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Description

The course is devoted to the mathematical fundamentals of
optimization and the practical algorithms of optimization.

The course covers the topics of nonlinear continuous optimization,
sparse optimization, and optimization methods for machine learning.
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Objectives

Objectives of the course are

to develop an understanding of the fundamentals of optimization;

to learn how to analyze the widely used algorithms for optimization;

to become familiar with the implementation of optimization
algorithms.
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Prerequisites

Knowledge of Linear Algebra, Real Analysis, and Mathematics of
Operations Research are very important for this course.

Simultaneously, the ability to write computer programs of algorithms
is also required.
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Topics Covered

Unconstrained Optimization

Constrained Optimization

Convex Optimization

Sparse Optimization

Optimization Methods for Large-scale Machine Learning
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Grading

(1) Homework (10%)

(2) Project (30%)

(3) Final Exam (60%)
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无约束最优化

无约束最优化问题
min
x∈Rn

f (x) (1)

其目标函数f是定义在Rn上的实值函数，决策变量x的可取值之集合是全
空间 Rn.
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梯度类求解算法

梯度向量∇f (x)是函数f在点x处增加最快的方向，故它成为最优化时的
重要工具。实际上针对无约束最优化问题，大家所知的求解算法中大多
属于下面的梯度方法类。

GRADIENT （（（梯梯梯度度度法法法类类类）））

(0) 初始化：选取适当的初始点x(0) ∈ Rn, 令k := 0.

(1) 计算搜索方向：利用适当的正定对称阵Hk计算搜索方向向
量d(k) := −Hk∇f (x(k)). （如果∇f (x(k)) = 0, 则结束计算）

(2) 确定步长因子：解一维最优化问题min
α≥0

f (x(k) + αd(k)), 求出步

长α = αk , 令x(k+1) = x(k) + αkd(k), k := k + 1, 回到第(1)步。
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构造搜索方向：负梯度方向

无约束最优化问题：min
x∈Rn

f (x)

f (x) = f (x(k)) +∇f (x(k))T (x− x(k)) + O(‖x− x(k)‖2) (2)

取负梯度方向
d(k) = −∇f (x(k)),

则当αk足够小时，总能使

f (x(k) + αkd(k)) < f (x(k)).
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构造搜索方向：牛顿方向

f (x) = f (x(k)) +∇f (x(k))T (x− x(k))

+
1

2
(x− x(k))T∇2f (x(k))(x− x(k)) + O(‖x− x(k)‖3)

(3)

取搜索方向
d(k) = −G−1

k ∇f (x(k)),

其中Gk = ∇2f (x(k))为函数f在x(k)点处的Hesse矩阵。
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确定步长因子：一维搜索

在迭代格式中，通过解一维最优化问题

min
α≥0

ϕ(α) = f (x(k) + αd(k)) (4)

确定步长因子的方法称为一一一维维维搜搜搜索索索(Line Search).
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确定步长因子：一维搜索

若以问题(4)的最优解为步长，此时称为精精精确确确一一一维维维搜搜搜索索索(Exact Line
Search).

经常用到的精确一维搜索有黄金分割法和插值迭代法。即使说是精确一
维搜索，通过有限次计算求出问题(4)的严密解一般也是不可能的，实际
上在得到有足够精度的近似解时，就采用它作为步长。
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确定步长因子：一维搜索

在实际计算中，往往不是求解一维最优化问题(4), 而是找出满足某些适
当条件的粗略近似解作为步长，此时称为非非非精精精确确确一一一维维维搜搜搜索索索(Inexact Line
Search).

与精确一维搜索相比，在很多情况下采用非精确一维搜索可以提高整体
计算效率。
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确定步长因子：一维搜索

设ᾱk是使得
f (x(k) + αd(k)) = f (x(k))

的最小正数α.

于是，我们将在区间[0, ᾱk ]内求得满足适当条件的可接受的步长因子，
即α ∈ [0, ᾱk ].

ϕ

α α

)0(ϕ
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确定步长因子：一维搜索

Goldstein(1965) conditions:

ϕ(α) ≤ ϕ(0) + ραϕ
′
(0) (5)

ϕ(α) ≥ ϕ(0) + (1− ρ)αϕ
′
(0) (6)

其中ρ ∈ (0, 1/2)是一个固定参数。
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确定步长因子：一维搜索

Goldstein(1965) conditions:

ϕ

)0()0( 'ραϕϕ +

α

)0(ϕ

)0()1()0( 'αϕρϕ −+
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确定步长因子：一维搜索

Wolfe(1968)-Powell(1976) conditions:

ϕ(α) ≤ ϕ(0) + ραϕ
′
(0) (7)

ϕ
′
(α) ≥ σϕ′(0) (8)

其中σ ∈ (ρ, 1)是另一个固定参数。
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确定步长因子：一维搜索

Wolfe(1968)-Powell(1976) conditions:

ϕ

)0()0( 'ραϕϕ +

α

)0(ϕ

)0(:slope 'σϕ
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确定步长因子：一维搜索

在很多实际算法中，式(8)常被强化的双边条件所取代

|ϕ′(α)| ≤ −σϕ′(0) (9)
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确定步长因子：一维搜索

基于Wolfe-Powell准则的非精确一维搜索算法：

(0) 给定初始一维搜索区间[0, ᾱ], 以及ρ ∈ (0, 1/2), σ ∈ (ρ, 1).
计算ϕ0 = ϕ(0) = f (x(k)), ϕ

′
0 = ϕ

′
(0) = ∇f (x(k))Td(k).

并令a1 = 0, a2 = ᾱ, ϕ1 = ϕ0, ϕ
′
1 = ϕ

′
0.

选取适当的α ∈ (a1, a2).
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确定步长因子：一维搜索

基于Wolfe-Powell准则的非精确一维搜索算法：

(1) 计算ϕ = ϕ(α) = f (x(k) + αd(k)). 若ϕ(α) ≤ ϕ(0) + ραϕ
′
(0), 则转到

第(2)步。否则，由ϕ1, ϕ
′
1, ϕ构造两点二次插值多项式p(1)(t), 并得

其极小点

α̂ = a1 +
1

2

(a1 − α)2ϕ
′
1

(ϕ1 − ϕ)− (a1 − α)ϕ
′
1

.

于是置a2 = α, α = α̂, 重复第(1)步。
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确定步长因子：一维搜索

基于Wolfe-Powell准则的非精确一维搜索算法：

(2) 计算ϕ
′

= ϕ
′
(α) = ∇f (x(k) + αd(k))Td(k). 若ϕ

′
(α) ≥ σϕ′(0), 则输

出αk = α, 并停止搜索。否则，由ϕ,ϕ
′
, ϕ
′
1构造两点二次插值多项

式p(2)(t), 并得其极小点

α̂ = α− (a1 − α)ϕ
′

ϕ
′
1 − ϕ

′ .

于是置a1 = α, α = α̂, ϕ1 = ϕ,ϕ
′
1 = ϕ

′
, 返回第(1)步。
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确定步长因子：一维搜索

[思考题：请写出上述基于Wolfe-Powell准则的非精确一维搜索算法中插
值多项式p(1)(t), p(2)(t)的具体表达式。]
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全局收敛

从任意初始点出发，如果某迭代算法产生的点列的极限（聚点），在适
当假定下可保证恒为问题的最优解（或者稳定点），则称该迭代法具有
全局收敛性(Global Convergence).

与此相对，如果仅在解的附近选取初始点时，才可以保证所生成的点列
收敛于该解，则称这样的迭代法有局部收敛性(Local Convergence).
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全局收敛

为了证明迭代法的下降性，我们应尽量避免搜索方向与负梯度方向几乎
正交的情形，即要求d(k)偏离g(k) = ∇f (x(k))的正交方向远一些。否则，

g(k)Td(k)接近于零，d(k)几乎不是下降方向。

为此，我们假设d(k)与−g(k)的夹角θk满足

θk ≤
π

2
− µ, ∀k (10)

其中µ > 0（与k无关）。
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全局收敛

显然θk ∈ [0, π/2), 其定义为

cos θk =
−g(k)Td(k)

‖g(k)‖‖d(k)‖ =
−g(k)T s(k)

‖g(k)‖‖s(k)‖ (11)

这里s(k) = αkd(k) = x(k+1) − x(k).
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全局收敛

下面给出各种步长准则下的下降算法的全局收敛性结论。

全全全局局局收收收敛敛敛性性性定定定理理理：：：

设∇f (x)在水平集 L(x(0)) = {x | f (x) ≤ f (x(0))} 上存在且连续。下降算
法的搜索方向d(k)与−∇f (x(k)) 之间的夹角θk满足式(10), 其中步长αk由
三种方法之一确定：

(1) 精确一维搜索

(2) Goldstein准则 (5),(6)

(3) Wolfe-Powell准则 (7),(8)

那么，或者对某个k有∇f (x(k)) = 0, 或者f (x(k))→ −∞,
或者∇f (x(k))→ 0.
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全局收敛

全全全局局局收收收敛敛敛性性性证证证明明明：：：（只证明Wolfe-Powell准则的情形）

假设对所有的k, g(k) = ∇f (x(k)) 6= 0 和f (x(k))有下界，

故f (x(k))− f (x(k+1))→ 0. 由式(7)得，−g(k)T s(k) → 0.

（反证）若g(k) → 0不成立，那么存在ε > 0和子列{x(k)}k∈K使
得‖g(k)‖ ≥ ε. 从而由

−g(k)T s(k) = ‖g(k)‖‖s(k)‖ cos θk ≥ ε‖s(k)‖ sinµ

以及式(10)有‖s(k)‖ → 0.
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全局收敛

全全全局局局收收收敛敛敛性性性证证证明明明（（（续续续）））：：：

又因为g(x) = ∇f (x)在L(x(0))上连续，所以

g(k+1)T s(k) = g(k)T s(k) + o(‖s(k)‖)
⇓

g(k+1)T s(k)

g(k)T s(k)
→ 1.

(12)
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全局收敛

全全全局局局收收收敛敛敛性性性证证证明明明（（（续续续）））：：：

而这与Wolfe-Powell准则的式(8)

g(k+1)T s(k)

g(k)T s(k)
≤ σ < 1 (13)

相矛盾。因此有g(k) → 0

[思考题：请补充证明基于Goldstein准则的非精确一维搜索算法的全局收
敛性。]
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最速下降法

最速下降法取负梯度作为迭代算法的搜索方向，其迭代格式为

x(k+1) = x(k) − αk∇f (k(k)).
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最速下降法

算算算法法法：：：

(0) 选取初始点x(0), 设置终止误差ε > 0, 令k := 0.

(1) 计算g(k) = ∇f (x(k)). 若‖g(k)‖ < ε, 则停止迭代并输出x(k).
否则进行第(2)步。

(2) 令d(k) = −g(k), 并由一维搜索确定步长因子αk使得

f (x(k) + αkd(k)) = min
α>0

f (x(k) + αd(k)).

(3) 迭代更新x(k+1) = x(k) + αkd(k), 置k := k + 1, 回到第(1)步。
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最速下降法

最最最速速速下下下降降降法法法全全全局局局收收收敛敛敛性性性定定定理理理：：：

设f (x) ∈ C 1, 在最速下降法中采用（精确或非精确）一维搜索，则产生
的迭代点列{x(k)}的每一个聚点都是驻点。
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最速下降法
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最速下降法

一般地，最速下降法只有线性收敛速度。

如下例子是一个非常著名的测试函数 (Rosenbrock function)

f (x1, x2) = 100(x2 − x2
1 )2 + (1− x1)2.
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牛顿法

设f (x)是二次可微实函数，在x(k)附近作二阶Taylor展开近似

f (x(k) + s) ≈ q(k)(s) = f (x(k)) + g(k)T s +
1

2
sTGks (14)

其中g(k) = ∇f (x(k)),Gk = ∇2f (x(k)).

将q(k)(s)极小化便得
s = −G−1

k g(k). (15)

上式给出的搜索方向−G−1
k g(k)称为牛顿方向(Newton Direction).
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牛顿法

在目标函数是正定二次函数

f (x) =
1

2
xTGx− cT x

的情况下(G为正定阵)，对任意的x有∇2f (x) = G .

在第一次迭代里令H0 = G−1, 则有

d(0) = −H0∇f (x(0)) = −G−1(Gx(0) − c) = −(x(0) − x∗).

这里，x∗ = G−1c是问题的最优解。若x(0) 6= x∗, 取步长α0 = 1, 于是得
x(1) = x(0) + α0d(0) = x∗. 由此知道，不管初始点x(0)如何取，在一次迭
代后即可到达最优解x∗.
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牛顿法

根据以上事实，可以认为即使对于一般的非线性函数f (x), 在迭代中令
搜索方向

d(k) = −∇2f (x(k))−1∇f (x(k))

也是较合适的。

特别地，步长αk ≡ 1的迭代公式为

x(k+1) = x(k) + d(k) = x(k) − G−1
k g(k). (16)

这就是经典的牛顿迭代法
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牛顿法

对于正定二次函数而言，牛顿法一步即可达到最优解。对于非二次函
数，牛顿法并不能保证经有限次迭代求得最优解。但由于目标函数在极
小点附近可用二次函数较好地近似，故当初始点靠近极小点时，牛顿法
的收敛速度一般会很快。

可以证明牛顿法的局部收敛性和二阶收敛速率。
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牛顿法

牛牛牛顿顿顿法法法收收收敛敛敛定定定理理理：：：

设f ∈ C 2, x(k)充分靠近x∗, 其中∇f (x∗) = 0. 如果∇2f (x∗)正定，目标函
数的Hesse矩阵G (x)满足Lipschitz条件，即存在β > 0使得对所有(i , j)有

|Gij(x)− Gij(y)| ≤ β‖x− y‖. (17)

则对一切的k , 牛顿迭代(16)有定义，所得序列{x(k)}收敛到x∗, 且具有二
阶收敛速率。
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牛顿法

证证证明明明一一一：：：

记 g(x) = ∇f (x), 因为f ∈ C 2, 我们有

g(x− h) = g(x)− G (x)h + O(‖h‖2).

令x = x(k), h = h(k) = x(k) − x∗ 代入上式得

0 = g(x∗) = g(x(k) − h(k)) = g(x(k))− G (x(k))h(k) + O(‖h(k)‖2). (18)
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牛顿法

证证证明明明一一一（（（续续续）））：：：

由于G (x)满足Lipschitz条件，易证
[
G (x(k))

]−1
有界。方程(18)两边同时

乘以
[
G (x(k))

]−1
得

0 =
[
G (x(k))

]−1
g(x(k))− h(k) + O(‖h(k)‖2)

= x∗ − (x(k) −
[
G (x(k))

]−1
g(x(k))) + O(‖h(k)‖2)

= x∗ − x(k+1) + O(‖h(k)‖2)

= −h(k+1) + O(‖h(k)‖2)

所以‖h(k+1)‖ = O(‖h(k)‖2), 即牛顿迭代法具有二阶收敛速率。
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牛顿法

证证证明明明二二二：：：

对于牛顿迭代法，我们记

x(k+1) = x(k) − G−1
k g(k) , A(x(k)). (19)

注意到g(x∗) = 0, G (x∗)正定（非奇异），有A(x∗) = x∗.

于是由x(k+1) − x∗ = A(x(k))−A(x∗) 得

‖x(k+1) − x∗‖ = ‖A(x(k))−A(x∗)‖
≤ ‖A′(x∗)(x(k) − x∗)‖+

1

2
‖A′′(x̄)‖‖x(k) − x∗‖2,

其中x̄位于x(k)和x∗之间的线段上。
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牛顿法

证证证明明明二二二（（（续续续）））：：：

显然
A′(x) = [x− G (x)−1g(x)]

′
= −[G (x)−1]

′
g(x)

所以A′(x∗) = 0. 从而有

‖h(k+1)‖ = ‖x(k+1) − x∗‖ ≤ γ‖x(k) − x∗‖2 = γ‖h(k)‖2

其中常数γ仅依赖于f (x)在x∗附近的三阶导数。
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牛顿法

在式(16)的牛顿迭代法里，如果选取的初始点x(0)不在解x∗的附近，那么
生成的点列{x(k)}未必收敛于最优解。

为保证算法的全局收敛性，有必要对牛顿法作某些改进。
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牛顿法

比如，在牛顿法中也可采用一维搜索来确定步长。

阻阻阻尼尼尼牛牛牛顿顿顿法法法：：：

(0) 选取初始点x(0), 设置终止误差ε > 0, 令k := 0.

(1) 计算g(k) = ∇f (x(k)). 若‖g(k)‖ < ε, 停止迭代并输出x(k).
否则进行第(2)步。

(2) 解线性方程组Gkd = −g(k), 求出牛顿方向d(k).

(3) 采用一维搜索确定步长因子αk , 令x(k+1) = x(k) + αkd(k),
置k := k + 1, 回到第(1)步。
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牛顿法

牛顿法面临的主要困难是Hesse矩阵Gk = ∇2f (x(k))不正定。这时二阶近
似模型不一定有极小点，即二次函数q(k)(s)是无界的。

为了克服这些困难，人们提出了很多修正措施。
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牛顿法

Goldstein & Price (1967)

d(k) =




−G−1

k g(k), if cos θk > η

−g(k), otherwise

(20)
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牛顿法

Levenberg(1944), Marquardt(1963), Goldfeld et. al(1966)

(Gk + µk I )d(k) = −g(k) (21)
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牛顿法

设x是函数f的一个不定点，若方向d满足

dT∇2f (x)d < 0,

则称d为f在x处的负曲率方向。

当Hesse矩阵∇2f (x(k))不正定时，负曲率方向法是修正牛顿法的另一种
途径。
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拟牛顿法

牛顿法的突出优点是局部收敛很快（具有二阶收敛速率），
但运用牛顿法需要计算二阶导，而且目标函数的Hesse矩阵∇2f (x(k)) 可
能非正定，甚至奇异。为了克服这些缺点，
人们提出了拟牛顿法。其基本思想是：用不含二阶导数的矩阵Hk近似牛
顿法中的Hesse矩阵的逆G (x(k))−1.

由构造近似矩阵的方法不同，将出现不同的拟牛顿法。
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拟牛顿法

回顾牛顿法的迭代 {
Gkd = −g(k)

x(k+1) = x(k) + αkd(k)

为了构造Hesse矩阵逆G−1
k 的近似Hk , 我们先分析二阶导∇2f (x(k)) 与一

阶导∇f (x(k))的关系。
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拟牛顿法

设第k次迭代后得到x(k+1), 将目标函数f (x)在x(k+1)处二阶Taylor展开：

f (x) ≈ f (x(k+1)) +∇f (x(k+1))T (x− x(k+1))

+
1

2
(x− x(k+1))T∇2f (x(k+1))(x− x(k+1)),

进一步有

∇f (x) ≈ ∇f (x(k+1)) +∇2f (x(k+1))(x− x(k+1)),

于是令x = x(k)得

∇f (x(k)) ≈ ∇f (x(k+1)) +∇2f (x(k+1))(x(k) − x(k+1)).
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拟牛顿法

记s(k) = x(k+1) − x(k), y(k) = ∇f (x(k+1))−∇f (x(k)), 则有

∇2f (x(k+1))s(k) ≈ y(k) or ∇2f (x(k+1))−1y(k) ≈ s(k).

这样，计算出s(k)和y(k)后，可依上式估计在x(k+1)处的Hesse矩阵的逆。
我们有理由要求在迭代中构造出Hesse矩阵逆的近似Hk+1, 使其满足

Hk+1y(k) = s(k). (22)

通常把式(22)称作正割条件，也称为拟牛顿条件。
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拟牛顿法

拟拟拟牛牛牛顿顿顿迭迭迭代代代算算算法法法的的的一一一般般般格格格式式式：：：

(0) 选取初始点x(0), 令H0 = I , k := 0.

(1) 计算搜索方向d(k) = −Hk∇f (x(k)).

(2) 采用一维搜索确定步长因子αk , 令x(k+1) = x(k) + αkd(k).

(3) 基于x(k)到x(k+1)的梯度变化，更新Hesse矩阵逆的近似，即确定满
足正割条件的Hk+1. 置k := k + 1, 返回第(1)步。

YZW (USTC) Optimization Algorithms 61 / 467



拟牛顿法

下面我们就来讨论怎样构造及确定满足拟牛顿条件的Hesse矩阵逆的近
似Hk+1.
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拟牛顿法

设Hk是第k次迭代的Hesse矩阵逆的近似，我们希望以Hk来产生Hk+1, 即

Hk+1 = Hk + Ek ,

其中Ek是一个低秩的矩阵。

为此，可采用对称秩一(SR1)校正

Hk+1 = Hk + auuT , (a ∈ R, u ∈ Rn).
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拟牛顿法

由拟牛顿条件(22)知

Hk+1y(k) = Hky(k) + (auT y(k))u = s(k)

故u必与方向s(k) − Hky(k)一致，且假定s(k) − Hky(k) 6= 0.

不妨取u = s(k) − Hky(k), 此时a =
1

uT y(k)
, 从而得到

Hk+1 = Hk +
(s(k) − Hky(k))(s(k) − Hky(k))T

(s(k) − Hky(k))T y(k)
. (23)

上式称为对称秩一校正。
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拟牛顿法

二二二次次次终终终止止止性性性

定定定义义义：：： 如果一种迭代法能在确知的有限步内找到二次函数的极小点，
则称这种方法具有二次终止性。
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拟牛顿法

对称秩一校正的突出性质：

1 针对二次函数具有遗传性，即 Hky(`) = s(`), ` = k − 1, · · · , 1, 0.
2 具有二次终止性，即对于二次函数不需要进行一维搜索而具有n步
终止性质，且Hn = [∇2f (x∗)]−1.

[思考题：请证明对称秩一校正拟牛顿法的上述性质。]
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拟牛顿法

对称秩一校正的缺点是，不能保持迭代矩阵Hk+1的正定性。

仅当(s(k) −Hky(k))T y(k) > 0时，对称秩一校正才能保持正定性。而这个
条件往往很难保证，即使(s(k) − Hky(k))T y(k) > 0 满足，它也可能很小
从而导致数值上的困难。

这些都使得对称秩一校正的拟牛顿法应用有较大局限性。
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拟牛顿法

采用对称秩二(SR2)校正

Hk+1 = Hk + auuT + bvvT ,

并使得拟牛顿条件(22)成立，则有

Hk+1y(k) = Hky(k) + (auT y(k))u + (bvT y(k))v = s(k).

这里u, v显然不是唯一确定的，但有一种明显的选择是：

{
u = s(k), auT y(k) = 1;

v = Hky(k), bvT y(k) = −1.
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拟牛顿法

因此有

Hk+1 = Hk +
s(k)s(k)T

s(k)T y(k)
− Hky(k)y(k)THk

y(k)THky(k)
. (24)

上式称为 DFP(Davidon-Fletcher-Powell)校正公式，由Davidon(1959)提
出，后经Fletcher & Powell(1963)修改而来。
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拟牛顿法

DFP校正(24)是典型的拟牛顿校正公式，它有很多重要性质。

（一）对于二次函数（采用精确一维搜索）

1 遗传性，即Hky(`) = s(`), ` = k − 1, · · · , 1, 0.
2 二次终止性，即Hn = [∇2f (x∗)]−1.

3 共轭性，即当取H0 = I时，迭代产生共轭方向。

（二）对于一般非线性函数

1 校正保持正定性，因而d(k)总是下降方向。

2 每次迭代需要3n2 + O(n)次乘法运算。

3 方法具有超线性收敛速度。
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拟牛顿法

拟拟拟牛牛牛顿顿顿（（（正正正割割割）））条条条件件件

Hk+1y(k) = s(k)

其中Hk+1是Hesse矩阵逆的近似；

Bk+1s(k) = y(k)

其中Bk+1是Hesse矩阵的近似。
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拟牛顿法

由对称秩二校正和拟牛顿条件Hk+1y(k) = s(k)可得到Hk的DFP校正公式

H
(DFP)
k+1 = Hk +

s(k)s(k)T

s(k)T y(k)
− Hky(k)y(k)THk

y(k)THky(k)
.
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拟牛顿法

BFGS (Broyden-Fletcher-Goldfarb-Shanno) 校正

类似地，我们可从拟牛顿条件Bk+1s(k) = y(k)得到关于Bk的对称秩二校
正公式

B
(BFGS)
k+1 = Bk +

y(k)y(k)T

y(k)T s(k)
− Bks(k)s(k)TBk

s(k)TBks(k)
. (25)

把(25)式称为关于Bk的BFGS校正。
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拟牛顿法

如果我们对Bk的BFGS校正“求逆”，就可以得到关于Hk的BFGS校正公
式

H
(BFGS)
k+1 = Hk + (1 +

y(k)THky(k)

s(k)T y(k)
)

s(k)s(k)T

s(k)T y(k)

−Hky(k)s(k)T + s(k)y(k)THk

s(k)T y(k)
.

(26)

[ 思考题：请给出H
(BFGS)
k+1 的对称秩二校正的特解，即a, u, b, v. ]
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拟牛顿法

进一步，若将(26)式中 {H ↔ B, s↔ y}互换，便得到关于Bk的DFP校正
公式

B
(DFP)
k+1 = Bk + (1 +

s(k)TBks(k)

y(k)T s(k)
)

y(k)y(k)T

y(k)T s(k)

−Bks(k)y(k)T + y(k)s(k)TBk

y(k)T s(k)
.

(27)

YZW (USTC) Optimization Algorithms 75 / 467



拟牛顿法

秩一校正的求逆公式

Sherman-Morrison定定定理理理：：： 设A ∈ Rn×n是非奇异阵，u, v ∈ Rn是任意向
量。若1 + vTA−1u 6= 0, 则A的秩一校正A + uvT非奇异，且其逆可以表
示为

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (28)

[ 思考题：利用秩一校正的求逆公式，由H
(DFP)
k+1 推导B

(DFP)
k+1 ]
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拟牛顿法

进一步的参考资料

R. Fletcher, Practical Methods of Optimization (2nd Edition). John
Wiley & Sons, 1987.

D. C. Liu and J. Nocedal, On the Limited Memory Method for Large
Scale Optimization. Mathematical Programming B, 45(3), pp.
503-528, 1999.

...
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共轭梯度法

共共共轭轭轭方方方向向向

定定定义义义：：： 设G是n × n正定阵，Rn中的任一组非零向量
{d(0), d(1), · · · , d(k)}, 如果d(i)TGd(j) = 0(i 6= j),
则称d(0), d(1), · · · , d(k)是G−共轭的。
显然共轭是正交概念的推广，当取G = I时，共轭即为正交。
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共轭梯度法

共共共轭轭轭方方方向向向法法法（（（类类类）））：：：

(0) 给定正定阵G , 选取初始点x(0), 计算g(0) = ∇f (x(0)) 并构造d(0)使

得g(0)Td(0) < 0. 令k := 0.

