = 0,

∫

Ii

¯̄εhēhdx = 0,

∫

Ii

ε̄h(ēh)xdx = 0,

∫

Ii

ε̄h ¯̄ehdx = 0,

∫

Ii

εh(¯̄eh)xdx = 0,

because (eh)x, (ēh)x and (¯̄eh)x are polynomials of degree at most k − 1, and ēh

and ¯̄eh are polynomials of degree at most k. Also,

(εh)−
i+ 1

2
= ui+ 1

2
− (Pu)−

i+ 1
2

= 0

for all i. Therefore, the right-hand side of (5.24) becomes

−Bi(εh,¯̄εh, ε̄h; eh, ēh,−¯̄eh)

= −
∫

Ii

(εh)tehdx − (¯̄εh)+
i+ 1

2
(eh)−

i+ 1
2

+ (¯̄εh)+
i− 1

2
(eh)+

i− 1
2

+ (ε̄h)+
i+ 1

2
(ēh)−

i+ 1
2
− (ε̄h)+

i− 1
2
(ēh)+

i− 1
2
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= −
∫

Ii

(εh)tehdx + Ĥi+ 1
2
− Ĥi− 1

2

+ (¯̄εh)+
i− 1

2

(
(eh)+

i− 1
2
− (eh)−

i− 1
2

)
− (ε̄h)+

i− 1
2

(
(ēh)+

i− 1
2
− (ēh)−

i− 1
2

)
(5.27)

≤ Ĥi+ 1
2
− Ĥi− 1

2
+

1
2

[∫

Ii

((εh)t)2dx +
∫

Ii

(eh)2dx

+
(
(¯̄εh)+

i− 1
2

)2

+
(
(eh)+

i− 1
2
− (eh)−

i− 1
2

)2

+
(
(ε̄h)+

i− 1
2

)2

+
(
(ēh)+

i− 1
2
− (ēh)−

i− 1
2

)2
]

.

Plugging (5.25), (5.26) and (5.27) into the equality (5.24), summing up over i, and
using the approximation results (3.38) and (5.21), we obtain

d

dt

∫ 1

0

(eh)2dx ≤
∫ 1

0

(eh)2dx + Ch2k+1.

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0)− uh(·, 0)‖ ≤ Chk+1,

and the approximation results (3.38) and (5.21) finally give us the error estimate
(5.16). �

We note that the error estimate (5.16) is half an order lower than optimal.
Technically, this is because we are unable to use the special projections as before to
eliminate the interface terms involving ε̄h and ¯̄εh in (5.27). Numerical experiments
in [55] indicate that both the L2- and L∞-errors are of the optimal (k+1)-th order
of accuracy.

5.2 LDG Schemes for Other Higher-Order PDEs

In this subsection we list some of the higher-order PDEs for which stable DG
methods have been designed in the literature. We will concentrate on the discussion
of LDG schemes.

5.2.1 Bi-harmonic Equations

An LDG scheme for solving the time-dependent convection-bi-harmonic equation

ut +
d∑

i=1

fi(u)xi +
d∑

i=1

(ai(uxi)uxixi)xixi = 0, (5.28)
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where fi(u) and ai(q) ≥ 0 are arbitrary functions, was designed in [56]. The nu-
merical fluxes are chosen following the same “alternating fluxes” principle similar
to the second-order convection-diffusion equation (4.1), see (4.6). A cell entropy in-
equality and the L2-stability of the LDG scheme for the nonlinear equation (5.28)
can be proved [56], which do not depend on the smoothness of the solution of
(5.28), the order of accuracy of the scheme, or the triangulation.

5.2.2 Fifth-Order Convection-Dispersion Equations

An LDG scheme for solving the following fifth-order convection-dispersion equa-
tion

ut +
d∑

i=1

fi(u)xi +
d∑

i=1

gi(uxixi)xixixi = 0, (5.29)

where fi(u) and gi(q) are arbitrary functions, was designed in [56]. The numerical
fluxes are chosen following the same upwinding and “alternating fluxes” principle
similar to the third-order KdV-type equations (5.1), see (5.6). A cell entropy in-
equality and the L2-stability of the LDG scheme for the nonlinear equation (5.29)
can be proved [56], which again do not depend on the smoothness of the solution
of (5.29), the order of accuracy of the scheme, or the triangulation.

Stable LDG schemes for similar equations with sixth or higher derivatives
can also be designed along similar lines.

5.2.3 The K(m, n) Equations

LDG methods for solving the K(m, n) equations

ut + (um)x + (un)xxx = 0, (5.30)

where m and n are positive integers, have been designed in [27]. These K(m, n)
equations were introduced by Rosenau and Hyman in [40] to study the so-called
compactons, namely the compactly supported solitary waves solutions. For the
special case of m = n being an odd positive integer, LDG schemes which are
stable in the Lm+1-norm can be designed (see [27]). For other cases, we can also
design LDG schemes based on a linearized stability analysis, which perform well
in numerical simulation for the fully nonlinear equation (5.30).

5.2.4 The KdV-Burgers-Type (KdVB) Equations

LDG methods for solving the KdV-Burgers-type (KdVB) equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x = 0, (5.31)

where f(u), a(u) ≥ 0, r(u) and g(q) are arbitrary functions, have been designed
in [49]. The design of numerical fluxes follows the same lines as that for the
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convection-diffusion equation (4.2) and for the KdV-type equation (5.3). A cell
entropy inequality and the L2-stability of the LDG scheme for the nonlinear equa-
tion (5.31) can be proved [49], which again do not depend on the smoothness of the
solution of (5.31) and the order of accuracy of the scheme. The LDG scheme is used
in [49] to study different regimes when one of the dissipation and the dispersion
mechanisms dominates, and when they have comparable influence on the solution.
An advantage of the LDG scheme designed in [49] is that it is stable regardless of
which mechanism (convection, diffusion, dispersion) actually dominates.

5.2.5 The Fifth-Order KdV-Type Equations

LDG methods for solving the fifth-order KdV-type equations

ut + f(u)x + (r′(u)g(r(u)x)x)x + (s′(u)h(s(u)xx)xx)x = 0, (5.32)

where f(u), r(u), g(q), s(u) and h(p) are arbitrary functions, have been designed
in [49]. The design of numerical fluxes follows the same lines as that for the KdV-
type equation (5.3). A cell entropy inequality and the L2-stability of the LDG
scheme for the nonlinear equation (5.32) can be proved [49], which again do not
depend on the smoothness of the solution of (5.32) and the order of accuracy of the
scheme. The LDG scheme is used in [49] to simulate the solutions of the Kawahara
equation, the generalized Kawahara equation, Ito’s fifth-order KdV equation, and
a fifth-order KdV-type equations with high nonlinearities, which are all special
cases of the equations represented by (5.32).

5.2.6 The Fully Nonlinear K(n, n, n) Equations

LDG methods for solving the fifth-order fully nonlinear K(n, n, n) equations

ut + (un)x + (un)xxx + (un)xxxxx = 0, (5.33)

where n is a positive integer, have been designed in [49]. The design of numerical
fluxes follows the same lines as that for the K(m, n) equations (5.30). For odd
n, stability in the Ln+1-norm of the resulting LDG scheme can be proved for
the nonlinear equation (5.33) [49]. This scheme is used to simulate compacton
propagation in [49].

5.2.7 The Nonlinear Schrödinger (NLS) Equation

In [50], LDG methods are designed for the generalized nonlinear Schrödinger (NLS)
equation

i ut + uxx + i (g(|u|2)u)x + f(|u|2)u = 0, (5.34)

the two-dimensional version

i ut + ∆u + f(|u|2)u = 0, (5.35)
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and the coupled nonlinear Schrödinger equation
{

i ut + i αux + uxx + β u + κv + f(|u|2, |v|2)u = 0
i vt − i αvx + vxx − β u + κv + g(|u|2, |v|2)v = 0,

(5.36)

where f(q) and g(q) are arbitrary functions and α, β and κ are constants. With
suitable choices of the numerical fluxes, the resulting LDG schemes are proved to
satisfy a cell entropy inequality and L2-stability [50]. The LDG scheme is used
in [50] to simulate the soliton propagation and interaction, and the appearance
of singularities. The easiness of h-p adaptivity of the LDG scheme and rigorous
stability for the fully nonlinear case make it an ideal choice for the simulation of
Schrödinger equations, for which the solutions often have quite localized structures.

5.2.8 The Kadomtsev-Petviashvili (KP) Equations

The two-dimensional Kadomtsev-Petviashvili (KP) equations

(ut + 6uux + uxxx)x + 3σ2uyy = 0, (5.37)

where σ2 = ±1, are generalizations of the one-dimensional KdV equations and are
important models for water waves. Because of the x-derivative for the ut term,
the equation (5.37) is well posed only in a function space with a global constraint,
hence it is very difficult to design an efficient LDG scheme which relies on local
operations. In [51], an LDG scheme for (5.37) is designed by carefully choosing
locally supported bases which satisfy the global constraint needed by the solution
of (5.37). The LDG scheme satisfies a cell entropy inequality and is L2-stable for
the fully nonlinear equation (5.37). Numerical simulations are performed in [51]
for both the KP-I equations (σ2 = −1 in (5.37)) and the KP-II equations (σ2 = 1
in (5.37)). Line solitons and lump-type pulse solutions have been simulated.

5.2.9 The Zakharov-Kuznetsov (ZK) Equation

The two-dimensional Zakharov-Kuznetsov (ZK) equation

ut + (3u2)x + uxxx + uxyy = 0 (5.38)

is another generalization of the one-dimensional KdV equations. An LDG scheme
is designed for (5.38) in [51] which is proved to satisfy a cell entropy inequality
and to be L2-stable. An L2-error estimate is given in [53]. Various nonlinear waves
have been simulated by this scheme in [51].

5.2.10 The Kuramoto-Sivashinsky-type Equations

In [52], an LDG method is developed to solve the Kuramoto-Sivashinsky-type
equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x + (s(ux)uxx)xx = 0, (5.39)
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where f(u), a(u), r(u), g(q) and s(p) ≥ 0 are arbitrary functions. The Kuramoto-
Sivashinsky equation

ut + uux + αuxx + βuxxxx = 0, (5.40)

where α and β ≥ 0 are constants, which is a special case of (5.39), is a canon-
ical evolution equation which has attracted considerable attention over the last
decades. When the coefficients α and β are both positive, its linear terms describe
a balance between long-wave instability and short-wave stability, with the non-
linear term providing a mechanism for energy transfer between wave modes. The
LDG method developed in [52] can be proved to satisfy a cell entropy inequality
and is therefore L2-stable, for the general nonlinear equation (5.39). The LDG
scheme is used in [52] to simulate chaotic solutions of (5.40).

5.2.11 The Ito-Type Coupled KdV Equations

Also in [52], an LDG method is developed to solve the Ito-type coupled KdV
equations

ut + αuux + βvvx + γuxxx = 0,

vt + β(uv)x = 0, (5.41)

where α, β and γ are constants. An L2-stability is proved for the LDG method.
Simulation for the solution of (5.41) in which the result for u behaves like dispersive
wave solution and the result for v behaves like shock wave solution is performed
in [52] using the LDG scheme.

5.2.12 The Camassa-Holm (CH) Equation

An LDG method for solving the Camassa-Holm (CH) equation

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx, (5.42)

where κ is a constant, is designed in [54]. Because of the uxxt term, the design
of an LDG method is non-standard. By a careful choice of the numerical fluxes,
the authors obtain an LDG scheme which can be proved to satisfy a cell entropy
inequality and to be L2-stable [54]. A sub-optimal O(hk) error estimate is also
obtained in [54].

5.2.13 The Cahn-Hilliard Equation

LDG methods have been designed for solving the Cahn-Hilliard equation

ut = ∇ ·
(
b(u)∇(−γ∆u + Ψ′(u)

))
, (5.43)
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and the Cahn-Hilliard system
{

ut = ∇ · (B(u)∇ω),
ω = −γ∆u + DΨ(u),

(5.44)

in [47], where {DΨ(u)}l = ∂Ψ(u)
∂ul

and γ is a positive constant. Here b(u) is the non-
negative diffusion mobility and Ψ(u) is the homogeneous free energy density for
the scalar case (5.43). For the system case (5.44), B(u) is the symmetric positive
semi-definite mobility matrix and Ψ(u) is the homogeneous free energy density.
The proof of the energy stability for the LDG scheme is given for the general
nonlinear solutions. Many simulation results are given in [47].

In [48], a class of LDG methods are designed for the more general Allen-
Cahn/Cahn-Hilliard (AC/CH) system in Ω ∈ R

d (d ≤ 3)
{

ut = ∇ · [b(u, v)∇(Ψu(u, v) − γ∆u)],
ρvt = −b(u, v)[Ψv(u, v) − γ∆v].

(5.45)

Energy stability of the LDG schemes is again proved. Simulation results are pro-
vided.





Bibliography

[1] D. Arnold, F. Brezzi, B. Cockburn and L. Marini, Unified analysis of discon-
tinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical
Analysis 39 (2002), 1749–1779.

[2] H. Atkins and C.-W. Shu, Quadrature-free implementation of the discontin-
uous Galerkin method for hyperbolic equations. AIAA Journal 36 (1998),
775–782.

[3] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier-Stokes equa-
tions. Journal of Computational Physics 131 (1997), 267–279.

[4] C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for
convection-diffusion problems. Computer Methods in Applied Mechanics and
Engineering 175 (1999), 311–341.

[5] R. Biswas, K.D. Devine and J. Flaherty, Parallel, adaptive finite element
methods for conservation laws. Applied Numerical Mathematics 14 (1994),
255–283.

[6] Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for
time-dependent partial differential equations with higher order derivatives.
Mathematics of Computation 77 (2008), 699–730.

[7] P. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland,
1975.

[8] B. Cockburn, Discontinuous Galerkin methods for convection-dominated
problems. In: High-Order Methods for Computational Physics, T.J. Barth
and H. Deconinck, editors, Lecture Notes in Computational Science and En-
gineering, volume 9, Springer, 1999, 69–224.

[9] B. Cockburn, B. Dong and J. Guzmán, Optimal convergence of the original
DG method for the transport-reaction equation on special meshes. SIAM
Journal on Numerical Analysis 46 (2008), 1250–1265.



198 Bibliography

[10] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection dis-
continuous Galerkin finite element method for conservation laws IV: the mul-
tidimensional case. Mathematics of Computation 54 (1990), 545–581.

[11] B. Cockburn, G. Karniadakis and C.-W. Shu, The development of discontin-
uous Galerkin methods. In: Discontinuous Galerkin Methods: Theory, Com-
putation and Applications, B. Cockburn, G. Karniadakis and C.-W. Shu, ed-
itors, Lecture Notes in Computational Science and Engineering, volume 11,
Springer, 2000, Part I: Overview, 3–50.

[12] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws III: one
dimensional systems. Journal of Computational Physics 84 (1989), 90–113.

[13] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontin-
uous Galerkin finite element method for conservation laws II: general frame-
work. Mathematics of Computation 52 (1989), 411–435.

[14] B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P 1-
discontinuous-Galerkin finite element method for scalar conservation laws.
Mathematical Modelling and Numerical Analysis (M2AN) 25 (1991), 337–
361.

[15] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin
method for conservation laws V: multidimensional systems. Journal of Com-
putational Physics 141 (1998), 199–224.

[16] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for
time-dependent convection-diffusion systems. SIAM Journal on Numerical
Analysis 35 (1998), 2440–2463.

[17] B. Cockburn and C.-W. Shu, Runge-Kutta Discontinuous Galerkin meth-
ods for convection-dominated problems. Journal of Scientific Computing 16
(2001), 173–261.

[18] B. Cockburn and C.-W. Shu, Foreword for the special issue on discontinuous
Galerkin method. Journal of Scientific Computing 22–23 (2005), 1–3.

[19] C. Dawson, Foreword for the special issue on discontinuous Galerkin method.
Computer Methods in Applied Mechanics and Engineering 195 (2006), 3183.

[20] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes.
Mathematics of Computation 67 (1998), 73–85.

[21] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability preserving high order
time discretization methods. SIAM Reviews 43 (2001), 89–112.

[22] A. Harten, High resolution schemes for hyperbolic conservation laws. Journal
of Computational Physics 49 (1983), 357–393.



Bibliography 199

[23] G.-S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous
Galerkin methods. Mathematics of Computation 62 (1994), 531–538.
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ABSTRACT 
In these notes, we study the Runge Kutta Discontinuous Galerkin method 
for numericaly solving nonlinear hyperbolic systems and its extension for 
convection-dominated problems, the so-caUed Local Discontinuous Galerkin 
method. Examples of problems to which these methods can be applied are the 
Euler equations of gas dynamics, the shallow water equations, the equations of 
magneto-hydrodynamics, the compressible Navier-Stokes equations with high 
Reynolds numbers, and the equations of the hydrodynamic model for semi- 
conductor device simulation. The main features that make the methods under 
consideration attractive are their formal high-order accuracy, their nonlinear 
stability, their high parallelizability, their ability to handle complicated geome- 
tries, and their ability to capture the discontinuities or strong gradients of the 
exact solution without producing spurious oscillations. The purpose of these 
notes is to provide a short introduction to the devising and analysis of these 
discontinuous Galerkin methods. 
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1 P r e f a c e  

There are several numerical methods using a DG formulation to discretize the 
equations in time, space, or both. In this monograph, we consider numerical 
methods that use DG discretizations in  space and combine it with an ex- 
pl ic i t  Runge-Kutta time-marching algorithm. We thus consider the so-called 
Runge-Kutta discontinuous Galerkin (RKDG) introduced and developed by 
Cockburn and Shu [17,15,14,13,19] for nonl inear  hyperbolic systems and 
the so-called local discontinuous Galerkin (LDG) for nonl inear  convection- 
diffusion systems. The LDG methods are an extension of the RKDG methods 
to convection-diffusion problems proposed first by Bassi and Rebay [3] in the 
context of the compressible Navier-Stokes and recently extended to general 
convection-diffusion problems by Cockburn and Shu [18]. 

Several properties are responsible for the increasing popularity of the 
above mentioned methods. The use of a DG discretization in  space gives 
the methods the high-order accuracy, the flexibility in handling complicated 
geometries, and the easy to treat boundary conditions typical of the finite 
element methods. Moreover, the use of discontinuous elements produces a 
block-diagonal mass  matrix whose blocks can be easily inverted by hand. 
This why after discretizing in time with a high-order accurate, explicit  Runge- 
Kutta method, the resulting algorithm is highly parallelizable. Finally, these 
methods incorporate in a very natural way the techniques of 'slope limiting' 
developed by van Leer [62,63] that effectively damp out the spurious oscilla- 
tions that tend to be produced around the discontinuities or strong gradients 
of the approximate solution. 

In these notes, we sudy these DG methods by following their historical 
development. Thus, we first study the RKDG method and then the LDG 
method. To study the RKDG method, we start by considering their definition 
for the scalar equation in one-space dimension. Then, we consider the scalar 
equation in several space dimensions and finally, we consider the case of 
multidimensional systems. The last chapter is devoted to the LDG methods. 

To study the RKDG method, we take the point of view that they are for- 
mally high-order accurate 'perturbations' of the so-called 'monotone' schemes 
which are very stable and formally first-order accurate. Indeed, the RKDG 
methods were devised by trying to see if formally high-order accurate meth- 
ods could be obtained that retained the remarkable stability of the mono- 
tone scl~emes. Of course, this approach is not new: It has been the basic idea 
in the devising of the so-called 'high-resolution' schemes for finite-difference 
and finite-volume methods for nonlinear conservation laws. Thus, the RKDG 
method incorporates this very successful idea into the framework of DG meth- 
ods which have all the advantages of finite element methods. 



2 A h i s t o r i c a l  o v e r v i e w  

2.1 The original Discontinuous Galerkin method 

The original discontinuous Galerkin (DG) finite element method was intro- 
duced by Reed and Hill [54] for solving the neutron transport equation 

a u  + div(-Su) = f ,  

where ~ is a real number and a a constant vector. Because of the linear nature 
of the equation, the approximate solution given by the method of Reed and 
Hill can be computed element by element when the elements are suitably 
ordered according to the characteristic direction. 

LeSaint and Raviart [41] made the first analysis of this method and proved 
a rate of convergence of (Ax) k for general triangulations and of (Ax)  k+l for 
Cartesian grids. Later, Johnson and Pitkar~nta [37] proved a rate of conver- 
gence of (Ax)  k+1/2 for general triangulations and Peterson [53] confirmed 
this rate to be optimal. Richter [55] obtained the optimal rate of convergence 
of (Ax) k+l for some structured two-dimensional non-Cartesian grids. 

2.2 Nonlinear hyperbolic systems: The R K D G  m e t h o d  

The success of this method for linear equations, prompted several authors to 
try to extend the method to nonlinear hyperbolic conservation laws 

d 

ut  + = 0 ,  
i = 1  

equipped with suitable initial or-initial-boundary conditions. However, the 
introduction of the nonlinearity prevents the element-by-element computa- 
tion of the solution. The scheme defines a nonlinear system of equations that 
must be solved all at once and this renders it computationally very inefficient 
for hyperbolic problems. 

�9 The  one-dimensional  scalar conservat ion law. 
To avoid this difficulty, Chavent and Salzano [8] contructed an explicit 

version of the DG method in the one-dimensional scalar conservation law. 
To do that, they discretized in space by using the DG method with piece- 
wise linear elements and then discretized in time by using the simple Euler 
forward method. Although the resulting scheme is explicit, the classical von 
Neumann analysis shows that it is unconditionally unstable when the ra- 
tio ~ is held constant; it is stable if ~nt is of order ~ ,  which is a very 
restrictive condition for hyperbolic problems. 

To improve the stability of the scheme, Chavent and Cockburn [7] mod- 
ified the scheme by introducing a suitably defined 'slope limiter' following 
the ideas introduced by vanLeer in [62]. They thus obtained a scheme that 
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was proven to be total variation diminishing in the means (TVDM) and to- 
tal variation bounded (TVB) under a fixed CFL number, fP nt that  can be ~-~, 
chosen to be less than or equal to 1/2. Convergence of a subsequence is thus 
guaranteed, and the numerical results given in [7] indicate convergence to the 
correct entropy solutions. On the other hand, the scheme is only first order 
accurate in time and the 'slope limiter' has to balance the spurious oscilla- 
tions in smooth regions caused by linear instability, hence adversely affecting 
the quality of the approximation in these regions. 

These difficulties were overcome by Cockburn and Shu in [17], where the 
first Runge Kut ta  Discontinuous Galerkin (RKDG) method was introduced. 
This method was contructed by (i) retaining the piecewise linear DG method 
for the space discretization, (ii) using a special explicit TVD second order 
Runge-Kutta  type discretization introduced by Shu and Osher in a finite dif- 
ference framework [57], [58], and (iii) modifying the 'slope limiter' to maintain 
the formal accuracy of the scheme at extrema. The resulting explicit scheme 
was then proven linearly stable for CFL numbers less than 1/3, formally uni- 
formly second order accurate in space and time including at extrema, and 
TVBM. Numerical results in [17] indicate good convergence behavior: Second 
order in smooth regions including at extrema, sharp shock transitions (usu- 
ally in one or two elements) without oscillations, and convergence to entropy 
solutions even for non convex fluxes. 

In [15], Cockburn and Shu extended this approach to construct (formally) 
high-order accurate RKDG methods for the scalar conservation law. To device 
RKDG methods of order k § 1, they used (i) the DG method with polyno- 
mials of degree k for the space discretization, (ii) a TVD (k + 1)-th order 
accurate explicit t ime discretization, and (iii) a generalized 'slope limiter.' 
The generalized 'slope limiter' was carefully devised with the purpose of en- 
forcing the TVDM property without destroying the accuracy of the scheme. 
The numerical results in [15], for k = 1, 2, indicate (k + 1)-th order order in 
smooth regions away from discontinuities as well as sharp shock transitions 
with no oscillations; convergence to the entropy solutions was observed in all 
the tests. These RKDG schemes were extended to one-dimensional systems 
in I14]. 

�9 T h e  m u l t i d i m e n s i o n a l  case.  
The extension of the RKDG method to the multidimensional case was 

done in [13] for the scalar conservation law. In the multidimensional case, 
the complicated geometry the spatial domain might have in practical ap- 
plications can be easily handled by the DG space discretization. The TVD 
time discretizations remain the same, of course. Only the construction of the 
generalized 'slope limiter' represents a serious challenge. This is so, not only 
because of the more complicated form of the elements but also because of 
inherent accuracy barries imposed by the stability properties. 

Indeed, since the main purpose of the 'slope limiter' is to enforce the 
nonlinear stability of the scheme, it is essential to realize tha t  in the mul- 
tidimensional case, the constraints imposed by the stability of a scheme on 
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its accuracy are even greater than in the one dimensional case. Although in 
the one dimensional case it is possible to devise high-order accurate schemes 
with the TVD property, this is not true in several space dimensions since 
Goodman and LeVeque [28] proved that any TVD scheme is at most first 
order accurate. Thus, any generalized 's]ope limiter' that enforces the TVD 
property, or the TVDM property for that matter, would unavoidably reduce 
the accuracy of the scheme to first-order accuracy. This is why in [13], Cock- 
burn, Hou and Shu devised a generalized 'slope limiter' that enforced a local 
maximum principles only since they are not incompatible with high-order 
accuracy. No other class of schemes has a proven maximum principle for 
genearal nonlinearities f, and arbitrary triangulations. 

The extension of the RKDG methods to general multidimensional systems 
was started by Cockburn and Shu in [16] and has been recently completed in 
[19]. Bey and Oden [5] and more recently Bassi and Rebay [2] have studied 
applications of the method to the Euler equations of gas dynamics. 

�9 The  main  advantages  of  the  R K D G  method .  
The resulting RKDG schemes have several important advantages. First, 

like finite element methods such as the SUPG-method of Hughes and Brook 
[29,34,30-33] (which has been analyzed by Johnson et al in [38-40]), the 
RKDG methods are better suited than finite difference methods to handle 
complicated geometries. Moreover, the particular finite elements of the DG 
space discretization allow an extremely simple treatment of the boundary 
conditions; no special numerical treatment of them is required in order to 
achieve uniform high order accuracy, as is the case for the finite difference 
schemes. 

Second, the method can easily handle adaptivity strategies since the re- 
fining or unrefining of the grid can be done without taking into account the 
continuity restrictions typical of conforming finite element methods. Also, 
the degree of the approximating polynomial can be easily changed from one 
element to the other. Adaptivity is of particular importance in hyperbolic 
problems given the complexity of the structure of the discontinuities. In the 
one dimensional case the Riemann problem can be solved in closed form 
and discontinuity curves in the (x, t) plane are simple straight lines passing 
through the origin. However, in two dimensions their solutions display a very 
rich structure; see the works of Wagner [64], Lindquist [43], [42], Zhang and 
Zheng [68], and Zhang and Cheng [67]. Thus, methods which allow triangula- 
tions that can be easily adapted to resolve this structure, have an important 
advantage. 

Third, the method is highly parallelizable. Since the elements are discon- 
tinuous, the mass matrix is block diagonal and since the order of the blocks is 
equal to the number of degrees of freedom inside the corresponding elements, 
the blocks can be inverted by hand once and for all. Thus, at each Runge- 
Kutta inner step, to update the degrees of freedom inside a given element, 
only the degrees of freedom of the elements sharing a face are involved; com- 
munication between processors is thus kept to a minimum. Extensive studies 
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of adaptivity and parallelizability issues of the RKDG method were started 
by Biswas, Devine, and Flaherty [6] and then continued by deCougny et al. 

[20], Devine et al. [22,21] and by Ozturan et al. [52]. 

2.3 Convection-diffusion systems:  T h e  L D G  m e t h o d  

The first extensions of the RKDG method to nonlinear, convection-diffusion 
systems of the form 

Otu + V .  F(u,  D u) -- 0, in (0, T) x ;2, 

were proposed by Chen et al. [10], [9] in the framework of hydrodynamic 
models for semiconductor device simulation. In these extensions, approxima- 
tions of second and third-order derivatives of the discontinuous approximate 
solution were obtained by using simple projections into suitable finite ele- 
ments spaces. This projection requires the inversion of global mass matrices, 
which in [10] and [9] are 'lumped' in order to maintain the high parallelizabil- 
ity of the method. Since in [10] and [9] polynomials of degree one are used, 
the 'mass lumping' is justified; however, if polynomials of higher degree were 
used, the 'mass lumping' needed to enforce the full parallelizability of the 
method could cause a degradation of the formal order of accuracy. 

Fortunately, this is not an issue with the methods proposed by Bassi and 
Rebay [3] (see also Bassi et al [2]) for the compressible Navier-Stokes equa- 
tions. In these methods, the original idea of the RKDG method is applied to 
both u and D u which are now considered as independent  unknowns. Like the 
RKDG methods, the resulting methods are highly parallelizable methods of 
high-order accuracy which are very efficient for time-dependent, convection- 
dominated flows. The LDG methods considered by Cockburn and Shu [18] 
are a generalization of these methods. 

The basic idea to construct the LDG methods is to suitably rewri te  the 
original system as a larger, degenerate, first-order system and then discretize 
it by the RKDG method. By a careful choice of this rewriting, nonlinear 
stability can be achieved even without slope limiters, just as the RKDG 
method in the purely hyperbolic case; see Jiang and Shu [36]. 

The LDG methods [18] are very different from the so-called Discontinuous 
Calerkin (DG) method for parabolic problems introduced by Jamet [35] and 
studied by Eriksson, Johnson, and Thom@e [27], Eriksson and Johnson [23- 
26], and more recently by Makridakis and Babu~ka [50]. In the DG method, 
the approximate solution is discontinuous only in time, not in space; in fact, 
the space discretization is the standard Galerkin discretization with continu- 
ous finite elements. This is in strong contrast with the space discretizations of 
the LDG methods which use discontinuous finite elements. To emphasize this 
difference, those methods are called Local Discontinuous Galerkin methods. 
The large amount of degrees of freedom and the restrictive conditions of the 
size of the time step for explicit time-discretizations, render the LDG meth- 
ods inefficient for diffusion-dominated problems; in this situation, the use 
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of methods with continuous-in-space approximate solutions is recommended. 
However, as for the successful RKDG methods for purely hyperbolic prob- 
lems, the extremely local domain of dependency of the LDG methods allows 
a very efficient parallelization that by far compensates for the extra amount 
of degrees of freedom in the case of convection-dominated flows. 

Karniadakis et al. have implemented and tested these methods for the 
compressible Navier Stokes equations in two and three space dimensions with 
impressive results; see [44], [45], [46], [47], and [65]. 

2.4 The  content  of these  notes  

In these notes, we study the RKDG and LDG methods. Our exposition will 
be based on the papers by Cockburn and Shu [17], [15], [14], [13], and [19] in 
which the RKDG method was developed and on the paper by Cockburn and 
Shu [18] which is devoted to the LDG methods. Numerical results from the 
papers by Bassi and Rebay [2], on the Euler equations of gas dynamics, and 
[3], on the compressible Navier-Stokes equations, are also included. 

The emphasis in these notes is on how the above ment ioned  schemes were 
devised. As a consequence, the sections that follow reflect that development. 
Thus, section 2, in which the RKDG schemes for the one-dimensional scalar 
conservation law are constructed, constitutes the core of the notes because 
it contains all the important ideas for the devicing of the RKDG methods; 
section 3 contains the extension to multidimensional systems; and section 4, 
the extension to convection-diffusion problems. 

We would like to emphasize that the guiding principle in the devicing of 
the RKDG methods for scalar conservation laws is to consider them as per- 
turbations o f  the so-called monotone  schemes. As it is well-known, monotone 
schemes for scalar conservation laws are stable and converge to the entropy 
solution but are only first-order accurate. Following a widespread approach 
in the field of numerical schemes for nonlinear conservation laws, the RKDG 
are constructed in such a way that they are high-order accurate schemes that 
'become' a monotone scheme when a piecewise-constant approximation is 
used. Thus, to obtain high-order accurate RKDG schemes, we 'perturb' the 
piecewise-constant approximation and allow it to be piecewise a polynomial 
of arbitrary degree. Then, the conditions under which the stability properties 
of the monotone schemes are still valid are sought and enforced by means of 
the generalized 'slope limiter.' The fact that it is possible to do so without 
destroying the accuracy of the RKDG method is the crucial point that makes 
this method both robust and accurate. 

The issues of parallelization and adaptivity developed by Biswas, Devine, 
and Flaherty [6], deCougny et al. [20], Devine et al. [22,21] and by Ozturan et 
al. [52] are certainly very important. Another issue of importance is how to 
render the method computationaly more efficient, like the quadrature rule- 
free versions of the RKDG method recently studied by Atkins and Shu [1]. 
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However, these topics fall beyond the scope of these notes whose main inten- 
tion is to provide a simple introduction to the topic of discontinuous Galerkin 
methods for convection-dominated problems. 
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3 T h e  s c a l a r  c o n s e r v a t i o n  l a w  i n  o n e  s p a c e  d i m e n s i o n  

3.1 I n t r o d u c t i o n  

In this section, we introduce and study the RKDG method for the following 
simple model problem: 

ut + f(u)~ = 0, in (0, 1) • (0, T), (3.1) 

u(z,  0) = u0(x),  V z �9 (0, 1), (3.2) 

and periodic boundary conditions. This section has material drawn from [17] 
and [15]. 

3.2 T h e  d i s c on t i nuou s  Ga le rk in - space  d i s c r e t i z a t i o n  

3.3 T h e  weak  f o r m u l a t i o n  

To discretize in space, we proceed as follows. For each partition of the interval 
(0, 1), { xj+l/2 }N= 0, we set Ij = (x/-1/2, xj+l/2), Aj = xj+l/2 -- xj-1/2 for 
j = 1 , . . . ,  N, and denote the quantity maxl<_j<_g z~j by Ax . 

We seek an approximation Uh to u such that  for each time t C [0, T], uh(t) 
belongs to the finite dimensional space 

Yh=Yhk={veLl(O, 1):V[ij epk(Ij) ,  j = 1 , . . . , N } ,  (3.3) 

where pk (I) denotes the space of polynomials in I of degree at most k. In 
order to determine the approximate solution Uh, we use a weak formulation 
that  we obtain as follows. First, we multiply the equations (3.1) and (3.2) by 
arbitrary, smooth functions v and integrate over Ij, and get, after a simple 
formal integration by parts, 

fIj Ot u(x, t) v(x) dx - Jl~ f(u(x, t)) Ox v(x) dx (3.4) 
f 

- d  

+f(u(z j+~/2,  t)) v(z;+~/~) - f( , , (Xj_l/~,  t)) ~(zJ-_~/~) = o, 

fllj u(x'O)v(x)dx= f b uo(x) v(x)dx. (3.5) 

Next, we replace the smooth functions v by test functions Vh belonging to the 
finite element space Vh, and the exact solution u by the approximate solution 
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Uh. Since the function u h is discontinuous at the points Xj+I /2 ,  w e  must also 
replace the nonlinear 'flux' f (u (x j+U2 , t)) by a numerical 'flux' that  depends 
on the two values of Uh at the point (Xj+l/2, t), that  is, by the function 

h(u)j+l/2(t  ) --~ h(u(x~+ l/2, t), u(x;+ l/2, t ) ), (3.6) 

that  will be suitably chosen later. Note that  we always use the same numerical 
f lux regardless of the form of the finite element space. Thus, the approximate 
solution given by the DG-space discretization is defined as the solution of the 
following weak formulation: 

V j = 1 , . . . , N ,  Y Vh E Pk ( I j )  : 

(3.7) 

+h(un)j+l l2( t )  Vh(X2+ll2) -- h (uh) j - l l 2 ( t )  Vh(X+_ll2) = O, 

f /, uo ( x ) vh (x )dx .  (3.8) 
J 

3.4 I n c o r p o r a t i n g  t h e  m o n o t o n e  n u m e r i c a l  f luxes  

To complete the definition of the approximate solution Uh, it only remains 
to choose the numerical flux h. To do that,  we invoke our main point of 
view, namely, that  we want to construct schemes that are perturbations of 
the so-called monotone schemes because monotone schemes, although only 
first-order accurate, are very stable and converge to the entropy solution. 
More precisely, we want that  in the case k = 0, that  is, when the approximate 
solution Uh is a piecewise-constant function, our DG-space discretization gives 
rise to a monotone scheme. 

Since in this case, for x E I j  we can write 

 h(x,t) = 
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we can rewrite our weak formulation (3.7), (3.8) as follows: 

V j = I , . . . , N :  

Ot ~O(t) -t- { h(u~ U ~  ( t ) )  - h ( U ~  u~ ) } /A j  = O, 

~~ = ~ f~ ~o(x) ax, 
J 

and it is well-known that this defines a monotone scheme if h(a, b) is a Lips- 
chitz, consistent, monotone flux, that  is, if it is, 

(i) locally Lipschitz and consistent with the flux f (u) ,  i.e., h(u, u) = f (u) ,  
(ii) a nondecreasing function of its first argument, and 

(iii) a nonincreasing function of its second argument. 

The best-known examples of numerical fluxes satisfying the above properties 
are the following: 

(i) The Godunov flux: 

b) = { ha(a, 

(ii) The Engquist-Osher flux: 

(iii) 

(iv) 

min~<~<b f (u)  , if a <_ b, 

max~>~>b f (u)  , if a > b; 

fo b f0 ~ h E~ (a, b) = min(f ' (s) ,  0) ds + max(if(s) ,  0) ds + f(0);  

The Lax-Friedrichs flux: 

1 
hLF(a,b) = ~ [f(a) + f(b) - C ( b -  a)], 

C = max ]f'(s)]; 
inf u ~ (x) <_ s_< sup u ~ (x) 

The local Lax-Friedrichs flux: 

1 hLLF(a,b) = ~ [f(a) + f(b) - C ( b -  a)], 

c = ma~ If'(~)l; 
min(a,b)<s<max(a,b) 

(v) The Roe flux with 'entropy fix': 

[ f ( a ) ,  
hR(a, b) = ~ f(b), 

( h LLF (a, b), 

if if(u) >_ 0 
if if(u) <_ 0 
otherwise. 

for u e [min(a, b), max(a, b)]~ 

for u �9 [min(a, b), max(a, b)], 



164 

For the flux h, we can use the Godunov flux h c since it is well-known 
tha t  this is the numerical flux that  produces the smallest amount  of artificial 
viscosity. The local Lax-Friedrichs flux produces more artificial viscosity than  
the Godunov flux, but their performances axe remarkably similar. Of course, 
if f is too complicated, we can always use the Lax-Priedrichs flux. However, 
numerical experience suggests tha t  as the degree k of the approximate  so- 
lution increases, the choice of the numerical flux does not have a significant 
impact  on the quality of the approximations. 

3.5 D i a g o n a l i z i n g  t h e  m a s s  m a t r i x  

If we choose the Legendre polynomials Pe as local basis functions, we can 
exploit their L2-orthogonality, namely, 

j l 
Pe(s) Pe,(s) ds = 5e~,, 

1 

and obtain a diagonal mass matrix. Indeed, if for x C Iy, we express our 
approximate  solution Uh as follows: 

k 

uh(x,t) = uj : , ( z ) ,  
/ = 0  

where 

the weak formulation (3.7), (3.8) takes the following simple form: 

~ / j  = 1 , . . . , N  and ~ = 0 , . . . , k  : 

1 

+ h(uh(Xj+l/2))(t ) -- (--1) e h(uh(Xj_l/2))(t)  = 0, 

u (0) - 2e + 1 f / ,  Aj uo(x) ~t(x) dx, 

where we have use the following properties of the Legendre polynomials: 

P~(1) = 1, P~(-1)  = ( - 1 )  ~. 
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This shows that  after discretizing in space the problem (3.1), (3.2) by the 
DG method, we obtain a system of ODEs for the degrees of freedom that  we 
can rewrite as follows: 

d 
d-t Uh = Lh(Uh), in (0, T), (3.9) 

u h ( t  = o) = uo . (3 .1o)  

The element Lh(Uh) of Vh is, of course, the approximation to - f ( u ) ~  provided 
by the DG-space discretization. 

