mINWEE

HERE

PERFRAKE

BERFEFR

2023428

YZW (USTC) Optimization Algorithms 1/467

Outline |

@ Unconstrained Optimization

© Constrained Optimization

o ZRFKI

o FLMARKMMAL
© Convex Optimization

@ Convex Set and Convex Function

@ Convex Optimization and Algorithms
@ Sparse Optimization

@ Sparse Optimization Models

@ Sparse Optimization Algorithms

© Optimization Methods for Machine Learning

YZW (USTC) Optimization Algorithms 2 /467

Outline 11

@ Typical Form of Problems
@ Stochastic Algorithms

@ Other Popular Methods

@ Conclusion

YZW (USTC) Optimization Algorithms 3 /467

@ The course is devoted to the mathematical fundamentals of
optimization and the practical algorithms of optimization.

@ The course covers the topics of nonlinear continuous optimization,
sparse optimization, and optimization methods for machine learning.

YZW (USTC) Optimization Algorithms 4 /467

Objectives of the course are

@ to develop an understanding of the fundamentals of optimization;
@ to learn how to analyze the widely used algorithms for optimization;

@ to become familiar with the implementation of optimization
algorithms.

YZW (USTC) Optimization Algorithms 5 /467

@ Knowledge of Linear Algebra, Real Analysis, and Mathematics of
Operations Research are very important for this course.

@ Simultaneously, the ability to write computer programs of algorithms
is also required.

YZW (USTC) Optimization Algorithms 6 /467

Topics Covered

Unconstrained Optimization

Constrained Optimization

Convex Optimization

Sparse Optimization

Optimization Methods for Large-scale Machine Learning

YZW (USTC) Optimization Algorithms 7 /467

Textbook and References

1 R. Fletcher. Practical Methods of Optimization (2nd Edition), John
Wiley & Sons, 1987.

2 J. Nocedal and S. J. Wright. Numerical Optimization (2nd Edition),
Springer, 2006.

3 S. Boyd and L. Vandenberghe. Convex Optimization, Cambridge
University Press, 2004.

4 M. Elad. Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. Springer, 2010.

5 L. Bottou, F.E. Curtis, J. Nocedal. Optimization methods for
large-scale machine learning. SIAM Review, 60(2): 223-311, 2018.

YZW (USTC) Optimization Algorithms 8 /467

(1) Homework (10%)
(2) Project (30%)

(3) Final Exam (60%)

YZW (USTC) Optimization Algorithms 9 /467

Outline |

@ Unconstrained Optimization

YZW (USTC) Optimization Algorithms 10 / 467

Outline 11

YZW (USTC) Optimization Algorithms 11 /467

@y V!ILVloligallictU UPLIHTHEd LIV

YZW (USTC) Optimization Algorithms 12 / 467

T REMI

TR &ML B)RE _
min f(x) (1)

HEmRRYREXER" EHHERY, RERTEMAREZEEREE
Z=[8) R

YZW (USTC) Optimization Algorithms 13 / 467

CHEEP A

BEEEVI(x)2ERH LIS MRIRA T E, SERARMUETH
EETH. EREHMNTAREMARRE, KRRFFMASKBEEDKS
BT TENHETGESR.

GRADIENT (#E£%)
(0) #¥E4: EEUEHHIEEX® e R, £k :=0.

(1) HEHZEAE: FIRESHNEEHIREHITER RS ERE
24K = —H VxR, (@RVF(xH) =0, MLEFRITE)

() WESKEF: R—EREAEEmin (<) + ad9), Riti
o = ay, Sxkt1) = x(K) 4 o, d*), _k =k+1, EZEIE(1)F.

YZW (USTC) Optimization Algorithms 14 / 467

WERRFGRE: ithE R

TR EMALIE)RE: Xng]erL f(x)

F(x) = F(x) + V()T (x = xH) + O(lx = xH||?) (2)

ENGath 75 [a]
d®) = —vr(xK),

)”'Jélakﬂﬂgll\ﬁ'f, I ﬁg1ﬁ

F(x) + e d®)y < F(xR).

YZW (USTC) Optimization Algorithms 15 / 467

SRR E: 47 E

F(x) = F(xR) + VAT (x — x(K)
42 TR x9) 1 O))

N| —

BRE 2R 75 1)
d®) = G, tvF(x),

Heh G, = V2F(x() R iR B XK S AL A Hesse R /% .

YZW (USTC) Optimization Algorithms 16 / 467

MELKET: —H#RE

AN P, BER—4ESRILEE

min p(a) = f(x(k) + ad(k)) (4)
a>0

HE L KEFRI G ETRA—YER FE (Line Search).

YZW (USTC) Optimization Algorithms 17 / 467

MELKET: —H#RE

HLLEE (4) NS RNE ALK, HEFRREH—YER R (Exact Line
Search).

LERINER—ERRERENEEFFBEEINRE. ERERH—
HRER, BEHRRITERBEIE(4) M ER—RE 2T TEER, KR
LESIAEBREENIEIMEE, SRAEEREK.

YZW (USTC) Optimization Algorithms 18 / 467

MELKET: —H#RE

AR ES, FEARKRB—HERMIULEE(4), 2L L HERLE
HEMERIERIERSK, IR AIEBTH—4ER R (Inexact Line
Search).

SHMHM—4HERIRL, RS HR TRAEH— SR TR
HEHE

YZW (USTC)

Optimization Algorithms

19 /467

MELKET: —H#RE

wa=ES
f(xU) + ad®) = £(x(¥)
N EH.

T2, FIMNEEXE0, u]AKGHEESFHNTEZINEKET,
Bla € [0, dk].

¢(0)

YZW (USTC)

Optimization Algorithms

20 / 467

MELKET: —H#RE

Goldstein(1965) conditions:

() < ¢(0) + pay'(0) (5)

() = (0) + (1 = p)ase (0) (6)

Hep € (0,1/2)2—1NE

ik
W
5

YZW (USTC) Optimization Algorithms 21 /467

MELKET: —H#RE

Goldstein(1965) conditions:

YZW (USTC)

0) #(1-p)ag(0)

bR

Optimization Algorithms

22 /467

MELKET: —H#RE

Wolfe(1968)-Powell(1976) conditions:

YZW (USTC) Optimization Algorithms 23 /467

MELKET: —H#RE

Wolfe(1968)-Powell(1976) conditions:

p(0) + pag (0)

YZW (USTC) Optimization Algorithms 24 / 467

MELKET: —H#RE

ARSZKREZED, A (8)BHGRILHINUAFZMAFTEA

¢ ()] < =o' (0) (9)

YZW (USTC) Optimization Algorithms 25 /467

MELKET: —H#RE

E T Wolfe-Powel N B IEFE A — 4R R E X!

(0) AEMBE—HHERXE0,a], UFp € (0,1/2), o € (p,1).
8o = 0(0) = F(xK), o, = ¢ (0) = VF(xK) Tk,
/?\81 = O, a = O_(,QO]_ = @0780]_ = 900-

EEUESH Mo € (a1, a2).

YZW (USTC) Optimization Algorithms 26 / 467

MELKET: —H#RE

E T Wolfe-Powel HEN K IERE T —HEIR R E X

(1) 78y = p(a) = F(xF + ad¥). Fe(a) < (0) + pay’ (0), MEEE]

B)E. BN, Hopr, 0, oBERS IR EZTR M (1), FHi5
HR/N S

1 a1 — o)
a + = (a1 — @)%y .
2(p1—¢) — (a1 — a)yp;

FREn=a,a=4 EEFE(1)S.

(©
Il

YZW (USTC) Optimization Algorithms 27 / 467

MELKET: —H#RE

E T Wolfe-Powel iEN B IEHE T — 4R RE X -

(2) #He' = ¢'(@) = VA(xM) 1 ad)TdW). ' (a) > 00'(0), it
oy = o, FHEILER. BN, Be, ¢, o HERASRIGEST
Hp)(1), #FEA A

G = @y — (‘91/_7)90_
Y1~

gD/
FREa =a,a=8,01=¢,0, = ¢, BEH(1)H.

YZW (USTC) Optimization Algorithms 28 /467

MELKET: —H#RE

[BEH: 55 _ERETFWolfe-Powel iEN HIERE TR — 4 RE X 1E
BN pM) (1), p@ (1) EHRIER. |

YZW (USTC) Optimization Algorithms 29 /467

£ SLI e

NEEMIER LR, MRFEREEZENRIBRIR (BR), HiE
SRETARIEEANENREAE (HERER), WRZAKZERER
£ RS (Global Convergence).

S5z, RRERIIMILIEEYIIASFT, 7 AT LURIERT 4 R A =51
WS iR, MFRXFRIEKIEBBEBULELME (Local Convergence).

YZW (USTC)

Optimization Algorithms

30/ 467

£ SLI e

ATIERRACERN TS, RINEREBERREFRSABERRJLE
ERKIER, BERIOEEW = v WERAEZ—LE. T,

g T4RIBEFE, dW L ERETESE.
R, BAMBRIEIRE gDk, w2

O < g — u, Vk (10)

Hrhy >0 (5kEk%),

YZW (USTC) Optimization Algorithms 31 /467

£ F/sg

i%@k € [0,%/2), HENXA

Tk g Tk "
TePIT®] ~ Te®] (1)

cos @y =

ﬁis(k) = akd(k) = x(k‘H) — X(k).

YZW (USTC) Optimization Algorithms 32 /467

£ SLI e

THAESHPOEN TR TREEEN 2 BUSMHLEL.
LR e TR
BVA)EKREE LX) = {x| f(x) < F(xO)} LEERZEE. THE

FERRRAEIOSE-V(xK) Z B0 FHER(10), HhS Ko H
=ZMREEZ—RE:

(1) #BMA—HNER

(2) GoldsteinEM| (5),(6)

(3) Wolfe-Powell ;] (7),(8)
i

B, REMENKBVFxK) =0, FHEf(xH) = —oo,
HFEZVF(xH) = 0.

1

YZW (USTC) Optimization Algorithms 33 /467

£ SLI e

£ RS MEIERA: (RIERAWolfe-Powel /N BY 52)

BRI ARK, g = VFxxK) £ 0 Faf(xK)BTRE,
#F(xR) — FxkHDY S 0. B (7)8, —g® s 0.

(RIE) &g — 0z, ABAFEEe > 0TI} e lE
Bllg| > . M

k)_

—g®’ lg®11s%|| cos x > els™|sin

R (10)A|sH || — 0.

YZW (USTC) Optimization Algorithms 34 /467

£ F/sg

RS IERR (40) :
NEHg(x) = VF()TELKXO) L&ELE, Bt

T T
g(k+l) s(k) = g(k) s(k) + o(”s(k)H)
4

g(k+1) T(k)

g(k) Ts(k)

(12)

YZW (USTC) Optimization Algorithms 35 /467

£ F/sg

SRS IERR (85) -
3% 5 Wolfe-Powell:#E M| #2(8)

gkt 1) To(k)

<o<l1 13
gk Tsk) — (13)

HFE. BEiltdgk) — 0

[BEFE: FHFEUERRET GoldsteinEN ARSI — 4R RBEEN £ /BIX
.

[a—

YZW (USTC) Optimization Algorithms 36 /467

RIE NEEMABEFEAEIREZNREERE, HARERXA
KD = () — 0, V£ (K(K),

YZW (USTC) Optimization Algorithms 37 /467

BE:

(0) EE#IEEXO) |ELIFIRE: > 0, £k = 0.

(1) &g = vF(x). ZE||gW| < e, MIFIEER T K.
BENHITEQ2)SE.

(2) &d) = g HE—HHEBESKE Fa, lE5

F(xK) + ad)y = mir(} F(x%) + ad®)).
a>

(3) EREHFEHD =xK) + ayd0), Bk = k + 1, ERIZE(1)%,

YZW (USTC) Optimization Algorithms 38 /467

RIE T EZEE RS ETE:
®f(x) e Ct, ERFETRERRA EMZAEEH) —4H8%R, W~4%
HIER ST E— B aMERES.

39 /467

Optimization Algorithms

YZW (USTC)

o .

/
.
A
e
’
’
-
-
on+i -

.
Xn+ l:XF"Sgn

~

gn . ‘\

YZW (USTC) Optimization Algorithms

—fkith, RIETREER BEMBSERE.

MTHFR—MEEZ BRIV R E (Rosenbrock function)

f(x1,x2) = 100(x2 — x12)2 +(1- X1)2.

YZW (USTC) Optimization Algorithms

41/ 467

WF()RIRAMSEERS, ExXCOMBEEZM Taylor B FFTIEL
F(x¥) 4 5) m gW(s) = F(xW) + g0 s 4 %sTcks (14)

Heg) = VF(xW), G = V2£(x(K).

Bq (s)R/MEES
s=-G. g, (15)

ERBHEREREE- G, gWFR AT E(Newton Direction).

YZW (USTC) Optimization Algorithms 42 / 467

1
f(x) = EXTGX —c’x

HIER T (GRIEREM), MEBHEV2F(x) = G.
HEE—REKRBESH, =G, A

d® = —HVFxx) = —G71(Gx® —¢) = —(x(O) —x*).
XEB, x* =Gl Ilﬂ ﬁE’JE—ﬁEﬁ# X0 £ x*, E)bx't’tozo =1, TR2#%

x(1) = x(0) 4 ,d(©) . FItEENE, FAEESXOWME, E—RE
REBENATEIA E‘ﬁtﬁ

YZW (USTC) Optimization Algorithms 43 / 467

RIFLLEESS, ATLUARBMES T —ARAVIEL M R 3 f (1), FERF L
BERAE

dk) = —2F(x() =1y £ (xK)
R EIEM.
FAl, SR = INERARA
x(KHD) = x(K) 4 g0 = x(K) _ G-1g(k), (16)
X R A EA A IE R A

YZW (USTC) Optimization Algorithms 44 / 467

MTEEZRBYMS, FWE—LRIAER&MME. TFTIEZRE
H, FPOEATERREZBRRERNKSRMNME. BEHTEREHAER
VANV Vit 3 by BT - € 2 5 b Vi W B ook 3 i S A=Y O ST
HOUTSBR B — AR = TR 1R

AJ LUIERA 44515 B SR AR UAC S 14 70 — M MST SR R

YZW (USTC)

Optimization Algorithms

45 / 467

Hg R s E IR -

®f e C? xNFEHEIAC, HBVFA(x*) = 0. MRV (x*)EE, BIFREH
B9 HesseXBPE G (x)i i Lipschitz&& 4, BIFES > OEBXEIA(,))B

|Gij(x) = G(y)] < Blx =yl (17)

MxF—NE &, X (16)BEX, FIEFF{xWsEx, BEAEFZ
PR USSR 2R

YZW (USTC) Optimization Algorithms 46 / 467

HER—:
it g(x) = VF(x), BRf € C?, &1\
g(x — h) = g(x) — G(x)h + O(||h[]?).

PAN

Sx =xt0,h = htk) = x(K) —xr R ERS

0= g(x") = g(x!) —) = g(x(¥)) — (N +- o(In"]?). (18)

YZW (USTC) Optimization Algorithms 47 / 467

'i.iEﬂﬂ— (f';) :

T G(x)# ELipschitz&t, FIE[G(x k))]_lﬁ

R, HR(18)FaEN
T [G(xK)] 7 18

0 = [6(x¥)] " g(x¥)) — h(¥) 1 O(||h*)|2)
— " — (x0) — [G(XW)}‘I g(x()) + O([h(D[=2)
x* — xUkt1) - O(||h(K)||2)
—h(k+1) 4 O(||h(012)

FrEA|[h(HD || = O(|[h(9]2), Bl % BB i siRE.

YZW (USTC)

Optimization Algorithms

48 / 467

WEBH—:
MTFHEANIE, ®AINIE
(HD) —) _ Gr1gtk) 2 A (R0, (19)

AEBRg(x*) =0, G(X)IEE (FEFR), BAKX) =
FRE - = A~ A(x) B

D =5 = (AR — A()]
< [l A (x")(x “—XNH~WA(@Wﬂ“—XW%

Hepx i T fnx z B EL L .

YZW (USTC) Optimization Algorithms 49 / 467

WERA— (£5):
E% / !/ ’
A(¥) =[x = G(x) g = —-[G(x) T ex)
LA (x*) = 0. AT
IREFD] =[x — || < y[[x®) — x*)|2 = ||n)2

HApBEHA UK T (x)EX AN =S

YZW (USTC) Optimization Algorithms 50 /467

FER(16) AR EE, WRIEIAIIE =xO R RIMHEE, A
A R F (X} RS ST B AR AR

AREREN 2 RS, BB FFUAERERE.

YZW (USTC) Optimization Algorithms

51 /467

tean, FESFHUE AR A —H R R RBE DS K
PR Je -k -

(0) SEEUATHE X, ZBLRIFRE: > 0, &k := 0.

(1) 8 = VF(x). #H|gW|| < e, FIERFFHHEE.
BN FHITE2) .

(2) FR&MAIRAGd = —gW, KB4 m7FEX).

(3) REA—#EEHESKEFay, SxED = x(K) 4 q,d),
Bk :=k+1, ERIFE(1)E.

YZW (USTC) Optimization Algorithms 52 /467

H R E A E B E 2 Hesse M Gk = V2 (x)REE. XET =ik
MR R—EGWNE, BIREH () RERM.

AT RARXLRME, AMEL TREIEERR.

YZW (USTC) Optimization Algorithms 53 /467

Goldstein & Price (1967)

—Gk_lg(k), it cosf, >1n
d(k) = (20)
—gv), otherwise

YZW (USTC) Optimization Algorithms 54 / 467

Levenberg(1944), Marquardt(1963), Goldfeld et. al(1966)

(Gk + pucd)d) = —g® (21)

YZW (USTC) Optimization Algorithms 55 /467

BXREBN—M A ER, EREHE

d"V?f(x)d < 0,
TFRd A f XL T I A5 1) o

Y HesseBFE V2 f (xR IEERT, SaBhE 5 EERIEIEFHER S —H
Bz,

YZW (USTC) Optimization Algorithms 56 / 467

MABUE

FErERE R S 2 EEBWSRIR (EEZMIREER),
BEAFTEEEHE_—WS, MBBREHAHesse BV (x(K) 7T
BEEEE, EEFR. AT RS,

MNMBERE THSGTE, EEAXEBER: B2 ZMSHBERH IS
115% 1 A Hesse KB R A3 G (x (k) L.

RMEIENERERNGERRE, FHIATRRIGEIE.

YZW (USTC) Optimization Algorithms 57 / 467

MABUE

[B A4 B IE AR
Grd = —g(k)
X(k+1) = X(k) _|_ Oékd(k)

AT #iE Hesse BRI G, L AR I Hy, BAED =M S V2F(x(K)) 5—
MEVFBxXFR.

YZW (USTC) Optimization Algorithms 58 /467

MABUE

BEORERFERID), G BEFREEf (<) EXCTD L= Taylor B FF -

f(x) ~ f(X(k+1)) + vf(x(k+1))T(X _ X(k+1))
+7(X . X(k+1))TV2 f(x(k+1))(x . X(k-&-l))7

N| —

Vf(x) ~ Vf(x(k—i-l)) 4 v2f(x(k+1))(x o X(k-i-l))7
FRox =

VI(xK)) m V(KDY 4 72 (xkFD) (k) — (k1)

YZW (USTC) Optimization Algorithms 59 /467

MABUE

B0 = x(k+1) _ (k) (k) = f(xk+D) — vF(x(K)), M|

V2f(x(k+1))s(k) ~ y(k) o VZf(X(kJrl))fly(k) ~ S(k).

X, HEHSORyWE, TR EREHECD LA Hesse kB A%
HANBEEREREIENK PE L HesseBPFIFEIIA N Hy 11, EEHE

Hk+1y(k) = S(k). (22)

BEBN(22)FMEERFM, wIRAMEESREMT.

YZW (USTC) Optimization Algorithms 60 / 467

MABUE

A BE R EEN— BN

(0) EB#BEEXO, SHy =1, k:=0.

(1) HEEZEFEIK = —H,VF(xK).

(2) RA—#EEBHELKETF o, Sx6FD =X 1 q,d).

(3) HFxW B+, FFiHesse BMETAITIL, BENHEE R

RIEEIZHRIH 1. Bk = k+ 1, BEIZE(1)H,

YZW (USTC) Optimization Algorithms 61 /467

MABUE

TEENFRITIE EFEADE R 58 E 7 T PAF I XA Hesse B P& 1 AR
A Hit1.

YZW (USTC) Optimization Algorithms 62 /467

MABUE

WH 2B kRIER B Hesse BRI AOIE L, FRATHEBLAHRZEH 1, BD
Hi+1 = Hi + Eg,

HehE B—MRFREEERE .

Att, AIRAXFRIE—(SR1)RIE

Hii1 = Hi + auuT, (aeR,ueR").

YZW (USTC) Optimization Algorithms 63 / 467

MABUE

FR AT 5% 14 (22) &R

Hiry® = Hiy® 4 (auTy®)u = s®)
Bu 5758 — HyW—8, BEE" — Hy® £ 0.
$%Wu:§H—HWW,ﬂNa:—?——MW S|

(s(k)__ f{ky(k))(s(k)._.}1ky(k))T

Hir1 = Hy + &~ Hy®) Ty . (23)

EXFRAXFRIX—RIE

YZW (USTC) Optimization Algorithms 64 / 467

MABUE

ZIREIEM

EX: R—MEARERAERMNBREALRE RER KRS,
MFR XM ERBIREIE M,

YZW (USTC) Optimization Algorithms 65 / 467

MABUE

FFRFE— R IERISR MR -

0 SR TREMEFBREN, B Hy® =sO r=k—1,..- 1,0
0 BATRAKILM, BNFoREM T EEHT—#ERMAGN
KIFMRER, BH, = [V2F(x)]L.

[BER: HIERNIRR—REMGFFUER EiR SR, |

YZW (USTC) Optimization Algorithms 66 / 467

MABUE

MIRBE—RIERNRRZE, NEERFHERIEMH, 1 HIEEM.

R (s — HyN Ty > ofF, SEFREE—IZEARERIFEEM. x4
SUEEERMERIE, BMEEK — Hy®)Ty(> 0 %2, EthageR)
NS B SE ERERE .

XL EE SRR —RERUFTUEN A BB ABRMY .

YZW (USTC)

Optimization Algorithms

67 / 467

MABUE

KA XHRFE = (SR2)#KRIE
Hii1 = Hi + auu’ + bw ',
FHES A mF M (22)3z, NA
Hir1y®) = Hiy®™ + (auTy® Y + (bv Ty)y = s,
RXEu vERTEH—TRER, EE—MAZMNEREE:

u=sk), auTy(k) =1
v=Hy®, byTylk) =1

YZW (USTC) Optimization Algorithms 68 / 467

MABUE

Btk . .
W7 Hy Wy gy,

s Ty YT Hyk)

Hiy1 = Hi + (24)

LE3X#RA DFP(Davidon-Fletcher-Powel)#IE/A3, EiDavidon(1959)%¢
i, 5% Fletcher & Powell(1963)f&2 Mk

YZW (USTC) Optimization Algorithms 69 / 467

MABUE

DFPIRIE (24) R B MRIELAN, EARSEEMR.
(=) MTREH CREBH—HERR)

0]‘:;'_'Efgll‘éts EﬂHky(g) = 5(6)76 =k — 17 o 7170'
Q@ TUREEIEM, BIH, = [V2F(x*)] L.
O ek, BIMEH, = /Y, &R LA E.

(Z) STF—RAR&ME

O REMRBEEME, EmMdHRZTESE.
0 BRERFE3N + O(n)RKEZE.
Q FEEFBEMSIERE.

