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“Anyone who is not shocked by quantum theory has not
understood it.”—Niels Bohr

“I think I can safely say that nobody understands quantum
mechanics.”—Richard Feynman
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The theory of the interaction of quantum fields of radiation
(photons) and Dirac fields (electrons and positrons) formulated in
the early 1930s is known as quantum electrodynamics (QED).

Puzzle: the first QED approximation (e.g. for Compton scattering)
produces a reasonable result, while the second, involving
vacuum-polarization effects, yields an infinite contribution.

Renormalization was first developed in quantum electrodynamics
(QED) to make sense of infinite integrals in perturbation theory.
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The puzzle was resolved in the late 1940s, mainly by Bethe,
Tomonaga, Feynman, Schwinger and Dyson.w�
Covariant and gauge-invariant formulations of QED that allow
computations of observables at any order of perturbation theory.

Tomonaga, Schwinger and Feynman: 1965 Nobel Prize.
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With a series of important developments, the perturbative
construction of quantum field theory was essentially complete.

(Bogoliubov, Parasiuk and Hepp (BPH); Zimmermann,
Epstein, Glaser, Steinmann, Faddeev, ’t Hooft, Veltman;
Becchi, Rouet, Stora (BRS); Gell-Mann, Low, Kadanoff, etc).

Wilson’s theory of renormalization group, as a “theory of theories”
, connects the microscopic with the macroscopic. The work earned
Wilson a Nobel Prize.
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Renormalization has subsequently become one of the fundamental
aspects of quantum physics and a criterion for acceptability.

▶ Statistical mechanics
▶ Condensed-matter/solid-state physics
▶ Standard Model
▶ Non-perturbatively renormalizable QFTs
▶ Asymptotic freedom/safety
▶ · · ·
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Quantum field theory deals with “∞-dimensional geometry”, which
lies behind many of its nontrivial consequences and predictions.

Typically (but not always) a physics system is described by a map

S : E → R.

▶ E : space of fields.
▶ S: action functional.
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Typical examples

▶ Scalar field theory
E = C∞(X)

▶ Gauge theory

E = {connections on V → X}

▶ σ-model
E = Map(Σ,X)

▶ Gravity
E = {metrics on X}
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Path integral

▶ Classical physics is decribed by the critical locus (equation of
motion, eg: Laplace equation, Yang-Mills equation, etc)

Crit(S) = {δS = 0}.

▶ Quantum physics can be described by Feynman’s “path
integral”

⟨O⟩ :=
∫
E
OeiS/h̄

O: quantum observable. ⟨O⟩: correlation function.
▶ Mathematical challenge for such ∞-dim integral.
▶ Asymptotic analysis leads to - renormalization theory.
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We are mainly interested in “integrals”∫
f

We rarely compute integrals by definition (Riemann/Lebesgue).
Instead, we use symmetries and differential equations.
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Example: Gaussian integral

Gaussian integral ∫
R

dx√
2π

e− 1
2

x2 = 1

or more generally∫
Rn

∏
i

dxi
√
2π

e− 1
2

A(X) =
1√

det A
, where A(x) =

∑
i,j

Aijxixj

A = (Aij) is a positive definite matrix.
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Feynman diagram expansion

∫
Rn

n∏
i=1

dxi
√
2π

e− 1
2

A(x)+I(x) ∼ 1√
det(A)

exp
( ∑

Γ:conn

WΓ

|Aut(Γ)|

)

Combinatorial formula via the inverse matrix A−1 and I.

A−1 : propagator
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In quantum field theory, we can use Feynman’s formula to model
the ∞-dim integral asymptotically.
Example (ϕ4-theory)∫

E=C∞(X)
[Dϕ] e− 1

h̄ S[ϕ], S[ϕ] = 1

2

∫
X
ϕ∆ϕ+ λ

∫
X
ϕ4.

where ∆ is the Laplacian operator (∆ = −
∑

i
∂
∂xi

∂
∂xi on flat space).

The inverse ∆−1 is

Green’s function G(x, y) ∼ ∆−1

The index i, j is replaced by points x, y on X.
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The Green’s function is singular along the diagonal

G(x, y) ∼ 1

|x − y|d−2
, x → y.

In Feynman diagrams, we will encounter integrals where we
multiply many G’s together. They are divergent in general!

This is called the UV divergence in QFT, due to the nature of
∞-many degrees of freedom.
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Basic idea of renormalization (we use Wilson’s viewpoint): we set
a scale and cut the full degrees of freedom

E =
⋃

EL, EL2 = EL1 ⊕ E[L1,L2].