(1) 求精确的一维搜索步长αk , 即αk = arg min
α>0

f (x(k) + αd(k)).

(2) 更新迭代点x(k+1) = x(k) + αkd(k), 并构造d(k+1)使

得d(k+1)TGd(j) = 0, j = 0, 1, · · · , k .

(3) 置k := k + 1, 返回第(1)步。
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共轭梯度法

共轭方向法是从研究二次函数的极小化问题中产生的，但它可以推广到
处理非二次函数的极小化问题。

共轭方向法的一个重要性质是，只要执行精确一维搜索，迭代算法就具
有二次终止性。
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共轭梯度法

共共共轭轭轭方方方向向向法法法基基基本本本定定定理理理：：： 严格凸二次函数f (x) =
1

2
xTGx + cT x,

共轭方向法执行精确一维搜索，则每步迭代点x(k+1)是f (x)在线性流形

V = {x | x = x(0) +
k∑

j=0

βjd
(j), ∀βj ∈ R}

中的唯一极小点。
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共轭梯度法

证证证明明明：：： 设共轭方向法产生的G -共轭方向为d(0), d(1), · · · , d(k).
由共轭方向的定义知，{d(0), d(1), · · · , d(k)}线性无关。
下面只要证：对所有k < n成立

g(k+1)Td(j) = 0, j = 0, 1, · · · , k.

即在点x(k+1)处的函数梯度g(k+1) = ∇f (x(k+1)) 与子空
间span{d(0), d(1), · · · , d(k)}正交。
由此易得出定理的结论。
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共轭梯度法

证证证明明明（（（续续续）））：：： 直接由精确一维搜索知，对 ∀j 成立

g(j+1)Td(j) = 0.

特别地，当 j = k 时，g(k+1)Td(k) = 0.
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共轭梯度法

证证证明明明（（（续续续）））：：： 事实上，由于

y(k) = g(k+1) − g(k) = G (x(k+1) − x(k)) = G s(k) = αkGd(k).

故当j < k时有

g(k+1)Td(j) = g(j+1)Td(j) +
k∑

i=j+1
y(i)Td(j)

= g(j+1)Td(j) +
k∑

i=j+1
αid

(i)TGd(j)

= 0 + 0
= 0
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共轭梯度法

证证证明明明（（（续续续）））：：： 综合上述，从而证明了

g(k+1)Td(j) = 0, j = 0, 1, · · · , k.
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共轭梯度法

推推推论论论：：： 对于严格凸的二次函数，若沿着一组共轭方向搜索，经有限步
迭代必达到极小点。
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共轭梯度法

由于共轭方向法具有二次终止性，人们希望能给出一个具体的算法（属
于共轭方向法类）。通过修改最速下降法，使其搜索方向具有共轭性质，
这便是共轭梯度法。

下面我们先针对二次函数，给出共轭梯度法的具体描述。
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共轭梯度法

设二次函数f (x) =
1

2
xTGx + cT x, 其中G是n × n正定阵，c是n维向量。

函数f的梯度向量为
g(x) = ∇f (x) = Gx + c.

取d(0) = −g(0), 因为x(1) = x(0) + α0d(0)中步长α0由精确一维搜索决定，

所以g(1)Td(0) = 0.

现设d(1) = −g(1) + β
(1)
0 d(0), 选择β

(1)
0 使d(1)TGd(0) = 0, 即得

β
(1)
0 =

g(1)Tg(1)

g(0)Tg(0)
.
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共轭梯度法

同理，令d(2) = −g(2) + β
(2)
0 d(0) + β

(2)
1 d(1), 选择β

(2)
0 , β

(2)
1 使

得d(2)TGd(j) = 0, j = 0, 1. 从而有

β
(2)
0 = 0,

β
(2)
1 =

g(2)Tg(2)

g(1)Tg(1)
.
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共轭梯度法

一般地，在第k次迭代中，令

d(k) = −g(k) +
k−1∑

j=0

β
(k)
j d(j),

选择β
(k)
j 使得d(k)TGd(j) = 0, j = 0, 1, · · · , k − 1, 则有

β
(k)
j =

g(k)TGd(j)

d(j)TGd(j)
=

g(k)T (g(j+1) − g(j))

d(j)T (g(j+1) − g(j))
.

又由于g(k)Tg(j) = 0, j = 0, 1, · · · , k − 1, 故得

β
(k)
j = 0, j = 0, 1, · · · , k − 2

β
(k)
k−1 =

g(k)Tg(k)

g(k−1)Tg(k−1)
.
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共轭梯度法

针针针对对对二二二次次次函函函数数数的的的共共共轭轭轭梯梯梯度度度算算算法法法 (Fletcher & Reeves, 1964)

(0) 给定初始点x(0), 计算g(0) = g(x(0)), 令d(0) = −g(0), k := 0.

(1) 迭代更新x(k+1) = x(k) + αkd(k), 其中αk =
g(k)Tg(k)

d(k)TGd(k)
.

(2) 计算g(k+1) = g(x(k+1)), 构造共轭梯度方

向d(k+1) = −g(k+1) + βkd(k), 其中βk =
g(k+1)Tg(k+1)

g(k)Tg(k)
.

(3) 置k := k + 1, 返回第(1)步。
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共轭梯度法
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共轭梯度法

共共共轭轭轭梯梯梯度度度法法法性性性质质质定定定理理理：：： 设目标函数f (x) =
1

2
xTGx + cT x, 则采用精确一

维搜索的共轭梯度法经m ≤ n步迭代后终止，且对所有的1 ≤ k ≤ m成立
下列关系式：

d(k)TGd(j) = 0, g(k)Tg(j) = 0, j = 0, 1, · · · , k − 1

d(k)Tg(k) = −g(k)Tg(k)

span{g(0), g(1), · · · , g(k)} = span{g(0),Gg(0), · · · ,G kg(0)}
span{d(0), d(1), · · · , d(k)} = span{d(0),Gg(0), · · · ,G kg(0)}

[思考题：证明上述定理...]
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共轭梯度法

将共轭梯度法推广到非二次函数的极小化问题，其迭代为

x(k+1) = x(k) + αkd(k).

步长αk由精确或者非精确一维搜索决定，而d(k+1)的构造如下：

d(k+1) = −g(k+1) + βkd(k).
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共轭梯度法

其中

βk :=
g(k+1)Tg(k+1)

g(k)Tg(k)
(Fletcher− Reeves)

βk :=
g(k+1)T (g(k+1) − g(k))

d(k)T (g(k+1) − g(k))
(Hestenes− Stiefel)

βk :=
g(k+1)T (g(k+1) − g(k))

g(k)Tg(k)
(Polak− Ribiere− Polyak)

βk :=
g(k+1)Tg(k+1)

−d(k)Tg(k)
(Dixon)

βk :=
g(k+1)Tg(k+1)

d(k)T (g(k+1) − g(k))
(Dai−Yuan)
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共轭梯度法

对于非二次函数，共轭梯度法迭代n步以后所产生的搜索方向
d(k+1) = −g(k+1) + βkd(k) 可能不再是下降方向（由非精确一维搜索造
成的）。

因此，n步以后我们应该周期性采用最速下降方向作为搜索方向，即
令d(`n) = −g(`n), ` = 1, 2, . . .

这种策略称为重启动策略，这样的共轭梯度法也称作重启动共轭梯度
法。
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共轭梯度法

如上所述的共轭梯度法迭代对于一般的非线性函数的最小化也是照样适
用的，但迭代更新的步长因子无法显式表达，需要执行数值近似的非精
确一维搜索。
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共轭梯度法

由于每n步迭代执行重启动策略，若记重新启动时得到的点列为{z(j)},
则可证明这些相隔n次的迭代点列超线性收敛。受实际计算误差的影响，
在很多情形下仅能取得类似线性的收敛速率。
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共轭梯度法

从实际计算效率及稳定性来看，共轭梯度法未必比拟牛顿法好。但是，
共轭梯度法中搜索方向的计算仅仅用到目标函数的梯度，而不必像拟牛
顿法那样在每次迭代中更新Hesse矩阵（或其逆）的近似阵并记忆之。
所以，当问题的规模大而且有稀疏结构时，共轭梯度法有高效执行计算
的好处。
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共轭梯度法

The preconditioned conjugate gradient method

在大多数情况下，为确保共轭梯度法的快速收敛，预条件处理是必要
的。
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共轭梯度法

进一步的参考资料

M. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of
Standards, 49 (6), 1952.

K. Atkinson, An Introduction to Numerical Analysis (2nd Edition).
John Wiley & Sons, 1988.

M. Avriel, Nonlinear Programming: Analysis and Methods. Dover
Publishing， 2003.

G. Golub and C. Van Loan, Matrix Computations (3rd Edition).
Johns Hopkins University Press.

...
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信赖域方法

为了保证迭代法的全局收敛性，之前我们采用了一维搜索策略。

一维搜索策略先确定一个搜索方向d(k), 然后沿着这个方向选择适当的步
长因子αk , 新的迭代点x(k+1) = x(k) + αkd(k).

现在，我们讨论另一种全局收敛策略
— 信赖域方法 (Trust-Region Method).
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信赖域方法

信赖域方法首先定义当前迭代点x(k)的邻域

Ωk = {x ∈ Rn | ‖x− x(k)‖ ≤ ek},

这里Ωk称为信赖域，ek是信赖域半径。

假定在这个邻域里，二次模型q(k)(s)是目标函数f (x)的一个合适的近似，
则在信赖域中极小化二次模型，得到近似极小点s(k), 并
取x(k+1) = x(k) + s(k).
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信赖域方法

信赖域方法利用二次模型在信赖域内求得方向步s(k), 使得目标函数的下
降比一维搜索更有效。

信赖域方法不仅具有全局收敛性，而且不要求目标函数的Hesse矩阵
（或其近似）是正定的。
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信赖域方法

信赖域子问题

min q(k)(s) = f (x(k)) + g(k)T s +
1

2
sTBks

s.t. ‖s‖ ≤ ek .
(29)

其中s = x− x(k), g(k) = ∇f (x(k)), 对称阵Bk是Hesse矩阵
∇2f (x(k))或其近似，ek > 0为信赖域半径，‖ · ‖为某一范数。
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信赖域方法

如何选择信赖域半径ek?

我们将根据二次模型q(k)(s)对目标函数f (x)的拟合程度自适应地调整信
赖域半径。
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信赖域方法

设子问题(29)的解s(k), 令目标函数的下降量

Actk = f (x(k))− f (x(k) + s(k))

为实际下降量，令二次模型函数的下降量

Prek = q(k)(0)− q(k)(s(k))

为预测下降量。定义比值

rk =
Actk
Prek

=
f (x(k))− f (x(k) + s(k))

q(k)(0)− q(k)(s(k))
.

它衡量了二次模型与目标函数之间的一致程度。
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信赖域方法

当rk越接近1, 表明二次模型函数q(k)(s)与目标函数f的一致性程度越好，
此时可以增大半径ek以扩大信赖域。

如果rk > 0但不接近1, 我们保持信赖域半径ek不变。

如果rk接近零或取负值，表明q(k)(s)与目标函数f的一致性程度不理想，
就减小半径ek以缩小信赖域。
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信赖域方法

信信信赖赖赖域域域算算算法法法

(0) 给定初始点x(0), 信赖域半径的上界ē,
ε > 0, 0 < γ1 < γ2 < 1, 0 < η1 < 1 < η2. 取e0 ∈ (0, ē), 令k := 0.

(1) 如果‖g(k)‖ ≤ ε, 停止迭代。否则，求解信赖域子问题(29)得到s(k).

(2) 计算比值rk , 更新迭代点

x(k+1) =

{
x(k) + s(k) if rk > 0,

x(k) otherwise.
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信赖域方法

信信信赖赖赖域域域算算算法法法

(3) 调整信赖域半径，令

ek+1 =





η1ek if rk < γ1,
ek if γ1 ≤ rk < γ2,
min(η2ek , ē) if rk ≥ γ2.

(4) 置k := k + 1, 返回第(1)步。
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信赖域方法

信信信赖赖赖域域域方方方法法法的的的全全全局局局收收收敛敛敛性性性定定定理理理：：：

设水平集L(x(0)) = {x | f (x) ≤ f (x(0))}有界，且f (x)在其上C 2连续，则由
信赖域算法产生的迭代序列存在聚点x∞, 满足一阶和二阶必要条件，即

g∞ = ∇f (x∞) = 0, G∞ = ∇2f (x∞) ≥ 0.
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信赖域方法

在信赖域算法中关键的一步是，解信赖域子问题(29).

这里我们介绍一种求解信赖域子问题的方法，即由 Powell (1970) 提出
的折线法。

所谓折线法，是连接 Cauchy 点（由最速下降法产生的极小点）和牛顿
点（由牛顿法产生的极小点），其连线与信赖域边界的交点取为x(k+1).
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信赖域方法

折线法图示

)(kx

Nx

Cx
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信赖域方法

对于二次模型

q(k)(−αg(k)) = f (x(k))− α‖g(k)‖2 +
1

2
α2g(k)TBkg(k),

精确一维搜索的步长因子可表达为

αk =
‖g(k)‖2

g(k)TBkg(k)
.

于是 Cauchy 步为

s
(k)
C = −αkg(k) = − ‖g(k)‖2

g(k)TBkg(k)
g(k).
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信赖域方法

如果‖s(k)
C ‖ = ‖αkg(k)‖ ≥ ek , 取

s(k) = − ek
‖g(k)‖g(k),

便得
x(k+1) = x(k) − ek

‖g(k)‖g(k).

如果‖s(k)
C ‖ = ‖αkg(k)‖ < ek , 再计算牛顿步

s
(k)
N = −B−1

k g(k).
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信赖域方法

如果‖s(k)
N ‖ ≤ ek , 取

s(k) = s
(k)
N = −B−1

k g(k),

否则，取
s(k) = s

(k)
C + λ(s

(k)
N − s

(k)
C ),

其中λ使得
‖s(k)

C + λ(s
(k)
N − s

(k)
C )‖ = ek .
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信赖域方法

综上所述，我们得到

x(k+1) =





x(k) − ek
‖g(k)‖g(k) 当‖s(k)

C ‖ ≥ ek ,

x(k) − B−1
k g(k) 当‖s(k)

C ‖ < ek且‖s(k)
N ‖ ≤ ek ,

x(k) + s
(k)
C + λ(s

(k)
N − s

(k)
C ) 当‖s(k)

C ‖ < ek且‖s(k)
N ‖ > ek .

(30)
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信赖域方法

折线法满足下列性质：

1) 沿着 Cauchy 点x
(k+1)
C 和牛顿点x

(k+1)
N 的连线，到x(k)的距离单调增

加；

2) 沿着 Cauchy 点x
(k+1)
C 和牛顿点x

(k+1)
N 的连线，子问题模型函数值单

调减少。

[思考题：证明上述性质...]
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本章作业（无约束最优化）

Exercise 1: 请写出上述基于Wolfe-Powell准则的非精确一维搜索算
法中插值多项式p(1)(t), p(2)(t)的具体表达式。

Exercise 2: 请证明基于Goldstein准则的非精确一维搜索算法的全局
收敛性。

Exercise 3: 试将非线性方程组求根F (x) = 0的牛顿迭代，用于求解
无约束最优化问题 minx∈Rn f (x). 请给出相应的迭代格式，并说明
理由。

Exercise 4: 请证明对称秩一校正拟牛顿法具有二次终止性和遗传
性。

Exercise 5: 利用秩一校正的求逆公式（Sherman-Morrison定理），
由H

(DFP)
k+1 推导B

(DFP)
k+1 .
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本章作业（无约束最优化）

Exercise 6: 请证明共轭梯度法的性质定理。

Exercise 7: 请证明折线法（信赖域方法）子问题模型的函数单调
性。

Exercise 8: 在信赖域方法中，请给出一种与调整信赖域半径等效
的自适应模式算法。
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二次规划

二次规划(Quadratic Programming)是指，在变量的线性等式和/或不等
式限制下求二次函数的极小点问题

min Q(x) =
1

2
xTGx + cT x

s.t. aTi x = bi , i ∈ E = {1, · · · ,me}
aTi x ≥ bi , i ∈ I = {me + 1, · · · ,m}

(31)

我们假定G为对称阵，ai (i ∈ E)是线性无关的。
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二次规划

二次规划的约束可能不相容，也可能没有有限的最小值，这时称二次规
划问题无解。

如果矩阵G半正定，问题(31)是凸二次规划问题，它的任意局部解也是
整体解。

如果矩阵G正定，问题(31)是正定二次规划问题，只要存在解即是唯一
的。

如果矩阵G不定，问题(31)是一般的二次规划问题，有可能出现非整体
解的局部解。
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二次规划

等式约束二次规划问题

min Q(x) =
1

2
xTGx + cT x

s.t. Ax = b
(32)

这里A是m × n矩阵，且不失一般性可设 rank(A) = m.
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二次规划

设有一种基分解x =

(
xB
xN

)
, 其中xB ∈ Rm, xN ∈ Rn−m, 使得其约束矩

阵的对应分块A = (AB ,AN)中AB可逆。于是，等式约束条件可写成

xB = A−1
B (b− ANxN),

并将上式代入目标函数中得到无约束问题

min
xN∈Rn−m

1

2
xTN ĜNxN + ĉTNxN . (33)
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二次规划

在上式中

ĜN = GNN − GNBA
−1
B AN − AT

NA
−T
B GBN + AT

NA
−T
B GBBA

−1
B AN ,

ĉN = cN − AT
NA
−T
B cB + GNBA

−1
B b− AT

NA
−T
B GBBA

−1
B b,

以及对应分块形式

G =

(
GBB GBN

GNB GNN

)
, c =

(
cB
cN

)
.
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二次规划

(1) 如果ĜN正定，则无约束问题的解可唯一地给出

x∗N = −Ĝ−1
N ĉN ,

进一步得原问题(32)的解为

x∗ =

(
x∗B
x∗N

)
=

(
A−1
B b
0

)
+

(
A−1
B AN

−I

)
Ĝ−1
N ĉN .

设x∗对应的Lagrange乘子向量为λ∗, 则有

Gx∗ + c = ATλ∗ =⇒ λ∗ = A−TB (GBBx∗B + GBNx∗N + cB).
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二次规划

(2) 如果ĜN是半正定的，则在(I − ĜN Ĝ
+
N )ĉN = 0时，无约束问题有界，

且它的解可表示为

x∗N = −Ĝ+
N ĉN + (I − Ĝ+

N ĜN)ỹ,

其中ỹ ∈ Rn−m为任意向量，Ĝ+
N表示ĜN的广义逆矩阵。此时，原问

题的解x∗和相应最优乘子λ∗可类似确定。

当(I − ĜN Ĝ
+
N )ĉN = 0不成立时，则可推出无约束问题无下界，从而

原问题也无下界。
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二次规划

(3) 如果ĜN不定（即存在负的特征根），显然无约束问题无下界，故原
问题不存在有限最优解。
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二次规划

上述消去法的不足之处是，当AB接近奇异时，容易导致数值计算的不稳
定。
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二次规划

广广广义义义消消消去去去法法法

设Z = {zm+1, · · · , zn}解空间Ker(A)的一组基，
Y = {y1, · · · , ym}是商空间Rn/Ker(A)的一组基，
则∀x ∈ Rn可作如下分解表达

x = Y xY + ZxZ .

从而有

Ax = b =⇒ AY xY + AZxZ = b =⇒ xY = (AY )−1b,

所以得
x = Y (AY )−1b + ZxZ ,

其中xZ ∈ Rn−m是自由变量。
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二次规划

广广广义义义消消消去去去法法法

将上式代入目标函数中得无约束问题

min
xZ∈Rn−m

1

2
xTZ (ZTGZ )xZ + [ZTGY (AY )−1b + ZT c]T xZ . (34)

假定ZTGZ正定，则有

x∗Z = −(ZTGZ )−1ZT [GY (AY )−1b + c].
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二次规划

广广广义义义消消消去去去法法法

从而得到原问题的最优解

x∗ = Y (AY )−1 − Z (ZTGZ )−1ZT [GY (AY )−1b + c],

相应的Lagrange乘子为

λ∗ = (AY )−TY T (Gx∗ + c).
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二次规划

Lagrange方法是基于求解可行域内的(K-T)点，即Lagrange函数的稳定
点。

对于等式约束问题(32), 其Lagrange函数的稳定点就是如下线性方程组的
解 {

Gx + c = ATλ,
Ax = b.

写成矩阵形式得

(
G −AT

−A 0

)(
x
λ

)
= −

(
c
b

)
.
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二次规划

设矩阵

(
G −AT

−A 0

)
可逆，则存在矩

阵U ∈ Rn×n,V ∈ Rm×m,W ∈ Rm×n 使得

(
G −AT

−A 0

)−1

=

(
U W T

W V

)

从而可求得问题的唯一解

{
x∗ = −Uc−W Tb,
λ∗ = −W c− V b.
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二次规划

上述Lagrange方法中的矩阵非奇异性并不一定要求G−1存在，可用不同
的方法给出分块矩阵U,V ,W的表达形式，从而导致不同的计算公式。
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二次规划

当G可逆，A行满秩，则(AG−1AT )−1存在，不难验证





U = G−1 − G−1AT (AG−1AT )−1AG−1,
V = −(AG−1AT )−1,
W = −(AG−1AT )−1AG−1.

于是我们得到求解公式

{
x∗ = −G−1c + G−1AT (AG−1AT )−1(AG−1c + b),
λ∗ = (AG−1AT )−1(AG−1c + b).
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二次规划

如果取Y ,Z满足(Y ,Z ) =

(
A
B

)−1

, 即AY = Im×m,AZ = 0.

若另有ZTGZ可逆，则知

(
G −AT

−A 0

)
可逆。此时





U = Z (ZTGZ )−1ZT ,
V = −Y TGPTY ,
W = −Y TP.

其中P = I − GZ (ZTGZ )−1ZT .
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二次规划

基于AT的QR分解，可给出(Y ,Z )的一种特殊取法：

设

AT = Q

(
R
0

)
= (Q1,Q2)

(
R
0

)
,

即

A = (RT , 0)

(
QT

1

QT
2

)
.

其中Q为n × n正交阵，R为m ×m上三角阵。于是
令Y = Q1R

−T ,Z = Q2, 则有

AY = RTQT
1 Q1R

−T = Im×m, AZ = RTQT
1 Q2 = 0m×(n−m).
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二次规划

一般的二次规划

min Q(x) =
1

2
xTGx + cT x

s.t. aTi x = bi , i ∈ E = {1, · · · ,me}
aTi x ≥ bi , i ∈ I = {me + 1, · · · ,m}

(35)

直观上，不积极的不等式约束在解的附近不起作用，可去掉不予考虑；
而积极的不等式约束，由于它在解处等号成立，故我们可以用等式约束
来代替这些积极的不等式约束。
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二次规划

积积积极极极集集集基基基本本本定定定理理理：：： 设x∗是一般的二次规划问题(35)的局部极小点，
则x∗也必是等式约束问题

(EQ)

{
min Q(x) =

1

2
xTGx + cT x

s.t. aTi x = bi , i ∈ E ∪ I(x∗)

的局部极小点。反之，如果x∗是一般问题(35)的可行点，同时
是(EQ)的K-T点，且相应的Lagrange乘子λ∗满足 λ∗i ≥ 0, i ∈ I(x∗),
则x∗必是原问题(35)的K-T点。

[习题6.1：证明上述定理...]
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二次规划

设x(k)为当前迭代点，且是问题(35)的可行点。

记Ek = E ∪ I(x(k)), 考虑等式约束问题

(EQ1)

{
min

1

2
sTG s + (Gx(k) + c)T s

s.t. aTi s = 0, i ∈ Ek

求得(EQ1)的解s(k), 及其相应的Lagrange乘子λ
(k)
i , i ∈ Ek .

YZW (USTC) Optimization Algorithms 144 / 467



二次规划

(a) s(k) 6= 0时，x(k)不可能是原问题的K-T点。

(b) s(k) = 0时，x(k)是问题

(EQ2)

{
min

1

2
xTGx + cT x

s.t. aTi x = bi , i ∈ Ek

的K-T点；如果λ
(k)
i ≥ 0, i ∈ I(x(k)), 则x(k)也是原问题的K-T点。

(c) 否则，由λ
(k)
iq

= min
i∈I(x(k))

λ
(k)
i < 0 确定iq, 那么如下问题

(EQ3)

{
min

1

2
sTG s + (Gx(k) + c)T s

s.t. aTi s = 0, i ∈ Ê = Ek \ {iq}.

的解ŝ是原问题在当前点x(k)处的可行方向，即aTiq ŝ ≥ 0.

[思考题：证明上述(c)的结论...]
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二次规划

积积积极极极集集集方方方法法法(Active Set Method)

(0) 给出可行点x(0), 令E0 = E ∪ I(x(0)), k := 0.

(1) 求解等式约束问题(EQ1)得s(k), 若s(k) 6= 0, 转第(3)步。

(2) 如果λ
(k)
i ≥ 0, i ∈ I(x(k)), 则停止；否则由λ

(k)
iq

= min
i∈I(x(k))

λ
(k)
i < 0 确

定iq并令Ek := Ek \ {iq}, x(k+1) = x(k), 转第(4)步。

(3) 由αk = min{1, min
i /∈Ek ,aTi s(k)<0

bi−aTi x(k)

aTi s(k) }, 计算x(k+1) = x(k) + αks(k). 如

果αk = 1, 转第(4)步；不然定可找到p /∈ Ek使
得aTp (x(k) + αks(k)) = bp, 并令Ek := Ek ∪ {p}.

(4) Ek+1 := Ek , k := k + 1, 返回第(1)步。

YZW (USTC) Optimization Algorithms 146 / 467



本章作业（二次规划）

Exercise 1: 请证明积极集基本定理。

Exercise 2: 请证明前述(c)的结论。

Exercise 3 （（（选选选做做做题题题）））: 试证明存在半正定的能量阵ET ,m满足如下
模型解

1

n
yTET ,my = min

φ ∈ Wm
2 (Ω)

φ(Xi ) = yi , i = 1, · · · , n

|φ|2T ,m

其中y = (y1, · · · , yn)T , T = {Xi}ni=1,

|f |2T ,m =
1

n

n∑
i=1

∑
|α|=m

m!
α! |Dαf (Xi )|2.
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非线性约束最优化

先考虑等式约束问题
min f (x)
s.t. c(x) = 0,

(36)

其中c(x) = (c1(x), · · · , cm(x))T .
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非线性约束最优化

记A(x) = [∇c(x)]T = (∇c1(x), · · · ,∇cm(x))T .