YZW (USTC) Optimization Algorithms 70 / 467

MABUE

A (ERD &4

Hicay®) = s

HAH, 1 BHesseXBfEE AT ;

Bi1s) = y(¥)

H A B, 1 Hesse B AT

YZW (USTC) Optimization Algorithms 71/ 467

MABUE

FA X FREE AR IEFIUFBR A H 1y () = s AT EIH, BIDFPRIIEAR

T T
HOF) _ sWs T Hyy®y® Ty
i s Ty)T H,y)

YZW (USTC) Optimization Algorithms 72/ 467

MABUE

BFGS (Broyden-Fletcher-Goldfarb-Shanno) #Z1E

Hiolt, FATTMBERELEB, 15K = y(WIBB|ETF B AT FREE 12
EAR
yRy T B ks g,

YT sk TRk

F8(25) KR A% TF B BIBFGSHIE

(BFGS)
Biin =B+

(25)

YZW (USTC) Optimization Algorithms 73 /467

MABUE

RN X B HIBFGSIIIE “Ki%”, BRATLASEI X T HBIBFGSIIIE 2
2

NOLTNORROROM
() Ty(k) 7~ (k) Ty(k)
TN OROLNONORTS

N 5(0) Ty (k) '

S
HE) = Hie+ (1+

[BEE: BARHC MR A EREEE, Ba,u,b,v. |

YZW (USTC) Optimization Algorithms 74 / 467

MABUE

#H—, BBQ6)RTF {H & B,s— y)Hi, FB3|XTBHDFPKIE
AR

()7 B, s(k) y(Ky(T
(k) Ts(k) 7 y(k) Ts(k)
Bisky() T y(sk) T g,

N y () Ts(k) '

B = B+ (1+

YZW (USTC) Optimization Algorithms 75 / 467

MABUE

BR—RIEMKELR

Sherman-MorrisonZTEH: 8A c R™"RIEFFEME, u,v e R"ZEED

B, Bl+viATu#£0, MARNT—KIEA +uw IEHFR, BEBEALIE
A 1,7 A-1
A fuv' A™
A Nlop 12— = 2
i) 1+viA-1y (28)

[B£%5. FER—KRERKREAR, AH PSP |

k+1 k+1

YZW (USTC) Optimization Algorithms 76 / 467

MABUE

H—HSE AN

@ R. Fletcher, Practical Methods of Optimization (2nd Edition). John
Wiley & Sons, 1987.

e D. C. Liu and J. Nocedal, On the Limited Memory Method for Large
Scale Optimization. Mathematical Programming B, 45(3), pp.
503-528, 1999.

YZW (USTC) Optimization Algorithms 77/ 467

FERBEE A

$AET5 15

EX: RGRnx nEEM, RIFHE—AEERR
{d© d@ ... d)} #E8ID " GdU) = 0(i #),
MFRA©) d@) ... d(H)2G—iRH,

BRI RIERRAET, HEG = /8, HERRIAIER.

YZW (USTC) Optimization Algorithms 78 / 467

FERBEE A

HipHEE ()

(0) AEEEMEG, EE#IESEXO) H8gO) = vi(x©) H#5EdOF
8g®7dO® < 0. &k :=0.

(1) KIEHH—H R LKk, Blay = arg min f(x(9) 4 ad(9).

(2) EHER mxkD) = x(K) 4 0, d0) FHHgiEd D {E
BdkT6dl) =0, j=0,1,--- k.

(3) Bk :=k+1, REIEH(1)S.

YZW (USTC) Optimization Algorithms 79 / 467

FERBEE A

AR [EAR AR 2R SR B BOAR MBI R o = /Y, (BE AT LU 2
ALIBAE R R B BIAR /MK [B) R

HMBEZEN—NEEMRRE, RAENTHH—HRER, EREEHRE
BIREIEE.

YZW (USTC) Optimization Algorithms

80 / 467

FERBEE A

HIPFEEEAEE: TRROTRRE(x) = fxTGx—i-c X,
HPFEPERITHER—HRER, NeP %ﬁﬁx(kﬂ B (x)TEL MR

k
V={x|x=x0+%"gd" vg e R}
Jj=0

S EIRE—TR/ N R

YZW (USTC) Optimization Algorithms 81 /467

FERBEE A

IERR: IR A ELEFFE M G- e EAd©, dD), . dK).
iR EME X, {dO.dD), ... dO gk,

TERAZIE: MAHk < niL
g(k+1)Td(j) =0,,;=0,1,---, k.

B xR R B B g (Y = v (x(kHD)) 5F =
I‘Ejspan{d(o)7 d(l), coo ,d(k)}IE)féo

HItt 515 H EEREL .

YZW (USTC) Optimization Algorithms 82 /467

FERBEE A

R (80): EERBH—4HRRA, XV R

g+t Tq0) — o.

R, Y = k B, gktD (k) =

YZW (USTC) Optimization Algorithms 83 /467

FERBEE A

MEER (&X): FEXE, BF
g0 = glhetD) _ o) = Gk D) _ 4 (K)) = Go(k) = o Gd(K).

Y < kBB
k
gkt gl) = g+ Tgi) £ 3y Tg0)
i=j+1
o T /: k T 7

=gl d0) + 3 q;d) " GdU)
i=j+1

=0+0

=0

YZW (USTC) Optimization Algorithms 84 /467

FERBEE A

MR (82): e bR, WMIERRT

g(1<+1)Td(,i) =0,j=0,1,--, k.

YZW (USTC) Optimization Algorithms 85 /467

FERBEE A

HiL: MTFERONTREY, HEEE—EHERHFRENER, 28RES
AR IRBR N

YZW (USTC) Optimization Algorithms 86 /467

FERBEE A

HATHERFEERAIRZIEY, AMNFERLEL—1TRENEZE (B
THEFHENER) . BIERRETIEE, EHERAFEEGHEMER,
RERLARBEE,

TEEMNTHI REH, HEHIAEHEZNEEER

YZW (USTC) Optimization Algorithms 87 / 467

FERBEE A

_\,.,

BREB(x) = %XTGer Tx, BHHGRn x nERM, cRnmE.
S AL B
g(x) = Vf(x) = Gx+c.

ERd(© ZT—g(O), EHAx) = xO) + agdO sh B K aoHER—ULTRE,
g " d@ = 0.

MigdD = —g® + gNdO 2 ED T Gd© = 0, B8

OO

YZW (USTC) Optimization Algorithms 88 /467

FERBEE A

B, £d@ = @ 4 P40 1 g4, 11352 5 1%
Bd@7Gd0) =0, j=0,1. ATIB

g =0,
40 g7
LT

YZW (USTC) Optimization Algorithms 89 /467

FERBEE A

—fgits, EEORIERH,

k—1
d0 = g 5~ gkg0),
j=0
?:r-ﬁ(k #BdN Gd) =0, j=0,1,--- . k—1, MH
0 MO g(k)T(g(j—i—l) —gl)
AT Gdl) 0T (gl — gli))

8]

XEFe® g =0, j=0,1,--- k1, &3

ﬁ}k)zo’jzo’l’...7k—2

7
g _ 8" gl
T gk Tg(k-1)

YZW (USTC) Optimization Algorithms 90 / 467

FERBEE A

SHXF IR R BB B H L (Fletcher & Reeves, 1964)

(0) AEMER, HEO = g(x(), £d® = O K :=0.

KT (k
(1) ERFFED = x0) 1 0, dK), Hrha, = 4 e
d) T Gdk)
(2) HEgD = g(x+D), MEHITHE S
k+1) T (k+1
mdktl) = _glk+1) 4 g, 4(k) Heg, = gD et
gk Tg()

(3) Bk :=k+1, REIFH(1)S.

YZW (USTC) Optimization Algorithms 91/ 467

FERBEE A

Steepest Descent

m—— COnjugate Gradient

X*

YZW (USTC) Optimization Algorithms 92 /467

FERBEE A

G EEMRETE: RBMREHR(x) = TGx+c x, MR AEH—
ER R EEEm < nPiE %ﬁFz&t BB/ < k < mRRiL
INIES S

dTGd) =0, g gl) =0, j=0,1,--- k1

dR) gk = _g(k) T (k)

span{g®, g ... g0} — span{g®, Gg© ... Gkg®}
span{d© d® ... 4} — span{d©®, Gg® ... Gkg®}

(B8, E AT]

YZW (USTC) Optimization Algorithms 93 / 467

FERBEE A

AR A BIFE R R BER ML, AR

(K1) — (0 ¢ g d(R).

SKo, BBEHEHIEBH—HERRAE, mdeDHEINT:
d(k+1) — _g(k+1) + /Bkd(k)

YZW (USTC) Optimization Algorithms 94 / 467

FERBEE A

Hrh
g(k+1)Tg(k+1)
Bk := =————(Fletcher — Reeves)
g(k) " g(k)
(k1) T (glkt1) _ (k)
= = (e g) (Hestenes — Stiefel)
d(k) " (gk+1) — g(k))
(k1) T (glkt1) _ (k)
Bk == g (g + e”) (Polak — Ribiere — Polyak)
g(k) " g(k)
(k+1) T L (k+1)
Bk == % (Dixon)
—d(k) " g(k)
g(k+1)Tg(k+1)
Bk = (Dai — Yuan)

I(k)Tii Lo g (o)
YZW (USTC) Optimization Algorithms 95 / 467

FERBEE A

MTFAEZIRAY, HeHERERP AR~ LR
dktl) = —g(kt) 1 g d(K) AIEERER M E (RIEEH—HERE
FREY) o

Eit, nBUEHRINBOIZBESMRARRETELSEEAERSE, B
Lq(en) — _g(t’n)’ (=1,2,...

XMRIEFRAES R, XFRLEHEALIMEER LM E
&Ko

YZW (USTC) Optimization Algorithms 96 / 467

FERBEE A

W E PR Ry e sh ERIA R T — RV IR L R R MU b R BRARE
R, BEEREMNSKEFREZERFE, FEPITHREITRIERS
H—HEE R,

YZW (USTC) Optimization Algorithms

97 / 467

FERBEE A

BT8P ERPITERRIREE, BICEMBINBRNSTIHR{ZV],
T AT IERA X L AR RR R BNE K R T B LM Y. KPR BIRZERIFNT,
ARZIER TXRERUS KU M AU SUR R .

YZW (USTC) Optimization Algorithms 98 / 467

FERBEE A

MLt ERERRIREMRE, HEHEEROLEUGTUEF. BR,
HAEME AT R R A RN R AR BRR B E, mASGMF
WUEABHEE BIRIENK P EFHesseZEFE (BH) BLIAEHIZIZZ
FREA, HERMAIHRRT B ARREAR, HEBEEZESIHITITE
HIZFAL -

YZW (USTC) Optimization Algorithms 99 / 467

FERBEE A

The preconditioned conjugate gradient method

AXRSHIERT, RRRRILIEHEEENRERS, MFHLERLE
A9,

YZW (USTC) Optimization Algorithms 100/ 467

FERBEE A

HE—EHEEER

@ M. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of
Standards, 49 (6), 1952.

e K. Atkinson, An Introduction to Numerical Analysis (2nd Edition).

John Wiley & Sons, 1988.

M. Avriel, Nonlinear Programming: Analysis and Methods. Dover

Publishing, 2003.

G. Golub and C. Van Loan, Matrix Computations (3rd Edition).

Johns Hopkins University Press.

YZW (USTC) Optimization Algorithms 101 /467

SiE 5k

ATHREBERCENE BRSNS, ZRIENIRA T —HRZRREE.

YZW (USTC) Optimization Algorithms 102 / 467

SR 75 7%

ATRIBERENEBWEE, ZRIERIRA T —HERRE.

— B RRRERE—MEZF AN, REBEXNAERFELNS
KEFay, FENERSXETD = x() 4 o, dk).

YZW (USTC) Optimization Algorithms 102 / 467

SR 75 7%

ATRIBERENEBWEE, ZRIERIRA T —HERRE.

— B RRRERE—MEZF AN, REBEXNAERFELNS
KEFay, FENERSXETD = x() 4 o, dk).

ME, FNITIE S —HFHE /USRS
— {88735 (Trust-Region Method).

YZW (USTC) Optimization Algorithms 102 / 467

SR 75 7%

BRI 5EE £ E X BNE A Sx (K gy 4R1E;
Qe ={xeR"|x—xB|| < e},
XEBEQ MAEHIE, e2EHIEHER.
BEEXMBEE, ZRIER K (s)RBFERE(x)B—NEERIERL,

M ZE SRS PRI KRR, BEBEOMR s, 3
Ex(k+1) = (k) 4 (k).

YZW (USTC) Optimization Algorithms 103 / 467

SR 75 7%

S8 AR A R B EEBIEAR B E S, E5ERRENT
Pt — I RE AL

EHEFENXEEE RS, ™METEKBIRE M Hesse B %
(BHIEM) ZEER.

YZW (USTC) Optimization Algorithms 104 / 467

SiE 5k

(Bt

min g(k)(s) = f(x(9)) 4 g(k) s+ %STB;(S

(29)
st |s]| < ex.

Hrhs = x — x(K) glk) = VF(x(K), 3FRIE B, R HesseXEFE
V2 (XN EIEL, e > OAEBIEER, |- (| IE—TBH.

YZW (USTC) Optimization Algorithms 105 / 467

SiE 5k

TR SRR F R e ?

BAVERE ZRAER G (s) 33 BARERE F (<) IS T2 BIE R iF M
BEF .

YZW (USTC) Optimization Algorithms 106 / 467

SR 75 7%

’FIEIER (20) s, £ BARR B TS
Acti = F(xM) — £(x(K) 4 s(K))
AZBRTREE, STRRBRHHTIEE
Prey = 19(0) — ¢ (")
AT TIEE. EXEE

. Acte F(x)) — £(x(K) 4 (k)
k: pr—

Prey q(k)(0) — q(k)(s(k)
TEET REESERRBZ BN —HIEE.

YZW (USTC) Optimization Algorithms 107 / 467

SR 75 7%

L i1, RPRRB R H W (s) 5 BFReR # B —BUE TR T,
R AT LAB K 12 o LAY KIS HEL -

MR > EREIAL HRNFFEHEF Rl E.

WMRnIBEFRIMAE, RFAGW(s)5BREHFHN—BIERE FIRE,
RN R e LAGR MBI

YZW (USTC) Optimization Algorithms 108 / 467

SR 75 7%

ERUEEE

(0) AEMESXO), EREEZEN ERe,
€>0,0<11<12<1,0<nm<1l<mn Ble € (0,8), €k :=0.

(1) IR gW| < e, L&, BN, RBEBETIEH(29)8 20,
(2) WHEbLMER, EHER S

(k+1) x(K) + sk if re > 0,
X - (k) i
X otherwise.

YZW (USTC) Optimization Algorithms 109 / 467

SiE 5k

EBEE X
(3) FREBHERE, £
1€k if re <1,
€kt1 =\ if 1 < e <2,

min(ngek, é) if re > 2.

(4) Bk = k+ 1, BEIE(1)S.

YZW (USTC) Optimization Algorithms 110/ 467

SR 75 7%

S8 EZR 2 R s 2 TE -

WIKFELX) = {x| f(x) < FxXN}BR, BF(x)EEECESE, WA
ERIREETE ISR FIIEER S, BE—MNFZMLELMEF, B

g® =VI(x®°) =0, Gs = V3F(x*)>0.

YZW (USTC) Optimization Algorithms 111 /467

SR 75 7%

EEREEERLRO— SR, REHETIEE29).

RXERMNNB—FKBEBIE TR, BB Powell (1970) f2H
MY 3%

FriBiekE, REE Cauchy m (ARETRESESERMNR) 40
= (BEFWUEFERRN S, HIELSERINN R B XD,

YZW (USTC) Optimization Algorithms 112 /467

SiE 5k

e EBIR

/o=

YZW (USTC) Optimization Algorithms 113 /467

SiE 5k

X F R iRE
1 T
g (—ag®) = F(x0) — ol g®|? + §a2g(k) Byg®,

BiH— RN L KETFIRER
= I3
gk T B gk

F =2 Cauchy £H
gt |2

b (k) — _
gk T B, gk

Sc’ = kg (k)

YZW (USTC) Optimization Algorithms 114 / 467

SiE 5k

R (s = [laxg®]| > e, B

(k) _ Sk (k)
- g 9
gl
& (k+1) _ (k) €k (k)
xUt1) — (k) g
g

MR = are®| < e, BItEHTL

SS\I,() = —Bk_lg(k).

YZW (USTC) Optimization Algorithms 115/ 467

SiE 5k

MR s\ < e, B
s —) _ _p-1g(k)
=, B
(k) — ()+)\())
HA\FEE
158 + A — 8| = .

YZW (USTC) Optimization Algorithms 116 / 467

SiE 5k

g ERmE, FHASE

(5] a2
(k) _ (i) g(k) X]s(Ck)H > ek,
((k+1) B ||8i1 Hk stz (k) (k)
X()— Bk g() é |SC H < ekE-HSN || S ek7

k

x() 4+ s%) 1 A — Ky g6 < g A5 > e

(30)

YZW (USTC) Optimization Algorithms 117 / 467

SiE 5k

ek R E T RR:

1) A% Cauchy BxU Vo) TR0, BixHOIEE BIR

fn;
2) &% Cauchy AV Vintimax s, FRImERERRES
R

[BE&: IERA EIRMRT..]

YZW (USTC) Optimization Algorithms 118 /467

AERI (RAYRZMAL)

o Exercise 1: 155 1 _FiRE T Wolfe-Powel MENMHIEFEIE— 41 RE
ERHREZ TR P (1), p@ () BB RIER

o Exercise 2: 1HIUERAE T GoldsteinEM MY IEIEA—H I RE XN/
TS

o Exercise 3: iUIFIEL M HFIZEKIRF (x) = O ILEK, FATKEE
FARBRMALIBIRRE minern f(x). HHREHENMAEKER, FHiRA

L]z
o Exercise 4: IHIERAXIARFE—RIIEIAS A B A ZORK L FiE
M.

° Exeli%iES)S: *UF?D*?_EP)—EIEE"JZ‘?@/AE% (Sherman-MorrisonEIE) ,
BH,,, ESB,

YZW (USTC) Optimization Algorithms 119 /467

AERI (RAYRZMAL)

o Exercise 6: i IERAZL3R4E B A FRETE

o Exercise 7: HIEABITZE (B AE) FioliRE ik ¥ 8 i
M.

o Exercise 8: fEEH IS EH, AL —MSHREHIHERFN
MBEENENEE.

YZW (USTC) Optimization Algorithms 120/ 467

Outline |

© Constrained Optimization

YZW (USTC) Optimization Algorithms 121 /467

Outline 11

YZW (USTC) Optimization Algorithms 122 /467

© Constrained Optimization
o IRHKI
o ELMARKEMML

YZW (USTC) Optimization Algorithms 123 /467

ZRIKI(Quadratic Programming)21s, AT =K MFERM/HAFHE
TUBRSI T 5k ZOR & BRI AR /)N = 8] R

min Q(x) = =x’ Gx +c'x
st alx=boic&={L m} (31)
alx>b,icZ={me+1,---,m}

BAVRE GAXITREE, ai(i € &)2&MT XK.

YZW (USTC) Optimization Algorithms 124 / 467

TR ARFTENER, WATRRRBARMR/MVE, KR RM
X i2) 38 TC i o

WMRFEFEGHIERE, BR(31)ROTIMXIEE, ENEERBFEER
B,

WMREEGIERE, BF(G)REEXRMXICIE, JEFEMREZH—
8.

WMRFEMEGATE, [BIRE(31)——MREIZIRMXEIR, AR HEL IIEE
fREY SRR AR .

YZW (USTC) Optimization Algorithms 125 /467

FRARIRAK E)E

1
min Q(x) = §XTGX +cTx
s.t. Ax=b

(32)

XEBARm x nBfE, HAKR—MRMEANIR rank(A) = m.

YZW (USTC) Optimization Algorithms 126 / 467

wE s — (12), Hofixg € R7xu € 7, BRI
HEORTRIAHRA = (Ap. An)F AT, TR, SRUREHTSH
XB = AEl(b — ANXN),

HHEXRAN BB B ISR T LRI

1 A
min =xJ Gnxn + Elxn- (33)
xyERM—M 2

YZW (USTC) Optimization Algorithms 127 / 467

LR
Gy = Guw — GuAg An — AR AG T Gen + AfAg GeeAg'An,

en=cn — AFAg cg + GnpAg'b — AL AZT GegAg'b,

AR IS R 53 R FE 3

Ggs Gan > (cB)
G= o= .
(Gne Gun c cn

YZW (USTC) Optimization Algorithms 128 /467

(1) 2R GyIERE, MITCL5R a1 AR AT ME—tth 44
XTV = —él_llé/\[,

H—SER a8 (32) 1A

* —1 —1
L (%) [Agb e N
<>< 0)*(SR
Wx* M R R LagrangeTeFRIZEAN, B

GxX* +c= AT)* = N\ = AET(GBBX*B + GBNXT\I ol CB).

YZW (USTC) Optimization Algorithms 129 /467

(2) WRCVEHFEEM, MAE(— GG)en = 0BF, TAREHEER,
BEMBAIRRA

Xy = —Gien + (I — Gy Gy,

Hepy e R-mAEEEE, Gy RRGVHII GEIER. thet, Fia
L B e FOAE R B IR\ P 40U AE

(1 — GyGy ey = OFRRIZRS, MITFTHEHKEAREBET R, M
[RiEE BT

YZW (USTC) Optimization Algorithms 130/ 467

(3) MRGAE (AFEELKFER), ERTARBAL TR, &
BN FERRR N,

YZW (USTC) Optimization Algorithms 131 /467

E#EEZNTAEZA R, HAETFRN, B2SBRETENRR

o

YZW (USTC) Optimization Algorithms 132 /467

I-SGHEE

WZ = {zmi1, 2o REEKer(A)I—4HE,
Y ={y1,-,ym} REEEIR"/Ker(A)HI—HEE,
Mvx € RTATEIT SRR

x = Yxy + Zxz.
NIIE=]
Ax=b = AYxy + AZxz = b = xy = (AY) " !b,

FRLAfS
x = Y(AY)"!b + Zxz,

Hepx; e R""ZBEHEE.

N

YZW (USTC) Optimization Algorithms 133 /467

I-SGHEEZE
#EXRNBIRE A F LR

min %x}(ZTGZ)xZ +[ZTGY(AY) b+ Z7"xz. (34)

xz€RA—m
BEZTGZIEEE, MAB

Xy =—(Z7G6Z)71ZT[GY(AY) b + .

YZW (USTC) Optimization Algorithms 134 / 467

I-SGHEEE
NS 2R)RR B R AR

= Y(AY) 1 = Z2(Z2TGZ)1ZT[GY(AY) b +],
HHRLHILagrange3R T 7

M= (AY)"TYT(Gx* + o).

YZW (USTC) Optimization Algorithms 135/ 467

Lagrange/5 AR E T REAI1TIHAM (K-T)R, BlLagrangeti HHIFRE

733\ O

SHFFERARERL(32), HlLagrangetRMBIFRE ST T &M HiEHM
&

Gx+c=AT),

Ax = b.

BTG

(5% 5)(3)=-(5)

YZW (USTC) Optimization Algorithms 136 /467

; G -—-AT "
(6))mis, mipse

FEU € R™" V e R™*M W e R™*" {§18

G -AT\' (U wT
—A 0 “\w v
T AT 3K 45 5] A ME— 1

x* = —Uc— WTh,
A= —Wc— Vb.

YZW (USTC) Optimization Algorithms 137 /467

FikLagrange SR EIEME R R R —RER G 15, WATE
BOT5SEAE E SSBRIBIE U, V, WIIRIATS R, MMISERRTHEAR.

YZW (USTC) Optimization Algorithms 138 /467

LG, AITHRE, WAGIAT)1&EHE, THWIE
U=G 11— G 1AT(AGIAT)1AG 1,
V=—(AG1AT) 1,

W= —(AG1AT)tAG 1.

TRENBEIKRBLAN

x* = -G lc+ GLAT(AGIAT) L (AG1c +b),
M= (AGTAT)"L(AG 1c +b).

YZW (USTC) Optimization Algorithms 139 /467

1
MBEY, ZHR(Y, Z) = (g > CBDAY = I AZ = 0.
AT
8627 CZTE, mum(°)EIE e

V=-YTGPTY,

U=2(ZTGz)1ZT,
W=-YTp.

Hebp=/-6Z(Z"GZ2)1zT.

YZW (USTC) Optimization Algorithms 140 / 467

ZRHR
ETATHIQRA R, WTHAH(Y, Z2)H—M4FkEE:
1%

ATZQ<§>:(01,QQ)(§>,

A:(RT,O)(gg)

HAQAn x niE3XME, RAmx mE=AK. T2
TY=QR T, Z=Q, WA

Ep

AY = RTQI Q1R T = Imxm, AZ=R7Q] Q2= 0y (n—m)-

YZW (USTC) Optimization Algorithms 141/ 467

—ARE R ALK

Q(x) = ;TGx—chx
biic&=1{1,- } (35)

aT > bi,i €L = {me+1 ,m}

B L, TRENASRNAREROMIETEER, ATEERNTERE;
MR AFRAAR, AT EEMAFSHIL, HHRNTUAFALR
FRBEXLRMIFAFRLAR.

YZW (USTC) Optimization Algorithms 142 / 467

PREEAEHE: B E—MREIRIRI B (35) BB R =,
T ok B T LY R 5] R

(EQ) { min Q(x) = %XTGX +cTx
st. alx=b;,i € EUI(x)
HEER IR K2, AR 2—MRIIEIE(35)FIITR, ES

=(EQMK-T=, BtENMMLagrangefe FAHE A\F > 0,7 € Z(x*),
T o 72 R (2] (35) I K-T ==

[SI86.1: JERRHiRETR.]