Note that  if we choose a different local basis, the local mass matrix could 
be a full matrix but it will always be a matrix of order (k + 1). By inverting 
it by means of a symbolic manipulator, we can always write the equations 
for the degrees of freedom of Uh as an ODE system of the form above. 

3.6 C o n v e r g e n c e  ana lys i s  o f  t h e  l inear  case 

In the linear case f (u )  = cu, the L~(0,  T; L2(0, 1))-accuracy of the method 
(3.7), (3.8) can be established by using the L~176 T; L2(0, 1))-stability of the 
method and the approximation properties of the finite element space Vh. 

Note that  in this case, all the fluxes displayed in the examples above 
coincide and are equal to 

h(a,b) = c a + b I c l ( b -  a). (3.11) 
2 2 

The following results are thus for this numerical flux. 
We state the L2-stability result in terms of the jumps of Uh across xj+l/2 

which we denote by 

[Uh ]j+1/2 ~ Uh(X;+I/2) -- Uh(X;+ll2)" 

P r o p o s i t i o n  3.1 (L2-stability) We have, 

I]L2(O,1) ' 

where 

~gT( Uh ) = I_~ f J  El<_y<N [uh(t) l~+l/2dt" 
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Note how the jumps of Uh are controled by the L2-norm of the initial 
condition. This control reflects the subtle built-in dissipation mechanism of 
the DG-methods and is what allows the DG-methods to be more accurate 
than the standard Galerkin methods. Indeed, the standard Galerkin method 
has an order of accuracy equal to k whereas the DG-methods have an order 
of accuray equal to k + 1/2 for the same smoothness of the initial condition. 

T h e o r e m  3.1 Suppose that the initial condition uo belongs to Hk+l(0,  1). 
Let  e be the approximation error u - Uh. Then we have, 

II e (T)  IIL2(0,1) < C lu 0 IHk+,(o,1)(dx) k§ 

where C depends solely on k, [ c I, and T.  

It is also possible to prove the following result if we assume that  the initial 
condition is more regular. Indeed, we have the following result. 

T h e o r e m  3.2 Suppose that the initial condition uo belongs to Hk+2(0, 1). 
Let  e be the approximation error u - Uh. Then we have, 

lie(T) ILL2(0,1) ~ C lu O IH~+2(O,1)(Ax) k+l, 

where C depends solely on k, I c I, and T.  

The Theorem 3.1 is a simplified version of a more general result proven 
in 1986 by Johnson and P i t k ~ a n t a  [37] and the Theorem 3.2 is a simplified 
version of a more general result proven in 1974 by LeSalnt and Raviart  [41]. 
To provide a simple introduction to the techniques used in these more general 
results, we give new proofs of these theorems in an appendix to this section. 

The above theorems show that  the DG-space discretization results in a 
(k+  1)th-order accurate scheme, at least in the linear case. This gives a strong 
indication that  the same order of accuracy should hold in the nonlinear case 
when the exact solution is smooth enough, of course. 

Now that  we know that  the DG-space discretization produces a high-order 
accurate scheme for smooth exact solutions, we consider the question of how 
does it behave when the flux is a nonlinear function. 

3.7 Convergence  analysis  in t he  nonl inear  case 

To study the convergence properties of the DG-method, we first s tudy the 
convergence properties of the solution w of the following problem: 

wt + f ( w ) x  = (u(w)  wx)x ,  in (0, 1) x (0, T),  (3.12) 

w(x ,  O) = uo(x) ,  ~/x e (0, 1), (3.13) 
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and periodic boundary conditions. We then mimic the procedure to study the 
convergence of the DG-method for the piecewise-constant case. The general 
DG-method will be considered later after having introduced the Runge-Kutta 
time-discretization. 

T h e  c o n t i n u o u s  case as a model .  In order to compare u and w, it 
is enough to have (i) an entropy inequality and (ii) uniform boundedness of 
[[ wx NLI(0,1). Next, we show how to obtain these properties in a formal way. 

We start with the entropy inequality. To obtain such an inequality, the 
basic idea is to multiply the equation (3.12) by U ' ( w -  c), where U(-) denotes 
the absolute value function and c denotes an arbitrary real number. Since 

v ' ( w  - c) w~ : U ( ~  - c)t, 

V ' (w  -- c) f ( w ) z  = (V ' (w  -- c) (f(w) -- f(c))) =-- F(w,  C)x, 

(/: ) g ' ( w  - c) (v(w) wx)x = V'(p  - c) •(p) dp xx - U ' ( w  - c) ~,(w) (Wx) 2 

- ~(w, c ) ~  - u"(~ - c) .(w) (w~) 2, 

we obtain 

U(w - c)t + F(w,  c)x - qV(w, c)x~ _< 0, in (0, 1) x (0, T), 

which is nothing but the entropy inequality we wanted. 
To obtain the uniform boundedness of [[ wx IlL 1 (0,1), the idea is to multiply 

the equation (3.12) by - ( U ' ( w x ) ) z  and integrate on x from 0 to 1. Since 

~01 ~01 d -(U'(wx))x wt : U'(wx) (Wx)t : ~[I Wx [[L'(O,1), 
~o I ~o 1 -(u'(w~))~ f(w)~ = - u"(~) ~0~ :'(w) ~.~ : o, 

:o :o - ( u ' ( ~ ) ) ~  (~,(~) ~x)~ = - u"(w~) ~ (.'(~) (~)2 + .(~) ~ )  

~01 = - v " ( ~ )  ~,(~) ( w ~ )  ~ <_ o, 

we immediately get that  

and so, 

II wx HL'(0,1) -< [I (u0)x IILX(0,1), V t e  (0, T). 

When the function u0 has discontinuities, the same result holds with the total 
variation of Uo ,1 u0 ITV(0,1), replacing the quantity II (u0)= IIL'(0,D; these two 
quantities coincide when u0 E W1'1(0, 1). 
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With the two above ingredients, the following error estimate, obtained in 
1976 by Kuznetsov, can be proved: 

T h e o r e m  3.3 We have 

It ~ ( T )  - w(T)trL~(0,1) -< I~0 Ir.(0,~) v ~ - - ; ,  

where ~ = sups~[inf uo,supuo] U(S). 

T h e  p i ecewise -cons t an t  case. Let consider the simple case of the DG- 
method that  uses a piecewise-constant approximate solution: 

V j = I , . . . , N :  

0t uj + { h ( ~ j ,  ~j+~)  - h ( ~ j - 1 ,  ~ j ) } / ~ j  = 0, 

where we have dropped the superindex '0.' We pick the numerical flux h to 
be the Engquist-Osher flux. 

According to the model provided by the continuous case, we must ob- 
tain (i) a n  entropy inequality and (ii) the uniform boundedness of the total 
variation of Uh. 

To obtain the entropy inequality, we multiply our equation by Ul(uj  - c ) :  

Ot U(uj - c) + U'(uj  - c){ h(uj,  ~tj+l) - -  h(uj_l,  uj) } /A~j = O. 

The second term in the above equation needs to be carefully treated. First, 
we rewrite the Engquist-Osher flux in the following form: 

hE~ b) = f+(a)  + f - ( b ) ,  

and, accordingly, rewrite the second term of the equality above as follows: 

STj  = V ' (u j  - c){f+(uj )  - f+ (u j -1 )}  + U'(uj - c ) { f - ( u j + l )  - f - ( u j ) } .  

Using the simple identity 

Z u'(~ - c ) (g(a)  - g(b)) = a ( ~ ,  c) - a (b ,  c) + (g(b) - g(p))  U"(p - ~) dp 
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where G(a, c) = f~  U ' ( p -  c)g(p)dp, we get 

f u j _  1 

ST~ F+(us, c) - F + (~tj_l ,  C) ~- J~ ( f+(us_I)  -- f+ (p)) U"(p - x) dp 
J 

uj+1 

+ F - ( u s + I , c  ) - F - ( u j ,  c) - ( f -  (Uj+l) - f - ( p ) )  U"(p - x )dp  
,1Uj 

= F(uj ,  us+l; c ) - F(us_l ,  uj;c) + Od~ , j  

where 

Y(a, b; c) = F+(~, c) + F-(b,  c), 

~u u j - 1 

~diss,j -~ ~- ( f + ( u s _ I )  -- f+(p)) U"(p - z) dp 
J 

( f - (uS+l)  f-(p))U"(p x) dp. 

We thus get 

0 t U ( u j  - c) ~- { F ( ~ t j ,  Uj+l ;  c) - F ( ~ t j _ l ,  u j ;  c )} /z~  s -{- ~ d i s s , j / Z ~ j  : O. 

Since, f +  and - f -  are nondecreasing functions, we easily see tha t  

Odissj _> 0, 

and we obtain our entropy inequality: 

Ot U(u s - c) + {F(u j ,  uj+l;  c) - F(us_l ,  us; c ) } /A j  < O. 

Next, we obtain the uniform boundedness on the total  variation. To do 
that ,  we follow our model and multiply our equation by a discrete version of 
- ( U '  (wx) )~, namely, 

vj = ~s I \ Aj----+I---/2 k, AS-l/2 

where AS+W2 = (A s + Aj + I ) / 2  , multiply it by Aj and sum over j from 1 to 
N.  We easily obtain 

d 0 
~71uh I~.(0,1/+ Z vs {h(~j,uj+l) - h(~S-l,~S)} = 0, 

I~_j(_N 
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where 

I<j<N 

According to  our continuous model,  the second term in the above equali ty 
should be positive. Let  us see tha t  this is indeed the case: 

0 {f+(uj) -- f+(uj-1)} 0 { h ( u j , ~ j + l )  - h ( u j _ ~ , ~ j ) }  = vj vg 
0 + vj {f-(uj+l)  -- f - (u j ) }  > O, 

by the definition of v ~ f + ,  and f - .  This implies tha t  

l Uh(t) ]TV(0,1) ~< [Uh(O) ITV(O,1) ~< [Uo ]TV(O,1)" 

W i t h  the  two above ingredients, the following error est imate,  obta ined  in 
1976 by Kuznetsov,  can be proved: 

T h e o r e m  3.4  We have 

II u(T) - un(T)IIL1(0,1) _< II u0 - ~h(0)IILl(0,x) + C l~0 ITv(o,1) T V ~ - ~ .  

3.8  T h e  T V D - R u n g e - K u t t a  t i m e  d i s c r e t i z a t i o n  

To discretize our  O D E  sys tem in time, we use the  T V D  Runge  K u t t a  t ime 
discret izat ion in t roduced in [601; see also [571 and [58]. 

3 .9 T h e  d i s c r e t i z a t i o n  

Thus,  if tostnlNj==o is a par t i t ion of  [0, T] and At ~ = t =+1 -- t ~, n = 0, ..., N - 1, 
our t ime-marching algori thm reads as follows: 

- S e t u  ~  uOh; 
-- For n = 0, ..., N - 1 compute  u~ +1 from u~ as follows: 

1. set U(h ~ = U~; 
2. for i = 1, ..., k -4- 1 compute  the intermediate  functions: 

U(i) = l ~ CeilU(~) + flilAtnLh(U(lh)) } ; 
k/=0 

3. set u~ +1 = U(h k+l). 
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Note that  this method is very easy to code since only a single subroutine 

defining Lh(Uh) is needed. Some Runge-Kutta  time discretization parameters 
are displayed on the table below. 

Ta b l e  1 

Parameters of some practical Runge-Kutta  time discretizations 

order a a  ~a m a x { ~ a / a a }  

2 1 1 1 
1 1  0 1 
2 2 2 

1 

3 1 
4 4 

-1o} 
3 

1 
1 0 ~  

O 0  -2 3 

3.10 T h e  s t a b i l i t y  p r o p e r t y  

Note that  all the values of the parameters c~a displayed in the table below 
are nonnegative; this is not an accident. Indeed, this is a condition on the 
parameters a a  that  ensures the stability property 

provided that the 'local' stability property 

Iw] <_lvl, (3.14) 

where w is obtained from v by the following 'Euler forward' step, 

w -- v + 5 Lh(v ) ,  (3.15) 

holds for values of [ 5] smaller than a given number 50. 
For example, the second-order Runke-Kutta  method displayed in the table 

above can be rewritten as follows: 

u(1) n 
---- U h + A t  Lh(U'~), 

: 1) + a t  

U~.P1 1 = ~ ( ~  + wh). 
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Now, assuming tha t  the stabil i ty proper ty  (3.14), (3.15) is satisfied for 

5o = I A t  m a x { / ~ l / ~ l }  I = At ,  

we have 

and so, 

I l u l l ,  I wh I I I, 

1 
]u~+ l l~  ~ ( [ u~ l+ lwh l )  ~ lu l l  . 

Note tha t  we can obta in  this result  because the coefficients a a  are positive! 
R u n g e - K u t t a  methods  of this type  of order up to  order 5 can be found in 
[58]. 

The  above example shows how to prove the following more general result. 

T h e o r e m  3.5 Assume that the stability property for the single 'Euler for- 
ward' step (3.14), (3.15) is satisfied for 

50 = max  I A t  '~ m a x { # ~ d a . } l .  
O<n<N 

Assume also that all the coeficients ai~ are nonnegative and satisfy the fol- 
lowing condition: 

i--1 

E a a  = 1, i =  1 , . . . , k + 1 .  
/= 0  

Then 
tuft _< i ol, vn_>o. 

This stabil i ty proper ty  of  the T V D - R u n g e - K u t t a  methods  is crucial since 
it allows us to  obta in  the stabil i ty of the me thod  from the stabil i ty of a single 
'Euler  forward '  step. 

P r o o f  o f  T h e o r e m  3.5. We s tar t  by rewrit ing our t ime discret izat ion 
as follows: 

- S e t u  ~  uoh; 
-- For n = 0, ..., N - 1 compute  u~ +1 from u~ as follows: 

1. set u (~ = u~; 
2. for i = 1, ..., k + 1 compute  the intermediate  functions: 

where 

3.  s e t  u ~  +1 (k+l) 
,eL h 

i--1 
(iO 

U(hi) -'~ E Olil Wh ' 
/=0  

w h + - -  A t  n 
OLil 
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We then have 

i - - 1  
�9 (i0 ] uli) ] <-- E OLil ] Wh I' since air > 0, 

/ = 0  

i - 1  

--< Ec~i~ l u~ ) t, by the stability property (3.14), (3.15), 
/ = 0  

i - 1  

m a x  l u l  l, s ince  = 1. O<l<i--1 
/ = 0  

It is clear now that  that  Theorem 3.5 follows from the above inequality by a 
simple induction argument. [] 

3.11 R e m a r k s  a b o u t  t h e  s tabi l i ty  in the  l inear case  

For the linear case f (u)  = cu, Chavent and Cockburn [7] proved that  for 
the case k = 1, i.e., for piecewise-linear approximate solutions, the single 
'Euler forward' step is unconditionally L~ 1))-unstable for any 
fixed ratio At /Ax .  On the other hand, in [17] it was shown that  if a Runge- 
Kut ta  method of second order is used, the scheme is L~ (0, T; L2(0, 1))-stable 
provided that  

At 1 
c < 5 

This means that  we cannot deduce the stability of the complete Runge-Kutta  
method from the stability of the single 'Euler forward' step. As a consequence, 
we cannot apply Theorem 3.5 and we must consider the complete method at 
o n c e .  

Our numerical experiments show that  when polynomial of degree k are 
used, a Runge-Kutta of order (k+l) must be used. In this case, the Lm(0, T; L2(0,1))- 
stability condition is the following: 

At 1 

Ax -- 2k + 1" 

There is no rigorous proof of this fact yet. 
At a first glance, this stability condition, also called the Courant-Friedrichs- 

Levy (CFL) condition, seems to compare unfavorably with that  of the well- 
known finite difference schemes. However, we must remember that  in the 
DG-methods there are (k + 1) degrees of freedom in each element of size Ax 
whereas for finite difference schemes there is a single degree of freedom of 
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each cell of size Ax. Also, if a finite difference scheme is of order (k + 1) its 
so-called stencil must be of at least (2k + 1) points, whereas the DG-scheme 
has a stencil of (k + 1) elements only. 

3.12 C o n v e r g e n c e  ana lys i s  in t he  n o n l i n e a r  case 

Now, we explore what is the impact of the explicit Runge-Kutta time-discretization 
on the convergence properties of the methods under consideration. We start 
by considering the piecewise-constant case. 

T h e  p i ecewise -cons t an t  case. Let us begin by considering the simplest 
case, namely, 

Y j = I , . . . , N :  

(uy+' - u 2 ) / a t  + {h(uy,  uj'+,) - h (uL1 ,  u y ) } / ~ j  = o, 

~j(o) = ~ uo(x) dx, 

where we pick the numerical flux h to be the Engquist-Osher flux. 
According to the model provided by the continuous case, we must ob- 

tain (i) an entropy inequality and (ii) the uniform boundedness of the total 
variation of uh. 

To obtain the entropy inequality, we proceed as in the semidiscrete case 
and obtain the following result; see [12] for details. 

T h e o r e m  3.6 We have 

{U(u~ +'  - c) - U(u~ - c ) } /A t  + { F ( @ ,  727+1; c) - -  F(U2_l, u~; C ) } / A j  

+ o ~ s ~ , j / A t  = o, 

where 

and 

ff 
q 

Od~s~,j = (pj(u~) -- pj(p)) U"(p - x) dp ]+1 

q--~--~j ?+' (f+(u~_l)  -- y+(p)) S " ( p  - x) dp 

At  ~ % 1  
A j  ,~+i ( f - ( u ' ~ + l ) - f - ( P ) ) U " ( P - x ) d p '  

pj(w) = w - -~ j ( f+(w)  - y - (w) ) .  



175 

Moreover, if the following CFL condition is satisfied 

A t  
max If '  I<_j<_N ~ ] <- 1, 

then O g~ss,j >_ O, and the following entropy inequality holds: 

( u ( ~  +1 - c) - u ( ~ y  - c)} /At  + { F ( %  ~ j + l ;  ~) - F ( ~ , _ I ,  W;  ~ ) } / ~ J  -< 0. 

Note that  Og~ss, j >_ 0 because f+ ,  - f - ,  are nondecreasing and because pj is 
also nondecreasing under the above CFL condition. 

Next, we obtain the uniform boundedness on the total  variation. Proced- 
ing as before, we easily obtain the following result. 

T h e o r e m  3.7 We have 

lu~ +~ Irv(o,1) - l u~ Irv(o,~) + O~v : O, 

where 

O~v = 

where 

and 

E 
I<_3<_N 

+ Z  
I<j<N 

- E  
I~_j<_N 

t tn TTInq-1 "~ n n U j + : / 2  - ~ 4+: /2  ) (pr - pj+:/2(u~ ) 

At  ( ,n rr,n+l ~ f+ u n 
U j_l~ 2 - v  j+1/2)  ( f q - ( u ~ ) -  ( 4 _ 1 )  ) 

At  ( ,n /r ,n+l h n 
U 4+1/2 - ~ j - 1 / 2 )  ( f - ( u j + l )  - f - (u~))  

,m = U' u -_u~ U i+1/2 --  , 
\ z-ai+l/2 / 

At  _~ 
Pj+l/2(W) = S -- - -  f + ( w )  -~- f--(W).  Aj+I ~ j  

Moreover, if the following CFL condition is satisfied 

At  
m a x  - - I f ' l  < 1, 

I<_j<_N aj -- 

then O~v > O, and we have 

[u~ [TV(0,1) < l u0 ITV(O,1). 

With the two above ingredients, the following error estimate, obtained in 
1976 by Kuznetsov, can be proved: 
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T h e o r e m  3.8 We have 

]l u(T) - u h ( T ) I I 5 , ( o , 1 )  <__ II uo - uh(O)IIL~<O,~) + C luo ITV(O,,)x/TAx. 

T h e  g e n e r a l  case.  The s tudy of the general case is much more difficult 
than  the s tudy of the monotone schemes. In these notes, we restrict ourselves 
to the s tudy of the stability of the R K D G  schemes. Hence, we restrict our- 
selves to the task of studying under what conditions the total  variation of 
the local means is uniformly bounded. 

If we denote by ~j the mean of uh on the interval I j ,  by setting vh = 1 
in the equation (3.7), we obtain, 

V j = I , . . . , N  : 

(~j)t + {h(~;+~/~, ~++1/~) - h(~-;_~/~, U~_l/~)}/~j  = 0, 

where uj+w2 denotes the limit from the left and u + the limit from the j+1/2 
right. We pick the numerical flux h to be the Engquist-Osher flux. 

This shows tha t  if we set wh equal to the Euler forward step Uh+5 Lh(Uh), 
we obtain 

V j - - 1 , . . . , N :  

uj+i/~) - h(%1/2,  ~+_l /~ )} /~ j  = 0. 

Proceeding exactly as in the piecewise-constant case, we obtain the following 
result for the total  variation of the avergages, 

I<_j<_N 

T h e o r e m  3.9 We have 

[Wh ]TV(0,1) -- ] Uh ]TV(0,1) q- ~ T V M  = O, 



177 

w h e r e  

~ T V M  ~- 

where 

and 

I<~j<_N ( UIj+l/2 - Utj+l/2 ) (PJ+l/2(UhlIh+l) -- PJ+l/2(UhlIj) 

+ Z ~ u'~_~/2 - u'j+i/2 ( f+(~i+l /9  - f+r~-, ~-~/~,,~ 
~<_j<N 

<~ ( _ f - r u +  ,, (uj+l/2) ~ j - 1 / 2 .  - ~ N u ' . , .  u'j_~/~ (f- + 
I<_j<_N 

UIi+l/2 : ut(Ui+---~l ~ U i l ,  
\ A~+1/2 

5 
pj+l /2(uhlzm) = ~m -~ -- Z~j+----~ f+(Um+l/2) "~ ~ f-(U+-l/2)" 

From the above result, we see that  the total variation of the means of 
the Euler forward step is nonincreasing if the following three conditions are 
satisfied: 

sgn(~ j+l  - ~j ) = s g n ( p j + l / 2 ( U h l l ~ + x )  --  P j + l / 2 ( U h l I ~ ) ) ,  (3.16) 

sgn(~ j  - u j -1  ) sgn( n,-  n,-  - = uj+l/2 - Uj_l/2 ), (3.17) 

sgn( ~j+l - ~j ) = sgn(uj+l/2n'+ - u~.'+/2 ). (3.18) 

Note that  if the properties (3.16) and (3.17) are satisfied, then the property 
(3.18) can always be satisfied for a small enough values of 15 I. 

Of course, the numerical method under consideration does not provide 
an approximate solution automatically satisfying the above conditions. It is 
thus necessary to enforce them by means of a suitably defined generalized 
slope limiter,' AIIh. 

3.13 T h e  gene ra l i zed  s lope  l imi t e r  

H i g h - o r d e r  a c c u r a c y  versus  t h e  T V D M  p r o p e r t y :  H e u r i s t i c s  The 
ideal generalized slope limiter AHh 

- Maintains the conservation of mass element by element, 
- Satifies the properties (3.16), (3.17), and (3.18), 
- Does not degrade the accuracy of the method. 

The first requirement simply states that  the slope limiting must not 
change the total mass contained in each interval, that  is, if Uh = AHh(Vh), 

~j = ~ j ,  j = 1 , . . . , N .  
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This is, of course a very sensible requirement because after all we are dealing 
with consevation laws. It is also a requirement very easy. to satisfy. 

The second requirement, states that  if Uh = Al-Ih(Vh) and Wh ---- Uh + 
5 Lh(Uh) then 

I Wh ITV(0,1) ~ I~h ITV(0,1), 

for small enough values of 1 5]. 
The third requirement deserves a more delicate discussion. Note that  if 

Uh is a very good approximation of a smooth solution u in a neigborhood 
of the point x0, it behaves (asymptotically as Ax goes to zero) as a straight 
line if u~(xo) ~ O. If x0 is an isolated extrema of u, then it behaves like 
a parabola provided u ~ ( x o )  ~ O. Now, if Uh is a straightline, it trivially 
satisfies conditions (3.16) and (3.17). However, if Uh is a parabola, conditions 
(3.16) and (3.17) are not always satisfied. This shows that  it is impossible to 
construct the above ideal generalized 'solpe limiter,' or, in other words, that  
in order to enforce the TVDM property, we must loose high-order accuracy 
at the local extrema. This is a very well-known phenomenon for TVD finite 
difference schemes! 

Fortunatelly, it is still possible to construct generalized slope limiters that  
do preserve high-order accuracy even at local extrema. The resulting scheme 
will then not be TVDM but total variation bounded in the means (TVBM) 
as we will show. 

In what follows we first consider generalized slope limiters that  render the 
RKDG schemes TVDM. Then we suitably modify them in order to obtain 
TVBM schemes. 

C o n s t r u c t i n g  T V D M  g e n e r a l i z e d  s lope  l imi t e r s  Next, we look for sim- 
ple, sufficient conditions on the function Uh that  imply the conditions (3.16), 
(3.17), and (3.18). These conditions will be stated in terms of the minmod 
function m defined as follows: 

I s  minl<~<~ l a~ I, if s = sign(a1) . . . . .  sign(a~), 
m ( a l , . . . ,  a~) -- [0 ,  otherwise. 

T h e o r e m  3.10 Suppose the the following CFL condition is satisfied: 

15I ( If+ IL,p + If-IL~p Aj+I A------~) < 1/2, j = 1, . . . ,  N. (3.19) 
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Then, conditions (3.16), (3.17), and (3.18) are satisfied if, for  ally = 1 , . . . ,  N ,  
we have that 

u~+l/2 - g j  = rn (u~-+U 2 - u j ,  uj - u j - 1 ,  uj+l - u j )  (3.20) 

gj  -- U~_l/2 -= m ( g j  -- U ~ l / 2 ,  gj  -- u--j_l, g j+l  -- ~j) .  (3.21) 

P r o o f .  Let us start by showing that the property (3.17) is satisfied. We 
have: 

U;+l/2 -- "aj-._l/2 ---= (U;+I/2 -- ~j) -1- (Uj -- u j -1)  -1- (uj-1 -- 'aLl /2)  

= o ( ~ j  - ~ j _  ~ ), 

where 

0 = 1 + uJ+l/2 - ~j Uj--_I/2 - -  ?~'-j--1 e [0 ,  2], 

by conditions (3.20) and (3.21). This implies that  the property (3.17) is satis- 
fied. Properties (3.18) and (3.16) are proven in a similar way. This completes 
the proof. [] 

Examples  of  T V D M  generalized slope limiters 
a. T h e  M U S C L  l imiter .  In the case of piecewise linear approximate 

solutions, that  is, 

Vh]lj = ~j + (X -- Xj )Vxd,  j = 1 , . . . , N ,  

the following generalized slope limiter does satisfy the conditions (3.20) and 
(3.21): 

uhl i ,  = vj  + (x - x j )  m (v~,r vJ+ l  - vj vj - vj_~ ). 
Aj ' Aj 

This is the well-known slope limiter of the MUSCL schemes of vanLeer [62,63]. 
b.  T h e  less r e s t r i c t i v e  l imi te r  AII~.  The following less restrictive slope 

limiter also satisfies the conditions (3.20) and (3.21): 

u . l , j  = ~ j  + ( x  - x,)~ (Vx,j,-~J+s ~j , ~ Xj?5)- ~j-1 
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Moreover, it can be rewritten as follows: 

U;..[_1/2 : V j  "}- m ( v ;_ [_ l /2  - -  "uj, v j  - -  v - - j _ l ,  v j - t -1  - -  ~ j )  (3.22) 
U+_W2 = ~j  -- m ( V j  -- v+_1/2,  ~ j  -- v - j - l ,  ~ + 1  -- ~ j ) .  (3.23) 

We denote this limiter by AII~. 
Note tha t  we have tha t  

A x  
II ~h -A~l(vh)IIL~(0 ,~)  < Z - I ~  Irv(0,~). 

See Theorem 3.13 below. 
c. T h e  l i m i t e r  AIIt~. In the case in which the approximate  solution is 

piecewise a polynomial of degree k, that  is, when 

k 

~ = 0  

where 

~ ( x )  --- p ~ ( 2  ( x  - xj)/A~), 

and Pe are the Legendre polynomials, we can define a generalized slope limiter 
in a very simple way. To do that ,  we need the define what  could be called 
the p l - p a r t  of Vh: 

1 

vl(~,t) = ~ vS~(x), 
g = 0  

We define Uh = AYIh(Vh) as follows: 

- For j = 1, . . . ,N compute Uh[b as follows: 
1. Compute  Uy+l/2 and u+_1/2 by using (3.22) and (3.23), 

2. If  uj+l/2 = vj-+l/2 and u+_l/2 = V~_I/2 set Uhllj = Vhllj, 
3. If  not, take Uhlb equal to AII~(v}~). 

d. T h e  l i m i t e r  AIIk,~. When instead of (3.22) and (3.23), we use 

U~+l/2 = ~j + m ( Vj+l/2 - vj,  vj - v-j-l,  Vj+l - vj ,  C (Ax) ~) (3..24) 

uJ_l /2  = ~j - . ~ ( ~ j  - v f_ l /~ ,  ~j - ~j_~, ~j+l  - ~j,  c (Ax)~) ,  (3.25) 

for some fixed constant C and a C (0, 1), we obtain a generalized slope limiter 
we denote by AII~,,~. 

This generalized slope limiter is never used in practice, but we consider 
it here because it is used for theoretical purposes; see Theorem 3.13 below. 
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T h e  c o m p l e t e  R K D G  m e t h o d  Now tha t  we have our generalized slope 
limiters, we can display the complete R K D G  method. It  is contained in the 
following algorith: 

- Set u ~ = AHh Pvh(uo); 
- For n = 0, ..., N - 1 compute u~ +1 as follows: 

1. set U(h ~ = u~; 
2. for i = 1, ..., k + 1 compute the intermediate functions: 

U~) = AHh l ~ c~lu(l) + fliIAtnLh(u(l)) } I=O 

3. set u~ +1 (k+l) = U h 

This algorithm describes the complete RKDG method.  Note how the gener- 
alized slope limiter has to be applied at each intermediate computat ion of the 
Runge-Kut ta  method. This way of appying the generalized slope limiter in 
the t ime-marching algorithm ensures that  the scheme is TVDM, as we next 
s h o w .  

T h e  T V D M  p r o p e r t y  o f  t h e  R K D G  m e t h o d  To do that ,  we s tar t  by 
noting tha t  if we set 

Uh = AIIh(Vh), 

then we have tha t  

wh = u~ + 6 L ~ ( u h ) ,  

ITv(o,x) ~ ITv(o,1), 

ITv(o,x) ~ ]TV(O,1), 

(3.26) 

v i a l  < ao, (3.27) 

where 

,~o I = 2 mjax (l f_..+_+ IL.__._~p + If- ILip) 
�9 Aj+I -AT j = 1 , . . . , N ,  

by Theorem 3.10. By using the above two properties of the generalized slope 
limiter, '  it is possible to show tha t  the RKDG method is TVDM. 

T h e o r e m  3.11 Assume that the generalized slope limiter AHh satisfies the 
properties (3.26) and (3.27). Assume also that all the coeficients ail are non- 
negative and satisfy the following condition: 

i --1 

E OLil = i, 
/ = 0  

i =  1 , . . . , k + l .  
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T h e n  

I~hh ITV(0,1) ~ [UOITV(O,1), V n k O .  

P r o o f  o f  T h e o r e m  3.11. The proof of this result is very similar to the 
proof of Theorem 3.5. Thus, we start  by rewriting our time discretization as 
follows: 

- Set u ~ = U0h; 
-- For n = 0, ..., N - 1 compute u~ +1 from u~ as follows: 

1. set U(h ~ = u~; 
2. for i ---- 1, ..., k -4- 1 compute the intermediate functions: 

where 

} 
(iO = u(~) ~it Lh(u(~)); W h Jc - -  A t  n 

~ i l  

(k+l) 3. set u~ +1 

Then have, 

i --1 

I~  ~ I~v(o,~ -<l Z ~.~<2 '~ I~(o,~, 
/ = 0  

i--1 

< E ~ "  I ~  Irv(o,1), 
/ = 0  

i--1 

<-1 ~ ~,~)[TV(O,I), 
l=O 

_< max I~(h l) ITV(O,1), 
0 < / < i - 1  

by (3.26), 

since ai~ _> 0, 

by (3.27), 

i --1 

since E a i l =  1. 
l=O 

It is clear now that  that  the inequality 

I ~  ITv(O,1) <_ lu~ [TV(O,1), Vn_>0.  

follows from the above inequality by a simple induction argument. To obtain 
the result of the theorem, it is enough to note that  we have 

I~ ITv(o,1) _< I~o ITv(O,~), 

by the definition of the initial condition u ~ This completes the proof. [] 
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T V B M  g e n e r a l i z e d  s lope  l im i t e r s  As was pointed out before, it is possi- 
ble to modify the generalized slope limiters displayed in the examples above in 
such a way that  the degradation of the accuracy at local extrema is avoided. 
To achieve this, we follow Shu [59] and modify the definition of the general- 
ized slope limiters by simply replacing the m i n m o d  function m by the TVB 
corrected m i n m o d  function rh defined as follows: 

{ ~ ,  i f  [all ~_ M(A x )  2, (3.28) 
(n (al , . . . ,am) = (al , . . . ,am),  otherwise, 

where M is a given constant. We call the generalized slope limiters thus 
constructed, TVBM slope limiters. 

The constant M is, of course, an upper bound of the absolute value of 
the second-order derivative of the solution at local extrema. In the case of 
the nonlinear conservation laws under consideration, it is easy to see that ,  if 
the initial data  is piecewise C 2, we can take 

M -- sup{ I (u0)xx(y) I,Y: (u0)x(y) -- 0}. 

See [15] for other choices of M. 
Thus, if the constant M is is taken as above, there is no degeneracy of 

accuracy at the extrema and the resulting RKDG scheme retains its optimal 
accuracy. Moreover, we have the following stability result. 

T h e o r e m  3.12 Assume that the generalized slope limiter AIIh is a T V B M  
slope limiter. Assume also that all the coeficients ~il are nonnegative and 
satisfy the following condition: 

Then 

i-1 
E Otil ~ 1, 
/=0 

i =  1 , . . . , k + 1 .  

Yn_>0,  l U~ ITV(0,1) ---~ I~0 ITV(0,1) § C M, 

where C depends on k only. 

C o n v e r g e n c e  in t h e  n o n l i n e a r  case  By using the stability above sta- 
bility results, we can use the Ascoli-Arzels theorem to prove the following 
convergence result. 

T h e o r e m  3.13 Assume that the generalized slope limiter AHh is a T V D M  
or a T V B M  slope limiter. Assume also that all the coeficients c~il are non- 
negative and satisfy the following condition: 

i--1 
E O~il z 1, 
/=0 

i =  1 , . . . , k §  
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Then there is a subsequence {~h'}h'>0 of the sequence {~h}h>0 generate by 
the R K D G  scheme that converges in L~(O, T; LI(0, 1)) t.o a weak solution of 
the problem (3.1), (3.2). 

Moreover, if the T V B M  version of the slope limiter A17k,~ is used, the 
weak solution is the entropy solution and the whole sequence converges. 

Finally, if the generalized slope limiter AIIh is such that 

I[Vh -- AIIh(vh) [[L1(0,1) <_ C Ax  IV~ ITV(0,1), 

then the above results hold not only to the sequence of the means { Uh}h>O 
but to the sequence of the functions { Uh }h>o. 

3.14 C o m p u t a t i o n a l  r e su l t s  

In this subsection, we display the performance of the RKDG schemes in a 
simple but typical test problem. We use piecewise linear (k = 1) and piece- 
wise quadratic (k = 2) elements; the AI-I~ generalized slope limter is used. 
Our purpose is to show that  (i) when the constant M is properly chosen, the 
RKDG method using polynomials of degree k is is order k + 1 in the uniform 
norm away from the discontinuities, that  (ii) it is computationally more effi- 
cient to use high-degree polynomial approximations, and that  (iii) shocks are 
captured in a few elements without production of spurious oscillations 

We solve the Burger's equation with a periodic boundary condition: 

u 2 

u +(T )x=o, 
1 1 

u(x,0)  = uo(x) = ~ + -~ sin(Tr(2x - 1)). 

The exact solution is smooth at T = .05 and has a well developed shock 
at T -- 0.4. Notice that  there is a sonic point. In Tables 1,2, and 3, the his- 
tory of convergence of the RKDG method using piecewise linear elements is 
dsplayed and in Tables 4,5, and 6, the history of convergence of the RKDG 
method using piecewise quadratic elements. It can be seen that  when the 
TVDM generalized slope limiter is used, i.e., when we take M = 0, there is 
degradation of the accuracy of the scheme, whereas when the TVBM gen- 
eralized slope limiter is used with a properly chosen constant M, i.e., when 
M -- 20 _> 27r 2, the scheme is uniformly high order in regions of smoothness 
that  include critical and sonic points. 

Next, we compare the efficiency of the RKDG schemes for k -- 1 and k = 2 
for the case M = 20 and T -- 0.05. We define the inverse of the efficiency 
of the method as the product of the error times the number of operations. 
Since the RKDG method that  uses quadratic elements has 0.3/0.2 times more 
time steps, 3/2 times more inner iterations per time step, and 3/2 time more 
unknowns in space, its number of operations is 27/8 times bigger than the one 
of the RKDH method using linear elements. Hence, the ratio of the efficiency 
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of the RKDG method with quadratic elements to tha t  of the RKDG method 
with linear elements is 

8 error(RKDG(k = 1) 

27 error(RKDG(k = 2)" 

The results are displayed in Table 7. We can see that  the efficiency of the 
RKDG scheme with quadratic polynomials is several times that  of the RKDG 
scheme with linear polynomials even for very small values of Ax. We can also 
see that  the ratio r of efficiencies is proportional to (Ax) -1, which is expected 
for smooth solutions. This indicates that  it is indeed more efficient to work 
with RKDG methods using polynomials of higher degree. 

That  this is also true when the solution displays discontinuities can be 
seen figures 3.22, and 3.23. In the figure 3.22, it can be seen that  the shock 
is captured in essentially two elements. A zoom of these figures is shown in 
figure 3.23, where the approximation right in front of the shock is shown. It 
is clear that  the approximation using quadratic elements is superior to the 
approximation using linear elements. 

3.15 C o n c l u d i n g  r e m a r k s  

In this subsection, which is the core of these notes, we have devised the 
general RKDG method for nonlinear scalar conservation laws with periodic 
boundary conditions. 

We have seen that  the RKDG are constructed in three steps. First, the 
Discontinuous Galerkin method is used to discretize in space the conserva- 
tion law. Then, an explicit TVB-Runge-Kutta  time discretizationis used to 
discretize the resulting ODE system. Finally, a generalized slope limiter is 
introduced that  enforces nonlinear stability without degrading the accuracy 
of the scheme. 

We have seen that  the numerical results show that  the RKDG methods 
using polynomials of degree k, k = 1, 2 are uniformly (k+  1)-th order accurate 
away from discontinuities and that  the use of high degree polynomials render 
the RKDG method more efficient, even close to discontinuities. 

All these results can be extended to the initial boundary value problem, 
see [15]. In what follows, we extend the RKDG methods to multidimensional 
systems. 
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T a b l e  1 
p1, M = 0 ,  CFL=0 .3 ,  T = 0 . 0 5 .  

A x  

1/lO 
1/20 
1/40 
1/80 
1/16o 
1/320 
1/640 

1/1280 

LI(0,1)  - error 

l O S . e r r o r  

1286.23 
334.93 
85.32 
21.64 
5.49 
1.37 
0.34 
0.08 

order 

1.85 
1.97 
1.98 
1.98 
2.00 
2.01 
2.02 

L~162 1) - error  

1 0 5 . e r r o r  

3491.79 
1129.21 
449.29 
137.30 
45.10 
14.79 
4.85 
1.60 

order 

1.63 
1.33 
1.71 
1.61 
1.61 
1.60 
1.61 

T a b l e  2 
p 1  M = 2 0 ,  CFL =0 . 3 ,  T = 0 . 0 5 .  

