
Juyong Zhang
School of Mathematics, USTC

Introduction

• Learn how to solve math problems with tools
• Matlab, Mathematica, Python, Eigen, Ceres, etc…
• Grading policy:

§ Homework&Programming: 80%
§ Final Project: 20%

The Course

• Image Processing, Image Filtering
• Face Detection, Face Recognition
• Image Stitching, Image Warping
• Tracking, Optical Flow,
• Stereo Matching, Epipolar Geometry
• Structure From Motion, 3D Surface Reconstruction
• Neural Network, etc…

Covered Topics

• 助教
– 杨乐园（ ly_1207@mail.ustc.edu.cn ）
– 许子航（ ad123456@mail.ustc.edu.cn ）

• 课程QQ群

TA & QQ Group

a grid of squares,
each of which
contains a single
color

each square is
called a pixel (for
picture element)

Color images have 3 values per
pixel; monochrome images have 1
value per pixel.

Digital Image

Pixels
• A digital image, I, is a mapping from a 2D grid of uniformly spaced

discrete points, {p = (r,c)}, into a set of positive integer values, {I(p)},
or a set of vector values, e.g., {[R G B]T(p)}.

• At each column location in each row of I there is a value.

• The pair (p, I(p)) is called a “pixel” (for picture element).

Pixels
• p = (r,c) is the pixel location indexed by row, r, and column, c.

• I(p) = I(r,c) is the value of the pixel at location p.

• If I(p) is a single number then I is monochrome.

• If I(p) is a vector (ordered list of numbers) then I has multiple bands
(e.g., a color image).

Pixels

Pixel Location: p = (r , c)
Pixel Value: I(p) = I(r , c) Pixel : [p, I(p)]

I (p) =
red

green
blue

!

"
#
#

$

%
&
&
=

12
43
61

!

"
#
#

$

%
&
&

Pixels

()
()
()

,
row , col
272, 277

p r c
#

=

=

=

Pixel : [p, I(p)]

Read an Image into Matlab

Read an Image into Matlab

Read an Image into Matlab

First, select a
region using
the magnifier.

left click here and hold

drag to here and release

Cut out a region
from the image

Crop the Image

>>
>> % truecolor as .bmp
>> imwrite(I,’image_name.bmp’,’bmp’);
>>
>> % truecolor as .jpg (default quality = 75)
>> imwrite(I,’image_name.jpg’,’jpg’);
>>
>> % truecolor as .jpg (quality = 100)
>> imwrite(I,’image_name.jpg’,’jpg’,’Quality’,100);
>>
>> % colormapped as .bmp
>> imwrite(I,cmap,’image_name.bmp’,’bmp’);
>>
>> % colormapped as .gif
>> imwrite(I,cmap,’image_name.gif’,’gif’);
>>

Assuming that
‘I’ contains the image of
the correct class,

that
‘cmap’ is a colormap,

and that
‘image_name’ is the
file-name that you want.

Saving Images as Files

Jim Woodring - Bumperillo

Mark Rayden – The Ecstasy of Cecelia

Rayden Woodring – The Ecstasy of Bumperillo (?)

Double Exposure: Adding Two Images

>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg');
>> figure
>> image(JW)
>> truesize
>> title('Bumperillo')
>> xlabel('Jim Woodring')
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg');
>> figure
>> image(MR)
>> truesize
>> title('The Ecstasy of Cecelia')
>> xlabel('Mark Ryden')
>> [RMR,CMR,DMR] = size(MR);
>> [RJW,CJW,DJW] = size(JW);
>> rb = round((RJW-RMR)/2);
>> cb = round((CJW-CMR)/2);
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2);
>> figure
>> image(JWplusMR)
>> truesize
>> title('The Ecstasy of Bumperillo')
>> xlabel('Jim Woodring + Mark Ryden')

Example
Matlab Code

Double Exposure: Adding Two Images

>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg');
>> figure
>> image(JW)
>> truesize
>> title('Bumperillo')
>> xlabel('Jim Woodring')
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg');
>> figure
>> image(MR)
>> truesize
>> title('The Ecstasy of Cecelia')
>> xlabel('Mark Ryden')
>> [RMR,CMR,DMR] = size(MR);
>> [RJW,CJW,DJW] = size(JW);
>> rb = round((RJW-RMR)/2);
>> cb = round((CJW-CMR)/2);
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2);
>> figure
>> image(JWplusMR)
>> truesize
>> title('The Ecstasy of Bumperillo')
>> xlabel('Jim Woodring + Mark Ryden')

Example
Matlab Code

Cut a section out of the middle of the larger
image the same size as the smaller image.

Double Exposure: Adding Two Images

>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg');
>> figure
>> image(JW)
>> truesize
>> title('Bumperillo')
>> xlabel('Jim Woodring')
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg');
>> figure
>> image(MR)
>> truesize
>> title('The Ecstasy of Cecelia')
>> xlabel('Mark Ryden')
>> [RMR,CMR,DMR] = size(MR);
>> [RJW,CJW,DJW] = size(JW);
>> rb = round((RJW-RMR)/2);
>> cb = round((CJW-CMR)/2);
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2);
>> figure
>> image(JWplusMR)
>> truesize
>> title('The Ecstasy of Bumperillo')
>> xlabel('Jim Woodring + Mark Ryden')

Example
Matlab Code

Note that the images are averaged, pixelwise.

Double Exposure: Adding Two Images

>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg');
>> figure
>> image(JW)
>> truesize
>> title('Bumperillo')
>> xlabel('Jim Woodring')
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg');
>> figure
>> image(MR)
>> truesize
>> title('The Ecstasy of Cecelia')
>> xlabel('Mark Ryden')
>> [RMR,CMR,DMR] = size(MR);
>> [RJW,CJW,DJW] = size(JW);
>> rb = round((RJW-RMR)/2);
>> cb = round((CJW-CMR)/2);
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2);
>> figure
>> image(JWplusMR)
>> truesize
>> title('The Ecstasy of Bumperillo')
>> xlabel('Jim Woodring + Mark Ryden')

Example
Matlab Code

Note the data class conversions.

Double Exposure: Adding Two Images

Jim Woodring - Bumperillo

Mark Rayden – The Ecstasy of Cecelia

Rayden Woodring – Bumperillo Ecstasy (?)

Intensity Masking: Multiplying Two Images

>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg');
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg');
>> [RMR,CMR,DMR] = size(MR);
>> [RJW,CJW,DJW] = size(JW);
>> rb = round((RJW-RMR)/2);
>> cb = round((CJW-CMR)/2);
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2);
>> figure
>> image(JWplusMR)
>> truesize
>> title('The Extacsy of Bumperillo')
>> xlabel('Jim Woodring + Mark Ryden')
>> JWtimesMR = double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:)).*double(MR);
>> M = max(JWtimesMR(:));
>> m = min(JWtimesMR(:));
>> JWtimesMR = uint8(255*(double(JWtimesMR)-m)/(M-m));
>> figure
>> image(JWtimesMR)
>> truesize
>> title('EcstasyBumperillo')

Example
Matlab Code

Intensity Masking: Multiplying Two Images

>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg');
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg');
>> [RMR,CMR,DMR] = size(MR);
>> [RJW,CJW,DJW] = size(JW);
>> rb = round((RJW-RMR)/2);
>> cb = round((CJW-CMR)/2);
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2);
>> figure
>> image(JWplusMR)
>> truesize
>> title('The Extacsy of Bumperillo')
>> xlabel('Jim Woodring + Mark Ryden')
>> JWtimesMR = double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:)).*double(MR);
>> M = max(JWtimesMR(:));
>> m = min(JWtimesMR(:));
>> JWtimesMR = uint8(255*(double(JWtimesMR)-m)/(M-m));
>> figure
>> image(JWtimesMR)
>> truesize
>> title('EcstasyBumperillo')

Example
Matlab Code

Note that the images are multiplied, pixelwise.

Note how the image intensities are
scaled back into the range 0-255.

Intensity Masking: Multiplying Two Images

>> I = imread('Lawraa - Flickr - 278635073_883bd891ec_o.jpg','jpg');
>> size(I)
ans =

576 768 3
>> r = randperm(576);
>> c = randperm(768);
>> J = I(r,c,:);
>> figure
>> image(J)
>> truesize
>> title('Scrambled Image')
>> xlabel('What is it?')

Pixel Indexing in Matlab

• In a digital image, point = pixel.
• Point processing transforms a pixel’s value as function of its

value alone;
• it does not depend on the values of the pixel’s neighbors.

Point Processing of Images

• Brightness and contrast adjustment
• Gamma correction
• Histogram equalization
• Histogram matching
• Color correction.

Point Processing of Images

Point Processing

original + gamma- gamma + brightness- brightness

original + contrast- contrast histogram EQhistogram mod

! Let I be a 1-band (grayscale) image.
! I(r,c) is an 8-bit integer between 0 and 255.
! Histogram, hI, of I:

– a 256-element array, hI

– hI(g), for g = 1, 2, 3, …, 256, is an integer
– hI(g) = number of pixels in I that have value g-1.

The Histogram of a Grayscale Image

16-level (4-bit) image

black m
arks pixels w

ith intensity g

lo
w

er
 R

H
C

:
nu

m
be

ro
f p

ix
el

s
w

ith
 in

te
ns

ity
 g

The Histogram of a Grayscale Image

Plot of histogram:
number of pixels with intensity g

Black marks
pixels with
intensity g

The Histogram of a Grayscale Image

Plot of histogram:
number of pixels with intensity g

Black marks
pixels with
intensity g

The Histogram of a Grayscale Image

()1 the number of
 pixels in with
 graylevel .

h g

g

+ =I

I

Luminosity

The Histogram of a Grayscale Image

! If I is a 3-band image (truecolor, 24-bit)
! then I(r,c,b) is an integer between 0 and 255.
! Either I has 3 histograms:

– hR(g+1) = # of pixels in I(:,:,1) with intensity value g
– hG(g+1) = # of pixels in I(:,:,2) with intensity value g
– hB(g+1) = # of pixels in I(:,:,3) with intensity value g

! or 1 vector-valued histogram, h(g,1,b) where
– h(g+1,1,1) = # of pixels in I with red intensity value g
– h(g+1,1,2) = # of pixels in I with green intensity value g
– h(g+1,1,3) = # of pixels in I with blue intensity value g

The Histogram of a Color Image

There is one histo-
gram per color band
R, G, & B. Value
histogram is from 1
band = (R+G+B)/3

RI
h

GI
h

BI
h

LI
h

Luminosity

The Histogram of a Color Image

Value or Luminance Histograms

The Value histogram of a 3-band (truecolor) image, I, is the
histogram of the value image,

() () () ()[]1, , , ,
3

r c r c r c r c= + +V R G B

Where R, G, and B are the red, green, and blue bands of I.
The luminance histogram of I is the histogram of the luminance
image,

L r,c() = 0.299 ⋅R r,c()+0.587 ⋅G r,c()+0.114 ⋅B r,c()

Histogram of the value image. Value image, V.

Value Histogram

Histogram of the luminance image. Luminance image, L.

Luminance Histogram

% Multi-band histogram calculator
function h=histogram(I)

[R C B]=size(I);

% allocate the histogram
h=zeros(256,1,B);

% range through the intensity values
for g=0:255

h(g+1,1,:) = sum(sum(I==g)); % accumulate
end

return;

Multi-Band Histogram Calculator in Matlab

% Multi-band histogram calculator
function h=histogram(I)

[R C B]=size(I);

% allocate the histogram
h=zeros(256,1,B);

% range through the intensity values
for g=0:255

h(g+1,1,:) = sum(sum(I==g)); % accumulate
end

return;

Loop through all intensity levels (0-255)
Tag the elements that have value g.
The result is an RxCxB logical array that
has a 1 wherever I(r,c,b) = g and 0’s
everywhere else.
Compute the number of ones in each band of
the image for intensity g.
Store that value in the 256x1xB histogram
at h(g+1,1,b).

sum(sum(I==g)) computes one
number for each band in the image. If B==3, then h(g+1,1,:) contains

3 numbers: the number of pixels in
bands 1, 2, & 3 that have intensity g.

Multi-Band Histogram Calculator in Matlab

Point Ops via Functional Mappings

Input Output

I F, point
operator JImage:

I(r,c) function, f J(r,c)Pixel:

[]= FJ I

()
()
()

If ,
and
then , .

r c g
f g k
r c k

=

=

=

I

JThe transformation of image I into image J is
accomplished by replacing each input intensity, g, with
a specific output intensity, k, at every location (r,c)
where I(r,c) = g. The rule that associates k with g is usually

specified with a function, f, so that f (g) = k.

Point Ops via Functional Mappings

() ()()
()

, , ,
for all pixels locations , .
r c f r c

r c
=J IOne-band Image

Three-band Image () ()()
() ()()

()

, , , , , or
, , , , ,

for 1, 2,3 and all , .
b

r c b f r c b
r c b f r c b
b r c

=

=

=

J I
J I

Point Ops via Functional Mappings

() ()()
()

, , ,
for all pixels locations , .
r c f r c

r c
=J IOne-band Image

Three-band Image () ()()
() ()()

()

, , , , , or
, , , , ,

for 1, 2,3 and all , .
b

r c b f r c b
r c b f r c b
b r c

=

=

=

J I
J I

Either all 3 bands
are mapped through
the same function, f,
or …

… each band is
mapped through
a separate func-
tion, fb.

Point Operations using Look-up Tables

()LUT 1= +J I

A look-up table (LUT)
implements a
functional mapping.

()
,255,,0

,
!=

=
g

gfk
 for

 If

{ }!! in values
 on takes if and
,255,,0

k

… then the LUT
that implements f
is a 256x1 array
whose (g +1)th

value is k = f (g).

To remap a 1-band
image, I, to J :

()
() ()()

a) LUT 1 ,
b) :,:, LUT :,:, 1 for 1, 2,3.bb b b

= +

= + =

J I
J I

or

If I is 3-band, then
a) each band is mapped separately using the same

LUT for each band or
b) each band is mapped using different LUTs – one for

each band.

Point Operations using Look-up Tables

0 127 255

0
12

7
25

5

input value

ou
tp

ut
 v

al
ue

index value
...

101
102
103
104
105
106
...

...
64
68
69
70
70
71
...

E.g.:

input output

Point Operations = Look-up Table Ops

ce
ll

in
de

x

co
nt

en
ts

0 0

64 32

128 128

192 224

255 255

...

...

...

...

...

...

...

...

input output

a pixel with
this value

is mapped to
this value

Look-Up Tables

Kinkaku-ji (金閣寺 Temple of the
Golden Pavilion), also known as
Rokuon-ji (鹿苑寺 Deer Garden
Temple), is a Zen Buddhist temple
in Kyoto, Japan.
Photo by Richard Alan Peters II, August 1993.

Luminance Histogram

Point Processes: Original Image

() (){ ()
()

if , , 256, , , , , if , , 255255,
r c b gr c b gr c b r c b g

+ <+= + >
IIJ I

0 127 255

0
12

7
25

5

g

transform mappingg ≥ 0 and b∈ 1,2,3{ } is the band index.

saturation point

Point Processes: Increase Brightness

0 127 255

0
12

7
25

5

transform mapping

255-g

g ≥ 0 and b∈ 1,2,3{ } is the band index.

() (){ ()
()

if , , 00, , , , , , if , , 0
r c b gr c b r c b g r c b g

- <= - - >
IJ I I

zero point

Point Processes: Decrease Brightness

()[](, ,) , , , r c b a r c b s s= - +T I

0 127 255

0
12

7
25

5

transform mapping

where 0 ≤ a <1.0,
 s∈ 0,1,2,…,255{ }, and

 b∈ 1,2,3{ }.

Here, s = 127

s is the
center of
the contrast
function.

Point Processes: Decrease Contrast

J r,c,b() =
0,
T r,c,b(),
255,

!
"
#

$#

if T r,c,b() < 0,
if 0 ≤T r,c,b() ≤ 255,
if T r,c,b() > 255.

()[](, ,) , ,r c b a r c b s s= - +T I

0 127 255

0
12

7
25

5

transform mappinga >1, s∈ 0,…,255{ }, b∈ 1,2,3{ }

zero point

sat. point

Here, s = 127

Point Processes: Increase Contrast

0 127 255

0
12

7
25

5

transform mapping
J r,c() = 255⋅

I r,c()
255

!

"
#
#

$

%
&
&

1

γ for γ >1.0

Point Processes: Increased Gamma

0 127 255

0
12

7
25

5

transform mapping
m MJ r,c() = 255⋅

I r,c()
255

!

"
#
#

$

%
&
&

1

γ for γ <1.0

Point Processes: Decreased Gamma

Let A= hIk g +1()
g=0

255

∑ .

Note that since hIk g +1() is the number of pixels in
Ik (the kth color band of image I) with value g,
A is the number of pixels in I. That is if I is
R rows by C columns then A= R×C.

() ()

Then,
1 1 1

 is the graylevel probability density function of .

k k

k

p g h g
AI I

I

+ = +

This is the probability
that an arbitrary pixel
from Ik has value g.

pdf
[lower case]

The Probability Density Function of an Image

• pband(g+1) is the fraction of pixels in (a specific band of) an
image that have intensity value g.

• pband(g+1) is the probability that a pixel randomly selected
from the given band has intensity value g.

• Whereas the sum of the histogram hband(g+1) over all g from
1 to 256 is equal to the number of pixels in the image, the
sum of pband(g+1) over all g is 1.

• pband is the normalized histogram of the band.

The Probability Density Function of an Image

 PIk g +1() = pIk γ +1() = 1
A

hIk γ +1() =
γ=0

g

∑
γ=0

g

∑
hIk γ +1()

γ=0

g

∑

hIk γ +1()
γ=0

255

∑
,

This is the probability that any
given pixel from Ik has value less
than or equal to g.

PDF
[upper case]

Let q = [q1 q2 q3] = I(r,c) be the value of a
randomly selected pixel from I. Let g be a
specific graylevel. The probability that qk ≤ g
is given by

where hIk(γ +1) is the
histogram of the kth band
of I.

The Probability Distribution Function of an Image

be the probability distribution function of I.()Let 1 P g +I

J r,c,b() = 255⋅PI I r,c,b()+1!" #$.

Task: remap image I so that its histogram is as close to
constant as possible

Then J has, as closely as possible, the correct histogram if

all bands
processed
similarly

The PDF itself is used as the LUT.

Point Processes: Histogram Equalization

after

J r,c,b() = 255⋅PI g +1(),
g = I r,c,b(), b∈ 1,2,3{ }.

before

Luminosity

Point Processes: Histogram Equalization

pdf

The PDF is the LUT
for remapping.

PDF

Histogram EQ

pdf

LUT

The PDF is the LUT
for remapping.

Histogram EQ

pdf

The PDF is the LUT
for remapping.

LUT

Histogram EQ

() ()
()[] ()
() ()
, 1 1

, .
1 1

P r c P m
r c M m m

P M P m
+ - +

= - +
+ - +

I I I
J J J

I I I I

I
J

Task: remap image I with min = mI and max = MI so that its
histogram is as close to constant as possible and has min = mJ
and max = MJ .

Then J has, as closely as possible, the correct histogram if

Using
intensity
extrema

be the probability distribution function of I.()Let 1 P g +I

Point Processes: Histogram Equalization

Point Processes: Histogram Matching

Task: remap image I so that it has, as closely as
possible, the same histogram as image J.

Because the images are digital it is not, in general,
possible to make hI º hJ . Therefore, pI º pJ .

Q: How, then, can the matching be done?
A: By matching percentiles.

Recall:
• The PDF of image I is such that 0 £ PI (gI) £ 1.
• PI (gI +1) = c means that c is the fraction of pixels in I that have a

value less than or equal to gI .
• 100c is the percentile of pixels in I that are less than or equal to gI .

To match percentiles, replace all occurrences of value gI in image
I with the value, gJ, from image J whose percentile in J most
closely matches the percentile of gI in image I.

… assuming a 1-band
image or a single band
of a color image.

Matching Percentiles

If I(r,c) = gI then let K(r,c) = gJ where gJ is such that

PI (gI) > PJ (gJ -1) AND PI (gI) £ PJ (gJ).

So, to create an image, K, from image I such that K
has nearly the same PDF as image J do the following:

gI

P I
 (

g I
)

gJ

P J
 (

g J
)

Example:
I(r,c) = 5
PI (5) = 0.65
PJ (9) = 0.56
PJ (10) = 0.67
K(r,c) = 10

… assuming a 1-band
image or a single band
of a color image.

Matching Percentiles

PI gI +1() : PDF of I

PJ gJ +1() : PDF of J.
 min ,
 max ,
 min ,
 max .

m
M
m
M

J

J

I

I

J
J
I
I

=
=
=
=

for gI = mI to MI

while ()
() ()
255 1 1

1 1
g P g
P g P g
< + <

+ < +
J I I

J J I I

AND AND

1;g g= +J J

end

end

[R,C] = size(I);
K = zeros(R,C);
gJ = mJ;

K =K + gJ ⋅ I == gI() 

This directly matches
image I to image J.

Better to use a LUT.

Assuming a 1-band
image or a single band
of a color image.

Histogram Matching Algorithm

Image pdf Image with
16 intensity
values

g

Example: Histogram Matching

Example: Histogram Matching

g

PD
F I

(g
)

*

*a.k.a Cumulative Distribution Function, CDFI.

Image PDF

Target pdf Target with
16 intensity
values

g

Example: Histogram Matching

Example: Histogram Matching

g

PD
F I

(g
)

*

*a.k.a Cumulative Distribution Function, CDFJ.

Target PDF

Often it is faster or more versatile to use a lookup table (LUT).
Rather than remapping each pixel in the image separately, one
can create a table that indicates to which target value each input
value should be mapped. Then

K = LUT[I+1]

In Matlab if the LUT is a 256 × 1 matrix with values from 0 to
255 and if image I is of type uint8, it can be remapped with
the following code:

K = uint8(LUT(I+1));

Histogram Matching with a Lookup Table

10

Image PDF Target PDF

LUT

LUT Creation

for gI = 0 to 255
while () ()1 1 AND 255 P g P g g+ < + <J J I I J

1;g g= +J J

end

end

LUT = zeros(256,1);
gJ = 0;

()LUT 1 ;g g+ =I J

This creates a look-up table
which can then be used to
remap the image.

PI gI +1() : PDF of I,

PJ gJ +1() : PDF of J,

LUT gI +1() : Look- Up Table

Look Up Table for Histogram Matching

P I
 (

g
)

P J
 (

g
)

LU
T

(g
)

P K
 (

g
)

g g

g g

Input Target

LUT Result

Input & Target PDFs, LUT and Resultant PDF

original target remapped

Example: Histogram Matching

Juyong Zhang
School of Mathematics, USTC

Image Convolution

Spatial Filtering

J r,c() = T I!" #$ r,c() =
f I ρ,χ() ρ ∈ r − s,...,r,...r + s{ }, χ ∈ c− d ,...,c,...c+ d{ }{ }().