YZW (USTC) Optimization Algorithms 143 / 467

) F AT A, LRI (35) U7 A
B8 = EUT(W), EEZERYFRNE

1
min ESTGS—I—(GX(k) +0)7s
s.t. a,Ts:O,iESk

(EQ1) {

K1B(EQ1) b fEs(K), &ﬂ#ﬁﬁ_“ZE’ﬂLagrangefﬁ¥)\fk), i€&.

YZW (USTC) Optimization Algorithms 144 / 467

—REK

(a) stk £ 0B, x(WRAEERRDBAIK-TAE.
(b) st = OB, x(K)ZjEIER

(EQ2) min %XTGX—FCTX
s.t. a,-Tx = b;,i € &
KT RN > 0,7 € Z(x(0), M0 th 2 ESFAIK-T &

@)ém,E&?:.%%ﬁW<OmE%ﬂMﬂﬁﬁﬁ
1€L(X

(EQ3) { min %STGS +(6xK) 4-¢)Ts
st. als=0,i€& =&\ {ig}.
RS R IR B R 7 L A mx (O AL AT 1T A5 18, Blals > 0.
BEH: WA ER(c)M4EiL.. |

YZW (USTC) Optimization Algorithms

145 / 467

FWE&E 5% (Active Set Method)

(0) BEAITEXO®, £& = £UZ(), k:=0.
(1) RBERAREB(EQL) B, #Fslk) £ 0, 2B (3) 5
(2) IR > 0,i € T(xW), MfELE; BFMEA = min)\(<0

ieZ(x(k)
EigHSE = &\ {ig}, x(k+D) —x(k) ®ELS

(3) Hak = min{1, i¢8kran.7!2(‘<)<0 ba as(:) } ﬁ‘%x(kﬂ) = x(k) + q,s(k) . 4n
Ray =1, #E(4)H; TREAKEp ¢ EfE
Bal (XK + aystk)) = by, HEE = E U {p}.

(4) &k =&k =k+1, BEE(1)F

YZW (USTC) Optimization Algorithms 146 / 467

AERA (ZRFRD

o Exercise 1: 15 IFRAAFRIRER K EE.
o Exercise 2: IFIUERARTIA (c) 4L -

o Exercise 3 (EMER) : IERRFAFIEERBEEMEET AT
Rl
—yT — 3 2
R PR [} 2
$X) = yiri =1,y

,Es:':l:'y = (Y1; : 7yn)Tr T = {Xi}?zlr
5= Z Z o | D (X))

=N

YZW (USTC) Optimization Algorithms 147 / 467

R MARFMIL

FeE EENAR B
min f(x)
s.t. c(x) =0,

Hec(x) = (cu(x), -, em(x)) T

(36)

YZW (USTC) Optimization Algorithms 148 / 467

R MARFMIL

IBAKX) = [Vec(X)]T = (Va(x), -+, Vem(x)T.

R MIEFAER: x2FRAREN(36)HIK-TRY BN FAER
F e RES
VF(x) — A(x)"A =0,

Bx2—T1T&, Ble(x)=0.

YZW (USTC) Optimization Algorithms 149 / 467

R MARFMIL

TRBEIKIHIZA

{ VF(x) —A(x)TA =0,
—c(x) = 0.

AT F Newton-Raphsoni& A K ## LR BRI 75 724H

YZW (USTC) Optimization Algorithms 150 / 467

R MARFMIL

IEXFNRI T E I8 2 53 Bl A 6., 65, Newton-Raphsoni&{Xi# /& :

("5 ()= (TR e

Heh W(x,\) = V2F(x) — 3 \V26(x).
i=1

YZW (USTC)

Optimization Algorithms

151 / 467

R MARFMIL

LR 75 EFR ALagrange-Newton%, &R HWilson(1963)i A9,

H 25 _E R FNewton-Raphsoni& X 3K 8] (36) B Lagrange R 3 L(x, \)BY
*%\En\\a

YZW (USTC) Optimization Algorithms 152 /467

R MARFMIL

i, FA1EXMESE
(%, A) = [IVF(x) = AR TAI? + [le() 1% (38)

R, ¥(x,\)@KXTFLagrange-Newton;ERI PR, BI#HE

bl (g) — 2y(x,\) < 0.

YZW (USTC) Optimization Algorithms 153 /467

R MARFMIL

Lagrange-Newtonj%:

(0) AEX®, X eR™, 8 €(0,1),e >0, £k :=0.

(1) HENEEHY(xH), 1K), ﬁn%/}(() AR < e, ME1E; Z
72 (<0, X)) R RIB(37) BB (5,00, 6100), H D0 = 1.

(2) FHY(xH) + i, AK >+ak6A)<(1—6ak)¢(x<“,A(k)), 5%
BR)L; BUWSak = Lo, IREIE(2)S

(3) BxUHD =5k 1+ a8 1y, \EFD = XK) - 0 6y, k := k + 1, IRE]
B()S

YZW (USTC) Optimization Algorithms 154 / 467

R MARFMIL

Lagrange-Newton3Z OIS 14 45 R

EFE: %Lagrange-NewtonsE A RER = FI{ (xW, N1 ER, a0
R Fc(x)BRIRZELEA Y, BiEER

(W(x,\) —Ax)T)‘1

—A(x) 0
—HAR, W{O N ERRESHEFIE(x, \) = 0OBIHR, M
i {x(K) Y B9 B8 po 2 (8] B (36) BUK-T £

E: E—EEHT, Eri#—HUERBLagrange-NewtonsZ B A ZMristés

YZW (USTC) Optimization Algorithms 155 /467

3]593% 2R AL

B IR ;JL X /Z_E

Lagrange-NewtonZH— X EE R E, AHEMELZRE TR X
XU 75 7% (Sequential Quadratic Programming Methods). ME&BEMA
KRF—RRIFE M AREMULEEN— LK+ EEN G E.

YZW (USTC) Optimization Algorithms 156 / 467

3]593% 2R AL

B IR ;JL X /Z_E

BATFEX(37) B TR :

{ W(x, A)dx + VF(x) = AX)T (X + b)),
c(x) + A(x)dx = 0.

RS, 0w AT RMK R
min 2dTW(x(k ANd 4+ VF(x()Td
st c(x()) + Ax(K)d =0
HIK-T .

YZW (USTC) Optimization Algorithms 157 / 467

ﬁ%ﬁ%%?ﬁ%

A A;JLJZ[J &

Lagrange-Newton&R] LABRRR A E KR LR FRN AR ZIXMRIB £

AW RMXIEIR (39) R AR, IATNEARERH

Hrfo, AEKRERIE K.

WK 2 (39)f R A Lagrangesk FIa) &, ALitk > 18

AKHD — 3D 4 g (R0 — ()Y,

YZW (USTC) Optimization Algorithms 158 /467

3]593% 2R AL

B IR ;JL X /Z_E

W= FE— RV IEL A LR AL B

min f(x)
st c(x)=0,ie€&={1,---,me}, (40)
ci(x)>0,i€eZ={me+1,---,m}.

s, FESEORERBKBEFEIER

min SdTWd + g® T d
st (x4 a;(x)Td=0,i€é&, (41)
ci(x%) + a;(xN)Td > 0,i € T.

YZW (USTC) Optimization Algorithms 159 /467

3!5%1‘#’]%?%1{

B IR ;JL X /Z_E

EXE, W,ZRNLagrangerk #AYHessepF s Hir (i,
gl = VF(x(0), AxW) = (ay(x(K), -+ am(xW))T = [Ve(x)]T.

B FIB)RR(41)89MRAdF), HN Lagrange R FEIBANK), B

Wi d®) 4 g(k) = A(x(K))T XK,
A >0 e,

1

c(x(K)) + A(x(Kd(K) =0

YZW (USTC) Optimization Algorithms 160 / 467

3]593% 2R AL

A A;JLJZ[J &

B ZRRERIE R U OE AR R . ZIERSEARIFNER.
ERVFEIIRMA TR, BGIANL5TE%K

P(x,a):f(x)+a(ze:|c,-(x)|+ > yc,-(x)_|).

=1 i:me+1

Hrfic(x)_EXIAT:

{ ci(x)- = ci(x), i€é,
¢i(x)— = min{0, ¢i(x)}, ie€Z.

YZW (USTC) Optimization Algorithms 161 /467

3!5%1‘#’]%?%1{

A A;JLJZ[J &

THMEERHan(1977)1RHHE S ZIRFKI 75 %:

(0) BEXO), Wo e R™" 6 >0,p € (0,1),e >0, &k :=0.
(1) REBTFEIFE(41)AHdR), R ||dR)|| < e, MELE; FN
Kay € [0, p|fEE

P(x*9) 4+ q,d®) 5) < 0Emn P(x) 4+ ad®) o) + €.
a<p

(2) BxUHD = x(K) 1 a8), HEWi 1, Tk = k+1, BEIEQ)E.

YZW (USTC) Optimization Algorithms 162 / 467

3]593% 2R AL

A A;JLJZ[J &

FIERRRTIA & 5 — R MR E BT S M 45 RO TR -
EE: BEf(x)Mc(x)EEAH, BEEEREM, M, > 0fEfF
My||d||? < d"Wid < My||d||?,Vk € N,Vd € R”,

WMBRNR)|| o < o¥IFIZ, MHan(1977)EEZERSFTI{xK))} BIIERIER
BRI (40)AIK-T &

YZW (USTC) Optimization Algorithms 163 / 467

JELR LSRR ML

'l«'J 3& /Z_E

X FAELe LR & UL B

min f(x)
st. ¢(x)=0,ie&E={1,---,m} (42)
¢i(x)>0,ieZ={me+1,---,m}

HIST R, RIEFIFBIRRES () MARGIE()ENRE “Sit

R R
P(x) = P(f(x), c(x))-

164 / 467

YZW (USTC) Optimization Algorithms

R MARFMIL

31 iR BUA

PR “SIMER”, EVERHEIEAIIITEx € SHAEP(X) = f(x), TS
REHRIFTAP () > £(x).

YZW (USTC) Optimization Algorithms 165 / 467

R MARFMIL

31 iR BUA

AT IR ARFAEBIFNIEE, FAIE ()T

{ ci(x)- = ci(x), i€g,
¢i(x)— = min{0, ci(x)}, ie€Z.

YZW (USTC) Optimization Algorithms 166 / 467

R MARFMIL

31 iR BUA

ERH—RATEC BARRHS “SI7 2 F, B
P(x) = f(x) + ¢(c(x)-)-
TIo(c(x)-) BREXAERT EHIRE, EFEE

$(0) =0, lim ¢(c)=+oc.

llell o0

YZW (USTC)

Optimization Algorithms

167 / 467

R MARFMIL

31 iR BUA

Po(x) = f(x) + alc(x)-I3,

YZW (USTC) Optimization Algorithms 168 /467

R MARFMIL

31 iR BUA

EIEE R R
Po(x) = £(x) + o flc(x)-I*.

(o) RELRIVE min P (WRHE, RIEMTIIE.

BIE: Ex(o)FIRTRIELHARBHIEEA2)MAITE, Nx(o)BE
BRI\ B 1 AR

YZW (USTC) Optimization Algorithms 169 / 467

R MARFMIL

31 iR BUA

L5 |3RRA, REXRMFESKRHTIEFo > 0, MBS KBLARKMN
L IE] R R T # B AE R 29 R SR A AL [l B R AR

RTESIIRHES, BEANSENEERER, SE%SEN—
A BIFRTE TR0y).

BT K AE—RIITAREB KRR FLIREMALCEAME, XMAFRT
LJRIBPMEIRAR(SUMT).

YZW (USTC) Optimization Algorithms 170/ 467

R MARFMIL

31 iR BUA

E, AR 3 R AR R P TR

(0) EEME RO, AEMBETEFoo > 0B > 1,6 >0. Tk :=0.
(1) AXMERANIRIER SR BT ARG EAIR N =, B

x(ok) = arg ;2]'15' Py, (x).
(2) Bllcx(on)_ < & MHELER HBIx(04) B LARDBAGEIAR

fig; BN, BxCTY =x(0k), oks1 = Bok, Tk =k + LiE[E
F()H.

YZW (USTC) Optimization Algorithms 171 /467

JELR LSRR ML

'l«'J 31&/2_5
SEWT=15|18
S5I¥1: Fori1 > ok >0, MEA P, (x(0k)) < Poyyy (X(0k41)),

leCx(e) Il = le((ort1)) -1, F(x(ok)) < F(X(ok11))-

SIEE2: RSxZRFEIE(42) & MAE, MIMESH of >0 ML
F(X) = Poy (x(ax)) = F(x(0k))-

SIE3: 40 = ||c(x(0))_|, Mix(o)th 2 LI5RE5E

min f(x)
st Jle(x)=]| <8

HIR AR

YZW (USTC) Optimization Algorithms 172 / 467

R MARFMIL

31 iR BUA

(B JEFA LRSI

(B8 ERAEA3IES.

YZW (USTC) Optimization Algorithms 173 / 467

R MARFMIL

31 iR BUA

X B R4 5|38 2/0ERR :

AR5 1S
Po(x(9k)) = f(x(ok))-

E A2 R oI RiE, BRATITR, T2 olc(x)-|]>=0.
XEAx(0) = arg min Py, (x), M

F(X) = Pou (%) = Poy (x(a))-

YZW (USTC) Optimization Algorithms 174 / 467

R MARFMIL

31 iR BUA

KT TIRBURRSME, FRMNBMTE

EHEL: W RBEPRIHE
e > min [lc(x)-{

xXER"

WE XL BIRELE,

(B2 T LAERE]

YZW (USTC) Optimization Algorithms 175/ 467

R MARFMIL

31 iR BUA

ZEERA, MREAREDFEFEAITR, WHEELRER: >0, X
G H PR 1L T [5) 7

min f(x)

st Jle(x)=]| <4

R, Ho <e.

YZW (USTC)

Optimization Algorithms 176 / 467

R MARFMIL

31 iR BUA

EHE2: WMREEAFREL, NbE min fle(x)-|| > <.

8 lim [[c(x(or))-]| = min ()~ |- LB, {x(o)HOFETEE e M2
)
min f(x)
sit. 60— = min fle(y)- |
HOE
YZW (USTC) Optimization Algorithms

177 / 467

R MARFMIL

T 5 EH

ATRRER, (REEFALRE)

min f(x)

st. c(x)=0 (43)

Hrc(x) = (a1 (%), 5 eme (X)) T

Wx* 2 bkl s iR B\ R HHM A Lagrange3®F, HIKuhn-TucherZE
IBEN, x*whZlagrangeR#

L(x, A") = £(x) = (\") T e(x)

R ER. B—fmMsS, x'HA~LagrangetR IR/ .

YZW (USTC) Optimization Algorithms 178 / 467

R MARFMIL

T 5 EH

FAEEFRT TR (BRI Lagrangeti #1)

g

P(x,\,0) = L(x,\) + §||c(x)\|%

T8 Lagrange R BB, RERNEB KT EFom A tEmT
KR, MANBEIRNEP(x, A, o) RBREIBA R

YZW (USTC) Optimization Algorithms 179 / 467

R MARFMIL

7 51 5
EMNBAEHAMERMLTFEEN, BLARFIARE, F2)1E
I Lagrangesi e 4 :

P(x, o) = f(x) — ATe(x) + %||c(x)||§.

—MRAVREEZ, STHRERDRKNoRFFREMNMIAMITN, REEEK
TiEFIZEFRFIANEEZEEEMTETN

WIEIE?

YZW (USTC)

Optimization Algorithms

180 / 467

R MARFMIL

T 5 EH

HT 18I Lagrange R B HIE R E %

(0) AEMNBEXOFFFEENBRMETAN, AEFEFoo >0, &
BOo<a<lp>1IRBFIRE: >0 $k:=0.

(1) KA R3] SRR T AR e RE AR /N s, B
x(1) = arg Xrngnn P(x,A\¥)).
(2) &lc(xHD)|| < e, MIEEERHEXCADIER R BIREAGIEIN R HHE;
BN, EHFHETFEE
)\(k+l) —_)\(k) - O'C(X(k+1)).

(k+1)

(3) ﬁﬂ%“c(x ™0 |)|” >a, MEo = Bo. Tk:=k+ LREIZFE(1)S.

YZW (USTC) Optimization Algorithms 181 /467

R MARFMIL

T 5 EH

IBA(X) = [Ve(x)]T, BB Fc(x*) =0, &15%E

Vi P(x*, A", 0) = Vi L(x*, *) = 0,

V2 P(x*, N, 0) = V2 L(x*, *) + o A(X*)A(x") .

YZW (USTC) Optimization Algorithms 182 /467

R MARFMIL

T 5 EH

BIECHR N TN, BIXVIERSAX) d = 0IETEE, ¥F

d"V2 L(x*,*)d > 0.

EHit, EZMRASZFHENRET, MTRIKNo, ALE
v>2<XP(X*a)*,O')IEE_I—.E/HE_'IZ$0

YZW (USTC)

Optimization Algorithms 183 /467

R MARFMIL

T 5 EH

EBE: CFNHEERAROE(43)EHRRMBHOM T EHE, W
BEoofE 8o > ooff, x*BEREP(x, *, o) =1 FHEBR /N Ao

(B8, ER LRER.]

YZW (USTC) Optimization Algorithms 184 / 467

R MARFMIL

T 5 EH

HERA: HENRE CEREHmMBA-MIT M), xwbAlh)
T (43)H9(K-T) &=, FrIL

Vi P(x*, A*,0) = ViL(x*, *) = 0.

TNEMERA, 7Ex*SbBIHessianZBREV2 P(x*, *, o) = IEE M.

YZW (USTC)

Optimization Algorithms

185 / 467

R MARFMIL

T 5 EH

HERA:
V)%XP(X*, No0) = V)%XL(X*, A*) + UA(X*)A(X*)T
= Q + cAAT
HApPQ = V2 L(x*,\%), A= A(x).

YZW (USTC) Optimization Algorithms 186 / 467

R MARFMIL

T 5 EH

EE: AxRFXYREE(43)MAITH, BXNTRN 3
RBP(x,\, o) BN R =B FES 54, MIxZIE)RE (43) 8948 BAB R M.

(%5, ER LRER.]

YZW (USTC) Optimization Algorithms 187 / 467

R MARFMIL

PEAS R

BEABHE HERPRENAREL, HEISIAEREREFERIFE
AIITIHNERHITIE R . Eitt, XMFEERATAENNRWIEL RN
¥ [B] 3

min f(x)
st. gi(x)>0,i=1,--- ,m. (44)

AT AERICAE intS, HPS = {x| gi(x) >0,i=1,---,m}. IxFF
ER S ETRTHRN NG ERE I TRER R

B(x, 0) = f(x) + 6¢(x)

HAERETIRRIMER, ¢(x)2EZERY, SETATELR
BF, (x) — +oo.

YZW (USTC)

Optimization Algorithms

188 / 467

R MARFMIL

PEAS R

AP EERRERFE AR

m
i=1

and ¢(x log g;(x
gl(x Z

1_1‘3? LxHEE AT TIHOARET, REB(x,0) — +oo. B, BTFR/,
SR 3 B (x, 0) B BRELE LT (x).

YZW (USTC) Optimization Algorithms 189 /467

R MARFMIL

PEAS R

FEit, FATRIEE KR T HIEI RS2 R 5] (44) AU oL % -

min B(x,0)
s.t. x€intS

BTy(x)NEFE, ERTIHARFER—E “BiE”, Eit bR)
B (45)BOAER(0) A & F AT TI A I &R

(45)

YZW (USTC) Optimization Algorithms 190/ 467

R MARFMIL

PEAS R

FEit, FATRIEE KR T HIEI RS2 R 5] (44) AU oL % -

min B(x,0)

s.t. x € intS (45)

BFu(x)NEE, ETEaRER—E “EiE”, Bt EAESmE
B (45)BOAER(0) A & F AT TI A I &R

TEMBNE, PEREIR(45)FRA LEFERNEBHFARN ML,
BEMARZHLERNARTES 2. B2, BT Ry (x)HIFERHE
HIERR AWM, B HEWRSE, K45 T2 HELAR
o) @SR AL IR

YZW (USTC) Optimization Algorithms 190/ 467

R MARFMIL

PEAS R

T2, HNATLUEHERSRECEN T E SR T:
(0) fﬁ\i%ﬂ&ﬁ‘,ﬁxw) € intS, ¥IEFERE T, > 0, 8 € (0,1), € > 0.
Tk :=0.
(1) l:(x(")1’E?9%ﬂ§ﬁi%1’<‘.§2‘iﬁ’¢"l‘§']l‘ﬁlﬁﬁ:
min f(x) + 0k (x)
s.t. x € intS
IEKFHIRN R Fx(0)).

(2) BEOb(x(0k)) < &, MZLIETTEH B (0) AR BIBMAE R NE; &
W, BxKCHD = x(0), k1 = B0k, Tk = k+ LIREIE(1)H.

YZW (USTC) Optimization Algorithms 191 /467

R MARFMIL

PEAS R

EE: 80, > 0iy1 >0, 12x(0) = arg min B(x,0), WA

B(x(0k), 0k) = B(x(0k+1), Oks1),
PY(x(0k)) < (x(Ok+1)),
fF(x(0k)) = f(x(Ok+1))-

(B2 T LAEE.]

YZW (USTC) Optimization Algorithms 192 /467

min f(x)
sit. cg(x)=0 (46)
c/(x) >0

s.t. CE(X) =
c/(x) —s=0 (47)
s>0

YZW (USTC) Optimization Algorithms 193 /467

The Karush-Kuhn-Tucker (KKT) conditions for the nonlinear program (47)
can be written as

Vi) —Ae(x)Ty —A(x)Tz=0

Sz—ul=0
ce(x) = 0 (48)
c/(x) —s=0

with ¢ = 0, together with s > 0,z > 0.

Here Ag(x) and Aj(x) are the Jacobian matrices of the functions cg(x)
and ¢(x), respectively, and y and z are their Lagrange multipliers. We
define S and Z to be the diagonal matrices whose diagonal entries are
given by the vectors s and z, respectively, and let 1 = (1,---,1)7.

YZW (USTC) Optimization Algorithms 194 / 467

Applying Newton's method to the KKT system (48), in the variables
X,S,Y,Z, we obtain

Vil 0 —Ae()T A7 Px
0o Z 0 s D
“AE(x) 0 0 0 by
—A/ X / 0 0 Pz
(V)f(x) ATy = AT (49)
- Sz —pul
N —ce(x)
—c/(x) +s

where L(x,s,y,z) denotes the Lagrange function

L(x,s,y,z) = f(x) — chE(x) — zT(c/(x) —s).

YZW (USTC) Optimization Algorithms 195/ 467

The system (49) is called the primal-dual system. After the step

p = (Px, Ps, Py, Pz) has been determined, we compute the new iterate

xt =x+alpy, st =s+alps,
max max

y+:y+az Py ZJr:Z—i_Oéz Pz,

where
ag"lax — max{a & (O, 1] 1z 4+ apz 2 (1 - T)Z}7

with 7 € (0,1) (A typical value of 7 is 0.995). The condition (50), called
the fraction to the boundary rule, prevents the variables s and z from
approaching their lower bounds of 0 too quickly.

(50)

YZW (USTC) Optimization Algorithms 196 / 467

AERI FEEMLREMIL)

o Exercise 4: EBA(38)H E MBI (x, \) @ X FLagrange-NewtoniEH]
TRERH .

o Exercise 5: IEFATH RBUEARBRHIRE R LA EZBIRZ LE
%,

o Exercise 6: ‘RHARKEMUBBEHI — MRS RMIESFME, FBT
RALE Lagrange R MM/ 2 5 R Bl & AR R F N1

YZW (USTC) Optimization Algorithms 197 / 467

Outline |

© Convex Optimization

YZW (USTC) Optimization Algorithms 198 /467

Outline 11

YZW (USTC) Optimization Algorithms 199 /467

© Convex Optimization
@ Convex Set and Convex Function

@ Convex Optimization and Algorithms

YZW (USTC) Optimization Algorithms 200 / 467

About convex optimization

Convex optimization is a subfield of mathematical optimization that
studies the problem of minimizing convex functions over convex sets.
Whereas many classes of convex optimization problems admit

polynomial-time algorithms, mathematical optimization is in general
NP-hard.

We introduce the main definitions and results of convex optimization
needed for the analysis of algorithms presented in the section.

YZW (USTC) Optimization Algorithms 201 / 467

E X (affine set)

A set C C R" is affine if Vx1,xp € C and 0 € R, we have
0x1+(1—0)xx e C

i.e., if it contains the line through any two distinct points in it.

It can be generalized to more than two points: If C is an affine set,
X1,...,xx € Cand Oy + ...+ 0, =1, then O1x1 + ...+ 6ixx € C.

We refer to a point of the form 61x; + ... + 0xxx where
01+ ...+ 60, =1, as an affine combination of the points xi, ..., xk.