A x  

1/10 
1/20 
1/40 
1/80 
 /16o 
1/320 
1/640 

1/1280 

LI(0, 1) - error 

l O S . e r r o r  

1073.58 
277.38 
71.92 
18.77 
4.79 
1.21 
0.30 
0.08 

order 

1.95 
1.95 
1.94 
1.97 
1.99 
2.00 
2.00 

L~176 - error  

105 �9 error  

2406.38 
628.12 
161.65 
42.30 
10.71 
2.82 
0.78 
0.21 

order 

1.94 
1 .96  
1.93 
1.98 
1.93 
1.86 
1.90 
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Table  3 
Errors in smooth region ~ -- {x:  Ix - shock I >_ 0.1}. 

p1, M = 2 0 ,  CFL=0 .3 ,  T - - 0 . 4 .  

A x  

1/10 
1/20 
1/40 
1/80 
1/16o 
1/32o 
1/640 

1/1280 

LI(~)) - error 

10 5 . e r r or  

1477.16 
155.67 
38.35 
9.70 
2.44 
0.61 
0.15 
0.04 

order 

3.25 
2.02 
1.98 
1.99 
1.99 
2.00 
2.00 

L~176 f2) - e r r o r  

105 . e r ror  

17027.32 
1088.55 
247.35 
65.30 
17.35 
4.48 
1.14 
0.29 

order 

3.97 
2.14 
1.92 
1.91 
1.95 
1.98 
1.99 

Table  4 
p2,  M = O, C F L =  0.2, T = 0 . 0 5 .  

A x  

1/10 
1/20 
1/40 
1/8o 

LI(0,1)  - error 

105 . e r ror  

2066.13 
251.79 
42.52 
7.56 

order 

3.03 
2.57 
2.49 

L ~ (0 ,1 )  - error 

105 . e r ror  

16910.05 
3014.64 
1032.53 
336.62 

order 

2.49 
1.55 
1.6I 
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Table  5 
p2,  M = 20, C F L =  0.2, T = 0.05. 

A x  

1/10 
1/2o 
1/4o 
1/8o 

LI(0 ,  1) - e r r o r  

1 0 5 . e r r o r  

37.31 
4.58 
0.55 
0.07 

order 

3.02 
3.05 
3.08 

L~176 - e r r o r  

l O S . e r r o r  

101.44 
13.50 
1.52 
0.19 

order 

2.91 
3.15 
3.01 

Table  6 
Errors  in smooth  region ~2 = { x :  Ix - s h o c k  I > 0.1}. 

p2 ,  M = 2 0 ,  C F L = 0 . 2 ,  T = 0 . 4 .  

A x  

1/10 
1/2o 
1/40 
1/8o 

L 1 ( f2)  - e r r o r  

l O S . e r r o r  

786.36 
5.52 
0.36 
0.06 

order 

7.16 
3.94 
2.48 

L ~ ( $ 2 )  - e r r o r  

105. e r r o r  

16413.79 
86.01 
15.49 
0.54 

order 

7.58 
2.47 
4.84 

Table  7 
Compar ison  of the  efficiencies of R K D G  schemes for k = 2 and k = 1 

M = 20, T = 0.05. 
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Ax 

1/10 
1/20 
1/40 
1/8o 

LCnorm 

ef f . rat io  

8.52 
17.94 
38.74 
79.45 

order 

-1.07 
-1.11 
-1.04 

L~176 

e f f .ratio 

7.03 
46.53 
106.35 
222.63 

order 

-2.73 
-1.19 
-1.07 

3.16 A p p e n d i x :  P r o o f  o f  t h e  L 2 - e r r o r  e s t i m a t e s  in t h e  l i nea r  case  

P r o o f  o f  t h e  L2- s t ab i l i t y  In this subsection, we prove the the stability 
result of Proposition 3.1. To do that,  we first show how to obtain the corre- 
sponding stability result for the exact solution and then mimic the argument 
to obtain Proposition 3.1. 

T h e  c o n t i n u o u s  case  as a mode l .  We start  by rewriting the equations 
(3.4) in compact form. If in the equations (3.4) we replace v(x) by v(x,t),  
sum on j from 1 to N, and integrate in time from 0 to T, we obtain 

~(u ,v)  -- 0, V v :  v(t) is smooth V t �9 (0, T), (3.29) 

where 

T 1 

Taking v -- u, we easily see that  we see that  

IIL~(o,1) - Iluo IIL~(o,,), ~(u,u) = ~H u(T) 2 2 

and since 

~(u ,  ~) = 0, 

by (3.29), we immediately obtain the following L2-stability result: 

IIL~(0,1) = Ilu0llL~(0,1). 

This is the argument we have to mimic in order to prove Proposition 3.1. 
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Fig. 3.22: Comparison of the exact and the approximate solution obtained 
with M = 20, Ax = 1/40 at T -- .4: Piecewise linear elements (top) and 
piecewise quadratic elements (bottom) 
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Fig. 3.23: Detail of previous figure. Behavior of the approximate solutions 
four elements in front of the shock: Exact solution (solid line), piecewise 
linear solution (dotted line), and piecewise quadratic solution (dashed line). 
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T h e  d i sc re t e  case. Thus, we start by finding the discrete version of the 
form B(., .). If we replace v(x) by Vh(X,t) in the equation (3.7), sum on j 
from 1 to N, and integrate in time from 0 to T, we obtain 

Bh(Uh, Vh) = O, V Vh: Vh(t) e Vh k V t C (O,T). (3.31) 

where 

lBh(Uh, Vh) = Otuh(x, t) Vh(X, t) dx dt (3.32) 

Following the model provided by the continuous case, we next obtain an 
expression for ]~h(Wh, Wh). It is contained in the following result which will 
proved later. 

L e m m a  3.1 We have 

~h(Wh,Wh ) ~HWh(T) 2 1 -- IIL~(o,~), IIL~(o,~) + ~ r ( ~ h )  - I lwh(o) 

where 

OT(Wh) ~l_~2l fT El<j<N[wh(t ) 2 = ]j+1/2 dt. 

Taking Wh = Uh in the above result and noting that  by (3.31), 

~h(uh,  uh) = 0, 

we get the equality 

1 2 
2 ii uh(T)  + = - H~(o,~) o~(uh)  �89 IlL~(O,1), 

from which Proposition 3.1 easily follows, since 

]] uh(T) ~ 1 IIL~(o,~) -< In~o IIL:(o,~), 

by (3.8). It only remains to prove Lemma 3.1. 
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P r o o f  o f  L e m m a  3.1. After setting uh = Vh = Wh in the definition of 
~h, (3.32), we get 

S0 , ~ h ( W h , W h )  II wh(r) 2 - I I L ~ ( O , 1 ) ,  = IIL~(O,1)+ Odi~(t) dt 711~h(0) 2 

where 

o ~ , , ( t )  = - Z {h(wh)i+ll2(t)[wh(t)]j+i/l + ft~ ewh(x,t)O~wh(x,t)dx} 
I<_jK_N 

We only have to show that  fo T ~diss(t) dt = OT(Wh).  To do that, we proceed 
as follows. Dropping the dependence on the variable t and setting 

1 
~h(Xj+l/2) = 7(wh(x-;+l/2) + wh(x++~19 ), 

we have, by the definition of the flux h, (3.11), 

-- Z SI h(wh)j+l/2[Wh]j+l/2 : -- Z {CWh[Wh]-- I~ [wh]2)j+l'2' 
I < j < N  J I ( j ~ N  

and 

Hence 

- ~ f c~.(~)o:~.(~)d~ 
I < j < N  J 

C 
= 2 ~ [w h213+1/2 

I~_j<_N 

= c ~ { ~ h [ ~ h l b + l / 2  
I ~_j ~_N 

[c [ K-~ 2 tOai~ (t) - -  ~ [ U h ( t l l j + l / 2 '  2 
l~_ jgN 

and the result follows. This completes the proof of Lemma 3.1. 
This completes the proof of Proposition 3.1. 

[] 

P r o o f  o f  t h e  T h e o r e m  3.1 In this subsection, we prove the error estimate 
of Theorem 3.1 which holds for the linear case f(u) = cu. To do that,  we 
first show how to estimate the error between the solutions wv = (uu, qv) t, 
u = 1, 2, of 

O t u , + O 2 f ( u , ) = O  in(0,  T) x (0 ,1) ,  

u~( t=O)=uo, , ,  on(0,1) .  

Then, we mimic the argument in order to prove Theorem 3.1. 
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T h e  c o n t i n u o u s  case  as a mode l .  By the definition of the form ~(., .), 
(3.30), we have, for v = 1, 2, 

~ ( w ~ , v ) = O ,  V v :  v(t)  i s s m o o t h  Y t � 9  (0, T). 

Since the form 1~(., .) is bilinear, from the above equation we obtain the so- 
called error equation: 

~ ( e , v )  = O, V v :  v( t)  is smooth V t �9 (0, T). (3.33) 

where e = wl - w2. Now, since 

= - ILL=(0,,, IIL~(0,~/ II e(0) 2 

and 

~ ( e ,  e) = 0, 

by the error equation (3.33), we immediately obtain the error estimate we 
sought: 

~11 e(T) 2 1 2 ILL=<0,1) = 511 u0,1 - ~0,= IIL=<0,~). 

To prove Theorem 3.1, we only need to obtain a discrete version of this 
argument. 

T h e  d i s c r e t e  case. Since, 

~ h ( U h , ~ h )  = 0, V ~h : v(t) �9 Vh V t �9 (0, T) ,  

l~h(U, Vh) = 0, V Vh : vh(t) �9 Vh V t �9 (0, T) ,  

by (3.7) and by equations (3.4), respectively, we easily obtain our error equa- 
tion: 

~ h ( e ,  vh) = o, v v h :  ~h(t)  e yh v t �9 (0, T) ,  (3 .34)  

where e = w - w h .  

Now, according to the continuous case argument, we should consider next 
the quanti ty ]~h(e, e); however, since e(t) is not in the finite element space 
Vh, it is more convenient to consider ~h(~h(e) , l~h(e)) ,  where ~h(e( t ) )  is the 
L2-projection of the error e(t) into the finite element space Vh k. 

The L2-projection of the function p C L2(0, 1) into Vh, ~h(P), is defined 
as the only element of the finite element space Vh such that  

f~  ( ~h(p) (x )  -- p(x)  ) vh(x)  dx = 0 ,  V Vh e Vh. (3.35) 

Note that  in fact uh( t  = O) = ~h(Uo), by (3.8). 
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Thus, by Lemma 3.1, we have 

1 1 
= - -  ILL2(0 ,1 ) ,  

and since 

and 

? h ( e ( O ) )  = ? h ( ~ o  - u h ( O ) )  = ? h ( u o )  - ~ h ( O )  = O, 

by the error  equat ion  (3.34), we get 

1 
-2 II ~ h ( e ( T ) )  IIL2(0,1 ) 2  + O T ( ? h ( e ) )  = ~ h ( ? h ( U )  -- U, g~h(e)). (3.36) 

It only remains to estimate the right-hand side 

which, according to our continuous model, should be small. 
E s t i m a t i n g  t h e  r i g h t - h a n d  side. To show that  this is so, we must 

suitably treat the term ~(lPh(W) - - W , F h ( e ) ) .  We start with the following 
remarkable result. 

L e m m a  3.2 W e  have  

~h(]~h(U) -- ~']~h(e)) = -- ~oTI<~j<" N h(]~h(U) -- u)j+l/2(t) [Ph(e)(t) ]j+l/2 dt. 

P r o o f  Setting p = ~h(U) - - u  and Vh = ~h(e )  and recalling the definition 
of Nh(', "), (3.32), we have 

T 1 

]~h(p, Vh) : ~ ~ Otp(x,t)vh(x,t)dxdt 

-- ~oTl <~j < N fij c p(x, t) Ox Vh (X, t) dx dt 

-- ~~ N h(P)J+l/2(t) [vh(t) ]j+l/2dt 

= - h (p)~+l /2( t )  [vh(t)b+~/2 dt, 
1 _  N 

by the definition of the L2-projection (3.35). This completes the proof. Q 
Now, we can see that  a simple application of Young's inequality and a 

standard approximation result should give us the estimate we were looking 
for. The approximation result we need is the following. 
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L e m m a  3.3 I f  w C Hk+l(I j  U Ij+l), then 

[ h ( ~ h ( W )  -- W)(X j+l /2 )  I • C k ( A x )  k+1/2 I c__.~ ~ [ W IHk+,(IjuIj+I), 
- 2 

where the constant ck depends solely on k. 

Proof.  Dropping the argument Xy+W 2 we have, by the definition (3.11) 
of the flux h, 

I h ( ~ ( w )  - w)  l = ~ ( ~ . ( w ) +  + ~ h ( w ) - )  - ~ ( ~ h ( w ) +  - ~ . ( w ) - )  - c ~  

< I c I m a x {  I ~ h ( ~ )  + - ~ I, I ~ h ( ~ ) -  - w I } 

and the result follows from the properties of IPh after a simple application of 
the Bramble-Hilbert lemma; see [11]. This completes the proof. [] 

An immediate consequence of this result is the estimate we wanted. 

L e m m a  3.4 We have 

where the constant ck depends solely on k. 

Proof .  After using Young's inequality in the right-hand side of Lemma 
3.2, we get 

~oT j~< 1 ~h(]~h(U) -- U, Ph(e) ) ~ I h(]~h(U) -- u)j+l/2(t)12 
1 N -~[ 

]j+1/2 dt. 
1 _N  

By Lemma 3.3 and the definition of the form Or,  we get 

B h ( P h ( U )  - -  U, eh(e) ) ~_ c 2 (Ax) 2k+1 [u ]H.+,(lltJlt+ 0 + g OT(Ph(e) ) 
" N 

_~ c: (Ax) 2k+l ~ J  T[ uo I~/'+'(o,1) + l oT(Ph(e ) ) .  

This completes the proof. [] 
Conclusion.  Finally, inserting in the equation (3.36) the estimate of its 

right hand side obtained in Lemma 3.4, we get 

II ~ h ( e ( T ) )  2 NL2(0,1) q-(~T(i~h(e)) ~_ c k (Ax) 2k+l [cIT[uo 2 [Hk+l (0,1), 
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Theorem 3.1 now follows from the above estimate and from the following 
inequality: 

[I e(T) [In~(o,1) <- 11 u(T)  - Fh(u(T))  Iln~(o,1) + II F~(e(T))  [[n~(0,1) 

<- e'k (Ax)  k+l l uo INk+l(0,1) -+- l] I?h(e(T)) ILL=(0,1). 

P r o o f  of  t h e  T h e o r e m  3.2 To prove Theorem 3.2, we only have to suitably 
modify the proof of Theorem 3.1. The modification consists in replacing the 
L2-projection of the error, ~h(e), by another projection that  we denote by 
•h(e). 

Given a function p c L~(0 ,  1) that  is continuous on each element Ij ,  we 
define ]~h(P) as the only element of the finite element space Vh such that  

Vj  = 1 , . . . , N  : Rh(p)(xj,~) --p(xj,~) = O, ~ = O , . . . , k ,  (3.37) 

where the points xj,~ are the Gauss-Radau quadrature points of the interval 
Ij .  We take 

xj,k = Xj+l/2, if c > 0, and xj,o = x j -1 /2 ,  if c < 0. (3.38) 

The special nature of the Gauss-Radau quadrature points is captured in the 
following property: 

Y ~  c P t ( I j ) ,  ~ <_ k, Vp  c P~k- t ( I s )  : 

f (~h(pl(x) - p(x)) ~(x) d x  = o. 
J 

(3.39) 

Compare this equality with (3.35). 
T h e  q u a n t i t y  ~h(~h(e) ,Rh(e) ) .  To prove our error estimate, we start  

by considering the quantity ]~h(Rh(e), Rh(e)). By Lemma 3.1, we have 

Bh(Rh(e), Rh(e)) = ~ II Rh(e(T)) I1~c0,1) + Or(Rh(e) )  - 111Rh(e(0)) I1~C0,1~, 

and since 

~h(Rh(e) ,  Rh(e)) = Bh(Rh(e) -- e, Rh(e)) = ~h(R~(~)  -- u, Rh(e)) ,  

by the error equation (3.34), we get 

1[[ Rh(e(T)) 2 1 1[L2(O,1) + O T ( R h ( e ) ) :  [[ ]~h(e(O) ) 2 HE2(0,1) "~- ~h(Rh(u) -- U, Rh(e)). 
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Next, we estimate the term ~(Rh(U) --u,  Rh(e)). 
E s t i m a t i n g  ~(Rh(U) --U, Rh(e)). The following result corresponds to 

Lemma 3.2. 

L e m m a  3.5 We have 
T 1 

~hah(u)-u,v~) =/o /o (~h(O,u)(x,t)-O,u(x,t))vh(~,t)dxet 
-- f~ N ~ jC(Rh(U) (x , t ) - -u ( x , t ) )OxVh(X , t )dxd t .  

P r o o f  Setting p = l~h(U) --u and vn = ]~h(e) and recalling the definition 
of ]~h(', "), (3.32), we have 

T l 

]~h(p~Vh) = ~0 ~0 0tp(x,t)vh(x,t)dxdt 

But,  from the definition (3.11) of the flux h, we have 

- ~ ( R h ( u )  + - u )  + ( R h ( ~ ) -  - -  ~) 
= 0~ 

by (3.38) and the result follows. [] 
Next, we need some approximation results. 

L e m m a  3.6 If  w C Hk+2(Ij) ,  and Vh E Pk(I j) ,  then 

ILL=(5), ak 

I fj~ (~h(~)--~)(x)0xvh(~)dx < (A~) k+l Iivh II/=(b), Ck 

where the constant ck depends solely on k. 

P r o o f .  The first inequality follows from the property (3.39) with / = k 
and from standard approximation results. The second follows in a similar 
way from the property 3.39 with l = k - 1 and a standard scaling argument. 
This completes the proof. [] 

An immediate consequence of this result is the estimate we wanted. 
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L e m m a  3.7 We have 

~h(Rh(U) -- U, Rh(e)) < ck (Z~x) k+l l u0 Ig~+~<O,1) II Rh(e(t)) IIn~(0,1) dt, 

where the constant ck depends solely on k and I c l. 

Conc lus ion .  Finally, inserting in the equation (3.36) the estimate of its 
right hand side obtained in Lemma 3.7, we get 

II •h(e(T)) 2 [[L2(0,1) IIL~(O,1) + ~r(Rh(e))  <_ H l~h(e(0)) 2 

+ck (Ax)k+l I uo IHk+2(0,1) [I Rh(e(t))11L2(O,1) dt. 

After applying a simple variation of the Gronwall lemma, we obtain 

II ~h(e(T))IIL~(o,~) -< II ~h(e(0))(x)IIL2(o,~) + ck (Z~x) k+l T luo IH~§ 
-< 4(Ax)k+~ I~o IH~+~(o,~). 

Theorem 3.2 now follows from the above estimate and from the following 
inequality: 

II e(T) IlL~(O,1) -< [I u(T) - l~h(u(T)) IlL~(O,1) + II Rh(e(T))  IlL~(O,1) 

___~ C~ (Ax)  k+l lit 0 [Hk+l(0,1) 7 t- II Rh(e(T))I[L~(O,1). 
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4 T h e  R K D G  m e t h o d  f o r  m u l t i d i m e n s i o n a l  s y s t e m s  

4.1 I n t r o d u c t i o n  

In this section, we extend the RKDG methods to multidimensional systems: 

ut + V f ( u )  = 0, in ~2 • (0, T),  (4.1) 

u(x,O) = u0(x), V x e ~2, (4.2) 

and periodic boundary conditions. For simplicity, we assume that  D is the 
unit cube. 

This section is essentially devoted to the description of the algorithms and 
their implementation details. The practitioner should be able to find here all 
the necessary information to completely code the RKDG methods. 

This section also contains two sets of numerical results for the Euler equa- 
tions of gas dynamics in two space dimensions. The first set is devoted to 
transient computations and domains that  have corners; the effect of using 
triangles or rectangles and the effect of using polynomials of degree one or 
two are explored. The main conclusions from these computations are that  (i) 
the RKDG method works as well with triangles as it does with rectangles 
and that  (ii) the use of high-order polynomials does not deteriorate the ap- 
proximation of strong shocks and is advantageous in the approximation of 
contact discontinuities. 

The second set concerns steady state computations with smooth solu- 
tions. For these computations, no generalized slope limiter is needed. The 
effect of (i) the quality of the approximation of curved boundaries and of 
(ii) the degree of the polynomials on the quality of the approximate solution 
is explored. The main conclusions from these computations are that  (i) a 
high-order approximation of the curve boundaries introduces a dramatic im- 
provement on the quality of the solution and that  (ii) the use of high-degree 
polynomials is advantageous when smooth solutions are shought. 

This section contains material from the papers [14], [13], and [19]. It also 
contains numerical results from the paper by Bassi and Rebay [2] in two di- 
mensions and from the paper by Warburton, Lomtev, Kirby and Karniadakis 
[65] in three dimensions. 

4.2 T h e  g e n e r a l  R K D G  m e t h o d  

The RKDG method for multidimensional systems has the same structure it 
has for one-dimensional scalar conservation laws, tha t  is, 

- Set u ~ = AIIh Pyh(uo); 
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- For n = 0, ..., N - 1 compute u~ +1 as follows: 

1. set U(h ~ = u~; 
2. for i = 1, ..., k + 1 compute the intermediate functions: 

.1 } 
+ ')) ; 

k l=0 

_ ( k + l )  uhTln ~ U h  . 3. set 

In what  follows, we describe the operator  Lh tha t  results form the DG- 
space discretization, and the generalized slope limiter AIIh. 

T h e  D i s c o n t i n u o u s  G a l e r k i n  s p a c e  d i s c r e t i z a t i o n  To show how to dis- 
cretize in space by the DG method, it is enough to consider the case in which 
u is a scalar quanti ty since to deal with the general case in which u, we apply 
the same procedure component  by component.  

Once a triangulation ~7 h of ~'~ has been obtained, we determine Lh(.) as 
follows. First, we multiply (4.1) by Vh in the finite elemen space Vh, integrate 
over the element K of the triangulation Th and replace the exact solution u 
by its approximation Uh C Vh: 

ddt /K Uh(t,X) Vh(x)dx + /K div f(uh(t,x))Vh(X)dx = 0 ,  VVh C Vh. 

Integrat ing by parts  formally we obtain 

d d-7 fg  uh(t, x) Vh(X) dx + Eeeog f~ f(uh(t, X)). ne,K Vh(X) dF 

-- f g  f(Uh(t,x)),  grad Vh(X)dx = O, Vvh E Vh, 

where ne,K is the outward unit normal to the edge e. Notice tha t  f(uh(t, x)). 
ne,K does not have a precise meaning, for Uh is discontinuous at x C e E 
OK. Thus, as in the one dimensional case, we replace f (uh( t , x ) ) ' ne ,g  by 
the function he,g(Uh(t, xint(K)), Uh(t, Xezt(g))). The function he,K(', ") is any 
consistent two-point  monotone Lipschitz flux, consistent with f(u) �9 ne, g. 

In this way we obtain 

d 4-7 fg  Uh(t,X)Vh(X)dx + ~eeOg fe he,K(t,x) Vh(X)dE 
-- f g  f(uh(t ,x))" grad Vh(Z)dx = O, V Vh C Vh. 
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Finally, we replace the integrals by quadrature rules that we shall choose as 
follows: 

f~ h~,g(t, x) Vh(X) d F .~ ~'~L=I wl h~,g(t, x~Z) v(x~l)lel, (4.3) 

fK f (uh( t ,x) ) ,  grad Vh(X) dx 

~-~M 1 wj f(uh(t, XKj))" grad Vh(XKj)IKI. (4.4) 

Thus, we finally obtain the weak formulation: 

d fk Uh(t, X)Vh(X)dX + E ~ a K  EL-1 ~l h~,K(t, x~l) v(x~z)lel 
M --ES=,wr f(uh(t, xKj)).gradvh(zK~)]KI = O, Yvh e Vh, VK ~ ~rh. 

d U Lh(Uh, ~h). This These equations can be rewritten in ODE form as ~ h = 

defines the operator Lh(Uh), which is a discrete approximation of -d iv  f(u). 
The following result gives an indication of the quality of this approximation. 

Propos i t ion  4.1 Let f(u) C Wk+2'~($2), and set "~ = trace(u). Let the 
quadrature rule over the edges be exact for polynomials of degree (2k + 1), 
and let the one over the element be exact for polynomials of degree (2k). 
Assume that the family of triangulations F = {~h}h:>0 i8 regular, i.e., that 
there is a constant a such that: 

h_~>a, VKCTh,  VTheF ,  (4.5) 
P K  - -  

where hK is the diameter of K,  and PK is the diameter of the biggest ball 
included in K. Then, if V(K) D Pk(K), V K E Th: 

IILh(u,~) + div f(u)HL~(~ ) <_ C hk+llf(u)lwk+2,:r ). 

For a proof, see [13]. 

The  form of  the  generalized slope l imiter  AHh.  The construction of 
generalized slope limiters AIIh for several space dimensions is not a trivial 
matter and will not be discussed in these notes; we refer the interested reader 
to the paper by Cockburn, Hou, and Shu [13]. 

In these notes, we restrict ourselves to displaying very simple, practical, 
and effective generalized slope limiters AIIh which are closely related to the 
generalized slope limiters AII~ of the previous section. 
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To compute AIlhUh, we rely on the assumption that  spurious oscillations 
are present in Uh only if they are present in its p1 part u~, which is its L 2- 
projection into the space of piecewise linear functions Vh 1. Thus, if they are 
not present in u~, i.e., if 

u 1 = AIIh Ulh, 

then we assume that  they are not present in Uh and hence do not do any 
limiting: 

AIIh uh = uh.  

On the other hand, if spurious oscillations are present in the p1 part  of the 
solution u)~, i.e., if 

~ lh ~ AIIh u lh, 

then we chop off the higher order part of the numerical solution, and limit 
the remaining p1 part: 

Alfh  uh = Al-Ih ulh . 

In this way, in order to define AIIh for arbitrary space Vh, we only need to 
actually define it for piecewise linear functions Vh 1. The exact way to do that,  
both for the triangular elements and for the rectangular elements, will be 
discussed in the next section. 

4 . 3  A l g o r i t h m  a n d  i m p l e m e n t a t i o n  d e t a i l s  

In this section we give the algorithm and implementation details, including 
numerical fluxes, quadrature rules, degrees of freedom, fluxes, and limiters 
of the RKDG method for both piecewise-linear and piecewise-quadratic ap- 
proximations in both triangular and rectangular elements. 

F l u x e s  The numerical flux we use is the simple Lax-Friedrichs flux: 

1 
he ,K(a ,b )=  ~ [ f ( a ) . n e , K + f ( b ) - n ~ , K - - a ~ , K ( b - - a ) ] .  

The numerical viscosity constant ae,K should be an estimate of the biggest 
eigenvalue of the Jacobian a-~f(uh(x, t ) ) ' ne ,K  for (x, t) in a neighborhood of 
the edge e. 

For the triangular elements, we use the local Lax-Friedrichs recipe: 

- Take ae,K to be the larger one of the largest eigenvalue (in absolute value) 
of D-~uf(~K) "ne,K and that  of ~-~ f(uK')  "he,K, where UK and ~K' are the 
means of the numerical solution in the elements K and K '  sharing the 
edge e. 

For the rectangular elements, we use the local Lax-Friedrichs recipe : 

- Take a~,g to be the largest of the largest eigenvalue (in absolute value) of 
s  where ?~K" is the mean of the numerical solution in the 
element K " ,  which runs over all elements on the same line (horizontally 
or vertically, depending on the direction of n~,K) with K and K '  sharing 
the edge e. 
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Q u a d r a t u r e  ru l e s  According to the analysis done in [13], the quadrature 
rules for the edges of the elements, (4.3), must be exact for polynomials of 
degree 2k + 1, and the quadrature rules for the interior of the elements, (4.4), 
must be exact for polynomials of degree 2k, if pk methods are used. Here 
we discuss the quadrature points used for p1 and p2 in the triangular and 
rectangular element cases. 

T h e  r e c t a n g u l a r  e l e m e n t s  For the edge integral, we use the following two 
point Gaussian rule 

g(x)dx ..~ g - + g , (4.1) 
1 

for the p1 case, and the following three point Gaussian rule 

1 5[g (4.2) if-1 g(x)dx 6 g 

for the p2 case, suitably scaled to the relevant intervals. 
For the interior of the elements, we could use a tensor product of (4.1), 

with four quadrature points, for the p i  case. But to save cost, we "recycle" 
the values of the fluxes at the element boundaries, and only add one new 
quadrature point in the middle of the element. Thus, to approximate the 
integral fi_ 1 fl_i g(x, y)dxdy, we use the following quadrature rule: 

(1 0/ 
For the p2 case, we use a tensor product of (4.2), with 9 quadrature points. 

T h e  t r i a n g u l a r  e l e m e n t s  For the edge integral, we use the same two point 
or three point Gaussian quadratures as in the rectangular case, (4.1) and 
(4.2), for the p1 and p2 cases, respectively. 

For the interior integrals (4.4), we use the three mid-point rule 

3 

i=1  

where rni are the mid-points of the edges, for the p i  case. For the p2 case, 
we use a seven-point quadrature rule which is exact for polynomiMs of degree 
5 over triangles. 
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Bas is  a n d  degrees  of  f r e e d o m  We emphasize that  the choice of basis 
and degrees of freedom does not affect the algorithm, as it is completely de- 
termined by the choice of function space V ( h )  , the numerical fluxes, the 
quadrature rules, the slope limiting, and the time discretization. However, a 
suitable choice of basis and degrees of freedom may simplify the implemen- 
tation and calculation. 

T h e  r e c t a n g u l a r  e l e m e n t s  For the p1 case, we use the following expres- 
sion for the approximate solution Uh(X,y,t) inside the rectangular element 

[xi_�89 ] • [Yj_3,YJ+�89 

where 

and 

(4.3) 

Z~xi : xi+3 - x i -  3' Z~yj = yj+3 - YJ- 3" 

The degrees of freedoms, to be evolved in time, are then 

uy(t). 

Here we have omitted the subscripts i j  these degrees of freedom should 
have, to indicate that  they belong to the element i j  which is [x~_3, xi+�89 • 

[YJ-3, YJ+�89 
Notice that  the basis functions 

are orthogonal, hence the local mass matrix is diagonal: 

M = A x i A y ~  diag 1, ~, . 

For the p2 case, the expression for the approximate solution Uh(X, y, t) 
inside the rectangular element [xi_�89189 • [yy_�89189 is: 

where ~,(x) and r  are defined by (4.4). The degrees of freedoms, to be 
evolved in time, are 

x - x~ Y - YJ (4.4) 



207 

Again the basis functions 

1 r _ _ 
1, ~i(x), Cj(y), ~i(x)r  ~ ( x ) - - ~ ,  

are orthogonal, hence the local mass matrix is diagonal: 

( 1 1 1 4  ~5) 
M = A x ~ A y ~ d i a g  1 , 3 , 3 , 9 , 4 5 ,  ' 

1 
3' 

The  t r iangular  e lements  For the p1 case, we use the following expression 
for the approximate solution Uh(X, y, t) inside the triangle K: 

3 

 h(x, y, t) = y) 
i=1 

where the degrees of freedom u~(t) are values of the numerical solution at 
the midpoints of edges, and the basis function ~i(x, y) is the linear function 
which takes the value 1 at the mid-point rni of the i-th edge, and the value 
0 at the mid-points of the two other edges. The mass matrix is diagonal 

M = IKIdiag ' 5' " 

For the p2 case, we use the following expression for the approximate 
solution Uh(X, y, t) inside the triangle K: 

6 

i=1 

where the degrees of freedom, ui (t), are values of the numerical solution at the 
three midpoints of edges and the three vertices. The basis function ~i(x, y), is 
the quadratic function which takes the value 1 at the point i of the six points 
mentioned above (the three midpoints of edges and the three vertices), and 
the value 0 at the remaining five points. The mass matrix this time is not 
diagonal. 

L imi t ing  We construct slope limiting operators AIIh on piecewise linear 
functions Uh in such a way that the following properties are satisfied: 

1. Accuracy: if Uh is linear then AIIh Uh = Uh. 
2. Conservation of mass: for every element K of the triangulation Th, we 

have: 

K AHh Uh = /K Uh" 

3. Slope limiting: on each element K of ~ h ,  the gradient of AIIh Uh is not 
bigger than that of Uh. 

The actual form of the slope limiting operators is closely related to that 
of the slope limiting operators studied in [15] and [13]. 
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T h e  r e c t a n g u l a r  e l e m e n t s  The limiting is performed on ux and uy in 
(4.3), using the differences of the means. For a scalar equation, ux would be 
limited (replaced) by 

?~t ( U x ,  ~t i+ l ,  j - -  ~t i j  , ~t i j  - -  Ui--  l , j  ) ( 4 . 6 )  

where the function rh is the TVB corrected m i n m o d  function defined in the 
previous section. 

The TVB correction is needed to avoid unnecessary limiting near smooth 
extrema, where the quanti ty u~ or uy is on the order of O ( A x  2) or O(Ay2).  
For an est imate of the TVB constant M in terms of the second derivatives of 
the function, see [15]. Usually, the numerical results are not sensitive to the 
choice of M in a large range. In all the calculations in this paper  we take M 
to be 50. 

Similarly, uy is limited (replaced) by 

r~(uy, f%j+l - u~j, uij - ~ , j - 1 ) .  

with a change of Ax to Ay in (4.6). 
For systems, we perform the limiting in the local characteristic variables. 

To limit the vector ux in the element i j ,  we proceed as follows: 

- Find the matr ix  R and its inverse R -1, which diagonalize the Jacobian 
evaluated at the mean in the element i j  in the x-direction: 

R -  1 Of  1 (f~i3) R = A ,  
Ou 

where A is a diagonal matr ix  containing the eigenvalues of the Jacobian. 
Notice tha t  the columns of R are the right eigenvectors of o I1 (~)  and Ou 
the rows of R-1  are the left eigenvectors. 

- Transform all quantities needed for limiting, i.e., the three vectors uxi j ,  
g i + l j  -~ i i j  and gij - g i - 1 , j ,  to the characteristic fields. This is achieved 
by left multiplying these three vectors by R -1. 

- Apply the scalar limiter (4.6) to each of the components of the trans- 
formed vectors. 

- The result is transformed back to the original space by left multiplying 
R on the left. 

T h e  t r i a n g u l a r  e l e m e n t s  To construct the slope limiting operators  for 
tr iangular elements, we proceed as follows. We star t  by making a simple 
observation. Consider the triangles in Figure 4.1, where ml  is the mid-point  
of the edge on the boundary of K0 and b~ denotes the barycenter of the 
triangle Ki for i = 0, 1, 2, 3. 

Since we have tha t  

m l  - -  b0 = o~1 (bt - bo) + c~2 (b2 - bo), 



K3 

K1 

209 

Fig. 4.1: I l lustrat ion of limiting. 

for some nonnegat ive coefficients a l ,  a2 which depend only on ml  and the 
geometry,  we can write, for any  linear funct ion Uh, 

~ ( m ~ )  - uh(bo)  = ~ ( ~ ( b ~ )  - ~h(bo))  + ~2 ( ~ h ( ~ )  -- ~h(bo) ) ,  

and since 

~K~ - -  IKil Uh = uh(bi),  i = O, 1, 2, 3, 
i 

we have tha t  

'/~h(~9,1, Ko) -= u h ( m l ) - - ~ t K  o = Oll (~tK 1 --~Ko)+O~2 (~tK 2 --~tKo) -~ z~Q.(ml, Ko)  

Now, we are ready  to  describe the slope limiting. Let  us consider a piecewise 
linear funct ion Uh, and let mi, i = 1, 2, 3 be the three mid-points  of the  edges 
of  the tr iangle K0. We then can write, for (x, y) E Ko, 

3 3 

i=1 i=1 

To compute  AHhuh ,  we first compute  the quanti t ies 

Ai = ~ (  ~th ( rni, Ko ), u Af t (  mi ,  Ko ) ), 

where rh is the  T V B  modified m i n m o d  funct ion and u > 1. We take u = 1.5 
3 in our numerical  runs. Then,  if }-~i--1 Ai = 0, we simply set 

3 

Anhu~(x, y) = ~ o  + F_, z~ ~,~(~, y). 
i=1 
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3 .  
If ~i=i A i r  0, we compute 

and set 

3 3 

pos= E max(O, Ai), neg= E max(O, - A i ) ,  
i = 1  i ~ l  

neg 
8 + = m i n  1 , ~ - ~ / ,  

Then, we define 

where 

pos 
8-  = m i n  1, n e g / .  

3 

AIIhuh(X, y) = Ugo + ~ Ai ~(X, y), 
i = 1  

z~i = 0 + max(0, Ai) - 0-  max(0, - A i ) .  

It is very easy to see that  this slope limiting operator satisfies the three 
properties listed above. 

For systems, we perform the limiting in the local characteristic variables. 
To limit Ai, we proceed as in the rectangular case, the only difference being 
that  we work with the following Jacobian 

m i  - bo 
f(~K~ lm, bol" 

4.4 C o m p u t a t i o n a l  resu l t s :  T r a n s i e n t ,  n o n s m o o t h  so lut ions  

In this section we present several numerical results obtained with the p1 and 
p2 (second and third order accurate) RKDG methods with either rectangles 
or triangles in the triangulation. These are standard test problems for Euler 
equations of compressible gas dynamics. 

The  d o u b l e - M a c h  reflection problem Double Mach reflection of a strong 
shock. This problem was studied extensively in Woodward and Colella [66] 
and later by many others. We use exactly the same setup as in [66], namely a 
Mach 10 shock initially makes a 60 ~ angle with a reflecting wall. The undis- 
turbed air ahead of the shock has a density of 1.4 and a pressure of 1. 

For the rectangle based triangulation, we use a rectangular computational 
domain [0, 4] x [0, 1], as in [66]. The reflecting wall lies at the bot tom of the 
computational domain for ~ < x _< 4. Initially a right-moving Mach 10 
shock is positioned at x = I ,  Y = 0 and makes a 60 ~ angle with the x-axis. 
For the bot tom boundary, the exact post-shock condition is imposed for the 
part from x = 0 to x -- I ,  to mimic an angled wedge. Reflective boundary 
condition is used for the rest. At the top boundary of our computational 
domain, the flow values are set to describe the exact motion of the Mach 



211 

10 shock. Inflow/outflow boundary conditions axe used for the left and right 
boundaries. As in [66], only the results in [0, 3] • [0, 1] are displayed. 

For the triangle based triangulation, we have the freedom to treat  irreg- 
ular domains and thus use a true wedged computational domain. Reflective 
boundary conditions are then used for all the bot tom boundary, including the 
sloped portion. Other boundary conditions are the same as in the rectangle 
c a ~ e .  

Uniform rectangles are used in the rectangle based triangulations. Four 
different meshes are used: 240 x 60 rectangles (Ax ---- Ay = ~ ) ;  480 • 120 
rectangles (Ax = Ay = 1 " Fr . 1-~6), 960 x 240 rectangles (Ax = Ay = and 
1920 • 480 rectangles (Ax = Ay = 4--~0)" The density is plotted in Figure 4.2 
for the p1 case and in 4.3 for the P~ case. 

To bet ter  appreciate the difference between the p1 and p2 results in these 
pictures, we show a "blowed up" portion around the double Mach region in 
Figure 4.4 and show one-dimensional cuts along the line y = 0.4 in Figures 
4.5 and 4.6. In Figure 4.4, w can see that  p2 with Ax = Ay = ~60 has 
qualitatively the same resolution as p1 with Ax = Ay = 1 for the fine 4---g6, 
details of the complicated structure in this region, p2 with Ax = Ay _ 1 480 
gives a much better  resolution for these structures than p1 with the same 
number of rectangles. 