That is, the value of the transformed image, J, at pixel location (r,c)
is a function of the values of the original image, I, in a 2s+1 × 2d
+1 rectangular neighborhood centered on pixel location (r,c).

Let I and J be images such that J = T[I].
T[·] represents a transformation, such that,

Moving Windows
• The value, J(r,c) = T[I](r,c), is a function of a rectangular neighborhood

centered on pixel location (r,c) in I.

• There is a different neighborhood for each pixel location, but if the
dimensions of the neighbor-hood are the same for each location, then
transform T is sometimes called a moving window transform.

Neutral Buoyancy
Facility at NASA
Johnson Space
Center

We’ll take a section
of this image to
demonstrate the
MWT

photo: R.A.Peters II, 1999

Moving-Window Transformations

operate on this region

Moving-Window Transformations

apply a pixel grid

Pixelize the section to
better see the effects.

Moving-Window Transformations

sample (average
in the squares).

Moving-Window Transformations
Pixelize the section to
better see the effects.

lets get some
perspective on
this

Moving-Window Transformations

a neighborhood defined
by a weight matrix

Moving-Window Transformations

neighborhoods at other pixel locations

Moving-Window Transformations

The output of the
transform at each pixel
is the (weighted)
average of the pixels in
the neighborhood.

Linear Moving-Window Transformations
(i.e. convolution)

result of a 9 x 9
uniform averaging

Moving-Window Transformations

Convolution: Mathematical Representation

If a MW transformation is linear then it is a convolution:

J(r,c) = I∗h[](r,c) = I(r − ρ,c − χ)h(ρ,χ) dρdχ

−∞

∞

∫
−∞

∞

∫ ,

J(r,c) = I∗h"# $%(r,c) = I(r − ρ,c− χ)h(ρ,χ)
χ=−d

d

∑
ρ=−s

s

∑

for a real image (I:), or for a digital image (I:): R×R→ R Z × Z→ Z

Convolution Mask (Weight Matrix)
• The object, , in the equation is a weighting function, or in the

discrete case, a rectangular matrix of numbers.
• The matrix is the moving window.
• Pixel (r,c) in the output image is the weighted sum of pixels from the

original image in the neighborhood of (r,c) traced by the matrix.
• Each pixel in the neighborhood of (r,c) is multiplied by the

corresponding matrix value — after the matrix is rotated by 180º.
• The sum of those products is the value of pixel (r,c) in the output

image

 h(ρ,χ)

Convolution Masks: Moving Window

mask
origin

rotate
180°…

translate to
pixel loc (r,c)

… around pixel
loc (r,c)

Convolution Masks: Moving Window

multiplies pixel
I(r+1,c+1)

multiplies pixel
I(r-1,c-2)

multiplies pixel
I(r,c-1)

multiplies
pixel I(r-1,c)

Convolution by Moving Window

ú
ú

û

ù

ê
ê

ë

é

ihg
fed
cba

c
g

f
i

å

Moving Window Transform: Example

original 3x3 average

Another example

Moving Window Transform: Example

original 3x3 average

Moving Window Transform: Example

original 3x3 average

Moving Window Transform: Example

original 3x3 average

Moving Window Transform: Example

original 3x3 average

Moving Window Transform: Example

original 3x3 average

Moving Window Transform: Example

original 3x3 average

Convolution Examples: Original Images

ú
ú

û

ù

ê
ê

ë

é

111
111
111

9
1

Convolution Examples: 3×3 Blur

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

11111
11111
11111
11111
11111

25
1

Convolution Examples: 5×5 Blur

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111
111111111

81
1

Convolution Examples: 9×9 Blur

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111

289
1

Convolution Examples: 17×17 Blur

),(0 crI

c

)1,(),(00 -- crIcrI

)1,(),(00 +- crIcrI

2I(r0,c)− I(r0,c−1)− I(r0,c+1)

Image

Forward
Difference

Sum of
Differences

Backward
Difference

0r

0r

0r

c

c

c

255

0

-255

0r

Vertical Edge Detection

)1,(
)1,(),(2

+-
--
crI
crIcrI

),1(
),1(),(2
crI
crIcrI

+-
--

)1,()1,(
),1(),1(

),(4

+--
-+--

-

crIcrI
crIcrI

crI
),(crI

0

255

-255

510

2 -1-1 2
-1

-1
4 -1-1
-1

-1

Symmetric Edge Detection

Convolution Examples: Original Images

ú
ú

û

ù

ê
ê

ë

é

−

−

1
2
1

Convolution Examples: Vertical Difference

[]121 --

Convolution Examples: Horizontal Difference

ú
ú

û

ù

ê
ê

ë

é

-
--

-

010
141
010

Convolution Examples: H + V Diff.

ú
ú

û

ù

ê
ê

ë

é

-

-

100
020
001

Convolution Examples: Diagonal Difference

ú
ú

û

ù

ê
ê

ë

é

-

-

001
020
100

Convolution Examples: Diagonal Difference

ú
ú

û

ù

ê
ê

ë

é

--

--

101
040
101

Convolution Examples: D + D Difference

ú
ú

û

ù

ê
ê

ë

é

--

111
181
111

Convolution Examples: H + V + D Diff.

original

median
filtered

• Returns the median value of the pixels in a neighborhood
• Is non-linear
• Is similar to a uniform blurring filter which returns the mean value of

the pixels in a neighborhood of a pixel
• Unlike a mean value filter the median tends to preserve step edges

The Median Filter

This can be computed as follows:
1. Let I be a monochrome (1-band) image.
2. Let Z define a neighborhood of arbitrary shape.
3. At each pixel location, p = (r,c), in I …
4. … select the n pixels in the Z-neighborhood of p,
5. … sort the n pixels in the neighborhood of p, by

6. The output value at p is L(m), where
value, into a list L(j) for j = 1,…,n.

med I,Z{ } p() = median

q∈supp Z+p()
I q(){ }

m = bn
2
c+ 1

Median Filter: General Definition

sorted intensity
values from
neighborhood
of p.

131
133
133
136
140
143
147
152
154
157
160
162
163
164
165
171

p

median
assigned to

pixel loc p in
output image.

Median Filter: General Definition

H n−32.5()+0.25

= 0.25 for n ≤ 32
1.25 for n ≥ 33{

H n−32.5()+u n()
where
u n() = unif −0.25 , 0.25()

A Noisy Step Edge

Blurred Noisy 1D Step Edge

h n() = 1
9

h n+ k()
k=−4

4

∑

Blurred Noisy 1D Step Edge

J(32-4:32+4)=
0.1920
0.3416
0.0464
0.0177
0.3062
1.3043
1.0079
1.0082
1.0950

J(33-4:33+4)=
0.3416
0.0464
0.0177
0.3062
1.3043
1.0079
1.0082
1.0950
1.2935

0.5910

0.7134

mean

mean

Median Filtered Noisy 1D Step Edge

() (){ }4 4med kh n h n k =-= +

Median Filtered Noisy 1D Step Edge

J(32-4:32+4)=
0.1920
0.3416
0.0464
0.0177
0.3062
1.3043
1.0079
1.0082
1.0950

0.0177
0.0464
0.1920
0.3062
0.3416
1.0079
1.0082
1.0950
1.3043

J(33-4:33+4)=
0.3416
0.0464
0.0177
0.3062
1.3043
1.0079
1.0082
1.0950
1.2935

0.0177
0.0464
0.3062
0.3416
1.0079
1.0082
1.0950
1.2935
1.3043

sorted

sorted

median

median

Median vs. Blurred

noisy

blurred

median
The median filter
preserves the step
edge better than the
blurring filter.

Median Filtering of Binary Images

OriginalNoisy

Median Filtering of Binary Images

Median Filtered Noisy Original

Filtering of Grayscale Images

OriginalNoisy

Filtering of Grayscale Images

NoisyNoisy

Filtering of Grayscale Images

3x3-median x 13x3-blur x 1

Filtering of Grayscale Images

3x3-median x 23x3-blur x 2

Filtering of Grayscale Images

3x3-median x 33x3-blur x 3

Filtering of Grayscale Images

3x3-median x 43x3-blur x 4

Filtering of Grayscale Images

3x3-median x 53x3-blur x 5

Filtering of Grayscale Images

3x3-median x 103x3-blur x 10

Fact: if you repeatedly filter an image with the same blurring filter or
median filter, eventually the output does not change. That is, let

I ∗h⎡⎣ ⎤⎦
k
≡ I∗h()∗h()!∗h(), k times, and

I med Z⎡⎣ ⎤⎦
k
≡ I med Z() med Z()!med Z(), k times.

Then

lim
k→∞

I ∗h⎡⎣ ⎤⎦
k
= I ∗h⎡⎣ ⎤⎦

n
= I0 , and

lim
k→∞

I med Z⎡⎣ ⎤⎦
k
= I med Z⎡⎣ ⎤⎦

m
= Ir ,

where n and m are integers (< ∞) , I0 is a single-valued image and Ir is
called the median root of I.

Limit and Root Images

3x3-median x 103x3-blur x 10

Limit and Root Images

Limit and Root Images

3x3-median root3⇥ 3-blur ⇥n ! 1

function D = median_filt(I,SE,origy,origx)
[R,C] = size(I); % assumes 1-band image
[SER,SEC] = size(SE); % SE < 0 not in nbhd

N = sum(sum(SE>=0)); % no. of pixels in nbhd
A = -ones(R+SER-1,C+SEC-1,N); % accumulator
n=1; % copy I into band n of A for nbhd pix n
for j = 1 : SER % neighborhood is def’d in SE

for i = 1 : SEC
if SE(j,i) >= 0 % then is a nbhd pixel

A(j:(R+j-1),i:(C+i-1),n) = I;
n=n+1; % next accumulator band

end
end

end
% pixel-wise median across the bands of A
A = shiftdim(median(shiftdim(A,2)),1);
D = A(origy:(R+origy-1) , origx:(C+origx-1));
return;

Median Filter Algorithm in Matlab

{ }argmin , .k j k j
k j

Sv v v v v
¹

= - Î

A vector median filter selects
from among a set of vectors,
the one vector that is closest
to all the others.

That is, if S is a set of vectors,
in Fn the median,v, is

!Fn is an n-dimensional linear vector space over the field, F.)

Vector Median Filter

Jim Woodring – A Warm Shoulder Sparse noise, 32% coverage in each band

Color Median Filter

3×3 color median filter applied twice3×3 color median filter applied once

Color Median Filter

Jim Woodring – A Warm ShoulderSparse noise, 32% coverage in each band

Color Median Filter

(3×3 CMF2 of noisy) – original (3×3 CMF2 of noisy) – (3×3 CMF2 of original)

Absolute differences
displayed as negatives
to enhance visibility

Color Median Filter

A color median filter has to compute the distances between all the color vectors
in the neighborhood of each pixel. That’s expensive computationally.

Q: Why not simply take the 1-band median of each color band individually?
A: The result at a pixel could be a color that did not exist in the pixel’s

neighborhood in the input image. The result is not the median of the
colors – it is the median of the intensities of each color band treated
independently.

Q: Is that a problem?
A: Maybe. Maybe not. It depends on the application. It may make little

difference visually. If the colors need to be preserved, it could be
problematic.

CMF vs. Standard Median on Individual Bands

Jim Woodring – A Warm Shoulder Sparse noise, 32% coverage in each band

CMF vs. Standard Median on Individual Bands

3×3 color median filter applied twice3×3 color median filter applied once

CMF vs. Standard Median on Individual Bands

3×3 median filter applied to each band twice3×3 median filter applied to each band once

CMF vs. Standard Median on Individual Bands

Juyong Zhang
School of Mathematics, USTC

Gradient Image Processing

Idea:
• Human visual system is very sensitive to gradient
• Gradient encode edges and local contrast quite well

• Do your editing in the gradient domain
• Reconstruct image from gradient

• Various instances of this idea, I’ll mostly follow Perez et al. Siggraph 2003
http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Today: Gradient manipulation

∇

Problems with direct cloning

From Perez et al. 2003

Solution: clone gradient

• Grayscale image: n×n scalars
• Gradient:
• Overcomplete!
• What’s up with this?
• Not all vector fields are the gradient of an image!
• Only if they are curl-free (a.k.a. conservative)

– But it does not matter for us

Gradients and grayscale images

n×n 2D vectors

• Manipulating the gradient is powerful

Today message I

• Optimization is powerful
– In particular least square

• Good Least square optimization reduces to a big linear system
• Linear algebra is your friend

– Big sparse linear systems can be solved efficiently

Today message II

• Toy examples are good to further understanding
• 1D can however be overly simplifying, n-D is much more complicated

Today message III

• Given vector field v (pasted gradient), find the value of f in unknown
region that optimize:

Seamless Poisson cloning

Pasted gradient Mask

Background

unknown
region

Poisson equation

with Dirichlet conditions

• Copy to

• Min ((f2-f1)-1)2

• Min ((f3-f2)-(-1))2

• Min ((f4-f3)-2)2

• Min ((f5-f4)-(-1))2

• Min ((f6-f5)-(-1))2

Discrete 1D example: minimization

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

With
f1=6
f6=1

• Copy to

• Min ((f2-6)-1)2 ==> f2
2+49-14f2

• Min ((f3-f2)-(-1))2 ==> f3
2+f2

2+1-2f3f2 +2f3-2f2

• Min ((f4-f3)-2)2 ==> f4
2+f3

2+4-2f3f4 -4f4+4f3

• Min ((f5-f4)-(-1))2 ==> f5
2+f4

2+1-2f5f4 +2f5-2f4

• Min ((1-f5)-(-1))2 ==> f5
2+4-4f5

1D example: minimization

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

• Copy to

• Min (f2
2+49-14f2

+ f3
2+f2

2+1-2f3f2 +2f3-2f2

+ f4
2+f3

2+4-2f3f4 -4f4+4f3

+ f5
2+f4

2+1-2f5f4 +2f5-2f4

+ f5
2+4-4f5)

Denote it Q

1D example: big quadratic

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

• Copy to

1D example: derivatives

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

Min (f2
2+49-14f2

+ f3
2+f2

2+1-2f3f2 +2f3-2f2

+ f4
2+f3

2+4-2f3f4 -4f4+4f3

+ f5
2+f4

2+1-2f5f4 +2f5-2f4

+ f5
2+4-4f5)

Denote it Q

• Copy to

1D example: set derivatives to zero

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

==>

• Copy to

1D example

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

• Copy to

• Matrix is sparse
• Matrix is symmetric
• Everything is a multiple of 2

– because square and derivative of square
• Matrix is a convolution (kernel -2 4 -2)
• Matrix is independent of gradient field. Only RHS is
• Matrix is a second derivative

1D example: remarks

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

• What is a simple case?

Let’s try to further analyze

• What if v is null?
• Laplace equation (a.k.a. membrane equation)

Membrane interpolation

• Minimize derivatives to interpolate

• Min (f2-f1)2

• Min (f3-f2)2

• Min (f4-f3)2

• Min (f5-f4)2

• Min (f6-f5)2

1D example: minimization

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

With
f1=6
f6=1

• Minimize derivatives to interpolate

1D example: derivatives

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

Min (f2
2+36-12f2

+ f3
2+f2

2-2f3f2

+ f4
2+f3

2-2f3f4

+ f5
2+f4

2-2f5f4

+ f5
2+1-2f5)

Denote it Q

• Minimize derivatives to interpolate

1D example: set derivatives to zero

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

==>

• Minimize derivatives to interpolate

• Pretty much says that second
derivative should be zero
(-1 2 -1)

is a second derivative filter

1D example

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

• In 1D; just linear interpolation!
– The min of is the slope integrated over the interval

• Locally, if the second derivative was not zero, this would mean that the
first derivative is varying, which is bad since we want to be
minimized

• Note that, in 1D: by setting f'', we leave two degrees of freedom. This is
exactly what we need to control the boundary condition at x1 and x2

Intuition

x1 x2

∫ f '

∫ f '

In 2D: membrane interpolation

x1 x2

• What if v is null?
• Laplace equation (a.k.a. membrane equation)

• Mathematicians will tell you there is an
Associated Euler-Lagrange equation:

– Where the Laplacian is similar to -1 2 -1in 1D
• Kind of the idea that we want a minimum, so we kind of derive and get

a simpler equation

Membrane interpolation

Δ

What is v is not null?

• 1D case

What if v is not null?

Seamlessly paste onto

Just add a linear function so that the boundary condition is respected

• Given vector field v (pasted gradient), find the value of f in unknown
region that optimize:

(Review) Seamless Poisson cloning

Pasted gradient Mask

Background

unknown
region

Poisson equation

with Dirichlet conditions

• Variational minimization (integral of a functional)
with boundary condition

• Euler-Lagrange equation:

What if v is not null: 2D

• If v is the gradient of an image g
• Correction function so that
• performs membrane interpolation over :

In 2D, if v is conservative

Ω

• Copy to

1D example

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

Difference Solve Laplace Add Result

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?
0

1
2
3
4
5
6

0
1 2 3 4 5 6 7 0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

• Also need to project the vector field v to a conservative field
• And do the membrane thing
• Of course, we do not need to worry about it, it’s all handled naturally by

the least square approach

In 2D, if v is NOT conservative

• Find image whose gradient best approximates the input gradient
– least square Minimization

• Discrete case: turns into linear equation
– Set derivatives to zero
– Derivatives of quadratic ==> linear

• Continuous: turns into Euler-Lagrange form
– f = div v

• When gradient is null, membrane interpolation
– Linear interpolation in 1D

Recap

Δ

• Copy to

Discrete solver: Recall 1D

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

==>

• Two approaches:
– Minimize variational problem
– Solve Euler-Lagrange equation
In practice, variational is best

• In both cases, need to discretize derivatives
– Finite differences over 4 pixel neighbors
– We are going to work using pairs

• Partial derivatives are easy on pairs
• Same for the discretization of v

Discrete Poisson solver

p q

• Minimize variational problem

• Rearrange and call Np the neighbors of p

• Big yet sparse linear system

Discrete Poisson solver

(all pairs that
are in W)

Discretized
gradient

Discretized
v: g(p)-g(q)

Only for boundary pixels

Boundary condition

p q

Result (eye candy)

• Find image whose gradient best approximates the input gradient
– least square Minimization

• Discrete case: turns into big sparse linear equation
– Set derivatives to zero
– Derivatives of quadratic ==> linear

Recap

• Ax=b
• You can use Matlab’s \

– (Gaussian elimination)
– But not very scalable

Solving big matrix systems

Important ideas
• Do not inverse matrix
• Maintain a vector x’ that progresses towards the solution
• Updates mostly require to apply the matrix.

– In many cases, it means you do no even need to store the matrix (e.g. for a
convolution matrix you only need the kernel)

• Usually, you don’t even wait until convergence
• Big questions: in which direction do you walk?

– Yes, very similar to gradient descent

Iterative solvers

• Ax=b, where A is sparse (many zero entries)
• In Pset 3, we ask you to use conjugate gradient

– http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
– http://www.library.cornell.edu/nr/bookcpdf/c10-6.pdf

Solving big matrix systems

• A is square, symmetric and positive-definite
• When A is dense, you’re stuck, use backsubstitution
• When A is sparse, iterative techniques (such as Conjugate Gradient) are

faster and more memory efficient
• Simple example:

Ax=b

• Minimization is more logical to analyze iteration (gradient ascent/descent)
• Quadratic form

– c can be ignored because we want to minimize
• Intuition:

– the solution of a linear system is always the intersection of n hyperplanes
– Take the square distance to them
– A needs to be positive-definite so that we have a nice parabola

Turn Ax=b into a minimization problem

• Smarter choice of direction
– Ideally, step directions should be orthogonal to one another (no redundancy)
– But tough to achieve
– Next best thing: make them A-orthogonal (conjugate)

That is, orthogonal when transformed by A:

Conjugate gradient

• Poisson image cloning: paste gradient, enforce boundary condition
• Variational formulation
• Also Euler-Lagrange formulation
• Discretize variational version,

leads to big but sparse linear system
• Conjugate gradient is a smart iterative technique to solve it

Recap

• Mix gradients of g & f: take the max

Manipulate the gradient

• Dynamic range compression
• See Fattal et al. 2002

Reduce big gradients

• Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss
http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf
http://eprints.pascal-network.org/archive/00001062/01/tips05-blending.pdf

• Various strategies (optimal cut, feathering)

Seamless Image Stitching in the Gradient Domain

• Sun et al. Siggraph 2004
• Assume gradient of F & B is negligible
• Plus various image-editing tools to refine matte

Poisson Matting

• http://portal.acm.org/citation.cfm?id=1057432.1057456
• http://www.cad.zju.edu.cn/home/xudong/Projects/mesh_editing/main.htm
• http://people.csail.mit.edu/sumner/research/deftransfer/

Poisson-ish mesh editing

• Thin plate:
minimize second derivative

Alternative to membrane

Data Membrane interpolation Thin-plate interpolation

• More elaborate energy functional/PDEs
• http://www-mount.ee.umn.edu/~guille/inpainting.htm

Inpainting

• Socolinsky, D. Dynamic Range Constraints in Image Fusion and Visualization 2000.
http://www.equinoxsensors.com/news.html

• Elder, Image editing in the contour domain, 2001
http://elderlab.yorku.ca/~elder/publications/journals/ElderPAMI01.pdf

• Fattal et al. 2002
Gradient Domain HDR Compression http://www.cs.huji.ac.il/%7Edanix/hdr/

• Poisson Image Editing Perez et al.
http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

• Covariant Derivatives and Vision, Todor Georgiev (Adobe Systems) ECCV 2006

Key references

A Gentle Introduction
to Bilateral Filtering
and its Applications

A Gentle Introduction
to Bilateral Filtering
and its Applications

Naïve Image Smoothing:
Gaussian Blur

Sylvain Paris – MIT CSAIL

Notation and DefinitionsNotation and Definitions

• Image = 2D array of pixels

• Pixel = intensity (scalar) or color (3D vector)

• Ip = value of image I at position: p = (px , py)

• F [I] = output of filter F applied to image I

x

y

Strategy for Smoothing ImagesStrategy for Smoothing Images

• Images are not smooth because
adjacent pixels are different.

• Smoothing = making adjacent pixels
look more similar.