YZW (USTC) Optimization Algorithms 202 / 467

If C is an affine set and xg € C, then the set
V=C-xp={x—x|xeC}

is a (linear) subspace. We can express C as
C=V+x={v+x|veV}

The dimesion of an affine set C is the dimesion of the subspace
V =C— xg.

151 (Solution set of linear equations)

For A€ R™*" b e R™, the set C = {x| Ax = b} is affine. Let
V = {v| Av = 0} be a subspace and Axp = b, then C = V + xp.

YZW (USTC) Optimization Algorithms 203 / 467

Affine set

E X (affine hull)

The set of all affine combinations of points in some set C C R” is called

the affine hull of C, denoted affC:
affC:{91X1+...-|—9ka|X1,...,XkE C,01+...+6,= 1}.

The affine hull is the smallest affine set that contains C.

YZW (USTC) Optimization Algorithms

204 / 467

Convex set

TE X (convex set)

A set C is convex if Vxy,xo € C and 0 < 6 < 1, we have
Ox1 + (1 = 9)X2 eC

i.e., if it contains the line segment between any two points in it.

Generalization to more than two points: for any k > 1, xy,...,x, € C and
014+ ...+60=1where 0; >0, i=1,...,k, we have

O1x1 + ...+ 0kx, € C.

The form O1x1 + ... + 0, xx is called the convex combination of the points
X1,..., Xk, where 01,...,60, >0 and fo:19,- = 1.

YZW (USTC) Optimization Algorithms 205 / 467

Convex hull

E X (convex hull)

The convex hull of a set C, denoted convC, is the set of all convex
combinations of points in C:

convC = {91x1-|—...+9kxk|x,- €C,0,>20,i=1,...,k,01+...+0, = 1}.

The convex hull is the smallest convex set that contains C.

YZW (USTC) Optimization Algorithms 206 / 467

Convex set and convex hull

(a) (b) (c)

Figure: (a) A convex set (polyhydron). (b) A non-convex set. (c) The convex
hull of (b).

YZW (USTC) Optimization Algorithms 207 / 467

A set C is called a cone, if Vx € C and 6 > 0 we have 6x in C.
A set C is a convex cone if it's convex and a cone, i.e., Vxi,x € C and
01,0, > 0, we have

O1x1 + brxo € C.

A point of the form 61x; + ... + Oy xx with 01,...,0, > 0 is called a conic
combination of xq,. .., Xk.

The conic hull of a set C is the set of all conic combinations of points in
C, e,

{01x1+ ...+ 0kxk|x; € C,0; >20,i=1,... k}.

YZW (USTC) Optimization Algorithms 208 / 467

Conic hull

0 0

Figure: Left. The shaded set is the conic hull of a set of fifteen points (not
including the origin). Right. The shaded set is the conic hull of the non-convex
kidney-shaped set that is surrounded by a curve.

YZW (USTC) Optimization Algorithms 209 / 467

Some important convex examples

e Hyperplane: A hyperplane is a set of the form
{x|a"x = b}.

It's also affine.

o Halfspace: A (closed) halfspace is a set of the form
{x|a'x < b}.

A hyperplane divides R” into two halfspaces.

YZW (USTC) Optimization Algorithms 210/ 467

Some important convex examples

@ Polyhedra: A polyhedron is defined as the solution set of a finite
number of linear equalities and inequalities:

P:{x|a}—x§bj,j:1,...,m,c,;rx:dk,k:1,...,p}.

e Ball: A (Euclidean) ball in R” has the form
B(xe,r) = {x| Ix = xcll2 < r}

where r > 0 and ||u2» = (u" u)*/? denotes the Euclidean norm.

YZW (USTC) Optimization Algorithms 211 / 467

Some important convex examples

e Norm balls and norm cones:
Suppose || - || is any norm on R”, a norm ball of radius r and center

Xc is given by
{x[lIx = x|l < r}.

The norm cone associated with the norm || - || is the set
C={(x,)l lIxll < t} SR

It's a convex cone.

YZW (USTC) Optimization Algorithms 212 / 467

Some important convex examples

@ The positive semidefinite cone:
The set of symmetric n X n matrices S":

S"={X e R™" X =X"},
the set of symmetric positive semidefinite matrices S :
T ={XeSs"X =0},
and the set of symmetric positive definite matrices S | :

Sn, ={X eS"X -0}

are all convex.

YZW (USTC) Optimization Algorithms 213 / 467

Proper cones and generalized inequalities

A cone K C R” is called a proper cone if it satisfies the following:

@ K is convex.
@ K is closed.
@ K is solid, which means it has nonempty interior.

@ K is pointed, which means that it contains no line, i.e.,
xeKand —xe K = x=0.
A proper cone K can be used to define a generalized inequality:
x2Iky<=y—xeK,

which is a partial ordering on R". Similarly, we define an associated strict
partial ordering by
X <Ky y—x€cintK

YZW (USTC) Optimization Algorithms 214 / 467

Properties of generalized inequalities

If x <k y and u <k v, then x+ u <k y + v.

If x <k y and y <k z then x <k z.

If x <k y and a > 0 then ax <k ay.

o x <k X.

If x <k y and y <k x then x = y.

If x; <k yifori=1,2,..., x; = x and y; = y as | — o0, then
X2k Y.

YZW (USTC) Optimization Algorithms 215 / 467

Minimum and minimal elements

@ x € S is the minimum element of S (with respect to the generalized
inequality <k) if for every y € S we have x <k y, i.e,

SCx+K,

where x + K = {x+ z| z € K}.

@ x € S is a minimal element of S (with respect to the generalized
inequality <k) if y € S,y <k x only if y = x, i.e,,

(x—K)nS={x},

where x — K = {x — z| z € K}.

@ Maximum element and maximal element are defined in a similar way.

YZW (USTC) Optimization Algorithms 216 / 467

Minimum and minimal elements

S1

1

(a) (b)

Figure: Let K = {(u, v)|u, v > 0}. (@) x; is the minimum element of S;. (b) x2
is a minimal element of S,.

YZW (USTC) Optimization Algorithms 217 / 467

Minimum and minimal elements

If x is the minimum element of S, then x must be a minimal element of S
(with respect to the generalized inequality <k).

Brief proof: Suppose SC x+ K, andy € (x — K)NS, ie, 3z€e K
such that y = x — z. By y € S C x + K, there exists w € K such
that y = x + w. Then we have w = —z, which leads to —w =z € K
and w € K. Since K is a proper cone, w =0 and y = x.

But the reverse proposition doesn’t hold.

Simple example: Let K = {(u, v)|u,v > 0} and
L ={(x,y)|x = —y}. Then every point of L is a minimal element,
but none of them is the minimum element of L.

YZW (USTC) Optimization Algorithms 218 / 467

Definition

FE X (convex function)

A function f : R" — R is convex if domf is a convex set and if
Vx,y € domf and 0 with 0 < 6 < 1, we have

f(Ox 4+ (1 —0)y) < 0f(x) + (1 — O)f(y). (51)

A function is strictly convex if strict inequality holds in (51) whenever
x#yand 0< 6 <1

We say f is concave if —f is convex, and strictly concave if —f is strictly
convex.

YZW (USTC) Optimization Algorithms 219 / 467

Definition

Geometrically, Eq.(51) means that the line segment between (x, f(x)) and
(v, f(y)) lies above the graph of f (as shown in Fig.4).

(v, ()

Figure: Graph of a convex function.

YZW (USTC) Optimization Algorithms 220 / 467

First-order conditions

Suppose f is differentiable, i.e., its gradient Vf exists at each point in
domf.

Function f is convex if and only if domf is convex and for
Vx,y € domf, the following holds:

fly) = f(x) + V()" (y =).

Remark. As a simple result, if Vf(x*) =0, then for all y € domf,
f(y) = f(x*), i.e.,, x* is a global minimizer of the function f.

YZW (USTC) Optimization Algorithms 221 / 467

First-order conditions

fl@) + V@) (y - =)

(z, f(x))

Figure: The tangent to a convex function.

YZW (USTC) Optimization Algorithms 222 / 467

First-order conditions

Function f is strictly convex if and only if domf is convex and for
Vx,y € domf,x # y, we have

fy) > f(x)+ Vf(x)T(y — X).

Correspondingly, f is concave if and only if domf is convex and for
Vx,y € domf, we have

Fly) < F(x)+ VF(x) (v — x).

YZW (USTC) Optimization Algorithms 223 / 467

Second-order conditions

Assume that f is twice differentiable.

Function f is convex if and only if domf is convex and for
Vx € domf,
V2f(x) = 0.

Similarly, f is concave if and only if domf is convex and V2f(x) < 0
for Vx € domf.

YZW (USTC) Optimization Algorithms 224 / 467

Second-order conditions

Strict convexity can be partially characterized by second-order conditions.

If V2f(x) = 0 for ¥x € domf, then f is strictly convex.

However, the converse is not true. For example, f : R — R given by
f(x) = x* is strictly convex but has zero second derivative at x = 0.

YZW (USTC) Optimization Algorithms 225 / 467

e Exponential:
e is convex on R, for any a € R.

@ Powers:
x? is convex on Ry when a > 1 or a < 0, and concave for 0 < a < 1.

@ Powers of absolute value:
|x|P, for p > 1, is convex on R.

o Logarithm:
log x is concave on R .

o Negative entropy:
x log x is convex on R, where 0log0 defined to be 0.

YZW (USTC) Optimization Algorithms 226 / 467

Norms:
Every norm on R” is convex.

Max function:
f(x) = max{xy,..., Xy} is convex on R".

Log-sum-exp:

Then function f(x) = log(e* + ...+ €*) is convex on R". This
function can be interpreted as a differentiable approximation of the
max function, since for all x,

max{xi, ..., Xxp} < f(x) < max{xi,...,xp} + logn.

Geometric mean:
f(x) = (I17—; x;)*/" is concave on domf =R" .

Log-determinant:
f(X) = logdet X is concave on domf = S7 .

YZW (USTC) Optimization Algorithms 227 / 467

Jensen’s inequality

The inequality (51), i.e., f(6x + (1 —0)y) < 0f(x) + (1 —0)f(y), is
sometimes called Jensen's inequality.

It is easily extended to convex combinations of more than two points:

If £ is convex, x1,...,xx € domf, and 61,...,6, > 0 with
014+ ...+ 6, =1, then

f(01X1 + ...+ Qka) < 91f(X1) + ...+ Qkf(Xk).

YZW (USTC) Optimization Algorithms 228 / 467

Operations that preserve convexity

o Nonnegative weighted sums:
If f,...,f, are convex and wy,...,w, > 0, then

f=wifi+...+wnfn
is convex.

@ These properties extend to infinite sums and integrals:

If f(x,y) is convex in x for each y € A, and w(y) > 0 for each y € A,
then the function

g(x) = /A w(y)f(x, y)dy

is convex in x (provided the integral exists).

YZW (USTC) Optimization Algorithms 229 / 467

Operations that preserve convexity

o Composition with an affine mapping:
Suppose f : R" — R, A€ R"™™ and b € R". Define g : R™ — R by

g(x) = f(Ax+ b),

with domg = {x|Ax + b € domf}. Then if f is convex, so is g; if f is
concave, so is g.

YZW (USTC) Optimization Algorithms 230 /467

Operations that preserve convexity

o Pointwise maximum:
If f1 and £ are convex functions, then

f(x) = max{fi(x), f(x)},

with domf=domf; N dom©f, is also convex.

@ Extension to the pointwise supremum:
If for each y € A, f(x,y) is convex in x, then

g(x) = sup f(x,y)
yeA

is convex in x, where

domg = {x|(x,y) € domf for all y € A, sup f(x,y) < oo}.
yeA

YZW (USTC) Optimization Algorithms 231 /467

Functions closed to convex functions

@ Quasi-convex function: A function f : R” — R such that its domain
and all its sublevel sets

So ={x edomf|f(x)<a}, a€cR

are convex.

@ Log-concave function: A function f : R” — R such that
f(x) > 0,Vx € domf and log f is concave.

YZW (USTC) Optimization Algorithms 232 /467

Basic terminology

min fo(x)
S.t f;(X) < 05 = 17 , M (52)
hi(x)=0, j=1,...,p
x € R" the optimization variable
fo : R" — R the objective function or cost function
fi(x) <0 the inequality constraints

fi :R" — R the inequality constraint functions
hj(x) =0 the equality constraints
hj :R" — R the equality constraint functions

If there are no constraints (i.e., m = p = 0) we say the problem is
unconstrained.

YZW (USTC) Optimization Algorithms 233 /467

Basic terminology

@ The domain of the optimization problem (52) is given as

m P
DS ﬂ domf; N ﬂ domh;.
i=0 j=1

e A point x € D is feasible if fi(x) <0,i=1,...,m, and
hi(x)=0,j=1,...,p.

@ The problem (52) is said to be feasible if there exists at least one
feasible point, and infeasible otherwise.

YZW (USTC) Optimization Algorithms 234 / 467

Basic terminology

The optimal value v* of the problem (52) is defined as
v =inf{fo(x)| fi(x) <0,i=1,...,m hj(x) =0,/ =1,...,p}
If the problem is infeasible, we have v* = oo.
e We say x* is an optimal point, or solves the problem (52), if x* is
feasible and fy(x*) = v*.

@ We say a feasible points X is locally optimal if there is a constant
0 > 0 such that

) =)]) € T i =1,
hJ(z) =0,j=1,...,p, ”Z_)_(||2 < 6}

YZW (USTC) Optimization Algorithms 235 /467

Convex optimization

A convex optimization problem is one of the form

min fo(x)
st. fi(x)<0, i=1,....m (53)
aJ-Tx:bj, j=1...,p

where fy, f1, ..., fn are convex functions.

Any locally optimal point of a convex optimization problem is also
globally optimal.

YZW (USTC) Optimization Algorithms 236 / 467

An optimality criterion for differentiable f,

Suppose that the objective fy in a convex optimization problem is
differentiable. Let X denote the feasible set, i.e.,

X={x|fi(x)<0,i=1,...,m hj(x) =0,/ =1,...,p}.

Then x is optimal if and only if x € X and

Vi(x) (y —x) >0, Vy € X. (54)

YZW (USTC) Optimization Algorithms 237 / 467

An optimality criterion for differentiable f,

For an unconstrained problem, the condition (54) reduces to
Vi(x) =0 (55)

for x to be optimal.

YZW (USTC) Optimization Algorithms 238 /467

An optimality criterion for differentiable f,

For a convex problem with equality constraints only, i.e.,

min fo(x)
st. Ax=0>

We assume that the feasible set is nonempty. The optimality
condition can be expressed as:

Viy(x)"u >0 for all u € N(A).
In other words,

Viy(x) L N(A).

YZW (USTC) Optimization Algorithms 239 /467

Linear optimization problems

A general linear program (LP) has the form

min qTx +r
st. Gx<h (56)
Ax=b

where G € R™*" and A € RP*". It is common to omit the constant r in
the objective function.

YZW (USTC) Optimization Algorithms 240 / 467

Quadratic optimization problems

A convex optimization problem is called quadratic program (QP) if it has
the form

min %XTPX + qTX +r
st. Gx < h (57)
Ax=0b

where P € S7,G € R™", and A € RPX".

QPs include LPs as a special case by taking P = 0.

YZW (USTC) Optimization Algorithms 241 / 467

Quadratic optimization problems

If the objective in (53) as well as the inequality constraint functions are
(convex) quadratic, as in

1
min EXTP()X + qux + ry

1
s.t. EXTP,-x+q,-TX—|—r,-<O, i=1...,m (58)
Ax=0b
where P; € S,i =0,1,...,m, and the problem is called a quadratically

constrained quadratic program (QCQP).

QCQPs include QPs as a special case by taking P, =0fori=1,..., m.

YZW (USTC) Optimization Algorithms 242 / 467

Second-order cone programming

A problem that is closely related to quadratic programming is the
second-order cone program (SOCP):

min fx
s.t. ||L,'X+g,'||2<C,-TX—|-d,', i=1,...,m (59)
Ax=0>b

where x € R" is the optimization variable, L; € R"*" and A € RP*",

When ¢; =0,i =1,...,m, the SOCP is equivalent to a QCQP. However,

second-order cone programs are more general than QCQPs (and of course,
LPs).

YZW (USTC) Optimization Algorithms 243 / 467

Transform a QCQP into an SOCP

For a QCQP problem (58), let y be an auxiliary variable with constraint:

1
§XTP0X +ax+n<y,
then (58) becomes

min y
X’y

1
s.t. EXTP;x—i—qiTx—i—r;gO, i=1...,m

1
§XTP0x+qux—y+ro<0
Ax=0>b

whose objective is linear. To transform it into an SOCP, we need only
translate quadratic constraints into second-order conic ones.
YZW (USTC)

Optimization Algorithms 244 / 467

Transform a QCQP into an SOCP

For a quadratic constraint

1
EXTPx—i- qTx+ r<o0

with P € ST, let L € S' be the square root of P, i.e.,, LL= P. Let

0
. L :
= , &= : e R,
[qT} & 0
r+%

then the constraint is equivalent to

. 1
ILx + &l < =(q"x+r = 3).

YZW (USTC) Optimization Algorithms 245 / 467

The Lagrangian

Consider an optimization problem in the standard form (52):

min fo(x)
st. fi(x) <0, i=1,..., (60)
h_/(X):Ov j=1 » P

We assume its domain D = (i, domf; N (_; domh; is nonempty, and
denote the optimal value of (60) by v*, but do not assume the problem
(60) is convex.

YZW (USTC) Optimization Algorithms 246 / 467

The Lagrangian

The basic idea of Lagrangian duality is to take the constraints in (60) into
account by augmenting the objective function with a weighted sum of the
constraint functions.

YZW (USTC) Optimization Algorithms 247 / 467

The Lagrangian

We define the Lagrangian L : R" x R™ x RP — R associated with the
problem (60) as

L(x, A\, v) = fo(x —l—Z)\f(x +ZVJ
with domL = D x R™ x RP.

o Refer to \; as the Lagrange multiplier associated with the ith
inequality constraint f;(x) < 0.

@ Refer to v as the Lagrange multiplier associated with the jth equality
constraint h;j(x) = 0.

@ The vectors X\ and v are called Lagrange multiplier vectors or the dual
variables associated with the problem (60).

YZW (USTC) Optimization Algorithms 248 / 467

The Lagrange dual function

We define the Lagrange dual function (or just dual function)
g:R"xRP - R as

m p

— inf L — inf [£ i ihj
800) = jof Lr Aow) = Jnf, | 60) + Do) + 3 ()

Since the dual function is the pointwise infimum of a family of affine

functions of (A, v), it is concave, even when the problem (60) is not
convex.

YZW (USTC) Optimization Algorithms 249 / 467

Lower bounds on optimal value

Let v* be the optimal value of the primal problem (60). For any A > 0 and

any v we have
g\ v) < V', (61)

Proof.

Suppose X is a feasible point for (60), then we have

m p
D ONfi(%) + > vihi(%) < 0.
i=1 j=1
Hence
g(v) = inf L(x,\,v) < L(%, A,) < H().
XE

Since g(\,v) < fo(X) holds for every feasible point X, the inequality (61)
follows. Ol

v

YZW (USTC) Optimization Algorithms 250 /467

Lower bounds on optimal value

The dual function gives a nontrivial lower bound on v* only when A > 0
and (\,v) € domg, ie, g(\,v) > —occ.

We refer to a pair (A, v) with A > 0 and (\,v) € domg as dual feasible.

YZW (USTC) Optimization Algorithms 251 / 467

Linear approximation interpretation

Let - : R - RU{oo} and Ip : R — RU {00} to be the indicator function
for the nonpositive reals and {0} respectively:

/_(u):{o u<0 /O(U):{o u=0

oo u>0" oo u#0

Then the primal problem (60) can be reformulated as an unconstrained
problem:

min f(x) + > 1 (H(x)) + Y lo(hi(x)). (62)
i=1 Jj=1

YZW (USTC) Optimization Algorithms 252 / 467

Linear approximation interpretation

We replace the function /_(u) with the linear function Aju, where \; > 0,

and the function lp(u) with vju. The objective becomes the Lagrangian
function, i.e.,

min L(x,\,v) = fo(x +ZAfx)+ZVJ

In this formulation, we use a linear or “soft” displeasure function in
place of /_ and .

Linear function is an underestimator of the indicator function. Since
Aju < I—(u) and vju < Ip(u) for all u, we see immediately that the
dual function yields a lower bound on the optimal value of the primal
problem.

YZW (USTC) Optimization Algorithms 253 / 467

The Lagrange dual problem

To attain the best lower bound that can be obtained from the Lagrange
dual function leads to the optimization problem

max g(\,v) (63)
st. A>0

This problem is called the Lagrange dual problem associated with the
problem (60). Correspondingly, the problem (60) is called the primal
problem.

YZW (USTC) Optimization Algorithms 254 / 467

The Lagrange dual problem

The term dual feasible, to describe a pair (A,) with A > 0 and
g(\,v) > —oo, now makes sense.

We refer to (*,v*) as dual optimal or optimal Lagrange multipliers if
they are optimal for the Lagrange dual problem (63).

The Lagrange dual problem (63) is a convex optimization problem no
matter the primal problem is convex or not, since the objective to be
maximized is concave and the constraint is convex.

YZW (USTC) Optimization Algorithms 255 / 467

Weak duality

For the optimal value of the Lagrange dual problem g*, we have

*

gr < v (64)

This property is called weak duality.

v* — g* is the optimal duality gap of the primal problem.

YZW (USTC) Optimization Algorithms 256 / 467

Strong duality and Slater’s constraint qualification

If the equality
g =V (65)

holds, then we say that stong duality holds.

@ Strong duality does not, in general, hold.

@ For a convex primal problem, there are many additional conditions on
the primal problem, under which strong duality holds.

YZW (USTC) Optimization Algorithms 257 / 467

Strong duality and Slater’s constraint qualification

One simple condition is Slater’s condition:
There exists an x € relintD such that
filx)<0, i=1,...,m, Ax = b, (66)

where relintD = {x € D|B(x, r) NaffD C D for some r > 0}. Such a
point is called relative feasible interior point.

Slater’s theorem states that strong duality holds if Slater’s condition holds
(and the problem is convex).

YZW (USTC) Optimization Algorithms 258 / 467

Optimality conditions

Dual feasible points allow us to bound how suboptimal a given feasible
point is, without knowing the exact value of v*.

If x is primal feasible and (\, v) is dual feasible, then
fo(x) —v* < fo(x) — g(\,v)

and
v e [g(Av), ()], & € lg(Av), fo(x)].
It leads to

g\, v) =fo(x) = v" =fo(x) =g(\,v) =g".
We refer to fo(x) — g(A, v) as the duality gap associated with the primal
feasible point x and dual feasible point (A, v).

YZW (USTC) Optimization Algorithms 259 / 467

Complementary slackness

Suppose that the primal and dual optimal values are attained and equal,
let x* be a primal optimal and (*,*) be a dual optimal points, then

m p
= inf [() + DA+ D1 ki)
i=1 j=1

m p

< fo(x*) +) O NR(X) +) v hi(x")
i=1 j=1

< fo(x¥)

YZW (USTC) Optimization Algorithms 260 / 467

Complementary slackness

By \f >0, fi(x*) <0,i=1,...,m, we have
Nfi(x*) =0, i=1,...,m. (67)
This condition is known as complementary slackness.

We can express it as

A > 0= fi(x*) =0,
filx") <0= A/ =0.

YZW (USTC) Optimization Algorithms 261 / 467

KKT optimality conditions

We now assume that the functions fy, ..., fy, hi,..., h, are differentiable.

As above, let x* and (*,v*) be any primal and dual optimal points with
zero duality gap.

Since x* minimizes L(x, *,v*) over x, it follows

m P
Vio(x*) + Z A Vi(x*) + Z v;Vhi(x*) = 0.
i=1 j=1

YZW (USTC) Optimization Algorithms 262 / 467

KKT optimality conditions

Together with constraints and complementary slackness, we have

filx*)<0, i=1,....m

hi(x*) =0, j=1,...,p

>0, i=1,....,m (68)
Nfi(x*)=0, i=1,....,m

Vio(x*) + 321 MVE(x*) + 327, v Vhi(x*) =0

which are called the Karush-Kuhn-Tucker (KKT) conditions.

YZW (USTC) Optimization Algorithms 263 / 467

KKT optimality conditions

For any optimization problem with differentiable objective and constraint
functions for which strong duality obtains, any pair of primal and dual
optimal points must satisfy the KKT conditions.

When the primal problem is convex, the KKT conditions are also sufficient
for the points to be primal and dual optimal.

YZW (USTC) Optimization Algorithms 264 / 467

About optimization algorithm

There is no analytical formula for the solution of convex optimization
problems, not to mention general nonlinear optimization problems.