由最优性条件知：x是等式约束问题(36)的K-T点当且仅当存在乘
子λ ∈ Rm使得

∇f (x)− A(x)Tλ = 0,

且x是一可行点，即c(x) = 0.

YZW (USTC) Optimization Algorithms 149 / 467



非线性约束最优化

于是得到联立方程组

{
∇f (x)− A(x)Tλ = 0,
−c(x) = 0.

我们可用Newton-Raphson迭代法求解上述联立方程组。
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非线性约束最优化

记x和λ的计算增量分别为δx, δλ, Newton-Raphson迭代满足：

(
W (x, λ) −A(x)T

−A(x) 0

)(
δx

δλ

)
= −

(
∇f (x)− A(x)Tλ

−c(x)

)
, (37)

其中 W (x, λ) = ∇2f (x)−
m∑
i=1

λi∇2ci (x).
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非线性约束最优化

上述方法称为Lagrange-Newton法，最早由Wilson(1963)提出的。

其实质上是用Newton-Raphson迭代求问题(36)的Lagrange函数 L(x, λ)的
稳定点。
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非线性约束最优化

在此，我们定义价值函数

ψ(x, λ) = ‖∇f (x)− A(x)Tλ‖2 + ‖c(x)‖2. (38)

显然，ψ(x, λ)是关于Lagrange-Newton法的下降函数，即满足

∇ψ(x, λ)T
(
δx

δλ

)
= −2ψ(x, λ) ≤ 0.
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非线性约束最优化

Lagrange-Newton法法法：：：

(0) 给定x(0), λ ∈ Rm, β ∈ (0, 1), ε ≥ 0, 令k := 0.

(1) 计算价值函数ψ(x(k), λ(k)), 如果ψ(x(k), λ(k)) ≤ ε, 则停止；否则
在(x(k), λ(k))处求解(37)得到 (δx(k) , δλ(k)), 并令αk = 1.

(2) 若ψ(x(k) + αkδx(k) , λ(k) + αkδλ(k)) ≤ (1− βαk)ψ(x(k), λ(k)), 转
第(3)步；否则令αk = 1

4αk , 返回第(2)步。

(3) 置x(k+1) = x(k) + αkδx(k) , λ(k+1) = λ(k) + αkδλ(k) , k := k + 1, 返回
第(1)步。
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非线性约束最优化

Lagrange-Newton法的收敛性结果

定定定理理理：：： 设Lagrange-Newton法产生的迭代点列{(x(k), λ(k))}有界，如
果f (x)和ci (x)都是二次连续可微，且逆矩阵

(
W (x, λ) −A(x)T

−A(x) 0

)−1

一致有界，则{(x(k), λ(k))}的任何聚点都是方程ψ(x, λ) = 0的根，从
而{x(k)}的聚点是问题(36)的K-T点。

注：在一定条件下，还可进一步证明Lagrange-Newton法具有二阶收敛
速度。
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非线性约束最优化
逐步二次规划法

Lagrange-Newton法的一大重要贡献是，在其基础上发展出了逐步二次
规划方法(Sequential Quadratic Programming Methods)。而后者已成为
求解一般非线性约束最优化问题的一类十分重要的方法。
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非线性约束最优化
逐步二次规划法

我们可将式(37)写成如下形式：

{
W (x, λ)δx +∇f (x) = A(x)T (λ+ δλ),
c(x) + A(x)δx = 0.

由最优性条件知，δx(k)即为下列二次规划问题

min
1

2
dTW (x(k), λ(k))d +∇f (x(k))Td

s.t. c(x(k)) + A(x(k))d = 0
(39)

的K-T点。
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非线性约束最优化
逐步二次规划法

Lagrange-Newton法可以理解为逐步求解上述等式约束二次规划的方法。

设d(k)是二次规划问题(39)的最优解，那么可迭代更新

x(k+1) = x(k) + αkd(k),

其中αk为第k次迭代的步长。

设λ̄(k)是(39)对应的Lagrange乘子向量，那么对k ≥ 1有

λ(k+1) = λ(k) + αk(λ̄(k) − λ(k)).
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非线性约束最优化
逐步二次规划法

现考虑一般的非线性约束最优化问题

min f (x)
s.t. ci (x) = 0, i ∈ E = {1, · · · ,me},

ci (x) ≥ 0, i ∈ I = {me + 1, · · · ,m}.
(40)

类似地，在第k次迭代里求解子问题

min
1

2
dTWkd + g(k)Td

s.t. ci (x(k)) + ai (x(k))Td = 0, i ∈ E ,
ci (x(k)) + ai (x(k))Td ≥ 0, i ∈ I.

(41)
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非线性约束最优化
逐步二次规划法

在这里，Wk是原问题Lagrange函数的Hesse阵或其近似，
g(k) = ∇f (x(k)), A(x(k)) = (a1(x(k)), · · · , am(x(k)))T = [∇c(x(k))]T .

记子问题(41)的解为d(k), 相应Lagrange乘子向量为λ̄(k), 故有





Wkd(k) + g(k) = A(x(k))T λ̄(k),

λ̄
(k)
i ≥ 0, i ∈ I,

c(x(k)) + A(x(k))d(k) = 0.
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非线性约束最优化
逐步二次规划法

逐步二次规划法的迭代以d(k)作为搜索方向。该搜索方向有很好的性质。
它是许多罚函数的下降方向，例如L1罚函数

P(x , σ) = f (x) + σ

(
me∑

i=1

|ci (x)|+
m∑

i=me+1

|ci (x)−|
)
.

其中c(x)−定义如下：

{
ci (x)− = ci (x), i ∈ E ,
ci (x)− = min{0, ci (x)}, i ∈ I.
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非线性约束最优化
逐步二次规划法

下面的算法是Han(1977)提出的逐步二次规划方法：

(0) 给定x(0),W0 ∈ Rn×n, σ > 0, ρ ∈ (0, 1), ε ≥ 0, 令k := 0.

(1) 求解子问题(41)给出d(k), 如果‖d(k)‖ ≤ ε, 则停止；否则
求αk ∈ [0, ρ]使得

P(x(k) + αkd(k), σ) ≤ min
0≤α≤ρ

P(x(k) + αd(k), σ) + εk .

(2) 置x(k+1) = x(k) + αkδx(k) , 计算Wk+1, 令k := k + 1, 返回第(1)步。
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非线性约束最优化
逐步二次规划法

可证明前述逐步二次规划法的收敛性结果如下：

定定定理理理：：：假定f (x)和ci (x)连续可微，且存在常数M1,M2 > 0使得

M1‖d‖2 ≤ dTWkd ≤ M2‖d‖2, ∀k ∈ N,∀d ∈ Rn,

如果‖λ(k)‖∞ ≤ σ均成立，则Han(1977)算法产生的点列{x(k)} 的任何聚
点都是问题(40)的K-T点。
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非线性约束最优化
罚函数法

对于非线性约束最优化问题

min f (x)
s.t. ci (x) = 0, i ∈ E = {1, · · · ,me}

ci (x) ≥ 0, i ∈ I = {me + 1, · · · ,m}
(42)

的罚函数，是指利用目标函数f (x)和约束方程c(x)所构造的具有“罚性
质”的函数

P(x) = P(f (x), c(x)).
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非线性约束最优化
罚函数法

所谓“罚性质”，即要求对问题的可行点x ∈ S均有P(x) = f (x), 而当约
束条件破坏时有P(x) > f (x).
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非线性约束最优化
罚函数法

为了描述约束条件被破坏的程度，我们定义c(x)−如下：

{
ci (x)− = ci (x), i ∈ E ,
ci (x)− = min{0, ci (x)}, i ∈ I.
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非线性约束最优化
罚函数法

罚函数一般可取为目标函数与“罚项”之和，即

P(x) = f (x) + φ(c(x)−).

罚项φ(c(x)−)是定义在Rm上的函数，它满足

φ(0) = 0, lim
‖c‖→∞

φ(c) = +∞.
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非线性约束最优化
罚函数法

如Courant罚函数：
Pσ(x) = f (x) + σ‖c(x)−‖2

2,

其中σ > 0是罚因子。
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非线性约束最优化
罚函数法

考虑简单罚函数
Pσ(x) = f (x) + σ‖c(x)−‖2.

记x(σ)是无约束问题 min
x∈Rn

Pσ(x)的最优解，我们有如下引理。

引引引理理理：：： 若x(σ)同时是非线性约束最优化问题(42)的可行点，则x(σ)也是
原问题的最优解。
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非线性约束最优化
罚函数法

上述引理表明，只要选取充分大的罚因子σ > 0, 则通过求解无约束最优
化问题应可找到相应约束最优化问题的最优解。

然而在实际计算中，确定大小合适的σ往往比较困难，故通常是选取一
个单调增的罚因子序列{σk}.

通过求解一系列无约束问题来获得约束最优化问题的解，这称为序贯无
约束极小化技术(SUMT)。
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非线性约束最优化
罚函数法

至此，我们可以给出罚函数法的迭代步骤：

(0) 任选初始点x(0), 给定初始罚因子σ0 > 0及β > 1, ε > 0. 令k := 0.

(1) 以x(k)作为初始迭代点求解无约束问题的极小点，即

x(σk) = arg min
x∈Rn

Pσk (x).

(2) 若‖c(x(σk))−‖ < ε, 则停止迭代并取x(σk)为原约束问题的近似最优
解；否则，置x(k+1) = x(σk), σk+1 = βσk , 令k := k + 1返回
第(1)步。
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非线性约束最优化
罚函数法

易得如下三个引理

引引引理理理1：：： 设σk+1 > σk > 0, 则有 Pσk (x(σk)) ≤ Pσk+1
(x(σk+1)),

‖c(x(σk))−‖ ≥ ‖c(x(σk+1))−‖, f (x(σk)) ≤ f (x(σk+1)).

引引引理理理2：：： 设令x̄是原问题(42)的最优解，则对任意的 σk > 0 成立

f (x̄) ≥ Pσk (x(σk)) ≥ f (x(σk)).

引引引理理理3：：： 令δ = ‖c(x(σ))−‖, 则x(σ)也是约束问题

min f (x)
s.t. ‖c(x)−‖ ≤ δ

的最优解。
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非线性约束最优化
罚函数法

[思考题：证明上述引理1...]

[思考题：证明上述引理3...]
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非线性约束最优化
罚函数法

这里只给出引理2的证明：

由题设易得
Pσk (x(σk)) ≥ f (x(σk)).

因为x̄是原问题的最优解，自然为可行点，于是 σk‖c(x̄)−‖2 = 0.

又因为x(σk) = arg min
x∈Rn

Pσk (x), 则有

f (x̄) = Pσk (x̄) ≥ Pσk (x(σk)).
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非线性约束最优化
罚函数法

关于罚函数法的收敛性，我们有如下结果

定定定理理理1：：： 设罚函数法中的ε满足

ε > min
x∈Rn
‖c(x)−‖,

则算法必有限终止。

[思考题：证明上述定理...]
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非线性约束最优化
罚函数法

该定理表明，如果原约束问题存在可行点，则对任意给定的ε > 0, 算法
都将有限终止于问题

min f (x)
s.t. ‖c(x)−‖ ≤ δ

的解，且δ ≤ ε.
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非线性约束最优化
罚函数法

定定定理理理2：：： 如果算法不有限终止，则必有 min
x∈Rn
‖c(x)−‖ ≥ ε,

且 lim
k→∞

‖c(x(σk))−‖ = min
x∈Rn
‖c(x)−‖. 此时，{x(σk)}的任何聚点x∗都是问

题
min f (x)
s.t. ‖c(x)−‖ = min

y∈Rn
‖c(y)−‖

的解。
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非线性约束最优化
乘子罚函数

为了叙述简单，仅考虑等式约束问题

min f (x)
s.t. c(x) = 0

(43)

其中c(x) = (c1(x), · · · , cme (x))T .

设x∗是上述问题的最优解且λ∗是相应的Lagrange乘子，由Kuhn-Tucher定
理知， x∗必是Lagrange函数

L(x, λ∗) = f (x)− (λ∗)T c(x)

的稳定点。但一般而言，x∗并不是Lagrange函数的极小点。
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非线性约束最优化
乘子罚函数

我们考虑乘子罚函数（也称增广Lagrange函数）

P(x, λ, σ) = L(x, λ) +
σ

2
‖c(x)‖2

2.

由于增广Lagrange函数的性态，只要取足够大的罚因子σ而不必趋向无
穷大，就可通过极小化P(x, λ, σ)求得原问题的最优解。
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非线性约束最优化
乘子罚函数

我们事先并不知道最优乘子向量λ∗, 因此用乘子λ代替，得到增
广Lagrange罚函数：

P(x, λ, σ) = f (x)− λT c(x) +
σ

2
‖c(x)‖2

2.

一般的策略是，先给定充分大的σ和乘子向量的初始估计λ, 然后在迭代
过程中修正乘子λ力图使之趋向最优乘子λ∗.

如何修正？

YZW (USTC) Optimization Algorithms 180 / 467



非线性约束最优化
乘子罚函数

基于增广Lagrange函数的迭代算法：

(0) 给定初始点x(0)和乘子向量初始估计λ(0), 给定罚因子σ0 > 0, 常
数0 < α < 1, β > 1及容许误差ε > 0. 令k := 0.

(1) 以x(k)为初点求解无约束问题的极小点，即

x(k+1) = arg min
x∈Rn

P(x, λ(k), σ).

(2) 若‖c(x(k+1))‖ < ε, 则停止迭代并取x(k+1)作为原问题的近似最优解；
否则，更新乘子向量

λ(k+1) = λ(k) − σc(x(k+1)).

(3) 如果‖c(x(k+1))‖
‖c(x(k))‖ ≥ α, 则置σ := βσ. 令k := k + 1返回第(1)步。
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非线性约束最优化
乘子罚函数

记A(x) = [∇c(x)]T , 由于c(x∗) = 0, 我们易得

∇xP(x∗, λ∗, σ) = ∇xL(x∗, λ∗) = 0,

∇2
xxP(x∗, λ∗, σ) = ∇2

xxL(x∗, λ∗) + σA(x∗)A(x∗)T .
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非线性约束最优化
乘子罚函数

设在x∗处满足二阶充分条件，即对∀d使得A(x∗)Td = 0的非零向量，均有

dT∇2
xxL(x∗, λ∗)d > 0.

因此，在二阶充分条件的假定下，对于充分大的σ, 可证
∇2

xxP(x∗, λ∗, σ)是正定阵。
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非线性约束最优化
乘子罚函数

定定定理理理：：： 设x∗和λ∗满足等式约束问题(43)局部最优解的二阶充分条件，则
存在σ0使得当σ > σ0时，x∗是函数P(x, λ∗, σ)的严格局部极小点。

[思考题：证明上述定理...]
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非线性约束最优化
乘子罚函数

证证证明明明：：： 由题设知（满足局部最优解的二阶充分条件），x∗必为问
题(43)的(K-T) 点，所以

∇xP(x∗, λ∗, σ) = ∇xL(x∗, λ∗) = 0.

下面证明，在x∗处的Hessian矩阵∇2
xxP(x∗, λ∗, σ)是正定的。
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非线性约束最优化
乘子罚函数

证证证明明明：：：

∇2
xxP(x∗, λ∗, σ) = ∇2

xxL(x∗, λ∗) + σA(x∗)A(x∗)T

= Q̄ + σĀĀT

其中Q̄ = ∇2
xxL(x∗, λ∗), Ā = A(x∗).
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非线性约束最优化
乘子罚函数

定定定理理理：：： 若x̄是等式约束问题(43)的可行解，且对于某个λ̄, x̄满
足P(x, λ̄, σ)的极小点二阶充分条件，则x̄是问题(43)的严格局部最优解。

[思考题：证明上述定理...]
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非线性约束最优化
障碍函数

基基基本本本思思思想想想 在迭代中总是从内点出发，并通过引入障碍函数使之保持在
可行域内部进行搜索。因此，这种方法适用于不等式约束的非线性最优
化问题。

min f (x)
s.t. gi (x) ≥ 0, i = 1, · · · ,m. (44)

现将可行域内部记作 intS , 其中S = {x | gi (x) ≥ 0, i = 1, · · · ,m}. 保持
迭代点含于可行域内部的方法是定义如下障碍函数：

B(x, θ) = f (x) + θψ(x)

其中障碍因子θ是很小的正数，ψ(x)是连续函数，当x趋于可行域边界
时，ψ(x)→ +∞.
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非线性约束最优化
障碍函数

两种重要的障碍形式是：

ψ(x) =
m∑

i=1

1

gi (x)
and ψ(x) = −

m∑

i=1

log gi (x)

这样，当x趋向可行域边界时，函数B(x, θ)→ +∞. 否则，由于θ很小，
函数B(x, θ)的取值近似于f (x).
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非线性约束最优化
障碍函数

因此，我们可通过求解下列问题得到原问题(44)的近似解：

min B(x, θ)
s.t. x ∈ intS

(45)

由于ψ(x)的存在，在可行域边界形成一道“围墙”，因此上述障碍问
题(45)的解x̄(θ)必含于可行域的内部。

需要解释的是，障碍问题(45)表面上看起来仍是带约束的最优化问题，
且它的约束条件比原来的约束还要复杂。但是，由于函数ψ(x)的障碍阻
挡作用是自动实现的，因此从计算观点看，求解(45) 完全可当作无约束
问题来处理。
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非线性约束最优化
障碍函数

于是，我们可以给出障碍函数法的计算步骤如下：

(0) 给定初始点x(0) ∈ intS , 初始障碍因子θ0 > 0, β ∈ (0, 1), ε > 0.
令k := 0.

(1) 以x(k)作为初始迭代点求解下列问题：

min f (x) + θkψ(x)
s.t. x ∈ intS

记求得的极小点为x(θk).

(2) 若θkψ(x(θk)) < ε, 则停止计算并取x(θk)为原问题的近似最优解；否
则，置x(k+1) = x(θk), θk+1 = βθk , 令k := k + 1返回第(1)步。
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非线性约束最优化
障碍函数

定定定理理理：：： 设θk > θk+1 > 0, 记x(θ) = arg min
x

B(x, θ), 则有

B(x(θk), θk) ≥ B(x(θk+1), θk+1),

ψ(x(θk)) ≤ ψ(x(θk+1)),

f (x(θk)) ≥ f (x(θk+1)).

[思考题：证明上述定理...]
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内点法

min f (x)
s.t. cE (x) = 0

cI (x) ≥ 0
(46)

min f (x)
s.t. cE (x) = 0

cI (x)− s = 0
s ≥ 0

(47)
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内点法

The Karush-Kuhn-Tucker (KKT) conditions for the nonlinear program (47)
can be written as

∇f (x)− AE (x)T y − AI (x)T z = 0
Sz− µ1 = 0

cE (x) = 0
cI (x)− s = 0

(48)

with µ = 0, together with s ≥ 0, z ≥ 0.

Here AE (x) and AI (x) are the Jacobian matrices of the functions cE (x)
and cI (x), respectively, and y and z are their Lagrange multipliers. We
define S and Z to be the diagonal matrices whose diagonal entries are
given by the vectors s and z, respectively, and let 1 = (1, · · · , 1)T .
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内点法

Applying Newton’s method to the KKT system (48), in the variables
x, s, y, z, we obtain




∇2
xxL 0 −AE (x)T −AI (x)T

0 Z 0 S
−AE (x) 0 0 0
−AI (x) I 0 0







px

ps

py

pz




= −




∇f (x)− AE (x)T y − AI (x)T z
Sz− µ1
−cE (x)
−cI (x) + s




(49)

where L(x, s, y, z) denotes the Lagrange function

L(x, s, y, z) = f (x)− yT cE (x)− zT (cI (x)− s).
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内点法

The system (49) is called the primal-dual system. After the step
p = (px , ps , py , pz) has been determined, we compute the new iterate
(x+, s+, y+, z+) as

x+ = x + αmax
s px , s+ = s + αmax

s ps ,
y+ = y + αmax

z py , z+ = z + αmax
z pz ,

where
αmax
s = max{α ∈ (0, 1] : s + αps ≥ (1− τ)s},

αmax
z = max{α ∈ (0, 1] : z + αpz ≥ (1− τ)z}, (50)

with τ ∈ (0, 1) (A typical value of τ is 0.995). The condition (50), called
the fraction to the boundary rule, prevents the variables s and z from
approaching their lower bounds of 0 too quickly.
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本章作业（非线性约束最优化）

Exercise 4: 证明(38)中定义的ψ(x, λ)是关于Lagrange-Newton法的
下降函数。

Exercise 5: 证明罚函数法求解带误差界近似问题的算法有限终止
性。

Exercise 6: 给出约束最优化问题的二阶充分最优性条件，并用于
说明增广Lagrange函数的极小点与原问题最优解的等价性。
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About convex optimization

Convex optimization is a subfield of mathematical optimization that
studies the problem of minimizing convex functions over convex sets.
Whereas many classes of convex optimization problems admit
polynomial-time algorithms, mathematical optimization is in general
NP-hard.

We introduce the main definitions and results of convex optimization
needed for the analysis of algorithms presented in the section.
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Affine set

定义 (affine set)

A set C ⊆ Rn is affine if ∀x1, x2 ∈ C and θ ∈ R, we have

θx1 + (1− θ)x2 ∈ C

i.e., if it contains the line through any two distinct points in it.

It can be generalized to more than two points: If C is an affine set,
x1, . . . , xk ∈ C and θ1 + . . .+ θk = 1, then θ1x1 + . . .+ θkxk ∈ C .

We refer to a point of the form θ1x1 + . . .+ θkxk where
θ1 + . . .+ θk = 1, as an affine combination of the points x1, . . . , xk .
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Affine set

If C is an affine set and x0 ∈ C , then the set

V = C − x0 = {x − x0| x ∈ C}

is a (linear) subspace. We can express C as

C = V + x0 = {v + x0| v ∈ V }.

The dimesion of an affine set C is the dimesion of the subspace
V = C − x0.

例 (Solution set of linear equations)

For A ∈ Rm×n, b ∈ Rm, the set C = {x |Ax = b} is affine. Let
V = {v |Av = 0} be a subspace and Ax0 = b, then C = V + x0.
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Affine set

定义 (affine hull)

The set of all affine combinations of points in some set C ⊆ Rn is called
the affine hull of C , denoted affC :

affC = {θ1x1 + . . .+ θkxk | x1, . . . , xk ∈ C , θ1 + . . .+ θk = 1}.

The affine hull is the smallest affine set that contains C .
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Convex set

定义 (convex set)

A set C is convex if ∀x1, x2 ∈ C and 0 6 θ 6 1, we have

θx1 + (1− θ)x2 ∈ C

i.e., if it contains the line segment between any two points in it.

Generalization to more than two points: for any k > 1, x1, . . . , xk ∈ C and
θ1 + . . .+ θk = 1 where θi > 0, i = 1, . . . , k, we have

θ1x1 + . . .+ θkxk ∈ C .

The form θ1x1 + . . .+ θkxk is called the convex combination of the points
x1, . . . , xk , where θ1, . . . , θk > 0 and

∑k
i=1 θi = 1.
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Convex hull

定义 (convex hull)

The convex hull of a set C , denoted convC , is the set of all convex
combinations of points in C :

convC = {θ1x1 + . . .+θkxk | xi ∈ C , θi > 0, i = 1, . . . , k , θ1 + . . .+θk = 1}.

The convex hull is the smallest convex set that contains C .
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Convex set and convex hull

24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted convC, is the set of all convex combinations
of points in C:

convC = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull convC is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then convC ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .
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Figure: (a) A convex set (polyhydron). (b) A non-convex set. (c) The convex
hull of (b).
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Cone

定义 (cone)

A set C is called a cone, if ∀x ∈ C and θ > 0 we have θx in C .
A set C is a convex cone if it’s convex and a cone, i.e., ∀x1, x2 ∈ C and
θ1, θ2 > 0, we have

θ1x1 + θ2x2 ∈ C .

A point of the form θ1x1 + . . .+ θkxk with θ1, . . . , θk > 0 is called a conic
combination of x1, . . . , xk .

定义 (conic hull)

The conic hull of a set C is the set of all conic combinations of points in
C , i.e.,

{θ1x1 + . . .+ θkxk | xi ∈ C , θi > 0, i = 1, . . . , k}.
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Conic hull

26 2 Convex sets

0

x1

x2

Figure 2.4 The pie slice shows all points of the form θ1x1 + θ2x2, where
θ1, θ2 ≥ 0. The apex of the slice (which corresponds to θ1 = θ2 = 0) is at
0; its edges (which correspond to θ1 = 0 or θ2 = 0) pass through the points
x1 and x2.

00

Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.
Figure: Left. The shaded set is the conic hull of a set of fifteen points (not
including the origin). Right. The shaded set is the conic hull of the non-convex
kidney-shaped set that is surrounded by a curve.
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Some important convex examples

Hyperplane: A hyperplane is a set of the form

{x | a>x = b}.

It’s also affine.

Halfspace: A (closed) halfspace is a set of the form

{x | a>x 6 b}.

A hyperplane divides Rn into two halfspaces.
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Some important convex examples

Polyhedra: A polyhedron is defined as the solution set of a finite
number of linear equalities and inequalities:

P = {x | a>j x ≤ bj , j = 1, . . . ,m, cTk x = dk , k = 1, . . . , p}.

Ball: A (Euclidean) ball in Rn has the form

B(xc , r) = {x | ‖x − xc‖2 6 r}

where r > 0 and ‖u‖2 = (u>u)1/2 denotes the Euclidean norm.
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Some important convex examples

Norm balls and norm cones:
Suppose ‖ · ‖ is any norm on Rn, a norm ball of radius r and center
xc is given by

{x | ‖x − xc‖ 6 r}.
The norm cone associated with the norm ‖ · ‖ is the set

C = {(x , t)| ‖x‖ 6 t} ⊆ Rn+1.

It’s a convex cone.
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Some important convex examples

The positive semidefinite cone:
The set of symmetric n × n matrices Sn:

Sn = {X ∈ Rn×n|X = X>},

the set of symmetric positive semidefinite matrices Sn
+:

Sn
+ = {X ∈ Sn|X � 0},

and the set of symmetric positive definite matrices Sn
++:

Sn
++ = {X ∈ Sn|X � 0}

are all convex.
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Proper cones and generalized inequalities

A cone K ⊆ Rn is called a proper cone if it satisfies the following:

K is convex.

K is closed.

K is solid, which means it has nonempty interior.

K is pointed, which means that it contains no line, i.e.,

x ∈ K and − x ∈ K ⇒ x = 0.

A proper cone K can be used to define a generalized inequality:

x �K y ⇐⇒ y − x ∈ K ,

which is a partial ordering on Rn. Similarly, we define an associated strict
partial ordering by

x ≺K y ⇐⇒ y − x ∈ intK
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Properties of generalized inequalities

If x �K y and u �K v , then x + u �K y + v .