On each EL, we have an effective action SL. They are related by

e i
h̄ SL1 =

∫
E[L1,L2]

e i
h̄ SL2 .

Renormalization group flow.
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There are many ways we can cut:
▶ Momentum cut
▶ Distance cut
▶ Energy/ Eigenvalue cut
▶ · · ·

To construct such SL, we can have
▶ Scale dependence of the coupling constants
▶ Running under renormalization group flow
▶ Renormalizable theories: perturbation computation
▶ · · ·
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Some examples of renormalization method in QFT

Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) approach
▶ A scheme for subtracting UV divergence in Feynman integral
▶ Locality of subtractions (divergent counter-terms).
▶ Normalization conditions (finite counter-terms).

Connes-Kreimer: BPHZ Renormalization as a Birkhoff
decomposition over the dual Hopf algebra of Feynman graphs.

Costello: Homotopic renormalization in BV formalism.
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Why QFT has rich structures?

Spacetime : X =⇒ Fields : E = Γ(X,E).

▶ E is the space (called fields) where we will do calculus
∫
E .

▶ Topology of X leads to new structures in ∞-dim geometry

When X =point, E = Rn. We arrive at the usual calculus.

Calculus = 0-dim QFT .

When dim X > 0, the geometry and topology of X come in!
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One algebraic structure associated to the topology of X is

observables=functions on fields

Given an open subset U ⊂ X, we can talk about

Obs(U) = observables supported in U

Example: δ-function.
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Observables form an algebraic structure as follows: given disjoint
open subset Ui contained in an open V:

∐
i Ui ⊂ V

we have a factorization product for observables⊗
i

Obs(Ui) → Obs(V).

▶ Physics: OPE (operator product expansion)
▶ Mathematics: factorization algebra.

▶ Origin: Beilinson-Drinfeld in 2d CFT
▶ Costello-Gwilliam: (perturbative renormalized) QFT.
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Example: dim X = 1 (topological quantum mechanics)
QFT in dim = 1 is quantum mechanics.

In the topological case, for any contractible open U, Obs(U) = A.

The factorization product doesn’t depend on the location and size:

A ⊗ A → A =⇒ associative algebra.

The operations of left and right multiplication are characterized by

H•(R− {0},Z) = Z Left ⊕ Z Right.
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Example: dim X = 2 (chiral conformal field theory)
The factorization product of 2d chiral theory is holomorphic.

O1 O2

O1(z)O2(w) ∼
∑

n
O1(n)O2(w)

(z−w)n+1

which is the 2d analogue of “associative product”. We find
∞-many binary operations O1(n) · O2 !

In this case, observable algebra forms a vertex algebra.

The binary operations operations are parametrized by

H0,•
∂̄

(C− {0}) = Span {zn}n∈Z .
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An important class of quantities are correlation functions of
observables. They capture “global” information of the theory.
▶ Local correlation

⟨O1(x1) · · · Oi(xi) · · · On(xn)⟩ , xi ∈ X.

It is singular when points collide, hence a function on

Confn(X) := {x1, · · · , xn ∈ X|xi ̸= xj fori ̸= j}.

▶ Non-local correlation∫
Confn(X)

⟨O1(x1) · · · Oi(xi) · · · On(xn)⟩

which might be divergent and require further renormalization.
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Example: abelian Chern-Simons and Linking

We consider the abelian Chern-Simons theory on S3.

CS[A] = 1

2

∫
S3

A ∧ dA, A : 1-form on S3

Let C,C′ be two disjoint circles inside S3. Consider〈∫
C

A
∫

C′
A
〉

=

∫
[DA]eiCS[A]

(∫
C

A
)(∫

C′
A
)

The propagator is d−1.
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In a suitable interpretation (gauge), this correlation function is

〈
[C′], d−1([C]

〉
=

∫
C′

d−1([C])

=fill C by a disk Σ and intersect with C′

=Linking number of C and C′.

We find the Gauss Linking formula

Link(C,C′) =
1

4π

∫
C

∫
C′

r⃗1 − r⃗2
|⃗r1 − r⃗2|3

· (d⃗r1 × d⃗r2).
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Example: Iterated integral and quantum mechanics
Let LX = Map(S1,X) free loop space of X. Consider

Confn(S1)× LX
π

��

ev // Xn

LX

where ev sends (p1, · · · , pn)× γ → (γ(p1), · · · , γ(pn)). Then

π∗ev∗ =
∫

Confn(S1)
ev∗ (−) : (Ω(X))⊗n → Ω(LX)

defines a quasi-isomorphism [K.T. Chen]

Hochschild(Ω(X)) → Ω(LX).