Thus we describe numerical methods for solving convex optimization
problems in the section.

YZW (USTC) Optimization Algorithms 265 / 467

Recall: descent methods

To solve an unconstrained optimization problem
min f(x)

where f(x) is differentiable and convex, we usually employ descent
methods.

YZW (USTC) Optimization Algorithms 266 / 467

Recall: descent methods

Given a starting point x(9), a descent method produces a sequence
x(K) k=1,..., where

D o 1o) <). (69)

We usually drop the superscripts and use the notation x := x + ady
to focus on one iteration of an algorithm. a > 0 is called step size
and Jx called search direction. Different methods differ from choices
of a or/and 0.

YZW (USTC) Optimization Algorithms 267 / 467

Recall: gradient descent and Newton's method

Given a descent direction dy, we usually use line search to determine step
size a.

Different search directions:
@ Negative gradient:
Iy = —VI£(x).
o Normalized steepest descent direction (with respect to the norm || - ||):

Oxeg = ArE min{Vf(x)Tv ||v] =1}

@ Newton step:
Oxe = —V2F(x) IV (X).

YZW (USTC) Optimization Algorithms 268 / 467

Equality constrained minimization problems

A convex optimization problem with equality constraints has the form

min f(x)

70
s.t. Ax = b, (70)

where f : R" — R is convex and twice continuously differentiable, and
A € RP*™ with rankA = p < n. We assume that an optimal solution x*
exists and v* = f(x*).

YZW (USTC) Optimization Algorithms 269 / 467

KKT condition

Recall the KKT conditions for (70): a point x* € domf is optimal if and
only if there is a multiplier v* € RP such that

Ax* =b, VF(x*)+ATv* =0. (71)

The first set of equations, Ax* = b, are called the primal feasibility
equations.

The second set of equations, Vf(x*) + ATv* = 0, are called the dual
feasibility equations.

YZW (USTC) Optimization Algorithms 270 / 467

Newton's method with equality constraints

Newton’s method with equality constraints is almost the same as
Newton’s method without constraints, except for two differences:

@ The initial point must be feasible (i.e., x € domf and Ax = b).

@ The definition of Newton step Jy,, is modified to take the equality
constraints into account.

YZW (USTC) Optimization Algorithms 271 / 467

The Newton step

To derive the Newton step dy,, for problem (70) at the feasible point x, we
replace the objective with its second-order Taylor approximation near x

2 1
min f(x+) = f(x) + VFf(x)'s+ ESTVZf(x)s

(72)
st. A(x+s)=b
with variable s. Suppose dy, is optimal for (72). By KKT conditions,
there exists associated optimal dual variable w € RP such that
V2f(x) AT e | | —VF(x)
[A 0 wo| 0 ' (73)

YZW (USTC) Optimization Algorithms 272 / 467

The Newton step

We can also derive the Newton Step d,, by simply replacing x* and v* in
the KKT conditions for problem (70):

Ax* = b, VF(x)+ATv*=0

with x + dx,, and w, respectively, and replace the gradient term in the

second equation by its linearized approximation near x, to obtain the
equations

A(X + 5Xnt) = b7
VF(x +0y,) +A wa VF(x)+ V2F(x)dy, + A w = 0.

YZW (USTC) Optimization Algorithms 273 / 467

The Newton step

Using Ax = b, these become
Adye =0, V2f(x)dy, + Al w = —VFf(x),

which are precisely the equations (73).

YZW (USTC) Optimization Algorithms 274 / 467

The Newton decrement

The Newton decrement is defined as
K(x) = (0 V2F(x)0x,) /2.

Since 4
af(x + Oé(ant) = Vf()<)—r5xnt = _I{(X)27

a=0

the algorithm should terminate when £(x) is small.

YZW (USTC) Optimization Algorithms 275 / 467

Newton's method with equality constraints

Algorithm. Newton's method for equality constrained minimization.

given starting point x € domf with Ax = b, tolerance ¢ > 0.
repeat

© Compute the Newton step dy,, and the decrement r(x).

@ Stopping criterion. quit if k?/2 < e.

© Line search Choose step size « by backtracking line search.
Q Update. x := x + ay,,.

YZW (USTC) Optimization Algorithms 276 / 467

Infeasible start Newton method

Newton's method described above is a feasible descent method. Now we
describe a generalization of Newton's method that works with initial
points and iterates that are not feasible.

YZW (USTC) Optimization Algorithms 277 / 467

Newton step at infeasible points

Let x denote the current point, which we do not assume to be feasible,
but we do assume satisfies x € domf.

Our goal is to find a step dx so that x + Jx satisfies the optimality
conditions (71), i.e., x + dx ~ x*.

YZW (USTC) Optimization Algorithms 278 / 467

Newton step at infeasible points

Similarly, we substitute x + dx for x* and p for v* in
Ax* =b, VF(x)+ATv* =0
and use the first-order approximation for the gradient to obtain
A(x + 0x) = b,

VF(x+6,) + AT~ VF(x) + V2f(x)dx + A" = 0.

This is a set of linear equations for d, and p,

SRS FIES P

YZW (USTC) Optimization Algorithms 279 / 467

Interpretation as primal-dual Newton step

We express the optimality conditions (71) as r(x*,v*) = 0, where
r:R" x RP — R" x RP is defined as

r(x,v) = (raual(x, V), rori(x, v)).

Here
rauai(,v) = VE(x) + ATv, () = Ax — b

are the dual residual and primal residual, respectively.

YZW (USTC) Optimization Algorithms 280 / 467

Interpretation as primal-dual newton step

The first-order Taylor approximation of r, near our current point
y = (x,v), is

r(y +dy) = Py + dy) = r(y) + JIr(y)]dy,

where J[r(y)] € R("P)*x(1+P) is the derivative (Jacobian) of r,
evaluated at y.

YZW (USTC) Optimization Algorithms 281 / 467

Interpretation as primal-dual Newton step

We define dy,, as the primal-dual Newton step for which
Py +90y) =0, ie,
Jr(y)ypg = —r(y)- (75)

Note that 0y, = (Jx,q4;du,4) gives both a primal and a dual step.

YZW (USTC) Optimization Algorithms 282 / 467

Interpretation as primal-dual Newton step

Equations (75) can be expressed as

0 i)l][] o

Vpd Nori

Writing v + 6,4 as 1, we find it coincide with (74)

A I R P

YZW (USTC) Optimization Algorithms 283 / 467

Residual norm reduction property

The Newton direction at an infeasible point is not necessarily a descent
direction for f.

The primal-dual interpretation, however, shows that the norm of the
residual decreases in the Newton direction. By calculation we have

d
Iy +adg)lzl = =lr(y)2.

a=0

This allows us to use ||r||2 to measure the progress of the infeasible start
Newton method.

YZW (USTC) Optimization Algorithms 284 / 467

Infeasible start Newton method

Algorithm. Infeasible start Newton method.

given starting point x € domf, tolerance ¢ > 0, 7 € (0,1/2),~ € (0, 1).
repeat

© Compute primal and dual Newton steps d,

e O
@ Backtracking line search on ||r||2.
o =1
while ||r(x + ady,, v + ady,,)|2 > (1 — 7a)||r(x,v)|2, a:=~a.
@ Update. x := x + &y, V =V + ady,,.
until Ax = b and ||r(x,v)|]2 < e

YZW (USTC) Optimization Algorithms 285 / 467

Inequality constrained minimization problems

The convex optimization problems that include inequality constraints:

min fo(x)
st. fi(x)<0, i=1,...,m (77)
Ax=b
where fy, ..., f, : R" — R are convex and twice continuously

differentiable, and A € RP*" with rankA = p < n.

We assume that an optimal x* exists and denote the optimal value

YZW (USTC) Optimization Algorithms 286 / 467

We also assume that the problem is strictly feasible, i.e., 9x € D satisfying
Ax =band fi(x) <O0fori=1,...,m.

This means that Slater’s constraint qualification holds, and therefore
strong duality holds, so there exists dual optimal A* € R™ v* € RP, which
together with x* satisfy the KKT conditions:

Ax*=b, fi(x*) < 0, i=1,....m
A >0
Vi(x*)+ T MVAE(x*)+ATvs = 0 (78)
XNfi(x*) = 0, i=1,...,m

YZW (USTC) Optimization Algorithms 287 / 467

About interior-point method

Interior-point methods solve the problem (77) by applying Newton's
method to a sequence of equality constrained problems, or to a sequence
of modified versions of the KKT conditions.

We will introduce two particular interior-point algorithms:

@ The barrier method

@ The primal-dual interior-point method

YZW (USTC) Optimization Algorithms 288 / 467

Logarithmic barrier function

Rewrite the problem (77) and make the inequality constraints implicit in
the objective:

min f(x) + > _ I (f(x))
i=1

(79)
s.t. Ax = b,
where
0 wu<oO
I_(u)—{ oo u>0.

YZW (USTC) Optimization Algorithms 289 / 467

Logarithmic barrier function

The basic idea of the barrier method is to approximate the indicator
function I_ by the function

I (u)=—(1/t)log(—u), domi_ = -R,,

where t is a parameter that sets the accuracy of the approximation.

Obviously, I_ is convex, nondecreasing and differentiable.

YZW (USTC) Optimization Algorithms 290 / 467

Logarithmic barrier function

23) 1 0 1

Figure: The dashed lines show the function I_(u), and the solid curves show
I_(u) = —(1/t)log(—u), for t =0.5,1,2. The curve for t = 2 gives the best
approximation.

YZW (USTC) Optimization Algorithms 291 / 467

Logarithmic barrier function

Substituting I for I_ in (79) gives the approximation

m

min fo(x) + ; —(1/1) log(—fi(x)) (80)
s.t. Ax=b.
The function
6(x) = Z log(~)

is called the logarithmic barrier for the problem (77). Its domain is the set
of points that satisfy the inequality constraints of (77) strictly:

dom¢ = {x € R"|f{(x) < 0,i=1,...,m}.

YZW (USTC) Optimization Algorithms 292 / 467

Logarithmic barrier function

The gradient and Hessian of ¢ are given by

YZW (USTC) Optimization Algorithms 293 / 467

Central path

We multiply the objective of (80) by t, and consider the equivalent
problem

min th(x) + 6(x)

82
s.t. Ax=b. (82)

We assume problem (82) can be solved via Newton's method, and, that it
has a unique solution for each t > 0.

YZW (USTC) Optimization Algorithms 294 / 467

Central path

For t > 0 we define x*(t) = arg min{tfy(x) + ¢(x) s.t. Ax = b} as the
solution of (82).

The central path associated with problem (77) is defined as the set of
points {x*(t) | t > 0}, which we call the central points.

YZW (USTC) Optimization Algorithms 295 / 467

Central path

Points on the central path are characterized by the following necessary and
sufficient conditions: x*(t) is strictly feasible, i.e., satisfies

Ax*(t) =b, fi(x*(t))<0,i=1,....m
and J7 € RP such that
0= tVip(x *(t))+V¢((t)) +ATD

= tVf(x +Z fx*(t VE(x* (1) + ATo (83)

holds.

YZW (USTC) Optimization Algorithms 296 / 467

Dual points from central path

Every central point yields a dual feasible point.

Define
N(t) = g, i = 1 ()=
P = tﬁ(X*(t)),l— 5o oo g il vV ES

Because fi(x*(t)) < 0,i =1,...,m, it's clear that *(t) > 0.

~ |

(84)

YZW (USTC) Optimization Algorithms 297 / 467

Dual points from central path

By expressing (83) as
Vi(x*(t)) + zm: N()VE(x* (1)) + ATv*(t) = 0,
i=1

we see that x*(t) minimizes the Lagrangian

m

L(x, A\, v) = fo(x) + > Aifi(x) + v (Ax — b)

i=1

for A = A*(t) and v = v*(t). Thus (A*(t),v*(t)) is a dual feasible pair.

YZW (USTC) Optimization Algorithms 298 / 467

Dual points from central path

Therefore the dual function g(A*(t),v*(t)) = min L(x, A*(t), v*(t)) is
finite and

g\ (1), v7(t)) = fo(x*(¢)) +ZA*(1“ X (1)) + (1) (Ax*(t) - b)
= fo(x"(t)) - m/t-

@ As an important consequence, we have

fo(x*(t)) —v* < m/t.

@ This confirms that x*(t) converge to an optimal point as t — oc.

YZW (USTC) Optimization Algorithms 299 / 467

Interpretation via KKT conditions

Since we have assumed that x*(t) is the unique solution to problem (82)
for each t > 0, a point is equal to x*(t) if and only if 3\, v such that

Ax = b, fi(x) < 0, i=1,...,m
A >0
Vh(x)+ X" AVAEK) + ATy = 0 (85)
—Aifi(x) = 1/t, i=1,....m

The only difference between (85) and the KKT condition (78) is that the
complementarity condition —\;f;(x) = 0 is replaced by the condition
—)\,'f,'(X) = l/t.

In particular, for large t, x*(t) and A*(t),v*(t) ‘almost’ satisfy the
KKT optimality conditions for the problem (77).

YZW (USTC) Optimization Algorithms 300 /467

The barrier method

Algorithm. Barrier method

given strictly feasible x, t := t(0) > 0, > 1, tolerance ¢ > 0.
repeat

Q Centering step. Starting at x, compute x*(t) by minimizing
tfo(x) + ¢(x), subject to Ax = b.

@ Update. x := x*(t)
@ Stopping criterion. quit if m/t < e.
@ Increase t. Let t := ~t.

An execution of step 1 is called an outer iteration. We assume that
Newton’s method is used in step 1, and we refer to the Newton iterations
or steps executed during the centering step as inner iterations.

YZW (USTC) Optimization Algorithms 301 /467

The barrier method

e Computing x*(t) exactly is not necessary.

o Choice of t(9):
If t(©) is chosen too large, the first outer iteration will require too
many iterations.
If t() is chosen too small, the algorithm will require extra outer
iterations.

@ The choice of the parameter 7y involves a trade-off:
If v is small (i.e., near 1) then centering step will be easy since the
previous iterate x is a very good starting point but of course there will
be a large number of outer iterations.
On the other hand, a large v resulting in fewer outer iterations but
more inner iterations.

YZW (USTC) Optimization Algorithms 302 /467

Newton step for modified KKT equations

In the step 1 of the barrier method, the Newton step d,,, and associated
dual variable are given by the linear equations

s] 99,70

These Newton steps for the centering problem can be interpreted as
Newton steps for directly solving the modified KKT equations

Vi(x)+ 3T AVE(x)+ ATy = 0
“NF(x) = 1t i=1,....,m (87
Ax = b.

YZW (USTC) Optimization Algorithms 303 /467

Newton step for modified KKT equations

Let \; = 1/(—tfi(x)). This transforms (87) into

Vi (x) + é —t;,-(x)vﬁ(x) LATY=0, Ax=b. (88)
For small 4.,
Vh(x + 5) + zmj _tfi(xlwvmx +5)
~V fy(x) + V2fo(x)dx + Z)Vf(x + Z _tf V2£i(x)dx
+Z tf X)V£(x) " 6.

YZW (USTC) Optimization Algorithms 304 / 467

Newton step for modified KKT equations

Let
g=V@u»+§::ﬁ%5vmw,
i=1 !
H=VH{x)+) _t:_(x)v%(x) +) tf(l B SVE(x)VE(x) "
i=1 ! i=1 !

Observe that
g = Vh(x) + (1/)Ve(x), H=Vh(x)+(1/1)V?¢(x).
The Newton step for (88) is
Hé, +ATv = —g, Ad,=0.
Comparing this with (86) shows that
Unt
Ox = 0xyy V= —.

YZW (USTC) Optimization Algorithms 305 /467

Feasibility and phase I method

o The barrier method requires a strictly feasible starting point x(%).

@ When such a point is not known, the barrier method is preceded by a
preliminary stage, called phase I, in which a strictly feasible point is
computed and used as the starting point for the barrier method.

YZW (USTC) Optimization Algorithms 306 / 467

Basic phase I method

To find a strictly feasible solution of inequalities and equalities
filx) <0, i=1,...,m, Ax=b, (89)

we form and solve the following optimization problem

min s
st. fi(x)<s, i=1,....m (90)
Ax=0b

in the variable x € R” s € R. It's always strictly feasible, and called the
phase I optimization problem associated with the inequality and equality
system (89).

YZW (USTC) Optimization Algorithms 307 / 467

Basic phase I method

Let v* be the optimal value of (90).
e If V* <0, then (89) has a strictly feasible solution. In fact, we can
terminate solving the problem (90) when s < 0.

e If ¥* > 0, then (89) is infeasible. In fact, we can terminate when a
central point give a positive lower bound of v* > 0.

o If v* =0 and the minimum is attained at x* and s* = 0, then the set
of inequalities is feasible but not strictly feasible. If ¥* = 0 and the
minimum is not attained, then the inequalities are infeasible.

YZW (USTC) Optimization Algorithms 308 /467

Primal-dual search direction

The modified KKT conditions (87) can be expressed as r:(x, A,) = 0,
where t > 0 and

r(x, \v)= | —diag(\)f(x)— (1/t)1

Ax — b

(91)

Vi(x)+J[F(X)]TA+ATv]

Here f : R” — R™ and J[f] are given by

f(x) VA(x)"
f(x) = : , Jif(x)] = :
ilg) Vin(x)"

YZW (USTC) Optimization Algorithms 309 /467

Primal-dual search direction

If x, A, v satisfy ri(x, A\,v) =0 (and fi(x) < 0), then x = x*(t), A = *(¢)
and v = v*(t).

@ The first block component of ry,
_ T T
faual = Vio(x) + J[f(x)] A+ A'v

is called the dual residual.

@ The last block component, r,; = Ax — b, is called the primal residual.
@ The middle block

Icent = —d|ag(/\)f(x) - (1/t)1a

is the centrality residual, i.e., the residual for the modified
complementarity condition.

YZW (USTC) Optimization Algorithms 310/ 467

Primal-dual search direction

Let y = (x, A\,) denote the current point and 0, = (dx, 0z, d,) denote the
Newton step for solving the equation ri(x, A,) = 0, for fixed t where
f(x) <0,A>0.

The Newton step is characterized by

re(y +96y) = re(y) + J[re(y)]d, = 0.

YZW (USTC) Optimization Algorithms 311 /467

Primal-dual search direction

In terms of x, A, v, we have

V2o(x) + S M VAi(x) JIF(x)]T AT Ox Fdual
—diag())J[f(x)] —diag(f(x)) 0] [Ox } =— { Feent]
A 0 0 Oy

ori

(92)
The primal-dual search direction 6y, = (x4 Oxpas 0u,4) is defined as the
solution of (92).

YZW (USTC) Optimization Algorithms 312 /467

The surrogate duality gap

In the primal-dual interior-point method the iterates x(¥), \(K) and v(¥) are
not necessarily feasible. We cannot easily evaluate a duality gap as we do
in the barrier method.

Instead, we define the surrogate duality gap, for any x that satisfies
f(x)<0and A >0, as

Alx, A) = —F(x) "\,

Remark: The surrogate gap 7} would be the duality gap, if x were primal
feasible and A\, v were dual feasible. Note that the value of the parameter
t corresponding to the surrogate duality gap 7 is m/17).

YZW (USTC) Optimization Algorithms 313 /467

Primal-dual interior-point method

Algorithm. Primal-dual interior-point method.

given x that satisfies

A(x) <0,...,fm(x) <0,A> 0,7 > 1, €feas > 0, > 0.
repeat

@ Determine t. Set t := y(m/7).
© Compute primal-dual search direction 4y, ,.
© Line search and update.

Determine step length o > 0 and set y := y + ady,,.

until Hrpr|H2 €feas) Hrdual”2 €feas, and 77

YZW (USTC) Optimization Algorithms

314 / 467

Line search in primal-dual interior-point method

The line search in step 3 is a standard backtracking line search.

For a step size «, let

xt % Oxod
yr=1 A = A +a| &,
V+ v (Sl/pd

Let
max : . T A
o™ = sup{a € [0,1] |)\—I—ozé)\)O}:mm{l,mm{é K2 <0}}
Ai

to be the largest positive step length that gives AT > 0.

YZW (USTC) Optimization Algorithms 315 /467

Line search in primal-dual interior-point method

We start backtracking with o = 0.99a™2*, and multiply o by 8 € (0, 1)
until we have f(x™) < 0. We continue multiplying o by 3 until we have

lre (7, A%,)2 < (1 = Ta)|lre(x, A, v) -

Here 7 is typically chosen in the range [0.01,0.1].

YZW (USTC) Optimization Algorithms 316 / 467

Exercises

Ex 1. Let C C R" be the solution set of a quadratic inequality,
C={xeR"x"Ax+ b'x+ c <0},

with A€ S", b€ R", and c € R.

(a) Show that C is convex if A > 0.

(b) Show that the intersection of C and the hyperplane defined by

g"x+ h=0 (where g # 0) is convex if A+ Agg ' > 0 for some \ € R.

Ex 2. Let A\ (X) = Aa(X) = ... = Ay(X) denote the eigenvalues of a

matrix X € S". Prove that the maximum eigenvalue A\;(X) is convex.

Moreover, Show that Zf-‘zl Ai(X) is convex on S". Hint. Use the

variational characterization

k
> Xi(X) = sup{tr(V XV)|V e R™¥ VTV =T},
i=1

YZW (USTC) Optimization Algorithms 317 / 467

Exercises

Ex 3. Find the dual function of the LP
-

min ¢’ x
st. Gx=<h
Ax = b.

Give the dual problem, and make the implicit equality constraints
explicit.

Ex 4. Consider the equality constrained least-squares problem

min ||Ax — b||3
st. Gx=h

where A € R™*" with rankA = n, and G € RP*" with rankG = p.
Give the KKT conditions, and derive expressions for the primal
solution x* and the dual solution v*.

YZW (USTC) Optimization Algorithms 318 /467

Exercises

Ex 5. Suppose @ = 0. The problem

min f(x) + (Ax — b)T Q(Ax — b)
st. Ax=b

is equivalent to the primal equality constrained optimization problem

(70). What is the Newton step for this problem? Is it the same as
that for the primal problem?

YZW (USTC) Optimization Algorithms 319 /467

Exercises

Ex 6. Suppose we use the infeasible start Newton method to minimize f(x)
subject to a,TX =b;,i=1,...,p.
(a) Suppose the initial point x(©) satisfies the linear equality a;' x(®) = b;.
Show that the linear equality will remain satisfied for future iterates,
i.e., aj x) = b; for all k.
(b) Suppose that one of the equality constraints becomes satisfied at
iteration k, i.e., we have a x(k=1) £ b; aTx(k) = b;. Show that at

i

iteration k, all the equality constraints are satisfied.

YZW (USTC) Optimization Algorithms 320 /467

Exercises

Ex 7. Suppose we add the constraint x ' x < R? to the problem (77):

min fy
s.t. f;
A

Let & denote the logarithmic barrier function for this modified
problem. Find a > 0 for which V2(tfy(x) + ¢(x)) = al holds, for all

feasible x.

YZW (USTC) Optimization Algorithms 321 /467

Exercises

Ex 8. Consider the problem (77), with central path x*(t) for t > 0, defined
as the solution of (82).
For u > p*, let z*(u) denote the solution of

min —log (u — fo(x)) — D7, log (—fi(x))
st. Ax=0b

Show that the curve define by z*(u), for u > p*, is the central path.
(In other words, for each u > p*, there is a t > 0 for which

x*(t) = z*(u), and conversely, for each t > 0, there is a u > p* for
which z*(u) = x*(t)).

YZW (USTC) Optimization Algorithms 322 /467

@ Sparse Optimization

YZW (USTC) Optimization Algorithms 323 /467

Outline 11

YZW (USTC) Optimization Algorithms 324 / 467

Sparse Optimization

Many problems of recent interest in statistics and related areas can be
posed in the framework of sparse optimization. Due to the explosion in
size and complexity of modern data analysis (BigData), it is increasingly
important to be able to solve problems with a very large number of
features, training examples, or both.

YZW (USTC) Optimization Algorithms 325 /467

0-norm optimization

(Po) min|x[lo st. Ax=h. (93)

(Py) min|x|lo s.t. |b—Ax| <e. (94)

YZW (USTC) Optimization Algorithms 326 / 467

Greedy algorithms

Greedy strategies are usually adopted in solving the 0-norm problems. The
following algorithm is known in the literature of signal processing by the
name Orthogonal Matching Pursuit (OMP).