If x �K y and y �K z then x �K z .

If x �K y and α > 0 then αx �K αy .

x �K x .

If x �K y and y �K x then x = y .

If xi �K yi for i = 1, 2, . . . , xi → x and yi → y as i →∞, then
x �K y .
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Minimum and minimal elements

x ∈ S is the minimum element of S (with respect to the generalized
inequality �K ) if for every y ∈ S we have x �K y , i.e.,

S ⊆ x + K ,

where x + K = {x + z | z ∈ K}.

x ∈ S is a minimal element of S (with respect to the generalized
inequality �K ) if y ∈ S , y �K x only if y = x , i.e.,

(x − K ) ∩ S = {x},

where x − K = {x − z | z ∈ K}.

Maximum element and maximal element are defined in a similar way.
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Minimum and minimal elements
46 2 Convex sets

x1

x2S1

S2

Figure 2.17 Left. The set S1 has a minimum element x1 with respect to
componentwise inequality in R2. The set x1 + K is shaded lightly; x1 is
the minimum element of S1 since S1 ⊆ x1 + K. Right. The point x2 is a
minimal point of S2. The set x2 −K is shown lightly shaded. The point x2

is minimal because x2 −K and S2 intersect only at x2.

which corresponds to the set of ellipsoids that contain the points v1, . . . , vk. The
set S does not have a minimum element: for any ellipsoid that contains the points
v1, . . . , vk we can find another one that contains the points, and is not comparable
to it. An ellipsoid is minimal if it contains the points, but no smaller ellipsoid does.
Figure 2.18 shows an example in R2 with k = 2.

2.5 Separating and supporting hyperplanes

2.5.1 Separating hyperplane theorem

In this section we describe an idea that will be important later: the use of hyper-
planes or affine functions to separate convex sets that do not intersect. The basic
result is the separating hyperplane theorem: Suppose C and D are two convex sets
that do not intersect, i.e., C ∩ D = ∅. Then there exist a 6= 0 and b such that
aTx ≤ b for all x ∈ C and aTx ≥ b for all x ∈ D. In other words, the affine function
aTx− b is nonpositive on C and nonnegative on D. The hyperplane {x | aTx = b}
is called a separating hyperplane for the sets C and D, or is said to separate the
sets C and D. This is illustrated in figure 2.19.

Proof of separating hyperplane theorem

Here we consider a special case, and leave the extension of the proof to the gen-
eral case as an exercise (exercise 2.22). We assume that the (Euclidean) distance
between C and D, defined as

dist(C,D) = inf{‖u− v‖2 | u ∈ C, v ∈ D},

(a)
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componentwise inequality in R2. The set x1 + K is shaded lightly; x1 is
the minimum element of S1 since S1 ⊆ x1 + K. Right. The point x2 is a
minimal point of S2. The set x2 −K is shown lightly shaded. The point x2

is minimal because x2 −K and S2 intersect only at x2.

which corresponds to the set of ellipsoids that contain the points v1, . . . , vk. The
set S does not have a minimum element: for any ellipsoid that contains the points
v1, . . . , vk we can find another one that contains the points, and is not comparable
to it. An ellipsoid is minimal if it contains the points, but no smaller ellipsoid does.
Figure 2.18 shows an example in R2 with k = 2.

2.5 Separating and supporting hyperplanes

2.5.1 Separating hyperplane theorem

In this section we describe an idea that will be important later: the use of hyper-
planes or affine functions to separate convex sets that do not intersect. The basic
result is the separating hyperplane theorem: Suppose C and D are two convex sets
that do not intersect, i.e., C ∩ D = ∅. Then there exist a 6= 0 and b such that
aTx ≤ b for all x ∈ C and aTx ≥ b for all x ∈ D. In other words, the affine function
aTx− b is nonpositive on C and nonnegative on D. The hyperplane {x | aTx = b}
is called a separating hyperplane for the sets C and D, or is said to separate the
sets C and D. This is illustrated in figure 2.19.

Proof of separating hyperplane theorem

Here we consider a special case, and leave the extension of the proof to the gen-
eral case as an exercise (exercise 2.22). We assume that the (Euclidean) distance
between C and D, defined as

dist(C,D) = inf{‖u− v‖2 | u ∈ C, v ∈ D},

(b)

Figure: Let K = {(u, v)|u, v > 0}. (a) x1 is the minimum element of S1. (b) x2

is a minimal element of S2.
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Minimum and minimal elements

If x is the minimum element of S , then x must be a minimal element of S
(with respect to the generalized inequality �K ).

Brief proof: Suppose S ⊆ x + K , and y ∈ (x − K ) ∩ S , i.e., ∃z ∈ K
such that y = x − z . By y ∈ S ⊆ x + K , there exists w ∈ K such
that y = x + w . Then we have w = −z , which leads to −w = z ∈ K
and w ∈ K . Since K is a proper cone, w = 0 and y = x .

But the reverse proposition doesn’t hold.

Simple example: Let K = {(u, v)| u, v > 0} and
L = {(x , y)| x = −y}. Then every point of L is a minimal element,
but none of them is the minimum element of L.
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Definition

定义 (convex function)

A function f : Rn → R is convex if domf is a convex set and if
∀x , y ∈ domf and θ with 0 6 θ 6 1, we have

f (θx + (1− θ)y) 6 θf (x) + (1− θ)f (y). (51)

A function is strictly convex if strict inequality holds in (51) whenever
x 6= y and 0 < θ < 1.

We say f is concave if −f is convex, and strictly concave if −f is strictly
convex.
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Definition

Geometrically, Eq.(51) means that the line segment between (x , f (x)) and
(y , f (y)) lies above the graph of f (as shown in Fig.4).

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.Figure: Graph of a convex function.
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First-order conditions

Suppose f is differentiable, i.e., its gradient ∇f exists at each point in
domf .

Function f is convex if and only if domf is convex and for
∀x , y ∈ domf , the following holds:

f (y) > f (x) +∇f (x)>(y − x).

Remark. As a simple result, if ∇f (x∗) = 0, then for all y ∈ domf ,
f (y) > f (x∗), i.e., x∗ is a global minimizer of the function f .
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First-order conditions

3.1 Basic properties and examples 69

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

Figure 3.2 If f is convex and differentiable, then f(x)+∇f(x)T (y−x) ≤ f(y)
for all x, y ∈ dom f .

is given by

ĨC(x) =

{
0 x ∈ C
∞ x 6∈ C.

The convex function ĨC is called the indicator function of the set C.

We can play several notational tricks with the indicator function ĨC . For example
the problem of minimizing a function f (defined on all of Rn, say) on the set C is the
same as minimizing the function f + ĨC over all of Rn. Indeed, the function f + ĨC

is (by our convention) f restricted to the set C.

In a similar way we can extend a concave function by defining it to be −∞
outside its domain.

3.1.3 First-order conditions

Suppose f is differentiable (i.e., its gradient ∇f exists at each point in dom f ,
which is open). Then f is convex if and only if dom f is convex and

f(y) ≥ f(x) + ∇f(x)T (y − x) (3.2)

holds for all x, y ∈ dom f . This inequality is illustrated in figure 3.2.
The affine function of y given by f(x)+∇f(x)T (y−x) is, of course, the first-order

Taylor approximation of f near x. The inequality (3.2) states that for a convex
function, the first-order Taylor approximation is in fact a global underestimator of
the function. Conversely, if the first-order Taylor approximation of a function is
always a global underestimator of the function, then the function is convex.

The inequality (3.2) shows that from local information about a convex function
(i.e., its value and derivative at a point) we can derive global information (i.e., a
global underestimator of it). This is perhaps the most important property of convex
functions, and explains some of the remarkable properties of convex functions and
convex optimization problems. As one simple example, the inequality (3.2) shows
that if ∇f(x) = 0, then for all y ∈ dom f , f(y) ≥ f(x), i.e., x is a global minimizer
of the function f .

Figure: The tangent to a convex function.
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First-order conditions

Function f is strictly convex if and only if domf is convex and for
∀x , y ∈ domf , x 6= y , we have

f (y) > f (x) +∇f (x)>(y − x).

Correspondingly, f is concave if and only if domf is convex and for
∀x , y ∈ domf , we have

f (y) 6 f (x) +∇f (x)>(y − x).
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Second-order conditions

Assume that f is twice differentiable.

Function f is convex if and only if domf is convex and for
∀x ∈ domf ,

∇2f (x) � 0.

Similarly, f is concave if and only if domf is convex and ∇2f (x) � 0
for ∀x ∈ domf .
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Second-order conditions

Strict convexity can be partially characterized by second-order conditions.

If ∇2f (x) � 0 for ∀x ∈ domf , then f is strictly convex.

However, the converse is not true. For example, f : R→ R given by
f (x) = x4 is strictly convex but has zero second derivative at x = 0.
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Examples

Exponential:
eax is convex on R, for any a ∈ R.

Powers:
xa is convex on R++ when a > 1 or a 6 0, and concave for 0 6 a 6 1.

Powers of absolute value:
|x |p, for p > 1, is convex on R.

Logarithm:
log x is concave on R++.

Negative entropy:
x log x is convex on R+, where 0 log 0 defined to be 0.
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Examples

Norms:
Every norm on Rn is convex.

Max function:
f (x) = max{x1, . . . , xn} is convex on Rn.

Log-sum-exp:
Then function f (x) = log(ex1 + . . .+ exn) is convex on Rn. This
function can be interpreted as a differentiable approximation of the
max function, since for all x ,

max{x1, . . . , xn} 6 f (x) 6 max{x1, . . . , xn}+ log n.

Geometric mean:
f (x) = (

∏n
i=1 xi )

1/n is concave on domf = Rn
++.

Log-determinant:
f (X ) = log detX is concave on domf = Sn

++.
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Jensen’s inequality

The inequality (51), i.e., f (θx + (1− θ)y) 6 θf (x) + (1− θ)f (y), is
sometimes called Jensen’s inequality.

It is easily extended to convex combinations of more than two points:

If f is convex, x1, . . . , xk ∈ domf , and θ1, . . . , θk > 0 with
θ1 + . . .+ θk = 1, then

f (θ1x1 + . . .+ θkxk) 6 θ1f (x1) + . . .+ θk f (xk).
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Operations that preserve convexity

Nonnegative weighted sums:

If f1, . . . , fm are convex and w1, . . . ,wm > 0, then

f = w1f1 + . . .+ wmfm

is convex.

These properties extend to infinite sums and integrals:

If f (x , y) is convex in x for each y ∈ A, and w(y) > 0 for each y ∈ A,
then the function

g(x) =

∫

A
w(y)f (x , y)dy

is convex in x (provided the integral exists).
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Operations that preserve convexity

Composition with an affine mapping:

Suppose f : Rn → R, A ∈ Rn×m, and b ∈ Rn. Define g : Rm → R by

g(x) = f (Ax + b),

with domg = {x |Ax + b ∈ domf }. Then if f is convex, so is g ; if f is
concave, so is g .
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Operations that preserve convexity

Pointwise maximum:

If f1 and f2 are convex functions, then

f (x) = max{f1(x), f2(x)},

with domf =domf1 ∩ domf2, is also convex.

Extension to the pointwise supremum:

If for each y ∈ A, f (x , y) is convex in x , then

g(x) = sup
y∈A

f (x , y)

is convex in x , where

domg = {x |(x , y) ∈ domf for all y ∈ A, sup
y∈A

f (x , y) <∞}.
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Functions closed to convex functions

Quasi-convex function: A function f : Rn → R such that its domain
and all its sublevel sets

Sα = {x ∈ domf | f (x) 6 α}, α ∈ R

are convex.

Log-concave function: A function f : Rn → R such that
f (x) > 0,∀x ∈ domf and log f is concave.
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Basic terminology

min f0(x)
s.t. fi (x) 6 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
(52)

x ∈ Rn the optimization variable
f0 : Rn → R the objective function or cost function
fi (x) 6 0 the inequality constraints
fi : Rn → R the inequality constraint functions
hj(x) = 0 the equality constraints
hj : Rn → R the equality constraint functions

If there are no constraints (i.e., m = p = 0) we say the problem is
unconstrained.
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Basic terminology

The domain of the optimization problem (52) is given as

D =
m⋂

i=0

domfi ∩
p⋂

j=1

domhj .

A point x ∈ D is feasible if fi (x) 6 0, i = 1, . . . ,m, and
hj(x) = 0, j = 1, . . . , p.

The problem (52) is said to be feasible if there exists at least one
feasible point, and infeasible otherwise.
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Basic terminology

The optimal value v∗ of the problem (52) is defined as

v∗ = inf{f0(x)| fi (x) 6 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p}

If the problem is infeasible, we have v∗ =∞.

We say x∗ is an optimal point, or solves the problem (52), if x∗ is
feasible and f0(x∗) = v∗.

We say a feasible points x̄ is locally optimal if there is a constant
δ > 0 such that

f0(x̄) = inf{f0(z)| fi (z) 6 0, i = 1, . . . ,m,

hj(z) = 0, j = 1, . . . , p, ‖z − x̄‖2 6 δ}.
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Convex optimization

A convex optimization problem is one of the form

min f0(x)
s.t. fi (x) 6 0, i = 1, . . . ,m

a>j x = bj , j = 1, . . . , p
(53)

where f0, f1, . . . , fm are convex functions.

Any locally optimal point of a convex optimization problem is also
globally optimal.

YZW (USTC) Optimization Algorithms 236 / 467



An optimality criterion for differentiable f0

Suppose that the objective f0 in a convex optimization problem is
differentiable. Let X denote the feasible set, i.e.,

X = {x | fi (x) 6 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p}.

Then x is optimal if and only if x ∈ X and

∇f0(x)>(y − x) > 0, ∀y ∈ X . (54)
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An optimality criterion for differentiable f0

For an unconstrained problem, the condition (54) reduces to

∇f0(x) = 0 (55)

for x to be optimal.
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An optimality criterion for differentiable f0

For a convex problem with equality constraints only, i.e.,

min f0(x)

s.t. Ax = b

We assume that the feasible set is nonempty. The optimality
condition can be expressed as:

∇f0(x)>u > 0 for all u ∈ N (A).

In other words,
∇f0(x) ⊥ N (A).
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Linear optimization problems

A general linear program (LP) has the form

min q>x + r

s.t. Gx ≤ h

Ax = b

(56)

where G ∈ Rm×n and A ∈ Rp×n. It is common to omit the constant r in
the objective function.
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Quadratic optimization problems

A convex optimization problem is called quadratic program (QP) if it has
the form

min
1

2
x>Px + q>x + r

s.t. Gx ≤ h

Ax = b

(57)

where P ∈ Sn
+,G ∈ Rm×n, and A ∈ Rp×n.

QPs include LPs as a special case by taking P = 0.
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Quadratic optimization problems

If the objective in (53) as well as the inequality constraint functions are
(convex) quadratic, as in

min
1

2
x>P0x + q>0 x + r0

s.t.
1

2
x>Pix + q>i x + ri 6 0, i = 1, . . . ,m

Ax = b

(58)

where Pi ∈ Sn
+, i = 0, 1, . . . ,m, and the problem is called a quadratically

constrained quadratic program (QCQP).

QCQPs include QPs as a special case by taking Pi = 0 for i = 1, . . . ,m.

YZW (USTC) Optimization Algorithms 242 / 467



Second-order cone programming

A problem that is closely related to quadratic programming is the
second-order cone program (SOCP):

min f >x

s.t. ‖Lix + gi‖2 6 c>i x + di , i = 1, . . . ,m

Ax = b

(59)

where x ∈ Rn is the optimization variable, Li ∈ Rni×n, and A ∈ Rp×n.

When ci = 0, i = 1, . . . ,m, the SOCP is equivalent to a QCQP. However,
second-order cone programs are more general than QCQPs (and of course,
LPs).
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Transform a QCQP into an SOCP

For a QCQP problem (58), let y be an auxiliary variable with constraint:

1

2
x>P0x + q>0 x + r0 6 y ,

then (58) becomes

min
x ,y

y

s.t.
1

2
x>Pix + q>i x + ri 6 0, i = 1, . . . ,m

1

2
x>P0x + q>0 x − y + r0 6 0

Ax = b

whose objective is linear. To transform it into an SOCP, we need only
translate quadratic constraints into second-order conic ones.
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Transform a QCQP into an SOCP

For a quadratic constraint

1

2
x>Px + q>x + r 6 0

with P ∈ Sn
+, let L ∈ Sn

+ be the square root of P, i.e., LL = P. Let

L̃ =

[
L
q>

]
, g̃ =




0
...
0

r + 1
2


 ∈ Rn+1,

then the constraint is equivalent to

‖L̃x + g̃‖2 6 −(q>x + r − 1

2
).
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The Lagrangian

Consider an optimization problem in the standard form (52):

min f0(x)

s.t. fi (x) 6 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p.

(60)

We assume its domain D =
⋂m

i=0 domfi ∩
⋂p

j=1 domhj is nonempty, and
denote the optimal value of (60) by v∗, but do not assume the problem
(60) is convex.
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The Lagrangian

The basic idea of Lagrangian duality is to take the constraints in (60) into
account by augmenting the objective function with a weighted sum of the
constraint functions.
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The Lagrangian

We define the Lagrangian L : Rn × Rm × Rp → R associated with the
problem (60) as

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x)

with domL = D × Rm × Rp.

Refer to λi as the Lagrange multiplier associated with the ith
inequality constraint fi (x) 6 0.

Refer to νj as the Lagrange multiplier associated with the jth equality
constraint hj(x) = 0.

The vectors λ and ν are called Lagrange multiplier vectors or the dual
variables associated with the problem (60).
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The Lagrange dual function

We define the Lagrange dual function (or just dual function)
g : Rm × Rp → R as

g(λ, ν) = inf
x∈D

L(x , λ, ν) = inf
x∈D


f0(x) +

m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x)


 .

Since the dual function is the pointwise infimum of a family of affine
functions of (λ, ν), it is concave, even when the problem (60) is not
convex.
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Lower bounds on optimal value

Let v∗ be the optimal value of the primal problem (60). For any λ ≥ 0 and
any ν we have

g(λ, ν) 6 v∗. (61)

Proof.

Suppose x̃ is a feasible point for (60), then we have

m∑

i=1

λi fi (x̃) +

p∑

j=1

νjhj(x̃) 6 0.

Hence
g(λ, ν) = inf

x∈D
L(x , λ, ν) 6 L(x̃ , λ, ν) 6 f0(x̃).

Since g(λ, ν) 6 f0(x̃) holds for every feasible point x̃ , the inequality (61)
follows.
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Lower bounds on optimal value

The dual function gives a nontrivial lower bound on v∗ only when λ ≥ 0
and (λ, ν) ∈ domg , i.e., g(λ, ν) > −∞.

We refer to a pair (λ, ν) with λ ≥ 0 and (λ, ν) ∈ domg as dual feasible.
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Linear approximation interpretation

Let I− : R→ R ∪ {∞} and I0 : R→ R ∪ {∞} to be the indicator function
for the nonpositive reals and {0} respectively:

I−(u) =

{
0 u 6 0
∞ u > 0

, I0(u) =

{
0 u = 0
∞ u 6= 0

.

Then the primal problem (60) can be reformulated as an unconstrained
problem:

min f0(x) +
m∑

i=1

I−(fi (x)) +

p∑

j=1

I0(hj(x)). (62)
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Linear approximation interpretation

We replace the function I−(u) with the linear function λiu, where λi > 0,
and the function I0(u) with νju. The objective becomes the Lagrangian
function, i.e.,

min L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x).

In this formulation, we use a linear or “soft” displeasure function in
place of I− and I0.

Linear function is an underestimator of the indicator function. Since
λiu 6 I−(u) and νju 6 I0(u) for all u, we see immediately that the
dual function yields a lower bound on the optimal value of the primal
problem.
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The Lagrange dual problem

To attain the best lower bound that can be obtained from the Lagrange
dual function leads to the optimization problem

max g(λ, ν)

s.t. λ ≥ 0
(63)

This problem is called the Lagrange dual problem associated with the
problem (60). Correspondingly, the problem (60) is called the primal
problem.
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The Lagrange dual problem

The term dual feasible, to describe a pair (λ, ν) with λ ≥ 0 and
g(λ, ν) > −∞, now makes sense.

We refer to (λ∗, ν∗) as dual optimal or optimal Lagrange multipliers if
they are optimal for the Lagrange dual problem (63).

The Lagrange dual problem (63) is a convex optimization problem no
matter the primal problem is convex or not, since the objective to be
maximized is concave and the constraint is convex.
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Weak duality

For the optimal value of the Lagrange dual problem g∗, we have

g∗ 6 v∗. (64)

This property is called weak duality.

v∗ − g∗ is the optimal duality gap of the primal problem.
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Strong duality and Slater’s constraint qualification

If the equality
g∗ = v∗ (65)

holds, then we say that stong duality holds.

Strong duality does not, in general, hold.

For a convex primal problem, there are many additional conditions on
the primal problem, under which strong duality holds.
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Strong duality and Slater’s constraint qualification

One simple condition is Slater’s condition:

There exists an x ∈ relintD such that

fi (x) < 0, i = 1, . . . ,m, Ax = b, (66)

where relintD = {x ∈ D|B(x , r) ∩ affD ⊆ D for some r > 0}. Such a
point is called relative feasible interior point.

Slater’s theorem states that strong duality holds if Slater’s condition holds
(and the problem is convex).
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Optimality conditions

Dual feasible points allow us to bound how suboptimal a given feasible
point is, without knowing the exact value of v∗.

If x is primal feasible and (λ, ν) is dual feasible, then

f0(x)− v∗ 6 f0(x)− g(λ, ν)

and
v∗ ∈ [g(λ, ν), f0(x)], g∗ ∈ [g(λ, ν), f0(x)].

It leads to

g(λ, ν) = f0(x) =⇒ v∗ = f0(x) = g(λ, ν) = g∗.

We refer to f0(x)− g(λ, ν) as the duality gap associated with the primal
feasible point x and dual feasible point (λ, ν).
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Complementary slackness

Suppose that the primal and dual optimal values are attained and equal,
let x∗ be a primal optimal and (λ∗, ν∗) be a dual optimal points, then

f0(x∗) = g(λ∗, ν∗)

= inf
x


f0(x) +

m∑

i=1

λ∗i fi (x) +

p∑

j=1

ν∗j hj(x)




6 f0(x∗) +
m∑

i=1

λ∗i fi (x
∗) +

p∑

j=1

ν∗j hj(x
∗)

6 f0(x∗)
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Complementary slackness

By λ∗i > 0, fi (x
∗) 6 0, i = 1, . . . ,m, we have

λ∗i fi (x
∗) = 0, i = 1, . . . ,m. (67)

This condition is known as complementary slackness.

We can express it as

λ∗i > 0 =⇒ fi (x
∗) = 0,

fi (x
∗) < 0 =⇒ λ∗i = 0.
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KKT optimality conditions

We now assume that the functions f0, . . . , fm, h1, . . . , hp are differentiable.
As above, let x∗ and (λ∗, ν∗) be any primal and dual optimal points with
zero duality gap.

Since x∗ minimizes L(x , λ∗, ν∗) over x , it follows

∇f0(x∗) +
m∑

i=1

λ∗i∇fi (x∗) +

p∑

j=1

ν∗j ∇hj(x∗) = 0.
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KKT optimality conditions

Together with constraints and complementary slackness, we have





fi (x
∗) 6 0, i = 1, . . . ,m

hj(x
∗) = 0, j = 1, . . . , p

λ∗i > 0, i = 1, . . . ,m
λ∗i fi (x

∗) = 0, i = 1, . . . ,m
∇f0(x∗) +

∑m
i=1 λ

∗
i∇fi (x∗) +

∑p
j=1 ν

∗
j ∇hj(x∗) = 0

(68)

which are called the Karush-Kuhn-Tucker (KKT) conditions.
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KKT optimality conditions

For any optimization problem with differentiable objective and constraint
functions for which strong duality obtains, any pair of primal and dual
optimal points must satisfy the KKT conditions.

When the primal problem is convex, the KKT conditions are also sufficient
for the points to be primal and dual optimal.
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About optimization algorithm

There is no analytical formula for the solution of convex optimization
problems, not to mention general nonlinear optimization problems.

Thus we describe numerical methods for solving convex optimization
problems in the section.
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Recall: descent methods

To solve an unconstrained optimization problem

min f (x)

where f (x) is differentiable and convex, we usually employ descent
methods.
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Recall: descent methods

Given a starting point x (0), a descent method produces a sequence
x (k), k = 1, . . . , where

x (k+1) = x (k) + αkδ
(k)
x , f (x (k+1)) < f (x (k)). (69)

We usually drop the superscripts and use the notation x := x + αδx
to focus on one iteration of an algorithm. α > 0 is called step size
and δx called search direction. Different methods differ from choices
of α or/and δx .
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Recall: gradient descent and Newton’s method

Given a descent direction δx , we usually use line search to determine step
size α.

Different search directions:

Negative gradient:
δx = −∇f (x).

Normalized steepest descent direction (with respect to the norm ‖ · ‖):

δxnsd
= arg min{∇f (x)>v | ‖v‖ = 1}.

Newton step:
δxnt = −∇2f (x)−1∇f (x).
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Equality constrained minimization problems

A convex optimization problem with equality constraints has the form

min f (x)

s.t. Ax = b,
(70)

where f : Rn → R is convex and twice continuously differentiable, and
A ∈ Rp×n with rankA = p < n. We assume that an optimal solution x∗

exists and v∗ = f (x∗).
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KKT condition

Recall the KKT conditions for (70): a point x∗ ∈ domf is optimal if and
only if there is a multiplier ν∗ ∈ Rp such that

Ax∗ = b, ∇f (x∗) + A>ν∗ = 0. (71)

The first set of equations, Ax∗ = b, are called the primal feasibility
equations.

The second set of equations, ∇f (x∗) + A>ν∗ = 0, are called the dual
feasibility equations.
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Newton’s method with equality constraints

Newton’s method with equality constraints is almost the same as
Newton’s method without constraints, except for two differences:

The initial point must be feasible (i.e., x ∈ domf and Ax = b).