• Smoothing strategy
pixel o average of its neighbors

Box AverageBox Average

average

input

square neighborhood

output

sum over
all pixels q

normalized
box function

intensity at
pixel q

result at
pixel p

Equation of Box AverageEquation of Box Average

¦
�

�
S

IBIBA
q

qp qp)(][V

0

Square Box Generates Defects Square Box Generates Defects

• Axis-aligned streaks

• Blocky results

input

output

unrelated
pixels

unrelated
pixels

related
pixels

Box ProfileBox Profile

pixel
position

pixel
weight

Strategy to Solve these ProblemsStrategy to Solve these Problems

• Use an isotropic (i.e. circular) window.

• Use a window with a smooth falloff.

box window Gaussian window

Gaussian BlurGaussian Blur

average

input

per-pixel multiplication

output*

input

box average

Gaussian blur

normalized
Gaussian function

Equation of Gaussian BlurEquation of Gaussian Blur

� �¦
�

�
S

IGIGB
q

qp qp ||||][V

Same idea: weighted average of pixels.

0

1

unrelated
pixels

unrelated
pixels

uncertain
pixels

uncertain
pixels

related
pixels

Gaussian ProfileGaussian Profile

pixel
position

pixel
weight

¸̧
¹

·
¨̈
©

§
� 2

2

2
exp

2
1)(

VSVV
x

xG

size of the window

Spatial ParameterSpatial Parameter

� �¦
�

�
S

IGIGB
q

qp qp ||||][V

small V large V

input

limited smoothing strong smoothing

How to set VHow to set V

• Depends on the application.

• Common strategy: proportional to image size
– e.g. 2% of the image diagonal

– property: independent of image resolution

Properties of Gaussian BlurProperties of Gaussian Blur

• Weights independent of spatial location

– linear convolution

– well-known operation

– efficient computation (recursive algorithm, FFT)

Properties of Gaussian BlurProperties of Gaussian Blur

• Does smooth images

• But smoothes too much:
edges are blurred.
– Only spatial distance matters

– No edge term

input

output

� �¦
�

�
S

IGIGB
q

qp qp ||||][V
space

A Gentle Introduction
to Bilateral Filtering
and its Applications

A Gentle Introduction
to Bilateral Filtering
and its Applications

“Fixing the Gaussian Blur”:
the Bilateral Filter

Sylvain Paris – MIT CSAIL

Blur Comes from
Averaging across Edges
Blur Comes from
Averaging across Edges

*

*

*

input output

Same Gaussian kernel everywhere.

Bilateral Filter
No Averaging across Edges
Bilateral Filter
No Averaging across Edges

*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98]

space weight

not new

range weight

I

new

normalization
factor

new

Bilateral Filter Definition:
an Additional Edge Term
Bilateral Filter Definition:
an Additional Edge Term

� � � ��� IIGG qpqp ||||||
rs VV¦

�

SW qp

1
IIBF qp][

Same idea: weighted average of pixels.

Illustration a 1D ImageIllustration a 1D Image

• 1D image = line of pixels

• Better visualized as a plot

pixel
intensity

pixel position

space

Gaussian Blur and Bilateral FilterGaussian Blur and Bilateral Filter

space range
normalization

Gaussian blur

� � � �¦
�

��
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs VV

Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]

space

space
range

p

p

q

q

� �¦
�

�
S

IGIGB
q

qp qp ||||][V

qq
pp

Bilateral Filter on a Height FieldBilateral Filter on a Height Field

output input

� � � �¦
�

��
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs VV

pp

reproduced
from [Durand 02]

Space and Range ParametersSpace and Range Parameters

• space Vs : spatial extent of the kernel, size of
the considered neighborhood.

• range Vr : “minimum” amplitude of an edge

� � � �¦
�

��
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs VV

Influence of PixelsInfluence of Pixels

pp

Only pixels close in space and in range are considered.

space

range

Vs = 2

Vr = 0.1 Vr = 0.25
Vr = f

(Gaussian blur)

Vs = 6

Vs = 18

input

Exploring the Parameter SpaceExploring the Parameter Space

Vs = 2

Vr = 0.1 Vr = 0.25
Vr = f

(Gaussian blur)

Vs = 6

Vs = 18

input

Varying the Range ParameterVarying the Range Parameter

input

Vr = 0.1

Vr = 0.25

Vr = f
(Gaussian blur)

Vs = 2

Vs = 6

Vs = 18

Vr = 0.1 Vr = 0.25
Vr = f

(Gaussian blur)

input

Varying the Space ParameterVarying the Space Parameter

input

Vs = 2

Vs = 6

Vs = 18

How to Set the ParametersHow to Set the Parameters

Depends on the application. For instance:

• space parameter: proportional to image size

– e.g., 2% of image diagonal

• range parameter: proportional to edge amplitude

– e.g., mean or median of image gradients

• independent of resolution and exposure

A Few
More Advanced

Remarks

A Few
More Advanced

Remarks

Bilateral Filter Crosses Thin LinesBilateral Filter Crosses Thin Lines
• Bilateral filter averages across

features thinner than ~2Vs

• Desirable for smoothing: more pixels = more robust
• Different from diffusion that stops at thin lines

close-up kernel

Iterating the Bilateral FilterIterating the Bilateral Filter

• Generate more piecewise-flat images

• Often not needed in computational photo.

][)()1(nn IBFI �

input

1 iteration

2 iterations

4 iterations

Bilateral Filtering Color ImagesBilateral Filtering Color Images

� � � �¦
�

��
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs VV

� � � �¦
�

��
S

GG
W

IBF
q

qqp
p

p CCCqp ||||||||1][
rs VV

For color images
color difference

For gray-level images intensity difference

The bilateral filter isThe bilateral filter is
extremely easy to adapt to your need.extremely easy to adapt to your need.

scalar

3D vector
(RGB, Lab)

input

output

Hard to ComputeHard to Compute

• Nonlinear

• Complex, spatially varying kernels
– Cannot be precomputed, no FFT

• Brute-force implementation is slow > 10min

� � � �¦
�

��
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs VV

Questions?Questions?

Image Smoothing

via L0 Gradient Minimization

Li Xu, Cewu Lu, Yi Xu, Jiaya Jia

The Chinese University of Hong Kong

Image Smoothing
• A fundamentally important tool

[Farbman et al. 08][Kass and Solomon 10]

[Fattal et al. 06][DeCarlo and Santella 02]

Image Smoothing

General goals:

• Suppress insignificant details

• Maintain major edges

[Baek and Jacobs 10][Kass and Solomon 10] [Sylvain et al. 11]

[Chen et al. 07]

[Durand and Dorsey 02][Tumblin and Turk 99]

[Subr et al. 09][Farbman et al. 08]

[Rudin et al. 92]

Our New Smoothing Method

A general and effective global smoothing strategy
based on a sparsity measure

 () : #{ | 0}pc f p f=  

which corresponds to the L0-norm of gradient

Two Features

1. Flattening insignificant details

By removing small non-zero

gradients

Two Features

2. Enhancing prominent edges

Because large gradients receive

the same penalty as small ones

#{ | 0} #{ | 0}p pp f p f  =  

Our Framework in 1D

• Constrain # of non-zero gradients

• Make the result similar to the input

• Objective function

1 () #{ | 0}p pc f p f f k+= −  =

2min () p p
f

p

f g−

2min () s.t. ()p p
f

p

f g c f k− =

g

• Input 1D signal

Our Framework in 1D

g

2min () s.t. () 1p p
f

p

f g c f− =

• Input 1D signal

Our Framework in 1D

g

2min () . . 2 ()p p
f

p

f g s t c f− =

• Input 1D signal

Our Framework in 1D

g

2min () . . 5 ()p p
f

p

f g s t c f− =

• Input 1D signal

Our Framework in 1D

g

2min () . . () 200p p
f

p

f g s t c f− =

Transformation

2min () s.t. ()p p
f

p

f g c kf− =

0

2

4

6

8

10

1 51 101

2min () ()p p
f

p

f g c f− + 

1



k

2D Image

2min () (,)p p x y
f

p

f g c f f− +   

(,) #{ | 0}x y x p y pc f f p f f  =  +  

2min ((,)) x y
f

p

p p ff g c f+   −

Finding the global optimum is NP hard

2min (() ,)p p
f

p

x yc ff g f− +  

Approximation

2min () (,)p p x y
f

p

f g c f f− +    ,h v

()2 2() ()x p p y p p

p

f h f v+   − +  −

 h,v

Separately estimate and (,)h vf

Iterative Optimization

• Compute given

• Compute given

• Gradually approximate the original problem

()2 2 2() () () ()p p x p p y p p

p

E f f g f h f v= − +   − +  −

f

()2 2(,) () () (,)x p p y p p

p

E h v f h f v c h v



=  − +  − +

,h v

,h v f

2 

Both the sub-problems are with
closed-form solutions

One Example

Iteration #1Iteration #2Iteration #3Iteration #4Iteration #5Iteration #6Iteration #7Iteration #8Iteration #9Iteration #10Iteration #11Iteration #12Iteration #13Iteration #14Iteration #15

Converge in 15 iterations

Smoothing Strength

Input

Smoothing Strength

=0.01

Smoothing Strength

=0.02

Smoothing Strength

=0.03

Comparison

Our ResultBLFTotal VariationWLSOur Result

Comparison

Total Variation Our Result

Another Example

Input 1 times 20 times

5 times

Edge Enhancement and Extraction

Edge Enhancement and Extraction

Gradient Map

Edge Enhancement and Extraction

Extracted Edge

Edge Enhancement and Extraction

Smoothing result

Edge Enhancement and Extraction

Extracted Edge

Edge Enhancement and Extraction

Edge Enhancement and Extraction

Edge Enhancement and Extraction

Edge Enhancement and Extraction

Without smoothing With smoothing

Clip-Art JPEG Artifact Removal

Clip-Art JPEG Artifact Removal

Clip-Art JPEG Artifact Removal

Clip-Art JPEG Artifact Removal

Image Abstraction

Image Abstraction

Pencil Sketch

Image Abstraction

Image Abstraction

Pencil Sketch

Detail Manipulation

Base layer

Detail Manipulation

Base layer

Edge Adjustment

 =

Spatially varying Gaussian blur in
an optimization procedure

Edge Adjustment

Detail BoostingInput

Detail Manipulation

Image of [Farbman et al. 08]

Detail Manipulation

Detail Manipulation

HDR Tone Mapping

HDR Input (gamma adjusted)

HDR Tone Mapping

Log-base layer to be compressed

HDR Tone Mapping

Detail layer

HDR Tone Mapping

HDR Tone Mapping

HDR Input (gamma adjusted)

HDR Tone Mapping

HDR Tone Mapping

HDR Tone Mapping

Combined with other smoothing

Strong texture will be preserved

Combined with other smoothing

Our smoothing result

Combined with other smoothing

Bilateral Filter

Combined with other smoothing

Bilateral Filter + Ours

Implementation

• Matlab source code and Windows software
are available

• Matlab implementation

• 12s for a one-megapixel image

• GPU acceleration

• 0.4s for a one-megapixel image

Conclusion

• A simple and general smoothing framework

• Approximate L0-norm gradient measure

• Flatten low-amplitude details

• Enhance prominent structures

• Possible extensions in graphics and vision

• Video

• 3D surface (modeling)

• Depth

We wish to thank

• Michael S. Brown for narrating the video.

• The anonymous reviewers for constructive
comments.

• Flicker Users: John McCormick, conner395,
cyber-seb, T-KONI, Remi Longva, dms_a_jem
for allowing us to use their pictures.

The End

Image Stitching

!"#
$%&'()*'

Overview
• Image stitching is to combine multiple photos to create a larger

photo.
• This technology is now widely available. It’s on pretty much all

smart phones that are in market today.
• It’s also used in other domains, such as medical imaging, and

remote sensing.

Image Stitching

How would you align these images?
Image 1 Image 2 Image 3

Image Stitching

Find corresponding points
(using feature detectors like SIFT)

Image 1 Image 2 Image 3

Image Stitching

Find geometric relationship between the images

Image 1 Image 2 Image 3

Image Stitching

Warp images so that corresponding points align

Image 1 Image 2 Image 3

Image Stitching

Blend images to remove hard seams

Overlaid Aligned Images

Blended Image

Topics:
• 2x2 Image Transformations
• 3x3 Image Transformations
• Computing Homography
• Dealing with Outliers:RANSAC
• Warping and Blending Images

Image Stitching

2x2 Image Transformations
Image Filtering: Change range (brightness)

Image Warping: Change domain (location)

Transformation 𝑇𝑑 is a coordinate changing operator

Global Warping/Transformation

Transformation 𝑇 is the same over entire domain
often can be described by just a few parameters

Translation Rotation Scaling and Aspect

Affine Projective
Barrel

2x2 Linear Transformations

𝑇 can be represented by a matrix.

Scaling(Stretching and Squishing)

Forward: Inverse:

2D Rotation

Rotation

Forward: Inverse:

Skew

Horizontal Skew: Vertical Skew:

Mirrow

Mirrow about Y-axis: Mirrow about line 𝑦 = 𝑥:

• Origin maps to the origin
• Lines map to lines
• Parallel lines remain parallel
• Closed under composition

2x2 Matrix Transformations
Any transformation of the form:

Translation

Can translation be expressed as a 2x2 matrix? No

Homogenous Coordinates
The homogenous representation of a 2D point 𝐩 = (𝒙,𝒚) is a 3D
point (𝐩 = ((𝒙, (𝒚,)𝒛). The third coordinate)𝒛 ≠ 0 is fictitious such that:

Every point on line 𝐋(except origin) represent the
homogenous coordinate of 𝐩(𝒙,𝒚)

Translation

Scaling, Rotation, Skew, Translation

Scaling

RotationTranslation

Skew

Composition of these transformations?

Affine Transformation
Any transformation of the form:

Affine Transformation
Any transformation of the form:

• Origin does not necessarily map to the origin
• Lines map to lines
• Parallel lines remain parallel
• Closed under composition

Projective Transformation
Any transformation of the form:

Also called Homography

Projective Transformation
Mapping of one plane to another through a point

Same as imaging a plane through a pinhole

Projective Transformation
Homography can only be defined up to a scale.

• Origin does not necessarily map to the origin
• Lines map to lines
• Parallel lines do not necessarily remain parallel
• Closed under composition

Remember Vanishing Points?

Homography composition

Useful in stitching planar panoramas

Computing Homography

Given a set of matching features/points between image images 1
and 2, find the homography H that best “agrees” with the matches.

Image 1 Image 2

Computing Homography

How many unknows? 9 ...But 8 degrees of freedom
How many minimum pairs of matching points? 4

Source Image Destination Image

Computing Homography
For a given pair i of corresponding points:

Rearranging the terms:

Computing Homography

Rearranging the terms and writing as linear equation:

(Known)

(Unknown)

Computing Homography
Combining the equation for all corresponding points:

(Known)
(Unknown)

Constrained Least Squares

Define least squares problem:

We know that:

Constrained Least Squares

Define Loss function 𝐿(𝐡, 𝜆):

Taking derivatives of 𝐿(𝐡, 𝜆) w.r.t 𝐡: 2𝑨𝑇𝑨𝐡 − 2𝜆𝐡 = 0

Eigenvalue Problem

Eigenvector 𝐡 with smallest eigenvalue 𝜆 of matrix 𝑨𝑇𝑨
minimizes the loss function 𝐿(𝐡).

Matlab: eig(A’*A) returns eigenvalues and vectors of 𝑨𝑇𝑨

What could go wrong?

Image 1 Image 2

What could go wrong?

Outliers!
We need to robustly compute transformation in the

presence of wrong matches.

If number of outliers < 50%, then RANSAC to the rescue!

Image 1 Image 2

RANdom SAmple Consensus

General RANSAC algorithm:
1. Randomly choose s samples. Typically s is the minimum samples

to fit the model.
2. Fit the model to the randomly chosen samples.
3. Count the number M of data points(inliers) that fit the model

within a measure of error ɛ.
4. Repeat Steps 1-3 N times
5. Choose the model that has the largest number M of inliers.
For homography:
s = 4 points. ɛ is acceptable alignment error in pixels.

RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting
Inliers:2

RANSAC Interation 1
Inliers:4

RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting
Inliers:2

RANSAC Interation 2
Inliers:3

RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting
Inliers:2

RANSAC Interation i
Inliers:20

Warping Images

Given a transformation T and a image f(x,y), compute the
transformed image ɡ(x,y)

Forward Warping
Send each pixel (x,y) in f(x,y) to its corresponding location T(x,y) in
ɡ(x,y)

Forward Warping
Send each pixel (x,y) in f(x,y) to its corresponding location T(x,y) in
ɡ(x,y)

What if pixel lands in between pixels?
What if not all pixels in ɡ(x,y) are filled?

Can result in holes!

Backward Warping
Get each pixel (x,y) in ɡ(x,y) from its corresponding location 𝑇−1(x,y)
in f(x,y)

Backward Warping
Get each pixel (x,y) in ɡ(x,y) from its corresponding location 𝑇−1(x,y)
in f(x,y)

What if pixel lands between pixels?
Use Nearest Neighbor or Interpolate

Image Alignment Process

Image 1 Image 2 Image 3

Reference Image
(Image 2)

Image Alignment Process

Image 1 Image 2 Image 3

Reference Image
Compute the bounds of Image 1 and Image 3 in reference image space

Image Alignment Process

Image 1 Image 2 Image 3

Reference Image

For each pixel within bounds, compute its location in captured image

Image Alignment Process

Image 1 Image 2 Image 3

For each pixel within bounds, compute its location in captured image
Reference Image

Blending Images

Hard seams due to vignetting, exposure differences, etc.

Overlaid Aligned Images

Blending Images: Averaging

Averaged Images

Seams still visible

Blending Images
Say we want to blend images 𝐼1 and 𝐼2 at the center

Computing Weighting Functions

Pixels closer to the edge get a lower weight.
Ex: Distance Transform (bwdist in MATLAB)

Weighted Blending

Overlaid Aligned Images

Blended Image

Image Stitching Example

Source Images Aligned Images

Image Stitching Example

Source Images Blended Images

Face Detection

!"#
$%&'()*'

What is Face Detection?
Locate human faces in images

Locate human faces in images.

Topics:
• Uses of Face Detection
• Haar Features for Face Detection
• Integral Image
• Nearest Neighbor Classifier
• Support Vector Machine

Image Stitching

Where is Face Detection Used?

Finding People using Search Engines
Face Detection

Where is Face Detection Used?

Finding People using Search Engines
Only faces of people named “Gates”

Where is Face Detection Used?

Intelligent Marketing

Where is Face Detection Used?

Biometrics, Surveillance, Monitoring

Face Detection in Computers
Slide windows of different sizes across image.
At each location match window to face model.

Face Detection Framework
For each window:

Extract
Features

Match Face
Model

Yes / No

Which features represent faces well?

How to construct a face model and efficiently
classify features as face or not?

Features:

Classifier:

What are Good Features?
Interest Points (Edges, Corners, SIFT)?

Facial Components (Templates)?

Charateristics of Good Features
Discriminate Face/Non-Face

Extremely Fast to Compute
Need to evaluate millions of windows in an image

Haar Features
Set of Correlation Responses to Haar Filters

Input Image

Haar Filters Haar Features
f[i,j]

Discriminative Ability of Haar Feature

Haar Features are Sensitive to Directionality of Patterns

Haar Features
Compute Haar Features at different scales to

detect faces of different sizes.

Haar Features

Haar Features: Computation Cost

Computation cost = (𝑁×𝑀 − 1) additions per pixel per filter per scale.

Can We Do Better?

Integral Image
A table that holds the sum of all pixel values
to the left and top of a given pixel, inclusive.

98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Integral Image
A table that holds the sum of all pixel values
to the left and top of a given pixel, inclusive.

98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Integral Image
A table that holds the sum of all pixel values
to the left and top of a given pixel, inclusive.

98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Summation Within a Rectangle
Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Summation Within a Rectangle
Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Summation Within a Rectangle
Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Summation Within a Rectangle
Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Summation Within a Rectangle
Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Computation Cost: Only 3 additions

Haar Response using Integral Image
98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Haar Response using Integral Image
98 110 121 125 122 129

99 110 120 116 116 129

97 109 124 111 123 134

98 112 132 108 123 133

97 113 147 108 125 142

95 111 168 122 130 137

96 104 172 130 126 130

98 208 329 454 576 705

197 417 658 899 1137 1395

294 623 988 1340 1701 2093

392 833 1330 1790 2274 2799

489 1043 1687 2255 2864 3531

584 1249 2061 2751 3490 4294

680 1449 2433 3253 4118 5052

Computation Cost: Only 7 additions

Computing Integral Image

Raster
Scanning

Computing Integral Image

Raster
ScanningD B

C A

Let 𝐼𝐴 and 𝐼𝐼𝐴 be the values of Image and Integral Image,
respectively, at pixel 𝐴.

𝐼𝐼𝐴 = 𝐼𝐼𝐵 + 𝐼𝐼𝐶 − 𝐼𝐼𝐷 + 𝐼𝐴

Haar Features using Integral Images
Integral image needs to be computed once per test image.

Allows fast computations of Haar features.

Input Image

Haar Filters Haar Features

Classifier for Face Detection?
Given the features for a window, how to decide

whether it contains a face or not?

Feature Space
Haar Features 𝐟 (a vector) at a pixel

is a point in an n-D space,𝐟 ∈ 𝐑𝑛

Training Data
of Face

Training Data
of Non-Face

Feature Space
Haar Features 𝐟 (a vector) at a pixel

is a point in an n-D space,𝐟 ∈ 𝐑𝑛

Training Data
of Face

Training Data
of Non-FaceTest Image

Feature Space
Find the Nearest training sample using L2 distance

and assign its label.

Training Data
of Face

Training Data
of Non-FaceFace

Feature Space

Training Data
of Face

Training Data
of Non-FaceNot Face

Find the Nearest training sample using L2 distance
and assign its label.

Feature Space

Training Data
of Face

Training Data
of Non-FaceFace

False Positive

Find the Nearest training sample using L2 distance
and assign its label.

Feature Space

Training Data
of Face

Training Data
of Non-FaceNon-Face

Larger the training set, more robust the NN classifier

Feature Space

Training Data
of Face

Training Data
of Non-FaceNon-Face

Larger the training set, slower the NN classifier

Feature Space

Training Data
of Face

Training Data
of Non-Face

A simple dicision boundary separating
face and non-face classes will suffice

Linear Dicision Boundaries
A Linear Decision Boundary in 2-D space is a 1-D Line

Equation of Line:

Linear Dicision Boundaries
A Linear Decision Boundary in 3-D space is a 2-D Plane

Equation of Plane:

Linear Dicision Boundaries
A Linear Decision Boundary in n-D space

is a (n-1)-D Hyperplane

Equation of Hyperplane:

Decision Boundary (w,b)
What is the optimal decision boundary?