Moreover, from Figure 4.5, we clearly see that  the difference between the 
results obtained by using p1 and p2, on the same mesh, increases dramati- 
cally as the mesh size decreases. This indicates tha t  the use of polynomials of 
high degree might be beneficial for capturing the above mentioned structures. 
From Figure 4.6, we see that  the results obtained with p1 are qualitatively 
similar to those obtained with p2 in a coarser mesh; the similarity increases 
as the meshsize decreases. The conclusion here is that,  if one is interested in 
the above mentioned fine structures, then one can use the third order scheme 
p2 with only half of the mesh points in each direction as in p1. This trans- 
lates into a reduction of a factor of 8 in space-time grid points for 2D time 
dependent problems, and will more than off-set the increase of cost per mesh 
point and the smaller CFL number by using the higher order p2 method. 
This saving will be even more significant for 3D. 

The optimal strategy, of course, is to use adaptivity and concentrate tri- 
angles around the interesting region, and/or  change the order of the scheme 
in different regions. 

T h e  f o r w a r d - f a c i n g  s t e p  p r o b l e m  Flow past a forward facing step. This 
problem was again studied extensively in Woodward and Colella [66] and 
later by many others. The set up of the problem is the following: A right 
going Mach 3 uniform flow enters a wind tunnel of 1 unit wide and 3 units 
long. The step is 0.2 units high and is located 0.6 units from the left-hand 
end of the tunnel. The problem is initialized by a uniform, right-going Mach 3 
flow. Reflective boundary conditions are applied along the walls of the tunnel 
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and in-flow and out-flow boundary conditions are applied at the entrance 
(left-hand end) and the exit (right-hand end), respectively. 

The corner of the step is a singularity, which we study carefully in our nu- 
merical experiments. Unlike in [66] and many other papers, we do not modify 
our scheme near the corner in any way. It is well known that  this leads to an 
errorneous entropy layer at the downstream bot tom wall, as well as a spuri- 
ous Mach stem at the bot tom wall. However, these artifacts decrease when 
the mesh is refined. In Figure 4.7, second order p1 results using rectangle 
triangulations are shown, for a grid refinement s tudy using Ax = Ay = I ,  

1 and Ax = Ay = 3@6o as mesh sizes. We / i x  = / i y  = 1 ,  / i x  -= / i y  = i-g-6, 

can clearly see the improved resolution (especially at the upper slip line from 
the triple point) and decreased artifacts caused by the corner, with increased 
mesh points. In Figure 4.8, third order p2 results using the same meshes are 
shown. 

In order to verify that  the erroneous entropy layer at the downstream 
bot tom wall and the spurious Mach stem at the bot tom wall are both artifacts 
caused by the corner singularity, we use our triangle code to locally refine near 
the corner progressively; we use the meshes displayed in Figure 4.9. In Figure 
4.10, we plot the density obtained by the p1 triangle code, with triangles 
(roughly the resolution o f / i x  = Ay = 1 ,  except around the corner). In 
Figure 4.11, we plot the entropy around the corner for the same runs. We 
can see that ,  with more triangles concentrated near the corner, the artifacts 
gradually decrease. Results with P~ codes in Figures 4.12 and 4.13 show a 
similar trend. 

4.5 Computat ional  results: Steady state, smooth  solutions 

In this section, we present some of the numerical results of Bassi and Rebay 
[2] in two dimensions and Warburton, Lomtev, Kirby and Karniadakis [65] 
in three dimensions. 

The purpose of the numerical results of Bassi and Rebay [2] we are pre- 
senting is to assess (i) the effect of the quality of the approximation of curved 
boundaries and of (ii) the effect of the degree of the polynomials on the qual- 
ity of the approximate solution. The test problem we consider here is the 
two-dimensional steady-state, subsonic flow around a disk at Mach number 
M~o -- 0.38. Since the solution is smooth and can be computed analytically, 
the quality of the approximation can be easily assessed. 

In the figures 4.14, 4.15, 4.16, and 4.17, details of the meshes around the 
disk are shown together with the approximate solution given by the RKDG 
method using piecewise linear elements. These meshes approximate the circle 
with a polygonal. It can be seen that  the approximate solution are of very 
low quality even for the most refined grid. This is an effect caused by the 
kinks of the polygonal approximating the circle. 

This statement can be easily verified by taking a look to the figures 4.18, 
4.19, 4.20, and 4.21. In these pictures the approximate solutions with piece- 
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wise linear, quadratic, and cubic elements are shown; the meshes have been 
modified to render exactly the circle. It is clear that  the improvement in the 
quality of the approximation is enormous. Thus, a high-quality approxima- 
tion of the boundaries has a dramatic improvement on the quality of the 
approximations. 

Also, it can be seen that  the higher the degree of the polynomials, the 
better  the quality of the approximations, in particular from figures 4.18 and 
4.19. In [2], Bassi and Rebay show that  the RKDG method using polynomilas 
of degree k are (k + 1)-th order accurate for k = 1, 2, 3. As a consequence, a 
RKDG method using polynomials of a higher degree is more efficient than a 
RKDG method using polynomials of lower degree. 

In [65], Warburton, Lomtev, Kirby and Karniadakis present the same test 
problem in a three dimensional setting. In Figure 4.22, we can see the three- 
dimensional mesh and the density isosurfaces. We can also see how, while 
the mesh is being kept fixed and the degree of the polynomials k is increased 
from 1 to 9, the maximum error on the entropy goes exponentialy to zero. 
(In the picture, a so-called 'mode' is equal to k + 1). 

4.6 C o n c l u d i n g  r e m a r k s  

In this section, we have extended the RKDG methods to multidimensional 
systems. We have described in full detail the algorithms and displayed numer- 
ical results showing the performance of the methods for the Euler equations 
of gas dynamics. 

The flexibility of the RKDG method to handle nontrivial geometries and 
to work with different elements has been displayed. Moreover, it has been 
shown that  the use of polynomials of high degree not only does not degrade 
the resolution of strong shocks, but  enhances the resolution of the contact 
discontinuities and renders the scheme more efficient on smooth regions. 

Next, we extend the RKDG methods to convection-dominated problems. 
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Fig. 4.2: Double  Mach reflection problem. Second order p t  results.  Dens i ty  
p. 30 equal ly  spaced contour  lines from p = 1.3965 to p -- 22.682. Mesh 
ref inement  study. From top to bo t tom:  Ax ---- Aly -- 1 1 1 and  1 
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Fig. 4.4: Double Mach reflection problem. Blowed-up region around the dou- 
ble Mach stems. Density p. Third order p2 with Ax = Ay = ~ (top); 
second order p1 with Ax ----- Ay = ~ (middle); and third order p2 with 
Ax ---- Ay = ~ (bottom). 
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Fig. 4.5: Double Mach reflection problem. Cut  y = 0.4 of the blowed-up re- 
gion. Density p. Comparison of second order p1 with third order p2 on the 
same mesh 
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Fig. 4.6: Double Math reflection problem. Cut  y = 0.4 of the blowed-up re- 
gion. Density p. Comparison of second order p1 with third order p2  on a 
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Fig. 4.14: Grid "16 • 8" with a piecewise linear approximation of the cir- 
cle (top) and the corresponding solution (Mach isolines) using p1 elements 
(bottom). 
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Fig. 4.I5: Grid "32 • 8" with a piecewise linear approximation of the cir- 
cle (top) and the corresponding solution (Mach isolines) using p1 elements 
(bottom). 
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Fig. 4.16: Grid "64 x 16" with a piecewise linear approximation of the cir- 
cle (top) and the corresponding solution (Mach isolines) using p1 elements 
(bottom). 
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Fig. 4.17: Grid "128 x 32" a piecewise linear approximation of the circle (top) 
and the corresponding solution (Mach isolines) using P~ elements (bottom). 
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Fig. 4.18: Grid "16 • 4" with exact rendering of the circle and the correspond- 
ing p1 (top), P2(middle), and p3 (bottom) approximations (Mach isolines). 
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Fig. 4.19: Grid "32 x 8" with exact rendering of the circle and the correspond- 
ing pi  (top), p2(middle), and p3 (bottom) approximations (Mach isolines). 
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Fig. 4.20: Grid "64 x 16" with exact rendering of the circle and the cor- 
responding p1 (top), p2(middle), and p3 (bottom) approximations (Mach 
isolines). 
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Fig. 4.21: Grid "128 • 32" with exact rendering of the circle and the cor- 
responding p1 (top), p2(middle), and p3 (bottom) approximations (Mach 
isolines). 
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Fig. 4.22: Three-d imens iona l  flow over a semicircular  bump.  Mesh and  densi ty  
isosurfaces (top) and  history of convergence with p-ref inement  of the maxi-  
m u m  ent ropy  generated (bot tom).  The  degree of the polynomial  plus one is 
plot ted on the 'modes '  axis. 
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5 C o n v e c t i o n - d i f f u s i o n  p r o b l e m s :  T h e  L D G  m e t h o d  

5.1 I n t r o d u c t i o n  

In this chapter, which follows the work by Cockburn and Shu [18], we restrict 
ourselves to the semidiscrete LDG methods for convection-diffusion problems 
with periodic boundary conditions. Our aim is to clearly display the most 
distinctive features of the LDG methods in a setting as simple as possible; 
the extension of the method to the fully discrete case is straightforward. In 
w we introduce the LDG methods for the simple one-dimensional case d = 1 
in which 

F(u, Du) = f (u )  - a(u) Oxu, 

u is a scalar and a(u) > 0 and show some preliminary numerical results dis- 
playing the performance of the method. In this simple setting, the main ideas 
of how to device the method and how to analyze it can be clearly displayed 
in a simple way. Thus, the L2-stability of the method is proven in the general 
nonlinear case and the rate of convergence of (Ax) k in the L ~~ (0, T;L2)-norm 
for polynomials of degree k > 0 in the linear case is obtained; this estimate 
is sharp. In w we extend these results to the case in which u is a scalar and 

F,(u,  Du) = fi(u)  - E aij(u) O~ju, 
l~jKd 

where aij defines a positive semidefinite matrix. Again, the L2-stability of 
the method is proven for the general nonlinear case and the rate of conver- 
gence of (Ax)  k in the L~(0,  T;L2)-norm for polynomials of degree k > 0 and 
arbitrary triangulations is proven in the linear case. In this case, the multi- 
dimensionality of the problem and the arbitrariness of the grids increase the 
technicality of the analysis of the method which, nevertheless, uses the same 
ideas of the one-dimensional case. In w the extension of the LDG method to 
multidimensional systems is briefly described some numerical results for the 
compressible Navier-Stokes equations from the paper by Bassi and Rebay [3] 
and from the paper by Lomtev and Karniadakis [46] are presented. 

5.2 T h e  L D G  m e t h o d s  for t he  o n e - d i m e n s i o n a l  case  

In this section, we present and analyze the LDG methods for the following 
simple model problem: 

O t u + O x ( f ( u ) - a ( u ) O x u ) = O  in (0, T) x (0,1), (5.1) 

u(t = O) = uo, on (0,1), (5.2) 

with periodic boundary conditions. 
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G e n e r a l  f o r m u l a t i o n  a n d  m a i n  p r o p e r t i e s  To define the LDG method, 
we introduce the new variable q -- ~ 0~ u and rewrite the problem (5.1), 
(5.2) as follows: 

c g t u + O x ( f ( u ) - ~ q ) = O  in(0,  T) •  (5.3) 

q - O ~ g ( u ) = O  in (0, T ) •  (0,1), (5.4) 

u(t = O) = uo, on (0,1), (5.5) 

where g(u) = f~  V / - ~  ds. The LDG method for (5.1), (5.2) is now obtained 
by simply discretizing the above system with the Discontinuous Galerkin 
method. 

To do that,  we follow [15] and [14]. We define the flux h = (h~, hq )t as 
follows: 

h(u,q) = ( f (u )  - x / ~ q ,  -g(u)  )t. (5.6) 

For each partition of the interval (0, 1), { Zj+l/2 }N=0 , w e  set Ij = (Xj_l/2, X j + l / 2 )  , 

and Axj = xj+u2--Xj_l/2 for j ---- 1 , . . . ,  N; we denote the quantity maxl<_j<_N Axj 
by Z~x . We seek an approximation Wh = (Uh, qh) t to W = (u, q)t such that  
for each time t c [0, T], both uh(t) and qh(t) belong to the finite dimensional 
space 

Vh = Vh k = {v e LI(0 ,1) :  vlb e Pk(Ij) ,  j = 1 , . . . , N } ,  (5.7) 

where Pk(I)  denotes the space of polynomials in I of degree at most k. 
In order to determine the approximate solution (Uh, qh), w e  first note that  
by multiplying (5.3), (5.4), and (5.5) by arbitrary, smooth functions v~, Vq, 
and vi, respectively, and integrating over It ,  we get, after a simple formal 
integration by parts in (5.3) and (5.4), 

fij 0~ ~(x, t) v~(x) d~ - fij h~ (w(~, t)) 0~ v~(~) d~ 

+h~(w(xj+l /2 ,  t)) v~(x;+l/2) - h~(w(~j_l/2, t)) ~ (~_1/2)  = 0, (5.S) 

fIj q(x, t) Vq(X) dx - fIj hq(w(x, t)) O~ Vq(X) dx 

+hq(w(~+l /~ ,  t)) vq(~;+~/~)  - h~(w(xj_~/~, t)) .~ (x~_~/~)  = o, (5 .9)  

f~j u(x, O) v~(x) dx = fb  uo(x) v~(x) dx. (5.10) 
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Next, we replace the smooth functions vu, vq, and vi by test functions Vh,u, 
Vh,q, and Vh#, respectively, in the finite element space Vh and the exact 
solution w = (u, q)t by the approximate solution Wh = (Uh, qh) t. Since 
this function is discontinuous in each of its components, we must also re- 
place the nonlinear flux h(w(xj+w2 , t)) by a numerical flux (a(w)j+u2(t) = 
(h~ (Wh)j+l/a (t), hq (Wh)j+l/2 (t)) that  will be suitably chosen later. Thus, the 
approximate solution given by the LDG method is defined as the solution of 
the following weak formulation: 

V Vh,u E Pk(Ij):  

Otuh(x,t)v , (x)dx- f,  h (wh(x,t))Oxvh,u(x)& 
- { - h u ( w h ) j •  -- h u ( W h ) j _ l / 2 ( t ) V h , u ( X f  1/2) -~ 0,(5.11) 

V Vh,q C Pk(Ij) : 

f i j  qh(x,t) Vh,q(X)dx-- f i  ~ hq(wh(x,t))O~Vh,q(x)dx 

- } -hq(Wh) j+l /2 ( t )  Vh,q(X;+l/2)  -- ]Zq(Wh) j_ l /2 ( t )Vh ,V(X+_I /2 )  = O, (5.12) 

V Vh# E Pk(Ij):  

uo(x) vh,i(x)dx. (5.13) 
3 3 

It only remains to choose the numerical flux 1](wh)j+l/2(t). We use the no- 
t a t i on :  

[p] p+ p - ,  and ~ ~ ( p + + p - ) ,  = - = and Pj+I/2 • : P(Xj+I/2)'• 

TO be consistent with the type of numerical fluxes used in the RKDG meth- 
ods, we consider numerical fluxes of the form 

f i ( w h ) j + l / 2 ( t )  - t), t ) ) ,  

that  (i) are locally Lipschitz and consistent with the flux h, (ii) allow for a 
local resolution of qh in terms of uh, (iii) reduce to an E-flux (see Osher [51]) 
when a(.) - 0, and that  (iv) enforce the L2-stability of the method. 

To reflect the convection-diffusion nature of the problem under consid- 
eration, we write our numerical flux as the sum of a convective flux and a 
diffusive flux: 
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h(w- ,w+)  = h  . . . .  ( w - , w + ) + h d ~ : : ( w - , w + ) .  (5.14) 

The convective flux is given by 

hoo~v(w-,w+) = ( : ( : ,  ~+), 0)', (5.15) 

where ] ( u - ,  u +) is any locally Lipschitz E-flux consistent with the nonlin- 
earity f ,  and the diffusive flux is given by 

where 

i,~,::(w-, w+) = ( [g(~)] 
[u] 

- -  -q, - g ( u )  )t - Cdi: /  [w ], (5.16) 

(0 c:) 
C d i f f  = _ e l  2 

c12 = Cl2(W-, w +) is locally Lipschitz, (5.18) 

c12 = 0 when a(.) = 0. (5.19) 

We claim that  this flux satisfies the properties (i) to (iv). 
Let us prove our claim. That  the flux l:l is consistent with the flux h easily 

follows from their definitions. That  la is locally Lipschitz follows from the fact 
that  ](. ,  .) is locally Lipschitz and from (5.17); we assume that  f( .)  and a(.) 
are locally Lipschitz functions, of course. Property (i) is hence satisfied. 

That  the approximate solution qh can be resolved element by element in 
terms of Uh by using (5.12) follows from the fact that,  by (5.16), the flux 
hq = -g(u)  - c12 [u ] is independent of qh. Property (ii) is hence satisfied. 

Property (iii) is also satisfied by (5.19) and by the construction of the 
convective flux. 

To see that  the property (iv) is satisfied, let us first rewrite the flux la in 
the following way: 

~ ( w - , w + ) =  ([:(~)]  [9(~)] 
[u] [~] 

_ _  ~, _g(~) )t _ c [w], 

where 
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with ~(u) defined by ~(u) = f~  f(s)ds.  Since ](. ,  .) is an E-flux, 

1 f 2  + ( f ( s ) - / ( u - , u §  C11 - - [ ~ t ]  2 

and so, by (5.17), the matrix C is semipositive definite. The property (iv) 
follows from this fact and from the following result. 

T h e o r e m  5.1 We have, 

1 1 !2 f l  u~(x, T) dx + f T f l  q~(x, t) dx dt + 6~T,C([Wh]) _< i f0 u~(x) dx, 

where 

~T,C([Wh]) : fo T EI~_j~_N { [Wh(t)] tC [Wh(t)] } dt. 
j+1/2 

For a proof, see [18]. Thus, this shows that  the flux 11 under consideration 
does satisfy the properties (i) to (iv)- as claimed. 

Now, we turn to the question of the quality of the approximate solution 
defined by the LDG method. In the linear case f '  --- c and a(.) - a, from the 
above stability result and from the the approximation properties of the finite 
element space Vh, we can prove the following error estimate. We denote the 
L2(0, 1)-norm of the ~-th derivative of u by ] u ]~. 

T h e o r e m  5.2 Let e be the approximation error w -  w h. Then we have, 

} i/2 
f~ le~(x,T) 12dx+ fTf~ I%(x,t) 12dxdt+GT,c([e]) < C(Ax )  k, 

where C = C(k, [u Ik+l, [u [k+2). In the purely hyperbolic case a = O, the 
constant C is of order (Ax) 1/2. In the purely parabolic case c = O, the constant 
C is of order Ax  for even values of k for unifoT"m grids and for C identically 
zero. 

For a proof, see [18]. The above error estimate gives a suboptimal order 
of convergence, but it is sharp for the LDG methods. Indeed, Bassi et al [4] 
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report  an order of convergence of order k + 1 for even values of k and of order 
k for odd values of k for a s teady state, purely elliptic problem for uniform 
grids and for C identically zero. The numerical results for a purely parabolic 
problem tha t  will be displayed later lead to the same conclusions; see Table 
5 in the section w 

The error est imate is also sharp in tha t  the optimal  order of conver- 
gence of k + 1/2 is recovered in the purely hyperbolic case, as expected. This 
improvement  of the order of convergence is a reflection of the semiposi t ive 
definiteness of the matr ix  C, which enhances the stability properties of the 
LDG method.  Indeed, since in the purely hyperbolic case 

(~T,C([Wh]) : f :  EI<j<_N t [Uh(t)] t e l l  [Uh(t)] I dr, 
j-}-l/2 

the method enforces a control of the jumps of the variable Uh, as shown in 
Proposit ion lemenergy. This additional control is reflected in the improvement 
of the order of accuracy from k in the general case to k + 1/2 in the purely 
hyperbolic case. 

However, this can only happen in the purely hyperbolic case for the LDG 
methods.  Indeed, since Cll -- 0 for c = 0, the control of the jumps of Uh is not 
enforced in the purely parabolic case. As indicated by the numerical experi- 
ments of Bassi et al. [4] and those of section w below, this can result in the 
effective degradation of the order of convergence. To remedy this situation, 
the control of the jumps of uh in the purely parabolic case can be easily en- 
forced by letting Cll be strictly positive if [c I + I a l > 0. Unfortunately, this 
is not enough to guarantee an improvement of the accuracy: an additional 
control on the jumps of qh is required! This can be easily achieved by allowing 
the matr ix  C to be symmet r i c  and positive definite when a > 0. In this case, 
the order of convergence of k + 1/2 can be easily obtained for the general 
convection-diffusion case. However, this would force the matr ix  entry c22 to 
be nonzero and the property (ii) of local resolvability of qh in terms of Uh 
would not be satisfied anymore. As a consequence, the high parallelizability 
of the LDG would be lost. 

The above result shows how strongly the order of convergence of the LDG 
methods depend on the choice of the matrix C. In fact, the numerical results 
of section w in uniform grids indicate tha t  with yet another choice of the 
matr ix  C, see (5.21), the LDG method converges with the optimal  order of 
k + 1 in the general case. The analysis of this phenomenon constitutes the 
subject of ongoing work. 

5.3 N u m e r i c a l  r e s u l t s  in t h e  o n e - d i m e n s i o n a l  case  

In this section we present some numerical results for the schemes discussed 
in this paper. We will only provide results for the following one dimensional, 
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linear convection diffusion equation 

Otu+cO=u- a O ~ u = O  in(0,  T) • (0,27r), 

u ( t  = 0, x) = sin(x), on (0, 27r), 

where c and a > 0 are both constants; periodic boundary conditions are used. 
The exact solution is u( t ,  x )  = e - a t  sin(x - ct) .  We compute the solution up 
to T = 2, and use the LDG method with C defined by 

We notice that, for this choice of fluxes, the approximation to the convective 
term cu= is the standard upwinding, and that  the approximation to the diffu- 
sion term a 02 u is the standard three point central difference, for the p0 case. 
On the other hand, if one uses a central flux corresponding to c12 = -c21 = 0, 
one gets a spread-out five point central difference approximation to the dif- 
fusion term a 02 u. 

The LDG methods based on pk, with k = 1, 2,3, 4 are tested. Elements 
with equal size are used. Time discretization is by the third-order accurate 
TVD Runge-Kutta  method [58], with a sufficiently small time step so that  
error in time is negligible comparing with spatial errors. We list the L ~  errors 
and numerical orders of accuracy, for Uh, as well as for its derivatives suitably 
scaled A x m O  m U h for 1 < m < k, at the center of of each element. This gives 
the complete description of the error for Uh over the whole domain, as Uh 
in each element is a polynomial of degree k. We also list the Lo~ errors and 
numerical orders of accuracy for qh at the element center. 

In all the convection-diffusion runs with a > 0, accuracy of at least (k + 
1)-th order is obtained, for both Uh and qh, when pk elements are used. 
See Tables 1 to 3. The p4 case for the purely convection equation a = 0 
seems to be not in the asymptotic regime yet with N -- 40 elements (further 
refinement with N = 80 suffers from round-off effects due to our choice of 
non-orthogonal basis functions), Table 4. However, the absolute values of the 
errors are comparable with the convection dominated case in Table 3. 
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Tab le  1. The heat equation a = 1, c -- 0. L ~  errors and numerical order 
of accuracy, measured at the center of each element, for AxmO~ Uh for 0 _< 
m _< k, and for qh. 

k variable 

U 

Ax O~ u 
q 

IL 

Ax Oxu 
(zX~) 2 o_~u 

q 

U 

Ax O~u 
(n~)  2 02_,, 
(nx) 3 0_3. 

q 

Ax Oxu 
(nx) 2 0~u 

(nxp ~ u  
q 

N = 1 0  

error 

4.55E-4 
9.01E-3 
4.17E-5 

1.43~4 
7.87~4 
1.64~3 
1.42~4 

1.54~5 
3.77~5 
1.90~4 
2.51~4 
1.48~5 

2.02~7 
1.65~6 
6.34~6 
2.92~5 
3.03~5 
2.10~7 

N = 2 0  

error 

5.79E-5 
2.22E-3 
2.48E-6 

1.76~5 
1.03~4 
2.09~4 
1.76~5 

9.66E-7 
2.36E-6 
1.17E-5 
1.56E-5 
9.66E-7 

5.51E-9 
5.14E-8 
2,04E-7 
9.47E-7 
9.55E-7 
5.51E-9 

order 

2.97 
2.02 
4.07 

3.02 
2.93 
2.98 
3.01 

4.00 
3.99 
4.02 
4.00 
3.93 

5.20 
5.00 
4.96 
4.95 
4.98 
5.25 

N =  40 

error order 

2.19E-6 3.01 
1.31E-5 2.98 
2.62E-5 2.99 
2.19E-6 3.01 

6.11E-8 3.98 
1.47F-,-7 4.00 
7.34E-7 3.99 
9.80E-7 4.00 
6.11E-8 3.98 

1.63E-10 5.07 
1.61E-9 5.00 
6.40E-9 4.99 
2.99E-8 4.99 
2.99E-8 5.00 
1.63E-10 5.07 

7.27E-6 2.99 
5.56E-4 2.00 
1.53E-7 4.02 
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Tab le  2. The convection diffusion equation a = 1, c = 1. L ~  errors and 
numerical order of accuracy, measured at the center of each element, for 
a x m O  m Uh for 0 <_ m < k, and for qh. 

k variable 

4 

U 

,Sz O~u 
q 

U 

Ax Oxu 
( n~) 2 0 ~  

q 

U 

Ax O~u 

(Ax) 3 0 ~  
q 

U 

Az O,u 
(ax)2a~u 

(ax) 4 a~. 
q 

N = I O  

error 

6.47~4 
9.61~3 
2.96~3 

1.42~4 
7.93~4 
1.61~3 
1.26~4 

1.53~5 
3.84~5 
1.89~4 
2.52~4 
1.57~5 

2 . 0 4 ~ 7  

1,68~6 
6.36~6 
2.99~5 
2.94~5 
1.96~7 

N =  20 

error 

1.25E-4 
2.24E-3 
1.20E-4 

1.76E-5 
1.04E-4 
2.09E-4 
1.63E-5 

9.75E-7 
2.34E-6 
1.18E-5 
1.56E-5 
9.93E-7 

5.50E-9 
5.19E-8 
2.05E-7 
9.57E-7 
9.55E-7 
5.35E-9 

order 

2.37 
2.10 
4.63 

3.02 
2.93 
2.94 
2.94 

3.98 
4.04 
4.00 
4.01 
3.98 

5.22 
5.01 
4.96 
4.97 
4.95 
5.19 

N =  40 

error order 

2.18E-6 3.01 
1.31E-5 2.99 
2.62E-5 3.00 
2.12E-6 2.95 

6.12E-8 3.99 
1.47E-7 3.99 
7.36E-7 4.00 
9.81E-7 3.99 
6.17E-8 4.01 

1.64E-I0 5.07 
1.61E-9 5.01 
6.42E-8 5.00 
2.99E-8 5.00 
3.00E-8 4.99 
1.61E-10 5.06 

1.59E-5 2.97 
5.56E-4 2.01 
1.47E-5 3.02 
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Tab le  3. The convection dominated convection diffusion equation a -- 0.01, 
c -- 1. Lo~ errors and numerical order of accuracy, measured at the center of 
each element, for AxmO~ Uh for 0 < m < k, and for qh. 

k variable 

U 

Ax Oxu 
q 

U 

Ax Oxu 
(z x) 20 u 

q 

U 

Zlx Oxu 

q 

U 

Ax Oxu 
(ax) 2 

(Az) 4 
q 

N = I O  

error 

7.14~3 
6.04~2 
8.68~4 

9.59~4 
5.88~3 
1.20~2 
8.99~5 

1.11~4 
2.52~4 
1.37~3 
1.75~3 
1.18~5 

1.85~6 
1.29~5 
5.19~5 
2.21~4 
2.25~4 
3.58~7 

N = 2 0  

error 

9.30E-4 
1.58~2 
1.09~4 

1.25E-4 
7.55E-4 
1.50E-3 
1.11E-5 

7.07E-6 
1.71E-5 
8.54E,-5 
1.13E-4 
7.28E-7 

4.02~8 
3.76~7 
1.48E-6 
6.93~6 
6.89~6 
3.06~9 

order 

2.94 
1.93 
3.00 

2.94 
2.96 
3.00 
3.01 

3.97 
3.88 
4.00 
3.95 
4.02 

5.53 
5.10 
5.13 
4.99 
5.03 
6.87 

N =  40 

error order 

1.17E-4 2.98 
4.02E-3 1.98 
1.31E-5 3.05 

1.58E-5 2.99 
9.47E-5 3.00 
1.90E-4 2.98 
1.10E-6 3.34 

4.43E-7 4.00 
1.07E-6 4.00 
5.33E-6 4.00 
7.11E-6 3.99 
4.75E-8 3.94 

1.19E-9 5.08 
1.16E-8 5.01 
4.65E-8 4.99 
2.17E-7 5.00 
2.17E-7 4.99 

5.05E-11 5.92 
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T a b l e  4.  The convection e q u a t i o n  a = 0, c = 1. L ~  errors and numerical 
order of accuracy, measured at the center of each element, for AxmO m Uh for 
O < m < k .  

k variable 

1 U 

Ax O~u 

U 

Ax O~u 
(z~x) 2 02_u 

U 

Ax O~u 
(z~) 20~u 

U 

Ax O~u 

(ax)  3 0_3,, 
(ax) 4 O4_u 

N = 1 0  

error 

7.24~3 
6.09~2 

9.96E-4 
6.00E-3 
1.23E-2 

1.26~4 
1.63~4 
1.52~3 
1.35~3 

3.55~6 
1.89~5 
8.49~5 
2.36~4 
2.80~4 

N = 20 

error 

9.46E-4 
1.60~2 

1.28~4 
7.71~4 
1.54E-3 

7.50E-6 
2.00E-5 
9.03E-5 
1.24E-4 

8.59E-8 
1.27E-7 
2.28E-6 
5.77E-6 
8.93E-6 

order 

2.94 
1.92 

2.96 
2.96 
3.00 

4.07 
3.03 
4.07 
3.45 

5.37 
7.22 
5.22 
5.36 
4.97 

N =  40 

error order 

1.61E-5 2.99 
9.67E-5 3.00 
1.94E,-4 2.99 

4.54E,-7 4.05 
1.07E-6 4.21 
5.45E-6 4.05 
7.19E-6 4.10 

3.28E-10 8.03 
1.54E-8 3.05 
2.33E-8 6.61 
2.34F_~7 4.62 
1.70E-7 5.72 

1.20E-4 2.98 
4.09E-3 1.97 
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Finally, to show that  the order of accuracy could really degenerate to 
k for pk, as was already observed in [41, we rerun the heat equation case 
a = 1, c = 0 with the central flux 

(~176 
This time we can see that the global order of accuracy in Loo is only k 

when pk is used with an odd value of k. 

Tab le  5. The heat equation a = 1, c = 0. L ~  errors and numerical order 
of accuracy, measured at the center of each element, for AxmcO~ Uh for 0 < 
m < k, and for qh, using the central flux. 

k variable 

U 

Ax O~u 
q 

U 

Ax Oxu 
(nx) 2 o~u 

q 

U 

Ax Oxu 
(nx)  2 o~_u 
( nx)  3 0~,~ 

q 

U 

Ax O~u 
(n~) 2 02_u 
(az)  3 0_3u 

q 

N = I O  

error 

3.59~3 
2.10~2 
2.39~3 

6.91~5 
7.66~4 
2.98~4 
6.52~5 

1.62~5 
1.06~4 
1.99~4 
6.81~4 
1.54~5 

8.25~8 
1.62~6 
1.61~6 
2.90~5 
5.23~6 
7.85~8 

N = 20 

error 

8.92~4 
1.06~2 
6.19~4 

4.12E-6 
1.03E-4 
1.68E-5 
4.11E-6 

1.01E-6 
1.32E-5 
1.22E-5 
8.68E-5 
1.01E-6 

1.31E-9 
5.12~8 
2.41~8 
9.46E-7 
7.59~8 
1.31~9 

order 

2.01 
0.98 
1.95 

4.07 
2.90 
4.15 
3.99 

4.00 
3.01 
4.03 
2.97 
3.93 

5.97 
4.98 
6.06 
4.94 
6.11 
5.90 

N - - 4 0  

error order 

2.25F_,-4 1.98 
5.31E-3 1.00 
1.56E-4 1.99 

2.57E-7 4.00 
1.30E-5 2.98 
1 . 0 3 E - 6  4.02 
2.57E-7 4.00 

6.41E-8 3.98 
1.64E-6 3.00 
7.70E-7 3.99 
1.09E-5 2.99 
6.41E-8 3.98 

2.11E-11 5.96 
1.60F-,-9 5.00 

3.78E-I0 6.00 
2.99E-8 4.99 
1.18E-9 6.01 

2.11E-ll 5.96 
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5.4 T h e  L D G  m e t h o d s  for t h e  m u l t i - d i m e n s i o n a l  case 

In this section, we consider the LDG methods for the following convection- 
diffusion model problem 

Otu+ E O~,(f~(u)- E a~j(u)O~ju)=O in(0,  T)•  
l<i<d l~_j<_d 

u(t = O) = uo, on (0, 1) d, (5.24) 

with periodic boundary conditions. Essentially, the one-dimensional case and 
the multidimensional case can be studied in exactly the same way. However, 
there are two important differences that  deserve explicit discussion. The first 
is the treatment of the matrix of entries aij(u), which is assumed to be 
symmetric, semipositive definite and the introduction of the variables qt, and 
the second is the treatment of arbitrary meshes. 4 To define the LDG method, 
we first notice that,  since the matrix aij(u) is assumed to be symmetric and 
semipositive definite, there exists a symmetric matrix bij (u) such that  

aij(u) = El<e<d b~g(u) bej(u). (5.25) 

Then we define the new scalar variables qg = El<_j<_d bej (u) Oxj u and rewrite 
the problem (5.23), (5.24) as follows: 

Otu+ E 02, ( f i (u ) -  E b~e(u)qe)=0 in (0,T) • (0,1)d,(5.26) 
l < i < d  l < g < d  

q e - E  O~jgej(u)=O, g = l , . . . d ,  in(0,  T) x (0 ,1 )  d, (5.27) 
l<j<d 

u(t=O)=uo,  on(0 ,1)  d, (5.28) 

where g~j(u) = fu bgj(s) ds. The LDG method is now obtained by discretiz- 
ing the above equations by the Discontinuous Galerkin method. 

We follow what was done in w So, we set w = (u, q)t = (u, q l , ' "  , qd) t 
and, for each i = 1 , . . .  , d, introduce the flux 

h~(w) = (f i (u)  - ~--]~l<~<d hie(u) qe,-gli(u),"" , --gdi(U) )t. (5.29) 

We consider triangulations of (0, 1) d, Tzxx = { K }, made of non-overlapping 
polyhedra. We require that  for any two elements K and K/, K N K  t is either 
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a face e of both K and K '  with nonzero ( d -  1)-Lebesgue measure ]e [, or has 
Hausdorff dimension less than d - 1. We denote by Ez~ the set of all faces e 
of the border of K for all K E Tz~. The diameter of K is denoted by A x g  
and the maximum AXK, for K C ~'z~x is denoted by Ax. We require, for the 
sake of simplicity, that  the triangulations Tz~ be regular, that  is, there is a 
constant independent of Ax such that  

Ax K 
<_o" V K E T z ~ ,  

PK 

where PK denotes the diameter of the maximum ball included in K.  
We seek an approximation Wh = (Uh, qh) t = (Uh, qhl, ' '" , qhd) t to W such 

that  for each time t E [0, T], each of the components of wh belong to the finite 
element space 

Vh = V~ = {v  E LI((0, 1)d): VIK e pk(K)  V K e TAx}, (5.30) 

where Pk(K) denotes the space of polynomials of total  degree at most k. 
In order to determine the approximate solution Wh, we proceed exactly as 
in the one-dimensional case. This time, however, the integrals are made on 
each element K of the triangulation ~'z~x. We obtain the following weak 
formulation on each element K of the triangulation Tz~x: 

fK Ot Uh(X, t) Vh,~(X) dx - }--~-l<i<d fK hiu(Wh(X, t) ) C9~ Vh,~(X) dx 

+ fogh~(wh,  nOK)(x,t)vh,~(x)dF(x) = 0 ,  Vvh,~ e Pk(K) ,  (5.31) 

F o r e = l , . . .  , d :  

f g  qhe(X, t) Vh,qt (X) dx - •l<_j<_d fK hj q~ (Wh(X, t)) 0zr Vh,qt (X) dx 

+ fog hq* (Wh, nog)(X, t) Vh,q~ (x) d F(x) = 0, ~' Vh,q~ e pk(K) ,  (5.32) 

f g  Uh(x,O) vh,,(x)dx = f g  Uo(X) Vh,~(x)dx, Y Vh,i e Pk(K) , (5 .33)  

where noK denotes the outward unit normal to the element K at x E OK. It 
remains to choose the numerical flux (h~, hql , " "  , hqd) ~ - -  11 ---- l l ( w h ,  noK)(x, t). 

As in the one-dimensional case, we require that  the fluxes 1~ be of the 
form 

fi(wh, noK)(x) - fi(wh(x  "tK, t), t); nOK), 
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where Wh(X i'~tK ) is the limit at x taken from the interior of K and Wh(X e=tK) 
the limit at x from the exterior of K,  and consider fluxes that  (i) are locally 
Lipschitz, conservative, that  is, 

la(wh(xintK), Wh(Xe=tK); not() + la(wh(xe=t"), Wh(XintK); --nOK) = O, 

and consistent with the flux 

E hi nOK,i, 
t < i < d  

(ii) allow for a local resolution of each component of qh in terms of Uh only, 
(iii) reduce to an E-flux when a(.) = 0, and that  (iv) enforce the L2-stability 
of the method. 

Again, we write our numerical flux as the sum of a convective flux and a 
diffusive flux: 

fi = fi . . . .  ~- hd i f f ,  

where the convective flux is given by 

floozy(w-, w+; n) = (](u-, u+; n), 0) e, 

where ](u-, u+;n )  is any locally Lipschitz E-flux which is conservative and 
consistent with the nonlinearity 

l < i < d  

and the diffusive f lux  f i d i f f ( w - ,  w + ;  n) is given by 

[g,l(u) ] (- ~ [u] q-i,,,,- ~, g,,(uln,,...,- F_, g,~(uln,)'-C~,~,[w], 
l<i,t~d t< i<d  l< i<d  

where 
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Cd~yy = 

(215 = (21j (w- ,  w +) 

(21j ~ 0 

0 C12 (213 ''" Cli 1 -c12 0 0 

I 
--(213 0 0 

\--Cld 0 0 

is locally Lipschitz for j = 1, . . .  , d, 

w h e n a ( . ) = O  f o r j = l , . - .  ,d. 

We claim that this flux satisfies the properties (i) to (iv). 
To prove that properties (i) to (iii) are satisfied is now a simple exercise. 

To see that  the property (iv) is satisfied, we first rewrite the flux 11 in the 
following way: 

[ g,, (~) ] 
( -  ~ [u] q-Tni,- ~ gi , (u)ni , . . . , -  ~ gid(u)ni)t--C[w], 

l<_i,s l<i<d l<i<d 

where 

f C11 C12 C13 �9 Cld ~ [ 1-(212o o ~j 
C ~-= / -(213 0 0 

\--Cld 0 0 

cll = E l< i<d  ~ ni - ](u-,u+;n) , 

where ~ , (u)  = f ~  f , ( s )  ds. Since ](- ,-;  n) is an E-~ux, 

1 u + 
(211 - [~]2 f d  ( E l < i < d k ( s ) ~  - ] ( u - , u + ; . ) )  ds _> 0, 

and so the matrix C is semipositive definite. The property (iv) follows from 
this fact and from the following result�9 

T h e o r e m  5.3 We have, 

l f (  ~ u~(x,T)dX+foTf(o lj~(0 u~(x)dx, ,t)a ,1) a ]qh(x't)]2dzdt+~gT'C([Wh]) <_ ~ ,l),i 
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OT,C([Wh]) = f f  E CE . L [Wh(Z, t)]tC t)] dr(x)dt. 