This can be viewed as correlation functions in quantum mechanical
model, detecting the topology of the free loop space LX.
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Geometry enhanced by QFT
One main object in geometry and topology is the vector bundle

E

��
X

This is fibered by Rn, which can be viewed as 0-dim QFT.

QFT0

��
X
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In generel, a QFT of σ-model Σd → X

X
Σd

will produce a geometry of

QFTd

��
X

We get a large class of new geometries enhanced by QFT.
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Geometric Application: Quantum Mechanics and Index Theory
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Topological quantum mechanics (TQM)

TQM leads to a path integral on the loop space∫
Map(S1,X)

e−S/h̄ h̄→0=⇒
∫

X
(curvatures)

Topological nature implies the exact semi-classical limit h̄ → 0,
which localizes the path integral to constant loops.
▶ LHS= the analytic index expressed in physics
▶ RHS= the topological index.

This is the physics “derivation” of Atiyah-Singer Index Theorem.
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In [Grady-Li-L 2017, Gui-L-Xu, 2020], a rigorous connection
between the effective BV quantization for topological quantum
mechanics and the algebraic index theorem.

(X, ω)

Topological quantum mechanics

Quantization solved by Geometry

Algebraic index theory
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X
They glue [Fedosov] on X to give a bundle of Weyl algebras

W(X)

��
X

▶ [Grady-Li-L, Gui-L-Xu]: Quantization of TQM. Correlation
function of non-local observables

∫
Conf(S1) gives

⟨1⟩ =
∫

X
eωh̄/h̄Â(X).

This is the simplest version of algebraic index theorem which was
first formulated by Fedosov and Nest-Tsygan as the algebraic
analogue of Atiyah-Singer index theorem.
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Geometric Application: 2d Chiral CFT and Chiral Index
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Witten’s “Index Theorem” on loop space

Replace S1 by an elliptic curve E. (Witten: index of Dirac
operators on loop space).

· · ·

· · ·

2d Chiral analogue of algebraic index?
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Example: 2d Chiral CFT

A chiral σ-model
φ : E → X

· · ·

· · ·

X

will produce a bundle V(X) of chiral vertex algebras

V(X)

��
X

The quantization/renormalization leads to a flat gluing [L].
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The issue of singular integral and renormalization

Correlation function of local observables

⟨O1(z1) · · · On(zn)⟩

is very singular along diagonals and this integral requires
renormalization. We need to understand the meaning of∫

Σn
⟨O1(z1) · · · On(zn)⟩”=”?

▶ Geometric renormalization by regularized integrals [L-Zhou].
▶ Elliptic chiral algebraic index [Gui-L].
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Regularized integral (L-Zhou 2020)
Let us first consider the integral of a 2-form ω on Σ with
meromorphic poles of arbitrary orders along a finite subset D ⊂ Σ.
Locally we can write ω = η

zn where η is smooth 2-form and n ∈ Z.

We can decompose ω into

ω = α+ ∂β

where α is a 2-form with at most logarithmic pole along D, β is a
(0, 1)-form with arbitrary order of poles along D, and ∂ = dz ∂

∂z is
the holomorphic de Rham. We define the regularized integral

−
∫
Σ
ω :=

∫
Σ
α+

∫
∂Σ

β

This does not depend on the choice of the decomposition.
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−
∫
Σ is invariant under conformal transformations. The conformal

geometry of Σ gives an intrinsic regularization of the integral
∫
Σ ω.

The regularized integral can be viewed as a “homological
integration” by the holomorphic de Rham ∂

−
∫
Σ
∂(−) =

∫
∂Σ

(−).

The ∂̄-operator intertwines the residue

−
∫
Σ
∂̄(−) = Res(−).
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In general, we can define

−
∫
Σn
(−) := −

∫
Σ
−
∫
Σ
· · · −
∫
Σ
(−) .

This gives a rigorous and intrinsic definition of

⟨O1 ⊗ · · · ⊗ On⟩2d := −
∫
Σn

⟨O1(z1) · · · On(zn)⟩.
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More Examples
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Example: dim X = 4 (holomorphic theory)

We consider 4d holomorphic theory on X = C2. The algebraic
structures that lie behind the factorization products will contain

H•
∂̄(C

2 − {0}) = H0
∂̄ ⊕ H1

∂̄ .