Decision Boundary

Faces

Non-Faces

Evaluating a Decision Boundary

Margin

Margin or Safe Zone: The width that the boundary
could be increased by, before hitting a feature point.

Evaluating a Decision Boundary

Margin I

Choose Decision Boundary with Maximum Margin!

Margin II

Decision I: Face Decision II: Non-Face

Support Vector Machine (SVM)

Margin

Support Vectors: Closest data samples to the boundary

Classifier optimized to Maximum Margin

Decision Boundary & Margin depend only on Support Vectors

Support Vector Machine (SVM)
Given:
• k training images {𝐼1, 𝐼2, . . . , 𝐼𝑘} and their Haar features
{𝐟1, 𝐟2, . . . , 𝐟𝑘}.

• k corresponding labels {𝜆1, 𝜆2, . . . , 𝜆𝑘}, where 𝜆𝑗 = +1 if 𝐼𝑗 is a
face and 𝜆𝑗 = −1 if 𝐼𝑗 is not a face.

Find:

Finding Decision Boundary (w,b)
For each training sample (𝐟𝑖, 𝜆𝑖):

Finding Decision Boundary (w,b)
For each training sample (𝐟𝑖, 𝜆𝑖):

If 𝑺 is the set of support vectors,
Then for every support vector 𝑠 ∈ 𝑺:

Numerical methods exist to find
w,b and 𝑺 that maximize 𝜌

MATLAB: svmtrain

Support Vector Machine (SVM)
Haar features f for an image window and
SVM parameters w,b,𝜌,𝑺

Classification:

Given:

If:

𝑑 ≥ 𝜌/2

𝑑 > 0 and 𝑑 < 𝜌/2

𝑑 < 0 and 𝑑 > −𝜌/2

𝑑 ≤ −𝜌/2

Face

Probably Face

Probably Not-Face

Not-Face

Face Detection Results

• Current face detection systems are mature but not perfect.
• Frontal and side poses usually require different face models.
• Successful vision technology used in cameras, surveillance,

biometrics, search.
• Performance continues to improve.

Remarks

Camera Calibration

!"#
$%&'()*'

• Method to find a camera's internal and external parameters.

Camera Calibration

Topics:
• (1) Linear Camera Model
• (2) Camera Calibration
• (3) Extracting Intrinsic and Extrinsic Matrices
• (4) Example Application: Simple Stereo

Forward Imaging Model: 3D to 2D

𝒙" =
𝑥"
𝑦"
𝑧"

World
Coordinates

𝒙' =
𝑥'
𝑦'
𝑧'

Camera
Coordinates

Coordinate
Transformation

𝒄"

𝒙𝒘𝑝

World
Coordinate
Frame W

+𝑥"

+𝑦"

𝑧̂"

𝑓

Image Plane
Pinhole

Camera
Coordinate
Frame C+𝑥'

𝑧̂'

+𝑦'

+𝑦.

+𝑥.
𝒙𝒄

𝒙𝒊

Image
Coordinates

Perspective
Projection

𝒙. =
𝑥.
𝑦.

Forward Imaging Model: 3D to 2D
Image Plane Pinhole

Camera
Coordinate
Frame C

World
Coordinate
Frame W

𝒄"
+𝑥"

+𝑦"
𝒙𝒘

+𝑥'

𝑧̂"

𝑧̂'

+𝑦'

𝑝

𝑓

𝒙𝒄

𝒙𝒊 +𝑦.

+𝑥.

We know that 01
2
= 03

43
and 51

2
= 53

43

Therefore: 𝑥. = 𝑓 03
43

and 𝑦. = 𝑓 53
43

Image Plane to Image Sensor Mapping
Image Plane

+𝑦.
(mm)

+𝑥. (mm)

If 𝑚0 and 𝑚5 are the pixel densities (pixels/mm) in 𝑥 and 𝑦
directions, respectively, then pixel coordinates are:

Pixels may be rectangular.

𝑢 = 𝑚0𝑥. = 𝑚0𝑓
𝑥'
𝑧'

𝑣 = 𝑚5𝑦. = 𝑚5𝑓
𝑦'
𝑧'

Image Sensor

𝑢 (pixels)

𝑣
(pixels)

(𝑜0 , 𝑜5)

Image Plane to Image Sensor Mapping

+𝑥. (mm)

We usually treat the top-left corner of the image sensor as its origin
(easier for indexing). If pixel (𝑜0 , 𝑜5) is the Principle Point where
the optical axis pierces the sensor, then:

(𝑜0 , 𝑜5)

𝑢 = 𝑚0𝑓
𝑥'
𝑧'
+ 𝑜0 𝑣 = 𝑚5𝑓

𝑦'
𝑧'
+ 𝑜5

Image Plane

+𝑦.
(mm)

+𝑥. (mm)

Image Sensor
𝑢 (pixels)

𝑣
(pixels)

(𝑜0 , 𝑜5)

Perspective Projection

𝑢 = 𝑚0𝑓
𝑥'
𝑧'
+ 𝑜0 𝑣 = 𝑚5𝑓

𝑦'
𝑧'
+ 𝑜5

𝑢 = 𝑓0
𝑥'
𝑧'
+ 𝑜0 𝑣 = 𝑓5

𝑦'
𝑧'
+ 𝑜5

(𝑓0, 𝑓5, 𝑜0, 𝑜5): Intrinsic parameters of the camera.
They represent the camera's internal geometry.

where: 𝑓0, 𝑓5 = (𝑚0𝑓,𝑚5𝑓) are the focal lengths in pixels in
the x and y directions.

Perspective Projection

Equations for perspective projection are Non-Linear.
It is convenient to express them as linear equations.

𝑢 = 𝑚0𝑓
𝑥'
𝑧'
+ 𝑜0 𝑣 = 𝑚5𝑓

𝑦'
𝑧'
+ 𝑜5

𝑢 = 𝑓0
𝑥'
𝑧'
+ 𝑜0 𝑣 = 𝑓5

𝑦'
𝑧'
+ 𝑜5

Homogenous Coordinates
The homogenous representation of a 2D point 𝒖 = 𝑢, 𝑣
is a 3D point @𝒖 = A𝑢, A𝑣, @𝑤 . The third coordinate @𝑤 ≠0 is
fictitious such that:

𝑢 =
A𝑢
@𝑤 𝑣 =

A𝑣
@𝑤

𝒖 ≡
𝑢
𝑣
1
≡

@𝑤𝑢
@𝑤𝑣
A𝑢

≡
A𝑢
A𝑣
A𝑢
= @𝒖

𝑢

𝑣

𝑣
𝑢

A𝑣

A𝑢

𝒖 = 𝑢, 𝑣
1

@𝑤

@𝑤 = 1

Every point on line L (except origin) represents
the homogenous coordinate of u(u, v)

𝐿

@𝒖 = A𝑢, A𝑣, @𝑤

Homogenous Coordinates
The homogenous representation of a 3D point 𝒙 = 𝑥, 𝑦, 𝑧 ∈
ℛI is a 4D point @𝒙 = A𝑥, A𝑦, 𝑧̃, @𝑤 ∈ ℛK.The fourth coordinate
w ≠0 is fictitious such that:

𝑥 =
A𝑥
@𝑤

𝑦 =
A𝑦
@𝑤

𝑧 =
𝑧̃
@𝑤

𝒙 ≡

𝑥
𝑦
𝑧
1

≡

@𝑤𝑥
@𝑤𝑦
@𝑤𝑧
@𝑤

≡

A𝑥
A𝑦
𝑧̃
@𝑤

= @𝒙

Perspective Projection
Perspective projection equations:

𝑢 = 𝑓0
𝑥'
𝑧'
+ 𝑜0 𝑣 = 𝑓5

𝑦'
𝑧'
+ 𝑜5

Linear Model for Perspective Projection

Homogenous coordinates of 𝑢, 𝑣 :

where: 𝑢, 𝑣 = A𝑢/@𝑤, A𝑣/@𝑤

𝑢
𝑣
1
≡

A𝑢
A𝑣
@𝑤

≡
𝑧'𝑢
𝑧'𝑣
𝑧'

=
𝑓0𝑥' + 𝑧'𝑜0
𝑓5𝑦' + 𝑧'𝑜5

𝑧'
=

𝑓0 0 𝑜0 0
0 𝑓5 𝑜5 0
0 0 1 0

𝑥'
𝑦'
𝑧'
1

Intrinsic Matrix
𝑢
𝑣
1
≡

A𝑢
A𝑣
@𝑤

=
𝑓0 0 𝑜0 0
0 𝑓5 𝑜5 0
0 0 1 0

𝑥'
𝑦'
𝑧'
1

A𝑢 = 𝐾 0 @𝒙' = 𝑀.PQR𝑥'

Upper Right Triangular Matrix

𝐾 =
𝑓0 0 𝑜0
0 𝑓5 𝑜5
0 0 1

Calibration Matrix:

𝑀.PQ = 𝐾 0 =
𝑓0 0 𝑜0 0
0 𝑓5 𝑜5 0
0 0 1 0

Intrinsic Matrix:

𝒙. =
𝑥.
𝑦.

Forward Imaging Model: 3D to 2D

𝒙' =
𝑥'
𝑦'
𝑧'

𝒙" =
𝑥"
𝑦"
𝑧"

World
Coordinates

Camera
Coordinates

Image
Coordinates

Perspective
Projection

Coordinate
Transformation

Image Plane
Pinhole

Camera
Coordinate
Frame C

World
Coordinate
Frame W

𝒄"
+𝑥"

+𝑦"

𝒙𝒘

+𝑥'

𝑧̂"

𝑧̂'

+𝑦'

𝑝

𝑓

𝒙𝒄

𝒙𝒊 +𝑦.

+𝑥.

𝑴𝒊𝒏𝒕 ？

Extrinsic Parameters

Position 𝑐" and Orientation R of the camera in the world
coordinate frame W are the camera's Extrinsic Parameters.

𝑅 =
𝑟YY 𝑟YZ 𝑟YI
𝑟ZY 𝑟ZZ 𝑟ZI
𝑟IY 𝑟IZ 𝑟II

Orientation/Rotation Matrix R is Orthonormal

Pinhole
Camera
Coordinate
Frame C

World Coordinate
Frame W

𝒄"
+𝑥"

+𝑦"

𝒙𝒘

+𝑥'

𝑧̂"

𝑧̂'

+𝑦'

𝑝
𝒙𝒄

Row 1: Direction of +𝑥' in world coordinate frame
Row 2: Direction of +𝑦' in world coordinate frame
Row 3: Direction of 𝑧̂' in world coordinate frame

Orthonormal Vectors and Matrices
Orthonormal Vectors: Two vectors u and v are orthonormal
if and only if:

Example: The x-, y- and z-axes of RI Euclidean space

A Rotation Matrix is an Orthonormal Matrix

(Orthogonality)
𝑑𝑜𝑡 𝒖, 𝒗 = 𝒖𝑻𝒗 = 0

Orthonormal Matrix: A square matrix R whose row (or column)
vectors are orthonormal. For such a matrix:

𝑅`Y = 𝑅a 𝑅a𝑅 = 𝑅𝑅a = 𝐼

and 𝒖𝑻𝒖 = 𝒗𝑻𝒗 = 1
(Unit length)

World-to-Camera Transformation

Given the extrinsic parameters (R, 𝑐") of the camera, the
camera-centric location of the point P in the world coordinate
frame is:

𝒙𝒄 =
𝑥'
𝑦'
𝑧'

=
𝑟YY 𝑟YZ 𝑟YI
𝑟ZY 𝑟ZZ 𝑟ZI
𝑟IY 𝑟IZ 𝑟II

𝑥"
𝑦"
𝑧"

+
𝑡0
𝑡5
𝑡4

𝒙' = 𝑅 𝒙𝒘 − 𝒄"

Pinhole
Camera
Coordinate
Frame C

World Coordinate
Frame W

𝒄"
+𝑥"

+𝑦"

𝒙𝒘

+𝑥'

𝑧̂"

𝑧̂'

+𝑦'

𝑝
𝒙𝒄

𝒕 = −𝑅𝒄"= 𝑅𝒙" − 𝑅𝒄" = 𝑅𝒙" + 𝒕

Extrinsic Matrix
Rewriting using homogenous coordinates:

R𝑥' = 𝑀ext R𝑥"

𝑥' =

𝑥'
𝑦'
𝑧'
1

=

𝑟YY 𝑟YZ 𝑟YI 𝑡0
𝑟ZY 𝑟ZZ 𝑟ZI 𝑡5
𝑟IY 𝑟IZ 𝑟II 𝑡Z
0 0 0 1

𝑥"
𝑦"
𝑧"
1

𝑀j0Q =
𝑅I×I 𝑡
0Y×I 1 =

𝑟YY 𝑟YZ 𝑟YI 𝑡0
𝑟ZY 𝑟ZZ 𝑟ZI 𝑡5
𝑟IY 𝑟IZ 𝑟II 𝑡4
0 0 0 1

Extrinsic Matrix:

𝒙. =
𝑥.
𝑦.

Forward Imaging Model: 3D to 2D

𝒙' =
𝑥'
𝑦'
𝑧'

𝒙" =
𝑥"
𝑦"
𝑧"

World
Coordinates

Camera
Coordinates

Image
Coordinates

Perspective
Projection

Coordinate
Transformation

Image Plane
Pinhole

Camera
Coordinate
Frame C

World
Coordinate
Frame W

𝒄"
+𝑥"

+𝑦"

𝒙𝒘

+𝑥'

𝑧̂"

𝑧̂'

+𝑦'

𝑝

𝑓

𝒙𝒄

𝒙𝒊 +𝑦.

+𝑥.

𝑴𝒊𝒏𝒕 𝑴ext

Projection Matrix P
Camera to Pixel World to Camera

A𝑢
A𝑣
@𝑤

=
𝑓0 0 𝑜0 0
0 𝑓5 𝑜5 0
0 0 1 0

𝑥'
𝑦'
𝑧'
1

𝑥'
𝑦'
𝑧'
1

=

𝑟YY 𝑟YZ 𝑟YI 𝑡0
𝑟ZY 𝑟ZZ 𝑟ZI 𝑡5
𝑟IY 𝑟IZ 𝑟II 𝑡Z
0 0 0 1

𝑥"
𝑦"
𝑧"
1

A𝑢
A𝑣
@𝑤

=
𝑝YY 𝑝YZ 𝑝YI 𝑝YK
𝑝ZY 𝑝ZZ 𝑝ZI 𝑝ZK
𝑝IY 𝑝IZ 𝑝II 𝑝IK

𝑥"
𝑦"
𝑧"
1

A𝑢 = 𝑴𝒊𝒏𝒕R𝑥' R𝑥' = 𝑴extR𝑥"

A𝑢 = 𝑀.PQ𝑀ext R𝑥" = 𝑃R𝑥"

Combining the above two equations, we get the full projection matrix P:

Camera Calibration Procedure
Step1: Capture an image of an object with known geometry.

Object of Known Geometry
𝑊

+𝑥"
+𝑦"

Camera Calibration Procedure
Step 2: Identify correspondences between 3D scene points and image points.

Object of Known Geometry
Captured Image

+𝑥"
+𝑦"

𝑢

𝑣

𝑊

Camera Calibration Procedure
Step 2: Identify correspondences between 3D scene points and image points.

Object of Known Geometry
Captured Image

𝑥" =
𝑥"
𝑦"
𝑧"

=
0
3
4

𝑢 = 𝑢
𝑣 = 56

115
(pixels)

(inches)

+𝑥"
+𝑦"

𝑢

𝑣

𝑊

Camera Calibration Procedure
Step 2: Identify correspondences between 3D scene points and image points.

Object of Known Geometry
Captured Image

𝑥" =
𝑥"
𝑦"
𝑧"

=
0
3
4

𝑢 = 𝑢
𝑣 = 56

115
(pixels)

(inches)

+𝑥"
+𝑦"

𝑢

𝑣

𝑊

Camera Calibration Procedure
Step 3: For each corresponding point 𝑖 in scene and image:

𝑢 .

𝑣 .

1
≡

𝑝YY 𝑝YZ 𝑝YI 𝑝YK
𝑝ZY 𝑝ZZ 𝑝ZI 𝑝ZK
𝑝IY 𝑝IZ 𝑝II 𝑝IK

𝑥"
.

𝑦"
.

𝑧"
.

1

Expanding the matrix as linear equations:

𝑢 . =
𝑝YY𝑥"

. + 𝑝YZ𝑦"
. + 𝑝YI𝑧"

. + 𝑝YK
𝑝IY𝑥"

. + 𝑝IZ𝑦"
. + 𝑝II𝑧"

. + 𝑝IK

𝑣 . =
𝑝ZY𝑥"

. + 𝑝ZZ𝑦"
. + 𝑝ZI𝑧"

. + 𝑝ZK
𝑝IY𝑥"

. + 𝑝IZ𝑦"
. + 𝑝II𝑧"

. + 𝑝IK

Known
Known Unknown

Camera Calibration Procedure
Step4: Rearranging the terms

Step5: Solve for P

𝐴 𝒑 = 0

𝑥"
Y 𝑦"

Y 𝑧"
Y 1 0 0 0 0 −𝑢Y𝑥"

Y −𝑢Y𝑦"
Y −𝑢Y𝑧"

Y −𝑢Y
0 0 0 0 𝑥"

Y 𝑦"
Y 𝑧"

Y 1 −𝑣Y𝑥"
Y −𝑣Y𝑦"

Y −𝑣Y𝑧"
Y −𝑣Y

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥"
. 𝑦"

. 𝑧"
. 1 0 0 0 0 −𝑢.𝑥"

. −𝑢.𝑦"
. −𝑢.𝑧"

. −𝑢.
0 0 0 0 𝑥"

. 𝑦"
. 𝑧"

. 1 −𝑣.𝑥"
. −𝑣.𝑦"

. −𝑣.𝑧"
. −𝑣.

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥"
P 𝑦"

P 𝑧"
P 1 0 0 0 0 −𝑢P𝑥"

P −𝑢P𝑦"
P −𝑢P𝑧"

P −𝑢P
0 0 0 0 𝑥"

P 𝑦"
P 𝑧"

P 1 −𝑣P𝑥"
P −𝑣P𝑦"

P −𝑣P𝑧"
P −𝑣P

𝑝YY
𝑝YZ
𝑝YI
𝑝YK
𝑝ZY
𝑝ZZ
𝑝ZI
𝑝ZK
𝑝IY
𝑝IZ
𝑝II
𝑝IK

=

0
0
0
0
0
0
0
0
0
0

Unknown
𝒑

𝐴
Known

Scale of Projection Matrix
Projection matrix acts on homogenous coordinates.

We know that: (k ≠0 is any constant)
A𝑢
A𝑣
@𝑤

≡ 𝑘
A𝑢
A𝑣
@𝑤

Therefore, Projection Matrices 𝑃 and 𝑘𝑃 produce the same
homogenous pixel coordinates.

That is:
𝑝YY 𝑝YZ 𝑝YI 𝑝YK
𝑝ZY 𝑝ZZ 𝑝ZI 𝑝ZK
𝑝IY 𝑝IZ 𝑝II 𝑝IK

𝑥"
𝑦"
𝑧"
1

≡ 𝑘
𝑝YY 𝑝YZ 𝑝YI 𝑝YK
𝑝ZY 𝑝ZZ 𝑝ZI 𝑝ZK
𝑝IY 𝑝IZ 𝑝II 𝑝IK

𝑥"
𝑦"
𝑧"
1

Projection Matrix P is defined only up to a scale.

Scale = 𝑘Z

Scale of Projection Matrix

Scaling projection matrix, implies simultaneously scaling
the world and camera, which does not change the image.

Scale = 𝑘Y

Set projection matrix to some arbitrary scale!

Least squares Solution for P

Define Loss function 𝐿 𝒑, λ :

𝐿 𝒑, 𝜆 = 𝒑𝑻𝐴a𝐴𝒑 − 𝜆 𝒑𝑻𝒑 − 1

Option 1: Set scale so that: 𝑝IK = 1
Option 2: Set scale so that: | 𝑝| Z = 1

We want Ap as close to 0 as possible and | 𝑝| Z = 1 :

min
|

𝑝a𝐴a𝐴𝑝 such that 𝑝a𝑝 = 1

(Similar to Solving Homography in Image Stitching)

min
�

||Ap||Z such that ||p||Z = 1

Constrained Least Squares Solution

Taking derivatives of 𝐿 𝒑, 𝜆 w.r.t 𝒑: 2𝐴a𝐴𝒑 − 2λ𝒑 = 0

𝐴a𝐴𝒑 = λ𝒑 Eigenvalue Problem

Rearrange solution 𝒑 to form the projection matrix 𝑷.

Eigenvector 𝒑 with smallest eigenvalue λ of matrix 𝐴a𝐴 minimizes
the loss function 𝐿 𝒑 .

Extracting Intrinsic/Extrinsic Parameters
We know that:

𝑃 =
𝑝YY 𝑝YZ 𝑝YI 𝑝YK
𝑝ZY 𝑝ZZ 𝑝ZI 𝑝ZK
𝑝IY 𝑝IZ 𝑝II 𝑝IK

=
𝑓0 0 𝑜0 0
0 𝑓5 𝑜5 0
0 0 1 0

𝑟YY 𝑟YZ 𝑟YI 𝑡0
𝑟ZY 𝑟ZZ 𝑟ZI 𝑡5
𝑟IY 𝑟IZ 𝑟II 𝑡4
0 0 0 1

𝑀��� 𝑀���That is:
𝑝YY 𝑝YZ 𝑝YI
𝑝ZY 𝑝ZZ 𝑝ZI
𝑝IY 𝑝IZ 𝑝II

=
𝑓0 0 𝑜0
0 𝑓5 𝑜5
0 0 1

𝑟YY 𝑟YZ 𝑟YI
𝑟ZY 𝑟ZZ 𝑟ZI
𝑟IY 𝑟IZ 𝑟II

= 𝐾𝑅

Given that K is an Upper Right Triangular matrix and R is an
Orthonormal matrix, it is possible to uniquely "decouple" K
and R from their product using "QR factorization".