Task: Approximate the solution of (P): minx ||x||o subjectto Ax =b.
Parameters: We are given the matrix A, the vector b, and the error threshold €.
Initialization: Initialize £ = 0, and set
o The initial solution x0 =0.
o The initial residual r® = b — Ax" = b.
o The initial solution support S° = Support{x"} = (.
Main Iteration: Increment k by | and perform the following steps:
e Sweep: Compute the errors €(j) = min, [|a;jz; — r*~'[|3 for all j using the
optimal choice 2} = alrF~!/||a;|3.
e Update Support: F|nd a minimizer jo of e(5): V 5 ¢ S¥71, €(jo) < €(j), and
update S* = S¥~ U {jo}.
o Update Provisional Solution: Compute x*, the minimizer of || Ax —b||3 subject
to Support{x} = S*.
Update Residual: Compute r* = b — Ax".
Stopping Rule: If ||r*||> < o, stop. Otherwise, apply another iteration.

Output: The proposed solution is x* obtained after k iterations.

YZW (USTC) Optimization Algorithms 327 / 467

Dictionary learning

The optimization model of dictionary learning for sparse and redundant
representations:

rgl)rg ||Y - DXHFrOb s.t. ||XJ||0 Sko, j=1,---,N (95)
where
Y - (yla'” 7yN) € RHXNa
D= (dy, - ,dmn) € R™™,
X = (Xl, 7X/\/) & RmXN.
YZW (USTC)

Optimization Algorithms 328 /467

Dictionary learning

There are two training mechanisms, the first named Method of Optimal

Directions (MOD) by Engan et al., and the second named K-SVD, by
Aharon et al..

e MOD

e K-SVD

YZW (USTC) Optimization Algorithms 329 /467

Convex relaxation

Convex relaxation technique is a way to render 0-norm more tractable.

Convexifying with the ¢; norm, we come to the new optimization
problem

(P1) min||[Wx||; st. Ax=b (96)

where W is a diagonal positive-definite matrix that introduces the
precompensating weights.

An error-tolerant version of (P;) is defined by
(P1) min|[Wx|j1 s.t. |b—Ax| <e (97)

It was named Basis Pursuit (BP) when all the columns of A are
normalized (and thus W =1).

YZW (USTC) Optimization Algorithms 330/ 467

Basic pursuit

(BP) min|x|l1 st. Ax=h.
X

YZW (USTC) Optimization Algorithms 331 /467

BP denoising and LASSO

(BP;) min||Ax—b|3 st. |x[li <7,
(BPu) min|lx||z + 5| Ax — bl|3,
(BPs) min||x|l1 s.t. |[Ax—blj2 <.

Questions:

@ Are they equivalent? and in what sense?

@ How to choose parameters?

YZW (USTC) Optimization Algorithms 332 /467

Sparse under basis W

min{||s||1 : AUs = b}
S

=

Incoherent linear projection

If W is orthogonal, the problem is equivalent to

min{||V*x||; : Ax = b}.

YZW (USTC) Optimization Algorithms 333 /467

Sparse after transform L

min{||Lx||1 : Ax = b}
X

Examples of L:

o DCT, wavelets, curvelets, ridgelets, ...
o tight frames, Gabor, ...

e total (generalized) variation

Ref: E. J. Cands, Y. Eldar, D. Needell and P. Randall. Compressed sensing
with coherent and redundant dictionaries. Applied and Computational
Harmonic Analysis, 31(1): 59-73, 2011.

YZW (USTC) Optimization Algorithms 334 /467

Joint/group sparsity

Decompose {1,2,--- ,n} =G1JGU---UGs, and GiNGj = 0,i # j.

Joint/group sparse recovery model:
min{[xllg 2.1 : Ax = b}

where
S

Ixllg.21 =) wsllxg. |-

s=1

YZW (USTC) Optimization Algorithms 335 /467

Side constraints

@ Nonnegativity: x > 0
@ Box constraints: |b < x < ub

@ Linear inequalities: Qx < c

They generate “corners” and can be very effective in practice.

YZW (USTC) Optimization Algorithms 336 /467

Shrinkage

Shrinkage is popular in sparse optimization algorithms

@ In optimization, non-smooth functions like ¢1 has difficulty using
general smooth optimization methods.

But, /1 is component-wise separable, so it does get along well with
separable (smooth or non-smooth) functions.

For example,

. 1)
min [|x]l2 + i = z[l2

is equivalent to solving min [x;| 4+ 5=[x; — zj|? over each i.
Xi

YZW (USTC) Optimization Algorithms 337 /467

Soft-thresholding shrinkage

The problem is separable and has an explicit solution

Zi —T Zi > T,
(shrink(z, 7)); = 0 —7<z <7,
Zi+T zi < —T.

2.0 x=2
x=shrink(z,1/2)
151 — x=shrink(z,1)

The shrinkage operator can be written in Matlab code as:
x = max(abs(z)-tau,0).*sign(z).

YZW (USTC) Optimization Algorithms 338 /467

Soft-thresholding shrinkage

@ The following problem is called Moreau-Yosida regularization
in () + o[~ 2[3
min r(x) + —||x — z|5.
X 2T 2
@ For example r(x) = ||x]|2, the solution to

_ 2
—Ix— 2l

min [x[|2 +
is, if we treat 0/0 = 0,

Xopt = max{||zll2 — 7,0} - (z/][z[|2)-

@ Used in joint/group-sparse recovery algorithms.

YZW (USTC) Optimization Algorithms 339 /467

Soft-thresholding shrinkage

@ Consider the following nuclear norm optimization
min X + 2= [X — Z
i — X = .
X U 2r F

Let Z=UXV' be the singular value decomposition of Z.
o Let 3 be the diagonal matrix with diagonal entries
diag(3) = shrink(diag(X), 7)),
then
Xopt = ULVT.

@ In general, matrix problems with only unitary-invariant functions (e.g.,
Il - [l«, || - ||F, spectral norm, trace) and constraints (e.g., positive or
negative semi-definiteness) typically reduce to vector problems
regarding singular values.

YZW (USTC) Optimization Algorithms 340 / 467

Prox-linear algorithm

Consider the general form
min r(x) + £(x).
X
where r is the regularization function and f is the data fidelity function.

The prox-linear algorithm is:

1
XK = argmin r(x) + f(x*)+ < VF(xK),x — xK > +§HX — |3,

The last term keeps xt1 close to x¥, and the parameter &, determines the
step size. It is equivalent to

Xl<—|—1

= arg mxin r(x) + K= 6 V()5

5, e

YZW (USTC) Optimization Algorithms 341 / 467

Alternating direction method of multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) was developed
in the 1970s, with roots in the 1950s, and is equivalent or closely related
to many other algorithms, such as dual decomposition, the method of
multipliers, Douglas-Rachford splitting, Spingarns method of partial
inverses, Dykstras alternating projections, Bregman iterative algorithms for
1-norm problems, proximal methods, and others.

YZW (USTC) Optimization Algorithms 342 / 467

ADMM

The ADMM can be applied to a wide variety of statistical and machine
learning problems of recent interest, including the lasso, sparse logistic

regression, basis pursuit, covariance selection, support vector machines,
and many others.

YZW (USTC) Optimization Algorithms 343 / 467

in_ulX]lp -+ [AX = Bllq (98)

YZW (USTC) Optimization Algorithms 344 / 467

ADMM

in_ulX]lp -+ [AX = Bllq (98)

Let p:={2,1}, g := {1,1} which denote joint convex norm, we have

min _ufIX[l2,1 + [[AX = B][1,1
XeCnx

e
where [|X||21 = 327y /3000 3 (Xl = 27y S0 bl

YZW (USTC) Optimization Algorithms 344 / 467

ADMM

in_ulX]lp -+ [AX = Bllq (98)

Let p:={2,1}, g := {1,1} which denote joint convex norm, we have

min _ufIX[l2,1 + [[AX = B][1,1
XeCnx

e
where [|X||21 = 327y /3000 3 (Xl = 27y S0 bl

For example T =1,
min p + ||Ax — b||4.
xe?" 1X[[p + [[Ax lq

YZW (USTC) Optimization Algorithms 344 / 467

ADMM

YZW (USTC)

min izl + llyllq

st.x—z=0 (99)
Ax—y=Dhb
Optimization Algorithms 345 / 467

ADMM

min ullzllp + llyllq
st.x—z=0 (99)
Ax—y=Dhb

L(x,y,2, Ay, Az, p) =pillzllp + llyllg + Re(A] (x = 2) + AJ (Ax =y = b))

+ £lllx =2l + 1A=y — bl}3)
(100)
where A\, € C", A\, € C™ are the Lagrangian multipliers and p > 0 is a
penalty parameter.

YZW (USTC) Optimization Algorithms 345 / 467

ADMM

xktl .— arg min %(Hx L ui(H% + ||Ax — yk —b+ U;”%)

. k
y 1 == argmin [lyllq + §lly — (Ax**! —b) — uk||3 (o)
ZK = argmin p||z|, + §llz — x* T — u¥|13

After solving three subproblems, we update the Lagrangian multipliers as

follows: bl K P
{ uZ - LIZ + ’Y(X 1 z) (102)
U)lerl — U}lf 4 ’)’(AX +1 yk+1 . b)
where u, = %)\y, u, = %Azﬁ > 0 is the step size.

YZW (USTC) Optimization Algorithms 346 / 467

Outline |

© Optimization Methods for Machine Learning

YZW (USTC) Optimization Algorithms 347 / 467

Outline 11

YZW (USTC) Optimization Algorithms 348 / 467

Overview

Mathematical optimization is one of the pillars of machine learning.
Large-scale machine learning, where the amount of both the training data
and the parameters is large, represents a distinctive setting in which
traditional nonlinear optimization techniques typically falter.

We will briefly introduce some typical optimization problems arising from
machine learning and then turn to stochastic algorithms—the main
content of this section—and other popular methods together with specific
models applicable to them.

YZW (USTC) Optimization Algorithms 349 / 467

Typical Form of Problems

For simplicity, we focus on the problems that arise in the context of
supervised classification; i.e., we focus on the optimization of prediction
functions for labeling unseen data based on information contained in a set

of labeled training data.

Such a focus is reasonable as many unsupervised and other learning
techniques reduce to optimization problems of comparable form.

YZW (USTC) Optimization Algorithms 350 /467

Typical Form of Problems

For example:

o Regression. Although the methodology of dealing with regression is
quite different from that of classification, regression does share a model
similar to supervised classification. Supervised classification and
regression are collectively called supervised learning.

o Deep reinforcement learning. In deep Q-learning network (DQN), the
samples are attained by interacting with environment, and to train the
agent is to solve the Bellman equation in a regression fashion.

o Generative adversarial network. The GAN is composed of a generator
and a discriminator, which are usually trained alternately. The training
process of each part could be treated as a supervised classification,
where the label means whether the sample comes from the data
distribution or not.

YZW (USTC) Optimization Algorithms 351 /467

Fundamentals

Goal determine a prediction function h : X —) from an input
space X to an output space).

Request h should avoid rote memorization and instead generalizes the
concepts that can be learned from a given set of examples.

Scheme choose h by attempting to minimize a risk measure over an
adequately selected family of prediction functions, call it .

YZW (USTC) Optimization Algorithms 352 /467

Fundamentals

Suppose that samples are sampled from a joint probability distribution
function Pr(x,y).

h to be sought should yield a small expected risk of misclassification
over all possible inputs, i.e., minimize

R(h) = Pr[h(x) # y] = E [L{nt)2y] - (103)

Such a framework is variational since we are optimizing over a set of
functions, and is stochastic since the objective function involves an
expectation.

In practice, the expectation is taken on samples {(x;, i)} _; and h
should minimize the empirical risk of misclassification

1 1 if Als true
Rn(h) = ; ;]-[h(x;);éy,-]a where]-[A] = { 0 eifhardfse . (104)

YZW (USTC) Optimization Algorithms 353 /467

Choice of Prediction Function Family

The family of function H should be determined with three potentially
competing goals in mind.

1. Adequate capacity: H should contain prediction functions that are
able to achieve a low empirical risk over the training set, so as to
avoid underfitting the data.

This can be achieved by selecting a rich family of functions or by
using a priori knowledge to select a well-targeted family.

YZW (USTC) Optimization Algorithms 354 / 467

Choice of Prediction Function Family

2. Low generalization error: The gap between expected risk and
empirical risk R(h) — R,(h) should be small over all h € H.

Generally this gap decreases when one uses more training examples
but it increases when one uses richer families of functions, due to
potential overfitting.

3. Efficient training: should be selected so that one can efficiently
solve the corresponding optimization problem, the difficulty of which
may increase when one employs a richer family of functions and/or a
larger training set.

YZW (USTC) Optimization Algorithms 355 /467

Generalization Error

By certain laws of large numbers, the Hoeffding inequality guarantees that,
with probability 1 — 7,

1

R(D) = Rolt)| < 15

2
log <> for a given h € H
n

This bound offers the intuitive explanation that the gap decreases as one
uses more training examples.

For a uniform generalization error bound, one often turns to uniform laws
of large numbers and the concept of the Vapnik-Chervonenkis (VC)
dimension of 7, a measure of the capacity of such a family of functions.

YZW (USTC) Optimization Algorithms 356 /467

Generalization Error

Roughly speaking, the VC dimension of a family of functions is the
minimal size of samples on which all the functions in the family fail.

For the intuition behind this concept, consider, e.g., a binary classification
scheme in R? where one assigns a label of 1 for points above a polynomial
and -1 for points below.Then the set of linear polynomials has a low
capacity with VC dimension of 3.

With dy defined as the VC dimension of #, one has with probability at
least 1 — 7 that

sup [R(h) = Ra(h)] < O <\/21n log <727> + d%“‘ log <d’;)> . (105)

(105) is one of the most important results in learning theory.

YZW (USTC) Optimization Algorithms 357 / 467

Structural Risk Minimization

Rather than choose a generic family of prediction functions (difficult to
optimize and estimate the generalization error) one chooses a structure,
i.e., a collection of nested function families.

For instance, such a structure can be formed as a collection of subsets
of a given family in the following manner: given a preference
function Q, choose various values of a hyperparameter C, according
to each of which one obtains the subset H¢ :={he H | Q(h) < C}.

Given a fixed number of examples, increasing C reduces the empirical
risk, but after some point it typically increases the gap between

expected and empirical risks, as illustrated in Fig 7.

Other ways to introduce structures are to consider a regularized
empirical risk R,(h) + AQ(h).

YZW (USTC) Optimization Algorithms 358 /467

Structural Risk Minimization

-

g " This value of C here gives ‘

= the best guarantee for the

E expected risk R(w).

=) I

=2 |

Z “ Guaranteed expected risk R(w)
‘:—21 \‘ y _ _ _ - -

< .

Observed empirical risk R, (w)

>
C

Figure: Illustration of structural risk minimization

YZW (USTC) Optimization Algorithms 359 /467

Structural Risk Minimization

One can avoid estimating the gap between empirical and expected risk by
splitting the available data into three subsets: a training set, a validation
set and a testing set.

Specifically, over the training set one minimizes an empirical risk
measure R, over H ¢ for various values of C. This results in a handful
of candidate functions.

The validation set is then used to estimate the expected risk
corresponding to each candidate solution, after which one chooses the
function yielding the lowest estimated risk value.

The testing set is used to estimate the expected risk for the candidate
that is ultimately chosen.

YZW (USTC) Optimization Algorithms 360 /467

More Practical Statements

Now we assume that the prediction function h has a fixed form and is
parameterized by a real vector w € RY over which the optimization is to
be performed.

Formally, for some given h(-,-) : R% x RY — R%, we consider the
family of prediction functions

M= {h(-,w) | w eRd}.
To measure the losses incurred from inaccurate predictions, we

assume a given loss function £ : R% x R% — R. An input-output pair
(x, y) yields the predicted output h(x, w) and the loss ¢(h(x, w),y).

YZW (USTC) Optimization Algorithms 361 /467

More Practical Statements

We have the expected risk

R(W) = E(X,y)NPr(x,y) [E(h(x, W),)/)] 3 (106)
and the empirical risk

Zz (xi, w), yi) (107)

To simplify the notation, let £ be a sample (x, y) and
f(w,&) = £(h(x,w),y), then the expected risk is

R(w) = E¢ [f(w,€)]. (108)
For a set of samples {&;}7_;, let us define f;(w) to be f(w,&;) and then

the empirical risk is
1 n
==Y filw). (109)
i=1

YZW (USTC) Optimization Algorithms 362 /467

A Brief Introduction

Recall the batch (ordinary) gradient descent method. To minimize the
empirical risk (as (109)), w is updated by

Wil < Wi — OékVR (Wk = Wk — — ZVf Wk) (]_]_0)

where ay > 0 is a stepsize. Computing the step —a,V R,(wy) is expensive
since it needs accessing all the samples.

Stochastic gradient (SG) meanwhile uses only one sample at each
iteration:
Wiyl < Wi — Oszf;'k(Wk) (111)

where iy is chosen randomly from {1,..., n}. While —Vf; (wx) might not
be one of descent from wy, if it is a descent direction in expectation, then
the sequence {wy} can be guided toward a minimizer of R,,.

YZW (USTC) Optimization Algorithms 363 /467

A Brief Introduction

To generalize SG method, we consider two ways:

@ reduce the noise (variance) of each iteration by generating a batch of
samples instead of a single sample.

@ make use of second-order information and compute a stochastic
Newton or quasi-Newton direction rather than a gradient direction.

YZW (USTC) Optimization Algorithms 364 /467

A Brief Introduction

Stochastic Batch
gradient method gradient method

noise reduction methods

e
“.second-order methods

Stochastic Batch “
Newton method Newton method

Figure: Schematic of a two dimensional spectrum of optimization methods for
machine learning.

YZW (USTC) Optimization Algorithms 365 /467

Analyses of SG Method

Here we give a general framework of stochastic gradient methods by
introducing a general & and a general direction g(w, &k):

Algorithm 1 Stochastic Gradient

1: Choose an initial iterate wj.

2. for k=1,2,... do

3: Generate a realization of the random variable &.
4: Compute a direction g(wk, &k)-

5 Choose a stepsize ay > 0.

6: Set the new iterate as wy1 < wx — axg(wg, &k)-
7: end for

YZW (USTC) Optimization Algorithms 366 / 467

Analyses of SG Method

&y could be either one sample or a set of samples, and our analysis cover
the following choices of g(wx, &k):

(vWf(W/ﬁgk)

1 &
= Vi (Wi, &)
s

g(wi, &) = (112)

1 &
Hkn*k Z Vo f (Wi, €k, i)
—l

\

where Hy is a symmetric positive definite scaling matrix and the third
choice represents a stochastic Newton or quasi-Newton direction.

YZW (USTC) Optimization Algorithms 367 /467

Two Fundamental Lemmas

Before establishing the convergence guarantees for SG, we need to make
an assumption of smoothness of the objective function:

Assumption (Lipschitz-continuous objective gradients)

The objective function F : R? — R is continuously differentiable and the
gradient VF : R — R, is Lipschitz continuous with Lipschitz constant
L>0,ie,

IVF(w) = VF(W)|2 < L|w — |2, Yw,weR?. (113)

YZW (USTC) Optimization Algorithms 368 /467

Two Fundamental Lemmas

Under the above assumption, we obtain the following lemma.

5|38

Under Assumption (113), the iterates of SG (Algorithm 1) satisfy the
following inequality for all k € N:

Ee, [F(Wis1)] — F(wi) < — o VF(wi) T Ee, [g(wi, &)

2
agl

(114)
+ kg, [llg(wio €0I3)

Noting that w1 but not wy depends on &y, we can derive this equation
immediately by simply applying the second-order expansion of
F(wks1) — F(wk) and the assumption (113) then taking expectations.

YZW (USTC) Optimization Algorithms 369 /467

Two Fundamental Lemmas

To get further, we need another assumption about the first and second

moments of the stochastic vectors {g(wx, &k)}-

Assumption (First and second moment limits)

The objective function and SG satisfy the following:

@ The sequence of iterates {wy} is contained in an open set over which

F is bounded below by a scalar Fis.
@ There exist scalars g > p > 0 such that, for all k € N,

VF(wi) " Ee, [8(Wi,)] = p[VF(wi)|l3 and
1 Ee, [8 (Wi, &) [l2 < g [[VF (w5 -

@ There exist scalars M > 0 and My > 0 such that, for all k € N,

Varg, [lg(wk, €] < M + My [V F(w)]13.

(115a)
(115b)

(116)

YZW (USTC) Optimization Algorithms

370/ 467

Two Fundamental Lemmas

By the definition of variance, it requires that the second moment of
g(wi, k) satisfies

Ee, [llg(wi, &)I13) < M+ Mg||VF(wi)|3 with Mg := My +pug > 1 > 0.
(117)

5|38

Under the above two assumptions, the iterates of SG satisfy the following
inequalities for all k € N:

2L
e, [F(wes1)] — (k) < — e |V F (w13 + 2= Ee, [l (e, €013

(118a)
< — (pak — TMG)||VF(WI<)||2 + TM'
(118b)

o

YZW (USTC) Optimization Algorithms 371 /467

SG for Strongly Convex Objectives

The most benign setting for analyzing the SG method is in the context of
minimizing a strongly convex objective function. We formalize a strong
convexity assumption as the following.

Assumption (Strong convexity)

The objective function F : R? — R is strongly convex in that there exists
a constant ¢ > 0 such that

F(#) > F(w)+VF(w)T (7=w)+Z|[w—wl3, ¥(#,w) € RxR? (119)

Hence, F has a unique minimizer, denoted as w* € R? with F, := F(w*).

v

YZW (USTC) Optimization Algorithms 372 /467

SG for Strongly Convex Objectives

A useful fact is that, under the above assumption, we can bound the
optimality gap at a given point:

1
F(w) = F. < o [VFW)l3, ¥w €R?. (120)
Noting that
Fw)=F. < =VFw)"(w" —w) = gllw* —wlj3
= —l/2VFW) + /5w = w3+ 5 [IVFW)I3
< s IVFW)l;-
YZW (USTC)

Optimization Algorithms 373 /467

SG for Strongly Convex Objectives

We now state our first convergence theorem for SG.

e We use E[-] to denote an expected value taken with respect to the
joint distribution of all random variables.

e For example, since wy is determined by {{1,&2,...,&k_1}, the total
expectation of F(wy) for any k € N can be taken as

E[F(wi)] = Eg Ee, . .- B¢, [F(wi)]

YZW (USTC) Optimization Algorithms 374 / 467

SG for Strongly Convex Objectives

EIE (Strongly Convex Objective, Fixed Stepsize)

Under the above three assumptions (with Fins = F.), suppose that the SG
method is run with a fixed stepsize, ay = & for all k € N, satisfying
__

O<ac<

< —. 121
IMe (121)

Then the expected optimality gap satisfies the following inequality for all
k e N:

alM _ alM
E[F(wy) — F.] gm + (1 — acp)k (F(Wl) —F.— e)
122
k—00 alM ()
E— .
2cp

YZW (USTC) Optimization Algorithms 375 /467

SG for Strongly Convex Objectives

This theorem illustrates the interplay between the stepsizes and bound on
the variance of the stochastic directions.

@ If the variance of g(wg, &) is 0 or if noise is to decay with
|V F(wk)||3, then we can obtain linear convergence to the optimal
value.

@ On the other hand, when the gradient computation is noisy, a fixed
and small enough stepsize can assure the expected objective values
will converge linearly to a neighborhood of the optimal value, but the
noise in the gradient estimates prevent further progress.

It's natural to ask if diminishing stepsizes will bring a better result.

YZW (USTC) Optimization Algorithms 376 / 467

SG for Strongly Convex Objectives

EIE (Strongly Convex Objective, Diminishing Stepsizes)

Under the assumptions of Lipschitz-continuous objective gradients, first
and second moment limits and strong convexity, suppose that SG method
is run with a step size sequence such that, for all k € N,
1
o = Py for some 3 > a and v > 0 such that a; < ﬁ (123)
Then, for all k € N, the expected optimality gap satisfies
v
E[F — F] < , 124
[Fw) — Rl < (124)
where)
BeLM
vi=maxy —— (v + 1)(F(w1) — F) ;. 125
{ sy 0+ DF ()~ F) (125)

v

YZW (USTC) Optimization Algorithms 377 / 467

SG for General Objectives

Many important machine learning models lead to nonconvex optimization
problems. Analyzing the SG method when minimizing nonconvex
objectives is more challenging since such functions may possess multiple
local minima and other stationary points.

Still, one can provide meaningful guarantees for the SG method in
nonconvex settings.

While one cannot bound the expected optimality gap as in the convex
case, we can bound the average norm of the gradient of the objective
function observed on {wy} visited during the first K iterations.