By Hartogs’s extension theorem, H0
∂̄
= C[z1, z2] while

H1
∂̄ = C

[
∂

∂z1
,
∂

∂z2

]
.

So it will predict degree one OPEs indexed by H1
∂̄
.

What are they in physics?
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Example: Mirror symmetry

Mirror symmetry is about a duality between

symplectic geometry (A-model) ⇐⇒ complex geometry (B-model)

∫
Map(Σg,X) (A-model)

localize
��

Fourier transform ∫
Map(Σg,X′) (B-model)

localize
��∫

Holomorphic maps(Σg,X)
oo //______

��

∫
Constant maps(Σg,X′) ???

��
Gromov-Witten Theory Hodge theory

The B-model can be viewed as a suitable mysterious way to “count
constant surfaces”, which will be related to the variation of Hodge
structures and its quantization.
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Example: Gauge/Gravity duality

Gauge theory at large N =⇒ Dynamics of Gravity

closed string

open string

D-brane

(Gravity) (Gauge Theory)

[Costello-L]: Renormalization theory for
▶ Twisted supergravity
▶ Open-closed string field theory in the large N.
▶ Koszul duality
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New structures of mathematics blow up from QFT
and yet to come!

Thank you!

I have taught a course in spring 2022 on aspects of this talk. If you
are interested in, you can find lecture information at
https://sili-math.github.io/teachingpage.htm.
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Hyperbolicity Ubiquitous

Jinxin Xue

Tsinghua University
Seminar at Hua class of USTC

September 26, 2022



Hyperbolicity: its structures and implications



Hyperbolic fixed point

Figure: Phase portraits for elliptic and hyperbolic fixed points

ODEs:[
ẋ
ẏ

]
=

[
0 −1
1 0

] [
x
y

]
,

[
ẋ
ẏ

]
=

[
1 0
0 −1

] [
x
y

]
.



Instability and structural stability

• A hyperbolic fixed point is unstable: for almost all points
close to the fixed point, its forward evolution will escape.

• However, it also enjoys the structural stability: If we perturb

the second equation

[
ẋ
ẏ

]
=

[
1 0
0 −1

] [
x
y

]
, the phase

portrait will be deformed, but can be brought back to the
standard one.



Arnold cat map

A more interesting example is the Arnold cat map, discovered by
Anosov.
Let T2 = R2/Z2 be the 2-torus, consider

A =

[
2 1
1 1

]
: T2 → T2.



Properties of the cat map

• The matrix A has detA = 1 and trA = 3, so two eigenvalues

λ1 =
1

2
(3 +

√
5) > 1 >

1

2
(3−

√
5) = λ2

and corresponding eigenvectors

v1 =

(
1,

1

2
(−1 +

√
5)

)
, v2 =

(
1

2
(−1 +

√
5),−1

)
.

• The set of lines parallel to v1 (respectively v2) are preserved
by the map A. Each line has irrational slope, when projected
to the torus T2, it winds around the torus densely.

• The two sets of lines projects to two transversely intersecting
foliations on T2, one is expanded by A and the other is
contracted.



Ergodicity

Hyperbolicity is a mechanism that implies some important
properties of a dynamical system. Let f : M → M be a map
preserving the volume vol on M.

Definition (Ergodicity)

The map f is called ergodic, if for any set S with vol(S) > 0 and
vol(S∆f −1(S)) = 0, we have vol(S) = 0 or vol(S) = vol(M).

Theorem (Birkhoff ergodic theorem)

Let f be ergodic, then for a.e. point x ∈ M, and any φ ∈ L1, we
have as n→ ±∞

1

n

n−1∑
k=0

φ ◦ f k(x)→ 1

vol(M)

∫
φ(x) dvol.



Hopf Argument

Theorem

The Arnold cat map is ergodic with respect to volume.

Proof.

• Choose any continuous function φ, and we consider S±n (x) :=
1
n

∑n−1
k=0 φ ◦ f ±k(x).

• If two points x and y are on the same stable leaf, i.e. line
parallel to v2, then we have |Anx − Any | ≤ Cλn2, n > 0, thus
limn S

+
n (x) = limn S

+
n (y).

• Similarly, if two points x and y are on the same unstable leaf,
i.e. line parallel to v1, then we have |Anx−Any | ≤ Cλn1, n < 0,
thus limn S

−
n (x) = limn S

−
n (y).

• Modulo a zero measure set, we can connect two points x , y
by stable/unstable leaves. Thus, limn S

±
n (x) = limn S

±
n (y).