We can also prove the following error estimate. We denote the integral over 
(0, 1) d of the sum of the squares of all the derivatives of order (k + 1) of u by 

l u I L l  

T h e o r e m  5.4 Let e be the approximation error w - Wh. Then we have, for 
arbitrary, regular grids, 

T f(o,1)~ l eu( x, T)12 dx + fo f(o,D d l e~( x, t)12 dx dt + tgT,c([e])} 1/2 --~ C (z~x) k, 

where C = C(k,  l u Ik+l, I u Ik+2). In the purely hyperbolic case aij = O, the 
constant C is of order (Ax) 1/2. In the purely parabolic case c =- O, the constant 
C is of order A x  for even values of k and of order 1 otherwise for Cartesian 
products of uniform grids and for C identically zero provided that the local 
spaces Qk are used instead of the spaces pk ,  where Qk is the space of tensor 
products of one dimensional polynomials of degree k. 

5.5 E x t e n s i o n  to  m u l t i d i m e n s i o n a l  s y s t e m s  

In this chapter, we have considered the so-called LDG methods for convection- 
diffusion problems. For scalar problems in multidimensions, we have shown 
that  they are L2-stable and that  in the linear case, they are of order k if 
polynomials of order k are used. We have also shown that  this estimate is 
sharp and have displayed the strong dependence of the order of convergence 
of the LDG methods on the choice of the numerical fluxes. 

The main advantage of these methods is their extremely high paralleliz- 
ability and their high-order accuracy which render them suitable for computa- 
tions of convection-dominated flows. Indeed, although the LDG method have 
a large amount of degrees of freedom per element, and hence more compu- 
tations per element are necessary, its extremely local domain of dependency 
allows a very e~cient parallelization that by far compensates for the extra 
amount of local computations. 

The LDG methods for multidimensional systems, like for example the 
compressible Navier-Stokes equations and the equations of the hydrodynamic 
model for semiconductor device simulation, can be easily defined by simply 
applying the procedure described for the multidimensional scalar case to each 
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component  of u. In practice, especially for viscous terms which are not sym- 
metric but  still semipositive definite, such as for the compressible Navier- 
Stokes equations, we can use q = (0~ 1 u, ..., 0~ d u) as the auxilary variables. 
Although with this choice, the L2-stability result will not be available theo- 
retically, this would not cause any problem in practical implementations.  

5.6 S o m e  n u m e r i c a l  r e s u l t s  

Next, we present some numerical results from the papers by Bassi and Rebay 
[3] and Lomtev and Karniadakis [46]. 

�9 S m o o t h ,  s t e a d y  s t a t e  so lu t ions .  We star t  by displaying the conver- 
gence of the method for a p-refinement done by Lomtev and Karniadakis  [46]. 
In Figure 5.23, we can see how the maximum errors in density, momentum,  
and energy decrease exponentially to zero as the degree k of the approximat-  
ing polynomials increases while the grid is kept fixed; details about  the exact 
solution can be found in [46]. 
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Fig. 5.23: Maximum errors of the density (triangles), m o m e m t u m  (circles) and 
energy (squares) as a function of the degree of the approximating polynomial 
plus one (called "number of modes" in the picture). 

Now, let us consider the laminar, transonic flow around the NACA0012 
airfoil at an angle of at tack of ten degrees, freestream Mach number  M = 
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0.8, and Reynolds number (based on the freestream velocity and the airfoil 
chord) equal to 73; the wall temperature is set equal to the freestream total 
temperature. Bassy and Rebay [3] have computed the solution of this problem 
with polynomials of degree 1,2, and 3 and Lomtev and Karniadakis [46] have 
tried the same test problem with polynomials of degree 2, 4, and 6 in a mesh 
of 592 elements which is about four times less elements than the mesh used by 
Bassi and Rebay [3]. In Figure 5.25, taken from [46], we display the pressure 
and drag coefficient distributions computed by Bassi and Rebay [3] with 
polynomials on degree 3 and the ones computed by Lomtev and Karniadakis 
[46] computed with polynomials of degree 6. We can see good agreement of 
both computations. In Figure 5.24, taken from [46], we see the mesh and the 
Mach isolines obtained with polynomials of degree two and four; note the 
improvement of the solution. 

Next, we show a result from the paper by Bassi and Rebay [3]. We con- 
sider the laminar, subsonic flow around the NACA0012 airfoil at an angle of 
attack of zero degrees, freestream Mach number M = 0.5, and Reynolds num- 
ber equal to 5000. In figure 5.26, we can see the Mach isolines corresponding 
to linear, quadratic, and cubic elements. In the figures 5.27, 5.28, and 5.29 
details of the results with cubic elements are shown. Note how the boundary 
layer is captured withing a few layers of elements and how its separation at 
the trailing edge of the airfoil has been clearly resolved. Bassi and Rebay [3] 
report that these results are comparable to common structured and unstruc- 
tures finite volume methods on much finer grids- a result consistent with the 
computational results we have displayed in these notes. 

Finally, we present a not-yet-published result kindly provided by Lomtev 
and Karniadakis about the simulation of an expansion pipe flow. The smaller 
cylinder has a diameter of 1 and the larger cylinder has a diameter of 2. In Fig- 
ure 5.30, we display the velocity profile and some streamlines for a Reynolds 
number equal to 50 and Mach number 0.2. The computation was made with 
polynomials of degree 5 and a mesh of 600 tetrahedra; of course the tetrahe- 
dra have curved faces to accomodate the exact boundaries. In Figure 5.31, we 
display a comparison between computational and experimental results. As a 
function of the Reynolds number, two quantities are plotted. The first is the 
distance between the step and the center of the vertex (lower brach) and the 
second is the distance from the step to the separation point (upper branch). 
The computational results are obtained by the method under consideration 
with polynomials of degree 5 for the compressible Navier Stokes equations, 
and by a standard Galerkin formulation in terms of velocity-pressure (NEK- 
TAR), by Sherwin and Karniadakis [56], or in terms of velocity-vorticity 
(IVVA), by Trujillo [61], for the incompressible Navier Stokes equations; re- 
sults produced by the code called PRISM are also included, see Newmann 
[48]. The experimental data was taken from Macagno and Tung [49]. The 
agreement between computations and experiments is remarkable. 

�9 U n s t e a d y  solutions. To end this chapter, we present the computation 
of an unsteady solution by Lomtev and Karniadakis [46]. The test problem 
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is the classical problem of a flow around a cylinder in two space dimensions. 
The Reynolds number is 10,000 and the Mach number 0.2. 

In Figure 5.32, the streamlines are shown for a computation made on a 
grid of 680 triangles (with curved sides fitting the cylinder) and polynomials 
whose degree could vary from element to element; the maximum degree was 
5. In Figure 5.33, details of the mesh and the density around the cylinder are 
shown. Note how the method is able to capture the shear laycr instability 
observed experimentally. For more details, see [46]. 
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Fig. 5.26: Mach isolines around the NACA0012 airfoil, (Re = 5000, M = 
0.5, zero angle of attack) for the linear (top), quadratic (middle), and cubic 
(bottom) elements. 
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Fig. 5.27: Pressure isolines around the NACA0012 airfoil, (Re = 5000, M = 
0.5, zero angle of attack) for the for cubic elements without (top) and with 
(bottom) the corresponding grid. 
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Fig. 5.28: Mach isolines around the leading edge of the NACA0012 airfoil, 
( R e  = 5000, M = 0.5, zero angle of attack) for the for cubic elements without 
(top) and with (bottom) the corresponding grid. 
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Fig. 5.29: Mach isolines around the trailing edge of the NACA0012 airfoil, 
(Re = 5000, M = 0.5, zero angle of attack) for the for cubic elements without 
(top) and with (bottom) the corresponding grid. 
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Fig. 5.30: Expansion pipe flow at Reynolds number 50 and Mach number 0.2. 
Velocity profile and streamlines computed with a mesh of 600 elements and 
polynomials of degree 5. 
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Fig. 5.32: Flow around a cylinder with Reynolds number 10,000 and Mach 
number 0.2. Streamlines. A mesh of 680 elements was used with polynomials 
that could change degree from element to element; the maximum degree was 
5. 
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Abstract Ideal magnetohydrodynamic (MHD) equations are widely used in many areas
in physics and engineering, and these equations have a divergence-free constraint on the
magnetic field. In this paper, we propose high order globally divergence-free numerical
methods to solve the ideal MHD equations. The algorithms are based on discontinuous
Galerkin methods in space. The induction equation is discretized separately to approximate
the normal components of the magnetic field on elements interfaces, and to extract additional
information about the magnetic field when higher order accuracy is desired. This is then
followed by an element by element reconstruction to obtain the globally divergence-free
magnetic field. In time, strong-stability-preserving Runge–Kutta methods are applied. In
consideration of accuracy and stability of the methods, a careful investigation is carried out,
both numerically and analytically, to study the choices of the numerical fluxes associated
with the electric field at element interfaces and vertices. The resulting methods are local
and the approximated magnetic fields are globally divergence-free. Numerical examples are
presented to demonstrate the accuracy and robustness of the methods.
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1 Introduction

In this paper, wewill develop globally divergence-free discontinuous Galerkin (DG)methods
to numerically simulate ideal magnetohydrodynamic (MHD) equations. MHD equations
model ionized plasmas under some simplified assumptions and arewidely used for describing
many problems in physics and engineering. The ideal MHD equations considered in this
work can be written as a system of nonlinear hyperbolic conservation laws, in addition to
a divergence-free constraint on the magnetic field. Even though the magnetic field in the
exact solution satisfies the divergence-free condition as long as it does initially, insufficient
preservation of this property numerically may lead to numerical instability or nonphysical
features of approximated solutions [8,9,19,37].

To handle the divergence-free constraint, various strategies have been developed in numer-
ical modeling and mathematical analysis within divergence-cleaning or divergence-free
algorithms. In [9], Brackbill and Barnes proposed a simple divergence correction tech-
nique based on Hodge decomposition. They projected the computed magnetic field into
a divergence-free vector space by solving a Poisson equation and used the divergence-free
magnetic field in the next time step. One widely used framework to achieve the preservation
of the divergence, in some discrete or continuous sense, is “constrained transport”, introduced
by Yee [40] in the context of the electromagnetism, and adapted by Evans and Hawley [19]
to MHD simulations. This idea was further developed by many researchers within frame-
works of finite difference, finite volume, and finite element methods, either upwind (also
called Godunov) or central types, and with various accuracy [8,17,20,26,29]. Among the
developments, there are exactly divergence-free numericalmethods [1,3,26,28,29,35].Other
approacheswhich attract different practitioners includePowell’s source term formulation [30]
by adding source terms depending on ∇ · B, and generalized multiplier methods [18] with
divergence cleaning technique.

In recent years, Li et al. [25–27,38] developed divergence-free numerical methods for
ideal MHD equations based on DG and central DG spatial discretizations. In [25], locally
divergence-free DGmethods were formulated, and they utilize divergence-free vector spaces
inside each mesh element to approximate the magnetic field. In [26,27], exactly divergence-
free central DG methods were proposed for ideal MHD equations, and the methods can be
of arbitrary accuracy. The discrete space to represent and to compute the magnetic field is a
divergence-free subspace of the Brezzi–Douglas–Marini (BDM) finite element space [10], a
well-established H (div)-conforming finite element space. DG method was first introduced
in 1973 by Reed and Hill for linear neutron transport problems [33]. A major breakthrough
was made by Cockburn et al. [13–16] to develop DG spatial discretizations for nonlinear
hyperbolic conservation laws, coupled with high order Runge–Kutta methods in time. Exact
or approximate Riemann solvers are used as numerical fluxes at element interfaces, and total
variation bounded (TVB) nonlinear limiters [36] are applied in the presence of strong shocks
to achieve non-oscillatory property. With their great flexibility in local approximations and
geometry, local conservation, and high parallel efficiency, DG methods since then have been
formulated and analyzed to various mathematical models, with broad applications in areas
such as electromagnetism, gas dynamics, granular flow, plasma physics etc. One can refer
to [22,24,34] for amore systematic description of themethods aswell as their implementation
and applications.

Our present work follows the development of exactly divergence-free central DG meth-
ods for ideal MHD equations in [26,27], and it is related to the exactly divergence-free DG
methods for the induction equation using multi-dimensional Riemann solvers [7]. On the one
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hand, the methods in [26,27] achieve exactly divergence-free approximations for the mag-
netic field within a relatively simple formulation due to that the methods involve two copies
of numerical solutions from two overlapping meshes, and no numerical fluxes are needed
either on element interfaces or at mesh vertices. On the other hand, two copies of numer-
ical solutions double the total number of unknowns and hence increase the computational
complexity of the algorithms. In this work, we want to design exactly divergence-free DG
methods that are defined on one mesh, which is structured, for ideal MHD equations in two
dimensions. Similar as in central DG framework, our new methods will discretize the hydro-
dynamic variables, such as density, momentum, total energy using standard DG methods,
while the equations evolving the magnetic fields, referred to as the induction equation, will
be discretized differently by DG-type methods. More specifically, the normal components of
themagnetic field along element edges will be updated first by DGmethods defined on edges,
and this is followed by an element-wise reconstruction to produce an exactly divergence-free
magnetic field. For higher order accuracy, additional information will be computed for the
magnetic field, and it will be used together with the normal components of the magnetic field
to uniquely determine the reconstruction. It turns out that the entire algorithm to discretize the
induction equation to obtain the magnetic field approximation can be equivalently reformu-
lated to a form without any reconstruction. The magnetic fields will still be approximated by
the exactly divergence-free H (div)-conforming BDM finite element functions as in [26,27]
(see Sect. 2.2 for comments on the use of general H (div)-conforming finite element spaces),
and the new challenge comes from the need for numerical fluxes to approximate the electric
field on element interfaces and at vertices.

It is known that the choices of numerical fluxes play an important role for the accuracy and
stability of DG methods. To finalize our methods, we first identify two necessary conditions
(seeTheorem3.1) on the numerical fluxes used in the different parts of the numericalmethods,
to ensure the reconstructed magnetic field is exactly divergence-free. We then adapt the
proposed methods to a constant coefficient linear model, the induction equation with a given
constant velocity field, and carry out both a numerical study and a Fourier analysis, to learn
about the choices of numerical fluxes for the electric field especially at the mesh vertices, and
their roles to the accuracy and numerical stability of the methods. Even though such study
is only for a linear model for the magnetic field, the experience we have with it informs us
how to choose numerical fluxes (see Sect. 4.3) for the proposed schemes to solve the full
ideal MHD equations accurately and robustly. Our final choice of the electric field flux at
mesh vertices is one type of multi-dimensional Riemann solver used in [7]. Our numerical
tests in Sect. 4.1 imply that multi-dimensional Riemann solvers, when they introduce enough
numerical dissipation, can make a good approximation to the electric field flux at vertices.
Multi-dimensional Riemann solvers have been used within the WENO finite volume method
frameworks in [4–6] to solve ideal MHD equations.

The rest of this paper is organized as follows. In Sect. 2, we describe the ideal MHD
equations and introduce notations for meshes and discrete spaces. In Sect. 3, we present the
proposed DG methods, and identify the conditions on the numerical fluxes to ensure the
overall algorithms to be exactly divergence-free. In order to know what choices of numerical
fluxes, especially for the electric field on element interfaces and at vertices, will render
accurate and stable algorithms, in Sect. 4 we adapt the proposed methods to the induction
equation and carry out numerical and analytical studies. In Sect. 5, nonlinear limiters are
discussed, and the entire algorithm is also presented. Numerical examples are presented
in Sect. 6 to illustrate the performance of the proposed methods, and this is followed by
concluding remarks in Sect. 7.
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2 MHD Equations, Notations and Discrete Spaces

2.1 MHD Equations

We consider the ideal MHD equations consisting of a set of nonlinear hyperbolic conserva-
tions laws

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ ·

[
ρuuT +

(
p + 1

2
|B|2

)
I − BBT

]
= 0, (2)

∂B
∂t

− ∇ × (u × B) = 0, (3)

∂E

∂t
+ ∇ ·

[(
E + p + 1

2
|B|2

)
u − B(u · B)

]
= 0, (4)

with a divergence-free constraint

∇ · B = 0. (5)

Here ρ is the density, p is the hydrodynamic pressure, u = (ux , uy, uz)T is the velocity, and
B = (Bx , By, Bz)

T is the magnetic field. The total energy is given by E = 1
2ρ|u|2 + 1

2 |B|2 +
p

γ−1 with γ as the ratio of the specific heats. The superscript T denotes the vector transpose.
I is the identity matrix, ∇· is the divergence operator, and ∇× is the curl operator. In two
dimensions, all functions depend on the spatial variables x and y. Hence only Bx and By

contribute to ∇ · B. The Eqs. (1)–(4) can be written as

∂U
∂t

+ ∇ · F(U,B) = 0, (6)

∂B

∂t
+ ∇̂ × Ez(U,B) = 0, (7)

where U = (ρ, ρux , ρuy, ρuz, Bz,E)T,B = (Bx , By)
T, and F = (F1, F2) with

F1(U,B) =
(

ρux , ρu
2
x + p + 1

2
|B|2 − B2

x , ρuxuy − Bx By, ρuxuz − Bx Bz,

ux Bz − uz Bx , ux

(
E + p + 1

2
|B|2

)
− Bx (u · B)

)T

,

(8)

F2(U,B) =
(

ρuy, ρuxuy − Bx By, ρu
2
y + p + 1

2
|B|2 − B2

y , ρuyuz − By Bz,

uy Bz − uz By, uy

(
E + p + 1

2
|B|2

)
− By (u · B)

)T

.

(9)

In addition, Ez(u,B) = uy Bx − ux By which is the z-component of the electric field E =
−u×B, and ∇̂×Ez = (

∂Ez
∂y ,− ∂Ez

∂x )T is the first two components of∇×(0, 0, Ez)
T.Without

confusion, we will refer to B as the magnetic field.

2.2 Notations and Discrete Spaces

In this subsection, notations and discrete spaces for numerical schemes are introduced. We
assume the computational domain is� = [xmin, xmax ]×[ymin, ymax ] ⊂ R

d with d = 2. Let
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{xi }i and {y j } j be the partitions of [xmin, xmax ] and [ymin, ymax ], respectively. We define
xi+ 1

2
= 1

2 (xi + xi+1), y j+ 1
2

= 1
2 (y j + y j+1) and Ii j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] as an

rectangle element with (xi , y j ) as the center. Let �x = xi+ 1
2

− xi− 1
2
, �y = y j+ 1

2
− y j− 1

2
,

and let Th =⋃i j Ii j be a partition of the domain �.
The discrete spaces are defined over the mesh. For variable U, we use the piecewise

polynomial vector space

Vk
h =

{
v: v|K ∈ [Pk(K )]8−d ,∀K ∈ Th

}
, (10)

where Pk(K ) is the space of polynomials with the total degree at most k in K , and [Pk(K )]n
is its vector version. For the magnetic fieldB, we approximate it using globally (also called
exactly) divergence-free polynomial functions, which are piecewise divergence-free with
continuous normal components across element interfaces. This space is defined as

Mk
h =

{
v ∈ H(div0;�): v|K ∈ Wk(K ),∀K ∈ Th

}

=
{
v: v|K ∈ Wk(K ),∇ · v|K = 0,∀K ∈ Th,

and the normal component of v is continuous across each element interface
}

,

(11)

with Wk(K ) defined as

Wk(K ) = [Pk(K )]d ⊕ span
{
∇̂ × (xk+1y), ∇̂ × (xyk+1)

}
. (12)

Mk
h is the divergence-free subspace of the H (div)-conforming Brezzi–Douglas–Marini

(BDM) finite element space

BDMk =
{
v ∈ H(div): v |K∈ Wk(K ),∀K ∈ Th

}
, (13)

and it has optimal accuracy to approximate functions in H(div0) = {v ∈ [L2(�)]d : ∇ · v =
0} [10]. As pointed out in [26], divergence-free subspaces of other H (div)-conforming finite
element spaces, such as Brezzi–Douglas–Fortin–Marini (BDFM) [11] or Raviart–Thomas
(RT) [32] finite element spaces can also be used to provide divergence-free approximations
for the magnetic field by following the same framework proposed in the present paper. The
BDM finite element space is chosen here as it is the smallest among these candidates to
achieve the same order of accuracy in the L2 norm.

3 Proposed Numerical Methods for Ideal MHD Equations

In this section, we will formulate the DG methods with a globally divergence-free magnetic
field to solve the MHD equations (6)–(7). For simplicity, we use the forward Euler method as
time discretization to present the schemes. For high order accuracy in time, strong-stability-
preserving Runge–Kutta methods will be used [21]. Such time integrators can be expressed
as convex combinations of the forward Euler method, and hence they preserve the globally
divergence-free property of the magnetic field. To describe the proposedmethods, we assume
the numerical solutions at time t = tn are available, that is (Un

h,B
n
h) ∈ Vk

h × Mk
h with

Bn
h = (Bn

x,h, B
n
y,h)

T. We want to compute the numerical solutions at tn+1 = tn + �t ,

denoted as (Un+1
h ,Bn+1

h ) ∈ Vk
h × Mk

h with Bn+1
h = (Bn+1

x,h , Bn+1
y,h )T.
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3.1 DG Methods to Update Un+1
h

We update the variable Un+1
h by applying to (6) the standard DG method [16] as the spatial

discretization and forward Euler method as the time discretization. That is, we look forUn+1
h

∈ Vk
h , such that for any w ∈ Vk

h and any element Ii j ∈ Th ,

∫
Ii j

Un+1
h · wdxdy =

∫
Ii j

Un
h · wdxdy − �t

(∫
∂ Ii j

He,Iij

(
vint (Ii j ), vext (Ii j );n

)
· wds

−
∫
Ii j

F(Un
h,B

n
h) · ∇wdxdy

)
.

(14)

Here, He,Iij(v
int (Ii j ), vext (Ii j );n) is the numerical flux to approximate F(U,B) · n, and n =

(n1, n2)T is the outward normal vector of an edge e of the element Ii j . v is a symbol which
denotes the variables (Un

h,B
n
h), and v

int (Ii j ), vext (Ii j ) are the limits of v from the interior and
exterior of an element Ii j along its edge e. In our simulation, we take the Lax–Friedrichs
numerical flux

He,Iij(a,b;n) = 1

2
(F(a) · n + F(b) · n − α(b − a)) , (15)

where α is an estimate of the maximal absolute eigenvalue of the Jacobian ∂F(U,B)·n
∂(U,B)

in the
neighborhood of the edge e.

3.2 DG Methods for Globally Divergence-Free Magnetic Field B

In this subsection, we present DG methods for the induction equation (7) to generate a
globally divergence-free approximation Bn+1

h = (Bn+1
x,h , Bn+1

y,h )T ∈ Mk
h for the magnetic

fieldB. It is known that a piecewise divergence-free vector field is globally divergence-free
if its normal component is continuous on element interfaces. Therefore, we first approximate
the normal component of the magnetic field B · n on element interfaces based on the DG
methods (see Sect. 3.2.1). Then, an element by element reconstruction is used to reconstruct
the globally divergence-free magnetic field (see Sect. 3.2.3). When k ≥ 2, more information
about the magnetic field is obtained by approximating the two-dimensional system (7) using
a standard DG method that is less accurate (see Sect. 3.2.2). In Sect. 3.2.4, we will present a
reformulation of the schemes, equivalent to that in Sects. 3.2.1–3.2.3 to update the magnetic
field yet free of reconstruction. Throughout this subsection, Ez in numerical schemes and its
related numerical fluxes are from time tn .

3.2.1 Approximation of B · n on the Element Interfaces

To get the continuous normal componentB ·n of the magnetic field, we formulate a DG-type
scheme formagnetic field equations on the element interfaces. For the rectangular mesh,B·n
is Bn+1

x,h along y-direction edges with n = (1, 0)T, and it is Bn+1
y,h along the x-direction edges

with n = (0, 1)T.
To propose the DG method for Eq. (7) on the element interface, we consider the equation

∂B · n
∂t

+ ∇̂ × Ez(U,B) · n = 0. (16)
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To this end, on a rectangular mesh, we need to consider two one-dimensional equations of
the system (16)

∂Bx

∂t
+ ∂Ez

∂y
= 0, (17)

∂By

∂t
− ∂Ez

∂x
= 0. (18)

We use the DG method as the spatial discretization and forward Euler method as the time
discretization for Eqs. (17) and (18) on element interfaces. The method is as follows: look
for bxi j (y) ∈ Pk([y j− 1

2
, y j+ 1

2
]), such that for any ϕ(y) ∈ Pk([y j− 1

2
, y j+ 1

2
])

∫ y
j+ 1

2

y
j− 1

2

bxi j (y)ϕ(y)dy =
∫ y

j+ 1
2

y
j− 1

2

Bn
x (xi+ 1

2
, y)ϕ(y)dy

− �t

⎛
⎝Êz(xi+ 1

2
, y)ϕ(y)

∣∣∣y j+ 1
2

y
j− 1

2

−
∫ y

j+ 1
2

y
j− 1

2

Ez(xi+ 1
2
, y)

∂ϕ(y)

∂y
dy

⎞
⎠ ,

(19)

and look for byi j (x) ∈ Pk([xi− 1
2
, xi+ 1

2
]), such that for any ϕ(x) ∈ Pk([xi− 1

2
, xi+ 1

2
])

∫ x
i+ 1

2

x
i− 1

2

byi j (x)ϕ(x)dx =
∫ x

i+ 1
2

x
i− 1

2

Bn
y (x, y j+ 1

2
)ϕ(x)dx

− �t

(
̂−̂Ez(x, y j+ 1

2
)ϕ(x)

∣∣∣xi+ 1
2

x
i− 1

2

−
∫ x

i+ 1
2

x
i− 1

2

−Ez(x, y j+ 1
2
)
∂ϕ(x)

∂x
dx

)
. (20)

Here bxi j and byi j denote the approximations of Bx (xi+ 1
2
, y) for y ∈ [y j− 1

2
, y j+ 1

2
] and

By(x, y j+ 1
2
) for x ∈ [xi− 1

2
, xi+ 1

2
] at time t = tn+1, respectively. Êz and

̂−̂Ez are exact
or approximate Riemann solvers to approximate the electric field flux Ez at the vertices of a

mesh element, while Ez , −Ez are exact or approximate Riemann solvers to approximate Ez

on the element interfaces, and their choices will be discussed in Theorem 3.1 and specified in
Sect. 4.3. {bxi j }i j and {byi j }i j will be used to reconstruct the globally divergence-free magnetic
field.

3.2.2 Additional Information for the Magnetic FieldB: B̃h in Mesh Elements

When k � 2, {bxi j }i j and {byi j }i j do not provide enough information to reconstruct a

two-dimensional function in Mk
h . For more information, a standard DG method with

lower accuracy is applied to the two-dimensional system (7). For k � 2, we look for
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B̃h ∈ [Pk−2(Ii j )]2 such that for any 	 ∈ [Pk−2(Ii j )]2 with 	 = (	1,	2)
T,

∫
Ii j

˜Bh · 	dxdy =
∫
Ii j

Bn
h · 	dxdy

− �t

(∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j− 1

2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

(˜−̃Ez	2
)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(˜−̃Ez	2
)
(xi− 1

2
, y)dy

−
∫
Ii j

(
Ez

∂	1

∂y
− Ez

∂	2

∂x

)
dxdy

)
.

(21)

Here Ẽz is the numerical flux for Ez = (0, Ez)
T · n with n = (0, 1)T along an x-direction

edge, and
˜−̃ Ez is the numerical flux for −Ez = (−Ez, 0)T · n with n = (1, 0)T along a

y-direction edge. Both Ẽz and
˜−̃Ez will be taken as the one-dimensional Lax–Friedrichs flux

(15). It will be seen fromTheorem 3.1 that the numerical fluxes Ez and−Ez in (19)–(20) need

to be related to Ẽz and
˜−̃Ez in order to ensure the globally divergence-free reconstruction,

also see Sect. 4.3.

3.2.3 Reconstruct the Globally Divergence-Free Magnetic Field Bn+1
h

Once we have {bxi j }i j , {byi j }i j on element interfaces from (19) and (20) as well as B̃h from
(21), we will follow the idea of the BDM projection [10] (also see [26,27]) to carry out an
element-by-element reconstruction of a globally divergence-free magnetic fieldBn+1

h . Given
an element Ii j , the reconstruction is to obtainB

n+1
h |Ii j ∈ Wk(Ii j ) on Ii j , such thatB

n+1
h =

(Bn+1
x,h , Bn+1

y,h )T satisfies

R1
∫ y

j+ 1
2

y
j− 1

2

(
Bn+1
x,h (xl+ 1

2
, y) − bxl j (y)

)
ϕ(y)dy = 0 on the y-direction edge with l = i − 1, i

and any ϕ(y) ∈ Pk([y j− 1
2
, y j+ 1

2
]),

R2
∫ x

i+ 1
2

x
i− 1

2

(
Bn+1
y,h (x, yl+ 1

2
) − byil(x)

)
ϕ(x)dx = 0 on the x-direction edge with l = j −1, j

and any ϕ(x) ∈ Pk([xi− 1
2
, xi+ 1

2
]),

R3
∫
Ii j

(
Bn+1

h (x, y) − B̃h(x, y)
)

	(x, y)dxdy = 0 for any 	(x, y) ∈ [Pk−2(Ii j )]2 when
k ≥ 2.

From the reconstruction, one can see that the normal component of the magnetic fieldBn+1
h ,

given by {bxi j }i j or {byi j }i j , is single-valued, and hence it is continuous on element interfaces.

When k ≥ 2, additional information is provided by B̃h via L2 projection. In the next theorem,
we will show that the reconstruction produces a globally divergence-free approximation for
the magnetic field under some conditions for the numerical fluxes in schemes (19)–(21).

Theorem 3.1 Under the conditions that
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1. the electric field flux approximations in (19)–(21) along the same edge satisfy

Ez = −(
˜−̃Ez), −Ez = −(Ẽz), (22)

2. and the electric field flux approximations in (19)–(20) at the same vertex is single-valued,
satisfying

̂−̂Ez = −Êz, (23)

then for any k ≥ 0, the reconstructed Bn+1
h (Ii j ) exists uniquely in Wk(Ii j ). In addition,

∇ · Bn+1
h |Ii j = 0.

Proof One can follow the same proof as in [26] to show the unique existence of the recon-
structed Bn+1

h (Ii j ) ∈ Wk(Ii j ). We here will only show the divergence-free property of
Bn+1

h .
For any ω ∈ Pk−1(Ii j ), from the reconstruction step R3 and equation (21), we have∫

Ii j
Bn+1

h ∇ωdxdy =
∫
Ii j

B̃h∇ωdxdy

=
∫
Ii j

Bn
h∇ωdxdy−�t

(
�inside −

∫
Ii j

(
Ez

∂2ω

∂x∂y
− Ez

∂2ω

∂y∂x

)
dxdy

)

=
∫
Ii j

Bn
h∇ωdxdy − �t�inside, (24)

where

�inside =
∫ x

i+ 1
2

x
i− 1

2

(
Ẽz

∂ω

∂x

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
Ẽz

∂ω

∂x

)
(x, y j− 1

2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

(
˜−̃Ez

∂ω

∂y

)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(
˜−̃Ez

∂ω

∂y

)
(xi− 1

2
, y)dy,

and Bn
h ∈ Mk

h is the globally divergence-free approximation ofB at time tn .
From the reconstruction steps R1 and R2, we have∫

∂ Ii j
Bn+1

h · nωds =
∫ x

i+ 1
2

x
i− 1

2

byi j (x)ω(x, y j+ 1
2
)dx −

∫ x
i+ 1

2

x
i− 1

2

byi j−1(x)ω(x, y j− 1
2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

bxi j (y)ω(xi+ 1
2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

bxi−1 j (y)ω(xi− 1
2
, y)dy.

(25)

With the schemes (19) and (20), we further get∫
∂ Ii j

Bn+1
h · nωds =

∫
∂ Ii j

Bn
h · nωds + �t (�edge − �vertex ), (26)

with

�edge =
∫ y

j+ 1
2

y
j− 1

2

(
Ez

∂ω

∂y

)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(
Ez

∂ω

∂y

)
(xi− 1

2
, y)dy

+
∫ x

i+ 1
2

x
i− 1

2

(
−Ez

∂ω

∂x

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
−Ez

∂ω

∂x

)
(x, y j− 1

2
)dx,
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and

�vertex =
(
Êzω

)
(xi+ 1

2
, y j+ 1

2
) −

(
Êzω

) (
xi+ 1

2
, y j− 1

2

)

−
(
Êzω

)
(xi− 1

2
, y j+ 1

2
) +

(
Êzω

) (
xi− 1

2
, y j− 1

2

)

+
(
̂−̂Ezω

)
(xi+ 1

2
, y j+ 1

2
) −

(
̂−̂Ezω

) (
xi− 1

2
, y j+ 1

2

)

−
(
̂−̂Ezω

)
(xi+ 1

2
, y j− 1

2
) +

(
̂−̂Ezω

) (
xi− 1

2
, y j− 1

2

)
.

Under the condition in (23) that the electric field flux approximations at vertices are single-
valued, we have�vertex = 0. Moreover, under the condition (22), we get�edge+�inside = 0.
Now we can apply Gauss theorem, utilize the relations in (24) and (26), and get

∫
Ii j

∇ · Bn+1
h ωdxdy =

∫
∂ Ii j

Bn+1
h · nωds −

∫
Ii j

Bn+1
h ∇ωdxdy

=
∫

∂ Ii j
Bn

h · nωds −
∫
Ii j

Bn
h∇ωdxdy + �t (�edge + �inside − �vertex)

=
∫
Ii j

∇ · Bn
hωdxdy + �t (�edge + �inside − �vertex) = 0. (27)

Here we have used the fact that∇·Bn
h = 0 at time tn . Finally, note that∇·Bn+1

h ∈ Pk−1(Ii j ),
by taking ω = ∇ · Bn+1

h in (27), we conclude ∇ · Bn+1
h = 0. �	

Remark 3.2 Two conditions (22)–(23) are needed to ensure the exactly divergence-free
reconstructions. The one in (23) that requires a single-valued electric field flux approxi-
mation at vertices has long been used for many constrained transport methods in various
frameworks such as finite difference and finite volume methods, while the condition in (22)
is needed only in finite element type of methods including DGmethods. Both conditions can
be avoided if central DG methods are used, see [26,27].

3.2.4 Equivalent form of Numerical Schemes for Bn+1
h : Without Reconstruction

From the reconstruction R1–R3 in Sect. 3.2.3, one can see that the normal components of
Bn+1

h along the edges of an element are identical to bxi j and b
y
i j (at most up to a sign difference,

or a shift in index i or j), and its L2 projection onto [Pk−2(Ii j )]2 is identical to˜Bh . Therefore
the schemes to compute the globally divergence-free Bn+1

h = (Bn+1
x,h , Bn+1

y,h )T ∈ Mk
h in

Sects. 3.2.1–3.2.3 can be rewritten into an equivalent formulation as follows, without any
reconstruction: look forBn+1

h = (Bn+1
x,h , Bn+1

y,h )T such thatBn+1
h |Ii j ∈ Wk(Ii j ) for any i, j ,

satisfying

∫ y
j+ 1

2

y
j− 1

2

Bn+1
x,h (xl+ 1

2
, y)ϕ(y)dy =

∫ y
j+ 1

2

y
j− 1

2

Bn
x (xl+ 1

2
, y)ϕ(y)dy

− �t

⎛
⎝Êz(xl+ 1

2
, y)ϕ(y)

∣∣∣y j+ 1
2

y
j− 1

2

−
∫ y

j+ 1
2

y
j− 1

2

Ez(xl+ 1
2
, y)

∂ϕ(y)

∂y
dy

⎞
⎠ (28)
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for any ϕ(y) ∈ Pk([y j− 1
2
, y j+ 1

2
]) and with l = i − 1, i ;

∫ x
i+ 1

2

x
i− 1

2

Bn+1
y,h (x, yl+ 1

2
)ϕ(x)dx =

∫ x
i+ 1

2

x
i− 1

2

Bn
y (x, yl+ 1

2
)ϕ(x)dx

− �t

(
̂−̂Ez(x, yl+ 1

2
)ϕ(x)

∣∣∣xi+ 1
2

x
i− 1

2

−
∫ x

i+ 1
2

x
i− 1

2

−Ez(x, yl+ 1
2
)
∂ϕ(x)

∂x
dx

)
(29)

for any ϕ(x) ∈ Pk([xi− 1
2
, xi+ 1

2
]) and with l = j − 1, j ; in addition,

∫
Ii j

Bn+1
h · 	dxdy =

∫
Ii j

Bn
h	dxdy

− �t

(∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j− 1

2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

(˜−̃Ez	2
)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(˜−̃Ez	2
)
(xi− 1

2
, y)dy

−
∫
Ii j

(
Ez

∂	1

∂y
− Ez

∂	2

∂x

)
dxdy

)
(30)

for any 	 ∈ [Pk−2(Ii j )]2 with 	 = (	1,	2)
T. Again the numerical fluxes will satisfy the

two conditions (22)–(23). Theorem 3.1 ensures that the resulting magnetic field Bn+1
h is in

Mk
h and hence globally divergence-free. (One should refer to equations (5.4) and (5.6) in [10]

for a more direct analysis.)
Even though the reformulation of the schemes in this subsection ismore straightforward, in

the presence of strong discontinuities in the solutions, nonlinear limiters need to be applied
to all unknowns, including the magnetic field (see Sect. 5 and the numerical example of
cloud–shock interaction in Sect. 6.2.5). When nonlinear limiters are needed for the magnetic
field, it is more flexible to work with the schemes in the formulation as in Sect. 3.2.1–3.2.3,
so the limiters are applied before the reconstruction or a revised reconstruction, in order to
still have a globally divergence-free approximation for the magnetic field.

4 How to Choose Electric Field Flux Approximations?

Theorem 3.1 suggests that electric field flux approximations used in the different parts of the
proposed schemes (19)–(21) need to be single-valued at vertices and share the same formulas
on the element interfaces. Just as in standard DG methods, choices of numerical fluxes are
crucial for accuracy and robustness of the schemes. In this section, we want to investigate
numerically and analytically on the choices of the electric field flux approximations. To this
end, we will focus on the following equation for the magnetic field

∂B

∂t
+ ∇̂ × Ez(U,B) = 0. (31)

Here Ez = uy Bx−ux By , with a constant velocity field (ux , uy) that is given. This systemwill
be referred to as the induction equation. We will adapt the proposed schemes in Sect. 3.2 to
the induction equation, and investigate numerically and analytically in next two subsections
how different choices of electric field flux approximations affect accuracy and numerical
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stability. Based on such study, in Sect. 4.3 we will specify our choices of the numerical fluxes
in the proposed schemes (19)–(21) to compute the magnetic field.