YZW (USTC) Optimization Algorithms 378 /467

SG for General Objectives

IR (Nonconvex Objective, Fixed Stepsize)

Under the assumptions of Lipschitz-continuous objective gradients (113) and first

and second moment limits (115)-(116), suppose the SG method is run with a
fixed stepsize o, = & satisfying

0<asg -

< e (126)

Then the expected sum-of-squares and average-squared gradients of F
corresponding to the SG iterates satisfy the following inequalities for all K € N:

K
Z IVF (w3

K —

S IV F(w |2] <M | 2AF(w) = Fiw)
I

k:

_KaLM _ 2(F(w) ~ Fir)

< . s (127a)

and therefore E

(127b)

K—o0 alM
e

i

y
YZW (USTC) Optimization Algorithms 379 /467

SG for General Objectives

Taking the total expectation of (118b) and from (126),

a —2
EF(wicr)] — ELF(w)] < — (u —)0 [IVF)IE] + S5
a’LMm
<~ EE[IVFwIE] + S5

Summing both sides of this inequality for k € {1,..., K} and recalling (a) of the
assumption on first and second moment limits gives

_ K

" Ka2LM
Fur = F) < E[F(mean)] = Flw) <~ 3 E [IVFwol3] + =5
Rearranging yields (127a), and dividing further by K yields (127b). O

YZW (USTC) Optimization Algorithms 380 /467

SG for General Objectives

EIE (Nonconvex Objective, Diminishing Stepsize)

Under the assumptions of Lipschitz-continuous objective gradients (113)
and first and second moment limits (115)-(116), suppose that the SG
method is run with a stepsize sequence satisfying

Y ag=00, Y o} <oo. (128)
k=1 k=1
Then
Iikm inf (E [|[VF(wy)|13]) = 0. (129)
— 00

v

While not the strongest result in this context, this theorem is perhaps the
easiest to interpret and remember. The proof of this theorem follows
based on the stronger results given in the next theorem.

YZW (USTC) Optimization Algorithms 381 /467

SG for General Objectives

EIE (Nonconvex Objective, Diminishing Stepsize)

Under the assumptions of Lipschitz-continuous objective gradients (113)
and first and second moment limits (115)-(116), suppose that the SG
method is run with a stepsize sequence satisfying (128). Then, with

Ak = Z/’le Xk,

K
E ZakHVF(Wk)Hg] < o0 (130a)
k=1
1 & K
and therefore E [— ZakHVF(Wk)H%] R Nl (130b)
Ao

v

YZW (USTC) Optimization Algorithms 382 /467

SG for General Objectives

Suppose the conditions of the last theorem hold. For any K € N, let
k(K) € {1,...,K} represent a random index chosen with probabilities

proportional to {ou}i_y. Then ||V F(wkk))l|2 K20 n probability.

#ER

Under the conditions of the last theorem, if we further assume that the
objective function F is twice differentiable, and that the mapping

w — |[[VF(w)||3 has Lipschitz-continuous derivatives, then

|

5 2 _
Jim £ [|VF(w)|3] =o0.

YZW (USTC) Optimization Algorithms 383 /467

Noise Reduction Methods

SG suffers from the adverse effect of noisy gradient estimates. To address
this limitation, methods endowed with noise reduction capabilities have

been developed.

Stochastic
gradient method

¢
Stochastic
Newton method

Noise reduction methods:

Batch
gradient method

* Dynamic sampling
* Gradient aggregation
* [terate averaging

Figure: View of the schematic with a focus on noise reduction methods.

YZW (USTC)

Optimization Algorithms

384 / 467

Noise Reduction Methods

The first two classes of methods achieve noise reduction in a manner that
allows them to possess a linear rate of convergence to the optimal value
using a fixed stepsize. The third class of methods employing a stepsize
sequence of order O(1/v/k) rather than O(1/k).

@ Dynamic sampling methods achieve noise reduction by gradually
increasing the mini-batch size used in the gradient computation.

e Gradient aggregation methods improve the quality of the search
directions by storing gradient estimates in previous iterations,
updating one (or some) of these estimates in each iteration, and
defining the search direction as a weighted average of these estimates.

o lterate averaging methods accomplish noise reduction by
maintaining an average of iterates computed during the optimization
process.

YZW (USTC) Optimization Algorithms 385 /467

Dynamic Sampling Methods

Recall the first lemma in this section

Ec, [F(Wi1)] — F(wie) < — o VF(wi)) " Ee, [g(wic, €]

asl
+ 22 (g €0)1B) -

If we are able to decrease E, [||g(wk,&k)||3] fast enough, then the noise
will not prevent the convergence.

We'll show that the sequence of expected optimality gaps vanishes at a
linear rate as long as the variance of the stochastic vectors, denoted by

Vare, [g(wk,&k)], decreases geometrically.

YZW (USTC) Optimization Algorithms 386 /467

Dynamic Sampling Methods

EIE (Strongly Convex Objective, Noise Reduction)

Under the assumptions of Lipschitz-continuous objective gradients and
first and second moment limits and strong convexity, but with (116)
refined to the existence of constants M > 0 and ¢ € (0,1) such that

Vare, [g(wk, &) < MK, Wk € N. (131)

In addition, suppose that the SG method is run with a fixed stepsize,
o = @ satisfying

_ . noo 1
0<a<m|n{%,a}. (132)

YZW (USTC) Optimization Algorithms 387 /467

Dynamic Sampling Methods

EIE (Strongly Convex Objective, Noise Reduction)

Then the expected optimality gap satisfies
E [F(wi) = F] S wpH, (133)

where

alM

w = max{

The restriction on the stepsize & is not unrealistic in practical situations,
considering the typical magnitudes of the constants u, L, ug and c.

Now a natural question is how to design efficient optimization methods for
attaining the critical bound (131) on the variance of the stochastic
directions.

YZW (USTC) Optimization Algorithms 388 /467

Dynamic Sampling Methods

Consider the iteration

Wi1 < wi — ag(wg, k), (134)
where the stochastic directions are computed for some 7 > 1 as
(Wk,fk Z Vf Wk ‘fk ,) with ny : ‘Sk’ = (Tk_l—‘. (135)
IESk

That is, a mini-batch SG iteration with a fixed stepsize in which the
mini-batch size increases geometrically as a function of the iteration
counter k.

YZW (USTC) Optimization Algorithms 389 /467

Dynamic Sampling Methods

If we assume that each stochastic gradient Vf(wy; &k, i) has an
expectation equal to the true gradient VF(wy), then (115) holds with
e = p = 1. If, in addition, the variance of each such stochastic gradient
is equal and is bounded by M > 0, then for arbitrary i € Sy we have

Varg, [VF(wki &)l - M

Ve < <
arfk [g(Wk7£k)] ny ny

(136)

This bound combined with the rate of increase in ni given in (135) yields
(131). We state these formally as the following corollary.

Let {wy} be the iterates generated by (134)-(135) with

Ee, ,[Vf(wk;&k,i)] = VF(wk), Vk € N,i € Sk. Then, the variance
condition (131) is satisfied and if all other assumptions of the theorem of
noise reduction for strongly convex objective holds, then the expected
optimality gap vanishes linearly in the sense of (133).

YZW (USTC) Optimization Algorithms 390 /467

Dynamic Sampling Methods

But, comparing to classical SG approach, is it meaningful to describe a
method as linearly convergent if the per-iteration cost increases without

bound?
To address this question, let's estimate the number of evaluations of

the individual gradients Vf(wy, £ ;) required to compute an
e-optimal solution, i.e., to achieve

E[F(w) — F] <. (137)

As previously mentioned, the number of stochastic gradient
evaluations required by the SG method to guarantee (137) is O(e™1).

YZW (USTC) Optimization Algorithms 391 /467

Dynamic Sampling Methods

Suppose the dynamic sampling SG method (134)-(135) is run with a
stepsize & satisfying (132) and some T € (1, (1 — 5‘—§E)_1]. In addition,
suppose that the three assumptions hold. Then the total number of
evaluations of a stochastic gradient of the form Vf(wx, &k i) required to
obtain (137) is O(e71).

YZW (USTC) Optimization Algorithms 392 /467

Gradient Aggregation Methods

Rather than compute increasingly more new stochastic gradient
information in each iteration, gradient aggregation methods achieve a
lower variance by reusing and/or revising previously computed information.

If the current iterate has not been displaced too far from previous iterates,
then stochastic gradient information from previous iterates may still be
useful.

YZW (USTC) Optimization Algorithms 393 /467

Gradient Aggregation Methods

The first method we consider is composed of outer and inner iterations.

At each step of outer iteration, an iterate wy is available at which the
algorithm computes a batch gradient VR,(wx) = 1 >°7 | V£i(wy).

Then, after initializing vy < wy, m inner iterations indexed by j are

performed:
Wi = T = G
where
& « Vfi,(w;) — (Vfi(wk) — VR(wi)) (138)
and jj € {1,...,n} is chosen at random.

YZW (USTC) Optimization Algorithms 394 / 467

Gradient Aggregation Methods

Interpretation:

Since Ej [Vfi(wk)] = VRa(wk), we can view Vi (wi) — VRn(wy) as
the bias in the gradient estimate Vf;(w). Thus the stochastic
gradient Vf; (W;) evaluated at the current inner iterate V; is corrected
based on a perceived bias.

Overall, gj represents an unbiased estimator of VR,(;), with a
smaller variance than simply choosing V(W) (as in simple SG). This
is the reason why the method is referred to as the stochastic variance
reduced gradient (SVRG) method.

YZW (USTC) Optimization Algorithms 395 /467

Gradient Aggregation Methods

Algorithm 2 SVRG Methods for Minimizing an Empirical Risk R,

1: Choose an initial iterate w; € RY, stepsize o > 0, positive integer m.
2. for k=1,2,... do
3: Compute the batch gradient VR, (wy).
Initialize Wy < wy.
forj=1,...,mdo
Choose i; uniformly from {1,...,n}.
& — V(1) — (VF,(w) — VRa(w).
Set Wjy1 + W; — g;.
. end for
10: Option () Set Wk4+1 = Wm4t1
11: Option (b): Set wyy 1 = L m D1 Wit

4
5
6:
7.
8
9

12: Option (c): Choose j unn‘ormly from {1,...,m} and set wyy; =
Wjt1-
13: end for

YZW (USTC) Optimization Algorithms 396 / 467

Gradient Aggregation Methods

For both options (b) and (c), it can achieve a linear rate of convergence
when R, is strongly convex.

More precisely, if the stepsize a and the length of the inner cycle m
are chosen so that

1 1
p'_1—2ozL<mcoz+2La><l’

then, given that the algorithm has reached wy, one obtains
Ej [Rn(Wit1) — Rn(wi)] < pEjj [Rn(wi) — Rn(ws)] .-

Each step (of outer iteration) requires 2m + n evaluations of component
gradients, which is much more expensive than one in SG, and in fact is
comparable to a full gradient iteration.

YZW (USTC) Optimization Algorithms 397 / 467

Gradient Aggregation Methods

The second method does not include inner loop nor does it compute batch
gradients (except possibly at the initial point).

Instead, in each iteration, it computes a stochastic vector gi as the
average of stochastic gradients evaluated at previous iterates.

YZW (USTC) Optimization Algorithms 398 /467

Gradient Aggregation Methods

Specifically, in iteration k, the method will have stored Vf;(wj;) for
all i € {1,..., n} where wj; represents the latest iterate at which Vf;
was evaluated. An integer j € {1,...,n} is then chosen at random
and the stochastic vector is set by

8k < Vf}(Wk) WD] ZVf W[] (139)

Taking the expectation of gx w.r.t. all choices of j € {1,...,n}, we have
Elgk] = VRn(wx). Thus the gradient estimates is unbiased with variances
that are expected to be less than the stochastic gradients in a basic SG.

YZW (USTC) Optimization Algorithms 399 /467

Gradient Aggregation Methods

Algorithm 3 SAGA Methods for Minimizing an Empirical Risk R,

1: Choose an initial iterate w; € RY and stepsize o > 0.
2: for k=1,2,...do
3: Compute Vfi(wy).
Store Vf,(W[,]) — Vf,'(Wl).
end for
:for k=1,2,... do
Choose j uniformly in {1,..., n}.
Compute V£;(wy).
Set gk + VG(W/() = Vﬂ(w[,]) + %27:1 Vf,(W[,])
10: Store Vfi(wy;) + V().
11: Set Wiyl < Wi — 0Zk.
12: end for

L e F e &G B

YZW (USTC) Optimization Algorithms 400 / 467

Gradient Aggregation Methods

Beyond its initialization phase, the per-iteration cost of it is the same as in
a basic SG method. However, it can achieve a linear rate of convergence
when R), is strongly convex. With a =1/ (2(cn+ L)), we have

k
c nD
£ flwe - welB) < (1= 55) (I - welB+ 227

where D := R,(w1) — Rp(wi) — VRp(wi) T (w1 — ws).

Alternative initialization techniques could be used in practice. For
example, one could perform one epoch of simple SG, or assimilate iterates

one-by-one and compute g only using the gradients available up to that
point.

YZW (USTC) Optimization Algorithms 401 / 467

Gradient Aggregation Methods

One important drawback of Algorithm 3 is the need to store n stochastic
gradient vectors. Note, however, that if the component functions are of
the form fi(wy) = f(x." wy), then

Vii(wg) = f’(x,-—rwk)x,-.

That is, when the feature vectors {x;} are already available in storage, one
need only store the scalar f'(x;" wy) to construct V£ (wy) at a later
iteration. This occurs in logistic and least squares regression.

YZW (USTC) Optimization Algorithms 402 / 467

Gradient Aggregation Methods

Although the gradient aggregation methods above enjoy a faster rate of
convergence than SG, they should not be regarded as clearly superior to
SG.

Following similar analysis as before, the computing time for SG can be
shown to be T(n,€) ~ k2/e with x := L/c. On the other hand, the
computing times for SVRG and SAGA are T (n,€) ~ (n+ k) log(1/e).

For very large n, gradient aggregation methods are comparable to batch
algorithms and therefore cannot beat SG in this regime.

YZW (USTC) Optimization Algorithms 403 / 467

Iterate Averaging Methods

SG generates noisy iterate sequences that tend to oscillate around
minimizers. Hence, a natural idea is to compute a corresponding sequence
of iterate averages that would automatically possess less noisy behavior.

Specifically, for minimizing a continuously differentiable F with unbiased
gradient estimates, it employs the iteration

Wit1 — Wk — a,g (Wi, &)

k+1
_ 1 (140)
and Wi1 < m Zl w;j.
J:

YZW (USTC) Optimization Algorithms 404 / 467

Iterate Averaging Methods

However, convergence properties better than SG of this method is elusive

when using classical stepsize sequences that diminish with a rate of
O(1/k).

An idea is to employ the iteration (140) but with stepsizes diminishing at a
slower rate of O(1/(k?)) for some a € (3, 1). When minimizing strongly
convex objectives, it follows from this choice that

Elllwi — wil[3] = O(1/(k?)) while E[||y — wi|3] = O(1/k).

YZW (USTC) Optimization Algorithms 405 / 467

Second-Order Methods

Besides reducing the noise in the stochastic directions, another manner to
move beyond classical SG is to address the adverse effects of high
nonlinearity and ill-conditioning of the objective function through the use
of second-order information.

Deterministic methods are known to benefit from the use of second-order
information, e.g., Newton's method achieves a locally quadratic
convergence.

YZW (USTC) Optimization Algorithms 406 / 467

Second-Order Methods

We start by considering a Hessian-free Newton method that employs exact
second-order information in a judicious manner that exploits the stochastic
nature of the objective function.

Then we describe methods that attempt to mimic the behavior of a
Newton algorithm through first-order information computed over
sequences of iterates, including quasi-Newton, Gauss-Newton and related
algorithms that employ only diagonal re-scalings.

Finally we will sketch the natural gradient method.

YZW (USTC) Optimization Algorithms 407 / 467

Second-Order Methods

Stochastic
Newton method

Stochastic
gradient method

Batch
gradient method

&
C\\S\o

€ Seem Diagonal Scaling ====»

Hessian-free Newton ==--»
Natural gradient ----»

We use double-sided arrows for the methods that can be effective
throughout the spectrum between the stochastic and batch regimes.
Single-sides arrows are used for those methods that are effective only with
at least a moderate batch size in the stochastic gradient estimates.

YZW (USTC)

Optimization Algorithms

408 / 467

Hessian-Free Inexact Newton Methods

When minimizing a twice-continuously differentiable F, a Newton iteration
is

Wkt1 Wk + xSk (141a)
where V2F(wy)sk = — VF(wy). (141b)

This iteration demands much in terms of computation and storage.
However, we can instead only solve (141b) inexactly through an iterative
approach such as the conjugate gradient (CG) method.

By ensuring that the linear solves are accurate enough, such an
inexact Newton-CG method can enjoy a superlinear convergence.

CG applied to (141b) does not require access to the Hessian itself, only
Hessian-vector products. Such a method may be called Hessian-free.

YZW (USTC) Optimization Algorithms 409 / 467

Subsampled Hessian-Free Newton Methods

In inexact Newton methods, the Hessian matrix need not be as accurate as
the gradient to yield an effective iteration. It means that the iteration is
more tolerant to noise in the Hessian estimate than it is to noise in the
gradient estimate.

We employ a smaller sample for defining the Hessian than for the
stochastic gradient estimate. Let the stochastic gradient estimate be

Vs Wiy &) = 7o Y V(Wi €ki)

’S | i€Sk

and let the stochastic Hessian estimate be

> V(Wi ki) (142)

H
iest

v fSH(kagk |SH‘

where S,’j C Sy.

YZW (USTC) Optimization Algorithms 410 / 467

Subsampled Hessian-Free Newton Methods

If the subsample size |S}’| small enough, then the cost of each product
involving the Hessian approximation can be reduced significantly, thus
reducing the cost of each CG iteration.

On the other hand, one should choose |S,f’\ large enough so that the

curvature information captured through the Hessian-vector products is
productive.

YZW (USTC) Optimization Algorithms 411 / 467

Subsampled Hessian-Free Newton Methods

Algorithm 4 Subsampled Hessian-Free Inexact Newton Method

1: Choose an initial iterate wj.

2: Choose constants p € (0,1),7 € (0,1), and maxc; € N.

3: for k=1,2,...do

4: Generate a realizations of &, and f,f’ corresponding to S,f’ C Sk.
5. Compute s, by applying Hessian-free CG to solve

V2 fs(wk, €')s = =V fs, (Wi, &) (143)
until max., iterations have been performed or a trial solution yields
iz = || Vs (wie €605 + s, (i €6, < 2 198, (s €61 -

6: Set wiy1 « Wi + agsk, where o € {7%,4%,742,...} is the largest
element with

fo, (Wh1, €k) < fs, (Wi, Ek) + naw Vs, (i, &) T sk (144)

7: end for

YZW (USTC) Optimization Algorithms 412 / 467

Subsampled Hessian-Free Newton Methods

If the algorithm were to operate in the stochastic regime of SG where |Sk|
is small and gradients are very noisy, then it may be necessary to choose
|S,'("| > |Sk| so that Hessian approximations do not corrupt the step.

Therefore, the subsampled Hessian-free Newton method outlined here
is only recommended when S is large.

When full gradients are always used, it's easy to establish the convergence
of Algorithm 4 for minimizing a strongly convex empirical risk measure
F =R, with Sf =S, = {1,...,n}.

When the Hessians are subsampled, it has not been shown that the rate of
convergence is faster than linear.

YZW (USTC) Optimization Algorithms 413 / 467

Dealing with Nonconvexity

When Hessian-free Newton methods are applied for the solution of
nonconvex problems, it's common to employ a trust region instead of a
line search and to add an additional condition in Step 5 of Algorithm 4:
terminate CG if a candidate solution s, is a direction of negative
curvature, i.e., s,jV2fSkH(Wk;§,’j)sk < 0.

Instead of coping with indefiniteness, one can focus on strategies for
ensuring positive (semi)definite Hessian approximations. One of the most
attractive ways of doing this in the context of machine learning is to
employ a (subsampled) Gauss-Newton approximation to the Hessian,
which we will explain later.

YZW (USTC) Optimization Algorithms 414 / 467

Stochastic Quasi-Newton Methods

The quasi-Newton iteration for minimizing a twice continuously differentiable
function F has the form

Wikl < Wi — OzkaVF(Wk), (145)

where H, is a approximation of (VzF(wk))_l. The most popular quasi-Newton
scheme is BFGS.

In BFGS, the sequence {H} is updated dynamically, without the need for
second-order derivative computations nor any linear system solves. It enjoys a
local superlinear convergence with only first-order information.

But Hy is often a dense matrix, even when the exact Hessian is sparse, restricting
its use to small and midsize problems. A common solution for this is to employ a
limited memory scheme, leading to a method such as L-BFGS. In this case, Hj
need not be formed explicitly.

YZW (USTC) Optimization Algorithms 415 / 467

Stochastic Quasi-Newton Methods

Now we consider the iterations taking the form
Wit1 ¢ Wk — o Hig (w, &k)- (140)

Since we are interested in large-scale problems, we assume that (146)
implements an L-BFGS scheme. A number of questions arise when
considering (146), and we list them now with some proposed solutions:

YZW (USTC) Optimization Algorithms 416 / 467

Stochastic Quasi-Newton Methods

Theoretical Limitations The convergence rate of a stochastic iteration
such as (146) cannot be faster than sublinear. Since SG also has a

sublinear rate of convergence, what benefit could come from incorporating
Hy in (146)7

Benefit: The constant that appears in the sublinear rate.

For SG, the constant depends on the conditioning of {V2F(wj)}. This is
typical of first-order methods. In contrast, if the sequence of Hessian
approximations in (146) satisfies {Hx} — V2F(w,)~!, then the constant
is independent of the conditioning of the Hessian.

YZW (USTC) Optimization Algorithms 417 / 467

Stochastic Quasi-Newton Methods

Additional Per-Iteration Costs The product Hyg(wg, k) requires 4md
operations where m is the memory in the L-BFGS updating scheme.
Assuming the cost of evaluating g(wx,&x) is exactly d operations (using
only one sample) and m is set to the typical value of 5, then the stochastic
quasi-Newton method is 20 times more expensive than SG. Can we offset
this additional per-iteration cost?

When employing mini-batch gradient estimates, the additional cost of the
iteration (146) is only marginal. The use of mini-batches may be
considered essential. Mini-batch should not be less than, say, 20 or 50,
and mini-batches of size 256 are common in practice.

YZW (USTC) Optimization Algorithms 418 / 467

Stochastic Quasi-Newton Methods

Conditioning of the Scaling Matrices Updating Hy involves differences
in gradient estimates computed in consecutive iterations. {g(w,&x)} are
noisy estimates of {V F(wg)}, which can cause the updating process to
yield poor curvature estimates. How could such effects be avoided in the
stochastic regime?

One possibility is to employ the same sample when computing gradient
differences. An alternative approach is to decouple the step computation
and the Hessian update.

YZW (USTC) Optimization Algorithms 419 / 467

Stochastic Quasi-Newton Methods

Replacing deterministic gradients with stochastic gradients, we have
Sk = Wky1 — Wg and vy 1= Vfgk(wk_,_l,fk) — Vfgk(wk,fk). (147)
and Hy is defined recursively by

T\ T T

ViS VS SKS
Hk+1<—<l— Tk> Hk<l— Tk)+ ==
S Vk S, Vk

Note that the use of the same realization &, in the two gradient estimates,
in order to address the issues related to noise mentioned above.

YZW (USTC) Optimization Algorithms 420 / 467

Stochastic Quasi-Newton Methods

A worrisome feature is that updating the inverse Hessian approximation
with every step may not be warranted and could easily represent a poor
approximation of the action of the true Hessian of F.

Here's an alternative strategy for this issue. Since
Vi(wiy1) — VF(wi) = V2F(wi)(Wii1 — wi), we can define

Vg = VZfS,’("(Wk7§II<—I)Sk7 (148)

where szSkH(wk;E,’(") is a subsampled Hessian and |S}| is large
enough to provide useful curvature information.

When |S}| is much larger than |Sk|, the computation of v4 can be
performed only after a sequence of iterations, to amortize the cost of
quasi-Newton updating.

YZW (USTC) Optimization Algorithms 421 / 467

Stochastic Quasi-Newton Methods

This leads to the idea of decoupling the step computation from the
quasi-Newton update. This approach, which we refer to as SQN, performs
a sequence of iterations of (146) with Hy fixed, then computes a new
displacement pair (s, vk) with sx defined as in (147) and v set using one
of the strategies outlined above.

To formalize all of these alternatives, we state the general stochastic
quasi-Newton method presented as Algorithm 5.

YZW (USTC) Optimization Algorithms 422 / 467

Stochastic Quasi-Newton Methods

Algorithm 5 Stochastic Quasi-Newton Framework

1: Choose an initial iterate wy and initialize P + 0.

2: Choose a constant m € N.

3: Choose a stepsize sequence {ax} C Ryy.

4. for k=1,2,..., do

5. Generate realizations of & and 5[’ corresponding to S,f’ C Sk

6: Compute 8§ = Hig(wk, &) using the two-loop recursion based on
the set P.