The definition of Newton step δxnt is modified to take the equality
constraints into account.
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The Newton step

To derive the Newton step δxnt for problem (70) at the feasible point x , we
replace the objective with its second-order Taylor approximation near x

min f̂ (x + s) = f (x) +∇f (x)>s +
1

2
s>∇2f (x)s

s.t. A(x + s) = b
(72)

with variable s. Suppose δxnt is optimal for (72). By KKT conditions,
there exists associated optimal dual variable w ∈ Rp such that

[
∇2f (x) A>

A 0

] [
δxnt

w

]
=

[
−∇f (x)

0

]
. (73)

YZW (USTC) Optimization Algorithms 272 / 467



The Newton step

We can also derive the Newton Step δxnt by simply replacing x∗ and ν∗ in
the KKT conditions for problem (70):

Ax∗ = b, ∇f (x∗) + A>ν∗ = 0

with x + δxnt and w , respectively, and replace the gradient term in the
second equation by its linearized approximation near x , to obtain the
equations

A(x + δxnt) = b,

∇f (x + δxnt) + A>w ≈ ∇f (x) +∇2f (x)δxnt + A>w = 0.
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The Newton step

Using Ax = b, these become

Aδxnt = 0, ∇2f (x)δxnt + A>w = −∇f (x),

which are precisely the equations (73).
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The Newton decrement

The Newton decrement is defined as

κ(x) = (δ>xnt
∇2f (x)δxnt)

1/2.

Since
d

dα
f (x + αδxnt)

∣∣∣∣
α=0

= ∇f (x)>δxnt = −κ(x)2,

the algorithm should terminate when κ(x) is small.

YZW (USTC) Optimization Algorithms 275 / 467



Newton’s method with equality constraints

Algorithm. Newton’s method for equality constrained minimization.

given starting point x ∈ domf with Ax = b, tolerance ε > 0.
repeat

1 Compute the Newton step δxnt and the decrement κ(x).

2 Stopping criterion. quit if κ2/2 6 ε.

3 Line search Choose step size α by backtracking line search.

4 Update. x := x + αδxnt .
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Infeasible start Newton method

Newton’s method described above is a feasible descent method. Now we
describe a generalization of Newton’s method that works with initial
points and iterates that are not feasible.
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Newton step at infeasible points

Let x denote the current point, which we do not assume to be feasible,
but we do assume satisfies x ∈ domf .

Our goal is to find a step δx so that x + δx satisfies the optimality
conditions (71), i.e., x + δx ≈ x∗.
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Newton step at infeasible points

Similarly, we substitute x + δx for x∗ and µ for ν∗ in

Ax∗ = b, ∇f (x∗) + A>ν∗ = 0

and use the first-order approximation for the gradient to obtain

A(x + δx) = b,

∇f (x + δx) + A>µ ≈ ∇f (x) +∇2f (x)δx + A>µ = 0.

This is a set of linear equations for δx and µ,

[
∇2f (x) A>

A 0

] [
δx
µ

]
= −

[
∇f (x)
Ax − b

]
. (74)
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Interpretation as primal-dual Newton step

We express the optimality conditions (71) as r(x∗, ν∗) = 0, where
r : Rn × Rp 7→ Rn × Rp is defined as

r(x , ν) = (rdual(x , ν), rpri(x , ν)).

Here
rdual(x , ν) = ∇f (x) + A>ν, rpri(x , ν) = Ax − b

are the dual residual and primal residual, respectively.
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Interpretation as primal-dual newton step

The first-order Taylor approximation of r , near our current point
y = (x , ν), is

r(y + δy ) ≈ r̂(y + δy ) = r(y) + J[r(y)]δy ,

where J[r(y)] ∈ R(n+p)×(n+p) is the derivative (Jacobian) of r ,
evaluated at y .
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Interpretation as primal-dual Newton step

We define δypd
as the primal-dual Newton step for which

r̂(y + δy ) = 0, i.e.,
J[r(y)]δypd

= −r(y). (75)

Note that δypd
= (δxpd

, δνpd
) gives both a primal and a dual step.
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Interpretation as primal-dual Newton step

Equations (75) can be expressed as

[
∇2f (x) A>

A 0

] [
δxpd

δνpd

]
= −

[
rdual

rpri

]
= −

[
∇f (x) + A>ν

Ax − b

]
. (76)

Writing ν + δνpd
as µ, we find it coincide with (74)

[
∇2f (x) A>

A 0

] [
δx
µ

]
= −

[
∇f (x)
Ax − b

]
.
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Residual norm reduction property

The Newton direction at an infeasible point is not necessarily a descent
direction for f .

The primal-dual interpretation, however, shows that the norm of the
residual decreases in the Newton direction. By calculation we have

d

dα
‖r(y + αδypd

)‖2

∣∣∣∣
α=0

= −‖r(y)‖2.

This allows us to use ‖r‖2 to measure the progress of the infeasible start
Newton method.
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Infeasible start Newton method

Algorithm. Infeasible start Newton method.

given starting point x ∈ domf , tolerance ε > 0, τ ∈ (0, 1/2), γ ∈ (0, 1).
repeat

1 Compute primal and dual Newton steps δxnt , δνnt .

2 Backtracking line search on ‖r‖2.
α := 1.
while ‖r(x + αδxnt , ν + αδνnt)‖2 > (1− τα)‖r(x , ν)‖2, α := γα.

3 Update. x := x + αδxnt , ν := ν + αδνnt .

until Ax = b and ‖r(x , ν)‖2 6 ε.
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Inequality constrained minimization problems

The convex optimization problems that include inequality constraints:

min f0(x)
s.t. fi (x) 6 0, i = 1, . . . ,m

Ax = b
(77)

where f0, . . . , fm : Rn → R are convex and twice continuously
differentiable, and A ∈ Rp×n with rankA = p < n.

We assume that an optimal x∗ exists and denote the optimal value
v∗ = f0(x∗).
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Assumptions

We also assume that the problem is strictly feasible, i.e., ∃x ∈ D satisfying
Ax = b and fi (x) < 0 for i = 1, . . . ,m.

This means that Slater’s constraint qualification holds, and therefore
strong duality holds, so there exists dual optimal λ∗ ∈ Rm, ν∗ ∈ Rp, which
together with x∗ satisfy the KKT conditions:

Ax∗ = b, fi (x
∗) 6 0, i = 1, . . . ,m
λ∗ > 0

∇f0(x∗) +
∑m

i=1 λ
∗
i∇fi (x∗) + A>ν∗ = 0

λ∗i fi (x
∗) = 0, i = 1, . . . ,m.

(78)
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About interior-point method

Interior-point methods solve the problem (77) by applying Newton’s
method to a sequence of equality constrained problems, or to a sequence
of modified versions of the KKT conditions.

We will introduce two particular interior-point algorithms:

The barrier method

The primal-dual interior-point method
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Logarithmic barrier function

Rewrite the problem (77) and make the inequality constraints implicit in
the objective:

min f0(x) +
m∑

i=1

I−(fi (x))

s.t. Ax = b,

(79)

where

I−(u) =

{
0 u 6 0
∞ u > 0.
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Logarithmic barrier function

The basic idea of the barrier method is to approximate the indicator
function I− by the function

Î−(u) = −(1/t) log(−u), domÎ− = −R++

where t is a parameter that sets the accuracy of the approximation.

Obviously, Î− is convex, nondecreasing and differentiable.
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Logarithmic barrier function
11.2 Logarithmic barrier function and central path 563

u
−3 −2 −1 0 1

−5

0

5

10

Figure 11.1 The dashed lines show the function I−(u), and the solid curves

show Î−(u) = −(1/t) log(−u), for t = 0.5, 1, 2. The curve for t = 2 gives
the best approximation.

The problem (11.3) has no inequality constraints, but its objective function is not
(in general) differentiable, so Newton’s method cannot be applied.

11.2.1 Logarithmic barrier

The basic idea of the barrier method is to approximate the indicator function I−
by the function

Î−(u) = −(1/t) log(−u), dom Î− = −R++,

where t > 0 is a parameter that sets the accuracy of the approximation. Like
I−, the function Î− is convex and nondecreasing, and (by our convention) takes

on the value ∞ for u > 0. Unlike I−, however, Î− is differentiable and closed:
it increases to ∞ as u increases to 0. Figure 11.1 shows the function I−, and

the approximation Î−, for several values of t. As t increases, the approximation
becomes more accurate.

Substituting Î− for I− in (11.3) gives the approximation

minimize f0(x) +
∑m

i=1 −(1/t) log(−fi(x))
subject to Ax = b.

(11.4)

The objective here is convex, since −(1/t) log(−u) is convex and increasing in u,
and differentiable. Assuming an appropriate closedness condition holds, Newton’s
method can be used to solve it.

The function

φ(x) = −
m∑

i=1

log(−fi(x)), (11.5)

Figure: The dashed lines show the function I−(u), and the solid curves show
Î−(u) = −(1/t) log(−u), for t = 0.5, 1, 2. The curve for t = 2 gives the best
approximation.
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Logarithmic barrier function

Substituting Î− for I− in (79) gives the approximation

min f0(x) +
m∑

i=1

−(1/t) log(−fi (x))

s.t. Ax = b.

(80)

The function

φ(x) = −
m∑

i=1

log(−fi (x)), (81)

is called the logarithmic barrier for the problem (77). Its domain is the set
of points that satisfy the inequality constraints of (77) strictly:

domφ = {x ∈ Rn|fi (x) < 0, i = 1, . . . ,m}.
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Logarithmic barrier function

The gradient and Hessian of φ are given by

∇φ(x) =
m∑

i=1

1

−fi (x)
∇fi (x),

∇2φ(x) =
m∑

i=1

1

fi (x)2
∇fi (x)∇fi (x)> +

m∑

i=1

1

−fi (x)
∇2fi (x).
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Central path

We multiply the objective of (80) by t, and consider the equivalent
problem

min tf0(x) + φ(x)

s.t. Ax = b.
(82)

We assume problem (82) can be solved via Newton’s method, and, that it
has a unique solution for each t > 0.
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Central path

For t > 0 we define x∗(t) = arg min
x
{tf0(x) + φ(x) s.t. Ax = b} as the

solution of (82).

The central path associated with problem (77) is defined as the set of
points {x∗(t) | t > 0}, which we call the central points.
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Central path

Points on the central path are characterized by the following necessary and
sufficient conditions: x∗(t) is strictly feasible, i.e., satisfies

Ax∗(t) = b, fi (x
∗(t)) < 0, i = 1, . . . ,m

and ∃ν̂ ∈ Rp such that

0 = t∇f0(x∗(t)) +∇φ(x∗(t)) + A>ν̂

= t∇f0(x∗(t)) +
m∑

i=1

1

−fi (x∗(t))
∇fi (x∗(t)) + A>ν̂

(83)

holds.
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Dual points from central path

Every central point yields a dual feasible point.

Define

λ∗i (t) = − 1

tfi (x∗(t))
, i = 1, . . . ,m, ν∗(t) =

ν̂

t
. (84)

Because fi (x
∗(t)) < 0, i = 1, . . . ,m, it’s clear that λ∗(t) > 0.
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Dual points from central path

By expressing (83) as

∇f0(x∗(t)) +
m∑

i=1

λ∗i (t)∇fi (x∗(t)) + A>ν∗(t) = 0,

we see that x∗(t) minimizes the Lagrangian

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) + ν>(Ax − b)

for λ = λ∗(t) and ν = ν∗(t). Thus (λ∗(t), ν∗(t)) is a dual feasible pair.
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Dual points from central path

Therefore the dual function g(λ∗(t), ν∗(t)) = min
x

L(x , λ∗(t), ν∗(t)) is

finite and

g(λ∗(t), ν∗(t)) = f0(x∗(t)) +
m∑

i=1

λ∗i (t)fi (x
∗(t)) + ν∗(t)>(Ax∗(t)− b)

= f0(x∗(t))−m/t.

As an important consequence, we have

f0(x∗(t))− v∗ 6 m/t.

This confirms that x∗(t) converge to an optimal point as t →∞.
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Interpretation via KKT conditions

Since we have assumed that x∗(t) is the unique solution to problem (82)
for each t > 0, a point is equal to x∗(t) if and only if ∃λ, ν such that

Ax = b, fi (x) 6 0, i = 1, . . . ,m
λ > 0

∇f0(x) +
∑m

i=1 λi∇fi (x) + A>ν = 0
−λi fi (x) = 1/t, i = 1, . . . ,m.

(85)

The only difference between (85) and the KKT condition (78) is that the
complementarity condition −λi fi (x) = 0 is replaced by the condition
−λi fi (x) = 1/t.

In particular, for large t, x∗(t) and λ∗(t), ν∗(t) ‘almost’ satisfy the
KKT optimality conditions for the problem (77).
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The barrier method

Algorithm. Barrier method

given strictly feasible x , t := t(0) > 0, γ > 1, tolerance ε > 0.
repeat

1 Centering step. Starting at x, compute x∗(t) by minimizing
tf0(x) + φ(x), subject to Ax = b.

2 Update. x := x∗(t)

3 Stopping criterion. quit if m/t < ε.

4 Increase t. Let t := γt.

An execution of step 1 is called an outer iteration. We assume that
Newton’s method is used in step 1, and we refer to the Newton iterations
or steps executed during the centering step as inner iterations.
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The barrier method

Computing x∗(t) exactly is not necessary.

Choice of t(0):
If t(0) is chosen too large, the first outer iteration will require too
many iterations.
If t(0) is chosen too small, the algorithm will require extra outer
iterations.

The choice of the parameter γ involves a trade-off:
If γ is small (i.e., near 1) then centering step will be easy since the
previous iterate x is a very good starting point but of course there will
be a large number of outer iterations.
On the other hand, a large γ resulting in fewer outer iterations but
more inner iterations.
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Newton step for modified KKT equations

In the step 1 of the barrier method, the Newton step δxnt and associated
dual variable are given by the linear equations

[
t∇2f0(x) +∇2φ(x) A>

A 0

] [
δxnt

νnt

]
= −

[
t∇f0(x) +∇φ(x)

0

]
. (86)

These Newton steps for the centering problem can be interpreted as
Newton steps for directly solving the modified KKT equations

∇f0(x) +
∑m

i=1 λi∇fi (x) + A>ν = 0
−λi fi (x) = 1/t, i = 1, . . . ,m

Ax = b.
(87)
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Newton step for modified KKT equations

Let λi = 1/(−tfi (x)). This transforms (87) into

∇f0(x) +
m∑

i=1

1

−tfi (x)
∇fi (x) + A>ν = 0, Ax = b. (88)

For small δx ,

∇f0(x + δx) +
m∑

i=1

1

−tfi (x + δx)
∇fi (x + δx)

≈∇f0(x) +∇2f0(x)δx +
m∑

i=1

1

−tfi (x)
∇fi (x) +

m∑

i=1

1

−tfi (x)
∇2fi (x)δx

+
m∑

i=1

1

tfi (x)2
∇fi (x)∇fi (x)>δx .
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Newton step for modified KKT equations

Let

g = ∇f0(x) +
m∑

i=1

1

−tfi (x)
∇fi (x),

H = ∇2f0(x) +
m∑

i=1

1

−tfi (x)
∇2fi (x) +

m∑

i=1

1

tfi (x)2
∇fi (x)∇fi (x)>.

Observe that

g = ∇f0(x) + (1/t)∇φ(x), H = ∇f0(x) + (1/t)∇2φ(x).

The Newton step for (88) is

Hδx + A>ν = −g , Aδx = 0.

Comparing this with (86) shows that

δx = δxnt , ν =
νnt

t
.
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Feasibility and phase I method

The barrier method requires a strictly feasible starting point x (0).

When such a point is not known, the barrier method is preceded by a
preliminary stage, called phase I, in which a strictly feasible point is
computed and used as the starting point for the barrier method.

YZW (USTC) Optimization Algorithms 306 / 467



Basic phase I method

To find a strictly feasible solution of inequalities and equalities

fi (x) < 0, i = 1, . . . ,m, Ax = b, (89)

we form and solve the following optimization problem

min s

s.t. fi (x) 6 s, i = 1, . . . ,m

Ax = b

(90)

in the variable x ∈ Rn, s ∈ R. It’s always strictly feasible, and called the
phase I optimization problem associated with the inequality and equality
system (89).
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Basic phase I method

Let v̄∗ be the optimal value of (90).

If v̄∗ < 0, then (89) has a strictly feasible solution. In fact, we can
terminate solving the problem (90) when s < 0.

If v̄∗ > 0, then (89) is infeasible. In fact, we can terminate when a
central point give a positive lower bound of v̄∗ > 0.

If v̄∗ = 0 and the minimum is attained at x∗ and s∗ = 0, then the set
of inequalities is feasible but not strictly feasible. If v̄∗ = 0 and the
minimum is not attained, then the inequalities are infeasible.
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Primal-dual search direction

The modified KKT conditions (87) can be expressed as rt(x , λ, ν) = 0,
where t > 0 and

rt(x , λ, ν) =



∇f0(x) + J[f (x)]>λ+ A>ν
−diag(λ)f (x)− (1/t)1

Ax − b


 . (91)

Here f : Rn → Rm and J[f ] are given by

f (x) =




f1(x)
...

fm(x)


 , J[f (x)] =



∇f1(x)>

...
∇fm(x)>


 .
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Primal-dual search direction

If x , λ, ν satisfy rt(x , λ, ν) = 0 (and fi (x) < 0), then x = x∗(t), λ = λ∗(t)
and ν = ν∗(t).

The first block component of rt ,

rdual = ∇f0(x) + J[f (x)]>λ+ A>ν

is called the dual residual.

The last block component, rpri = Ax − b, is called the primal residual.

The middle block

rcent = −diag(λ)f (x)− (1/t)1,

is the centrality residual, i.e., the residual for the modified
complementarity condition.
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Primal-dual search direction

Let y = (x , λ, ν) denote the current point and δy = (δx , δλ, δν) denote the
Newton step for solving the equation rt(x , λ, ν) = 0, for fixed t where
f (x) < 0, λ > 0.

The Newton step is characterized by

rt(y + δy ) ≈ rt(y) + J[rt(y)]δy = 0.
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Primal-dual search direction

In terms of x , λ, ν, we have



∇2f0(x) +

∑m
i=1 λi∇2fi (x) J[f (x)]> A>

−diag(λ)J[f (x)] −diag(f (x)) 0
A 0 0





δx
δλ
δν


 = −




rdual

rcent

rpri




(92)
The primal-dual search direction δypd

= (δxpd
, δλpd

, δνpd
) is defined as the

solution of (92).

YZW (USTC) Optimization Algorithms 312 / 467



The surrogate duality gap

In the primal-dual interior-point method the iterates x (k), λ(k) and ν(k) are
not necessarily feasible. We cannot easily evaluate a duality gap as we do
in the barrier method.

Instead, we define the surrogate duality gap, for any x that satisfies
f (x) < 0 and λ > 0, as

η̂(x , λ) = −f (x)>λ.

Remark: The surrogate gap η̂ would be the duality gap, if x were primal
feasible and λ, ν were dual feasible. Note that the value of the parameter
t corresponding to the surrogate duality gap η̂ is m/η̂.

YZW (USTC) Optimization Algorithms 313 / 467



Primal-dual interior-point method

Algorithm. Primal-dual interior-point method.

given x that satisfies
f1(x) < 0, . . . , fm(x) < 0, λ > 0, γ > 1, εfeas > 0, ε > 0.
repeat

1 Determine t. Set t := γ(m/η̂).

2 Compute primal-dual search direction δypd
.

3 Line search and update.
Determine step length α > 0 and set y := y + αδypd

.

until ‖rpri‖2 6 εfeas, ‖rdual‖2 6 εfeas, and η̂ 6 ε.
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Line search in primal-dual interior-point method

The line search in step 3 is a standard backtracking line search.

For a step size α, let

y+ =




x+

λ+

ν+


 =




x
λ
ν


+ α



δxpd

δλpd

δνpd




Let

αmax = sup{α ∈ [0, 1] | λ+ αδλ > 0} = min

{
1,min{−λi

δλi
| δλi < 0}

}

to be the largest positive step length that gives λ+ > 0.
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Line search in primal-dual interior-point method

We start backtracking with α = 0.99αmax, and multiply α by β ∈ (0, 1)
until we have f (x+) < 0. We continue multiplying α by β until we have

‖rt(x+, λ+, ν+)‖2 6 (1− τα)‖rt(x , λ, ν)‖2.

Here τ is typically chosen in the range [0.01, 0.1].
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Exercises

Ex 1. Let C ⊆ Rn be the solution set of a quadratic inequality,

C = {x ∈ Rn|x>Ax + b>x + c 6 0},

with A ∈ Sn, b ∈ Rn, and c ∈ R.

(a) Show that C is convex if A � 0.
(b) Show that the intersection of C and the hyperplane defined by

g>x + h = 0 (where g 6= 0) is convex if A+ λgg> � 0 for some λ ∈ R.

Ex 2. Let λ1(X ) > λ2(X ) > . . . > λn(X ) denote the eigenvalues of a
matrix X ∈ Sn. Prove that the maximum eigenvalue λ1(X ) is convex.
Moreover, Show that

∑k
i=1 λi (X ) is convex on Sn. Hint. Use the

variational characterization

k∑

i=1

λi (X ) = sup{tr(V>XV )|V ∈ Rn×k ,V>V = I}.
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Exercises

Ex 3. Find the dual function of the LP

min cT x
s.t. Gx � h

Ax = b.

Give the dual problem, and make the implicit equality constraints
explicit.

Ex 4. Consider the equality constrained least-squares problem

min ‖Ax − b‖2
2

s.t. Gx = h

where A ∈ Rm×n with rankA = n, and G ∈ Rp×n with rankG = p.
Give the KKT conditions, and derive expressions for the primal
solution x∗ and the dual solution ν∗.
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Exercises

Ex 5. Suppose Q � 0. The problem

min f (x) + (Ax − b)>Q(Ax − b)
s.t. Ax = b

is equivalent to the primal equality constrained optimization problem
(70). What is the Newton step for this problem? Is it the same as
that for the primal problem?
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Exercises

Ex 6. Suppose we use the infeasible start Newton method to minimize f (x)
subject to a>i x = bi , i = 1, . . . , p.

(a) Suppose the initial point x (0) satisfies the linear equality a>i x
(0) = bi .

Show that the linear equality will remain satisfied for future iterates,
i.e., a>i x

(k) = bi for all k .

(b) Suppose that one of the equality constraints becomes satisfied at
iteration k , i.e., we have a>i x

(k−1) 6= bi , a
>
i x

(k) = bi . Show that at
iteration k , all the equality constraints are satisfied.
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Exercises

Ex 7. Suppose we add the constraint x>x 6 R2 to the problem (77):

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

Ax = b
xT x ≤ R2

Let φ̃ denote the logarithmic barrier function for this modified
problem. Find a > 0 for which ∇2(tf0(x) + φ(x)) � aI holds, for all
feasible x .
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Exercises

Ex 8. Consider the problem (77), with central path x∗(t) for t > 0, defined
as the solution of (82).
For u > p∗, let z∗(u) denote the solution of

min − log (u − f0(x))−∑m
i=1 log (−fi (x))

s.t. Ax = b

Show that the curve define by z∗(u), for u > p∗, is the central path.
(In other words, for each u > p∗, there is a t > 0 for which
x∗(t) = z∗(u), and conversely, for each t > 0, there is a u > p∗ for
which z∗(u) = x∗(t)).
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Sparse Optimization

Many problems of recent interest in statistics and related areas can be
posed in the framework of sparse optimization. Due to the explosion in
size and complexity of modern data analysis (BigData), it is increasingly
important to be able to solve problems with a very large number of
features, training examples, or both.
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0-norm optimization

(P0) min
x
‖x‖0 s.t. Ax = b. (93)

(Pε0) min
x
‖x‖0 s.t. ‖b− Ax‖ 6 ε. (94)
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Greedy algorithms

Greedy strategies are usually adopted in solving the 0-norm problems. The
following algorithm is known in the literature of signal processing by the
name Orthogonal Matching Pursuit (OMP).

42 ALFRED M. BRUCKSTEIN, DAVID L. DONOHO, AND MICHAEL ELAD

A greedy strategy abandons exhaustive search in favor of a series of locally op-
timal single-term updates. Starting from x0 = 0 it iteratively constructs a k-term
approximant xk by maintaining a set of active columns—initially empty—and, at
each stage, expanding that set by one additional column. The column chosen at each
stage maximally reduces the residual �2 error in approximating b from the currently
active columns. After constructing an approximant including the new column, the
residual �2 error is evaluated; if it now falls below a specified threshold, the algorithm
terminates.

Exhibit 1 presents a formal description of the strategy and its associated notation.
This procedure is known in the literature of signal processing by the name orthogonal
matching pursuit (OMP), but is very well known (and was used much earlier) by other
names in other fields—see below.

Task: Approximate the solution of (P0): minx ‖x‖0 subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the error threshold ε0.

Initialization: Initialize k = 0, and set
• The initial solution x0 = 0.
• The initial residual r0 = b−Ax0 = b.
• The initial solution support S0 = Support{x0} = ∅.

Main Iteration: Increment k by 1 and perform the following steps:
• Sweep: Compute the errors ε(j) = minzj ‖ajzj − rk−1‖22 for all j using the

optimal choice z∗j = aTj rk−1/‖aj‖22.
• Update Support: Find a minimizer j0 of ε(j): ∀ j /∈ Sk−1, ε(j0) ≤ ε(j), and

update Sk = Sk−1 ∪ {j0}.
• Update Provisional Solution: Compute xk , the minimizer of ‖Ax−b‖22 subject

to Support{x} = Sk .
• Update Residual: Compute rk = b−Axk .
• Stopping Rule: If ‖rk‖2 < ε0, stop. Otherwise, apply another iteration.

Output: The proposed solution is xk obtained after k iterations.

Exhibit 1. OMP—a GA for approximating the solution of (P0).

If the approximation delivered has k0 nonzeros, the method requires O(k0mn)
flops in general; this can be dramatically better than the exhaustive search, which
requires O(nmk0k0

2) flops.
Thus, this single-term-at-a-time strategy can be much more efficient than exhaus-

tive search—if it works! The strategy can fail badly, i.e., there are explicit examples
(see [154, 155, 36]) where a simple k-term representation is possible, but this approach
yields an n-term (i.e., dense) representation. In general, all that can be said is that
among single-term-at-a-time strategies, the approximation error is always reduced by
as much as possible, given the starting approximation and the single-term-at-a-time
constraint. This explains why this type of algorithm has earned the name “greedy
algorithm” in approximation theory.

Many variants on this algorithm are available, offering improvements in accuracy
or in complexity or both [118, 34, 33, 23, 130, 30, 159, 82]. This family of GAs is
well known and extensively used, and, in fact, these algorithms have been reinvented
in various fields. In the setting of statistical modeling, greedy stepwise least squares
is called forward stepwise regression and has been widely used since at least the
1960s [31, 90]. When used in the signal processing setting this goes by the name of
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Dictionary learning

The optimization model of dictionary learning for sparse and redundant
representations:

min
D,X
‖Y − DX‖Frob s.t. ‖xj‖0 6 k0, j = 1, · · · ,N (95)

where
Y = (y1, · · · , yN) ∈ Rn×N ,

D = (d1, · · · , dm) ∈ Rn×m,

X = (x1, · · · , xN) ∈ Rm×N .
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Dictionary learning

There are two training mechanisms, the first named Method of Optimal
Directions (MOD) by Engan et al., and the second named K-SVD, by
Aharon et al..