Extracting Intrinsic/Extrinsic Parameters
We know that:

𝑃 =
𝑝YY 𝑝YZ 𝑝YI 𝑝YK
𝑝ZY 𝑝ZZ 𝑝ZI 𝑝ZK
𝑝IY 𝑝IZ 𝑝II 𝑝IK

=
𝑓0 0 𝑜0 0
0 𝑓5 𝑜5 0
0 0 1 0

𝑟YY 𝑟YZ 𝑟YI 𝑡0
𝑟ZY 𝑟ZZ 𝑟ZI 𝑡5
𝑟IY 𝑟IZ 𝑟II 𝑡4
0 0 0 1

𝑀��� 𝑀���That is:
𝑝YK
𝑝ZK
𝑝IK

=
𝑓0 0 𝑜0
0 𝑓5 𝑜5
0 0 1

𝑡0
𝑡5
𝑡4

= 𝐾𝒕

Therefore:

𝒕 = 𝐾`Y
𝑝YK
𝑝ZK
𝑝IK

Camera Calibration
Pinholes do not exhibit image distortions. But, lenses do!

The intrinsic model of the camera will need to include
the distortion coefficients. We ignore distortions here.

Actual

Tangential Distortion Radial Distortion

Ideal

Image Object

Actual

Ideal

Image Object

Backward Projection: From 2D to 3D
Given a calibrated camera, can we find the 3D scene point from a
single 2D image?

Image
Plane

Camera/World
Coordinate
Frame 𝐶

(0, 0, 0) +𝑥

+𝑦

𝑧̂

(𝑢, 𝑣)

Backward Projection: From 2D to 3D
Given a calibrated camera, can we find the 3D scene point from a
single 2D image?

Image
Plane

Projection of an image point back
into the scene results in an

outgoing ray.

Scene
Camera/World

Coordinate
Frame 𝐶

(0, 0, 0) +𝑥

+𝑦

𝑧̂

(𝑢, 𝑣)

Computing 2D-to-3D Outgoing Ray

2D-to-3D:
(Ray)

3D-to-2D:
(Point)

𝑢 = 𝑓0
𝑥'
𝑧'
+ 𝑜0

𝑣 = 𝑓5
𝑦'
𝑧'
+ 𝑜5

x = z/𝑓0 𝑢 − 𝑜0
y = 𝑧/𝑓5 𝑣 − 𝑜5

𝑧 > 0Image
Plane

Scene
Camera/World

Coordinate
Frame 𝐶

(0, 0, 0) +𝑥

+𝑦

𝑧̂

(𝑢, 𝑣)

Triangulation using Two Cameras

𝑓0, 𝑓5, 𝑏, 𝑜0, 𝑜5
are known.

𝑢� = 𝑓0
𝑥
𝑧 + 𝑜0

𝑣� = 𝑓5
𝑦
𝑧 + 𝑜5

𝑢� = 𝑓0
𝑥 − 𝑏
𝑧

+ 𝑜0

𝑣� = 𝑓5
𝑦
𝑧 + 𝑜5

Stereo System
(Binocular Vision)

Left
Camera

Right
Camera

Horizontal Baseline b

(0, 0, 0)

(𝑏, 0, 0)(𝑢�, 𝑣�)

+𝑥

+𝑦

𝑧̂

(𝑢�, 𝑣�)

(𝑥, 𝑦, 𝑧)

Simple Stereo: Depth and Disparity

Disparity is proportional to Baseline.

From perspective projection:

where (𝑢� − 𝑢�) is called Disparity.

𝑢�, 𝑣� = 𝑓0
𝑥
𝑧 + 𝑜0, 𝑓5

𝑦
𝑧 + 𝑜5 𝑢�, 𝑣� = 𝑓0

𝑥 − 𝑏
𝑧 + 𝑜0, 𝑓5

𝑦
𝑧 + 𝑜5

Solving for (𝑥, 𝑦, 𝑧):

𝑥 =
𝑏 𝑢� − 𝑜0
𝑢� − 𝑢�

𝑦 =
𝑏𝑓0 𝑣� − 𝑜5
𝑓5 𝑢� − 𝑢�

𝑧 =
𝑏𝑓0

𝑢� − 𝑢�

Depth z is inversely proportional to Disparity.

A Simple Stereo Camera

Fujifilm FinePix REAL 3D W3

Stereo Matching: Finding Disparities

Corresponding scene points lie on the same horizontal scan line.

Goal: Find the disparity between left and right stereo pairs.

Left/Right Camera Images

From perspective projection: 𝑣� = 𝑣� = 𝑓5
𝑦
𝑧 + 𝑜5

Disparity Map(Ground Truth)

Window Based Methods
Determine Disparity using Template Matching

Left Camera Image 𝐸� Right Camera Image 𝐸�

Search Scan Line 𝐿Template Window 𝑇

Window Based Methods
Determine Disparity using Template Matching

Template Window 𝑇 Search Scan Line 𝐿

Left Camera Image 𝐸� Right Camera Image 𝐸�

Template Window 𝑇

Window Based Methods

Disparity:

Determine Disparity using Template Matching

Template Window 𝑇

Left Camera Image 𝐸� Right Camera Image 𝐸�

Depth:𝑑 = 𝑢� − 𝑢� 𝑧 =
𝑏𝑓0

𝑢� − 𝑢�

Search Scan Line 𝐿Template Window 𝑇

Similarity Metrics for Template Matching
Find pixel 𝑘, 𝑙 ∈ 𝐿 with Minimum Sum of Absolute Differences:

𝑆𝐴𝐷 𝑘, 𝑙 =�
.,� ∈a

𝐸� 𝑖, 𝑗 − 𝐸� 𝑖 + 𝑘, 𝑗 + 𝑙

Find pixel 𝑘, 𝑙 ∈ 𝐿 with Minimum Sum of Squared Differences:

𝑆𝑆𝐷 𝑘, 𝑙 =�
.,� ∈a

𝐸� 𝑖, 𝑗 − 𝐸� 𝑖 + 𝑘, 𝑗 + 𝑙 Z

Find pixel 𝑘, 𝑙 ∈ 𝐿 with Maximum Normalized Cross-Correlation:

𝑁𝐶𝐶 𝑘, 𝑙 =
∑ .,� ∈a 𝐸� 𝑖, 𝑗 𝐸� 𝑖 + 𝑘, 𝑗 + 𝑙

∑ .,� ∈a 𝐸� 𝑖, 𝑗 Z ∑ .,� ∈a 𝐸� 𝑖 + 𝑘, 𝑗 + 𝑙 Z

Issues with Stereo Matching
• Surface must have (non-repetitive) texture

• Foreshortening effect makes matching challenging

𝐿 𝑅

How Large Should Window Be?

Adaptive Window Method Solution: For each point, match using
windows of multiple sizes and use the disparity that is a result of the
best similarity measure (minimize SSD per pixel).

Window size = 5 pixels
(Sensitive to noise)

Window size = 30 pixels
(Poor localization)

Window Based Methods: Results

http://vision.middlebury.edu/stereo

Left Image Right Image Ground Truths

SD (Window size=21) SSD - Adaptive Window State of the Art

Uncalibrated Stereo

!"#
$%&'()*'

Simple (Calibrated) Stereo

Stereo System
(Binocular Vision)

Left
Camera

Right
Camera

Horizontal Baseline b

(0, 0, 0)

(𝑏, 0, 0)(𝑢! , 𝑣!)

(𝑥

(𝑦

𝑧̂

(𝑢" , 𝑣")

(𝑥, 𝑦, 𝑧)
𝑢! = 𝑓#

𝑥
𝑧 + 𝑜#

𝑣! = 𝑓$
𝑦
𝑧 + 𝑜$

𝑢" = 𝑓#
𝑥 − 𝑏
𝑧

+ 𝑜#

𝑣" = 𝑓$
𝑦
𝑧 + 𝑜$

𝑓# , 𝑓$, 𝑏, 𝑜# , 𝑜$ are
in pixel units.

Depth and Disparity

Solving for (𝑥, 𝑦, 𝑧):

where (𝑢! − 𝑢") is called Disparity.

𝑥 =
𝑏 𝑢! − 𝑜#
𝑢! − 𝑢"

𝑦 =
𝑏𝑓# 𝑣! − 𝑜$
𝑓$ 𝑢! − 𝑢"

𝑧 =
𝑏𝑓#

𝑢! − 𝑢"

• Method to estimate 3D structure of a static scene from two
arbitrary views.

Uncalibrated stereo

• (2) Epipolar Geometry

• (4) Finding Dense Correspondences
• (3) Estimating Fundamental Matrix

• (5) Computing Depth

Topics:
• (1) Problem of Uncalibrated Stereo

Uncalibrated Stereo

Instrinsics (𝑓# , 𝑓$, 𝑜# , 𝑜$) are known for both views/cameras.

Compute 3D structure of static scene from two arbitrary views

Right
Camera

Left
Camera

Extrinsics (relative position/orientation of cameras) are unknown.

Uncalibrated Stereo

2. Find a few Reliable Corresponding Points
1. Assume Camera Matrix K is known for each camera

Scene

Left
Camera

Right
Camera

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

Initial Correspondence
Find a set of corresponding features (at least 8) in left and right
images (e.g. using SIFT or hand-picked).

Left image Right image

𝑢!
% , 𝑣!

% 𝑢"
% , 𝑣"

%

⋮ ⋮
𝑢!
& , 𝑣!

& 𝑢"
& , 𝑣"

&

Uncalibrated Stereo

1. Assume Camera Matrix K is known for each camera
2. Find a few Reliable Corresponding Points

Scene

Left
Camera

Right
Camera

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

𝑃

𝒙𝒓𝒙𝒍

3. Find Relative Camera Position t and Orientation R

5. Compute Depth using Triangulation

𝒕, 𝑅

4. Find Dense Correspondence

𝒖𝒍 𝒖𝒓

Epipolar Geometry: Epipoles

Epipole: Image point of origin/pinhole of one camera as
viewed by the other camera.

Scene

Left
Camera

Right
Camera

𝑃

𝒕, 𝑅

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

𝒙𝒓𝒙𝒍

𝒖𝒍 𝒖𝒓

𝒆𝒍 and 𝒆" are the epipoles.
𝒆𝒍 and 𝒆" are unique for a given stereo pair.

Epipolar Geometry: Epipolar Plane

Epipolar Plane of Scene Point P: The plane formed by camera
origins (𝑂! and 𝑂"), epipoles (𝒆! and 𝒆") and scene point P.

Scene

Left
Camera

Right
Camera

𝑃

𝒕, 𝑅

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

𝒙𝒓𝒙𝒍

Every scene point lies on a unique epipolar plane.

Epipolar
Plane

𝒖𝒍 𝒖𝒓
𝒆𝒍 𝒆𝒓

Epipolar Constraint

Dot product of 𝒏 and 𝒙! (perpendicular vectors) is zero:

𝒙! ⋅ 𝒕×𝒙! = 0

𝒕, 𝑅

(𝑥!𝑂!𝑧̂!

(𝑦!
(𝑥"

𝑂" 𝑧̂"

(𝑦"

𝒙𝒓𝒙𝒍

𝑃

Epipolar
Plane

Scene Point

Left
Camera

Right
Camera

Vector normal to the epipolar plane: 𝑛 = 𝒕×𝒙!

𝑛 = 𝒕×𝒙!

Normal
vector

Epipolar Constraint
Writing the epipolar constraint in matrix form:

𝒕)×%: Position of Right Camera in Left Camera's Frame
𝑅)×): Orientation of Left Camera in Right Camera's Frame

𝒙! ⋅ 𝒕×𝒙𝒍 = 0

Cross-product definition 𝑥! 𝑦! 𝑧!
𝑡$𝑧! − 𝑡+𝑦!
𝑡+𝑥! − 𝑡#𝑧!
𝑡#𝑦! − 𝑡$𝑥!

= 0

Matrix-vector form 𝑥! 𝑦! 𝑧!
0 −𝑡+ 𝑡$
𝑡+ 0 −𝑡#
−𝑡$ 𝑡# 0

𝑥!
𝑦!
𝑧!

= 0

𝑇×

𝒙! = 𝑅𝒙" + 𝒕
𝑥!
𝑦!
𝑧!

=
𝑟%% 𝑟%, 𝑟%)
𝑟,% 𝑟,, 𝑟,)
𝑟)% 𝑟), 𝑟))

𝑥"
𝑦"
𝑧"

+
𝑡#
𝑡$
𝑡+

Epipolar Constraint
Substituting into the epipolar constraint gives:

[Longuet-Higgins 1981]

𝑥! 𝑦! 𝑧!
0 −𝑡+ 𝑡$
𝑡+ 0 −𝑡#
−𝑡$ 𝑡# 0

𝑟%% 𝑟%, 𝑟%)
𝑟,% 𝑟,, 𝑟,)
𝑟)% 𝑟), 𝑟))

𝑥"
𝑦"
𝑧"

+
0 −𝑡+ 𝑡$
𝑡+ 0 −𝑡#
−𝑡$ 𝑡# 0

𝑡#
𝑡$
𝑡+

= 0

𝐸 = 𝑇×𝑅

𝒕×𝒕 = 0

Essential Matrix E

𝑥! 𝑦! 𝑧!
𝑒%% 𝑒%, 𝑒%)
𝑒,% 𝑒,, 𝑒,)
𝑒)% 𝑒), 𝑒))

𝑥"
𝑦"
𝑧"

= 0

Essential Matrix E: Decomposition

Take Away: If E is known, we can calculate t and R.

𝐸 = 𝑇×𝑅

𝑒%% 𝑒%, 𝑒%)
𝑒,% 𝑒,, 𝑒,)
𝑒)% 𝑒), 𝑒))

=
0 −𝑡+ 𝑡$
𝑡+ 0 −𝑡#
−𝑡$ 𝑡# 0

𝑟%% 𝑟%, 𝑟%)
𝑟,% 𝑟,, 𝑟,)
𝑟)% 𝑟), 𝑟))

Given that Tx is a Skew-Symmetric matrix (𝒂𝒊𝒋 = −𝒂𝒋𝒊) and R is
an Orthonormal matrix, it is possible to "decouple" 𝑇× and R
from their product using "Singular Value Decomposition".

How do we find E?

3D position in left
camera coordinates

Unfortunately, we don't have 𝒙𝒍 and 𝒙𝒓.

Relates 3D position (𝑥! , 𝑦! , 𝑧!) of scene point w.r.t left
camera to its 3D position (𝑥" , 𝑦" , 𝑧") w.r.t right camera

3D position in right
camera coordinates

3x3 Essential Matrix

𝒙!/𝐸𝒙" = 0

𝑥! 𝑦! 𝑧!
𝑒%% 𝑒%, 𝑒%)
𝑒,% 𝑒,, 𝑒,)
𝑒)% 𝑒), 𝑒))

𝑥"
𝑦"
𝑧"

= 0

But we do know corresponding points in image coordinates.

Incorporating the Image Coordinate
Perspective projection equations for left camera:

𝑢! = 𝑓#
! #!
+!
+ 𝑜#

! 𝑣! = 𝑓$
! $!
+!
+ 𝑜$

!

𝑧!𝑢! = 𝑓#
! 𝑥! + 𝑧!𝑜#

! 𝑧!𝑣! = 𝑓$
! 𝑦! + 𝑧!𝑜$

!

Known
Camera Matrix 𝐾0

Representing in matrix form:

𝑧!
𝑢!
𝑣!
1

=
𝑧!𝑢!
𝑧!𝑣!
𝑧!

=
𝑓#
! 𝑥! + 𝑧!𝑜#

!

𝑓$
! 𝑦! + 𝑧!𝑜$

!

𝑧!

=
𝑓#
! 0 𝑜#

!

0 𝑓$
! 𝑜$

!

0 0 1

𝑥!
𝑦!
𝑧!

Incorporating the Image Coordinate
Left camera:

𝐾!

Right camera:

𝐾"

𝑧!
𝑢!
𝑣!
1

=
𝑓#
! 0 𝑜#

!

0 𝑓$
! 𝑜$

!

0 0 1

𝑥!
𝑦!
𝑧!

𝑧"
𝑢"
𝑣"
1

=
𝑓#
" 0 𝑜#

"

0 𝑓$
" 𝑜$

"

0 0 1

𝑥"
𝑦"
𝑧"

𝒙!/ = 𝑢! 𝑣! 1 𝑧!𝐾!1%
" 𝒙"𝐾"1%𝑍" =

𝑐𝑢"
𝑣"
1

Incorporating the Image Coordinate
Epipolar constraint:

𝑥! 𝑦! 𝑧!
𝑒%% 𝑒%, 𝑒%)
𝑒,% 𝑒,, 𝑒,)
𝑒)% 𝑒), 𝑒))

𝑥"
𝑦"
𝑧"

= 0

Rewriting in terms of image coordinates:

𝑢! 𝑣! 1 𝑧!𝐾!1%
𝑒%% 𝑒%, 𝑒%)
𝑒,% 𝑒,, 𝑒,)
𝑒)% 𝑒), 𝑒))

𝐾"1%𝑧"
𝑢"
𝑣"
1

= 0

𝑧! ≠ 0
𝑧" ≠ 0

Incorporating the Image Coordinate
Epipolar constraint:

Rewriting in terms of image coordinates:

𝑥! 𝑦! 𝑧!
𝑒%% 𝑒%, 𝑒%)
𝑒,% 𝑒,, 𝑒,)
𝑒)% 𝑒), 𝑒))

𝑥"
𝑦"
𝑧"

= 0

𝑢! 𝑣! 1 𝐾!1%
𝑒%% 𝑒%, 𝑒%)
𝑒,% 𝑒,, 𝑒,)
𝑒)% 𝑒), 𝑒))

𝐾"1%
𝑢"
𝑣"
1

= 0

Fundamental Matrix F

[Fagueras 1992, Luong 1992]

𝑢! 𝑣! 1
𝑓%% 𝑓%, 𝑓%)
𝑓,% 𝑓,, 𝑓,)
𝑓)% 𝑓), 𝑓))

𝑢"
𝑣"
1

= 0

𝐸 = 𝐾!/𝐹𝐾" 𝐸 = 𝑇×𝑅

Epipolar constraint:

𝑥! 𝑦! 𝑧!
𝑒%% 𝑒%, 𝑒%)
𝑒,% 𝑒,, 𝑒,)
𝑒)% 𝑒), 𝑒))

𝑥"
𝑦"
𝑧"

= 0

Rewriting in terms of image coordinates:

Fundamental Matrix F

Stereo Calibration Procedure
Find a set of corresponding features in left and right images(e.g.
using SIFT or hand-picked)

Left image Right image

Stereo Calibration Procedure
Find a set of corresponding features in left and right images(e.g.
using SIFT or hand-picked)

Left image Right image

𝑢!
% , 𝑣!

% 𝑢"
% , 𝑣"

%

⋮ ⋮
𝑢!
& , 𝑣!

& 𝑢"
& , 𝑣"

&

Stereo Calibration Procedure
Step A: For each correspondence 𝑖, write out epipolar constraint.

Expand the matrix to get linear equation:

𝑓%%𝑢"
0 + 𝑓%,𝑣"

0 + 𝑓%) 𝑢!
0 + 𝑓,%𝑢"

0 + 𝑓,,𝑣"
0 + 𝑓,) 𝑣!

0 + 𝑓)%𝑢"
0 + 𝑓),𝑣"

0 + 𝑓)) = 0

𝑢!
0 𝑣!

0 1
𝑓%% 𝑓%, 𝑓%)
𝑓,% 𝑓,, 𝑓,)
𝑓)% 𝑓), 𝑓))

𝑢"
0

𝑣"
0

1
= 0

KnownUnknownKnown

Stereo Calibration Procedure
Step B: Rearrange terms to form a linear system.

𝐴𝒇 = 0

𝒇
(Unknown)

(Known)
𝐴

𝑢!
% 𝑢"

% 𝑢!
% 𝑣"

% 𝑢!
% 𝑣!

% 𝑢"
% 𝑣!

% 𝑣"
% 𝑣!

% 𝑢"
% 𝑣"

% 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑢!
0 𝑢"

0 𝑢!
0 𝑣"

0 𝑢!
0 𝑣!

0 𝑢"
0 𝑣!

0 𝑣"
0 𝑣!

0 𝑢!
0 𝑢"

0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑢!
& 𝑢"

& 𝑢!
& 𝑣"

& 𝑢!
& 𝑣!

& 𝑢"
& 𝑣!

& 𝑣"
& 𝑣!

& 𝑢!
& 𝑢"

& 1

𝑓%%
𝑓,%
𝑓)%
𝑓,%
𝑓,,
𝑓,)
𝑓)%
𝑓),
𝑓))

=

0
⋮
0
⋮
0

The Tale of Missing Scale
Fundamental matrix acts on homogenous coordinates.

Fundamental Matrix 𝐹 and 𝑘𝐹 describe the same epipolar
geometry. That is, 𝐹 is defined only up to a scale.

Set Fundamental Matrix to some arbitrary scale.

𝒇 , = 1

𝑢! 𝑣! 1
𝑓%% 𝑓%, 𝑓%)
𝑓,% 𝑓,, 𝑓,)
𝑓)% 𝑓), 𝑓))

𝑢"
𝑣"
1

= 0 = 𝑢! 𝑣! 1
𝑘𝑓%% 𝑘𝑓%, 𝑘𝑓%)
𝑘𝑓,% 𝑘𝑓,, 𝑘𝑓,)
𝑘𝑓)% 𝑘𝑓), 𝑘𝑓))

𝑢"
𝑣"
1

Solving for 𝑭
Step C: Find least squares solution for fundamental matrix F.

Like solving Projection Matrix during Camera Calibration.
Or, Homography Matrix for Image Stitching.

min
2

𝐴𝒇 , such that 𝒇 , = 1

We want 𝐴𝒇as close to 0 as possible and 𝒇 , = 1:

Constrained linear least squares problem

Rearrange solution f to form the fundamental matrix F.

Extracting Rotation and Translation
Step D: Compute essential matrix E from known left and
right intrinsic camera matrices and fundamental matrix F.

𝐸 = 𝐾!/𝐹𝐾"

Step E: Extract R and t from E.

(Using Singular Value Decomposition)

𝐸 = 𝑇×𝑅

Uncalibrated Stereo

1. Assume Camera Matrix K is known for each camera
2. Find a few Reliable Corresponding Points

Scene

Left
Camera

Right
Camera

𝑃

𝒕, 𝑅

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

𝒙𝒓𝒙𝒍

3. Find Relative Camera Position t and Orientation R
4. Find Dense Correspondence
5. Compute Depth using Triangulation

Simple Stereo: Finding Correspondences
Goal: Find the disparity between left and right stereo pairs.

Left/Right Camera Images Disparity Map(Ground Truth)

Corresponding scene points lie on the same horizontal scan-line
Finding correspondence is a 1D search.

Epipolar Geometry: Epipolar Line

Every scene point has two corresponding epipolar lines, one each
on the two image planes.

Scene

Left
Camera

Right
Camera

𝑃

𝒕, 𝑅

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

𝒙𝒓𝒙𝒍 Epipolar
Plane

𝒖𝒍 𝒖𝒓
𝒆𝒍 𝒆𝒓

Epipolar Line: Intersection of image plane and epipolar plane.