4.1 Numerical Study

Adapting from the proposed schemes (19)–(21) and following the two required conditions
(22)–(23) in Theorem 3.1, we consider the following schemes for the induction equation
on the element interfaces, that is: look for bxi j (y) ∈ Pk([y j− 1

2
, y j+ 1

2
]), such that for any

ϕ(y) ∈ Pk([y j− 1
2
, y j+ 1

2
])

∫ y
j+ 1

2

y
j− 1

2

bxi j (y)ϕ(y)dy =
∫ y

j+ 1
2

y
j− 1

2

Bn
x (xi+ 1

2
, y)ϕ(y)dy − �t

(
Êz(xi+ 1

2
, y)ϕ(y)

∣∣∣y j+ 1
2

y
j− 1

2

+
∫ y

j+ 1
2

y
j− 1

2

˜−̃Ez(xi+ 1
2
, y)

∂ϕ(y)

∂y
dy

⎞
⎠ , (32)

and look for byi j (x) ∈ Pk([xi− 1
2
, xi+ 1

2
]), such that for any ϕ(x) ∈ Pk([xi− 1

2
, xi+ 1

2
])

∫ x
i+ 1

2

x
i− 1

2

byi j (x)ϕ(x)dx =
∫ x

i+ 1
2

x
i− 1

2

Bn
y (x, y j+ 1

2
)ϕ(x)dx − �t

(
− Êz(x, y j+ 1

2
)ϕ(x)

∣∣∣xi+ 1
2

x
i− 1

2

+
∫ x

i+ 1
2

x
i− 1

2

Ẽz

(
x, y j+ 1

2

) ∂ϕ(x)

∂x
dx

)
. (33)

Corresponding to (21), the induction equation is further discretized as a two-dimensional
system when k ≥ 2: look for B̃h ∈ [Pk−2(Ii j )]2 such that for any 	 = (	1,	2)

2 ∈
[Pk−2(Ii j )]2,∫

Ii j

˜Bh · 	dxdy =
∫
Ii j

Bn
h · 	dxdy

− �t

(∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j+ 1

2
)dx −

∫ x
i+ 1

2

x
i− 1

2

(
Ẽz	1

)
(x, y j− 1

2
)dx

+
∫ y

j+ 1
2

y
j− 1

2

(˜−̃Ez	2
)
(xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

(˜−̃Ez	2
)
(xi− 1

2
, y)dy

−
∫
Ii j

(
Ez

∂	1

∂y
− Ez

∂	2

∂x

)
dxdy

)
. (34)

To help with the presentation, we illustrate the notations of states around a vertex P, its
neighboring elements, and the connected edges in Fig. 1. In (34), also in (32)–(33), Ẽz and
˜−̃Ez are taken as a one-dimensional Lax–Friedrichs flux. Namely, along an x-direction edge,

Ẽz = ELD
z + ELU

z

2
− αy

2

(
BLU
x − BLD

x

)
, (35)

and along a y-direction edge,

˜−̃Ez =
(−ERD

z − ELD
z

)
2

− αx

2

(
BRD
y − BLD

y

)
. (36)
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Fig. 1 The notations of states
around a vertex P, its neighboring
elements, and the connected
edges LU RU

LD RD
vertex P

y-direction edge

x-direction edge

Here

αx = |ux |, αy = |uy |, (37)

and they are the largest absolute-value of eigenvalues of the Jacobian ∂(0,−Ez)
T

∂(Bx ,By)T
and ∂(Ez ,0)T

∂(Bx ,By)T
,

respectively.
Just as in [3,7,8,20], we use flux interpolations or approximate Riemann solvers to obtain

the single-valued electric field flux Êz at vertex P used in (32)–(33). Particularly, we take

Êz = 1

4

(
ELD
z + ELU

z

2
− β

2
(BLU

x − BLD
x )

)

+ 1

4

(
ERD
z + ERU

z

2
− β

2
(BRU

x − BRD
x )

)

+ 1

4

(
ELD
z + ERD

z

2
+ α

2
(BRD

y − BLD
y )

)

+ 1

4

(
ELU
z + ERU

z

2
+ α

2
(BRU

y − BLU
y )

)

= 1

4

(
ELU
z + ERU

z + ELD
z + ERD

z

)

− β

4

(
BLU
x + BRU

x

2
− BLD

x + BRD
x

2

)

+ α

4

(
BRD
y + BRU

y

2
− BLD

y + BLU
y

2

)
.

(38)

Here α = σαx and β = σαy , with the constant σ measures the amount of dissipation
introduced by the numerical flux Êz , and αx , αy from (37). When α = αx , β = αy , Êz

is the arithmetic average of the one-dimensional Lax–Friedrichs flux, namely, an average
with equal weight, 1/4, of the numerical fluxes in (35)–(36) from four edges connected to
the vertex P. When α = 1.2αx and β = 1.2αy , Êz turns out to be the multi-dimensional
HLL Riemann solver restricted at the vertex P, while Êz with α = 2αx and β = 2αy is the
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multi-dimensional Lax–Friedrichs Riemann solver restricted at P. Both multi-dimensional
Riemann solvers were used in [7].

Next we want to investigate numerically how the different choices of Êz will affect the
performance of the numerical schemes (32)–(34) for the induction equation. We consider
the same example as in [39], with the initial condition

(Bx , By) = (− sin(2πy), sin(2πx)),

and the constant velocity field is (ux , uy) = (1, 1). Periodic boundary conditions are used.
This example is computed on the domain [0, 1]×[0, 1] based on Pk approximations with k =
0, 1, 2. The third order TVD Runge–Kutta time discretization in (66) [21] is applied in time.

The time step is determined as �t ≤ CFL/
( |ux |

�x + |uy |
�y

)
where the Courant–Friedrichs–

Lewy (CFL) number CFL is taken to be 0.5, 0.2, 0.1 for k = 0, 1, 2, respectively. Table 1
shows the L2 errors and orders of accuracy for the magnetic field component Bx at t = 1.0
and t = 10, computed by the methods (32)–(34) with different choices of the numerical
fluxes. More specifically, Êz in (32)–(33) is evaluated as (38) with α = σαx and β = σαy ,

where αx = αy = 1, and σ = 1, 1.2, and 2. And Ẽz and
˜−̃Ez in (32)–(34) are from

the one-dimensional Lax–Friedrichs flux (35)–(37). It is observed from Table 1 that when
α = αx , β = αy , the scheme is stable and first order accurate with P0 approximation; With
P1 approximation, the scheme is only first order accurate which is suboptimal; while the
scheme with P2 approximation starts to be optimally accurate with third order accuracy and
then shows instability over long time simulation. When α = 1.2αx and β = 1.2αy , the
schemes have optimal accuracy with P0 and P1 approximations, yet with P2 approximation
the scheme becomes unstable at t = 10. When α = 2αx and β = 2αy , the schemes have
optimal accuracy and are stable over the time period we examine. Even though the results are
not reported here, we have also tested the schemes with the central flux or upwind flux on the

element interfaces for Ẽz and
˜−̃Ez and their arithmetic average for Êz from the four edges

connecting to a vertex.We have learned from the numerical experiments that if Êz of the form
(38) is used at vertices, it is important to have sufficient numerical dissipation. For instance,
Êz based on the multi-dimensional Lax–Friedrichs flux with α = 2αx and β = 2αy leads
to a stable scheme with optimal accuracy, yet Êz based on either the one-dimensional Lax–
Friedrichs flux with α = αx and β = αy , or the multi-dimensional HLL flux with α = 1.2αx

and β = 1.2αy leads to unstable schemes due to the insufficiency in numerical dissipation.

4.2 Fourier Analysis of the Scheme with P0 Approximation

In this subsection, we will carry out the Fourier analysis for the scheme (32)–(33) with P0

approximation. The goal is to further understand the role of the amount of the numerical
dissipation in Êz in the form of (38).

With the P0 polynomial space, the scheme (32)–(33) becomes

∫ y
j+ 1

2

y
j− 1

2

bxi j (y)dy =
∫ y

j+ 1
2

y
j− 1

2

Bn
x (xi+ 1

2
, y)dy − �t

(
Êz(xi+ 1

2
, y j+ 1

2
) − Êz(xi+ 1

2
, y j− 1

2
)
)

, (39)

∫ x
i+ 1

2

x
i− 1

2

byi j (x)dx =
∫ x

i+ 1
2

x
i− 1

2

Bn
y (x, y j+ 1

2
)dx + �t

(
Êz(xi+ 1

2
, y j+ 1

2
) − Êz(xi− 1

2
, y j+ 1

2
)
)

, (40)
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and the electric field flux Êz at the vertex (xi+ 1
2
, y j+ 1

2
) is given by

Êz

(
xi+ 1

2
, y j+ 1

2

)
= 1

4

(
Ez |Ii j +Ez |Ii+1 j +Ez |Ii j+1 +Ez |Ii+1 j+1

)

− β

4

(
Bx |Ii j+1 +Bx |Ii+1 j+1

2
− Bx |Ii j +Bx |Ii+1 j

2

)

+ α

4

(
By |Ii+1 j +By |Ii+1 j+1

2
− By |Ii j +By |Ii j+1

2

)
. (41)

We replace Ez by uy Bx − ux By , and rewrite (41) into

Êz

(
xi+ 1

2
, y j+ 1

2

)
= 2uy − β

8

(
Bx |Ii j+1 +Bx |Ii+1 j+1

)

+ 2uy + β

8

(
Bx |Ii j +Bx |Ii+1 j

)− 2ux − α

8

(
By |Ii+1 j +By |Ii+1 j+1

)

− 2ux + α

8

(
By |Ii j +By |Ii j+1

)
. (42)

Based on the divergence-free reconstruction procedure, we know Bx |Ii j = Bx |Ii+1 j = bxi j
and By |Ii j = By |Ii j+1= byi j . Therefore (41) is indeed

Êz

(
xi+ 1

2
, y j+ 1

2

)
= 2uy − β

4
bxi j+1 + 2uy + β

4
bxi j − 2ux − α

4
byi+1 j − 2ux + α

4
byi j , (43)

and our scheme (39)–(40) can be formulated more explicitly: look for bx,n+1
i j and by,n+1

i j in
R, satisfying

bx,n+1
i j = bx,ni j − �t

�y

(
2uy − β

4
(bx,ni j+1 − bx,ni j ) + 2uy + β

4
(bx,ni j − bx,ni j−1)

)

+ �t

�y

(
2ux − α

4
(by,ni+1 j − by,ni+1 j−1) + 2ux + α

4
(by,ni j − by,ni j−1)

)
,

(44)

by,n+1
i j = by,ni j + �t

�x

(
2uy − β

4
(bx,ni j+1 − bx,ni−1 j+1) + 2uy + β

4
(bx,ni j − bx,ni−1 j )

)

− �t

�x

(
2ux − α

4
(by,ni+1 j − by,ni j ) + 2ux + α

4
(by,ni j − by,ni−1 j )

)
.

(45)

Additionally, the divergence-free property of the numerical solution can be translated into
the following relation, for any i, j, n,

�y(bx,ni j − bx,ni−1 j ) + �x(by,ni j − by,ni j−1) = 0. (46)

The parameters α and β in (41) are taken as

α = σ |ux |, β = σ |uy |, (47)

and σ is a constant that measures the amount of numerical dissipation introduced through
the numerical flux Êz . In the next Theorem, we will study the role of this constant σ to the
numerical stability of the scheme. The stability condition for σ = 2 was previously given in
[7].

Theorem 4.1 The scheme (44)–(45) with (46)–(47) is stable under the following condition
on the time step size �t:
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1. When σ ≤ 2,

�t

( |ux |
�x

+ |uy |
�y

)
≤ σ

2
; (48)

2. when σ > 2

�t

( |ux |
�x

+ |uy |
�y

)
≤ 2

σ
. (49)

And the maximum of the upper bound of both formulas is 1, that is,maxσ≥0(
σ
2 , 2

σ
) = 1, and

it is attained at σ = 2.

Proof To carry out the Fourier analysis, let

(bx,n, by,n) = (̂bnx , b̂
n
y)e

i(k1x+k2 y), (50)

with k1, k2 being arbitrary integer. With (50), the Eq. (44) becomes

b̂n+1
x = b̂nx − �t

�y

(
2uy − β

4
(eik2�y − 1) + 2uy + β

4
(1 − e−ik2�y)

)
b̂nx

+ �t

�y

(
2ux − α

4

(
e
ik1�x

2 + ik2�y
2 − e

ik1�x
2 − ik2�y

2

)

+ 2ux + α

4

(
e− ik1�x

2 + ik2�y
2 − e

−ik1�x
2 − ik2�y

2

))
b̂ny ,

(51)

and the divergence-free condition (46) becomes

�y
(
e
ik1�x

2 − e
−ik1�x

2

)
b̂nx + �x

(
e
ik2�y

2 − e
−ik2�y

2

)
b̂ny = 0,

i.e.

�y sin

(
k1�x

2

)
b̂nx + �x sin

(
k2�y

2

)
b̂ny = 0. (52)

Combining (51) and (52), we get

b̂n+1
x = Qb̂nx , (53)

where the amplification factor Q is

Q = 1 − �t

�y

(
2uy − β

4

(
eik2�y − 1

)
+ 2uy + β

4

(
1 − e−ik2�y

))

− �t

�x

(
2ux − α

4
e
ik1�x

2 + 2ux + α

4
e− ik1�x

2

)
2i sin

(
k1�x

2

)
.

(54)

One can easily check that (45) and the divergence-free relation (46) will lead to the same
amplification factor Q. Without loss of generality, we assume ux ≥ 0, uy ≥ 0. Let c1 = �tux

�x
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and c2 = �tuy
�y , and with σ defined in (47), we have

Q = 1 − c2

(
2 − σ

4
(eik2�y − 1) + 2 + σ

4
(1 − e−ik2�y)

)

− c1

(
2 − σ

4
e
ik1�x

2 + 2 + σ

4
e− ik1�x

2

)
2i sin

(
k1�x

2

)

= 1 − σc1
2

(1 − cos(k1�x)) − σc2
2

(1 − cos(k2�y))

− i (c1 sin(k1�x) + c2 sin(k2�y)) . (55)

Next, we want to obtain the condition on the time step size to ensure |Q| ≤ 1. To this end,

|Q|2 =
(
1 − σc1

2
(1 − cos(k1�x)) − σc2

2
(1 − cos(k2�y))

)2
+ (c1 sin(k1�x) + c2 sin(k2�y))2

=1 + σ 2

4
(c1 + c2)

2 + c21 + c22 − σ(c1 + c2)

+ σ 2

4
(c1 cos(k1�x) + c2 cos(k2�y))2 − c21 cos

2(k1�x) − c22 cos
2(k2�y)

+
(

σc1 − σ 2c21
2

− σ 2

2
c1c2

)
cos(k1�x) +

(
σc2 − σ 2c22

2
− σ 2

2
c1c2

)
cos(k2�y)

+ 2c1c2 sin(k1�x) sin(k2�y). (56)

To handle the last term in (56), we will use

sin(k1�x) sin(k2�y) = cos(k1�x − k2�y) − cos(k1�x) cos(k2�y)

≤ 1 − cos(k1�x) cos(k2�y).

Note that this inequality becomes an equality when k1�x = k2�y + 2πn for some n ∈ Z.
Now with s = cos(k1�x) ∈ [− 1, 1] and t = cos(k2�y) ∈ [− 1, 1], (56) turns to

|Q|2 ≤ 1 + σ 2

4
(c1 + c2)

2 + c21 + c22 − σ(c1 + c2) + σ 2

4
(c1s + c2t)

2 − c21s
2 − c22t

2

+ σc1
2

(2 − σc1 − σc2)s + σc2
2

(2 − σc2 − σc1)t + 2c1c2 − 2c1c2st

= 1 +
(

σ 2

4
+ 1

)
(c1 + c2)

2 +
(

σ 2

4
− 1

)
(c1s + c2t)

2

− σ(c1 + c2) + σ(c1s + c2t) − σ 2

2
(c1 + c2)(c1s + c2t). (57)

We further set A = c1 + c2 and B = c1s + c2t , and

|Q|2 ≤ 1 +
(

σ 2

4
+ 1

)
A2 +

(
σ 2

4
− 1

)
B2 − σ 2

2
AB − σ(A − B)

= 1 + (A − B)

((
σ 2

4
+ 1

)
A +

(
1 − σ 2

4

)
B − σ

)
.

123



J Sci Comput (2018) 77:1621–1659 1639

From the definitions of A and B, we know A − B = c1(1 − s) + c2(1 − t) ≥ 0. Hence
|Q|2 ≤ 1 if (

σ 2

4
+ 1

)
A +

(
1 − σ 2

4

)
B − σ ≤ 0. (58)

There are two cases:
Case 1 When σ ≤ 2, we have 1 − σ 2

4 ≥ 0. Therefore with A ≥ B, it is sufficient to
require (

σ 2

4
+ 1

)
A +

(
1 − σ 2

4

)
A − σ ≤ 0,

that is, A ≤ σ
2 . This can not be further improved, since A = B when s = t = cos(k1�x) =

cos(k2�y) = 1.
Case 2When σ > 2,we have 1− σ 2

4 < 0. Thereforewith A+B = c1(1+s)+c2(1+t) ≥
0, it is sufficient to require(

σ 2

4
+ 1

)
A −

(
1 − σ 2

4

)
A − σ ≤ 0,

that is, A ≤ 2
σ
. Again, this can not be further improved, since B = −A when s = t =

cos(k1�x) = cos(k2�y) = −1.
In summary,

�t

(
ux
�x

+ uy

�y

)
= A ≤

{
σ
2 , if σ ≤ 2,
2
σ
, if σ > 2.

(59)

Finally one can see the maximum of {σ/2, 2/σ } is 1 when σ = 2. �	
The theorem above implies that the scheme (44)–(45) with the multi-dimensional Lax–

Friedrichs numerical flux for Êz , with α = 2αx and β = 2αy , has the largest stability
region for our scheme with the P0 approximation. This is also illustrated by Fig. 2, where
comparison is given between the stability regions of the schemes with the multi-dimensional
Lax–Friedrichs numerical flux (α = 2αx and β = 2αy) on the right, and one-dimensional
Lax–Friedrichs numerical flux (α = αx and β = αy) on the left.

4.3 Our Choices of the Numerical Fluxes in (19)–(21)

Based on the numerical and theoretical studies in previous two subsections for the induction
equation, the electric field flux approximations in our proposed schemes (19)–(21) to update
the magnetic field in the full ideal MHD simulations will be chosen as follows.

(1) They satisfy the two conditions in (22)–(23);
(2) The singled-valued electric field flux Êz at a vertex is determined by the average of

the multi-dimensional Lax–Friedrichs numerical fluxes on four edges connecting to this
vertex, given by (38) with α = 2αx and β = 2αy ;

(3) On an element interface, the standard one-dimensional Lax–Friedrichs numerical flux

(35)–(36) will be applied for both Ẽz and
˜−̃Ez with parameters αx and αy .

Both αx and αy in (2) and (3) represent the local speeds of the entire MHD system, and are
taken as the largest absolute-value of eigenvalues of the Jacobian ∂F(U,B)·n

∂(U,B)
, withn = (0, 1)T,

(1, 0)T respectively, in the neighborhood of the relevant edge. Note that these local speeds
are different from that in (37) for the induction equation.
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Fig. 2 The stability region of the scheme (32)–(33) for the P0 approximation with Êz in (38), and α = σαx

and β = σαy . Here c1 is �t |ux |
�x , c2 is

�t |uy |
�y . a σ = 1, b σ = 2

5 Nonlinear Limiter, a Revisit to the Reconstruction

In this section, we will discuss the use of nonlinear limiters to enhance numerical stability
of the proposed schemes. Similar to high order DG methods for nonlinear hyperbolic con-
servation laws, nonlinear limiters are also needed for numerical stability of our methods. In
this paper, the minmod total variation bounded (TVB) slope limiter in [16] is applied. This
limiter involves a non-negative parameter M , and its value is often chosen for each example
in actual implementation [14,31]. This limiter can be applied to component-wise variables
or in local characteristic fields with respect to the 7 × 7-eigen system in [23].

Following the work in [26,27] with globally divergence-free central DG methods, for
non-smooth solutions, we first apply the limiter only to the hydrodynamic variables Uh , not
toBh , B̃h or (bxi j , b

y
i j ). This works well for the schemes with P1 approximations, and when

the discontinuities in the solutions are not strong.
It is known that central type schemes are in generalmore dissipative hencemore stable than

upwind type schemes. Therefore it is not unexpected that when our proposed DG methods
are used to examples with strong shocks, it seems necessary to apply the nonlinear limiter
to both Uh and the magnetic field Bh in order to effectively control numerical oscillations.
One needs to be careful, though, about how to implement this without losing the globally
divergence-free property of the computed magnetic field. A straightforward implementation
will break the intrinsic relation between the data B̃h and (bxi j , b

y
i j ) used in the reconstruction

(see the proof of Theorem 3.1). On the other hand, for the methods we will focus on in this
paper with P1 and P2 approximations, an alternative but equivalent way was presented in
[27] to reconstruct Ii j , look forB

n+1
h ∈ Wk(Ii j ) such that

1. Bn+1
x (xl+ 1

2
, y) = bxl j (y) for l = i − 1, i and y ∈ [y j− 1

2
, y j+ 1

2
],

2. Bn+1
y (x, yl+ 1

2
) = byil(x) for l = j − 1, j and x ∈ [xi− 1

2
, xi+ 1

2
],

3. ∇ · Bn+1
h |Ii j = 0.

One can refer to [26] for the proof of the equivalency. An important feature of this equivalent
reconstruction is that only the interface data (bxi j , b

y
i j ) is needed. Now when the nonlinear

limiter needs to be applied to the magnetic field, the normal components of the magnetic field
{bxi j }i j , {byi j }i j will be limited first (this will be discussed in details next), then the equivalent
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reconstruction given above will be used to obtain the globally divergence-free magnetic field
based on the limited normal components of the magnetic field.

We here will use k = 2 as an example to illustrate how to apply the minmod TVB limiter
to {bxi j }i j and {byi j }i j . The quadratic polynomial bxi j can be written as

bxi j (y) = bxi j + cyY + cyy

(
Y 2 − 1

3

)
, (60)

with Y = y−y j
�y/2 , and bxi j is the edge average of b

x
i j , namely,

bxi j = 1

�y

∫ y
j+ 1

2

y
j− 1

2

bxi j (y)dy. (61)

We compute c̃y according to

c̃y = m̃
(
cy,�+bxi j ,�−bxi j

)
. (62)

Here �+bxi j = bxi j+1 − bxi j , �−bxi j = bxi j − bxi j−1, and the corrected minmod TVB function
m̃ is

m̃(a1, a2, a3) =
{
a1, if |a1| ≤ M(�y)2;
m(a1, a2, a3), otherwise,

(63)

with the minmod function m defined as

m(a1, a2, a3) =
{
smin (|a1|, |a2|, |a3|) , if s = sign(a1) = sign(a2) = sign(a3);
0, otherwise.

(64)

If | c̃y − cy |> 10−6, we apply the limiter by setting cy = c̃y and cyy = 0 in (60). Otherwise,
no modification is made to (60). The treatment for byi j is very similar. It is important to know

that the limiter does not change the edge averages {bxi j }i j and {byi j }i j , hence a necessary
compatible condition for the exactly divergence-free reconstruction, namely,

∫
Ii j

∇ · Bn
hdxdy = �y

(
bx,ni j − bx,ni−1 j

)
+ �x

(
by,ni j − by,ni j−1

)
= 0 (65)

still holds.
Finally in Algorithm 1, we provide the flow chart of the proposed globally divergence-free

methods when they are applied to ideal MHD equations. The time discretization is taken to
be the forward Euler method.

6 Numerical Results

In this section, numerical examples are presented to illustrate the accuracy and stability
of the proposed globally divergence-free methods with P1 and P2 approximations for the
ideal MHD equations. They include two smooth examples and five non-smooth examples.
In our simulations, uniform rectangular meshes with N × N elements are used. The initial
numerical solution Uh ∈ Vk

h is obtained through the L2 projection, and Bh ∈ Mk
h is by

the BDM projection [10]. In time, a third order TVD Runge–Kutta method is applied [21].
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Algorithm 1 The algorithm of the globally divergence-free DG methods for ideal MHD
equations, with the forward Euler method as the time discretization.
Initialization:

Initialize U0
h via the L2 projection and B0

h via the BDM projection. If the example is non-smooth, apply

the TVB limiter to U0
h .

Time evolution:
With the numerical solutions available at time tn for n ≥ 0, namely (Un

h ,Bn
h) ∈ Vk

h × Mk
h with Bn

h =
(Bn

x,h , Bn
y,h)T, update (Un+1

h ,Bn+1
h ) ∈ Vk

h × Mk
h with Bn+1

h = (Bn+1
x,h , Bn+1

y,h )T at tn+1 = tn + �t ;
1: Compute the time step �t based on the maximum value αx , αy ;
2: Impose boundary conditions;
3: Pre-compute the numerical solutions at tn+1:

• for each element Ii j , update U
n+1
h by scheme (14);

• for each y-direction element interface, compute {bxi j }i j by scheme (19);

• for each x-direction element interface, compute {byi j }i j by scheme (20);

• if k ≥ 2, compute B̃h on each element Ii j by scheme (21);

4: If the example is non-smooth, apply the TVB limiter toUn+1
h ; for challenging non-smooth examples (such

as the cloud–shock example), also apply the limiter as in Sect. 5 to {bxi j }i j and {byi j }i j ;
5: Reconstruction on each element: if the limiter is not applied to {bxi j }i j and {byi j }i j , reconstruct Bn+1

h

following R1-R3 in Sect. 3.2.3; otherwise, reconstruct Bn+1
h following the procedure given in Sect. 5;

6: Return (Un+1
h ,Bn+1

h ) ∈ Vk
h × Mk

h .

That is, to solve ut = L(u, t), given the numerical solution un at tn , we compute un+1 at
tn+1 = tn + �t as follows,

u(1) = un + �t L(un, tn),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�t L

(
u(1), tn + �t

)
,

un+1 = 1

3
un + 2

3
u(2) + 2

3
�t L

(
u(2), tn + 1

2
�t

)
. (66)

The time step is determined by

�t = CFL

αx/�x + αy/�y
, (67)

where αx and αy are the largest absolute eigenvalues of Jacobian ∂F1(U,B)
∂(U,B)

and ∂F2(U,B)
∂(U,B)

,
respectively. We take CFL = 0.2 for k = 1 and CFL = 0.1 for k = 2 similar as for the
standard DG methods. The numerical fluxes in the schemes to update the magnetic field
follow the strategies summarized in Sect. 4.3. The minmod TVB slope limiter is applied for
non-smooth examples with M = 1.

6.1 Smooth Examples

6.1.1 The Smooth Vortex Problem

The first example we consider is the smooth vortex example which was introduced in [2],
and it models a smooth vortex propagating with speed (1, 1) in a two-dimensional domain.
The initial condition is given by

(ρ, ux , uy, uz, Bx , By, Bz, p) = (1, 1 + δux , 1 + δuy, 0, δBx , δBy, 0, 1 + δp
)
,
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Table 2 L2 errors and orders of accuracy of ρ, ux , Bx and p for smooth vortex problem at t = 20. The
computational domain is [− 10, 10] × [− 10, 10]
N ρ ux p Bx

L2 error Order L2 error Order L2 error Order L2 error Order

P1

32 3.98E−05 – 9.18E−03 – 1.22E−03 – 7.51E−03 –

64 2.44E−05 0.71 3.45E−03 1.41 5.44E−04 1.17 2.75E−03 1.45

128 8.23E−06 1.58 6.80E−04 2.34 1.20E−04 2.19 5.35E−04 2.36

256 1.84E−06 2.16 9.45E−05 2.85 1.98E−05 2.60 7.39E−05 2.87

P2

32 1.50E−04 – 1.96E−03 – 1.02E−03 – 7.10E−03 –

64 6.62E−05 1.18 8.76E−04 1.16 4.90E−04 1.06 2.56E−03 1.47

128 1.30E−05 2.35 1.70E−04 2.37 9.76E−05 2.33 4.63E−04 2.47

256 1.76E−06 2.88 2.31E−05 2.88 1.33E−05 2.87 6.21E−05 2.90

where

(δux , δuy) = ξ

2π
∇̂ × exp{0.5(1 − r2)}, (δBx , δBy) = η

2π
∇̂ × exp{0.5(1 − r2)},

δp = η2(1 − r2 − ξ2)

8π2 exp(1 − r2).

Here r = √
x2 + y2, ξ = η = 1 and γ = 5/3. The computational domain is taken as

[− 10, 10] × [− 10, 10]. Even though the problem is not-periodic, periodic boundary con-
ditions are used in our simulation. This will introduce an error of size O(10−22) which is
negligible with respect to the resolution of the numerical solutions. In Table 2, L2 errors and
orders of accuracy are presented for the variables ρ, ux , Bx and pressure p at t = 20, right
after one time period, by which the vortex returns to its initial location. The results show that
our numerical schemes have (k +1)th order accuracy for k = 1, 2. For this smooth example,
no nonlinear limiter is needed.

6.1.2 The Smooth Alfvén Wave

The second smooth example is the smoothAlfvénwave problem,which describes a circularly
polarized Alfvén wave moving in the domain� = [0, 1/ cosα]×[0, 1/ sin α] [28,37]. Here,
α represents the angle of the wave propagation with respect to x-axis, and it is set to be π/4.
The same initial data as in [28] is taken

ρ = 1, u‖ = 0, u⊥ = 0.1 sin(2πβ), uz = 0.1 cos(2πβ),

B‖ = 1, B⊥ = u⊥, Bz = uz, p = 0.1,

where β = x cosα + y sin α. The subscripts ‖ and ⊥ denote the directions parallel and
perpendicular to the wave propagation direction, respectively. Periodic boundary conditions
are used and γ = 5/3. The Alfvén wave travels at a constant Alfvén speed B‖/

√
ρ = 1. The

solution returns to its initial configuration when time t is an integer. In Table 3, we present
the L2 errors and orders of accuracy for ux , uz , Bx and p at time t = 2. From the results, we
can see that the Pk approximations with k = 1, 2 are (k + 1)th order accurate, and they are
optimal. No nonlinear limiter is applied.
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Table 3 L2 errors and orders of accuracy for ux , uz , p and Bx for smooth Alfvén wave problem at t = 2.
The computational domain is [0, √2] × [0, √2]
N ux uz p Bx

L2 error order L2 error order L2 error order L2 error order

P1

16 2.99E−03 – 3.91E−03 – 7.41E−04 – 2.44E−03 –

32 4.27E−04 2.81 5.69E−04 2.78 1.14E−04 2.71 3.35E−04 2.87

64 6.82E−05 2.65 9.47E−05 2.59 1.96E−05 2.54 4.87E−05 2.78

128 1.34E−05 2.34 1.94E−05 2.29 4.10E−06 2.25 8.59E−06 2.50

P2

16 3.88E−03 – 7.17E−04 – 3.64E−03 – 2.08E−03 –

32 3.50E−04 3.47 5.38E−05 3.73 3.27E−04 3.48 2.01E−04 3.37

64 2.56E−05 3.78 2.81E−06 4.26 1.71E−05 4.26 1.78E−05 3.50

128 2.81E−06 3.19 2.36E−07 3.57 1.39E−06 3.62 2.09E−06 3.09

6.2 Non-smooth Examples

6.2.1 The Field Loop Advection

In this subsection, we consider the magnetic field loop advection problem originally intro-
duced in [20]. The same initial data as in [27] is taken, with (ρ, ux , uy, uz, Bz, p) =
(1, 2, 1, 1, 0, 1), and (Bx , By) = ∇̂ × Az . Here Az is the z-component of the magnetic
potential

Az =
{
A0(R − r) if r ≤ R,

0 if r > R,

with A0 = 10−3, R = 0.3 and r = √
x2 + y2. This problem is computed on the domain

[− 1, 1] × [− 0.5, 0.5] with a 200 × 100 mesh. Periodic boundary conditions are used and
γ = 5/3.

In Fig. 3, we report the gray-scale images of the magnetic pressure B2
x + B2

y (left) and the
magnetic field lines (right) at time t = 0, t = 2 and t = 10. With the globally divergence-
free magnetic field, the magnetic field lines are plotted by contouring the z-component of
the numerical magnetic potential Az . The magnetic pressure is convected across the domain
periodically, and this is confirmed by our numerical results based on P2 approximation.
The component-wise minmod TVB limiter is applied to Uh with the parameter M = 1.
There is no visible difference in the numerical results when the limiter is applied to the local
characteristic fields. Overall our schemes capture the field loop well. From the images on
the left in Fig. 3, one can observe numerical dissipation around the center and the boundary
of the loop, similar to the observation in [20,26,27]. There is no obvious oscillations in our
solutions even at later time t = 10 unlike in some numerical results commented in [20,28].
From the images on the right of Fig. 3, symmetry can be seen in the magnetic field lines,
with some distortion at t = 10 due to the accumulated numerical dissipation over long time
simulation.

Note that the initial data is discontinuous, and one needs to pay special attention to the
initialization to ensure the magnetic field being divergence-free at t = 0. For example,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 The magnetic pressure B2
x + B2

y (left) and magnetic field lines (right) of the field loop advection.

P2 approximation on 200 × 100 mesh. The magnetic field lines are plotted with the same range. aMagnetic
pressure at t = 0, bmagnetic field lines at t = 0, cmagnetic pressure at t = 2, dmagnetic field lines at t = 2,
e magnetic pressure at t = 10, f magnetic field lines at t = 10

to apply the BDM projection to the initial magnetic field, one needs to compute the first

order coefficient B0
x := 1

�x�y

∫
Ii j

Bxdxdy with Bx = ∂Az/∂y. If a numerical quadrature

is applied without taking into account the discontinuity in Bx , then nonzero divergence
will be introduced to the magnetic field approximation. Instead, we will evaluate B0

x as
follows,

B0
x = 1

�x�y

∫
Ii j

∂Az

∂y
dxdy = 1

�x�y

∫ x
i+ 1

2

x
i− 1

2

[
Az(x, y j+ 1

2
) − Az(x, y j− 1

2
)
]
dx . (68)

Similarly, to evaluate a0R := 1
�y

∫ y
j+ 1

2

y
j− 1

2

Bx (xi+ 1
2
, y)dy, we will follow

a0R = 1

�y

∫ y
j+ 1

2

y
j− 1

2

∂Az

∂y
dy = 1

�y

(
Az(xi+ 1

2
, y j+ 1

2
) − Az(xi+ 1

2
, y j− 1

2
)
)

. (69)
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This will lead to an exactly divergence-free magnetic field approximation at t =
0.

6.2.2 Orszag–Tang Vortex Problem

In this subsection, we test the Orszag–Tang vortex problem, whose solution involves the
formation and interaction of multiple shocks as the nonlinear system evolves in time. The
same initial date as in [25] is taken, namely,

ρ = γ 2, ux = − sin y, uy = sin x, uz = 0,

Bx = − sin y, By = sin 2x, Bz = 0, p = γ.

This problem is computed on the domain [0, 2π] × [0, 2π] with a 192× 192 mesh based on
P1 and P2 approximations. Periodic boundary conditions are used with γ = 5/3. Figures 4
and 5 demonstrate the time evolutions of the density ρ at times t = 3, 4 with P1 and P2

approximations, respectively. The component-wise minmod TVB limiter is applied to Uh

with the parameter M = 1. The results show that our schemes work well for this problem
and they are in good agreement with the results in literature [23,25,27].

As observed in [23,25,29], different numerical methods can demonstrate different levels
of stability for this example, (partially) depending on their ability to control the divergence
error in the computed magnetic field. Standard numerical methods that work well for non-
linear hyperbolic conservation laws can show instability when simulating this example, if
the divergence error is not sufficiently controlled. Our proposed exactly divergence-free DG
methods display very good stability over long time simulation, for example the schemes
with P1 and P2 approximations are stable up to t = 25 (the maximum time we run) on
the 192 × 192 mesh when the minmod TVB limiter is applied in local characteristic fields.
In addition to the divergence error, as indicated in [37] the choices of the limiters can also
affect the numerical stability. When the component-wiseminmod TVB limiter is applied, the
simulation will break down at t = 7.4 with the P2 approximation. Again, the limiters are
only applied to Uh .

For this example, we further perform a convergence study for themethodswith P2 approx-
imation. In Fig. 6, we plot the pressure p (left) at y = 1.99635 and t = 2, and the magnetic
variable Bx at x = π and t = 3, computed with the 192 × 192 (circle) and 384 × 384
(line) meshes. With shocks developed in the solution, convergence is observed. The pressure
lines and magnetic field lines are comparable to the results by the locally divergence-free DG
methods in [25] and exactly divergence-free central DG methods in [26,27]. As in [26,27],
there is no negative pressure produced throughout the simulation.

6.2.3 The Rotor Problem

In this subsection, a rotor problem is considered which was first documented in [8]. This
problem describes a dense disk of fluid rapidly spinning in a light ambient fluid. To reduce
the initial transition, a “taper” function is used to bridge these two areas. We take the same
initial data as in [26,37], that is,

(uz, Bx , By, Bz, p) =
(
0, 2.5/

√
4π, 0, 0, 0.5

)
,
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Fig. 4 Development of the density ρ in Orszag–Tang vortex problem with P1 approximation at t = 3, t = 4
on 192 × 192 mesh. 15 equally spaced contours with ranges [1.144, 6.134], [1.179, 5.813] respectively. a
t = 3, b t = 4
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Fig. 5 Development of the density ρ in the Orszag–Tang vortex problem with P2 approximation at t = 3,
t = 4 on 192×192 mesh. 15 equally spaced contours with ranges [1.122, 6.161], [1.127, 5.857], respectively.
a t = 3, b t = 4
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Fig. 6 The P2 approximation for the Orszag–Tang vortex problem on 192 × 192 (circle) and 384 × 384
(solid line) meshes. a p with y = 1.9635 at t = 2, b Bx with x = π at t = 3

and

(ρ, ux , uy) =
⎧⎨
⎩

(10,−(y − 0.5)/r0, (x − 0.5)/r0) r < r0
(1 + 9λ,−λ(y − 0.5)/r, λ(x − 0.5)/r) r0 < r < r1
(1, 0, 0) r > r1

where r = √(x − 0.5)2 + (y − 0.5)2, r0 = 0.1, r1 = 0.115 and λ = (r1 − r)/(r1 − r0). We
simulate the problem in the domain [0, 1] × [0, 1]. Periodic boundary conditions are used
and γ = 5/3.

In Figs. 7 and 8, we present the results of density ρ, pressure p, the hydrodynamic
Mach number |u|/c with the sound speed c = √

γ p/ρ, and the magnetic pressure |B|2/2 at
t = 0.295, based on P1 and P2 approximations on the 200 × 200 mesh. The minmod TVB
limiter is applied in the characteristic fields and only toUh . Compared with the results in [25,
37], our methods also resolve this problem well. When divergence error is not sufficiently
controlled in the magnetic field by some numerical methods, “distortion” can develop in
Mach number [25,37]. In Fig. 9, we zoom in the central part of the Mach number, and no
“distortion” is observed.

As in [26,27], we examine the convergence of the methods with P2 approximation. In
Fig. 10, we present the Mach number with x = 0.413 (left) and the magnetic field Bx (right)
with x = 0.25 at t = 0.295 on 400×400 (circle) and 600×600 (solid) meshes. Convergence
of the method is observed, with the shocks being captured in the numerical solution. The cut
lines in Fig. 10 are very close to the results in [26], and there is no significant oscillation in
the solutions. In our simulation, negative pressure is not observed.

6.2.4 The Blast Problem

In this subsection, we consider the blast problem as in [8]. There are strong magnetosonic
shocks in the solution. The initial condition is taken as

(
ρ, ux , uy, uz, Bx , By, Bz, p

) =
⎧⎨
⎩
(
1, 0, 0, 0, 100√

4π
, 0, 0, 1000

)
, r ≤ R,(

1, 0, 0, 0, 100√
4π

, 0, 0, 0.10
)

, r > R,
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Fig. 7 P1 approximation for the rotor problem on the 200 × 200 mesh at t = 0.295. 15 equally spaced
contours. a ρ ∈ [0.507, 8.837], b p ∈ [0.010, 0.774], c |B|2/2 ∈ [0.012, 0.676], d |u|/c ∈ [0, 2.673]

with r = √x2 + y2 and R = 0.1. With this setup, the fluid pulse has very small plasma beta,
namely, β = p

(B2
x+B2

y )/2
= 2.513E−04, in the region outside the initial pressure pulse. We

carry out the simulation in the domain [− 0.5, 0.5] × [− 0.5, 0.5] with a 200 × 200 mesh.
Outgoing boundary conditions are used and γ = 1.4.