MOD

K-SVD

......
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Convex relaxation

Convex relaxation technique is a way to render 0-norm more tractable.

Convexifying with the `1 norm, we come to the new optimization
problem

(P1) min
x
‖W x‖1 s.t. Ax = b (96)

where W is a diagonal positive-definite matrix that introduces the
precompensating weights.

An error-tolerant version of (P1) is defined by

(Pε1) min
x
‖W x‖1 s.t. ‖b− Ax‖ 6 ε. (97)

It was named Basis Pursuit (BP) when all the columns of A are
normalized (and thus W = I ).
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Basic pursuit

(BP) min
x
‖x‖1 s.t. Ax = b.

Basis pursuit

min{‖x‖1 : Ax = b}

xo

Ax =
b

x

z

y
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BP denoising and LASSO

(BPτ ) min
x
‖Ax− b‖2

2 s.t. ‖x‖1 6 τ,

(BPµ) min
x
‖x‖1 + µ

2‖Ax− b‖2
2,

(BPδ) min
x
‖x‖1 s.t. ‖Ax− b‖2 6 δ.

Questions:

Are they equivalent? and in what sense?

How to choose parameters?
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Sparse under basis Ψ

min
s
{‖s‖1 : AΨs = b}

Compressed Sensing

The central insight of CS is that many signals are sparse, i.e., represented
using only a few non-zero coefficients in a suitable basis or dictionary and
such signals can be recovered from very few measurements (undersampled
data) by an optimization algorithm.

yangzw@ustc.edu.cn (USTC) GeomSparsity 8/22/2014 7 / 45

If Ψ is orthogonal, the problem is equivalent to

min
x
{‖Ψ∗x‖1 : Ax = b}.
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Sparse after transform L

min
x
{‖Lx‖1 : Ax = b}

Examples of L:

DCT, wavelets, curvelets, ridgelets, ...

tight frames, Gabor, ...

total (generalized) variation

Ref: E. J. Cands, Y. Eldar, D. Needell and P. Randall. Compressed sensing
with coherent and redundant dictionaries. Applied and Computational
Harmonic Analysis, 31(1): 59-73, 2011.
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Joint/group sparsity

Decompose {1, 2, · · · , n} = G1
⋃G2

⋃ · · ·⋃GS , and Gi
⋂Gj = ∅, i 6= j .

Joint/group sparse recovery model:

min
x
{‖x‖G,2,1 : Ax = b}

where

‖x‖G,2,1 =
S∑

s=1

ws‖xGs‖2.
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Side constraints

Nonnegativity: x ≥ 0

Box constraints: lb ≤ x ≤ ub

Linear inequalities: Qx ≤ c

They generate “corners” and can be very effective in practice.
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Shrinkage

Shrinkage is popular in sparse optimization algorithms

In optimization, non-smooth functions like `1 has difficulty using
general smooth optimization methods.

But, `1 is component-wise separable, so it does get along well with
separable (smooth or non-smooth) functions.

For example,

min
x
‖x‖1 +

1

2τ
‖x− z‖2

2

is equivalent to solving min
xi
|xi |+ 1

2τ |xi − zi |2 over each i .
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Soft-thresholding shrinkage

The problem is separable and has an explicit solution

(shrink(z, τ))i =





zi − τ zi > τ,
0 −τ ≤ zi ≤ τ,

zi + τ zi < −τ.

The shrinkage operator can be written in Matlab code as:
x = max(abs(z)-tau,0).*sign(z).
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Soft-thresholding shrinkage

The following problem is called Moreau-Yosida regularization

min
x

r(x) +
1

2τ
‖x− z‖2

2.

For example r(x) = ‖x‖2, the solution to

min
x
‖x‖2 +

1

2τ
‖x− z‖2

2

is, if we treat 0/0 = 0,

xopt = max{‖z‖2 − τ, 0} · (z/‖z‖2).

Used in joint/group-sparse recovery algorithms.
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Soft-thresholding shrinkage

Consider the following nuclear norm optimization

min
X
‖X‖∗ +

1

2τ
‖X− Z‖2

F .

Let Z = UΣVT be the singular value decomposition of Z.

Let Σ̂ be the diagonal matrix with diagonal entries

diag(Σ̂) = shrink(diag(Σ), τ)),

then
Xopt = UΣ̂VT .

In general, matrix problems with only unitary-invariant functions (e.g.,
‖ · ‖∗, ‖ · ‖F , spectral norm, trace) and constraints (e.g., positive or
negative semi-definiteness) typically reduce to vector problems
regarding singular values.
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Prox-linear algorithm

Consider the general form

min
x

r(x) + f (x).

where r is the regularization function and f is the data fidelity function.

The prox-linear algorithm is:

xk+1 = arg min
x

r(x) + f (xk)+ < ∇f (xk), x− xk > +
1

2δk
‖x− xk‖2

2.

The last term keeps xk+1 close to xk , and the parameter δk determines the
step size. It is equivalent to

xk+1 = arg min
x

r(x) +
1

2δk
‖x− (xk − δk∇f (xk))‖2

2.
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Alternating direction method of multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) was developed
in the 1970s, with roots in the 1950s, and is equivalent or closely related
to many other algorithms, such as dual decomposition, the method of
multipliers, Douglas-Rachford splitting, Spingarns method of partial
inverses, Dykstras alternating projections, Bregman iterative algorithms for
1-norm problems, proximal methods, and others.
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ADMM

The ADMM can be applied to a wide variety of statistical and machine
learning problems of recent interest, including the lasso, sparse logistic
regression, basis pursuit, covariance selection, support vector machines,
and many others.
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ADMM

min
X∈Cn×T

µ‖X‖p + ‖AX− B‖q (98)

Let p := {2, 1}, q := {1, 1} which denote joint convex norm, we have

min
X∈Cn×T

µ‖X‖2,1 + ‖AX− B‖1,1

where ‖X‖2,1 =
∑n

i=1

√∑T
j=1 x

2
ij , ‖X‖1,1 =

∑n
i=1

∑T
j=1 |xij |.

For example T = 1,
min
x∈Cn

µ‖x‖p + ‖Ax− b‖q.
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ADMM

min µ‖z‖p + ‖y‖q
s.t. x− z = 0

Ax− y = b

(99)

L(x, y, z, λy , λz , ρ) =µ‖z‖p + ‖y‖q + Re(λTz (x− z) + λTy (Ax− y − b))

+
ρ

2
(‖x− z‖2

2 + ‖Ax− y − b‖2
2)

(100)
where λy ∈ Cn, λz ∈ Cm are the Lagrangian multipliers and ρ > 0 is a
penalty parameter.
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ADMM





xk+1 := arg min 1
2 (‖x− zk + uk

z‖2
2 + ‖Ax− yk − b + uk

y‖2
2)

yk+1 := arg min ‖y‖q + ρ
2‖y − (Axk+1 − b)− uk

y‖2
2

zk+1 := arg minµ‖z‖p + ρ
2‖z− xk+1 − uk

z‖2
2

(101)

After solving three subproblems, we update the Lagrangian multipliers as
follows: {

uk+1
z = uk

z + γ(xk+1 − zk+1)

uk+1
y = uk

y + γ(Axk+1 − yk+1 − b)
(102)

where uy = 1
ρλy , uz = 1

ρλz , γ > 0 is the step size.
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Overview

Mathematical optimization is one of the pillars of machine learning.
Large-scale machine learning, where the amount of both the training data
and the parameters is large, represents a distinctive setting in which
traditional nonlinear optimization techniques typically falter.

We will briefly introduce some typical optimization problems arising from
machine learning and then turn to stochastic algorithms—the main
content of this section—and other popular methods together with specific
models applicable to them.
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Typical Form of Problems

For simplicity, we focus on the problems that arise in the context of
supervised classification; i.e., we focus on the optimization of prediction
functions for labeling unseen data based on information contained in a set
of labeled training data.

Such a focus is reasonable as many unsupervised and other learning
techniques reduce to optimization problems of comparable form.
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Typical Form of Problems

For example:

Regression. Although the methodology of dealing with regression is
quite different from that of classification, regression does share a model
similar to supervised classification. Supervised classification and
regression are collectively called supervised learning.

Deep reinforcement learning. In deep Q-learning network (DQN), the
samples are attained by interacting with environment, and to train the
agent is to solve the Bellman equation in a regression fashion.

Generative adversarial network. The GAN is composed of a generator
and a discriminator, which are usually trained alternately. The training
process of each part could be treated as a supervised classification,
where the label means whether the sample comes from the data
distribution or not.
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Fundamentals

Goal determine a prediction function h : X → Y from an input
space X to an output space Y.

Request h should avoid rote memorization and instead generalizes the
concepts that can be learned from a given set of examples.

Scheme choose h by attempting to minimize a risk measure over an
adequately selected family of prediction functions, call it H.
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Fundamentals

Suppose that samples are sampled from a joint probability distribution
function Pr(x , y).

h to be sought should yield a small expected risk of misclassification
over all possible inputs, i.e., minimize

R(h) = Pr [h(x) 6= y ] = E
[
1[h(x) 6=y ]

]
. (103)

Such a framework is variational since we are optimizing over a set of
functions, and is stochastic since the objective function involves an
expectation.

In practice, the expectation is taken on samples {(xi , yi )}ni=1 and h
should minimize the empirical risk of misclassification

Rn(h) =
1

n

n∑

i=1

1[h(xi )6=yi ], where 1[A] =

{
1 if A is true
0 otherwise

. (104)

YZW (USTC) Optimization Algorithms 353 / 467



Choice of Prediction Function Family

The family of function H should be determined with three potentially
competing goals in mind.

1. Adequate capacity: H should contain prediction functions that are
able to achieve a low empirical risk over the training set, so as to
avoid underfitting the data.

This can be achieved by selecting a rich family of functions or by
using a priori knowledge to select a well-targeted family.
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Choice of Prediction Function Family

2. Low generalization error: The gap between expected risk and
empirical risk R(h)− Rn(h) should be small over all h ∈ H.

Generally this gap decreases when one uses more training examples
but it increases when one uses richer families of functions, due to
potential overfitting.

3. Efficient training: H should be selected so that one can efficiently
solve the corresponding optimization problem, the difficulty of which
may increase when one employs a richer family of functions and/or a
larger training set.
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Generalization Error

By certain laws of large numbers, the Hoeffding inequality guarantees that,
with probability 1− η,

|R(h)− Rn(h)| 6
√

1

2n
log

(
2

η

)
for a given h ∈ H

This bound offers the intuitive explanation that the gap decreases as one
uses more training examples.

For a uniform generalization error bound, one often turns to uniform laws
of large numbers and the concept of the Vapnik-Chervonenkis (VC)
dimension of H, a measure of the capacity of such a family of functions.
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Generalization Error

Roughly speaking, the VC dimension of a family of functions is the
minimal size of samples on which all the functions in the family fail.

For the intuition behind this concept, consider, e.g., a binary classification
scheme in R2 where one assigns a label of 1 for points above a polynomial
and -1 for points below.Then the set of linear polynomials has a low
capacity with VC dimension of 3.

With dH defined as the VC dimension of H, one has with probability at
least 1− η that

sup
h∈H
|R(h)− Rn(h)| 6 O

(√
1

2n
log

(
2

η

)
+

dH
n

log

(
n

dH

))
. (105)

(105) is one of the most important results in learning theory.
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Structural Risk Minimization

Rather than choose a generic family of prediction functions (difficult to
optimize and estimate the generalization error) one chooses a structure,
i.e., a collection of nested function families.

For instance, such a structure can be formed as a collection of subsets
of a given family H in the following manner: given a preference
function Ω, choose various values of a hyperparameter C , according
to each of which one obtains the subset HC := {h ∈ H | Ω(h) 6 C}.

Given a fixed number of examples, increasing C reduces the empirical
risk, but after some point it typically increases the gap between
expected and empirical risks, as illustrated in Fig 7.

Other ways to introduce structures are to consider a regularized
empirical risk Rn(h) + λΩ(h).
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Structural Risk Minimization

Rn(h) over h ∈ HC), but, after some point, it typically increases the gap between expected and
empirical risks. This phenomenon is illustrated in Figure 2.5.

Other ways to introduce structures are to consider a regularized empirical risk Rn(h) + λΩ(h)
(an idea introduced in problem (2.3), which may be viewed as the Lagrangian for minimizing Rn(h)
subject to Ω(h) ≤ C), enlarge the dictionary in a bag-of-words representation, increase the degree
of a polynomial model function, or add to the dimension of an inner layer of a DNN.

Fig. 2.5: Illustration of structural risk minimization. Given a set of n examples, a decision function
family H, and a relative preference function Ω, the figure illustrates a typical relationship between
the expected and empirical risks corresponding to a prediction function obtained by an optimization
algorithm that minimizes an empirical risk Rn(h) subject to Ω(h) ≤ C. The optimal empirical risk
decreases when C increases. Meanwhile, the deviation between empirical and expected risk is
bounded above by a quantity—which depends on H and Ω—that increases with C. While not
shown in the figure, the value of C that offers the best guarantee on the expected risk increases
with n, i.e., the number of examples; recall (2.7).

Given such a set-up, one can avoid estimating the gap between empirical and expected risk
by splitting the available data into subsets: a training set used to produce a subset of candidate
solutions, a validation set used to estimate the expected risk for each such candidate, and a testing
set used to estimate the expected risk for the candidate that is ultimately chosen. Specifically, over
the training set, one minimizes an empirical risk measure Rn over HC for various values of C. This
results in a handful of candidate functions. The validation set is then used to estimate the expected
risk corresponding to each candidate solution, after which one chooses the function yielding the
lowest estimated risk value. Assuming a large enough range for C has been used, one often finds
that the best solution does not correspond to the largest value of C considered; again, see Figure 2.5.

Another, albeit indirect avenue toward risk minimization is to employ an algorithm for mini-
mizing Rn, but terminate the algorithm early, i.e., before an actual minimizer of Rn is found. In
this manner, the role of the hyperparameter is played by the training time allowed, according to
which one typically finds the relationships illustrated in Figure 2.6. Theoretical analyses related to
the idea of early stopping are much more challenging than those for other forms of structural risk
minimization. However, it is worthwhile to mention these effects since early stopping is a popular
technique in practice, and is often essential due to computational budget limitations.

Overall, the structural risk minimization principle has proved useful for many applications, and

12

Figure: Illustration of structural risk minimization
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Structural Risk Minimization

One can avoid estimating the gap between empirical and expected risk by
splitting the available data into three subsets: a training set, a validation
set and a testing set.

Specifically, over the training set one minimizes an empirical risk
measure Rn over HC for various values of C . This results in a handful
of candidate functions.

The validation set is then used to estimate the expected risk
corresponding to each candidate solution, after which one chooses the
function yielding the lowest estimated risk value.

The testing set is used to estimate the expected risk for the candidate
that is ultimately chosen.
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More Practical Statements

Now we assume that the prediction function h has a fixed form and is
parameterized by a real vector w ∈ Rd over which the optimization is to
be performed.

Formally, for some given h(·, ·) : Rdx × Rd → Rdy , we consider the
family of prediction functions

H :=
{
h(·,w) | w ∈ Rd

}
.

To measure the losses incurred from inaccurate predictions, we
assume a given loss function ` : Rdy ×Rdy → R. An input-output pair
(x , y) yields the predicted output h(x ,w) and the loss `(h(x ,w), y).
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More Practical Statements

We have the expected risk

R(w) = E(x ,y)∼Pr(x ,y) [`(h(x ,w), y)] , (106)

and the empirical risk

Rn(w) =
1

n

n∑

i=1

`(h(xi ,w), yi ). (107)

To simplify the notation, let ξ be a sample (x , y) and
f (w , ξ) = `(h(x ,w), y), then the expected risk is

R(w) = Eξ [f (w , ξ)] . (108)

For a set of samples {ξi}ni=1, let us define fi (w) to be f (w , ξi ) and then
the empirical risk is

Rn(w) =
1

n

n∑

i=1

fi (w). (109)
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A Brief Introduction

Recall the batch (ordinary) gradient descent method. To minimize the
empirical risk (as (109)), w is updated by

wk+1 ← wk − αk∇Rn(wk) = wk −
αk

n

n∑

i=1

∇fi (wk) (110)

where αk > 0 is a stepsize. Computing the step −αk∇Rn(wk) is expensive
since it needs accessing all the samples.

Stochastic gradient (SG) meanwhile uses only one sample at each
iteration:

wk+1 ← wk − αk∇fik (wk) (111)

where ik is chosen randomly from {1, . . . , n}. While −∇fik (wk) might not
be one of descent from wk , if it is a descent direction in expectation, then
the sequence {wk} can be guided toward a minimizer of Rn.
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A Brief Introduction

To generalize SG method, we consider two ways:

reduce the noise (variance) of each iteration by generating a batch of
samples instead of a single sample.

make use of second-order information and compute a stochastic
Newton or quasi-Newton direction rather than a gradient direction.
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A Brief Introduction
To answer this question, we depict in Figure 3.3 methods that aim to improve upon SG as lying

on a two-dimensional plane. At the origin of this organizational scheme is SG, representing the
base from which all other methods may be compared.

						Stochas)c		
gradient	method	

										Batch	
gradient	method	

						Stochas)c	
Newton	method	

											second-order	methods	

						noise	reduc/on	methods	

						Batch	
Newton	method	

Fig. 3.3: Schematic of a two-dimensional spectrum of optimization methods for machine learn-
ing. The horizontal axis represents methods designed to control stochastic noise; the second axis,
methods that deal with ill conditioning.

From the origin along the horizontal access, we place methods that are neither purely stochastic
nor purely batch, but attempt to combine the best properties of both approaches. For example,
observing the iteration (3.7), one quickly realizes that there is no particular reason to employ infor-
mation from only one sample point per iteration. Instead, one can employ a mini-batch approach
in which a small subset of samples, call it Sk ⊆ {1, . . . , n}, is chosen randomly in each iteration,
leading to

wk+1 ← wk −
αk
|Sk|

∑

i∈Sk
∇fi(wk). (3.12)

Such an approach falls under the framework set out by Robbins and Monro [130], and allows some
degree of parallelization to be exploited in the computation of mini-batch gradients. In addition,
one often finds that, due to the reduced variance of the stochastic gradient estimates, the method
is easier to tune in terms of choosing the stepsizes {αk}. Such a mini-batch SG method has been
widely used in practice.

Along this horizontal axis, one finds other methods as well. In our investigation, we classify
two main groups as dynamic sample size and gradient aggregation methods, both of which aim to
improve the rate of convergence from sublinear to linear. These methods do not simply compute
mini-batches of fixed size, nor do they compute full gradients in every iteration. Instead, they
dynamically replace or incorporate new gradient information in order to construct a more reliable
step with smaller variance than an SG step. For this reason, we refer to the methods along the
horizontal axis as noise reduction methods. We discuss methods of this type in §5.

Along the second axis in Figure 3.3 are algorithms that, in a broad sense, attempt to overcome
the adverse effects of high nonlinearity and ill-conditioning. For such algorithms, we use the term
second-order methods, which encompasses a variety of strategies; see §6. We discuss well known

20

Figure: Schematic of a two dimensional spectrum of optimization methods for
machine learning.
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Analyses of SG Method

Here we give a general framework of stochastic gradient methods by
introducing a general ξk and a general direction g(wk , ξk):

Algorithm 1 Stochastic Gradient

1: Choose an initial iterate w1.
2: for k = 1, 2, . . . do
3: Generate a realization of the random variable ξk .
4: Compute a direction g(wk , ξk).
5: Choose a stepsize αk > 0.
6: Set the new iterate as wk+1 ← wk − αkg(wk , ξk).
7: end for
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Analyses of SG Method

ξk could be either one sample or a set of samples, and our analysis cover
the following choices of g(wk , ξk):

g(wk , ξk) =





∇w f (wk , ξk)

1

nk

nk∑

i=1

∇w f (wk , ξk,i )

Hk
1

nk

nk∑

i=1

∇w f (wk , ξk,i )

(112)

where Hk is a symmetric positive definite scaling matrix and the third
choice represents a stochastic Newton or quasi-Newton direction.
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Two Fundamental Lemmas

Before establishing the convergence guarantees for SG, we need to make
an assumption of smoothness of the objective function:

Assumption (Lipschitz-continuous objective gradients)

The objective function F : Rd → R is continuously differentiable and the
gradient ∇F : Rd → Rd , is Lipschitz continuous with Lipschitz constant
L > 0, i.e.,

‖∇F (w)−∇F (w̄)‖2 6 L‖w − w̄‖2, ∀w , w̄ ∈ Rd . (113)
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Two Fundamental Lemmas

Under the above assumption, we obtain the following lemma.

引理

Under Assumption (113), the iterates of SG (Algorithm 1) satisfy the
following inequality for all k ∈ N:

Eξk [F (wk+1)]− F (wk) 6− αk∇F (wk)>Eξk [g(wk , ξk)]

+
α2
kL

2
Eξk

[
‖g(wk , ξk)‖2

2

]
.

(114)

Noting that wk+1 but not wk depends on ξk , we can derive this equation
immediately by simply applying the second-order expansion of
F (wk+1)− F (wk) and the assumption (113) then taking expectations.
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Two Fundamental Lemmas

To get further, we need another assumption about the first and second
moments of the stochastic vectors {g(wk , ξk)}.

Assumption (First and second moment limits)

The objective function and SG satisfy the following:

(a) The sequence of iterates {wk} is contained in an open set over which
F is bounded below by a scalar Finf .

(b) There exist scalars µG > µ > 0 such that, for all k ∈ N,

∇F (wk)>Eξk [g(wk , ξk)] > µ ‖∇F (wk)‖2
2 and (115a)

‖Eξk [g(wk , ξk)] ‖2 6 µG ‖∇F (wk)‖2 . (115b)

(c) There exist scalars M > 0 and MV > 0 such that, for all k ∈ N,

Varξk [‖g(wk , ξk)‖] 6 M + MV ‖∇F (wk)‖2
2. (116)
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Two Fundamental Lemmas

By the definition of variance, it requires that the second moment of
g(wk , ξk) satisfies

Eξk
[
‖g(wk , ξk)‖2

2

]
6 M+MG‖∇F (wk)‖2

2 with MG := MV +µ2
G > µ2 > 0.

(117)

引理

Under the above two assumptions, the iterates of SG satisfy the following
inequalities for all k ∈ N:

Eξk [F (wk+1)]− F (wk) 6− µαk‖∇F (wk)‖2
2 +

α2
kL

2
Eξk [‖g(wk , ξk)‖2

2]

(118a)

6− (µαk −
α2
kL

2
MG )‖∇F (wk)‖2

2 +
α2
kL

2
M.

(118b)
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SG for Strongly Convex Objectives

The most benign setting for analyzing the SG method is in the context of
minimizing a strongly convex objective function. We formalize a strong
convexity assumption as the following.

Assumption (Strong convexity)

The objective function F : Rd → R is strongly convex in that there exists
a constant c > 0 such that

F (w̄) > F (w)+∇F (w)>(w̄−w)+
c

2
‖w̄−w‖2

2, ∀(w̄ ,w) ∈ Rd×Rd (119)

Hence, F has a unique minimizer, denoted as w∗ ∈ Rd with F∗ := F (w∗).
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SG for Strongly Convex Objectives

A useful fact is that, under the above assumption, we can bound the
optimality gap at a given point:

F (w)− F∗ 6
1

2c
‖∇F (w)‖2

2 , ∀w ∈ Rd . (120)

Noting that

F (w)− F∗ 6 −∇F (w)>(w∗ − w)− c
2‖w∗ − w‖2

2

= −‖
√

1
2c∇F (w) +

√
c
2 (w∗ − w)‖2

2 + 1
2c ‖∇F (w)‖2

2

6 1
2c ‖∇F (w)‖2

2 .
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SG for Strongly Convex Objectives

We now state our first convergence theorem for SG.

We use E [·] to denote an expected value taken with respect to the
joint distribution of all random variables.

For example, since wk is determined by {ξ1, ξ2, . . . , ξk−1}, the total
expectation of F (wk) for any k ∈ N can be taken as

E [F (wk)] = Eξ1Eξ2 . . .Eξk−1
[F (wk)]
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SG for Strongly Convex Objectives

定理 (Strongly Convex Objective, Fixed Stepsize)

Under the above three assumptions (with Finf = F∗), suppose that the SG
method is run with a fixed stepsize, αk = ᾱ for all k ∈ N, satisfying

0 < ᾱ 6
µ

LMG
. (121)

Then the expected optimality gap satisfies the following inequality for all
k ∈ N:

E [F (wk)− F∗] 6
ᾱLM

2cµ
+ (1− ᾱcµ)k

(
F (w1)− F∗ −

ᾱLM

2cµ

)

k→∞−−−→ ᾱLM

2cµ
.

(122)
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SG for Strongly Convex Objectives

This theorem illustrates the interplay between the stepsizes and bound on
the variance of the stochastic directions.

If the variance of g(wk , ξk) is 0 or if noise is to decay with
‖∇F (wk)‖2

2, then we can obtain linear convergence to the optimal
value.

On the other hand, when the gradient computation is noisy, a fixed
and small enough stepsize can assure the expected objective values
will converge linearly to a neighborhood of the optimal value, but the
noise in the gradient estimates prevent further progress.

It’s natural to ask if diminishing stepsizes will bring a better result.
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SG for Strongly Convex Objectives

定理 (Strongly Convex Objective, Diminishing Stepsizes)

Under the assumptions of Lipschitz-continuous objective gradients, first
and second moment limits and strong convexity, suppose that SG method
is run with a step size sequence such that, for all k ∈ N,

αk =
β

γ + k
for some β >

1

cµ
and γ > 0 such that α1 6

µ

LMG
. (123)

Then, for all k ∈ N, the expected optimality gap satisfies

E [F (wk)− F∗] 6
ν

γ + k
, (124)

where

ν := max

{
β2LM

2(βcµ− 1)
, (γ + 1)(F (w1)− F∗)

}
. (125)
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SG for General Objectives

Many important machine learning models lead to nonconvex optimization
problems. Analyzing the SG method when minimizing nonconvex
objectives is more challenging since such functions may possess multiple
local minima and other stationary points.

Still, one can provide meaningful guarantees for the SG method in
nonconvex settings.