Epipolar Geometry: Epipolar Line

Scene

Left
Camera

Right
Camera

𝑃

𝒕, 𝑅

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

𝒙𝒓𝒙𝒍 Epipolar
Plane

𝒖𝒍 𝒖𝒓
𝒆𝒍 𝒆𝒓

Given a point in one image, the corresponding point in the
other image must lie on the epipolar line.

Finding correspondence reduces to a 1D search.

Finding Epipolar Lines
Given: Fundamental matrix F and point on left image 𝑢, 𝑣
Find: Equation of Epipolar line in the right image

Similarly we can calculate epipolar line in left image for a point
in right image.

𝑢! 𝑣! 1
𝑓%% 𝑓%, 𝑓%)
𝑓,% 𝑓,, 𝑓,)
𝑓)% 𝑓), 𝑓))

𝒖𝒓
𝒗𝒓
𝟏

= 0

Epipolar Constraint Equation:

𝑓%%𝑢! + 𝑓,%𝑣! + 𝑓)% 𝒖" + 𝑓%,𝑢! + 𝑓,,𝑣! + 𝑓), 𝒗𝒓 + 𝑓%)𝑢! + 𝑓,)𝑣! + 𝑓)) = 0

Expanding the matrix equation gives:

𝑎!𝒖𝒓 + 𝑏!𝒗𝒓 + 𝑐! = 0Equation for right epipolar line:

Finding Epipolar Lines: Example
Left Image Right Image Given the Fundamental matrix,

𝐹 =
−.003 −.028 13.19
−.003 −.008 −29.2
2.97 56.38 −9999

Finding Epipolar Lines: Example
Left Image Right Image Given the Fundamental matrix,

𝐹 =
−.003 −.028 13.19
−.003 −.008 −29.2
2.97 56.38 −9999

and the left image point

c𝑢! =
343
221
1

The equation for the epipolar line in the right image is:

𝑢" 𝑣" 1
−.003 −.003 2.97
−.028 −.008 56.38
13.19 −29.2 −9999

343
221
1

= 0

Finding Epipolar Lines: Example

The equation for the epipolar line in the right image is:

Left Image Right Image Given the Fundamental matrix,

and the left image point

𝐹 =
−.003 −.028 13.19
−.003 −.008 −29.2
2.97 56.38 −9999

c𝑢! =
343
221
1 Epipolar Line

.03𝑢" + .99𝑣" − 265 = 0

Finding Correspondence

Corresponding scene points lie on the epipolar lines.
Finding correspondence is a 1D search.

Left Image Right Image

Epipolar Line

Finding Correspondence

Corresponding scene points lie on the epipolar lines.
Finding correspondence is a 1D search.

Left Image Right Image

Epipolar Line

Uncalibrated Stereo

1. Assume Camera Matrix K is known for each camera
2. Find a few Reliable Corresponding Points

Scene

Left
Camera

Right
Camera

𝑃

𝒕, 𝑅

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

𝒙𝒓𝒙𝒍

3. Find Relative Camera Position t and Orientation R
4. Find Dense Correspondence
5. Compute Depth using Triangulation

Computing Depth

Given the intrinsic parameters, the projections of scene point
on the two image sensors are:

𝑢!
𝑣!
1

≡
𝑓#
! 0 𝑜#

! 0
0 𝑓$

! 𝑜$
! 0

0 0 1 0

𝑥!
𝑦!
𝑧!
1

𝑢"
𝑣"
1

≡
𝑓#
" 0 𝑜#

" 0
0 𝑓$

" 𝑜$
" 0

0 0 1 0

𝑥"
𝑦"
𝑧"
1

Scene

Left
Camera

Right
Camera

𝑃

𝒕, 𝑅

(𝑥!𝑂!

(𝑣!
(𝑢!

𝑧̂!

(𝑦!
(𝑥"

𝑂"

(𝑣"

(𝑢"

𝑧̂"

(𝑦"

𝒙𝒓𝒙𝒍

Computing Depth
Left Camera Imaging Equation

𝑢!
𝑣!
1

≡
𝑓#
! 0 𝑜#

! 0
0 𝑓$

! 𝑜$
! 0

0 0 1 0

𝑥!
𝑦!
𝑧!
1

𝑢"
𝑣"
1

≡
𝑓#
" 0 𝑜#

" 0
0 𝑓$

" 𝑜$
" 0

0 0 1 0

𝑥"
𝑦"
𝑧"
1

Right Camera Imaging Equation

𝑥!
𝑦!
𝑧!
1

=

𝑟%% 𝑟%, 𝑟%) 𝑡#
𝑟,% 𝑟,, 𝑟,) 𝑡$
𝑟)% 𝑟), 𝑟)) 𝑡+
0 0 0 1

𝑥"
𝑦"
𝑧"
1

We also know the relative position and orientation between the two
cameras.

Computing Depth
Left Camera Imaging Equation:

𝑢!
𝑣!
1

≡
𝑓#
! 0 𝑜#

! 0
0 𝑓$

! 𝑜$
! 0

0 0 1 0

𝑟%% 𝑟%, 𝑟%) 𝑡#
𝑟,% 𝑟,, 𝑟,) 𝑡$
𝑟)% 𝑟), 𝑟)) 𝑡+
0 0 0 1

𝑥"
𝑦"
𝑧"
1

𝑢"
𝑣"
1

≡
𝑓#
" 0 𝑜#

" 0
0 𝑓$

" 𝑜$
" 0

0 0 1 0

𝑥"
𝑦"
𝑧"
1

f𝒖! = 𝑃!f𝒙"

f𝒖" = 𝑀034#f𝒙"

Right Camera Imaging Equation:

Computing Depth
The imaging equation:

f𝒖" = 𝑀"f𝒙" f𝒖! = 𝑃!f𝒙"

𝑢"
𝑣"
1

≡
𝑚%% 𝑚%, 𝑚%) 𝑚%5
𝑚,% 𝑚,, 𝑚,) 𝑚,5
𝑚)% 𝑚), 𝑚)) 𝑚)5

𝑥"
𝑦"
𝑧"
1

𝑢!
𝑣!
1

≡
𝑝%% 𝑝%, 𝑝%) 𝑝%5
𝑝,% 𝑝,, 𝑝,) 𝑝,5
𝑝)% 𝑝), 𝑝)) 𝑝)5

𝑥"
𝑦"
𝑧"
1

Known Unknown

𝑢"𝑚)% −𝑚%% 𝑢"𝑚), −𝑚%, 𝑢"𝑚)) −𝑚%)
𝑣"𝑚)% −𝑚,% 𝑣"𝑚), −𝑚,, 𝑣"𝑚)) −𝑚,)
𝑢!𝑝)% − 𝑝%% 𝑢!𝑝), − 𝑝%, 𝑢!𝑝)) − 𝑝%)
𝑣!𝑝)% − 𝑝,% 𝑣!𝑝), − 𝑝,, 𝑣!𝑝)) − 𝑝,)

𝑥"
𝑦"
𝑧"

=

𝑚%5 −𝑚)5
𝑚,5 −𝑚)5
𝑝%5 − 𝑝)5
𝑝,5 − 𝑝)5

Rearranging the terms:

Known Unknown

Computing Depth: Least Squares Solution

Find least squares solution using pseudo-inverse:

𝐴𝒙" = 𝒃

𝒙"= 𝐴/𝐴 1%𝐴/𝒃

𝐴/𝐴𝒙" = 𝐴/𝒃

𝑢"𝑚)% −𝑚%% 𝑢"𝑚), −𝑚%, 𝑢"𝑚)) −𝑚%)
𝑣"𝑚)% −𝑚,% 𝑣"𝑚), −𝑚,, 𝑣"𝑚)) −𝑚,)
𝑢!𝑝)% − 𝑝%% 𝑢!𝑝), − 𝑝%, 𝑢!𝑝)) − 𝑝%)
𝑣!𝑝)% − 𝑝,% 𝑣!𝑝), − 𝑝,, 𝑣!𝑝)) − 𝑝,)

𝑥"
𝑦"
𝑧"

=

𝑚%5 −𝑚)5
𝑚,5 −𝑚)5
𝑝%5 − 𝑝)5
𝑝,5 − 𝑝)5

(Known) (Known)(Unknown)
𝐴5×) 𝒙𝒓 𝒃5×%

3D Reconstruction with Internet Images
St. Peter's Basilica (1275 Images)

[Snavely 2006]

3D Reconstruction with Internet Images
St. Peter's Basilica (1275 Images)

[Snavely 2006]

3D Reconstruction with Internet Images
Piazza San Marco (13709 Images)

[Furukawa 2010]

3D Reconstruction with Internet Images
Piazza San Marco (13709 Images)

[Furukawa 2010]

Active Stereo Results

[Zhang 2003]

Left Image Right Image 3D Structure

Active Stereo Results

[Zhang 2003]

Left Image Right Image 3D Structure

Optical Flow

!"#
$%&'()*'

Method to estimate apparent motion of scene points from a
sequence of images

Topics:
(1) Motion Field and Optical Flow
(2) Optical Flow Constraint Equation
(3) Lucas-Kanada Method
(4) Coarse-to-Fine Flow Estimation
(5) Applications of Optical Flow

Overview

Motion Field

Scene Point Velocity: 𝐯! =
𝑑𝒓!
𝑑𝑡

Sensor
Pinhole

Scene
Point

𝑓

𝒛
𝒓"

𝒓" + 𝛿𝒓"

𝒑"

𝒓!

𝒓! + 𝛿𝒓! 𝒑!

𝐯" 7 𝛿𝑡

𝐯! 7 𝛿𝑡

Image Point Velocity: 𝐯" =
𝑑𝒓"
𝑑𝑡

Perspective projection:
𝒓"
𝑓 =

𝒓!
𝒓! 7 𝒛

= 𝑓
𝒓! 7 𝒛 𝐯! − 𝐯! 7 𝒛 𝒓!

𝒓! 7 𝒛 #

𝐯" =
𝒓!×𝐯! ×𝒛
𝒓! 7 𝒛 #

(Motion Field)

Motion of brightness patterns in the image

Image Sequence
(2 frames)

Optical Flow

Optical Flow

Motion Field exists
But no Optical Flow

When is Optical Flow ≠ Motion Field ?

No Motion Field exists
But there is Optical Flow

When is Optical Flow ≠ Motion Field ?

Motion Illusions

Optical Flow

(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦)(𝑥, 𝑦)

𝑡 𝑡 + 𝛿𝑡

Displacement: (𝛿𝑥, 𝛿𝑦) Optical Flow: 𝑢, 𝑣 = (
𝛿𝑥
𝛿𝑡 ,

𝛿𝑦
𝛿𝑡)

Assumption #1!
Brightness of image point remains constant over time

Optical Flow Constraint Equation

𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡)𝐼(𝑥, 𝑦, 𝑡)

𝐼 𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡 = 𝐼(𝑥, 𝑦, 𝑡)

Assumption #2!

Optical Flow Constraint Equation

𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡)𝐼(𝑥, 𝑦, 𝑡)

Dispacement 𝛿𝑥, 𝛿𝑦 and time step 𝛿𝑡 are small

𝐼 𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡 = 𝐼 𝑥, 𝑦, 𝑡 +
𝜕𝐼
𝜕𝑥 𝛿𝑥 +

𝜕𝐼
𝜕𝑦 𝛿𝑦 +

𝜕𝐼
𝜕𝑡 𝛿𝑡

𝐼 𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡 = 𝐼 𝑥, 𝑦, 𝑡 + 𝐼$𝛿𝑥 + 𝐼%𝛿𝑦 + 𝐼&𝛿𝑡

Subtract (1) from (2)!

Optical Flow Constraint Equation

𝐼 𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡 = 𝐼(𝑥, 𝑦, 𝑡)

𝐼 𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡 = 𝐼 𝑥, 𝑦, 𝑡 + 𝐼!𝛿𝑥 + 𝐼"𝛿𝑦 + 𝐼#𝛿𝑡

(1)

(2)

𝐼!𝛿𝑥 + 𝐼"𝛿𝑦 + 𝐼#𝛿𝑡 = 0

Divide by 𝛿𝑡 and take limit as 𝛿𝑡 → 0! 𝐼!
𝜕𝑥
𝜕t
+ 𝐼"

𝜕𝑦
𝜕𝑡
+ 𝐼# = 0

Constraint Equation! 𝐼!𝑢 + 𝐼"𝑣 + 𝐼# = 0 𝑢, 𝑣 : Optical Flow

(𝐼!, 𝐼", 𝐼#) can be easily computed from two frames

Computing Partial Derivatives 𝑰𝒙, 𝑰𝒚, 𝑰𝒕

𝐼$ 𝑘, 𝑙, 𝑡

=
1
4 𝐼 𝑘 + 1, 𝑙, 𝑡 + 𝐼 𝑘 + 1, 𝑙 + 1, 𝑡 + 𝐼 𝑘 + 1, 𝑙, 𝑡 + 1 + 𝐼 𝑘 + 1, 𝑙 + 1, 𝑡 + 1

−
1
4 𝐼 𝑘, 𝑙, 𝑡 + 𝐼 𝑘, 𝑙 + 1, 𝑡 + 𝐼 𝑘, 𝑙, 𝑡 + 1 + 𝐼 𝑘, 𝑙 + 1, 𝑡 + 1

Similarly find 𝐼% 𝑘, 𝑙, 𝑡 and 𝐼&(𝑘, 𝑙, 𝑡)

Geometric interpretation
For any point (𝑥, 𝑦) in the image,
its optical flow 𝑢, 𝑣 lies on the
line:

𝐼!𝑢 + 𝐼"𝑣 + 𝐼# = 0

Optical Flow can be split into two
components.

𝒖 = 𝒖' + 𝒖(
𝒖': Normal Flow

𝒖(: Parallel Flow

𝑢

𝑣

𝐮(𝑢, 𝑣)

Constraint line
𝐼!𝑢 + 𝐼"𝑣 + 𝐼# = 0

𝐮$
𝐮%

(𝐼!, 𝐼")

Normal Flow
Direction of Normal Flow!
Unit vector perpendicular to the
constraint line:

+𝒖$ =
(𝐼!, 𝐼")

𝐼!& + 𝐼"&

Magnitude of Normal Flow!
Distance of origin from the
constant line:

𝒖$ =
𝐼#

𝐼!& + 𝐼"&
𝒖' =

𝐼&
(𝐼$#+𝐼%#)

(𝐼$, 𝐼%)

𝑢

𝑣

𝐮(𝑢, 𝑣)

Constraint line
𝐼!𝑢 + 𝐼"𝑣 + 𝐼# = 0

𝐮$
𝐮%

(𝐼!, 𝐼")

Parallel Flow

We can not determine 𝑢$,
the optical flow component
parallel to the constraint line.

𝑢

𝑣

𝐮(𝑢, 𝑣)

Constraint line
𝐼!𝑢 + 𝐼"𝑣 + 𝐼# = 0

𝐮$
𝐮% = ?

(𝐼!, 𝐼")

Aperture Problem

Locally, we can only determine Normal Flow!

Optical Flow is Under constrained

Constraint Equation! 𝐼!𝑢 + 𝐼"𝑣 + 𝐼# = 0

2 unknowns, 1 equation.

Lucas-Kanada Solution
Assumption!For each pixel, assume Motion Field, and hence Optical
Flow 𝑢, 𝑣 , is constant within a small neighbourhood 𝑊.

𝑊

That is for all points (𝑘, 𝑙) ∈ 𝑊!

𝐼!(𝑘, 𝑙)𝑢 + 𝐼"(𝑘, 𝑙)𝑣 + 𝐼#(𝑘, 𝑙) = 0

Lucas-Kanada Solution
For all points 𝑘, 𝑙 ∈ 𝑊: 𝐼! (𝑘, 𝑙)𝑢 + 𝐼"(𝑘, 𝑙)𝑣 + 𝐼#(𝑘, 𝑙) = 0
Let the size of window 𝑊 be 𝑛×𝑛
In matrix form!

𝐼$(1,1)
⋮

𝐼%(1,1)
⋮

𝐼$(𝑘, 𝑙)
⋮

𝐼$(𝑛, 𝑛)

𝐼%(𝑘, 𝑙)
⋮

𝐼%(𝑛, 𝑛)

u
𝑣 = −

𝐼&(1,1)
⋮

𝐼&(𝑘, 𝑙)
⋮

𝐼&(𝑛, 𝑛)

𝐴
(Known)
𝑛!×2

𝐵
(Known)
𝑛!×1

𝒖
(Unknown)

2×1

𝒏𝟐 Equations, 2 Unknowns!Find Least Squares Solution

When Dose Optical Flow Estimation Work?

𝐴𝑢 = 𝐵 𝐴-𝐴𝑢 = 𝐴-𝐵

• 𝐴-𝐴 must be invertible. That is det 𝐴-𝐴 ≠ 0

• 𝐴-𝐴 must be well-conditioned.

If λ. and λ/ are eigen values of 𝐴-𝐴, then

λ. > 𝜖 and λ/ > 𝜖

λ. ≥ λ/ but not λ. ≫ λ/

Smooth Regions (Bad)

𝜆!~𝜆"
Both are small

Equations for all pixels in window are both more or less the same
Cannot reliably compute flow!

Edges (Bad)

𝜆! ≫ 𝜆"

Badly conditioned. Prominent gradient in one direction.

Cannot reliably compute flow!
Same as Aperture Problem.

Textured Regions (Good)

𝜆!~𝜆"
Both are Large

Well conditioned. Large and diverse gradient magnitudes.
Can reliably compute optical flow!

What if we have Large Motion?

Taylor Series approximation of

𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) is not valid

Our simple linear constraint

equation not valid

𝐼$𝑢 + 𝐼%𝑣 + 𝐼& ≠ 0

Large Motion: Coarse-to-Fine Estimation

Resolution
𝑁×𝑁

Resolution
'
&×

'
&

Resolution
'
(×

'
(

Resolution
'
)×

'
)

At lowest resolution, motion ≤ 1 pixel

Coarse-to-Fine Estimation Algorithm
OF

𝑡 𝑡 + 𝛿𝑡

+

(𝑢, 𝑣)($)

Warp OF

∆(𝑢, 𝑣)(!)
𝑡 𝑡 + 𝛿𝑡

(𝑢, 𝑣)(!)

Warp

𝑡 𝑡 + 𝛿𝑡

(𝑢, 𝑣)(&'!)

OF

+
∆(𝑢, 𝑣)(&)

⋮ ⋮ ⋮

(𝑢, 𝑣)(&)

Image Sequence

Results: Tree Sequence

Optical Flow

Image Sequence

Results: Rotating Ball

Optical Flow

Image 𝐼) at time 𝑡

Alternative Approach: Template Matching

Determine Flow using Template Matching

Template window 𝑇 Search window S

Image 𝐼# at time 𝑡 + 𝛿𝑡

For each template window 𝑇 in image 𝐼),
find the corresponding match in image 𝐼#

Image 𝐼) at time 𝑡

Alternative Approach: Template Matching

Determine Flow using Template Matching

Template window 𝑇 Search window S

Image 𝐼# at time 𝑡 + 𝛿𝑡

1. Template Matching is slow when search window S is large.

2. Also mismatches are possible

Estimating Mouse Movements

Applications: Optical Mouse

Finding Velocities of Vehicles

Applications: Traffic Monitoring

Optical Flow is used to determine the intermediate frames
to produce slow-motion effect.

Applications: Video Retiming

Struction from Motion

!"#
$%&'()*'

Uncontrolled (Casual) Video

Compute 3D scene structure and camera motion from a sequence
of frames.
Topics:
(1) Structure from Motion Problem
(2) SFM Observation Matrix
(3) Rank of Observation Matrix
(4) Tomasi-Kanade Factorization

Overview

• Detect feature points: Corners , SIFT points , ...
• Track feature points: Template Matching, Optical Flow...

Feature Detection and Tracking

Orthographic Structure from Motion

Given sets of corresponding image points (2D): (𝑢!,#, 𝑣!,#)
Find scene points (3D) 𝑃#, assuming orthographic camera.

𝑥

𝑦

𝑧

Frame 1 Frame F

Frame f

p = 1,2,...,N points

From 3D to 2D: Orthographic Projection

𝑢 = 𝑖 ' 𝑥! = 𝑖"𝑥!
𝑣 = 𝑗 ' 𝑥! = 𝑗"𝑥!

Perspective cameras exhibit orthographic projection when
distance of scene from camera is large compared to depth
variation within scene (magnification is nearly constant).

Scene Point
P

𝑥!
𝐶

𝑢

𝑖

𝑗

Image Plane

From 3D to 2D: Orthographic Projection

𝑢 = 𝑖"𝑥!
𝑣 = 𝑗"𝑥!

= 𝑖"(𝑥# − 𝑐#)
= 𝑗"(𝑥# − 𝑐#)

= 𝑖"(𝑃 − 𝐶)

= 𝑗"(𝑃 − 𝐶)

𝑢 = 𝑖"(𝑃 − 𝐶)

𝑣 = 𝑗"(𝑃 − 𝐶)

Scene Point
P

𝑥!

𝐶

𝑢

𝑖

𝑗

Image Plane

𝑥#

𝑐#
World

Coordinate W

0𝑥#

𝑧̂#

0𝑦#

𝑂

Given corresponding image points (2D) (𝑢!,#, 𝑣!,#)
Find scene points {𝑃# }.
Camera Positions {𝐶!}, camera orientations {(𝑖!, 𝑗!)} are unknown.

𝑥

𝑦

𝑧

p = 1,2,...,N points

f = 1,2,...,N
frames

Orthographic SFM

Orthographic SFM

Image of point P in camera frame f :
𝑢$,& = 𝑖$" (𝑃& − 𝐶$)

𝑣$,& = 𝑗$" (𝑃& − 𝐶$)

We can remove C from equations to simply SFM problem.
Known Unknown

𝑥

𝑦

𝑧

p = 1,2,...,N points

f = 1,2,...,N
frames

Centering Trick

Assume origin of world at centroid of scene points:

1
𝑁
*
#$%

&

𝑃# = ,𝑃 = 0

We will compute scene points w.r.t their centroid!