In Figs. 11 and 12, we report the numerical results at time t = 0.01 based on P1 and P2

approximations for density ρ, pressure p, square of total velocity u2x + u2y , and the magnetic
pressure B2

x + B2
y , respectively. As pointed out in [8,26–28], this is a stringent problem to

solve. In our simulation, negative pressure is observed near the shock front, similar as in
many other methods when positivity preserving techniques are not applied to pressure [26–
28]. In Fig. 13, we plot the negative part of pressure, min(0, p), based on the P1 and P2

approximations. The minimum of pressure in the P2 approximation is − 16.295, and it is
more negative than − 4.369, the minimum of the pressure in the P1 approximation. These
results are obtained when the component-wise minmod TVB limiter is applied only to Uh .

To further improve the numerical stability, we run the simulation by applying theminmod
TVB limiter to both the hydrodynamic variables Uh and the normal component of the mag-
netic field {bxi j }i j and {byi j }i j (see Sect. 5 for details of the limiter and the reconstruction). In
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Fig. 8 P2 approximation for the rotor problem on the 200 × 200 mesh at t = 0.295. 15 equally spaced
contours. a ρ ∈ [0.551, 9.910], b p ∈ [0.008, 0.776], c |B|2/2 ∈ [0.012, 0.847], d |u|/c ∈ [0, 3.033]

Fig. 14, the results are shown for density ρ, pressure p, square of total velocity u2x + u2y , and
the magnetic pressure B2

x + B2
y , respectively, at t = 0.01 based on P2 approximation. With

the magnetic field being limited, the minimum of pressure is now − 7.347 which is greatly
improved, hence the schemes with all unknowns being limited are more robust.

Remark 6.1 Following Zhang and Shu’s important work in [41] to design positivity-
preserving limiters for high order numerical methods, similar limiters were developed in [12]
for DG and central DG methods to simulate ideal MHD equations. Locally divergence-free
approximations can be easily used for the methods in [12] without affecting the positivity-
preserving property of the overall algorithms. Unfortunately, such limiters can not be applied
to the proposed methods in this paper, as they will destroy the globally divergence-free
property of the numerical solutions.
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Fig. 9 Zoom-in central part of Mach number |u|/c with P2 approximation in the rotor problem at t = 0.295.
30 equally spaced contours with range [0.18, 3.12]. a 100× 100 mesh, b 200× 200 mesh, c 400× 400 mesh,
d 600 × 600 mesh
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Fig. 10 The Mach number |u|/c and magnetic filed Bx of the rotor problem with P2 approximation at
t = 0.295 on 400×400 (circle) and 600×600 (solid line) meshes. a |u|/c with x = 0.41, b Bx with x = 0.25
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Fig. 11 P1 approximation for the blast problem on the 200 × 200 mesh at t = 0.01. 40 equally spaced
contours are plotted. a ρ ∈ [0.184, 4.602], b p ∈ [− 4.369, 259.297], c u2x +u2y ∈ [0, 288.251], d B2

x + B2
y ∈

[431.002, 1186.060]

6.2.5 The Cloud–Shock Interaction

The last example we consider is a cloud–shock interaction problem which involves strong
MHD shocks interacting with a dense cloud. We take the same initial data as in [26,27].
The computational domain, � = [0, 2] × [0, 1], is divided into three regions initially: the
post-shock region �1 = {(x, y): 0 ≤ x ≤ 1.2, 0 ≤ y ≤ 1}, the pre-shock region �2 =
{(x, y): 1.2 ≤ x ≤ 2, 0 ≤ y ≤ 1,

√
(x − 1.4)2 + (y − 0.5)2 ≥ 0.18} and the cloud region

�3 = {(x, y):√(x − 1.4)2 + (y − 0.5)2 < 0.18}. The initial data in �1, �2 and �3 for
(ρ, ux , uy, uz, Bx , By, Bz, p) is given by U1, U2 and U3, respectively, with

U1 = (3.88968, 0, 0,− 0.05234, 1, 0, 3.9353, 14.2641) ,

U2 = (1,− 3.3156, 0, 0, 1, 0, 1, 0.04) ,

U3 = (5,− 3.3156, 0, 0, 1, 0, 1, 0.04) .
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Fig. 12 P2 approximation for the blast problem on the 200 × 200 mesh at t = 0.01. 40 equally spaced
contours are plotted. a ρ ∈ [0.191, 4.769], b p ∈ [− 16.397, 256.291], c u2x +u2y ∈ [0, 288.838], d B2

x +B2
y ∈

[426.407, 1236.830]
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Fig. 13 Negative part of the pressure, min(0, p), in the blast problem with P1 and P2 approximations at
t = 0.01 on the 200 × 200 mesh. a P1, b P2
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Fig. 14 P2 approximation for the blast problem on the 200 × 200 mesh at t = 0.01. Nonlinear limiter
is applied to both Uh and {bxi j }i j , {byi j }i j . 40 equally spaced contours are used. a ρ ∈ [0.182, 4.573], b
p ∈ [− 7.347, 254.906], c u2x + u2y ∈ [0, 287.389], d B2

x + B2
y ∈ [422.866, 1188.86]

The cloud in the region �3 is five times denser than its surrounding. Outgoing boundary
conditions are used and γ = 5/3. We run the simulation up to t = 0.6.

In Fig. 15, we show the gray-scale images of the P1 approximations for density ρ, pressure
p and magnetic field component Bx , By on the 600 × 300 mesh. The white area represents
relatively larger value. The numerical results are fairly close to those by exactly divergence-
free central DG methods in [26,27]. The minmod TVB limiter is implemented in the local
characteristic fields and is only applied to Uh .

In Fig. 16, gray-scale images of P2 approximations are shown for density ρ, pressure p
and magnetic field component Bx , By on the 600 × 300mesh. In Fig. 17, we further plot
the cut lines of density ρ based on P2 approximation with y = 0.6 and x = 1.0 on the
600 × 300 and 800 × 400 meshes. The convergence of the methods is confirmed. With P2

approximation, it is not sufficient to just apply the nonlinear limiter to Uh for numerical
stability. And the results presented here are obtained when the limiter is applied to both Uh

and {bxi j }i j , {byi j }i j . In order to see the necessity to limit the magnetic field is related to the
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Fig. 15 P1 approximation of the cloud–shock interaction problem at t = 0.6 on the 600 × 300 mesh. a
ρ ∈ [1.804, 11.638], b p ∈ [6.295, 15.567], c Bx ∈ [− 3.073, 4.355], d By ∈ [− 3.299, 3.265]

Fig. 16 P2 approximation of the cloud–shock interaction problem at t = 0.6 on the 600 × 300 mesh. a
ρ ∈ [1.777, 11.655], b p ∈ [1.028, 16.734], c Bx ∈ [− 2.922, 4.472], d By ∈ [− 3.027, 2.961]

strength of the discontinuity, we also simulate a similar clock–shock interaction example,
with the cloud in region �3 two times denser than its surrounding at t = 0. As expected,
our methods are stable for this modified example when the limiter is applied only toUh . The
numerical results are not included here.
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Fig. 17 The P2 approximation of ρ in the cloud–shock interaction problem at t = 0.6 on 600× 300 (circle)
and 800 × 400 (solid) meshes. a y = 0.6, b x = 1.0

7 Concluding Remarks

In this paper, we propose second and third order globally divergence-free discontinuous
Galerkin methods for ideal MHD equations on structured meshes in two dimensions. The
main technical aspect is on the choices of numerical fluxes used in the different parts of the
algorithms. Analysis is presented to identify conditions on numerical fluxes to ensure the
exactly divergence-free property of the approximated magnetic field. A careful numerical
and analytical study was carried out to find good choices of numerical fluxes for the accu-
racy and numerical stability of the methods. A set of smooth and non-smooth numerical
examples are presented to illustrate the performance of the proposed methods. Our future
efforts will include the extension of the methods to high order accuracy, three dimensions,
and unstructured meshes.
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POSITIVITY PRESERVING LIMITERS FOR TIME-IMPLICIT
HIGHER ORDER ACCURATE DISCONTINUOUS GALERKIN

DISCRETIZATIONS\ast 

J. J. W. VAN DER VEGT\dagger , YINHUA XIA\ddagger , AND YAN XU\S 

Abstract. Currently, nearly all positivity preserving discontinuous Galerkin (DG) discretiza-
tions of partial differential equations are coupled with explicit time integration methods. Unfortu-
nately, for many problems this can result in severe time-step restrictions. The techniques used to
develop explicit positivity preserving DG discretizations cannot, however, easily be combined with
implicit time integration methods. In this paper, we therefore present a new approach. Using La-
grange multipliers, the conditions imposed by the positivity preserving limiters are directly coupled
to a DG discretization combined with a diagonally implicit Runge--Kutta time integration method.
The positivity preserving DG discretization is then reformulated as a Karush--Kuhn--Tucker (KKT)
problem, which is frequently encountered in constrained optimization. Since the limiter is only
active in areas where positivity must be enforced, it does not affect the higher order DG discretiza-
tion elsewhere. The resulting nonsmooth nonlinear algebraic equations have, however, a different
structure compared to most constrained optimization problems. We therefore develop an efficient
active set semismooth Newton method that is suitable for the KKT formulation of time-implicit
positivity preserving DG discretizations. Convergence of this semismooth Newton method is proven
using a specially designed quasi-directional derivative of the time-implicit positivity preserving DG
discretization. The time-implicit positivity preserving DG discretization is demonstrated for several
nonlinear scalar conservation laws, which include the advection, Burgers, Allen--Cahn, Barenblatt,
and Buckley--Leverett equations.

Key words. positivity preserving, maximum principle, Karush--Kuhn--Tucker equations, dis-
continuous Galerkin methods, implicit time integration methods, semismooth Newton methods
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1. Introduction. The solution of many partial differential equations frequently
must satisfy a maximum principle, or, more generally, certain variables must obey
a lower and/or upper bound. In this paper, we will denote all these cases with
positivity preserving. In particular, if the partial differential equations model physical
processes, then these bounds are also crucial to obtain a meaningful physical solution.
For example, a density, concentration, or pressure in fluid flow must be nonnegative,
and a probability distribution should be in the range [0, 1]. A numerical solution
should therefore strictly obey the bounds on the exact solution; otherwise, the problem
can become ill-posed and the solution would be meaningless. Also, the numerical
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algorithm can easily become unstable and lack robustness if the numerical solution
violates these essential bounds.

In recent years, the development of positivity preserving discontinuous Galerkin
(DG) finite element methods therefore has been a very active area of research. The
standard approach to ensure that the numerical solution satisfies the bounds imposed
by the partial differential equations is to use limiters, but this can easily result in loss
of accuracy, especially for higher order accurate discretizations.

In a seminal paper, Zhang and Shu [34] showed how to design maximum principle
and positivity preserving higher order accurate DG methods for first order scalar
conservation laws. Their algorithm consists of a several important steps: (i) starting
from a bounds preserving solution at time tn, ensure that the element average of
the solution satisfies the bounds at the next time level tn+1 by selecting a suitable
time step in combination with a monotone first order scheme; (ii) limit the higher
order accurate polynomial solution at the quadrature points in each element without
destroying the higher order accuracy; (iii) higher order accuracy in time can then
be easily obtained using explicit SSP Runge--Kutta methods [31]. This algorithm
has been subsequently extended in many directions, e.g., various element shapes,
the convection-diffusion equation, Euler and Navier--Stokes equations, and relativistic
hydrodynamics [37, 38, 35, 36, 33, 29]. Other approaches to obtain higher order
positivity preserving DG discretizations can be found in, e.g., [5, 13, 12].

All these DG discretizations use, however, an explicit time integration method.
For many partial differential equations, this results in an efficient numerical discretiza-
tion, where to ensure stability the time step is restricted by the Courant--Friedrichs--
Lewy (CFL) condition. On locally dense meshes and for higher order partial dif-
ferential equations, which often have a time step constraint \bigtriangleup t \leq Chp, with p > 1
and h the mesh size, these time-explicit algorithms can become computationally very
costly. The alternative is to resort to implicit time integration methods, but positiv-
ity preserving time-implicit DG discretizations are still very much in their infancy.
Meister and Ortleb developed in [22] a positivity preserving DG discretization for
the shallow water equations using the Patankar technique [26]. Qin and Shu [28] ex-
tended the framework in [34, 35] to implicit positivity preserving DG discretizations
of conservation laws in combination with an implicit Euler time integration method.
An interesting result of the analysis in [28] is that to ensure positivity in the algo-
rithm of Qin and Shu a lower bound on the time step is required. The approaches in
[22, 28] require, however, a detailed analysis of the time-implicit DG discretization to
ensure that the bounds are satisfied and are not so easy to extend to other classes of
problems.

In this paper, we will present a very different approach to develop positivity pre-
serving higher order accurate DG discretizations that are combined with a diagonally
implicit Runge--Kutta (DIRK) time integration method. In analogy with obstacle
problems, we consider the bounds imposed by a maximum principle or positivity
constraint as a restriction on the DG solution space. The constraints are then im-
posed using a limiter and directly coupled to the time-implicit higher order accurate
DG discretization using Lagrange multipliers. The resulting equations are the well-
known Karush--Kuhn--Tucker (KKT) equations, which are frequently encountered in
constrained optimization and solved with a semismooth Newton method [11, 17], and
also used in constrained optimization-based discretizations of partial differential equa-
tion in, e.g., [3, 8, 10, 20]. The key benefit of the approach discussed in this paper,
which we denote by KKT-Limiter and so far has not been applied to positivity pre-
serving time-implicit DG discretizations, is that no detailed analysis is required to
ensure that the DG discretization preserves the bounds for a particular partial differ-
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ential equation. They are imposed explicitly and not part of the DG discretization.
Also, since the limiter is only active in areas where positivity must be enforced, it
does not affect the higher order DG discretization elsewhere since the Lagrange mul-
tipliers will be zero there. The approach discussed in this paper presents a general
framework for how to couple DG discretizations with limiters and, very importantly,
how to efficiently solve the resulting nonlinear algebraic equations.

The algebraic equations resulting from the KKT formulation of the positivity
preserving time-implicit DG discretization are only semismooth. This excludes the
use of standard Newton methods since they require C1 continuity [9]. The obvious
choice would be to use one of the many semismooth Newton methods available for
nonlinear constrained optimization problems [11, 17], but the algebraic equations for
the positivity preserving time-implicit DG discretization have a structure different
from that for most constrained optimization problems. For instance, the conditions
to ensure a nonsingular Jacobian [11] for methods based on the Fischer--Burmeister
or related complementarity functions [23, 4] are not met by the KKT-Limiter in com-
bination with a time-implicit DG discretization. This frequently results in nearly
singular Jacobian matrices, poor convergence, and lack of robustness. We therefore
developed an efficient active set semismooth Newton method that is suitable for the
KKT formulation of time-implicit positivity preserving DG discretizations. Conver-
gence of this semismooth Newton method can be proven using a specially designed
quasi-directional derivative, as outlined in [15]; see also [17, 18].

The organization of this paper is as follows. In section 2, we formulate the KKT-
equations, followed in section 3 by a discussion of an active set semismooth Newton
method that is suitable to solve the nonlinear algebraic equations resulting from the
positivity preserving time-implicit DG discretization. Special attention will be given
to the quasi-directional derivative, which is an essential part to ensure convergence
of the semismooth Newton method. In section 4, we discuss the DG discretization
in combination with a DIRK time integration method and positivity constraints. In
section 5, numerical experiments for the advection, Burgers, Allen--Cahn, Barenblatt,
and Buckley--Leverett equations are provided. Conclusions are drawn in section 6. In
Appendix B, more details on the quasi-directional derivative are given.

2. KKT limiting approach. In this section, we will directly couple the bounds
preserving limiter to the time-implicit discontinuous Galerkin discretization using
Lagrange multipliers. We will denote this approach as the KKT-Limiter.

Define the set

K := \{ x \in \BbbR n | h(x) = 0, g(x) \leq 0\} ,

where h : \BbbR n \rightarrow \BbbR l and g : \BbbR n \rightarrow \BbbR m are twice continuously differentiable functions
denoting, respectively, the l equality and m inequality constraints to be imposed on
the DG discretization. The variable x denotes the degrees of freedom and n the
number of degrees of freedom in the unlimited DG discretization. For the continu-
ously differentiable function L : \BbbR n \rightarrow \BbbR n, representing the unlimited discontinuous
Galerkin discretization, the KKT-equations are

\scrL (x, \mu , \lambda ) := L(x) +\nabla h(x)T\mu +\nabla g(x)T\lambda = 0,(2.1a)

 - h(x) = 0,(2.1b)

0 \geq g(x) \bot \lambda \geq 0,(2.1c)D
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with \mu \in \BbbR l, \lambda \in \BbbR m the Lagrange multipliers. The compatibility condition (2.1c) is
componentwise equal to

0 \geq gj(x), \lambda j \geq 0 and gj(x)\lambda j = 0, j = 1, . . . ,m,

which is equivalent to

min( - g(x), \lambda ) = 0,

where the min-function is applied componentwise. The KKT-equations, with F (z) \in 
\BbbR n+l+m, can now be formulated as

(2.2) 0 = F (z) :=

\left(   \scrL (x, \mu , \lambda )
 - h(x)

min( - g(x), \lambda )

\right)   ,

where z := (x, \mu , \lambda ). In the next section, we will discuss a global active set semismooth
Newton method suitable for the efficient solution of (2.2) in combination with a DIRK-
DG discretization. In section 4, the DG discretization and KKT-Limiter will be
presented for a number of scalar conservation laws.

3. Semismooth Newton method. Standard Newton methods assume that
F (z) is continuously differentiable [9], but F (z) given by (2.2) is only semismooth
[11]. In this section, we will present a robust active set semismooth Newton method
for (2.2) that is suitable for the efficient solution of the KKT-equations resulting from
a higher order DG discretization combined with positivity preserving limiters and a
DIRK time integration method [14].

3.1. Differentiability concepts. For the definition of the semismooth Newton
method, we need several more general definitions of derivatives, which will be discussed
in this section. For more details, we refer the reader to, e.g., [6, 11, 17, 30]. Since we
use the semismooth Newton method directly on the algebraic equations of the limited
DIRK-DG discretization, we only consider finite-dimensional spaces here.

Let D \subseteq \BbbR m be an open subset in \BbbR m. Given d \in \BbbR m, the directional derivative
of F : D \rightarrow \BbbR n at x \in D in the direction d is defined as

(3.1) F \prime (x; d) := lim
t\downarrow 0+

F (x+ td) - F (x)

t
.

A function F : D \rightarrow \BbbR n is locally Lipschitz continuous if for every x \in D there exist
a neighborhood Nx \subseteq D and a constant Cx, such that

| F (y) - F (z)| \leq Cx| y  - z| for all y, z \in Nx.

If F is locally Lipschitz on D, then according to Rademacher's theorem, F is differ-
entiable almost everywhere with derivative F \prime (x). The B-subdifferential \partial BF (x) of
F (x) is then defined as

\partial BF (x) := lim
\=x\rightarrow x,\=x\in DF

F \prime (\=x),

with DF the points where F is differentiable, and the generalized derivative in the
sense of Clarke is defined as

\partial F (x) := convex hull of \partial BF (x).
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For example, F (x) = | x| at x = 0 has \partial BF (0) = \{  - 1, 1\} and \partial F (0) = [ - 1, 1]. A
function F : D \rightarrow \BbbR n is called semismooth if [27]

lim
V \in \partial F (x+td\prime ),d\prime \rightarrow d,t\downarrow 0+

V d\prime exists for all d \in \BbbR m.

A function F : D \rightarrow \BbbR n is Bouligand-differentiable (B-differentiable) at x \in D if
it is directionally differentiable at x and

lim
d\rightarrow 0

F (x+ d) - F (x) - F \prime (x; d)

| d| 
= 0.

A locally Lipschitz continuous function F is B-differentiable at x if and only if it is
directionally differentiable at x [30].

Given d \in \BbbR m, the Clarke generalized directional derivative of F : D \rightarrow \BbbR n at
x \in D in the direction of d is defined by [6]

F 0(x; d) := lim
y\rightarrow x

sup
t\downarrow 0+

F (y + td) - F (y)

t
.

3.2. Global active set semismooth Newton method. For the construction
of a global semismooth Newton method for (2.2), we will use the merit function
\theta (z) = 1

2 | F (z)| 
2, with z = (x, \mu , \lambda ). The Clarke directional derivatives of \theta and F

have the following relation.
Let F : D \subseteq \BbbR p \rightarrow \BbbR p, with D an open set and p = n + l + m, be a locally

Lipschitz continuous function; then the Clarke generalized directional derivative of
\theta (z) can be expressed as [17]

(3.2) \theta 0(z; d) = lim sup
y\rightarrow z,t\downarrow 0+

(F (z), (F (y + td) - F (y))

t
,

and there exists an F 0 : D \times \BbbR p \rightarrow \BbbR p such that

(3.3) \theta 0(z; d) = (F (z), F 0(z; d)) for (z, d) \in D \times \BbbR p.

Here (\cdot , \cdot ) denotes the Euclidean inner product. The crucial point in designing a
Newton method is to obtain proper descent directions for the Newton iterations. A
possible choice is to use the Clarke derivative \partial F as the generalized Jacobian [11, 17],
but this derivative is in general difficult to compute. In [24, 25], it was proposed to
use d as the solution of

(3.4) F (z) + F \prime (z; d) = 0,

which for the KKT-equations results in a mixed linear complementarity problem [25].
Unfortunately, (3.4) does not always have a solution, unless additional conditions
are imposed. A better alternative is to use the quasi-directional derivative G of F
[15, 17, 18].

Let F : D \subseteq \BbbR p \rightarrow \BbbR p be directionally differentiable and locally Lipschitz continu-
ous. Assume that S = \{ z \in D | | F (z)| \leq | F (z0)| \} is bounded. Then G : S\times \BbbR p \rightarrow \BbbR p

is called the quasi-directional derivative of F on S \subset \BbbR p if for all z, \=z \in S the following
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conditions hold [15, 17, 18]:

(F (z), F \prime (z; d)) \leq (F (z), G(z; d)),(3.5a)

G(z; td) = tG(z; d) for all d \in \BbbR p, z \in S, and t \geq 0,(3.5b)

(F (\=z), F 0(\=z; \=d)) \leq lim sup
z\rightarrow \=z,d\rightarrow \=d

(F (z), G(z; d)) for all z \rightarrow \=z, d\rightarrow \=d.(3.5c)

The search direction d in the semismooth Newton method is now the solution of

(3.6) F (z) +G(z; d) = 0, with z \in S, d \in \BbbR p,

which results for the KKT-equations (2.2) in a mixed linear complementarity problem.
Using (3.3), (3.5c), and (3.6) this immediately results in the bound

\theta 0(\=z; \=d) \leq lim sup
z\rightarrow \=z,d\rightarrow \=d

(F (z), G(z; d)) =  - lim
z\rightarrow \=z

| F (z)| 2 =  - 2\theta (\=z).

Hence the search direction d obtained from (3.6) always provides a descent direc-
tion for the merit function \theta (z). The merit function \theta (z) and the quasi-directional
derivative G(z, d) can therefore be used to define a global line search semismooth
Newton algorithm, which is stated in Algorithm 3.1. The key benefit of using the
quasi-directional derivative G in this Newton algorithm is that, under the additional
assumption \| G(z; d)\| \geq L\| d\| , with L > 0 constant, we immediately obtain a proof
of the convergence of this algorithm, given by [15, Theorem 1].

In the next section, we will present the quasi-directional derivativeG for the KKT-
equations (2.2) and define the active sets used to solve (3.6) with the semismooth
Newton algorithm presented in section 3.4. In section 4, Algorithm 3.1 will then be
used to solve the nonlinear equations resulting from the DG discretization using a
KKT-limiter in combination with a DIRK method.

3.3. Quasi-directional derivative. In order to compute the quasi-directional
derivative G, satisfying the conditions stated in (3.5), we first need to compute the
directional and Clarke generalized directional derivatives of the function F (z) defined
in (2.2).

Define z \in \BbbR p, with p = n+ l +m as z = (x, \mu , \lambda ) with x \in \BbbR n, \mu \in \BbbR l, \lambda \in \BbbR m.
Define d \in \BbbR p as d = (u, v, w), with u \in \BbbR n, v \in \BbbR l, w \in \BbbR m. The directional
derivative F \prime (z; d) \in \BbbR p \times \BbbR p of F (z) defined in (2.2) in the direction d is equal to

F \prime 
i (z; d) = Dx\scrL i(z) \cdot u+D\mu \scrL i(z) \cdot v +D\lambda \scrL i(z) \cdot w, i \in Nn,(3.7a)

F \prime 
i+n(z; d) =  - Dxhi(x) \cdot u, i \in Nl,(3.7b)

F \prime 
i+n+l(z; d) =  - Dxgi(x) \cdot u, i \in \alpha (z),(3.7c)

= min( - Dxgi(x) \cdot u,wi), i \in \beta (z),(3.7d)

= wi, i \in \gamma (z),(3.7e)

where the following sets are used:

Nq = \{ j \in \BbbN | 1 \leq j \leq q\} ,
\alpha (z) = \{ j \in \BbbN m | \lambda j >  - gj(x)\} ,
\beta (z) = \{ j \in \BbbN m | \lambda j =  - gj(x)\} ,
\gamma (z) = \{ j \in \BbbN m | \lambda j <  - gj(x)\} ,
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with q = n or q = l. The calculation of most of the terms in (3.7) is straightforward,
except (3.7d), which can be computed using a Taylor series expansion of the arguments
of min( - gi(x), \lambda i) in the limit of the directional derivative (3.1), combined with the
relation min(a+ b, a+ d) - min(a, a) = min(b, d) and the fact that i \in \beta (z).

The Clarke generalized derivative of F (z) can be computed using the relations
(3.2)--(3.3) and is equal to

F 0
i (z; d) = Dx\scrL i(z) \cdot u+D\mu \scrL i(z) \cdot v +D\lambda \scrL i(z) \cdot w, i \in Nn,(3.8a)

F 0
i+n(z; d) =  - Dxhi(x) \cdot u, i \in Nl,(3.8b)

F 0
i+n+l(z; d) =  - Dxgi(x) \cdot u, i \in \alpha (z),(3.8c)

= max( - Dxgi(x) \cdot u,wi), i \in \beta (z), Fi+n+l(z) > 0,(3.8d)

= min( - Dxgi(x) \cdot u,wi), i \in \beta (z), Fi+n+l(z) \leq 0,(3.8e)

= wi, i \in \gamma (z).(3.8f)

The calculation of (3.8d) and (3.8e) in F 0(z; d) is nontrivial and is detailed in Ap-
pendix A.

Using the results for the directional derivative and the Clarke generalized direc-
tional derivative, we can now state a quasi-directional derivative G : D \times \BbbR p \rightarrow \BbbR p,
satisfying the conditions (3.5), which for any \delta > 0 is equal to

Gi(z; d) = Dx\scrL i(z) \cdot u+D\mu \scrL i(z) \cdot v +D\lambda \scrL i(z) \cdot w, i \in Nn,(3.9a)

Gi+n(z; d) =  - Dxhi(x) \cdot u, i \in Nl,(3.9b)

Gi+n+l(z; d) =  - Dxgi(x) \cdot u, i \in \alpha \delta (z),(3.9c)

= max( - Dxgi(x) \cdot u,wi), i \in \beta \delta (z), Fi+n+l(z) > 0,(3.9d)

= min( - Dxgi(x) \cdot u,wi), i \in \beta \delta (z), Fi+n+l(z) \leq 0,(3.9e)

= wi, i \in \gamma \delta (z),(3.9f)

with the sets

\alpha \delta (z) = \{ j \in \BbbN m | \lambda j >  - gj(x) + \delta \} ,
\beta \delta (z) = \{ j \in \BbbN m |  - gj(x) - \delta \leq \lambda j \leq  - gj(x) + \delta \} ,
\gamma \delta (z) = \{ j \in \BbbN m | \lambda j <  - gj(x) - \delta \} .

The main benefit of introducing the \delta -dependent sets is that in practice it is hard
to test for the set \beta (z), which would generally be ignored in real computations due
to rounding errors. One would then miss a number of important components in
the quasi-directional derivative, which can significantly affect the performance of the
Newton algorithm. The set \beta \delta gives, however, a computational well-defined quasi-
directional derivative G(z; d). In Appendix B, a proof is given that G(z; d) satisfies
the conditions stated in (3.5), which is the condition required in [15, Theorem 1], to
ensure convergence of the semismooth Newton method.

The formulation of the quasi-directional derivative G (3.9) is, however, not di-
rectly useful as a Jacobian in the semismooth Newton method due to the max and
min functions. In order to eliminate these functions, we introduce the sets

I11\beta \delta 
(z, d) := \{ i \in \beta \delta (z) | Fi+n+l(z) > 0, - Dxgi(x) \cdot u > wi\} ,

I12\beta \delta 
(z, d) := \{ i \in \beta \delta (z) | Fi+n+l(z) > 0, - Dxgi(x) \cdot u \leq wi\} ,

I21\beta \delta 
(z, d) := \{ i \in \beta \delta (z) | Fi+n+l(z) \leq 0, - Dxgi(x) \cdot u > wi\} ,

I22\beta \delta 
(z, d) := \{ i \in \beta \delta (z) | Fi+n+l(z) \leq 0, - Dxgi(x) \cdot u \leq wi\} 
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and define

I1\delta (z, d) := \alpha \delta (z) \cup I11\beta \delta 
(z, d) \cup I22\beta \delta 

(z, d),(3.10a)

I2\delta (z, d) := \gamma \delta (z) \cup I12\beta \delta 
(z, d) \cup I21\beta \delta 

(z, d).(3.10b)

The quasi-directional derivative G(z; d) can now be written in a form suitable to serve
as a Jacobian in the active set semismooth Newton method defined in Algorithm 3.1
to solve (2.2):

G(z; d) = \widehat G(z)d,
with

(3.11) \widehat G(z) =
\left(  Dx\scrL i(z)| i\in Nn

D\mu \scrL i(z)| i\in Nn
D\lambda \scrL i(z)| i\in Nn

 - Dxhi(x)| i\in Nl
0 0

 - Dxgi(x)| i\in I1
\delta (z,d)

0 \delta ij | i,j\in I2
\delta (z,d)

\right)  \in \BbbR p\times p,

with \delta ij the Kronecker symbol. By updating the sets I1\delta (z; d) and I
2
\delta (z; d) as part of

the Newton method, the complementary problem (3.6) is simultaneously solved with
the solution of (2.2). In general, after a few iterations the proper sets I1,2\delta (z; d) will
be found and the semismooth Newton method then converges like a regular Newton
method. Also, one should note that only the contribution Dx\scrL i(z) in (3.11) de-
pends on the DG discretization in \scrL i(z). Hence, the KKT-Limiter provides a general
framework to impose limiters on time-implicit numerical discretizations and could,
for instance, also be applied to time-implicit finite volume discretizations.

3.4. Active set semismooth Newton algorithm. As default values we use
in Algorithm 3.1 \=\alpha = 10 - 12, \beta = \gamma = 1

2 , \sigma = 10 - 9, \delta = 10 - 12, and \epsilon = 10 - 8.
An important aspect of Algorithm 3.1 is that we simultaneously solve the mixed

linear complementarity equations (3.6) for the search direction d as part of the global
Newton method using an active set technique. This was motivated by [16] and will
reduce the mixed linear complementarity problem (3.6) into a set of linear equations.
The use of the active set technique is also based on the observation in [18] of the close
relation between an active set Newton method and a semismooth Newton method.
After the proper sets I1\delta (z; d), I

2
\delta (z; d) are obtained for the quasi-directional derivative

G(z; d), the difference with a Newton method for smooth problems [9] will be rather
small. The mixed linear complementarity problem can, however, have one, multiple,
or no solutions, and, in order to deal also with cases where the matrix G is poorly
conditioned, we will use a minimum norm least squares or Gauss--Newton method to
solve the algebraic equations (3.12).

For the performance of a Newton algorithm, proper scaling of the variables is
crucial. Here we use the approach outlined in [9] and the Newton method is applied

directly to the scaled variables. Also, the matrix \widehat GT
k
\widehat Gk + \=\alpha \| F (zk)/F (z0)\| I in the

Newton method will have a much larger condition number than the matrix \widehat Gk. In
order to improve the conditioning of this matrix, we use simultaneous iterative row
and column scaling in the L\infty -matrix norm, as described in [2]. This algorithm very
efficiently scales the rows and columns such that an L\infty -matrix norm approximately
equal to one is obtained. This gives a many orders of magnitude reduction in the
matrix condition number and generally reduces the condition number of the matrix
(3.12) to the same order as the condition number of the original matrix \widehat Gk.
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Algorithm 3.1 Active set semismooth Newton method.

1: (A.0) (Initialization) Let \=\alpha \geq 0, \beta , \gamma \in (0, 1), \sigma \in (0, \=\sigma ), \delta > 0, and b > C \in \BbbR +

arbitrarily large, but bounded. Choose z0, d0 \in \BbbR p and tolerance \epsilon .
2: (A.1) Scale z0.
3: (A.2) (Newton method)
4: for k = 0, 1, . . . until \| F (zk)\| \leq \epsilon and \| dk\| \leq \epsilon do

5: Compute the quasi-directional derivative matrix \widehat Gk := \widehat G(zk) given by (3.11) and

the active sets I1\delta (z; d), I
2
\delta (z; d) of \widehat Gk given by (3.10).

6: Apply row-column scaling to ( \widehat GT
k
\widehat Gk + \=\alpha \| F (zk)/F (z0)\| I), with I the identity ma-

trix, such that the matrix has a norm \| \cdot \| L\infty \sim = 1.
7: if there exists a solution hk to

(3.12) ( \widehat GT
k
\widehat Gk + \=\alpha \| F (zk)/F (z0)\| I)hk =  - \widehat GT

k F (zk),

with | hk| \leq b| F (zk)| and

| F (zk + hk)| < \gamma | F (zk)| ,

then
8: Set dk = hk, zk+1 = zk + dk, \alpha k = 1, and mk = 0.
9: else

10: Choose dk = hk.
11: Compute \alpha k = \beta mk , where mk is the first positive integer m for which

\theta (zk + \beta mkdk) - \theta (zk) \leq  - \sigma \beta m\theta (zk).

12: Set zk+1 = zk + \alpha kd
k.

13: end if
14: end for

4. KKT-Limiter DG discretization. Given a domain \Omega \subseteq \BbbR d, d = dim(\Omega ),
d = 1, 2, with Lipschitz continuous boundary \partial \Omega . As a general model problem we
consider the following second order nonlinear scalar equation:

(4.1)
\partial u

\partial t
+\nabla \cdot F (u) +G(u) - \nabla \cdot (\nu (u)\nabla u) = 0,

with u(x, t) : \BbbR d \times \BbbR + \rightarrow \BbbR a scalar quantity, F (u) : \BbbR \rightarrow \BbbR d the flux, G(u) : \BbbR \rightarrow \BbbR 
a reaction term, and \nu (u) : \BbbR \rightarrow \BbbR + a nonlinear diffusion term. By selecting different
functions F,G, and \nu in (4.1) we will demonstrate in section 5 the KKT-Limiter on
various model problems that impose different positivity constraints on the solution.

For the DG discretization, we introduce the auxiliary variable Q \in \BbbR d and rewrite
(4.1) as a first order system of conservation laws

\partial u

\partial t
+\nabla \cdot F (u) +G(u) - \nabla \cdot (\nu (u)Q) = 0,(4.2a)

Q - \nabla u = 0.(4.2b)

4.1. DG discretization. Let \scrT h be a tessellation of the domain \Omega with shape
regular line or quadrilateral elements K with maximum diameter h > 0. The total
number of elements in \scrT h is NK . We denote the union of the set of all boundary
faces \partial K, K \in \scrT h, as \scrF h, denote all internal faces \scrF i

h and the boundary faces as
\scrF b

h, and hence get \scrF h = \scrF i
h \cup \scrF b

h. The elements connected to each side of a face
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S \in \scrF h are denoted by the indices L and R, respectively. For the KKT-Limiter,
it is important to use orthogonal basis functions; see section 4.2. In this paper,
\scrP p(K) represent tensor product Legendre polynomials of degree p on d-dimensional
rectangular elements K \in \scrT h, when K is mapped to the reference element ( - 1, 1)d.
For general elements, one can use Jacobi polynomials with proper weights to obtain
an orthogonal basis; see [19, section 3.2]. Next, we define the finite element spaces

V p
h :=

\Bigl\{ 
v \in L2(\Omega ) | v| K \in \scrP p(K) \forall K \in \scrT h

\Bigr\} 
,

W p
h :=

\Bigl\{ 
v \in (L2(\Omega ))d | v| K \in (\scrP p(K))d \forall K \in \scrT h

\Bigr\} 
,

with L2(\Omega ) the Sobolev space of square integrable functions. Equation (4.2) is
discretized using the local discontinuous Galerkin discretization from [7]. Define
L1
h : V p

h \times W p
h \times V p

h \rightarrow \BbbR and L2
h : V p

h \times W p
h \rightarrow \BbbR as

L1
h(uh, Qh; v) := - 

\bigl( 
F (uh) - \nu (uh)Qh,\nabla hv

\bigr) 
\Omega 
+
\bigl( 
G(uh), v

\bigr) 
\Omega 

+
\sum 
S\in \scrF i

h

\bigl( 
H(uLh , u

R
h ;n

L) - \widehat \nu (uh)nL \cdot \widehat Qh, v
L  - vR

\bigr) 
S

+
\sum 
S\in \scrF b

h

\bigl( 
H(uLh , u

b
h;n

L) - \widehat \nu (uh)nL \cdot Qb
h, v

L
\bigr) 
S
,(4.3)

L2
h(uh;w) :=

\bigl( 
uh,\nabla h \cdot w

\bigr) 
\Omega 
 - 
\sum 
S\in \scrF i

h

\bigl( \widehat uhnL, wL  - wR
\bigr) 
S

 - 
\sum 
S\in \scrF b

h

\bigl( 
ubhn

L, wL
\bigr) 
S
,

where (\cdot , \cdot )D is the L2(D) inner product, \nabla h is the elementwise \nabla operator, and the
superscript b refers to boundary data. Here nL \in \BbbR d is the exterior unit normal vector
at the boundary of the element L \in \scrT h that is connected to face S. The numerical
flux H is the Lax--Friedrichs flux

H(uLh , u
R
h ;n) =

1

2

\bigl( 
n \cdot (F (uLh ) + F (uRh )) - CLF (u

R
h  - uLh )

\bigr) 
,

with Lax--Friedrichs coefficient CLF = supuh\in [uL
h ,uR

h ] | \partial 
\partial uh

(n \cdot F (uh))| . For \widehat Qh and \widehat uh,
we use the alternating fluxes \widehat Qh = (1 - \alpha )QL

h + \alpha QR
h ,(4.4a) \widehat uh = \alpha uLh + (1 - \alpha )uRh ,(4.4b)

with 0 \leq \alpha \leq 1. The numerical flux for the nonlinear diffusion is defined as

\widehat \nu (uh) =
1

2
(\nu (uLh ) + \nu (uRh )).

For t \in (0, T ], the semidiscrete DG formulation for (4.2) now can be expressed as
follows: Find uh(t) \in V p

h , Qh(t) \in W p
h , such that for all v \in V p

h , w \in W p
h ,\biggl( 

\partial uh
\partial t

, v

\biggr) 
\Omega 

+ L1
h(uh, Qh; v) = 0,(4.5a)

(Qh, w)\Omega + L2
h(uh;w) = 0.(4.5b)
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These equations are discretized in time with a DIRK method [14]. The main benefit
of the DIRK method is that the RK stages can be computed successively, which
significantly reduces the computational cost and memory overhead.