The idea of deterministic chaos

• The form

1

n

n−1∑
k=0

φ ◦ f k(x)→ 1

vol(M)

∫
φ(x)dvol

in Birkhoff ergodic theorem is similar to the law of large
numbers in probability theory, e.g. coin tossing.

• It is a general principle that a system with sufficient
hyperbolicity is ergodic. In other words, the system, even
though deterministic, after sufficiently many iterations, the
dynamics behaves so chaotic that it looks like a random
variable. We can even pursue central limit theorem like results.



Some natural philosophy

In the scattering process of two particles, a small change of initial
positions leads to a huge change of the outgoing velocities. This is
a form of hyperbolicity. The outgoing velocities are almost
random. When the number of particles is large, the system tends
to be ergodic, and the process becomes not reversible. This is the
origin of time arrow, characterized by the increasing of entropy.



Hyperbolic surfaces



Classification of closed surfaces

Arnold: this is a theorem as significant as Columbus’ discovery of
America.



Most surfaces are hyperbolic

• On S2, we can give it a metric of constant curvature 1;

• On T2, we can give it a metric of constant curvature 0;

• On Σg , g > 1, we can give it a metric of constant curvature
-1.

The last case is called hyperbolic, for the following reason.
If we study the distance between nearby geodesics, we get the
Jacobi field equation

x ′′ + Kx = 0,

where K is curvature.

• when K = 1, the solution oscillates x = A cos t + B sin t;

• when K = 0, the solution grows linearly x = A + Bt;

• when K = −1, the solution grows exponentially
x = Aet + Be−t .



Hyperbolicity and negative curvature



Angels and Demons by Escher



Fundamental groups

The elements of the fundamental group π1(X ) of the pointed
topological space (X , x0) are the homotopy classes of closed paths
in X .

• π1(S2) = {∗};
• π1(T2) = Z2;

• π1(Σg ) = 〈a1, b1, . . . , ag , bg | b−1g a−1g bgag . . . b
−1
1 a−11 b1a1 =

1〉.
The fundamental group of a hyperbolic surface is also very
complicated, almost a free group. They fits into the general theory
of hyperbolic group of Gromov. It is known that most groups are
hyperbolic.



Most 3-manifolds are hyperbolic
It was known to Thurston that

• Every closed 3-manifold is obtained from the 3-sphere S3 by
Dehn surgery along some link whose complement is
hyperbolic.
• Suppose L ⊂ M3 is a link such that M \ L has a hyperbolic

structure, then most manifold obtained from M by a Dehn
surgery along L has hyperbolic structures.



Thurston’s theory on mapping class groups



Classification of mapping class groups

The mapping class group of a surface is its group of
homeomorphisms modulo isotopy.
For example, the MCG of T2 is given by SL2Z/{±I}. It can be
classified into (A ∈ SL2Z/{±I})
• trA = 0, 1, periodic, ∃p ∈ N s.t. Ap = I , e.g.

A =

[
0 −1
1 0

]
;

• trA = 2, reducible, An grows linearly, e.g. A =

[
1 1
0 1

]
;

• trA > 2, Anosov, An grows exponentially, e.g.

A =

[
2 1
1 1

]
.

It is not hard to see that most mapping classes are Anosov.



Thurston’s geometrization program

3-manifolds are modeled on the following 8 types:

• Spherical S3;

• Euclidean R3;

• Hyperbolic H3;

• S2 × R;

• H2 × R;

• T1H2;

• Nilmanifold;

• Solv-manifold.



Mapping torus construction

Let φ : T2 → T2 be a diffeomorphism. We have the mapping
torus construction giving a 3-manifold Mφ: We glue the boundary
{0} × T2 and {1} × T2 of the product space [0, 1]× T2 via
(0, φx) ∼ (1, x).



3-manifolds from the mapping torus construction

• If φ is periodic, then Mφ is finitely covered by T3.

• If φ is reducible, then Mφ is a nilmanifold.

• If φ is Anosov, then Mφ is a solv-manifold.



Pseudo Anosov elements

For surfaces of genus greater than 1, similarly, the mapping class
group can be classified into three classes: periodic, reducible and
pseudo-Anosov.

For a pseudo-Anosov element, the surface admits two foliations
that intersect transversely, except for finitely many singular points.
The map expands one foliation and contracts the other.



Dehn twist



Composing Dehn twists produces pseudo-Anosov elements

• Note that we have the observation[
2 1
1 1

]
=

[
1 1
0 1

] [
1 0
1 1

]
,

which means that the cat map is the composition of two Dehn
twists along two intersecting “essential” circles of the torus.