𝑥

𝑦

𝑧

3D centroid

Scene
𝑖$

𝑗$
𝐶$

Frame f

Centering Trick

𝑥

𝑦

𝑧

3D centroid

Scene
𝑖$

𝑗$
𝐶$

Frame f

Centroid (,𝑢!, 𝑣̅!) of the image points in frame 𝑓 :

3𝑢$ =
'
(
∑&)'(𝑢$,& =

'
(
∑&)'(𝑖$" (𝑃& − 𝐶$)

3𝑢$ =
'
(
𝑖$" ∑&)'(𝑃& −

'
(
∑&)'(𝑖$" 𝐶$

3𝑢$ = −𝑖$" 𝐶$

𝑣̅$ =
'
(
∑&)'(𝑣$,& =

'
(
∑&)'(𝑗$" (𝑃& − 𝐶$)

𝑣̅$ =
'
(
𝑗$" ∑&)'(𝑃& −

'
(
∑&)'(𝑗$" 𝐶$

𝑣̅$ = −𝑗$" 𝐶$

2D centroid (3𝑢$, 𝑣̅$)

Centering Trick

𝑥

𝑦

𝑧

3D centroid

Scene
𝐶$

Frame f

2D centroid (3𝑢$, 𝑣̅$)
𝑖$

𝑗$

Shift camera origin to the centroid (,𝑢!, 𝑣̅!) .

7𝑢$,& = 𝑢$,& − 3𝑢$ = 𝑖$" 𝑃& − 𝐶$ + 𝑖$" 𝐶$
7𝑢$,& = 𝑖$" 𝑃&

Camera locations 𝐶! now removed from equations.

7𝑣$,& = 𝑣$,& − 𝑣̅$ = 𝑗$" 𝑃& − 𝐶$ + 𝑗$" 𝐶$

7𝑣$,& = 𝑗$" 𝑃&

Image points w.r.t. (,𝑢!, 𝑣̅!) :

𝑖$
𝑗$

Observation Matrix W
7𝑢$,& = 𝑖$" 𝑃&
7𝑣$,& = 𝑗$" 𝑃&

7𝑢$,&
7𝑢$,&

=
𝑖$"

𝑗$"
𝑃&

𝑊'(×& 𝑀'(×*

𝑆*×&

Centroid-Subtracted
Feature Points (Known)

Camera Motion
(Unknown)

Scene Struction
(Unknown)

! ! !

! ! !

! ! !

[]

1,1 1,2 1,
1

2,1 2,2 2,
2

,1 ,2 ,
1 2

1,1 1,2 1, 1

22,1 2,2 2,

,1 ,2 ,

N T

TN

T
F F F N N

NT
N

T
N

T
N

F F F N

u u u i
u u u i

u u u i
P P P

jv v v
jv v v

j
v v v

é ù
é ùê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú = ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úë ûê ú

ë û

"

"

#

"
"

! ! !"

! ! !"

#
#

! ! !"

Point 1 Point 2 Point N

Point 1 Point 2 Point N

Image 1

Image 2

Image F

Image 1

Image 2

Image F

Observation Matrix W

Can we find M and s from W ?

𝑊'(×& 𝑀'(×*

𝑆*×&

Centroid-Subtracted
Feature Points (Known)

Camera Motion
(Unknown)

Scene Struction
(Unknown)

! ! !

! ! !

! ! !

[]

1,1 1,2 1,
1

2,1 2,2 2,
2

,1 ,2 ,
1 2

1,1 1,2 1, 1

22,1 2,2 2,

,1 ,2 ,

N T

TN

T
F F F N N

NT
N

T
N

T
N

F F F N

u u u i
u u u i

u u u i
P P P

jv v v
jv v v

j
v v v

é ù
é ùê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú = ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úë ûê ú

ë û

"

"

#

"
"

! ! !"

! ! !"

#
#

! ! !"

Point 1 Point 2 Point N

Point 1 Point 2 Point N

Image 1

Image 2

Image F

Image 1

Image 2

Image F

A set of vectors {𝑣9, 𝑣:, … 𝑣;} is said to be linearly independent
if no vector can be represented as a weighted linear sum of the
others.

Linear Independence of Vectors

{𝑖, 𝑗} is linearly independent.

{𝑖, 𝑗, 𝑣%} is linearly dependent.

{𝑖, 𝑗, 𝑣*} is linearly dependent.

{𝑣%, 𝑣', 𝑣*} is linearly dependent.
𝑖

𝑗

𝑣'

𝑣*

𝑣+

• Column Rank: The number of linearly independent columns of
the matrix.

• Row Rank: The number of linearly independent rows of the
matrix.

Rank of a Matrix

ColumnRank(A)≤n ColumnRank(A)≤m

ColumnRank(A) = RowRank(A) = Rank(A)
Rank(A) ≤ min(m,n)

[]
1

2
1 2

T

T

n

T
n

r
r

m A c c c

rn

é ù
é ù ê ú
ê ú ê ú= =ê ú ê ú
ê ú ê úë û

ê úë û

!
"

Rank is the dimensionality of the space spanned by column or row
vectors of the matrix.

Geometric Meaning of Matrix Rank

Rank(A) =1 𝑎
𝑏

𝑐

𝐴 =
𝑎' 𝑏' 𝑐'
𝑎* 𝑏* 𝑐*
𝑎+ 𝑏+ 𝑐+

= 𝒂 𝒃 𝒄

Rank is the dimensionality of the space spanned by column or row
vectors of the matrix.

Geometric Meaning of Matrix Rank

Rank(A) =2

𝑎

𝑏

𝑐

𝐴 =
𝑎' 𝑏' 𝑐'
𝑎* 𝑏* 𝑐*
𝑎+ 𝑏+ 𝑐+

= 𝒂 𝒃 𝒄

Rank is the dimensionality of the space spanned by column or row
vectors of the matrix.

Geometric Meaning of Matrix Rank

Rank(A) =3
𝑎

𝑏

𝑐

𝐴 =
𝑎' 𝑏' 𝑐'
𝑎* 𝑏* 𝑐*
𝑎+ 𝑏+ 𝑐+

= 𝒂 𝒃 𝒄

• Rank (𝐴B) = Rank(𝐴)

• Rank(𝐴C×; 𝐵;×E） = min (Rank(𝐴C×;), Rank(𝐵;×E))
≤ min(m, n, p)

• Rank(𝐴 𝐴B) = Rank(𝐴B𝐴) = Rank(𝐴) = Rank(𝐴B)

• 𝐴C×C is invertible iff Rank(𝐴C×C) = m

Important Properties of Matrix Rank

...Back to Observation Matrix W

𝑊'(×& 𝑀'(×*

𝑆*×&

Centroid-Subtracted
Feature Points (Known)

Camera Motion
(Unknown)

Scene Struction
(Unknown)

! ! !

! ! !

! ! !

[]

1,1 1,2 1,
1

2,1 2,2 2,
2

,1 ,2 ,
1 2

1,1 1,2 1, 1

22,1 2,2 2,

,1 ,2 ,

N T

TN

T
F F F N N

NT
N

T
N

T
N

F F F N

u u u i
u u u i

u u u i
P P P

jv v v
jv v v

j
v v v

é ù
é ùê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú = ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úë ûê ú

ë û

"

"

#

"
"

! ! !"

! ! !"

#
#

! ! !"

Point 1 Point 2 Point N

Point 1 Point 2 Point N

Image 1

Image 2

Image F

Image 1

Image 2

Image F

Rank of Observation Matrix

𝑊 = 𝑀 × 𝑆
2𝐹×𝑁 2𝐹×3 3×𝑁

We know:

𝑅𝑎𝑛𝑘(𝑀𝑆) ≤ 𝑅𝑎𝑛𝑘(𝑀) 𝑅𝑎𝑛𝑘(𝑀𝑆) ≤ 𝑅𝑎𝑛𝑘(𝑆)

𝑅𝑎𝑛𝑘(𝑀𝑆) ≤ 𝑚𝑖𝑛(3,2𝐹) 𝑅𝑎𝑛𝑘(𝑀𝑆) ≤ 𝑚𝑖𝑛(3, 𝑁)

𝑅𝑎𝑛𝑘 𝑊 = 𝑅𝑎𝑛𝑘(𝑀𝑆) ≤ 𝑚𝑖𝑛(3, 𝑁, 2𝐹)

Rank throem : 𝑅𝑎𝑛𝑘 𝑊 ≤ 3 We can “factorize” W into M and S!

For any matrix A there exists a factorization:

Singular Value Decomposition (SVD)

𝐴J×K = 𝑈J×J + ΣJ×K + 𝑉K×KB

Where 𝑈J×Jand 𝑉K×KB are orthonormal and ΣJ×K is diagonal.
Mathlab : [U,S,V] = svd(A)

If Rank(A) = r then A has r non-zero singular values.

𝜎%, …, 𝜎& : Singular Values

1

2

3

4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0

M N

N

s
s

s
s

s

´

é ù
ê ú
ê ú
ê ú
ê ú
ê úS = ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

!

!

!

!

"

!

!

!

Using SVD:

Enforcing Rank Constraint

Where: 𝜎9 ≥ 𝜎: ≥… ≥ 𝜎K are the singular values of Σ.

1

2

3

4

2 2 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0

T

T

N

F F N NF N

W U V

U V

s
s

s
s

s

´ ´´

= S

é ùé ù é ù
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú= ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú

ê ú ê úê úë û ë ûë û

!

!

!

!

"

!

!

!

Using SVD:

Enforcing Rank Constraint

Since 𝑅𝑎𝑛𝑘 𝑊 ≤ 3, 𝑅𝑎𝑛𝑘 Σ ≤ 3 .
All expect first 3 diagonal elements of Σ must be 0.

1

2

3

2 2 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

T

T

F F N NF N

W U V

U V

s
s

s

´ ´´

= S

é ùé ù é ù
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú= ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú

ê ú ê úê úë û ë ûë û

!

!

!

!

"

!

!

!

Using SVD:

Enforcing Rank Constraint

Since 𝑅𝑎𝑛𝑘 𝑊 ≤ 3, 𝑅𝑎𝑛𝑘 Σ ≤ 3 .
Submatrices 𝑈: and 𝑉:B do not contribute to W.

1

2
31

3

1 2

32

3 2 3
2 2 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

T

T

T
N

F
F F N NF N

W U V

V

U U

V

s
s

s

-

-
´ ´´

= S

é ù é ù
é ù ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú= ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê úë û ê úê ú ë ûë û

!

!

!

!

"

!

!

!

1

2
31

3

1 2

32

3 2 3
2 2 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

T

T

T
N

F
F F N NF N

W U V

V

U U

V

s
s

s

-

-
´ ´´

= S

é ù é ù
é ù ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú= ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê úë û ê úê ú ë ûë û

!

!

!

!

"

!

!

!

Using SVD:

Enforcing Rank Constraint

𝑊 = 𝑈9 Σ9 𝑉9B
2𝐹×3 (3×3)(3×𝑃)

𝑊 = 𝑈9 (Σ9)
9
: (Σ9)

9
: 𝑉9B

Factorization (Finding M , S)

2𝐹×3

(3×𝑁)

= 𝑀 ? = 𝑆 ?

Not so fast. Decomposition not unique!

𝑊 = 𝑈9 (Σ9)
9
: 𝑄 𝑄L9 (Σ9)

9
: 𝑉9B

2𝐹×3

(3×𝑁)

= 𝑆 for some Q= 𝑀

is also valid.

How to find the matrix Q ?

For any 3X3 non-singular matrix Q :

The Motion Matrix M:

Orthonormality of M

Orthonormality Constraints:

𝑖! A 𝑖! = 𝑖!+𝑖! = 1

𝑗! A 𝑗! = 𝑗!+𝑗! = 1

𝑖! A 𝑗! = 𝑖!+𝑗! = 0

̂𝚤!+𝑄𝑄+ ̂𝚤! = 1

̂𝚥!+𝑄𝑄+ ̂𝚥! = 1

̂𝚤!+𝑄𝑄+ ̂𝚥! = 0

𝑀 =

𝑖'"
⋮
𝑖,"

𝑗'"
⋮
𝑗,"

= 𝑈'(Σ') ⁄' *𝑄 =

̂𝚤'"
⋮
̂𝚤,"

̂𝚥'"
⋮
̂𝚥,"

𝑄 =

̂𝚤'"𝑄
⋮
̂𝚤,"𝑄
̂𝚥'"𝑄
⋮
̂𝚥,"𝑄

• We have computed (̂𝚤TB, ̂𝚥TB) for f = 1,…,F.

• Q is 3x3 matrix, 9 variables, 3F quadratic equations.
• Q can be solved with 3 or more images (F≥ 3) using

Newton's method.

Orthonormality of M

̂𝚤!+𝑄𝑄+ ̂𝚤! = 1

̂𝚥!+𝑄𝑄+ ̂𝚥! = 1

̂𝚤!+𝑄𝑄+ ̂𝚥! = 0

Q is unknown.

Final Solution: 𝑀 = 𝑈' (Σ')
'
* 𝑄 𝑆 = 𝑄.' (Σ')

'
* 𝑉'"

Camera Motion Scene struction

1. Detect and track feature points.
2. Create the centroid subtracted matrix w of corresponding

feature points.
3. Compute SVD of W and enforce rank constraint.

4. Set 𝑀 = 𝑈9 (Σ9)
)
* 𝑄 and 𝑆 = 𝑄L9 (Σ9)

)
* 𝑉9B.

5. Find Q by enforcing the orthonormality constraint.

Summary: Orthographic SFM

𝑊 = 𝑈 Σ 𝑉B = 𝑈9 Σ9 𝑉9B
2𝐹×3 (3×3)(3×𝑃)

Result

Input image sequence Estimated 3D points

Result

Input image sequence

3D reconstruction

Tracked features

3D reconstruction

Structure from Motion Result

Bundle Adjustment

!"#
$%&'()*'

Two-view Reconstruction

keypoints

keypoints

match fundamental
matrix

essential
matrix [R|t] triangulation

Multi-view Stereo (MVS)Structure from Motion (SFM)

Pipeline

NextTaught

Pipeline

Merge Two Point Cloud

There can be only one R2 t2!" #$

Merge Two Point Cloud

Merge Two Point Cloud
• From the 1st and 2nd images, we have

and
• From the 2nd and 3rd images, we have

and
• How to transform the coordinate system of the second point

cloud to align with the first point cloud so that there is only
one ?

R1 t1!" #$ R2 t2!" #$

R2 t2
!
"

#
$ R3 t3!" #$

R2 t2
!
"

#
$

Merge Two Point Cloud

See From a Different Angle

Oops

Bundle Adjustment

Rethinking the SFM problem
• Input: Observed 2D image position

• Output:
Unknown Camera Parameters (with some guess)

Unknown Point 3D coordinate (with some guess)

R1 t1!" #$, R2 t2!" #$, R3 t3!" #$

x1
1

x2
1

x3
1

x1
2

x2
22 x2

3

x3
3

X1,X2,X3,

Bundle Adjustment
A valid solution and
must let

x1
1

x2
1

x3
1

x1
2

x2
22 x2

3

x3
3

R1 t1!" #$, R2 t2!" #$, R3 t3!" #$ X1,X2,X3,

Observation

Re-projection
x1
1 = K R1 t1!" #$X1

x2
1 = K R2 t2!" #$X1

x3
1 = K R3 t3!" #$X1

x1
2 = K R1 t1!" #$X2

x2
2 = K R2 t2!" #$X2 x2

3 = K R2 t2!" #$X3

x3
3 = K R3 t3!" #$X3

=

Bundle Adjustment
A valid solution and
must let the Re-projection close to the Observation, i.e. to
minimize the reprojection error

R1 t1!" #$, R2 t2!" #$, R3 t3!" #$ X1,X2,X3,

min xi
j −K Ri ti"# $%X j()

2

j
∑

i
∑

Solving This Optimization Problem

• Theory:
The Levenberg–Marquardt algorithm

• Practice:
The Ceres-Solver from Google

http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

http://code.google.com/p/ceres-solver/

Toy problem to solve min 10− x()2
Ceres-solver: A Nonlinear Least Squares Minimizer

Toy problem to solve min 10− x()2
Ceres-solver: A Nonlinear Least Squares Minimizer

Toy problem to solve min 10− x()2

Ceres-solver: A Nonlinear Least Squares Minimizer

Geometry Registration

!"#
$%&'()*'

什么是注册？

• 计算最佳空间变换，以使得多个几何曲面之间进行对齐。
– 将传感器采集的多个局部测量数据拼接成一个完整的几何模型
– 将新测量数据对齐到已知模型以估计其姿态

• Same object in a different position: size and shape preserving

– Rigid-body transformation (rotation and translation)
– Six degrees of freedom

✦ translation 𝐭 = (𝑡!, 𝑡", 𝑡#)$

✦ rotation (𝛼, 𝛽, 𝛾)

变换类型

• Affine or Linear Transformation
- Rigid-body transformation (rotation and translation)
- Scaling and Shearing
- Twelve degrees of freedom

变换类型

Example of different types of transformations of a square

(c) affine transformation

(d) nonrigid transformation

(a) identity transformation

(b) rigid transformation

变换类型

Noise
Par)al matching

Ambiguity Illumina)on changes

配准问题中的一些挑战

• 将配准问题表达为能量最小化问题：

argmax
*

𝐸+,-(𝑇, 𝑃, 𝑄)

𝐸+,-(𝑇, 𝑃, 𝑄) = 𝐸./012(𝑇, 𝑃, 𝑄) + 𝐸3+45+(𝑇)

配准误差

如何衡量配准结果的质量？

变换误差

变换的类型与表示方式？

配准问题建模

• 配准误差

𝐸+,-(𝑇, 𝑃, 𝑄) = 𝐸./012(𝑇, 𝑃, 𝑄) + 𝐸3+45+(𝑇)

𝐸./012(𝑇, 𝑃, 𝑄) = ∫6𝜙(𝑇(𝑝), 𝑄)𝑑𝑥

距离度量函数

配准问题建模

• 变换误差

𝐸+,-(𝑇, 𝑃, 𝑄) = 𝐸./012(𝑇, 𝑃, 𝑄) + 𝐸3+45+(𝑇)

Rigid

Articulated

Elastic

Composite

rigid motion
prior

skeletal
model prior

(pseudo-) elastic
deformation prior

data-driven
prior

配准问题建模

• 刚体几何建模：将不同视角点云进行刚性拼接，以获得完
整几何模型

是一个包含旋转与平移的刚性变换

几何数据融合与跟踪-刚性注册

Aligning 3D Data

• Let M be a model point set.
• Let S be a scene point set.

We assume:
1. NM = NS.
2. Each point Si correspond to Mi .

Corresponding Point Set Alignment

å

å

=

=

--=

--=

S

S

N

i
TiRi

S

N

i
ii

S

qsqRm
N

qf

TranssRotm
N

TRf

1

2

1

2

)(1)(

)(1),(

Corresponding Point Set Alignment

The MSE objective function :

The alignment is:

),(),,(SMdtransrot mse F=

• If correct correspondences are known, can find correct relative
rotation/translation

Aligning 3D Data

• How to find correspondences: User input? Feature detection?
Signatures?

• Alternative: assume closest points correspond

Aligning 3D Data

• How to find correspondences: User input? Feature detection?
Signatures?

• Alternative: assume closest points correspond

Aligning 3D Data

• Converges if starting position “close enough“

Aligning 3D Data

2
21

2
21

2
212121)()()(),(zzyyxxrrrrd -+-+-=-=

Closest Point

• Given 2 points r1 and r2 , the Euclidean distance is:

• Given a point r1 and set of points A , the Euclidean
distance is:

),(min),(1..11 ini
ardArd

Î
=

smdMsd
Mm

-=
Î
min),(

Finding Matches

• The scene shape S is aligned to be in the best
alignment with the model shape M.

• The distance of each point s of the scene from the
model is :

MY
MSCY

My

ysdsmdMsd
Mm

Í
=
Î

=-=
Î

),(

),(min),(

Finding Matches

C – the closest point operator

Y – the set of closest points to S

),(),,(YSdtransrot F=

Finding Matches

• Finding each match is performed in O(NM) worst case.
• Given Y we can calculate alignment

• S is updated to be :

transSrotSnew +=)(

The Algorithm

Init the error to ∞

Calculate correspondence

Calculate alignment

Apply alignment

Update error

If error > threshold

Y = CP(M,S),e

(rot,trans,d)

S`= rot(S)+trans

d` = d

• The ICP algorithm always converges monotonically to a local
minimum with respect to the MSE distance objective function.

Convergence Theorem

å
=

-=
SN

i
ikik

S
k sy
N

e
1

21

Convergence Theorem

• Correspondence error :

• Alignment error:

å
=

--=
SN

i
kiokik

S
k TranssRoty
N

d
1

2)(1

Convergence Theorem

Calculate correspondence

Calculate alignment

Apply alignment

Ek

Dk

S`= rot(S)+trans

Calculate correspondence

Calculate alignment

Ek+1

Dk+1

å

å

=

=

--=

-=

=
+=

S

S

N

i
kiokik

S
k

N

i
ikik

S
k

kk

kkk

TranssRoty
N

d

sy
N

e

sMCY
TransSRotS

1

2

1

2

0

)(1

1

),(
)(

Convergence Theorem

• Proof :

kk ed £

Convergence Theorem

• Proof :
If not - the identity transform would yield a
smaller MSE than the least square alignment.

Apply the alignment qk on S0 à Sk+1 .

Assuming the correspondences are maintained :
the MSE is still dk.

å
=

-=
MN

i
ikik

M
k Sy
N

d
1

21

),(11 ++ = kk SMCY

Convergence Theorem

• Proof :
After the last alignment, the closest point
operator is applied :
It is clear that:

Thus :

kk

kiikkiki

de

SySy

£

-£-

+

+++

1

1,1,1,

kkkk eded ££££ ++ 110

Each iteration includes 3 main steps
A. Finding the closest points :

O(NM) per each point
O(NM*NS) total.

B. Calculating the alignment: O(NS)
C. Updating the scene: O(NS)

Time analysis

The best match/nearest neighbor problem :
Given a record, and a dissimilarity measure D, find the closest
record from a set to the query record.

Optimizing the Algorithm

• Find closest point of a query point
– Brute force: O(n) complexity

• Use hierarchical BSP tree
– Binary space partitioning tree (also kD-tree)
– Recursively partition 3D space by planes
– Tree should be balanced, put plane at median
– log(n) tree levels, complexity O(log n)

Closest Point Search

BSP Closest Point

BSP Closest Point

BSP Closest Point

BSP Closest Point

BSP Closest Point

BSP Closest Point

ICP Variants
• Variants on the following stages of ICP have been proposed:

– Selecting sample points (from one or both meshes)
– Matching to points in the other mesh
– Weighting the correspondences
– Rejecting certain (outlier) point pairs
– Assigning an error metric to the current transform
– Minimizing the error metric w.r.t. transformation

Real Time ICP

Object Tracking

!"#
$%&'()*'

Track the location of target objects in each frame of a video
sequence
Topics:
(1) Change Detection
(2) Gaussian Mixture Model
(3) Object Tracking using Templates
(4) Tracking by Feature Detection

Overview

Change Detection

Given: Static cameras observing scene (room, street, etc.)
Find: Meaningful changes (moving objects, people, etc.)