While one cannot bound the expected optimality gap as in the convex
case, we can bound the average norm of the gradient of the objective
function observed on {wk} visited during the first K iterations.
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SG for General Objectives

定理 (Nonconvex Objective, Fixed Stepsize)

Under the assumptions of Lipschitz-continuous objective gradients (113) and first
and second moment limits (115)-(116), suppose the SG method is run with a
fixed stepsize αk = ᾱ satisfying

0 < ᾱ 6
µ

LMG
. (126)

Then the expected sum-of-squares and average-squared gradients of F
corresponding to the SG iterates satisfy the following inequalities for all K ∈ N:

E

[
K∑

k=1

‖∇F (wk)‖2
2

]
6
K ᾱLM

µ
+

2(F (w1)− Finf)

µᾱ
(127a)

and therefore E

[
1

K

K∑

k=1

‖∇F (wk)‖2
2

]
6
ᾱLM

µ
+

2(F (w1)− Finf)

Kµᾱ
(127b)

K→∞−−−−→ ᾱLM

µ
.
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SG for General Objectives

Proof.

Taking the total expectation of (118b) and from (126),

E [F (wk+1)]− E [F (wk)] 6− (µ− ᾱLMG

2
)ᾱE

[
‖∇F (xk)‖2

2

]
+
ᾱ2LM

2

6− µᾱ

2
E
[
‖∇F (wk)‖2

2

]
+
ᾱ2LM

2
.

Summing both sides of this inequality for k ∈ {1, . . . ,K} and recalling (a) of the
assumption on first and second moment limits gives

Finf − F (w1) 6 E [F (wK+1)]− F (w1) 6 −µᾱ
2

K∑

k=1

E
[
‖∇F (wk)‖2

2

]
+

K ᾱ2LM

2
.

Rearranging yields (127a), and dividing further by K yields (127b).
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SG for General Objectives

定理 (Nonconvex Objective, Diminishing Stepsize)

Under the assumptions of Lipschitz-continuous objective gradients (113)
and first and second moment limits (115)-(116), suppose that the SG
method is run with a stepsize sequence satisfying

∞∑

k=1

αk =∞,
∞∑

k=1

α2
k <∞. (128)

Then
lim inf
k→∞

(E
[
‖∇F (wk)‖2

2

]
) = 0. (129)

While not the strongest result in this context, this theorem is perhaps the
easiest to interpret and remember. The proof of this theorem follows
based on the stronger results given in the next theorem.
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SG for General Objectives

定理 (Nonconvex Objective, Diminishing Stepsize)

Under the assumptions of Lipschitz-continuous objective gradients (113)
and first and second moment limits (115)-(116), suppose that the SG
method is run with a stepsize sequence satisfying (128). Then, with
AK :=

∑K
k=1 αk ,

E

[
K∑

k=1

αk‖∇F (wk)‖2
2

]
<∞ (130a)

and therefore E

[
1

AK

K∑

k=1

αk‖∇F (wk)‖2
2

]
K→∞−−−−→ 0. (130b)
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SG for General Objectives

推论

Suppose the conditions of the last theorem hold. For any K ∈ N, let
k(K ) ∈ {1, . . . ,K} represent a random index chosen with probabilities

proportional to {αk}Kk=1. Then ‖∇F (wk(K))‖2
K→∞−−−−→ 0 in probability.

推论

Under the conditions of the last theorem, if we further assume that the
objective function F is twice differentiable, and that the mapping
w 7→ ‖∇F (w)‖2

2 has Lipschitz-continuous derivatives, then

lim
k→∞

E
[
‖∇F (wk)‖2

2

]
= 0.
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Noise Reduction Methods

SG suffers from the adverse effect of noisy gradient estimates. To address
this limitation, methods endowed with noise reduction capabilities have
been developed.

5 Noise Reduction Methods

The theoretical arguments in the previous section, together with extensive computational expe-
rience, have led many in the machine learning community to view SG as the ideal optimization
approach for large-scale applications. We argue, however, that this is far from settled. SG suffers
from, amongst other things, the adverse effect of noisy gradient estimates. This prevents it from
converging to the solution when fixed stepsizes are used and leads to a slow, sublinear rate of
convergence when a diminishing stepsize sequence {αk} is employed.

To address this limitation, methods endowed with noise reduction capabilities have been devel-
oped. These methods, which reduce the errors in the gradient estimates and/or iterate sequence,
have proved to be effective in practice and enjoy attractive theoretical properties. Recalling the
schematic of optimization methods in Figure 3.3, we depict these methods on the horizontal axis
given in Figure 5.1.

						Stochas)c		
gradient	method	

										Batch	
gradient	method	

						Stochas)c	
Newton	method	

Noise	reduc)on	methods:	
	
•  Dynamic	sampling	
•  Gradient	aggrega2on	
•  Iterate		averaging	

Fig. 5.1: View of the schematic from Figure 3.3 with a focus on noise reduction methods.

The first two classes of methods that we consider achieve noise reduction in a manner that
allows them to possess a linear rate of convergence to the optimal value using a fixed stepsize. The
first type, dynamic sampling methods, achieve noise reduction by gradually increasing the mini-
batch size used in the gradient computation, thus employing increasingly more accurate gradient
estimates as the optimization process proceeds. Gradient aggregation methods, on the other hand,
improve the quality of the search directions by storing gradient estimates corresponding to samples
employed in previous iterations, updating one (or some) of these estimates in each iteration, and
defining the search direction as a weighted average of these estimates.

The third class of methods that we consider, iterate averaging methods, accomplish noise reduc-
tion not by averaging gradient estimates, but by maintaining an average of iterates computed during
the optimization process. Employing a more aggressive stepsize sequence—of order O(1/

√
k) rather

than O(1/k), which is appealing in itself—it is this sequence of averaged iterates that converges
to the solution. These methods are closer in spirit to SG and their rate of convergence remains
sublinear, but it can be shown that the variance of the sequence of average iterates is smaller than
the variance of the SG iterates.

To formally motivate a concept of noise reduction, we begin this section by discussing a fun-
damental result that stipulates a rate of decrease in noise that allows a stochastic-gradient-type

40

Figure: View of the schematic with a focus on noise reduction methods.
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Noise Reduction Methods

The first two classes of methods achieve noise reduction in a manner that
allows them to possess a linear rate of convergence to the optimal value
using a fixed stepsize. The third class of methods employing a stepsize
sequence of order O(1/

√
k) rather than O(1/k).

Dynamic sampling methods achieve noise reduction by gradually
increasing the mini-batch size used in the gradient computation.

Gradient aggregation methods improve the quality of the search
directions by storing gradient estimates in previous iterations,
updating one (or some) of these estimates in each iteration, and
defining the search direction as a weighted average of these estimates.

Iterate averaging methods accomplish noise reduction by
maintaining an average of iterates computed during the optimization
process.
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Dynamic Sampling Methods

Recall the first lemma in this section

Eξk [F (wk+1)]− F (wk) 6− αk∇F (wk)>Eξk [g(wk , ξk)]

+
α2
kL

2
Eξk

[
‖g(wk , ξk)‖2

2

]
.

If we are able to decrease Eξk [‖g(wk , ξk)‖2
2] fast enough, then the noise

will not prevent the convergence.

We’ll show that the sequence of expected optimality gaps vanishes at a
linear rate as long as the variance of the stochastic vectors, denoted by
Varξk [g(wk , ξk)], decreases geometrically.
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Dynamic Sampling Methods

定理 (Strongly Convex Objective, Noise Reduction)

Under the assumptions of Lipschitz-continuous objective gradients and
first and second moment limits and strong convexity, but with (116)
refined to the existence of constants M > 0 and ζ ∈ (0, 1) such that

Varξk [g(wk , ξk)] 6 Mζk−1, ∀k ∈ N. (131)

In addition, suppose that the SG method is run with a fixed stepsize,
αk = ᾱ satisfying

0 < ᾱ 6 min

{
µ

Lµ2
G

,
1

cµ

}
. (132)
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Dynamic Sampling Methods

定理 (Strongly Convex Objective, Noise Reduction)

Then the expected optimality gap satisfies

E [F (wk)− F∗] 6 ωρk−1, (133)

where

ω := max{ ᾱLM
cµ

,F (w1)− F∗} and ρ := max{1− ᾱcµ

2
, ζ} < 1.

The restriction on the stepsize ᾱ is not unrealistic in practical situations,
considering the typical magnitudes of the constants µ, L, µG and c .

Now a natural question is how to design efficient optimization methods for
attaining the critical bound (131) on the variance of the stochastic
directions.
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Dynamic Sampling Methods

Consider the iteration

wk+1 ← wk − ᾱg(wk , ξk), (134)

where the stochastic directions are computed for some τ > 1 as

g(wk , ξk) :=
1

nk

∑

i∈Sk
∇f (wk ; ξk,i ) with nk := |Sk | = dτk−1e. (135)

That is, a mini-batch SG iteration with a fixed stepsize in which the
mini-batch size increases geometrically as a function of the iteration
counter k .
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Dynamic Sampling Methods

If we assume that each stochastic gradient ∇f (wk ; ξk,i ) has an
expectation equal to the true gradient ∇F (wk), then (115) holds with
µG = µ = 1. If, in addition, the variance of each such stochastic gradient
is equal and is bounded by M > 0, then for arbitrary i ∈ Sk we have

Varξk [g(wk , ξk)] 6
Varξk [∇f (wk ; ξk,i )]

nk
6

M

nk
. (136)

This bound combined with the rate of increase in nk given in (135) yields
(131). We state these formally as the following corollary.

推论

Let {wk} be the iterates generated by (134)-(135) with
Eξk,i [∇f (wk ; ξk,i )] = ∇F (wk), ∀k ∈ N, i ∈ Sk . Then, the variance
condition (131) is satisfied and if all other assumptions of the theorem of
noise reduction for strongly convex objective holds, then the expected
optimality gap vanishes linearly in the sense of (133).
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Dynamic Sampling Methods

But, comparing to classical SG approach, is it meaningful to describe a
method as linearly convergent if the per-iteration cost increases without
bound?

To address this question, let’s estimate the number of evaluations of
the individual gradients ∇f (wk , ξk,i ) required to compute an
ε-optimal solution, i.e., to achieve

E [F (wk)− F∗] 6 ε. (137)

As previously mentioned, the number of stochastic gradient
evaluations required by the SG method to guarantee (137) is O(ε−1).
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Dynamic Sampling Methods

定理

Suppose the dynamic sampling SG method (134)-(135) is run with a
stepsize ᾱ satisfying (132) and some τ ∈ (1, (1− ᾱcµ

2 )−1]. In addition,
suppose that the three assumptions hold. Then the total number of
evaluations of a stochastic gradient of the form ∇f (wk , ξk,i ) required to
obtain (137) is O(ε−1).
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Gradient Aggregation Methods

Rather than compute increasingly more new stochastic gradient
information in each iteration, gradient aggregation methods achieve a
lower variance by reusing and/or revising previously computed information.

If the current iterate has not been displaced too far from previous iterates,
then stochastic gradient information from previous iterates may still be
useful.
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Gradient Aggregation Methods

The first method we consider is composed of outer and inner iterations.

At each step of outer iteration, an iterate wk is available at which the
algorithm computes a batch gradient ∇Rn(wk) = 1

n

∑n
i=1∇fi (wk).

Then, after initializing w̃1 ← wk , m inner iterations indexed by j are
performed:

w̃j+1 ← w̃j − αg̃j
where

g̃j ← ∇fij (w̃j)−
(
∇fij (wk)−∇Rn(wk)

)
(138)

and ij ∈ {1, . . . , n} is chosen at random.
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Gradient Aggregation Methods

Interpretation:

Since Eij

[
∇fij (wk)

]
= ∇Rn(wk), we can view ∇fij (wk)−∇Rn(wk) as

the bias in the gradient estimate ∇fij (wk). Thus the stochastic
gradient ∇fij (w̃j) evaluated at the current inner iterate w̃j is corrected
based on a perceived bias.

Overall, g̃j represents an unbiased estimator of ∇Rn(w̃j), with a
smaller variance than simply choosing ∇fij (w̃j) (as in simple SG). This
is the reason why the method is referred to as the stochastic variance
reduced gradient (SVRG) method.
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Gradient Aggregation Methods

Algorithm 2 SVRG Methods for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ Rd , stepsize α > 0, positive integer m.
2: for k = 1, 2, . . . do
3: Compute the batch gradient ∇Rn(wk).
4: Initialize w̃1 ← wk .
5: for j = 1, . . . ,m do
6: Choose ij uniformly from {1, . . . , n}.
7: g̃j ← ∇fij (w̃j)− (∇fij (wk)−∇Rn(wk)).
8: Set w̃j+1 ← w̃j − αg̃j .
9: end for

10: Option (a): Set wk+1 = w̃m+1

11: Option (b): Set wk+1 = 1
m

∑m
j=1 w̃j+1

12: Option (c): Choose j uniformly from {1, . . . ,m} and set wk+1 =
w̃j+1.

13: end for
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Gradient Aggregation Methods

For both options (b) and (c), it can achieve a linear rate of convergence
when Rn is strongly convex.

More precisely, if the stepsize α and the length of the inner cycle m
are chosen so that

ρ :=
1

1− 2αL

(
1

mcα
+ 2Lα

)
< 1,

then, given that the algorithm has reached wk , one obtains

Eij [Rn(wk+1)− Rn(w∗)] 6 ρEij [Rn(wκ)− Rn(w∗)] .

Each step (of outer iteration) requires 2m + n evaluations of component
gradients, which is much more expensive than one in SG, and in fact is
comparable to a full gradient iteration.
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Gradient Aggregation Methods

The second method does not include inner loop nor does it compute batch
gradients (except possibly at the initial point).

Instead, in each iteration, it computes a stochastic vector gk as the
average of stochastic gradients evaluated at previous iterates.
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Gradient Aggregation Methods

Specifically, in iteration k , the method will have stored ∇fi (w[i ]) for
all i ∈ {1, . . . , n} where w[i ] represents the latest iterate at which ∇fi
was evaluated. An integer j ∈ {1, . . . , n} is then chosen at random
and the stochastic vector is set by

gk ← ∇fj(wk)−∇fj(w[j]) +
1

n

n∑

i=1

∇fi (w[i ]). (139)

Taking the expectation of gk w.r.t. all choices of j ∈ {1, . . . , n}, we have
E [gk ] = ∇Rn(wk). Thus the gradient estimates is unbiased with variances
that are expected to be less than the stochastic gradients in a basic SG.
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Gradient Aggregation Methods

Algorithm 3 SAGA Methods for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ Rd and stepsize α > 0.
2: for k = 1, 2, . . . do
3: Compute ∇fi (w1).
4: Store ∇fi (w[i ])← ∇fi (w1).
5: end for
6: for k = 1, 2, . . . do
7: Choose j uniformly in {1, . . . , n}.
8: Compute ∇fj(wk).
9: Set gk ← ∇fj(wk)−∇fj(w[j]) + 1

n

∑n
i=1∇fi (w[i ]).

10: Store ∇fj(w[j])← ∇fj(wk).
11: Set wk+1 ← wk − αgk .
12: end for
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Gradient Aggregation Methods

Beyond its initialization phase, the per-iteration cost of it is the same as in
a basic SG method. However, it can achieve a linear rate of convergence
when Rn is strongly convex. With α = 1/ (2(cn + L)), we have

E
[
‖wk − w∗‖2

2

]
6

(
1− c

2(cn + L)

)k (
‖w1 − w∗‖2

2 +
nD

cn + L

)

where D := Rn(w1)− Rn(w∗)−∇Rn(w∗)>(w1 − w∗).

Alternative initialization techniques could be used in practice. For
example, one could perform one epoch of simple SG, or assimilate iterates
one-by-one and compute gk only using the gradients available up to that
point.
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Gradient Aggregation Methods

One important drawback of Algorithm 3 is the need to store n stochastic
gradient vectors. Note, however, that if the component functions are of
the form fi (wk) = f̂ (x>i wk), then

∇fi (wk) = f̂ ′(x>i wk)xi .

That is, when the feature vectors {xi} are already available in storage, one
need only store the scalar f̂ ′(x>i wk) to construct ∇fi (wk) at a later
iteration. This occurs in logistic and least squares regression.
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Gradient Aggregation Methods

Although the gradient aggregation methods above enjoy a faster rate of
convergence than SG, they should not be regarded as clearly superior to
SG.

Following similar analysis as before, the computing time for SG can be
shown to be T (n, ε) ∼ κ2/ε with κ := L/c . On the other hand, the
computing times for SVRG and SAGA are T (n, ε) ∼ (n + κ) log(1/ε).

For very large n, gradient aggregation methods are comparable to batch
algorithms and therefore cannot beat SG in this regime.
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Iterate Averaging Methods

SG generates noisy iterate sequences that tend to oscillate around
minimizers. Hence, a natural idea is to compute a corresponding sequence
of iterate averages that would automatically possess less noisy behavior.

Specifically, for minimizing a continuously differentiable F with unbiased
gradient estimates, it employs the iteration

wk+1 ← wk − αkg(wk , ξk)

and w̃k+1 ←
1

k + 1

k+1∑

j=1

wj .
(140)
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Iterate Averaging Methods

However, convergence properties better than SG of this method is elusive
when using classical stepsize sequences that diminish with a rate of
O(1/k).

An idea is to employ the iteration (140) but with stepsizes diminishing at a
slower rate of O(1/(ka)) for some a ∈ ( 1

2 , 1). When minimizing strongly
convex objectives, it follows from this choice that

E [‖wk − w∗‖2
2] = O(1/(ka)) while E [‖w̃k − w∗‖2

2] = O(1/k).
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Second-Order Methods

Besides reducing the noise in the stochastic directions, another manner to
move beyond classical SG is to address the adverse effects of high
nonlinearity and ill-conditioning of the objective function through the use
of second-order information.

Deterministic methods are known to benefit from the use of second-order
information, e.g., Newton’s method achieves a locally quadratic
convergence.
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Second-Order Methods

We start by considering a Hessian-free Newton method that employs exact
second-order information in a judicious manner that exploits the stochastic
nature of the objective function.

Then we describe methods that attempt to mimic the behavior of a
Newton algorithm through first-order information computed over
sequences of iterates, including quasi-Newton, Gauss-Newton and related
algorithms that employ only diagonal re-scalings.

Finally we will sketch the natural gradient method.
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Second-Order Methods

Deterministic (i.e., batch) methods are known to benefit from the use of second-order informa-
tion; e.g., Newton’s method achieves a quadratic rate of convergence if w1 is sufficiently close to
a strong minimizer [52]. On the other hand, stochastic methods like the SG method in §4 cannot
achieve a convergence rate that is faster than sublinear, regardless of the choice of B; see [1, 104].
(More on this in §6.2.1.) Therefore, it is natural to ask: can there be a benefit to incorporating
second-order information in stochastic methods? We address this question throughout this sec-
tion by showing that the careful use of successive re-scalings based on (approximate) second-order
derivatives can be beneficial between the stochastic and batch regimes.

We begin this section by considering a Hessian-free Newton method that employs exact second-
order information, but in a judicious manner that exploits the stochastic nature of the objective
function. We then describe methods that attempt to mimic the behavior of a Newton algorithm
through first-order information computed over sequences of iterates; these include quasi-Newton,
Gauss-Newton, and related algorithms that employ only diagonal re-scalings. We also discuss the
natural gradient method, which defines a search direction in the space of realizable distributions,
rather than in the space of the real parameter vector w. Whereas Newton’s method is invariant
to linear transformations of the variables, the natural gradient method is invariant with respect to
more general invertible transformations.

We depict the methods of interest in this section on the downward axis illustrated in Figure 6.1.
We use double-sided arrows for the methods that can be effective throughout the spectrum between
the stochastic and batch regimes. Single-sided arrows are used for those methods that one might
consider to be effective only with at least a moderate batch size in the stochastic gradient estimates.
We explain these distinctions as we describe the methods.

						Stochas)c		
gradient	method	

										Batch	
gradient	method	

						Stochas)c	
Newton	method	

																																																												
																																									Diagonal	Scaling	
																																			quasi-Newton	
																												Gauss-Newton	
																						Hessian-free	Newton	
																		Natural	gradient		
	
							

Fig. 6.1: View of the schematic from Figure 3.3 with a focus on second-order methods. The
dotted arrows indicate the effective regime of each method: the first three methods can employ
mini-batches of any size, whereas the last two methods are efficient only for moderate-to-large
mini-batch sizes.

51

We use double-sided arrows for the methods that can be effective
throughout the spectrum between the stochastic and batch regimes.
Single-sides arrows are used for those methods that are effective only with
at least a moderate batch size in the stochastic gradient estimates.
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Hessian-Free Inexact Newton Methods

When minimizing a twice-continuously differentiable F , a Newton iteration
is

wk+1 ←wk + αksk (141a)

where ∇2F (wk)sk =−∇F (wk). (141b)

This iteration demands much in terms of computation and storage.
However, we can instead only solve (141b) inexactly through an iterative
approach such as the conjugate gradient (CG) method.

By ensuring that the linear solves are accurate enough, such an
inexact Newton-CG method can enjoy a superlinear convergence.

CG applied to (141b) does not require access to the Hessian itself, only
Hessian-vector products. Such a method may be called Hessian-free.
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Subsampled Hessian-Free Newton Methods

In inexact Newton methods, the Hessian matrix need not be as accurate as
the gradient to yield an effective iteration. It means that the iteration is
more tolerant to noise in the Hessian estimate than it is to noise in the
gradient estimate.

We employ a smaller sample for defining the Hessian than for the
stochastic gradient estimate. Let the stochastic gradient estimate be

∇fSk (wk , ξk) =
1

|Sk |
∑

i∈Sk
∇f (wk , ξk,i )

and let the stochastic Hessian estimate be

∇2fSHk (wk , ξ
H
k ) =

1

|SHk |
∑

i∈SHk

∇2f (wk , ξk,i ) (142)

where SHk ⊆ Sk .
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Subsampled Hessian-Free Newton Methods

If the subsample size |SHk | small enough, then the cost of each product
involving the Hessian approximation can be reduced significantly, thus
reducing the cost of each CG iteration.

On the other hand, one should choose |SHk | large enough so that the
curvature information captured through the Hessian-vector products is
productive.
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Subsampled Hessian-Free Newton Methods

Algorithm 4 Subsampled Hessian-Free Inexact Newton Method

1: Choose an initial iterate w1.
2: Choose constants ρ ∈ (0, 1), η ∈ (0, 1), and maxcg ∈ N.
3: for k = 1, 2, . . . do
4: Generate a realizations of ξk and ξHk corresponding to SHk ⊆ Sk .
5: Compute sk by applying Hessian-free CG to solve

∇2fSHk (wk , ξ
H
k )s = −∇fSk (wk , ξk) (143)

until maxcg iterations have been performed or a trial solution yields

‖rk‖2 :=
∥∥∥∇2fSHk (wk , ξ

H
k )s +∇fSk (wk , ξk)

∥∥∥
2
6 ρ ‖∇fSk (wk , ξk)‖2 .

6: Set wk+1 ← wk + αksk , where αk ∈ {γ0, γ1, γ2, . . .} is the largest
element with

fSk (wk+1, ξk) 6 fSk (wk , ξk) + ηαk∇fSk (wk , ξk)>sk . (144)

7: end for
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Subsampled Hessian-Free Newton Methods

If the algorithm were to operate in the stochastic regime of SG where |Sk |
is small and gradients are very noisy, then it may be necessary to choose
|SHk | > |Sk | so that Hessian approximations do not corrupt the step.

Therefore, the subsampled Hessian-free Newton method outlined here
is only recommended when Sk is large.

When full gradients are always used, it’s easy to establish the convergence
of Algorithm 4 for minimizing a strongly convex empirical risk measure
F = Rn with SHk = Sk = {1, . . . , n}.

When the Hessians are subsampled, it has not been shown that the rate of
convergence is faster than linear.
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Dealing with Nonconvexity

When Hessian-free Newton methods are applied for the solution of
nonconvex problems, it’s common to employ a trust region instead of a
line search and to add an additional condition in Step 5 of Algorithm 4:
terminate CG if a candidate solution sk is a direction of negative
curvature, i.e., s>k ∇2fSHk (wk ; ξHk )sk < 0.

Instead of coping with indefiniteness, one can focus on strategies for
ensuring positive (semi)definite Hessian approximations. One of the most
attractive ways of doing this in the context of machine learning is to
employ a (subsampled) Gauss-Newton approximation to the Hessian,
which we will explain later.
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Stochastic Quasi-Newton Methods

The quasi-Newton iteration for minimizing a twice continuously differentiable
function F has the form

wk+1 ← wk − αkHk∇F (wk), (145)

where Hk is a approximation of
(
∇2F (wk)

)−1
. The most popular quasi-Newton

scheme is BFGS.

In BFGS, the sequence {Hk} is updated dynamically, without the need for
second-order derivative computations nor any linear system solves. It enjoys a
local superlinear convergence with only first-order information.

But Hk is often a dense matrix, even when the exact Hessian is sparse, restricting
its use to small and midsize problems. A common solution for this is to employ a
limited memory scheme, leading to a method such as L-BFGS. In this case, Hk

need not be formed explicitly.
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Stochastic Quasi-Newton Methods

Now we consider the iterations taking the form

wk+1 ← wk − αkHkg(wk , ξk). (146)

Since we are interested in large-scale problems, we assume that (146)
implements an L-BFGS scheme. A number of questions arise when
considering (146), and we list them now with some proposed solutions:
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Stochastic Quasi-Newton Methods

Theoretical Limitations The convergence rate of a stochastic iteration
such as (146) cannot be faster than sublinear. Since SG also has a
sublinear rate of convergence, what benefit could come from incorporating
Hk in (146)?

Benefit: The constant that appears in the sublinear rate.

For SG, the constant depends on the conditioning of {∇2F (wk)}. This is
typical of first-order methods. In contrast, if the sequence of Hessian
approximations in (146) satisfies {Hk} → ∇2F (w∗)−1, then the constant
is independent of the conditioning of the Hessian.
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Stochastic Quasi-Newton Methods

Additional Per-Iteration Costs The product Hkg(wk , ξk) requires 4md
operations where m is the memory in the L-BFGS updating scheme.
Assuming the cost of evaluating g(wk , ξk) is exactly d operations (using
only one sample) and m is set to the typical value of 5, then the stochastic
quasi-Newton method is 20 times more expensive than SG. Can we offset
this additional per-iteration cost?

When employing mini-batch gradient estimates, the additional cost of the
iteration (146) is only marginal. The use of mini-batches may be
considered essential. Mini-batch should not be less than, say, 20 or 50,
and mini-batches of size 256 are common in practice.
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Stochastic Quasi-Newton Methods

Conditioning of the Scaling Matrices Updating Hk involves differences
in gradient estimates computed in consecutive iterations. {g(wk , ξk)} are
noisy estimates of {∇F (wk)}, which can cause the updating process to
yield poor curvature estimates. How could such effects be avoided in the
stochastic regime?