• This is also true in general. The MCG is generated by Dehn
twists.



A higher dimensional generalization



We are interested in pursuing a higher dimensional generalization
of Thurston’s theory.
In particular, we are interested in generalizing the principle of
composing Dehn twists produces hyperbolicity.
The problem is in general very difficult, and it makes sense to
study manifolds and maps with some additional structures.



Symplectic manifold and symplectic maps

Definition

• A symplectic manifold is a manifold M2n of dimension 2n en-
dowed with a sympletic form ω, that is a closed nondegenerate
2-form.

• A diffeomorphism φ : M → M is called a symplectic map
if φ∗ω = ω. The set of all symplectic maps are denoted by
Symp(M, ω).

In dimension 2, i.e. n = 1, a symplectic map is the same as an area
preserving diffeormorphism.



Arnold-Seidel Dehn twist

We define the model Dehn twist τ on T ∗Sn to be

τ(x , v) =

{
σ(r(|v |))(x , v) |v | > 0
(A(x), 0) |v | = 0

for x ∈ Sn, v ∈ T ∗x Sn, where

• σ(r(|v |))(x , v) means starting from the point x ∈ Sn we travel
along the geodesic in the direction v for time r(|v |),

• and r(t) ∈ C∞(R,R) is a smooth function such that
r(−t) + r(t) = 2π, r(t) = 0 for t ≥ ε, and
dk r
dtk

(0) = 0,∀ k ≥ 1.

The twist τ reduces to the standard Dehn twist when n = 1.



Symplectic Dehn twist as a nontrivial element in
Symp(M , ω)

The symplectic Dehn twist is a remarkable symplectically nontrivial
map, but it is isotopic to identity in the group of diffeomorphisms
(Seidel).

It is also known in many cases the generator of all symplectic
mapping classes.



Composition of symplectic Dehn twists

Theorem (Wenmin Gong, Zhijing Wang, X. )

Let S1 and S2 be two Lagrangian spheres in a symplectic manifold
M, intersecting transversely at a single point. Then there exist
symplectic Dehn twists τ1 and τ2 of S1 and S2, such that for any
k , ` ∈ Z, k` < 0, the topological entropy of the composition
τ = τk1 τ

`
2 of symplectic Dehn twists is positive, i.e. htop(τk1 τ

`
2) > 0.

Remark

• Lagrangian submanifold Ln ⊂ M2n is a submanifold such that
ω|TL = 0.

• Positive topological entropy means expansion, and we also have
a structure generalizing the singular foliations.



Symplectic growth rate

The last result shows certain hyperbolicity of the composite
symplectic Dehn twists as diffeomorphisms. To take into account
of the symplectic aspects, we need to study the behavior of
symplectic invariants.

Definition (Symplectic growth rate)

Let (M, ω) be a symplectic manifold, and φ a symplectomorphism
of M. Let (L1, L2) be a pair of connected compact Lagrangian
submanifolds of M. When the Lagrangian Floer cohomology group
HF(L1, φ

n(L2)) are well defined for all n ∈ N, then the symplectic
growth rate of the triple (φ, L1, L2) is defined by

Γ(φ, L1, L2) = lim inf
n→∞

log rank HF(L1, φ
n(L2))

n
.



Exponential growth of Floer homology groups

We next show that the exponential growth can actually be
achieved by composite symplectic Dehn twists.

Theorem (Wenmin Gong, Zhijing Wang, X. )

Let M be an exact symplectic manifold which is equal to a
symplectization of a contact manifold near infinity. Let S1 and S2
be two Lagrangian spheres of M intersecting transversely at a
single point, and τ1 and τ2 be two symplectic Dehn twists along
the spheres S1 and S2 respectively. Then for any k , ` ∈ Z with
k` 6= 0, 1, 2, 3, 4, we have that Γ(τk1 τ

`
2 , S1,S2) > 0;



The standard map conjecture

• It is conjectured that the following standard map
φa : T2 → T2

φa(x , y) = (x + y + a sin x , y + a sin x)

has positive Lyapunov exponent λ(x) := lim 1
n logDφna(x) for

x in a positive measure set of T2.

• The problem is asking if a map in a reducible mapping class[
1 1
0 1

]
has dynamics similar to an Anosov class.

• We may ask similar problem for composite symplectic Dehn
twist, which is isotopic to identity, but symplectically Anosov.
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