7 Set s) < —au 5.

8: Set W41 < Wi + Sk.

9: if update pairs then

10: Compute s, and v, (based on the sample S,’(")
11: Add the new displacement pair (s, vk) to P.
12: If |P| > m, then remove eldest pair from P.
13: end if

14: end for

YZW (USTC) Optimization Algorithms 423 / 467

Gauss-Newton Methods

The Gauss-Newton method is a classical approach for nonlinear least
squares. It constructs an approximation to the Hessian using only
first-order information, and this approximation is guaranteed to be positive
semidefinite, even when the full Hessian itself may be indefinite.

YZW (USTC) Optimization Algorithms 424 / 467

Gauss-Newton Methods

Given an input-output pair (x¢, y¢), the loss incurred by a parameter vector

w is measured via a squared norm discrepancy between h(x¢, w) € R and
d.

y € R%:

1
f(w,€) = U(h(xe, w). ye) = 5 | hlxe, w) = yell3 -

Let Ju(-, &) represent the Jacobian of h(x¢,-) with respect to w. The affine
approximation of h(xg, w) is

h(xe, w) = h(xe, wi) + Jp(wi, §)(w — wi),

which leads to
1
f(w,§) & [h(xe, wi) + Jn(wi, €)(w — wie) — vell2
1
:§||h(><§, wie) — yel3 + (h(xe, wi) — ve) " Jn(wi, €)(w — wic)

+ %(W — wi) " In(wi, €) T In(wi, E)(w — wy).

YZW (USTC) Optimization Algorithms 425 / 467

Gauss-Newton Methods

It is similar to a second-oder Taylor series model, except that the terms
involving the second derivatives of h with respect to w have been dropped,
and the remaining second-order terms are resulting from the positive
curvature of the quadratic loss /.

This leads to replacing the subsample Hessian matrix by the
Gauss-Newton matrix

Z In(Wiey €x.0) T In(Wi, Exi)- (149)

H
iest

GS[("(Wkaé.II(-I) | |

YZW (USTC) Optimization Algorithms 426 / 467

Gauss-Newton Methods

A challenge of Gauss-Newton method is that Gauss-Newton matrix is
often singular or nearly singular. In practice, this is handled by regularizing
it by adding to it a positive multiple of the identity matrix.

The computational cost of the Gauss-Newton method depends on the
dimensionality of the prediction function. It should be remarked that in
machine learning, computing the stochastic gradient vector Vf(w, &) does
not usually require the explicit computation of all rows of the Jacobian
matrix. And there are some new ways to solve a Gauss-Newton iterate at
a low cost.

YZW (USTC) Optimization Algorithms 427 / 467

Generalized Gauss-Newton

Consider a slightly more general situation in which loss between a
prediction function h and output y is measured by an arbitrary convex loss
function £(h, y). Combining the affine approximation of the prediction
function h(x¢, w) with a second order Taylor expansion of the loss function
{ leads to the generalized Gauss-Newton matrix

Z In(Wie, €x.i) " Ho(Wi, €k 1) In(wi, €xi) - (150)

GS/:’(kafk) | ’
k ESH

where Hy(wg, &) = g—;g(h(x&, Wk), ye) captures the curvature of the loss
function /.

YZW (USTC) Optimization Algorithms 428 / 467

Diagonal Scalings

We have seen that the added per-iteration costs of second-order methods
(such as L-BFGS) can be as little as 4md operations. A strategy to further
reduce this multiplicative factor is to restrict attention to diagonal or
block-diagonal scaling matrices.

The incorporation of a diagonal scaling matrix will only scale the individual
search direction components. This can be efficiently achieved by
multiplying the individual search direction components.

YZW (USTC) Optimization Algorithms 429 / 467

Computing Diagonal Curvature

A first family of algorithms directly computes the diagonal terms of the
Hessian or Gauss-Newton matrix, then divides each coefficient of the
stochastic gradient vector g(wg,) by the corresponding diagonal term.

For instance, each iteration of the proposed algorithm picks a training
example, computes g(wg, &x), updates a running estimate of the diagonal
coefficients of the Gauss-Newton matrix by

[Gili = (1= N[Ge-li + A [n(wi &) Jn(wi,)| for some 0 <A < 1,

YZW (USTC) Optimization Algorithms 430 / 467

Computing Diagonal Curvature

then performs the scaled stochastic weight update

(07

Wil = [wii — ([GI<]:+,U

> lg (Wi, &)]i-

The small regularization constant p > 0 is introduced to deal with a
singular or nearly singular Gauss-Newton matrix.

It's more enlightening to view such an algorithm as a scheme to

periodically retune a first-order SG approach rather than as a
complete second-order method.

YZW (USTC) Optimization Algorithms 431 / 467

Estimating Diagonal Curvature

Instead of explicitly computing the diagonal terms of the curvature matrix,
one can follow the template of quasi-Newton method and directly estimate
the diagonal [Hk]; of the inverse Hessian using displacement pairs

{(sk vie) }-

For instance, [Hk|; can be computed with the running average

[Hiali = (1= N)[Hili + A Proj <[5k]’ > ,
[vili
where Proj(-) represents a projection onto a predefined positive interval.
But a direct application of (147) after a parameter update introduces a
correlated noise that ruins the curvature estimate, which is hard to correct
because of the chaotic behavior of the rescaling factors [H];.

YZW (USTC) Optimization Algorithms 432 / 467

Estimating Diagonal Curvature

These problems can be addressed with a combination of two ideas.

First, estimate the diagonal of the Hessian instead of its inverse.

Second, ensure the effective stepsizes are monotonically decreasing by
replacing the running average by the sum

[Gk+1li = [Gili + Proj GZ:]]) '

Keeping the curvature estimates in a fixed positive interval ensures the
effective stepsizes decrease at the rate O(%).

YZW (USTC) Optimization Algorithms 433 / 467

Natural Gradient Method

The essential idea of natural gradient method consists of formulating the
gradient descent algorithm in the space of prediction functions rather than
specific parameters. The actual computation of course takes place with
respect to the parameters, but the algorithm will move the parameters
more quickly along directions that have a small impact on the decision
function.

The space H of prediction functions is a family of densities hy, (x)
parametrized by w € W and satisfying the normalization condition

/hw(x)dx =1, YweW.

And we assume sufficient regularity, i.e.,

Ohy(x) , O 01
vt >0, Bt dx = 8Wt/hw(x)dx ot =0. (151)

YZW (USTC) Optimization Algorithms 434 / 467

Natural Gradient Method

To quantify how the density h,, changes when adding a small quantity dw
to its paramter, we use the Kullback-Leibler (KL) divergence

D) = By g (222) (152)

Approximating the divergence with a second-order Taylor expansion, we
have

Dki(hwllhw+sw) =Eny [log(hw(x)) — log(hw-+sw(x))]

0log(hyw(x)) 1 02 log(hw(x))
~_ s T ologlw{X)) | _1c T o~ log\wix))
~—ow Ep, [oW 25W Ep, w2 ow.

By (151), .
Dt (hw || Awssw) = 5(smﬁc;(w)(sw. (153)

YZW (USTC) Optimization Algorithms 435 / 467

Natural Gradient Method

Natural gradient method minimizes a functional
F:hy, € H— F(hy) = F(w) € R. A greedy strategy is

hy,., = argmin F(h) s.t. Dy (hw,|lh) < ni. (154)
heH

Use (153) we can reformulate it in terms of the parameters:

1
W41 = arg min F(w) s.t. E(W —wi) " G(wi)(w — wyi) <72, (155)
wew

YZW (USTC) Optimization Algorithms 436 / 467

Natural Gradient Method

Lagrangian formulation is customarily used to handle this problem.
Assuming 7, small, we can replace F(w) with
F(wy) + VF(wk) " (w — wg). These two choices lead to

2O[k(W — wie) " G(wie)(w — wy),

Wi i1 = argmin VF(wi) T (w — wy) +
wew

and the optimization of the right-hand side leads to the natural gradient
iteration

Wicr1 = Wi — G (wie) VF (wie). (156)

YZW (USTC) Optimization Algorithms 437 / 467

Natural Gradient Method

G(w) is a called Fisher information matrix, with expression

C0) . [WW}

ow?

(8'°g§’;;”(x”) <a|oggx<x))>T] |

where the latter equality follows from (151).

) <a|og(hw(x,-)))T
e ow e ’

YZW (USTC) Optimization Algorithms 438 / 467

(157)

:Ehw

A sampled version of G(wy) is

)= & Z <8Iog X))

IES

Gradient Methods with Momentum

With an initial point wy = wy, scalar sequences {ax} and {(}, the
iteration of gradient methods with momentum is

Wi1 = Wik — ax VF(wi) + Br(wk — wi—1). (158)

The latter is referred to as the momentum term. It is named after the fact
that it represents a discretization of a certain second-order ordinary
differential equation with friction.

When 5, = 0 for all k € N, it reduces to the steepest descent method.

When ay = a and Bx = 3 for some constants a > 0 and 3 > 0, it is
referred to as the heavy ball method, which yields a linear convergence
with a superior rate compared to steepest descent with a fixed stepsize for
certain functions.

YZW (USTC) Optimization Algorithms 439 / 467

Gradient Methods with Momentum

Additional connection with (158) can be made when F is a strictly convex
quadratic. If (ak, Bk) is chosen optimally in the sense that

(ak, Bk) = 3f(g f;)in F(wx — aVF(wy) + B(wk — wi_1)), (159)

then (158) is exactly the linear conjugate gradient (CG) algorithm.

An alternative view of the heavy ball method is obtained by expanding
(158) as:

k
Wil Wk — aZBk_JVF(Wk);
j=1

thus, each step can be viewed as an exponentially average of past
gradients.

YZW (USTC) Optimization Algorithms 440 / 467

Accelerated Gradient Methods

Nesterov accelerated gradient method is similar to (158) but with its own
unique properties. It involves the updates

Wi Wy + ,Bk(Wk - Wk—l) (160)
and w41 Wk — axVF (W),

which leads to the condensed form
Wi1 < Wk — o VF (Wi + Bre(wie — wi—1)) + Br(wik — wie—1). (161)

Compared with gradient method with momentum, it applies the
momentum term first, then takes a steepest descent step at wy.

YZW (USTC) Optimization Algorithms 441 / 467

Accelerated Gradient Methods

When F is convex and continuously differentiable with a Lipschitz
continuous gradient, with appropriately chosen ay = o > 0 for all k € N
and {8k} 1 leads to an optimal iteration complexity.

While the convergence rate of steepest descent method is O(%), the
iteration (161) converges with a rate O(%) which is provably the best
rate that can be achieved by a gradient method.

Unfortunately, no intuitive explanation as to how Nesterov's method
achieves this optimal rate has been widely accepted.

YZW (USTC) Optimization Algorithms 442 / 467

Coordinate Descent Methods

Coordinate descent (CD) methods operate to a single variable while all
others are kept fixed, then other variables are updated similarly.

The CD method for minimizing F : R — R is given by the iteration

Wit1 < Wi — a Vi F(wi)ei,, (162)

where V; F(wy) = aiﬁk (wk), w' represents the ix-th element of the
parameter vector, and e;, represents the jx-th coordinate vector for some

ikG{l,...,d}.

YZW (USTC) Optimization Algorithms 443 / 467

Coordinate Descent Methods

Specific versions of the CD method are defined by the manner in which
the sequences {ax} and {ix} are chosen.

{ax}:
o Choose ay as the global minimizer of F from wy along the i,-th
coordinate.
o Choose «ay yielding a sufficient reduction in F from wy.
o Compute ay as the minimizer of a quadratic model of F along the
ik-th coordinate direction. (so-called second-order CD methods)
{ik}:
o Cycle through {1,...,d}.
o Cycle through a random reordering of {1,...,d}, with the indexes
reordered after each set of d steps.
e Simply choose an index randomly with replacement in each iteration.
The latter two strategies for {ix} have superior theoretical properties
than the first strategy.

YZW (USTC) Optimization Algorithms 444 / 467

Convergence Properties

A CD method is not guaranteed to converge when applied to minimize any
given continuously differentiable function. This is in contrast with the full

gradient method, which guarantees convergence to stationarity even when

the objective is nonconvex.

However, if the objective F is strongly convex, the CD method will not
fail. The analysis is very simple when using a constant stepsize. Assume
that VF is coordinate-wise Lipschitz continuous in the sense that for all
weR ic{l,...,d}, and Aw' € R, there exists a constant L; > 0 such
that

IViF(w + Aw'e)) — ViF(w)| < Lj|Aw'|. (163)

And we define [:= maxie(1,....d} Li-

YZW (USTC) Optimization Algorithms 445 / 467

Convergence Properties

EIE

Suppose that the objective function F : R? — R is continuously
differentiable, strongly convex with constant ¢ > 0, and has a gradient
that is coordinate-wise Lipshcitz continuous with constants {Ly,...,Lq}.

In addition, suppose that o = 1/ [and iy is chosen independently and

uniformly from {1,...,d} for all k € N. Then for all k € N, the iteration
(162) yields

k
C
E[F(wky1)] — Fi < <1 — ﬁ) (F(w1) — Fy). (164)
YZW (USTC) Optimization Algorithms

446 | 467

Favorable Problem Structures

A simple randomized CD method is linearly convergent with constant
dependent on the parameter dimension d. If d coordinate updates can be
performed at a cost similar to the evaluation of one full gradient, the
method is competitive with a full gradient method both theoretically and
in practice.

This kind of problems include those in which the objective function is

d

Fw) = 3 BT w) + 3 Fi(w), (165)
j=1

i=1

where Vj € {1,...,n}, I:_J is continuously differentiable and dependent on
the sparse data vector x;, and Vi € {1,...,d}, Fjis a regularization
function (potentially nonsmooth).

YZW (USTC) Optimization Algorithms 447 / 467

Favorable Problem Structures

For example, consider an objective function of the form

f(w) = *||XW yH2+ZF) with X = [x1 ... xp].
i=1

In this setting,
Vi f(wis1) = x M1+ Fi;(Wlik+1) with rgy1 := Awgy1 — b,

where, with w1 = wy + Bke,-k, we have ry41 = re + kaik-

Since the residuals {r} can be updated with cost proportional to the
number of nonzeros in x; , call it nnz(x;,), the overall cost of computing
the search direction in iteration k + 1 is also O(nnz(x;,)). On the other
hand, an evaluation of the entire gradient requires a cost of

O(X1, nnz(xj)).

YZW (USTC) Optimization Algorithms 448 / 467

Stochastic Dual Coordinate Ascent

Consider minimizing a convex objective function of the form (165) by
maximizing its dual.

Defining the convex conjugate of F; as I-:J*(u) = maxy, (w'u— Fi(w))
when Fi(-) = 3(-)? for all i € {1,...,d} is given by

2

n

= >\ W
Fant) =13 [0] -3 | £ S
j= j=)

The stochastic dual coordinate ascent (SDCA) method applied to a
function of this form has an iteration similar to (162), except that negative
gradient steps are replaced by gradient steps.

When the algorithm terminates, the corresponding primal solution can be
. 1 n
obtained as w «— 5. > 1 vjX;.

YZW (USTC) Optimization Algorithms 449 / 467

Parallel CD Methods

Consider a multicore system in which the parameter vector w is stored in
shared memory.

Each core can then execute a CD iteration independently and in an
asynchronous manner, where if d is large compared to the number of
cores, then it is unlikely that two cores are attempting to update the same
variable at the same time.

Each update is being made based on slightly stale information. However,
convergence of the method can be proved, and improves when one can
bound the degree of staleness of each update.

YZW (USTC) Optimization Algorithms 450 / 467

Methods for Regularized Models

The discussion of structural risk minimization highlighted the key role
played by regularization functions.

The optimization methods we have presented in this section are all
applicable for objectives involving smooth regularizers, such as the squared
l>-norm. And we expand our investigation by considering optimization
methods that handle the regularization as a distinct entity, in particular
when the function is nonsmooth, for example, #1-norm, which induces
sparsity in the optimal solution vector.

For machine learning, sparsity can be seen as a form of feature selection.

YZW (USTC) Optimization Algorithms 451 / 467

Methods for Regularized Models

We focuses on the nonsmooth optimization problem

min ®(w) := F(w) + AQ(w), (166)

weRd

where F : RY — R includes the composition of a loss and prediction

function, A > 0 is a regularization parameter, and € : RY — R is a convex,
nonsmooth regularization function.

Specifically, we pay special attention to methods for solving the problem

min ¢(w) 1= F(w) + A||w||1. (167)

weRd

YZW (USTC) Optimization Algorithms 452 / 467

First-order Methods for Generic Convex Regularizers

For solving problem (166), the proximal gradient method represents a
fundamental approach.

Given an iterate wy, a generic proximal gradient iteration with ay > 0 is
given by

. 1
e < argmin (F(m) + VF(m) T (= we) + 5w = wel§ + 22(w))

weRd
(168)
The term proximal refers to the presence of the third term in the
minimization problem on the right-hand side, which encourage the new
iterate to be close to wy. If the last term were not present, then (168)
exactly recovers the gradient method update wyi1 < wix — a,VF(wg);
hence we refer to oy as the stepsize parameter.

YZW (USTC) Optimization Algorithms 453 / 467

First-order Methods for Generic Convex Regularizers

Suppose that F : RY — R is continuously differentiable, strongly convex
with constant ¢ > 0, and has a gradient that is Lipschitz continuous with

constant L > 0. In addition, suppose that oy = a € (0,1/L) for all k € N.
Then, for all k € N, the iteration (168) yields

O(Wis1) — P(ws) < (1 — ac)“(@(wr) — &(ws)),

where w, € RY is the unique global minimizer of ® in (166).

YZW (USTC) Optimization Algorithms 454 / 467

First-order Methods for Generic Convex Regularizers

The proximal gradient iteration (168) is practical only when the proximal
mapping
1

prox (W) := arg min (/\Q(W) + —|lw— v"vH%)

AQ, ok weR" 200,
can be computed efficiently. Situations when the proximal mapping is
inexpensive to compute include when is the indicator function for a
simple set, when it is the £1-norm, or when it is separable.

A stochastic version of the proximal gradient method can be obtained by
replacing VF(wy) in (168) by a stochastic approximation g(wg,&k). The
resulting method attains similar behavior as a stochastic gradient method.

YZW (USTC) Optimization Algorithms 455 / 467

lterative Soft Thresholding Algorithm (ISTA)

For solving the ¢1-norm regularized problem (167), the proximal gradient
method is

1
e < argmin F(we) + VAT (w = wi) + 50w = wil -+ Al
weRd
(169)

The solution can be written component-wise in closed form, with
(-)+ = max{-,0}, as

Wil < 7-04()\(Wk — CkaF(Wk)), where [7;,()\],' = (’VT/,| — ak)\)_|_ sgn(v"v,-).

(170)
Ta, is referred to as the soft-thresholding operator, which leads to the
name iterative soft-thresholding algorithm (ISTA). It is clear from (170)
that the ISTA iteration induces sparsity in the iterates.

YZW (USTC) Optimization Algorithms 456 / 467

Bound-constrained Methods for /1-norm Regularized

Problems

An equivalent smooth reformulation of problem (167) is easily derived, by

writing w = u — v where u and v play the positive part and negative part
of w respectively:

i t. >0 171

where ¢(u, v) = F(u — v) +)\Zf-le(u,- + vi).

The fundamental iteration for solving bound-constrained optimization

problems is the gradient projection method. In the context of (171), the
iteration reduces to

[Jere ([]-on] Qe)= ([UTawfezizone]) oo

where P, projects onto the nonnegative orthant and e € R? is a vector of
ones.

YZW (USTC) Optimization Algorithms 457 / 467

Bound-Constrained Methods for /1-norm Regularized

Problems

The iteration (172) is expected to inherit the property of being globally
linearly convergent when F satisfies the assumptions of the last theorem.
However, since the variables in (171) have been split into positive and

negative parts, this property is maintained only if the iteration maintains
complementarity of each iterate pair, i.e., if

[u]i[vk]i =0, Yk € N,i € {1,...,d}.

A stochastic projected gradient method, with V F(wy) replaced by
g(wk, &), has similar convergence properties as a standard SG method.

YZW (USTC) Optimization Algorithms 458 / 467

Second-order Methods

For solving problem (167), a proximal Newton method is one that
constructs, at each kK € N, a model

1
qe(w) = F(wi) + VF(wi) " (w — wi) + S(w= wie) " Hic(w — wi) + Al w1,
(173)
where Hj represents VZF(Wk) or a quasi-Newton approximation of it.

A proximal Newton method would involve (approximately) minimizing this
model to compute a trial iterate wy, then a step size a > 0 would be

taken from a predetermined sequence or chosen by a line search to ensure
that the new iterate wyy1 < wi + ay (Wi — wy) yields ¢(wii1) < d(wi).

YZW (USTC) Optimization Algorithms 459 / 467

Proximal Newton Methods

Proximal Newton methods are more challenging to design, analyze and
implement than proximal gradient methods. Assuming Hj has been chosen
to be positive definite, here are three essential ingredients in proximal
Newton method:

Choice of Subproblem Solver g, is nonsmooth and is challenging
to minimize. One choice is coordinate descent, since the global
minimizer of g, along a coordinate descent direction can be
computed analytically.

Inaccurate Subproblem Solves It's impractical to minimize g
accurately for all k € N. Thus we need a practical and theoretically
sufficient termination criteria.

YZW (USTC) Optimization Algorithms 460 / 467

Proximal Newton Methods

Interestingly, the norm of an ISTA step is an appropriate measure. Let
istay(w) represent the result of an ISTA step applied to g from w. A
trial point Wy represents a sufficiently accurate minimizer of gy if, for
some 7 € [0, 1), one finds

H istak(v"vk) = VlN/kH2 < 77H istak(wk) = WkHQ and qk(v"vk) < qk(wk).

Elimination of Variables Due to the structure created by the
£1-norm regularizer, it can be effective in some applications to first
identify a set of active variables then compute an approximate
minimizer of g, over the remaining free variables.

YZW (USTC) Optimization Algorithms 461 / 467

Orthant-based Methods

Our second class of second-order methods is based on the observation that

¢1-norm regularized objective ¢ in problem (167) is smooth in any orthant
in RY.

In every iteration, orthant-based methods construct a smooth quadratic
model of the objective, then produce a search direction by minimizing this
model.

After performing a line search designed to reduce the objective function, a
new orthant is selected and the process is repeated.

YZW (USTC) Optimization Algorithms 462 / 467

Orthant-based Methods

With the minimum norm subgradient of ¢ at w € R?, which is given
component-wise for all i € {1,...,d} by

[VF(w)]. + A if w; >0o0r {w; =0and [VF(w)]; + A <0}
gi(w)=«¢ [VF(w)]. =X ifw; <0or {w; =0and [VF(w)]; — A >0}
0 otherwise,
(174)
the active orthant for an iterate wy is characterized by the sign vector

] sen(wili) if [wili # 0
ki { sgn(—[g(wi)];) if [wi]i = 0. (175)
Along these lines, define the subsets of {1,...,d} given by

Ay :{i : [Wk],' =0 and |[VF(Wk)]i| <)\} (176)

and .7:/(:{i . [Wk],' 75 0} U {i . [Wk],' =0 and |[VF(Wk)],'| >)\}, (177)

where Ay represents the indices of variables that are active and kept at

zero while Fj represents those that are free to move.
YZW (USTC) Optimization Algorithms 463 / 467

Orthant-based Methods

Given these quantities, an orthant-based method proceeds as follows. First,
compute the (approximate) solution di of the (smooth) quadratic problem

1

RPN T T

d+ —d Hid
s 8w d + 50" He
s.t.di =0, i €Ay,

where H represents V2F(wj) or an approximation of it.

Then the algorithm performs a line search—over a path contained in the
current orthant—to compute the next iterate.

One option is a projected backtracking line search along di, computing the
largest o in a decreasing geometric sequence so

F(Pk(Wk + Ozkdk)) < F(Wk),
where Py (w) projects w € R? onto the orthant defined by (.

YZW (USTC) Optimization Algorithms 464 / 467

Outline |

YZW (USTC) Optimization Algorithms 465 / 467

Outline 11

@ Conclusion

YZW (USTC) Optimization Algorithms 466 / 467

Thanks for your attention!

YZW (USTC) Optimization Algorithms 467 / 467

	Unconstrained Optimization
	Constrained Optimization
	二次规划
	非线性约束最优化

	Convex Optimization
	Convex Set and Convex Function
	Convex Optimization and Algorithms

	Sparse Optimization
	Sparse Optimization Models
	Sparse Optimization Algorithms

	Optimization Methods for Machine Learning
	Typical Form of Problems
	Stochastic Algorithms
	Other Popular Methods

	Conclusion