One possibility is to employ the same sample when computing gradient
differences. An alternative approach is to decouple the step computation
and the Hessian update.
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Stochastic Quasi-Newton Methods

Replacing deterministic gradients with stochastic gradients, we have

sk := wk+1 − wk and vk := ∇fSk (wk+1, ξk)−∇fSk (wk , ξk). (147)

and Hk is defined recursively by

Hk+1 ←
(
I − vks

>
k

s>k vk

)>
Hk

(
I − vks

>
k

s>k vk

)
+

sks
>
k

s>k vk
.

Note that the use of the same realization ξk in the two gradient estimates,
in order to address the issues related to noise mentioned above.
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Stochastic Quasi-Newton Methods

A worrisome feature is that updating the inverse Hessian approximation
with every step may not be warranted and could easily represent a poor
approximation of the action of the true Hessian of F .

Here’s an alternative strategy for this issue. Since
∇f (wk+1)−∇F (wk) ≈ ∇2F (wk)(wk+1 − wk), we can define

vk := ∇2fSHk (wk , ξ
H
k )sk , (148)

where ∇2fSHk (wk ; ξHk ) is a subsampled Hessian and |SHk | is large

enough to provide useful curvature information.

When |SHk | is much larger than |Sk |, the computation of vk can be
performed only after a sequence of iterations, to amortize the cost of
quasi-Newton updating.
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Stochastic Quasi-Newton Methods

This leads to the idea of decoupling the step computation from the
quasi-Newton update. This approach, which we refer to as SQN, performs
a sequence of iterations of (146) with Hk fixed, then computes a new
displacement pair (sk , vk) with sk defined as in (147) and vk set using one
of the strategies outlined above.

To formalize all of these alternatives, we state the general stochastic
quasi-Newton method presented as Algorithm 5.
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Stochastic Quasi-Newton Methods

Algorithm 5 Stochastic Quasi-Newton Framework

1: Choose an initial iterate w1 and initialize P ← ∅.
2: Choose a constant m ∈ N.
3: Choose a stepsize sequence {αk} ⊂ R++.
4: for k = 1, 2, . . ., do
5: Generate realizations of ξk and ξHk corresponding to SHk ⊆ Sk
6: Compute ŝk = Hkg(wk , ξk) using the two-loop recursion based on

the set P.
7: Set sk ← −αk ŝk .
8: Set wk+1 ← wk + sk .
9: if update pairs then

10: Compute sk and vk (based on the sample SHk ).
11: Add the new displacement pair (sk , vk) to P.
12: If |P| > m, then remove eldest pair from P.
13: end if
14: end for
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Gauss-Newton Methods

The Gauss-Newton method is a classical approach for nonlinear least
squares. It constructs an approximation to the Hessian using only
first-order information, and this approximation is guaranteed to be positive
semidefinite, even when the full Hessian itself may be indefinite.
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Gauss-Newton Methods

Given an input-output pair (xξ, yξ), the loss incurred by a parameter vector
w is measured via a squared norm discrepancy between h(xξ,w) ∈ Rd and
y ∈ Rd :

f (w , ξ) = `(h(xξ,w), yξ) =
1

2
‖h(xξ,w)− yξ‖2

2 .

Let Jh(·, ξ) represent the Jacobian of h(xξ, ·) with respect to w . The affine
approximation of h(xξ,w) is

h(xξ,w) ≈ h(xξ,wk) + Jh(wk , ξ)(w − wk),

which leads to

f (w , ξ) ≈1

2
‖h(xξ,wk) + Jh(wk , ξ)(w − wk)− yξ‖2

2

=
1

2
‖h(xξ,wk)− yξ‖2

2 + (h(xξ,wk)− yξ)
> Jh(wk , ξ)(w − wk)

+
1

2
(w − wk)>Jh(wk , ξ)>Jh(wk , ξ)(w − wk).
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Gauss-Newton Methods

It is similar to a second-oder Taylor series model, except that the terms
involving the second derivatives of h with respect to w have been dropped,
and the remaining second-order terms are resulting from the positive
curvature of the quadratic loss `.

This leads to replacing the subsample Hessian matrix by the
Gauss-Newton matrix

GSHk (wk , ξ
H
k ) =

1

|SHk |
∑

i∈SHk

Jh(wk , ξk,i )
>Jh(wk , ξk,i ). (149)
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Gauss-Newton Methods

A challenge of Gauss-Newton method is that Gauss-Newton matrix is
often singular or nearly singular. In practice, this is handled by regularizing
it by adding to it a positive multiple of the identity matrix.

The computational cost of the Gauss-Newton method depends on the
dimensionality of the prediction function. It should be remarked that in
machine learning, computing the stochastic gradient vector ∇f (w , ξ) does
not usually require the explicit computation of all rows of the Jacobian
matrix. And there are some new ways to solve a Gauss-Newton iterate at
a low cost.
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Generalized Gauss-Newton

Consider a slightly more general situation in which loss between a
prediction function h and output y is measured by an arbitrary convex loss
function `(h, y). Combining the affine approximation of the prediction
function h(xξ,w) with a second order Taylor expansion of the loss function
` leads to the generalized Gauss-Newton matrix

GSHk (wk , ξ
H
k ) =

1

|SHk |
∑

i∈SHk

Jh(wk , ξk,i )
>H`(wk , ξk,i )Jh(wk , ξk,i ) (150)

where H`(wk , ξ) = ∂2`
∂h2 (h(xξ,wk), yξ) captures the curvature of the loss

function `.
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Diagonal Scalings

We have seen that the added per-iteration costs of second-order methods
(such as L-BFGS) can be as little as 4md operations. A strategy to further
reduce this multiplicative factor is to restrict attention to diagonal or
block-diagonal scaling matrices.

The incorporation of a diagonal scaling matrix will only scale the individual
search direction components. This can be efficiently achieved by
multiplying the individual search direction components.
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Computing Diagonal Curvature

A first family of algorithms directly computes the diagonal terms of the
Hessian or Gauss-Newton matrix, then divides each coefficient of the
stochastic gradient vector g(wk , ξk) by the corresponding diagonal term.

For instance, each iteration of the proposed algorithm picks a training
example, computes g(wk , ξk), updates a running estimate of the diagonal
coefficients of the Gauss-Newton matrix by

[Gk ]i = (1− λ)[Gk−1]i + λ
[
Jh(wk , ξk)>Jh(wk , ξk)

]
ii

for some 0 < λ < 1,
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Computing Diagonal Curvature

then performs the scaled stochastic weight update

[wk+1]i = [wk ]i −
(

α

[Gk ]i + µ

)
[g(wk , ξk)]i .

The small regularization constant µ > 0 is introduced to deal with a
singular or nearly singular Gauss-Newton matrix.

It’s more enlightening to view such an algorithm as a scheme to
periodically retune a first-order SG approach rather than as a
complete second-order method.
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Estimating Diagonal Curvature

Instead of explicitly computing the diagonal terms of the curvature matrix,
one can follow the template of quasi-Newton method and directly estimate
the diagonal [Hk ]i of the inverse Hessian using displacement pairs
{(sk , vk)}.

For instance, [Hk ]i can be computed with the running average

[Hk+1]i = (1− λ)[Hk ]i + λProj

(
[sk ]i
[vk ]i

)
,

where Proj(·) represents a projection onto a predefined positive interval.
But a direct application of (147) after a parameter update introduces a
correlated noise that ruins the curvature estimate, which is hard to correct
because of the chaotic behavior of the rescaling factors [Hk ]i .
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Estimating Diagonal Curvature

These problems can be addressed with a combination of two ideas.

First, estimate the diagonal of the Hessian instead of its inverse.

Second, ensure the effective stepsizes are monotonically decreasing by
replacing the running average by the sum

[Gk+1]i = [Gk ]i + Proj

(
[vk ]i
[sk ]i

)
.

Keeping the curvature estimates in a fixed positive interval ensures the
effective stepsizes decrease at the rate O( 1

k ).
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Natural Gradient Method

The essential idea of natural gradient method consists of formulating the
gradient descent algorithm in the space of prediction functions rather than
specific parameters. The actual computation of course takes place with
respect to the parameters, but the algorithm will move the parameters
more quickly along directions that have a small impact on the decision
function.

The space H of prediction functions is a family of densities hw (x)
parametrized by w ∈ W and satisfying the normalization condition

∫
hw (x)dx = 1, ∀w ∈ W.

And we assume sufficient regularity, i.e.,

∀t > 0,

∫
∂thw (x)

∂w t
dx =

∂t

∂w t

∫
hw (x)dx =

∂t1

∂w t
= 0. (151)
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Natural Gradient Method

To quantify how the density hw changes when adding a small quantity δw
to its paramter, we use the Kullback-Leibler (KL) divergence

DKL(hw‖hw+δw ) = EhW

[
log

(
hw (x)

hw+δw (x)

)]
. (152)

Approximating the divergence with a second-order Taylor expansion, we
have

DKL(hw‖hw+δw ) =EhW [log(hw (x))− log(hw+δw (x))]

≈− δw>EhW

[
∂ log(hw (x))

∂w

]
− 1

2
δw>Ehw

[
∂2 log(hw (x))

∂w2

]
δw .

By (151),

DKL(hw‖hw+δw ) ≈ 1

2
δw>G (w)δw . (153)
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Natural Gradient Method

Natural gradient method minimizes a functional
F : hw ∈ H 7→ F (hw ) = F (w) ∈ R. A greedy strategy is

hwk+1
= arg min

h∈H
F (h) s.t. DKL(hwk

‖h) 6 η2
k . (154)

Use (153) we can reformulate it in terms of the parameters:

wk+1 = arg min
w∈W

F (w) s.t.
1

2
(w − wk)>G (wk)(w − wk) 6 η2

k . (155)
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Natural Gradient Method

Lagrangian formulation is customarily used to handle this problem.
Assuming ηk small, we can replace F (w) with
F (wk) +∇F (wk)>(w − wk). These two choices lead to

wk+1 = arg min
w∈W

∇F (wk)>(w − wk) +
1

2αk
(w − wk)>G (wk)(w − wk),

and the optimization of the right-hand side leads to the natural gradient
iteration

wk+1 = wk − αkG
−1(wk)∇F (wk). (156)
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Natural Gradient Method

G (w) is a called Fisher information matrix, with expression

G (w) :=− Ehw

[
∂2 log(hw (x))

∂w2

]

=Ehw

[(
∂ log(hw (x))

∂w

)(
∂ log(hw (x))

∂w

)>]
,

(157)

where the latter equality follows from (151).

A sampled version of G (wk) is

G̃ (wk) =
1

|Sk |
∑

i∈Sk

(
∂ log(hw (xi ))

∂w

∣∣∣∣
wk

)(
∂ log(hw (xi ))

∂w

∣∣∣∣
wk

)>
.
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Gradient Methods with Momentum

With an initial point w1 = w0, scalar sequences {αk} and {βk}, the
iteration of gradient methods with momentum is

wk+1 ← wk − αk∇F (wk) + βk(wk − wk−1). (158)

The latter is referred to as the momentum term. It is named after the fact
that it represents a discretization of a certain second-order ordinary
differential equation with friction.

When βk = 0 for all k ∈ N, it reduces to the steepest descent method.

When αk = α and βk = β for some constants α > 0 and β > 0, it is
referred to as the heavy ball method, which yields a linear convergence
with a superior rate compared to steepest descent with a fixed stepsize for
certain functions.
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Gradient Methods with Momentum

Additional connection with (158) can be made when F is a strictly convex
quadratic. If (αk , βk) is chosen optimally in the sense that

(αk , βk) = arg min
(α,β)

F (wk − α∇F (wk) + β(wk − wk−1)), (159)

then (158) is exactly the linear conjugate gradient (CG) algorithm.

An alternative view of the heavy ball method is obtained by expanding
(158) as:

wk+1 ← wk − α
k∑

j=1

βk−j∇F (wk);

thus, each step can be viewed as an exponentially average of past
gradients.
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Accelerated Gradient Methods

Nesterov accelerated gradient method is similar to (158) but with its own
unique properties. It involves the updates

w̃k ←wk + βk(wk − wk−1)

and wk+1 ←w̃k − αk∇F (w̃k),
(160)

which leads to the condensed form

wk+1 ← wk − αk∇F (wk + βk(wk − wk−1)) + βk(wk − wk−1). (161)

Compared with gradient method with momentum, it applies the
momentum term first, then takes a steepest descent step at w̃k .
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Accelerated Gradient Methods

When F is convex and continuously differentiable with a Lipschitz
continuous gradient, with appropriately chosen αk = α > 0 for all k ∈ N
and {βk} ↗ 1 leads to an optimal iteration complexity.

While the convergence rate of steepest descent method is O( 1
k ), the

iteration (161) converges with a rate O( 1
k2 ), which is provably the best

rate that can be achieved by a gradient method.

Unfortunately, no intuitive explanation as to how Nesterov’s method
achieves this optimal rate has been widely accepted.
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Coordinate Descent Methods

Coordinate descent (CD) methods operate to a single variable while all
others are kept fixed, then other variables are updated similarly.

The CD method for minimizing F : Rd → R is given by the iteration

wk+1 ← wk − αk∇ikF (wk)eik , (162)

where ∇ikF (wk) := ∂F
∂w ik

(wk), w ik represents the ik -th element of the
parameter vector, and eik represents the ik -th coordinate vector for some
ik ∈ {1, . . . , d}.
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Coordinate Descent Methods

Specific versions of the CD method are defined by the manner in which
the sequences {αk} and {ik} are chosen.

{αk}:
Choose αk as the global minimizer of F from wk along the ik -th
coordinate.
Choose αk yielding a sufficient reduction in F from wk .
Compute αk as the minimizer of a quadratic model of F along the
ik -th coordinate direction. (so-called second-order CD methods)

{ik}:
Cycle through {1, . . . , d}.
Cycle through a random reordering of {1, . . . , d}, with the indexes
reordered after each set of d steps.
Simply choose an index randomly with replacement in each iteration.

The latter two strategies for {ik} have superior theoretical properties
than the first strategy.
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Convergence Properties

A CD method is not guaranteed to converge when applied to minimize any
given continuously differentiable function. This is in contrast with the full
gradient method, which guarantees convergence to stationarity even when
the objective is nonconvex.

However, if the objective F is strongly convex, the CD method will not
fail. The analysis is very simple when using a constant stepsize. Assume
that ∇F is coordinate-wise Lipschitz continuous in the sense that for all
w ∈ Rd , i ∈ {1, . . . , d}, and ∆w i ∈ R, there exists a constant Li > 0 such
that

|∇iF (w + ∆w iei )−∇iF (w)| 6 Li |∆w i |. (163)

And we define L̂ := maxi∈{1,...,d} Li .
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Convergence Properties

定理

Suppose that the objective function F : Rd → R is continuously
differentiable, strongly convex with constant c > 0, and has a gradient
that is coordinate-wise Lipshcitz continuous with constants {L1, . . . , Ld}.
In addition, suppose that αk = 1/L̂ and ik is chosen independently and
uniformly from {1, . . . , d} for all k ∈ N. Then for all k ∈ N, the iteration
(162) yields

E [F (wk+1)]− F∗ 6
(

1− c

dL̂

)k

(F (w1)− F∗). (164)
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Favorable Problem Structures

A simple randomized CD method is linearly convergent with constant
dependent on the parameter dimension d . If d coordinate updates can be
performed at a cost similar to the evaluation of one full gradient, the
method is competitive with a full gradient method both theoretically and
in practice.

This kind of problems include those in which the objective function is

F (w) =
1

n

n∑

j=1

F̃j(x
>
j w) +

d∑

i=1

F̂i (w
i ), (165)

where ∀j ∈ {1, . . . , n}, F̃j is continuously differentiable and dependent on

the sparse data vector xj , and ∀i ∈ {1, . . . , d}, F̂i is a regularization
function (potentially nonsmooth).
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Favorable Problem Structures

For example, consider an objective function of the form

f (w) =
1

2
‖Xw − y‖2

2 +
d∑

i=1

F̂i (w
i ) with X = [x1 . . . xn].

In this setting,

∇ik f (wk+1) = x>ik rk+1 + F̂ ′ik (w ik
k+1) with rk+1 := Awk+1 − b,

where, with wk+1 = wk + βkeik , we have rk+1 = rk + βkxik .

Since the residuals {rk} can be updated with cost proportional to the
number of nonzeros in xik , call it nnz(xik ), the overall cost of computing
the search direction in iteration k + 1 is also O(nnz(xik )). On the other
hand, an evaluation of the entire gradient requires a cost of
O(
∑n

j=1 nnz(xj)).
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Stochastic Dual Coordinate Ascent

Consider minimizing a convex objective function of the form (165) by
maximizing its dual.

Defining the convex conjugate of F̃j as F̃ ∗j (u) := maxw (w>u − F̃j(w))

when F̂i (·) = λ
2 (·)2 for all i ∈ {1, . . . , d} is given by

Fdual(v) =
1

n

n∑

j=1

[
−F̃ ∗j (−vj)

]
− λ

2

∥∥∥∥∥∥
1

λn

n∑

j=1

vjxj

∥∥∥∥∥∥

2

2

.

The stochastic dual coordinate ascent (SDCA) method applied to a
function of this form has an iteration similar to (162), except that negative
gradient steps are replaced by gradient steps.

When the algorithm terminates, the corresponding primal solution can be
obtained as w ← 1

λn

∑n
j=1 vjxj .

YZW (USTC) Optimization Algorithms 449 / 467



Parallel CD Methods

Consider a multicore system in which the parameter vector w is stored in
shared memory.

Each core can then execute a CD iteration independently and in an
asynchronous manner, where if d is large compared to the number of
cores, then it is unlikely that two cores are attempting to update the same
variable at the same time.

Each update is being made based on slightly stale information. However,
convergence of the method can be proved, and improves when one can
bound the degree of staleness of each update.
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Methods for Regularized Models

The discussion of structural risk minimization highlighted the key role
played by regularization functions.

The optimization methods we have presented in this section are all
applicable for objectives involving smooth regularizers, such as the squared
`2-norm. And we expand our investigation by considering optimization
methods that handle the regularization as a distinct entity, in particular
when the function is nonsmooth, for example, `1-norm, which induces
sparsity in the optimal solution vector.

For machine learning, sparsity can be seen as a form of feature selection.
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Methods for Regularized Models

We focuses on the nonsmooth optimization problem

min
w∈Rd

Φ(w) := F (w) + λΩ(w), (166)

where F : Rd → R includes the composition of a loss and prediction
function, λ > 0 is a regularization parameter, and Ω : Rd → R is a convex,
nonsmooth regularization function.

Specifically, we pay special attention to methods for solving the problem

min
w∈Rd

φ(w) := F (w) + λ‖w‖1. (167)
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First-order Methods for Generic Convex Regularizers

For solving problem (166), the proximal gradient method represents a
fundamental approach.

Given an iterate wk , a generic proximal gradient iteration with αk > 0 is
given by

wk+1 ← arg min
w∈Rd

(
F (wk) +∇F (wk)>(w − wk) +

1

2αk
‖w − wk‖2

2 + λΩ(w)

)
.

(168)
The term proximal refers to the presence of the third term in the
minimization problem on the right-hand side, which encourage the new
iterate to be close to wk . If the last term were not present, then (168)
exactly recovers the gradient method update wk+1 ← wk − αk∇F (wk);
hence we refer to αk as the stepsize parameter.
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First-order Methods for Generic Convex Regularizers

定理

Suppose that F : Rd → R is continuously differentiable, strongly convex
with constant c > 0, and has a gradient that is Lipschitz continuous with
constant L > 0. In addition, suppose that αk = α ∈ (0, 1/L) for all k ∈ N.
Then, for all k ∈ N, the iteration (168) yields

Φ(wk+1)− Φ(w∗) 6 (1− αc)k(Φ(w1)− Φ(w∗)),

where w∗ ∈ Rd is the unique global minimizer of Φ in (166).

YZW (USTC) Optimization Algorithms 454 / 467



First-order Methods for Generic Convex Regularizers

The proximal gradient iteration (168) is practical only when the proximal
mapping

prox
λΩ,αk

(w̃) := arg min
w∈Rn

(
λΩ(w) +

1

2αk
‖w − w̃‖2

2

)

can be computed efficiently. Situations when the proximal mapping is
inexpensive to compute include when Ω is the indicator function for a
simple set, when it is the `1-norm, or when it is separable.

A stochastic version of the proximal gradient method can be obtained by
replacing ∇F (wk) in (168) by a stochastic approximation g(wk , ξk). The
resulting method attains similar behavior as a stochastic gradient method.
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Iterative Soft Thresholding Algorithm (ISTA)

For solving the `1-norm regularized problem (167), the proximal gradient
method is

wk+1 ← arg min
w∈Rd

(
F (wk) +∇F (wk)>(w − wk) +

1

2αk
‖w − wk‖2

2 + λ‖w‖1

)
.

(169)
The solution can be written component-wise in closed form, with
(·)+ := max{·, 0}, as

wk+1 ← Tαkλ(wk − αk∇F (wk)), where [Tαkλ]i = (|w̃i | − αkλ)+ sgn(w̃i ).
(170)

Tαkλ is referred to as the soft-thresholding operator, which leads to the
name iterative soft-thresholding algorithm (ISTA). It is clear from (170)
that the ISTA iteration induces sparsity in the iterates.
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Bound-constrained Methods for `1-norm Regularized
Problems

An equivalent smooth reformulation of problem (167) is easily derived, by
writing w = u − v where u and v play the positive part and negative part
of w respectively:

min
(u,v)∈Rd×Rd

φ̃(u, v) s.t. (u, v) > 0 (171)

where φ̃(u, v) = F (u − v) + λ
∑d

i=1(ui + vi ).

The fundamental iteration for solving bound-constrained optimization
problems is the gradient projection method. In the context of (171), the
iteration reduces to

[
uk+1
vk+1

]
← P+

([
uk
vk

]
− αk

[
∇u φ̃(uk , vk )

∇v φ̃(uk , vk )

])
= P+

([
uk − αk∇F (uk − vk )− αkλe
vk + αk∇F (uk − vk )− αkλe

])
(172)

where P+ projects onto the nonnegative orthant and e ∈ Rd is a vector of
ones.
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Bound-Constrained Methods for `1-norm Regularized
Problems

The iteration (172) is expected to inherit the property of being globally
linearly convergent when F satisfies the assumptions of the last theorem.
However, since the variables in (171) have been split into positive and
negative parts, this property is maintained only if the iteration maintains
complementarity of each iterate pair, i.e., if
[uk ]i [vk ]i = 0, ∀k ∈ N, i ∈ {1, . . . , d}.

A stochastic projected gradient method, with ∇F (wk) replaced by
g(wk , ξk), has similar convergence properties as a standard SG method.
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Second-order Methods

For solving problem (167), a proximal Newton method is one that
constructs, at each k ∈ N, a model

qk(w) = F (wk) +∇F (wk)>(w −wk) +
1

2
(w −wk)>Hk(w −wk) +λ‖w‖1,

(173)
where Hk represents ∇2F (wk) or a quasi-Newton approximation of it.

A proximal Newton method would involve (approximately) minimizing this
model to compute a trial iterate w̃k , then a step size αk > 0 would be
taken from a predetermined sequence or chosen by a line search to ensure
that the new iterate wk+1 ← wk + αk(w̃k − wk) yields φ(wk+1) < φ(wk).
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Proximal Newton Methods

Proximal Newton methods are more challenging to design, analyze and
implement than proximal gradient methods. Assuming Hk has been chosen
to be positive definite, here are three essential ingredients in proximal
Newton method:

Choice of Subproblem Solver qk is nonsmooth and is challenging
to minimize. One choice is coordinate descent, since the global
minimizer of qk along a coordinate descent direction can be
computed analytically.
Inaccurate Subproblem Solves It’s impractical to minimize qk
accurately for all k ∈ N. Thus we need a practical and theoretically
sufficient termination criteria.
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Proximal Newton Methods

Interestingly, the norm of an ISTA step is an appropriate measure. Let
istak(w) represent the result of an ISTA step applied to qk from w . A
trial point w̃k represents a sufficiently accurate minimizer of qk if, for
some η ∈ [0, 1), one finds

‖ istak(w̃k)− w̃k‖2 6 η‖ istak(wk)− wk‖2 and qk(w̃k) < qk(wk).

Elimination of Variables Due to the structure created by the
`1-norm regularizer, it can be effective in some applications to first
identify a set of active variables then compute an approximate
minimizer of qk over the remaining free variables.
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Orthant-based Methods

Our second class of second-order methods is based on the observation that
`1-norm regularized objective φ in problem (167) is smooth in any orthant
in Rd .

In every iteration, orthant-based methods construct a smooth quadratic
model of the objective, then produce a search direction by minimizing this
model.

After performing a line search designed to reduce the objective function, a
new orthant is selected and the process is repeated.
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Orthant-based Methods

With the minimum norm subgradient of φ at w ∈ Rd , which is given
component-wise for all i ∈ {1, . . . , d} by

ĝi (w) =





[∇F (w)]i + λ if wi > 0 or {wi = 0 and [∇F (w)]i + λ < 0}
[∇F (w)]i − λ if wi < 0 or {wi = 0 and [∇F (w)]i − λ > 0}
0 otherwise,

(174)

the active orthant for an iterate wk is characterized by the sign vector

ζk,i =

{
sgn([wk ]i ) if [wk ]i 6= 0
sgn(−[ĝ(wk)]i ) if [wk ]i = 0.

(175)

Along these lines, define the subsets of {1, . . . , d} given by

Ak = {i : [wk ]i = 0 and |[∇F (wk)]i | 6 λ} (176)

and Fk = {i : [wk ]i 6= 0} ∪ {i : [wk ]i = 0 and |[∇F (wk)]i | > λ} , (177)

where Ak represents the indices of variables that are active and kept at
zero while Fk represents those that are free to move.
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Orthant-based Methods

Given these quantities, an orthant-based method proceeds as follows. First,
compute the (approximate) solution dk of the (smooth) quadratic problem

min
d∈Rn

ĝ(wk)>d +
1

2
d>Hkd

s.t. di = 0, i ∈ Ak ,

where Hk represents ∇2F (wk) or an approximation of it.

Then the algorithm performs a line search—over a path contained in the
current orthant—to compute the next iterate.

One option is a projected backtracking line search along dk , computing the
largest αk in a decreasing geometric sequence so

F (Pk(wk + αkdk)) < F (wk),

where Pk(w) projects w ∈ Rd onto the orthant defined by ζk .
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Outline I

1 Unconstrained Optimization

2 Constrained Optimization

二次规划

非线性约束最优化

3 Convex Optimization
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Convex Optimization and Algorithms

4 Sparse Optimization
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Sparse Optimization Algorithms

5 Optimization Methods for Machine Learning
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Outline II
Typical Form of Problems

Stochastic Algorithms

Other Popular Methods

6 Conclusion
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Thanks for your attention!
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