We represent uh and Qh in each element K \in \scrT h, respectively, as uh| K =\sum Nu

j=1
\widehat UK
j \phi 

K
j and Qh| K =

\sum NQ

j=1
\widehat QK
j \psi 

K
j , with basis functions \phi Kj \in \scrP p(K), \psi K

j \in \bigl( 
\scrP p(K)

\bigr) d
and DG coefficients \widehat UK

j \in \BbbR , \widehat QK
j \in \BbbR d. After replacing the test functions

v \in V p
h in (4.5a) and w \in W p

h (4.5b) with, respectively, the independent basis func-

tions \phi Ki \in \scrP p(K), i = 1, . . . , Nu, and \psi 
K
i \in 

\bigl( 
\scrP p(K)

\bigr) d
, i = 1, . . . , NQ, we obtain the

algebraic equations for the DG discretization.
In order to simplify notation, we introduce \widehat L1

h(
\widehat U, \widehat Q) = L1

h(uh, Qh;\phi ) \in \BbbR NuNK

and \widehat L2
h(
\widehat U) = L2

h(uh;\psi ) \in \BbbR dNQNK , with NK the number of elements in \scrT h and
\phi = \phi Ki , \psi = \psi K

i the basis functions in element K. The algebraic equations for the

DIRK stage vector \widehat K(i) \in \BbbR NuNK , i = 1, . . . , s, with the DG coefficients can then be
expressed as

\widehat Lh( \widehat K(i)) :=M1

\bigl( \widehat K(i)  - \widehat Un
\bigr) 
+\bigtriangleup t

i\sum 
j=1

aij \widehat L1
h

\bigl( \widehat K(j), - M - 1
2
\widehat L2
h( \widehat K(j))

\bigr) 
= 0.(4.6)

Here we eliminated the DG coefficients for the auxiliary variable Qh using (4.5b).
The matrices M1 \in \BbbR NuNK\times NuNK , M2 \in \BbbR dNQNK\times dNQNK are block-diagonal mass
matrices since we use orthogonal basis functions and n denotes the index of time level
t = tn.

The coefficients aij are the coefficients in the Butcher tableau, which determine
the properties of the RK method [14]. For DIRK methods, aij = 0 if j > i. The
following DIRK methods are used: for basis functions with polynomial order p = 1 [1,
page 1012, Theorem 5, first method with \alpha = 1 - 1

2 ]; p = 2 [32, page 2117 (top)]; p = 3
[1, page 1012, Theorem 5, second method]; see also [32, page 2117 (top)]. The order
of accuracy of these DIRK methods is p + 1, and their coefficients in the Butcher
tableau satisfy asj = bj , j = 1, . . . , s, which implies that these methods are stiffly
accurate (see [14, section IV.6]), and the solution of the last DIRK stage is equal to
the solution at the new time step

\widehat Un+1 = \widehat K(s).

Since each DIRK stage vector must satisfy the positivity constraints, this then also
immediately applies to the solution at time tn+1.

The Jacobian Dx\scrL ( \widehat K(i)) \in \BbbR NuNK\times NuNK , with x = \widehat K(i), in the quasi-directional
derivative G (3.11) of DIRK stage i of the unlimited DIRK-DG discretization (4.6) is
now equal to

Dx\scrL ( \widehat K(i)) =M1 +\bigtriangleup taii
\biggl( 
\partial L1

h

\partial \widehat K(i)
 - \partial L1

h

\partial \widehat Q(i)
M - 1

2

\partial L2
h

\partial \widehat K(i)

\biggr) 
.

4.2. Limiter constraints. The limiter constraints for the DG discretization
can be imposed directly by defining the inequality constraints in the KKT-equations.
In each element K \in \scrT h, we apply for each DIRK-stage i = 1, . . . , s the following
inequality constraints:

(i) Positivity constraint:

(4.7) gK1,k( \widehat KK,(i)) = umin  - 
Nu\sum 
q=1

\widehat KK,(i)
q \phi Kq (xk), k = 1, . . . , Np.
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(ii) Maximum constraint:

(4.8) gK2,k(
\widehat KK,(i)) =

Nu\sum 
q=1

\widehat KK,(i)
q \phi Kq (xk) - umax, k = 1, . . . , Np.

Here the superscript K refers to element K \in \scrT h, and (i) is the ith DIRK
stage. The points xk, k = 1, . . . , Np, are the points in element K where the
inequality constraints are imposed and umin and umax denote, respectively,
the allowed minimum and maximum values of u. The inequality constraints
are imposed using the Lagrange multiplier \lambda ; see (2.1c).

(iii) Conservation constraint:

Since the basis functions \phi Kj , j = 1, . . . , Nu, are orthogonal in each element

K, we have (1, \phi Kj )K = 0 for j = 2, . . . , Nu. Hence, at each RK stage i,

limiting the DG coefficients \widehat KK,(i)
j , with j = 2, . . . , Nu, has no effect on the

element average \=u
K,(i)
h = 1

| K| (u
(i)
h , 1)K = \widehat KK,(i)

1 , with u
(i)
h the solution at

stage i, and therefore does not influence the conservation properties of the
DG discretization.

Limiting the DG coefficients \widehat KK,(i)
1 can, however, affect the conservation

properties of the DG discretization since \=u
K,(i)
h = \widehat KK,(i)

1 . In order to ensure
local conservation, we therefore need to impose in each element the local
conservation constraint

hK
\bigl( \widehat KK,(i)

\bigr) 
= \widehat LK

h,1(
\widehat K(i))

= | K| 
\bigl( \widehat KK,(i)

1  - \widehat Un
1

\bigr) 
+ (G(u

(i)
h ), \phi K1 )K

+
\sum 

S\in \scrF i
h\cap \partial K

\bigl( 
H(u

L,(i)
h , u

R,(i)
h ;nL)

 - \widehat \nu (uh)nL \cdot ((1 - \alpha )Q
L,(i)
h + \alpha Q

R,(i)
h ), \phi L1  - \phi R1

\bigr) 
S

+
\sum 

S\in \scrF b
h\cap \partial K

\bigl( 
H(u

L,(i)
h , ubh;n

L) - \widehat \nu (uh)nL \cdot Qb
h, \phi 

L
1

\bigr) 
S
,(4.9)

with \widehat LK
h,1 the equation for the element mean in element K in (4.6). The

conservation constraint (4.9) is imposed using the Lagrange multiplier \mu ; see
(2.1b). The conservation constraint explicitly ensures that at each RK stage

the equation for the element mean \=u
K,(i)
h is exactly preserved in each element,

and hence the KKT-Limiter does not affect the conservation properties of the
DG discretization.

The remaining Jacobians Dxhi(x) \in \BbbR NK\times NuNK , Dxgi(x) \in \BbbR NpNK\times NuNK and

D\mu \scrL i(z) \in \BbbR NuNK\times NK , D\lambda \scrL i(z) \in \BbbR NuNK\times NpNK , with x = \widehat K(i), in the quasi-

directional derivative matrix \widehat G (3.11) are now straightforward to calculate.
It is important to ensure that the initial solution also satisfies the positivity con-

straints. An L2-projection of the solution will in general not satisfy these constraints
for a nonsmooth solution. To ensure that the initial solution also satisfies the posi-
tivity constraints, we apply a constrained projection using the active set semismooth
Newton method given by Algorithm 3.1. The only difference is now that instead of
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(4.6) we use L2-projection

\widehat Lhi(\widehat U0) =M1 \widehat U0  - (u0, \phi i)\Omega 

and combine this with the positivity constraints (4.7)--(4.8). Here u0 denotes the ini-
tial solution. As the initial solution for the constrained projection we use in Algorithm
3.1 the standard L2-projection without constraints.

The positivity constraints are imposed at all element quadrature points since
only the solution at these quadrature points is used in the DG discretization. In one
dimension we use Gauss--Lobatto quadrature rules and in two dimensions product
Gauss--Legendre quadrature rules. Since the number of quadrature points in an el-
ement is generally larger than the number of degrees of freedom in an element, this
will result in an overdetermined set of algebraic equations and a rank deficit Jacobian
matrix if the number of active constraints in an element is larger than the degrees
of freedom Nu in the element. In order to obtain in Algorithm 3.1 accurate search
directions hk, we use the Gauss--Newton method given by (3.12). This approach can
efficiently deal with the possible rank deficiency of the Jacobian matrix.

In practice, it will not be necessary to apply the inequality constraints in all ele-
ments, and one can significantly reduce the computational cost and memory overhead
by excluding those elements for which it is obvious that they will meet the constraints
anyway.

5. Numerical experiments. In this section, we will discuss a number of nu-
merical experiments to demonstrate the performance of the DIRK-DG scheme with
the positivity preserving KKT-Limiter. All computations were performed using the
default values for the coefficients listed for Algorithm 3.1, except that for the accuracy
tests discussed in section 5.1 we use \epsilon = 10 - 10. The upwind coefficient \alpha in (4.4) is
set to \alpha = 1. In all 1D computations, the local conservation constraint is imposed
and satisfied with an error less than 10 - 12.

5.1. Accuracy tests. It is important to investigate whether the KKT-Limiter
negatively affects the accuracy of the DG discretization in case the exact solution
is smooth, but where also a positivity preserving limiter is required to ensure that
the numerical solution stays within the bounds. To investigate this, we conduct the
same accuracy tests as conducted in Qin and Shu [28, section 5.1]. Both the linear
advection and the inviscid Burgers' equation are considered, which are obtained by
setting F (u) = u and F (u) = 1

2u
2, respectively, and G(u) = \nu (u) = 0 in (4.1).

Example 5.1 (steady state solution to the linear advection equation). We con-
sider

(5.1) ut + ux = sin4 x, u(x, 0) = sin2 x, u(0, t) = 0,

with an outflow boundary condition at x = 2\pi . The exact solution u(x, t) is positive
for all t > 0; see [28]. As the steady state solution we use the solution at t = 500, when
all residuals are approximately 10 - 16. During the computations, the CFL number is
dynamically adjusted between 10 and 89. For the time integration, an implicit Euler
method is used. In Tables 1 and 2, the results of the accuracy tests, without and with
the KKT-Limiter, are shown. The results in Table 2 show that the KKT-Limiter
does not negatively affect the accuracy. For all test cases, the optimal accuracy in
the L2- and L\infty -norms is obtained. Also, the limiter is necessary, as can be seen from
Table 1, and preserves the imposed positivity bound uhmin = 10 - 14 for the numerical
solution.
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Table 1
Error table for steady state linear advection equation (5.1) without limiter.

p N L2 error Order L\infty error Order minuh

20 1.461068e-02 - 2.044253e-02 --5.169578e-03

40 3.702581e-03 1.98 5.287628e-03 1.95 --2.883487e-04

1 80 9.288342e-04 2.00 1.331962e-03 1.99 --1.208793e-05

160 2.324090e-04 2.00 3.336614e-04 2.00 --4.036603e-07

320 5.811478e-05 2.00 8.345620e-05 2.00 --1.282064e-08

20 9.287703e-04 - 1.776878e-03 - --4.952018e-05

40 1.177042e-04 2.98 2.489488e-04 2.84 --1.627459e-06

2 80 1.476405e-05 3.00 3.200035e-05 2.96 --5.149990e-08

160 1.847107e-06 3.00 4.027944e-06 2.99 --1.614420e-09

320 2.309385e-07 3.00 5.043677e-07 3.00 --5.049013e-11

20 5.653820e-05 - 1.230308e-04 - --3.877467e-05

40 3.583918e-06 3.98 7.803741e-06 3.98 --1.326415e-06

3 80 2.247890e-07 3.99 4.950122e-07 3.98 --4.237972e-08

160 1.406175e-08 4.00 3.090593e-08 4.00 --1.331692e-09

320 8.790539e-10 4.00 1.935324e-09 4.00 --4.167274e-11

Table 2
Error table for steady state linear advection equation (5.1) with limiter.

p N L2 error Order L\infty error Order minuh

20 1.464990e-02 - 2.044253e-02 - 9.998946e-15

40 3.702367e-03 1.98 5.287628e-03 1.95 9.999813e-15

1 80 9.288338e-04 2.00 1.331962e-03 1.99 1.000000e-14

160 2.324090e-04 2.00 3.336614e-04 2.00 1.000000e-14

320 5.811478e-05 2.00 8.345620e-05 2.00 1.000000e-14

20 9.290268e-04 - 1.776878e-03 - 1.000000e-14

40 1.177053e-04 2.98 2.489488e-04 2.84 1.000000e-14

2 80 1.476406e-05 3.00 3.200035e-05 2.96 1.000000e-14

160 1.847107e-06 3.00 4.027944e-06 2.99 1.000000e-14

320 2.309385e-07 3.00 5.043677e-07 3.00 1.000000e-14

20 5.742649e-05 - 1.230309e-04 - 9.999990e-15

40 3.592170e-06 4.00 7.803745e-06 3.98 1.000000e-14

3 80 2.248562e-07 4.00 4.950122e-07 3.98 1.000000e-14

160 1.406228e-08 4.00 3.090593e-08 4.00 1.000000e-14

320 8.790580e-10 4.00 1.935323e-09 4.00 1.000000e-14

Example 5.2 (steady state solution to the inviscid Burgers' equation). We con-
sider the inviscid Burgers' equation

(5.2) ut +

\biggl( 
1

2
u2
\biggr) 

x

= sin3
\Bigl( x
4

\Bigr) 
, u(x, 0) = sin2

\Bigl( x
4

\Bigr) 
, u(0, t) = 0,

with an outflow boundary condition at x = 2\pi . The exact solution u(x, t) is positive
for all t > 0; see [28]. As the steady state solution we use the solution at t =
20.000, when all residuals are approximately 10 - 16. During the computations, the
CFL number is dynamically adjusted between 10 and 954. For the time integration,
an implicit Euler method is used. In Tables 3 and 4, the results of the accuracy tests,
without and with the KKT-Limiter, show that the KKT-Limiter does not negatively
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affect the accuracy. For all test cases, optimal accuracy in the L2- and L\infty -norms is
obtained. Also, the limiter is necessary and preserves the imposed positivity bound
uhmin = 10 - 14 for the numerical solution.

Table 3
Error table for the steady state inviscid Burgers' equation (5.2) without limiter.

p N L2 error Order L\infty error Order minuh

20 2.110016e-03 - 3.387013e-03 - --2.347303e-03

40 5.230241e-04 2.01 8.577912e-04 1.98 --5.865522e-04

1 80 1.297377e-04 2.01 2.151386e-04 2.00 --1.466204e-04

20 2.122765e-05 - 3.024868e-05 - --1.048636e-05

40 2.623666e-06 3.02 3.731754e-06 3.02 --6.681764e-07

2 80 3.266401e-07 3.01 4.634046e-07 3.01 --4.196975e-08

20 2.985321e-07 - 1.895437e-06 - 1.895437e-06

40 1.452601e-08 4.36 1.196963e-07 3.99 1.196963e-07

3 80 7.368455e-10 4.30 7.500564e-09 4.00 7.500564e-09

160 3.948207e-11 4.22 4.346084e-10 4.11 4.346084e-10

Table 4
Error table for steady state inviscid Burgers' equation (5.2) with limiter.

p N L2 error Order L\infty error Order minuh

20 2.208009e-03 - 3.637762e-03 - 9.999813e-15

40 5.358952e-04 2.04 9.282398e-04 1.97 1.000003e-14

1 80 1.313948e-04 2.03 2.339566e-04 1.99 1.000003e-14

20 2.116746e-05 - 3.024864e-05 - 1.000003e-14

40 2.622584e-06 3.01 3.731752e-06 3.02 1.000139e-14

2 80 3.266221e-07 3.01 4.634046e-07 3.01 1.000040e-14

20 2.985321e-07 - 1.895437e-06 - 1.895437e-06

40 1.452601e-08 4.36 1.196963e-07 3.99 1.196963e-07

3 80 5.610147e-10 4.70 1.574760e-09 6.25 1.000105e-14

160 3.232240e-11 4.11 9.038604e-11 4.12 1.000017e-14

5.2. Time-dependent tests. In this section, we will present results of simu-
lations of the linear advection, Allen--Cahn, Barenblatt, and Buckley--Leverett equa-
tions. The order of accuracy of the DIRK time integration method is always p + 1,
with p the polynomial order of the spatial discretization. The minimum value of the
residual F (z) and Newton update d in Algorithm 3.1 to stop the Newton iterations is
\epsilon = 10 - 8 for each DIRK stage. This is a quite strong stopping criterion, and in prac-
tice the values are often smaller at the end of each DIRK stage. It is also important to
make sure that the Newton stopping criterion is in balance with the accuracy required
for the constraints. If the algebraic equations are not solved sufficiently accurate, then
it is not likely that the KKT-constraints will be satisfied.

The time step for the DIRK method is dynamically computed, based on the CFL
or diffusion number. If the Newton method does not converge within a predefined
number of iterations, then the computation for the time step will be restarted with
\bigtriangleup t/2. This is generally more efficient than conducting many Newton iterations. In
the next time step, the time step will then be increased to 1.2\bigtriangleup t, until the maximum
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CFL number is obtained. In practice, depending on the severity of the nonlinearity,
the time step will be constantly adjusted during the computations.

Example 5.3 (1D linear advection equation). We consider (5.1) with a zero
right-hand side in the domain \Omega = [0, 10] and periodic boundary conditions. The
exact solution is

u(x, t) = max(cos(2\pi (x - t)/10), 0) for x \in \Omega , t \in [0, T ].

A constrained projection of u(x, 0) onto the finite element space V p
h is used as the

initial solution uh(x, 0). The computational mesh contains 100 elements, and the
maximum CFL number is 1. In Figures 1a, 1c, and 1d, the exact and numerical
solutions at time t = 20 are plotted for, respectively, polynomial orders 1, 2, and
3. At this time the wave has traveled twice through the domain and the numerical
solution matches very well with the exact solution. Also plotted is the value of the
Lagrange multipliers used to impose the positivity constraint uhmin = 10 - 10. These
plots clearly show that the limiter is only active at locations where the constraint must
be imposed and not in the smooth part of the solution. In Figure 1b, the solution
for polynomial order p = 1 without the KKT-Limiter is plotted, which clearly shows
that without the limiter the solution is significantly below the u = 0 minimum of the
exact solution u(x, t).

Example 5.4 (2D linear advection equation). The KKT-Limiter is also tested on
a 2D linear advection equation, which is obtained by setting F (u) = cu, with c =
( - 1, - 2), and G(u) = \nu (u) = 0 in (4.1). The domain \Omega = [0, 3]2 with periodic
boundary conditions is used in the computations. The computational mesh contains
30\times 30 elements. The exact solution is

u(x, t) = max(cos(2\pi (x+ t)/3) cos(2\pi (y + 2t)/3), 0) for x \in \Omega , t \in [0, T ].

A constrained projection of u(x, 0) onto the finite element space V p
h is used as the

initial solution uh(x, 0). The maximum CFL number is 1. In Figure 2a the numerical
solution is shown at t = 6.3428 and in Figure 2b the values of the Lagrange multipliers
used to enforce the positivity constraint uhmin = 10 - 10. Comparing Figures 2a and
2b clearly shows that the KKT-Limiter is only active in those parts of the domain
where the solution needs to satisfy the positivity constraint and not in the smooth
part.

Example 5.5 (1D Burgers' equation). In order to test the KKT-Limiter on prob-
lems with time-dependent shocks, we consider the 1D Burgers' equation on a domain
\Omega = [ - 1, 1] with initial condition u0 = max(cos(\pi x), 0) and periodic boundary con-
ditions. The polynomial order is p = 3. As lower and upper bounds in the positivity
preserving limiter we use, respectively, uhmin = 10 - 10 and uhmax = 1, and no mono-
tonicity constraint is imposed. The initially smooth part of the solution develops into
a shock. The onset of the shock is shown in Figure 3a and the later stages of the
shock at t = 0.65 in Figure 3b. Figure 3c shows the solution when the conservation
constraint (4.9) is not explicitly enforced. The difference in the shock solution for
the discretizations with and without the explicitly imposed conservation constraint is
very small. The main reason for this is that the KKT-Limiter is only active in regions
where the constraints must be imposed and does not affect the discretization at other
places in the domain. This can be seen from the values of the Lagrange multipli-
ers that are used to impose the positivity constraints, which are indicated with red

D
ow

nl
oa

de
d 

01
/1

8/
24

 to
 2

22
.1

95
.8

1.
11

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POSITIVITY PRESERVING LIMITERS FOR DG METHODS A2053

0 1 2 3 4 5 6 7 8 9 10

x

0

0.2

0.4

0.6

0.8

1

1.2

u
h

0

0.5

1

1.5

2

2.5

3

3.5

4

L
a

m
b

d
a

10
-5Time 20

Uh

U-exact

Lambda

(a) p = 1

0 1 2 3 4 5 6 7 8 9 10

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

u
h

Time 20

Uh

U-exact

(b) p = 1

0 1 2 3 4 5 6 7 8 9 10

x

0

0.2

0.4

0.6

0.8

1

1.2

u
h

0

1

2

3

4

5

6

7

8

L
a

m
b

d
a

10
-6Time 20

Uh

U-exact

Lambda

(c) p = 2

0 1 2 3 4 5 6 7 8 9 10

x

0

0.2

0.4

0.6

0.8

1

1.2

u
h

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

L
a

m
b

d
a

10
-7Time 20

Uh

U-exact

Lambda

(d) p = 3

Fig. 1. Example 5.3, 1D advection equation: (a), (c), (d) numerical solution uh with positivity
preserving limiter, polynomial order, respectively, p = 1, 2, and 3; (b) numerical solution uh without
positivity preserving limiter, polynomial order p = 1. Computational mesh 100 elements. Values of
the Lagrange multiplier used in the positivity preserving limiter larger than 10 - 10 are indicated in
(a), (c), and (d) with a red (open) circle.

circles, and are only nonzero in the vicinity of the shock and at locations where the
solution has a discontinuous derivative. The KKT-Limiter to ensure the positivity
constraints therefore has a very small effect on the conservation properties of the DG
discretization, as can be seen by comparing Figures 3b and 3c.

Example 5.6 (Allen--Cahn equation). The Allen--Cahn equation is a reaction-
diffusion equation that describes phase transition. The Allen--Cahn equation is ob-
tained by setting G(u) = u3 - u, \nu (u) = \=\nu , and F (u) = 0 in (4.1). The solution of the
Allen--Cahn equation should stay within the range [0, 1]. Hence, we apply both the
positivity and the maximum preserving limiters, respectively, (4.7)--(4.8) with bounds
uhmin = 10 - 14 and uhmax = 1  - 10 - 10. A constrained projection of u(x, 0) onto the
finite element space V p

h is used as the initial solution uh(x, 0).

Example 5.6a (1D Allen--Cahn equation). As the test case we use the traveling
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(a) (b)

Fig. 2. Example 5.4, 2D advection equation: (a) solution uh, (b) Lagrange multiplier. Com-
putational mesh 30 \times 30 elements, polynomial order p = 3. Values of the Lagrange multiplier used
in the positivity preserving limiter larger than 10 - 10 are indicated in (b) with a red asterisk.

wave solution

u(x, t) =
1

2

\biggl( 
1 - tanh

\biggl( 
x - st

2
\surd 
2\=\nu 

\biggr) \biggr) 
,

with wave velocity s = 3
\sqrt{} 

\=\nu /2. The computational domain is \Omega = [ - 1
2 , 2]. If the

mesh resolution is sufficiently dense such that the jump in the traveling wave solution
is well resolved, then no limiter is required. For small values of the viscosity, the
solution will, however, violate the positivity constraints, except on very fine meshes.
In Figures 4a and 4b, respectively, the numerical solution uh and its derivative Qh and
the exact solutions are shown for the viscosity \=\nu = 10 - 5 on a mesh with 100 elements
and polynomial order 3 for the basis functions. The values of the Lagrange multiplier
used to impose the positivity constraints are also shown in Figure 4a. The solution has
a very thin and steep transition region, but the wave speed is still correctly computed
by the LDG scheme and the KKT limiter ensures that both the positivity and the
maximum constraints are satisfied.

Example 5.6b (2D Allen--Cahn equation). For the 2D test case, the computational
domain is \Omega = [ - 1

2 , 2]
2 and the computational mesh contains 30\times 30 elements. The

viscosity coefficient is selected as \=\nu = 10 - 4. As the test case we use the initial solution

u(x, 0) =
1

4

\biggl( 
1 - tanh

\biggl( 
x

2
\surd 
2\=\nu 

\biggr) \biggr) \biggl( 
1 - tanh

\biggl( 
y

2
\surd 
2\=\nu 

\biggr) \biggr) 
,

whose values are also used as boundary conditions for t > 0. At this mesh resolution
a positivity preserving limiter is necessary. The numerical solution shown in Figure
5a has steep gradients, and the positivity preserving limiter ensures that the bounds
are satisfied. The locations where the limiter are active can be seen in Figure 5b,
which shows the values and locations of the Lagrange multipliers used to impose the
bounds in the DG discretization.

Example 5.7 (Barenblatt equation). The Barenblatt equation, which models a
porous medium, is obtained by setting \nu (u) = mum - 1, m > 1, and F (u) = 0,
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Fig. 3. Example 5.5, 1D Burgers' equation: (a)--(c) solution uh and Lagrange multiplier.
The solution in (a) and (b) is computed with local conservation imposed as an explicit constraint,
whereas (c) shows the solution without explicitly imposing local conservation. Computational mesh
80 elements, polynomial order p = 3. Values of the Lagrange multiplier used in the positivity
preserving limiter larger than 10 - 10 are indicated with a red (open) circle.

G(u) = 0 in (4.1). The exact solution is

u(t, x) = t\alpha 

\Biggl( \biggl( 
C  - \beta (m - 1)

2m

| x| 2

t2\beta 

\biggr) 
+

\Biggr) 1
m - 1

,

with \alpha = n
n(m - 1)+2 , \beta = \alpha 

n , n = dim(\Omega ), (x)+ = max(x, 0), and C > 0. We selected

C = 1 and m = 8. The solution should be positive or zero for t > 0. The initial
solution for the computations is the constrained projection of u(x, 1) onto the finite
element space V p

h . In the computations, Dirichlet boundary conditions are imposed,
where the solution for t > 0 is fixed at the same level as the initial solution.

Example 5.7a (1D Barenblatt equation). We first consider the 1D Barenblatt
equation on the domain \Omega = [ - 7, 7] using a computational mesh of 100 elements. In
Figure 6, the numerical solution without the use of a limiter is shown. It is clear
that near the boundary of u(t, x) > 0, where the derivative of u becomes unbounded,
significant negative values of uh are obtained. These cause severe numerical problems
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Fig. 4. Example 5.6a, 1D Allen--Cahn equation: (a) numerical solution uh and exact solution
u, (b) derivative of numerical solution Qh and exact derivative Du. Computational mesh 100
elements, polynomial order p = 3. Values of the Lagrange multiplier used in the positivity and
maximum preserving limiters larger than 10 - 10 are indicated in (a) with a red (open) circle.

(a) (b)

Fig. 5. Example 5.6b, 2D Allen--Cahn equation: (a) numerical solution uh and (b) Lagrange
multiplier. Computational mesh 30\times 30 elements, polynomial order p = 3. Values of the Lagrange
multiplier used in the positivity and maximum preserving limiters larger than 10 - 10 are indicated
in (b) with a red asterisk.

and do not allow the continuation of the computations.

Example 5.7b (2D Barenblatt equation). In Figures 7a and 7b, respectively, the
numerical solution uh of the 2D Barenblatt equation and the values of the Lagrange
multiplier are shown at time t = 2 on a mesh of 50\times 50 elements. In these computa-
tions, the KKT-Limiter was used, which successfully prevents the numerical solution
uh from becoming negative, which is shown in Figure 7c. The imposed constraint
is uhmin = 10 - 10. Figure 7c also shows an excellent agreement between the exact
solution u and the numerical solution uh.

Example 5.8 (1D Buckley--Leverett equation). The Buckley--Leverett equation
models two phase flow in a porous medium. We consider two cases, respectively, with
and without gravity. Since the solution has to be strictly inside the range [0, 1], we use
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Fig. 6. Example 5.7a, 1D Barenblatt equation: numerical solution uh without limiter and exact
solution u. Computational mesh 100 elements, polynomial order p = 3.

both the positivity and the maximum preserving limiters, with bounds uhmin = 10 - 10

and uhmax = 1  - 10 - 10, respectively. The computational domain is \Omega = [0, 1]. A
Dirichlet boundary condition at x = 0, based on the initial solution, and an outflow
boundary condition at x = 1 are imposed. The viscosity coefficient is \=\nu = 0.01.
Since we do not have an exact solution to compare with, we compute the numerical
solution on two meshes, namely with 100 and 200 elements. The two test cases given
by Examples 5.8a and 5.8b are also considered in [21].

Example 5.8a (1D Buckley--Leverett equation without gravity). The 1D Buckley--
Leverett equation without gravity is obtained by setting G(u) = 0, and \nu (u) and
F (u) = f(u), respectively, as

\nu (u) =

\Biggl\{ 
4\=\nu u(1 - u) if 0 \leq u \leq 1,

0 otherwise;

(5.3) f(u) =

\left\{     
0 if u < 0,

u2

u2+(1 - u)2 if 0 \leq u \leq 1,

1 if u > 1.

The initial condition is

u(x, 0) =

\Biggl\{ 
0.99 - 3x, 0 \leq x \leq 0.33,

0, 1
3 < x \leq 1.

The numerical solution uh and its derivative Qh are shown in, respectively, Figures 8a
and 8b. Also, the values of the Lagrange multiplier used to enforce the constraints are
shown in Figure 8a. The limiter is only active in the thin layer between the phases and
is crucial to obtain sensible physical solutions. The results of 100 and 200 elements
match well.

Example 5.8b (1D Buckley--Leverett equation with gravity). A much more difficult
test case is provided by the Buckley--Leverett equation with gravity, which is obtained
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Fig. 7. Example 5.7b, 2D Barenblatt equation: (a) solution uh, (b) Lagrange multiplier, (c)
numerical solution uh and exact solution u in cross-section at y = 0. Computational mesh 50\times 50
elements, polynomial order p = 3. Values of the Lagrange multiplier used in the positivity preserving
limiter larger than 10 - 10 are indicated in (b) with a red asterisk.

by modifying the flux F (u) as

F (u) =

\Biggl\{ 
f(u)(1 - 5(1 - u)2), u \leq 1,

1 u > 1,

with f(u) given by (5.3). The initial solution is

u(x, 0) =

\left\{     
0, 0 \leq x \leq a,
1

mh (x - a), a < x \leq 1 - 1\surd 
2
,

1, 1 - 1\surd 
2
< x \leq 1,

with a = 1 - 1\surd 
2
 - mh, h the mesh size, and m = 3. The linear transition for x in the

range [a, 1  - 1\surd 
2
] is used to remove the infinite value in the derivative, which would

otherwise result in unbounded values of Qh at t = 0. The Buckley--Leverett equations
with gravity result in a strongly nonlinear problem where the equations change type
and are a severe test for the KKT-Limiter and semismooth Newton algorithm. The
solution uh and values of the Lagrange multiplier are shown in Figure 8c and the
derivative Qh in Figure 8d. The results on the two meshes compare well, and the
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limiter ensures that the positivity and maximum bounds are satisfied.
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(c) uh - gravity
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Fig. 8. Example 5.8a, 2D Buckley--Leverett equation without gravity: (a) numerical solution
uh, (b) numerical solution derivative Qh. Example 5.8b, 1D Buckley--Leverett equation with gravity:
(c) numerical solution uh, (d) numerical solution derivative Qh. Computational meshes 100 and
200 elements, polynomial order p = 3. Values of the Lagrange multiplier used in the positivity and
maximum preserving limiters larger than 10 - 10 are indicated with a red (open) circle in (a) and (c).

The number of Newton iterations necessary to obtain a minimum value 10 - 8

for the residual F (z) and Newton update d in Algorithm 3.1 to stop the Newton
iterations for each DIRK stage strongly varies. It depends on the type of equation,
time step, and nonlinearity. In general, the time step is chosen such that the number of
Newton iterations for each DIRK stage is between 5 and 20. For most time-dependent
problems, the CFL number is then close to one, which is necessary to ensure time
accuracy. Only for the Buckley--Leverett equation with gravity did the time step
frequently have to be less than one in order to deal with the strong nonlinearity of
the problem. In the computations, we did not observe a minimum time step to ensure
positivity, as noticed in [28].

6. Conclusions. In this paper, we present a novel framework to combine positiv-
ity preserving limiters for DG discretizations with implicit time integration methods.
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This approach does not depend on the specific type of DG discretization and is also
applicable to, e.g., finite volume discretizations. The key features of the numerical
method are the formulation of the positivity constraints as a KKT-problem and the
development of an active set semismooth Newton method that accounts for the non-
smoothness of the algebraic equations. The algorithm was successfully tested on a
number of increasingly difficult test cases, which required that the positivity con-
straints are satisfied in order to obtain meaningful results. The KKT-Limiter does
not negatively affect the accuracy for smooth problems and accurately preserves the
positivity constraints. Future work will focus on the extension of the KKT-Limiter
to ensure also monotonicity of the solution.

Appendix A. Derivation of Clarke directional derivative. For com-
pleteness, we give here a derivation of the terms (3.8d) and (3.8e) in the Clarke
directional derivative of F (z) in (2.2). We will follow the approach outlined in [17].
Define z := (x, \mu , \lambda ), \=z := (\=x, \=\mu , \=\lambda ), d := (u, v, w) \in \BbbR p, with p = n + l + m. Con-
sider \=F (z) = Fi+n+l(z), i \in \beta (z). The other Clarke directional derivatives of F are
straightforward to compute. If we consider (3.2) only for the contribution of \=F (z) to
the merit function to \theta (z) and use (2.2) and a Taylor expansion of \=F (z) around z,
then we obtain

\=\theta 0(z; d) = lim sup
\=z\rightarrow z,t\downarrow 0+

1

t

\Bigl( 
\=F (z),min( - g(\=x+ tu), \=\lambda + tw) - min( - g(\=x), \=\lambda )

\Bigr) 
= lim sup

\=z\rightarrow z,t\downarrow 0+

1

t

\Bigl( 
\=F (z),min( - g(x) - J(\=x+ tu - x), \=\lambda + tw)

 - min
\bigl( 
 - g(x) - J(\=x - x), \=\lambda 

\bigr) \Bigr) 
,

with J := Dxg(x) \in \BbbR m\times n. Here higher order terms are omitted since they will
become zero in the limit. Define h(x) :=  - g(x) + Jx; then

\=\theta 0(z; d) = lim sup
\=z\rightarrow z,t\downarrow 0+

1

t

\Bigl( 
\=F (z),min( - J \=x - tJu+ h(x), \=\lambda + tw)(A.1)

 - min( - J \=x+ h(x), \=\lambda )
\Bigr) 
.

For u \in \BbbR n, w \in \BbbR m, define r \in \BbbR m by

ri < 0 on S1 :=\{ i \in \beta (z) | \=Fi(z) > 0, - (Ju)i > wi\} 
\cup \{ i \in \beta (z) | \=Fi(z) \leq 0, - (Ju)i \leq wi\} ,(A.2a)

ri > 0 on S2 :=\{ i \in \beta (z) | \=Fi(z) > 0, - (Ju)i \leq wi\} 
\cup \{ i \in \beta (z) | \=Fi(z) \leq 0, - (Ju)i > wi\} .(A.2b)

Let \=x \in \BbbR n be such that

(A.3)  - J \=x+ h(x) = \=\lambda + r.

Note that such an \=x exists for i \in \beta (z) since (A.3) is equivalent to  - Ju = w+ r with
u = \=x - x and w = \=\lambda  - \lambda as components of the search direction d. Choose t \in (0, t\=x)
for t\=x > 0 such that

( - J \=x+ h(x) - tJu)i < (\=\lambda + tw)i for i \in S1,(A.4a)

( - J \=x+ h(x) - tJu)i > (\=\lambda + tw)i for i \in S2.(A.4b)
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Note that such a t\=x exists; see Remark A.1. We then obtain

min(( - J \=x+ h(x) - tJu)i, (\=\lambda + tw)i) =

\Biggl\{ 
( - J \=x+ h(x) - tJu)i for i \in S1,

(\=\lambda + tw)i for i \in S2.

Use now (A.3) and (A.2); then

min(( - J \=x+ h(x))i, \=\lambda i) = min(\=\lambda i + ri, \=\lambda i) =

\Biggl\{ 
\=\lambda i + ri for i \in Si,
\=\lambda i for i \in S2.

Combining the above results and using (A.3) again gives

min(( - J \=x+ h(x) - tJu)i, (\=\lambda + tw)i) - min(( - J \=x+ h(x))i, \=\lambda i)

=

\Biggl\{ 
 - t(Ju)i for i \in S1,

twi for i \in S2

=

\Biggl\{ 
tmax( - (Ju)i, wi) if \=Fi(z) > 0,

tmin( - (Ju)i, wi) if \=Fi(z) \leq 0.

Taking the limit in (A.1) and using (3.3) for \=\theta (z; d) then gives (3.8d) and (3.8e).

Remark A.1. Conditions (A.2) imply (A.4). Use  - J \=x + h(x) = \=\lambda + r in (A.4);
then we obtain

(r  - tJu)i < twi for i \in S1,(A.5)

(r  - tJu)i > twi for i \in S2.(A.6)

I. If i \in S1, \=Fi(z) > 0, then from (A.2a) we obtain  - (Ju)i  - wi > 0 and (A.5)
implies ri + t( - (Ju)i  - wi) < 0. Choose t <  - ri

 - (Ju)i - wi
= t\=x. Since ri < 0 and

 - (Ju)i  - wi > 0 for i \in S1, \=Fi(z) > 0, we obtain that t\=x > 0.
II. If i \in S1, \=Fi(z) \leq 0, then (A.2a) implies  - (Ju)i  - wi \leq 0 and (A.5) gives

ri + t( - (Ju)i  - wi) < 0. Since both ri and  - (Ju)i  - wi < 0, any t > 0 will imply
(A.5).

The proof for i \in S2 is completely analogous and is therefore omitted. Hence
there exists a t\=x > 0 for (A.4).

Appendix B. Verification of conditions for quasi-directional derivative.
In this section, we show that the quasi-directional derivative (3.9) satisfies the con-
ditions stated in (3.5), which are necessary to ensure convergence of the Newton
algorithm defined in Algorithm 3.1.

Consider condition (3.5a): First note that

F \prime 
i (z; d) = F 0

i (z; d) = Gi(z; d), i \in Nn,

F \prime 
i+n(z; d) = F 0

i+n(z; d) = Gi+n(z; d), i \in Nl,

F \prime 
i+n+l(z; d) = F 0

i+n+l(z; d) = Gi+n+l(z; d), i \in \alpha \delta (z) \cup \gamma \delta (z),

since \alpha \delta (z) \cup \gamma \delta (z) \subset \alpha (z) \cup \gamma (z). If i \in \beta \delta (z) and Fi+n+l(z) \leq 0, then

min( - (Ju)i, wi) \leq  - (Ju)i, wi.
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Since Fi+n+l(z) \leq 0, this implies

Fi+n+l(z)min( - (Ju)i, wi) \geq Fi+n+l(z)( - (Ju)i), Fi+n+l(z)wi.

If i \in \beta \delta (x) and Fi+n+l(z) > 0, then

 - (Ju)i, wi \leq max( - (Ju)i, wi).

Hence, since Fi+n+l(z) > 0, this implies

Fi+n+l(z)( - (Ju)i), Fi+n+l(z)wi \leq Fi+n+l(z)max( - (Ju)i, wi).

Comparing all terms then immediately shows that G(z; d) satisfies (3.5a) and (3.5c).
Condition (3.5b) directly follows from the definition of G in (3.5).

Acknowledgment. We would like to acknowledge Mrs. Fengna Yan from USTC
and the University of Twente for her contributions in testing the KKT-Limiter for
several DG discretizations.
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