Robust and real-time classification of each pixel as
“foreground” (motion/change) or “background” (static).

Change Detection: Challenges

Ignore uninteresting changes:

l Background fluctuations

l Image noise

l Rain, snow, turbulence

l Illumination changes & shadows

l Camera shake

Simple Frame Difference
Label significant difference between current and previous
frames as background.

Not Robust!

Input video sequence Frame difference

𝐹! = 𝐼! − 𝐼!"# > 𝑇 𝑇: threshold

Background Modeling: Average
Build simple model of background before classification.

Cannot handle change in lighting, background, etc.

Background B
median{I!, I",…, I#}
(First K frames)

Input Frame I$ Foreground 𝐹$
𝐹$ = 𝐼$ − B > 𝑇

Background Modeling: Median
Build simple model of background before classification.

Cannot handle change in lighting, background, etc.

Background B!
median{I!"#, I$"%,…,
I$"&}
(Last K frames)

Input Frame I$ Foreground 𝐹$
𝐹$ = 𝐼$ − B > 𝑇

Background Modeling: Moving Median
Build simple adaptive model of background over time.

Requires keeping the last K frames in memory.
Finding median for each pixel is expensive.

Background B!
median{I!"#, I$"%,…,
I$"&}
(Last K frames)

Input Frame I$ Foreground 𝐹$
𝐹$ = 𝐼$ − B > 𝑇

Background Modeling: Moving Median
Build simple adaptive model of background over time.

Cannot handle significant pixel fluctuations
(weather shadow, shake, etc.)

Background B!
median{I!"#, I$"%,…,
I$"&}
(Last K frames)

Input Frame I$ Foreground 𝐹$
𝐹$ = 𝐼$ − B > 𝑇

Mixture Model
Intensity distribution at each pixel over time:

Intensity variations due to static scene (road), noise (snow),
and occasional moving objects(vehicles)
Intuition: Pixels are background most of time.

Gaussian Model

Mixture of Gaussians

Assume P(x) is made of K different Gaussians.

Gaussian Mixture Model（GMM）

High Dimensional Model
Let 𝑃(𝐗) be a probability distribution of a 𝐷-dimensional
random variable 𝐗 ∈ ℛ!.For example: 𝐗 = [𝑟, 𝑔, 𝑏]"

where: 𝜂(𝐗, 𝝁, Σ) = #
(%&)'/)|)|*/)

𝑒*
*
)(𝐗*𝝁)

+()),*(𝐗*𝝁)

Mean 𝝁 =
𝜇-
𝜇.
𝜇/

Covariance matrix Σ =
𝜎% 0 0
0 𝜎% 0
0 0 𝜎%

(can be a full matrix)

GMM can be estimated from 𝑃(𝐗). (MATLAB: gmdistribution.fit)

GMM of 𝑃(𝐗) : Sum of 𝐾 𝐷-dimensional Gaussians

𝑃(𝐗) ≅ ∑01#2 𝜔0𝜂0 𝐗, 𝝁0, Σ0 such that ∑01#2 𝜔0 = 1

Background Modeling with GMM
Given: A GMM for intensity/color variation at a pixel over time
Classify: Individual Gaussians as foreground/background

Intuition: Pixels are background most of time.That is,Gaussians
with large supporting evidence 𝜔 and small 𝜎.

Large %
&
: Background Small %

&
: Foreground

Change Detection using GMM
For each pixel:
1. Compute pixel color histogram 𝐻 using first 𝑁 frames.
2. Normalize histogram: =𝐻 ← 𝐻/∥ 𝐻 ∥.
3. Model =𝐻 as mixture of 𝐾 (3 to 5) Gaussians.
4. For each subsequent frame:

a. The pixel value 𝐗 belongs to Gaussian 𝑘 in GMM for which
𝐗 − 𝝁' is minimum and 𝐗 − 𝝁' < 2.5𝜎'

b. If %!/𝜎' is large then classify pixel as background.
Else classify as foreground.
c. Update histogram 𝐻 using new pixel intensity.

d. If =𝐻 and 𝐻/∥ 𝐻 ∥ differ a lot I =𝐻 − (/ 𝐻 ∥∥ is large), =𝐻 ← 𝐻/∥ 𝐻 ∥
and refit GMM.

Adaptive GMM based change detection

Adaptive GMM based change detection

Object Tracking

Given: Location of target in initial or previous frame.
Find: Location of target in current frame.

Target templates for Tracking

Tracking using Appearance Matching

Given template window 𝑆 in frame 𝐼$)!, search neighborhood to
find match in image 𝐼$.

Simple implementation.Not robust to change in scale,viewpoint,
Occlusion,etc.

Similarity Metrics for Template Matching
Find pixel (𝑘, 𝑙) ∈ 𝑆 with Minimum Sum of Absolute Differences:

𝑆𝐴𝐷 𝑘 𝑙 = N
𝑖 𝑗 ∈+

𝐼! 𝑖 𝑗 − 𝐼" 𝑖 +𝑘𝑗 + 𝑙

Find pixel (𝑘, 𝑙) ∈ 𝑆 with Minimum Sum of Squared Differences:

Find pixel (𝑘, 𝑙) ∈ 𝑆 with Minimum Normalized Cross-Correlation:

NCC(𝑘, 𝑙) =
∑  (𝑖,𝑗)∈𝑇  𝐼1(𝑖, 𝑗)𝐼2(𝑖 + 𝑘, 𝑗 + 𝑙)

3∑  (𝑖,𝑗)∈𝑇  𝐼1(𝑖, 𝑗)2 ∑  (𝑖,𝑗)∈𝑇  𝐼2(𝑖 + 𝑘, 𝑗 + 𝑙)2

SSD 𝑘, 𝑙 = N
,,. ∈+

𝐼! 𝑖, 𝑗 − 𝐼" 𝑖 + 𝑘, 𝑗 + 𝑙 "

Target templates for Tracking

Computing Weighted Histogram

Weighted histogram gives more importance to pixels at center.

Epanechnikov Kernel:

𝑘(𝐱̃) = '1−∥ 𝐱̃ ∥
2, ∥ 𝐗̃ ∥< 1

0, otherwise
	𝐱̃ = 1

(𝑥 − 𝑥𝑐)/𝑊
(𝑦 − 𝑦𝑐)/𝐻

8

Comparing Histograms: Correlation, Intersection, etc.

Tracking using Histogram Matching

Given a histogram template 𝐻/ and location 𝑥$)! in 𝐼$)!, search
neighborhood in 𝐼$ to find window in matching histogram.

More resilient to changes in object pose and/or scale

Histogram Based Tracking: Results

Robust when object appearance is unique in the
environment and its size remains more or less the same.

Tracking by Feature Detection

Tracking by Feature Detection

Tracking by Feature Detection

Tracking by Feature Detection

Tracking by Feature Detection

Tracking Intialization

4. Classify remaining features as
background and assign them to set B.

At frame 1:

1. User selects a bounding box 𝑊! as
object/target.

2. Compute SIFT (or similar) features for
the frame.

3. Classify features within the box as object
and assign them to set 𝑂!.

Object Tracking
At frame 𝑡 :

1. Compute SIFT features and SIFT
descriptors 𝐯!, … , 𝐯# for frame 𝐼$.

2. For each feature and corresponding
descriptor 𝐯, :
a. Compute distance 𝑑0 between 𝐯, and the
best match in object set 𝑂$)!
b. Compute distance 𝑑1 between 𝐯, and the
best match in background set 𝐵.
c. 𝐶 𝐯, =

^+1 if 𝑑2/𝑑1 < 0.5 𝐯, may belong to object
−1 otherwise 𝐯, does not belong to object

Object Tracking
3. For each Search Window 𝑊 :

a. Compute 𝜑(𝑊) = ∑𝐶 𝐯, for all
features 𝐯, inside 𝑊.
b. Compute a heuristic 𝜏 𝑊,𝑊$)! that
penalizes large deviations from
previous location, size and shape 𝑊$)!.
C. Compute Match Score

𝜇(𝑊) = 𝜑(𝑊) − 𝜏 𝑊,𝑊$)!

4. Select window 𝑊$ with the best match
score as new object location.

5. Update object appearance model: 𝑂$ =
𝑂$)! ∪ 𝐯, ∀𝐯, inside 𝑊$ such that
𝐶 𝐯, = +1.

Tracking Results: Scale and Orientation

Resilient to changes in scale and orientation.

Tracking Results: Occlusion

Resilient to occlusion.

Tracking Applications

Tracking people in the wild.

Tracking Applications

Tracking people in the wild.

Tracking Applications

Traffic Monitoring.

Tracking Applications

Customer Behavior for In-Store Analytics.

3D Face Reconstruction

!"#
$%&'()*'

背景：数字世界

时空约束限制了工作、生活、娱乐等方面的需求 无限拓展想象力与创造力

真实世界 数字世界

三维数字内容建模与生成

• 对物理世界进行高效高保真数字化是支撑VR、AR、
元宇宙等上层应用的核心基础

微软-Fusion4D系统 Meta-Horizon Workrooms

背景—人脸重建应用

背景—人脸重建应用

背景—人脸重建应用

背景—数字交流

基于相机阵列的数字人建模

高精度建模效果
可恢复材质、光照等

受控的采集环境、昂贵的价格
复杂的制作流程

基于稀疏视角的数字人建模

成本与便捷性得到极大提高

对于普通大众仍遥不可及

愿景：基于单目相机的数字人建模与驱动

基于深度学习的实时
单目三维人脸重建

Input Output

研究问题

逆向
渲染

基于逆向渲染的逼真人脸图片合成

主要想法

Mean Face Identity Expression Displacement

三维人脸表示

三维人脸参数化表示

3DMM FaceWarehouse

一些三维人脸参数化模型

相机投影 光照模型

逆向渲染-渲染过程

逆向渲染-优化过程

逆向渲染-几何细节

CoarseData FineData

构造训练数据

神经网络流程

Input [Richardson et al.]
CVPR 17

[Jackson et al.]
ICCV 17 Ours

Quantitative comparison results
with other methods on FRGC

dataset

实验结果

应用-川剧变脸

基于前置摄像头的
实时人脸视角矫正

Input Output Input Output

没有正对相机 正对相机

研究问题

研究意义

• 映射挑战: 输入输出间的复杂映射

• 融合挑战: 如何融合原始背景和新的前景

本质上为三维映射，基于二维映射的方法会失败

问题挑战

• 映射挑战: 输入输出间的复杂映射

• 融合挑战: 如何融合原始背景和新的前景

问题挑战

Real Camera

Virtual Camera

Input Synthesized with
virtual camera

映射-3D

Input Dense Track Virtual Overlay

映射-3D

Outside the seam:
content from the original image I

Inside the seam:
content from the rendered face J

: adjacent pixels across the
seam

融合-割缝优化

Input Overlay Seam
Optimization

融合-Laplacian融合

Laplacian Blending

融合-Laplacian融合

实验结果

应用-实际效果

Query coordinate

occupancy, SDF, color, …

𝐹!

Image regression
(x,y) → RGB

Shape regression
(x,y,z) → occupancy

Neural rendering
(x,y,z) → density,RGB

Fθ(x) = (y1, y2, · · · , yk)

背景：神经隐式函数

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Mildenhall et al. ECCV 2020

• 隐式表示：𝐹!: 𝑋, 𝐷 → (𝑐, 𝜎)
𝑋:空间点，𝐷:观测𝑋的view direction
𝑐: 预测的点𝑋的颜色，𝜎:预测的点𝑋的density

• 体渲染：

神经辐射场

神经辐射场

• Learning 3D representation from 2D images

Learning
3D representation

applications
novel view synthesis

3D reconstruction

Posed input Images

神经隐式表示与逆向渲染

!"#$%& '()*+,-./01234

单手机高精度人头重建-静态

Facial Prior

Semantic
Segmentation Prior

Orientation
Map Prior

Multi-View Input Images

ℒ!"

ℒ#$%&'

ℒ()$

ℒ$*+
Implicit Neural
Representation

𝑓(𝐜 + 𝑡𝐯)

z : latent code

Differentiable
Sampling

𝐱!"##

n

{𝐱!"##, 𝐧, 𝐳, 𝐯}

𝐱 = 𝐜 + 𝑡𝐯

Sphere Tracing

v

Camera

c

Semantic
Predictor

𝒔(𝐱(),,)

Orientation
Calculator

Differentiable
Renderer

先验引导的神经隐式重建

Prior-Guided Multi-View 3D Head Reconstruction
IEEE Transactions on Multimedia (TMM), 2021

更多结果展示

单目可驱动高精度人头重建

HeadRecon: High-Fidelity 3D Head Reconstruction from Monocular Video

算法流程

• 输入：单目说话视频
• 输出：可驱动的高精度三维人头模型

!"#$!"%& '()*

结果展示

单目自转视频的三维人体重建

SelfRecon: Self Reconstruction Your Digital Avatar from Monocular Video
CVPR, Oral Presentation, 2022

期望的三维人体重建方式

ü Single camera
ü Easy to capture
ü High-fidelity result

算法：整体流程

结果展示

应用至任意人体动作序列

非刚性形变的可视化展示

Input video Non-rigid deformation Whole deformations

应用展示

我们真的需要几何模型吗？

• 现有的数字人系统通常先对头部进行高精几何建模
• 例如，采用Blendshape表示来实现人脸驱动等

Reconstructing Personalized Semantic Facial NeRF Models From Monocular Video
Conditionally Accepted to the Journal Track of SIGGRAPH Asia, 2022

= +𝑤, ⋅ + 𝑤- ⋅+ ……

基于NeRF表示的个性化人头参数化
• 不同于3DMM等基于网格的三维几何参数化表示，我
们采用基于NeRF的三维神经渲染参数化表示

拍摄输入的单目视频数据

算法流程

训练过程展示

跨身份表情驱动

单目相机 实时计算 微表情迁移

研究问题

现有的语音驱动数字人

建模复杂、虚拟感强

利用神经辐射场直接学习语音信号到说话人视频的映射

分辨率高、无需中间模态、支持姿态改变

主要想法

算法流程

头部和躯干运动的不一致性

分离的NeRF场

实验结果-对比实验

实验结果-分离NeRF场

+,-./0+,123 45+,-6 +,789:

语音驱动高保真数字人应用

完整数字人建模与驱动展示

!"#$%&'()*+,-./012

总结与展望

• 基于新的表示方式、端到端可微优化框架，数字人
建模变得更便捷、高效、高保真

• 便捷、高效、高保真仍需不断提高
–单目设备在采集光照、角度、表情与动作幅度的鲁棒性
–移动端上建模
–进一步提高时空信息之间的精准融合

Neural Radiance Fields

!"#
$%&'()*'

Computer vision as inverse rendering

3D
Scene

Representation Rendering

Computer vision as inverse rendering

3D
Scene

RepresentationInverse Rendering Rendering

Neural Radiance Fields (NeRF) as an approach to inverse rendering

Neural
Radiance

FieldInverse Rendering Rendering

Deep learning for 3D reconstruction

• Previously: we reconstruct geometry by running stereo or
multi-view stereo on a set of images
– “Classical” approach

• How can we leverage powerful tools of deep learning?
– Deep neural networks
– GPU-accelerated stochastic gradient descent

NeRF and related methods – Key ideas

• We need to create a loss function and a scene representation
that we can optimize using gradient descent to reconstruct
the scene

• Differentiable rendering

Side Topic: Stereo Photography

Stereo Photography

Viewing Devices

Queen Victoria at World Fair, 1851

Stereo Photography

Stereo Photography

Issue: Narrow Baseline

~1.5 cm~6.5 cm

Left

Right

Problem Statement

3D scene
representation

…
Output

…
Output Input

Challenges

……
InputOutput Output

Extrapolation

Large disocclusion

Non-Lambertian Effects

Reflections, transparencies, etc.

Input views

Scene
Representation

Neural prediction of scene representations

Output views

…

Neural Net

Computer vision as inverse rendering

18

3D
Scene

RepresentationInverse Rendering Rendering

Paradigm 1: “Feedforward” inverse rendering

3D
Scene

Representation

𝜃

Inverse Rendering Rendering

Paradigm 1: “Feedforward” inverse rendering

3D
Scene

Representation

Rendering Loss

𝜃

Inverse Rendering Rendering

3D
Scene

Representation

𝜃

Paradigm 2: “Render-and-compare”

Inverse Rendering Rendering

3D
Scene

Representation

𝜃
Rendering Loss

Inverse Rendering Rendering

Paradigm 2: “Render-and-compare”

What representation to use?

• Could use triangle meshes, but hard
to differentiate during rendering

• Multiplane images (MPIs) are easy to
differentiate, but only allow for
rendering a small range of views

NeRF == Differentiable Rendering with a
Neural Volumetric Representation

Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Neural Volumetric Rendering

Neural Volumetric Rendering
querying the radiance value
along rays through 3D space

What color?

Neural Volumetric Rendering
continuous, differentiable

rendering model without concrete
ray/surface intersections

Neural Volumetric Rendering
using a neural network as a
scene representation, rather

than a voxel grid of data

Scene properties(𝑥, 𝑦, 𝑧)

Multi-layer Perceptron
(Neural Network)

NeRF: Representing Scenes
as Neural Radiance Fields
for View Synthesis
ECCV 2020

Ben Mildenhall*

UC Berkeley

Pratul Srinivasan* Matt Tancik* Jon Barron Ravi Ramamoorthi Ren Ng

UC Berkeley UC Berkeley Google Research UC San Diego UC Berkeley

Given a set of sparse views of an
object with known camera poses

3D reconstruction viewable
from any angle

Optimize a NeRF
model

NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with alpha
compositing

‣ Modern path tracers use sophisticated Monte Carlo methods
to render volumetric effects

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities
Chandrasekhar 1950, Radiative Transfer

Novak et al 2018, Monte Carlo methods for physically based volume rendering
Porter and Duff 1984, Compositing Digital Images

Ray tracing simulated cumulus cloud [Kajiya]

Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with alpha
compositing

‣ Modern path tracers use sophisticated Monte Carlo methods
to render volumetric effects

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities
Chandrasekhar 1950, Radiative Transfer

Novak et al 2018, Monte Carlo methods for physically based volume rendering
Porter and Duff 1984, Compositing Digital Images

Medical data visualisation [Levoy]

Alpha compositing [Porter and Duff]

Traditional volumetric rendering

‣ Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with alpha
compositing

‣ Modern path tracers use sophisticated Monte Carlo methods
to render volumetric effects

Levoy 1988, Display of Surfaces from Volume Data
Kajiya 1984, Ray Tracing Volume Densities

Max 1995, Optical Models for Direct Volume Rendering

Chandrasekhar 1950, Radiative Transfer

Novak et al 2018, Monte Carlo methods for physically based volume rendering
Porter and Duff 1984, Compositing Digital Images

Physically-based Monte Carlo rendering [Novak et al]

Volumetric formulation for NeRF

Scene is a cloud of colored fog

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral

Volumetric formulation for NeRF

Consider a ray traveling through the scene, and a point at
distance 𝑡 along this ray. We look up its color 𝐜(𝑡), and its
opacity (alpha value) α(𝑡)

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

Volumetric formulation for NeRF

But 𝑡may also be blocked by earlier points along the ray.
𝑇(𝑡): probability that the ray didn’t hit any particles earlier.
𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

Volume rendering estimation: integrating color along a ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝛼#
𝑡#

final rendered
color along ray

Computing the color for a
set of rays through the
pixels of an image yields a
rendered image

Volume rendering estimation: integrating color along a ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝜎#
𝑡#

final rendered
color along ray

𝛼! = 1 − exp(−𝜎!𝛿!)

Slight modification: 𝛼 is not directly stored in the volume,
but instead is derived from a stored volume density sigma (σ)
that is multiplied by the distance between samples delta (δ):

𝛿#Numeric
al e

sti
mate of in

tegral

of a
ccumulated color a

long ra
y

Volume rendering estimation: integrating color along a ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! , 𝜎#
𝑡#

final rendered
color along ray

Computing the color for a
set of rays through the
pixels of an image yields a
rendered image

How do we store the values of
𝐜, 𝜎 at each point in space?

NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

Toy problem: storing 2D image data

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

Usually we store an image as a 2D
grid of RGB color values

Toy problem: storing 2D image data

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

What if we train a simple fully-connected network
(MLP) to do this instead?

𝐹!

Same concept as before, except we are computing an image, instead of a classifier!

Recall the TensorFlow playground

Naive approach fails!

Ground truth image Neural network output fit
with gradient descent

Problem:
“Standard” coordinate-based MLPs cannot represent

high frequency functions

Solution:
Pass input coordinates through a high

frequency mapping first

Example mapping: “positional encoding”

Positional encoding

Raw encoding of a number x “Positional encoding” of a number x

Problem solved!

Ground truth image Neural network output without
high frequency mapping

Neural network output with high
frequency mapping

Recall “squared” encoding in TensorFlow Playground

Sometimes a better input encoding is all you
need

NeRF Overview

‣ Volumetric rendering

‣ Neural networks as representations for spatial data

‣ Neural Radiance Fields (NeRF)

NeRF = volume rendering +
coordinate-based network

How do we store the values of 𝐜, 𝜎 at each point in space

𝑡%

𝐜, 𝜎
MLP

𝑡%

Po
si

tio
na

l
en

co
di

ng

𝑡%𝑡%

𝐜, 𝜎
MLP

Po
si

tio
na

l
en

co
di

ng

How do we store the values of 𝐜, 𝜎 at each point in space

𝑡,

𝑡%

𝐜&, 𝜎&
MLP

Po
si

tio
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space

𝑡,

𝑡%

𝐜%, 𝜎%
MLP

Po
si

tio
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space

𝑡,

𝑡%

𝐜', 𝜎'
MLP

Po
si

tio
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space

𝑡,

𝑡%

𝐜(, 𝜎(
MLP

Po
si

tio
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space

𝑡,

𝑡%

𝐜), 𝜎)
MLP

Po
si

tio
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space

𝑡,

𝑡%

𝐜*, 𝜎*
MLP

Po
si

tio
na

l
en

co
di

ng

𝑡%

How do we store the values of 𝐜, 𝜎 at each point in space

𝑡%𝑡%

3D point and direction

𝐜, 𝜎
MLP

Po
si

tio
na

l
en

co
di

ng

Extension: view-dependent field

Include the ray direction in
the input to the MLP à
allows for capturing and

rendering view-dependent
effects (e.g., shiny surfaces)

Putting it all together

∇∥ − ∥!

Train network using gradient descent
to reproduce all input views of scene

Volume rendering of
MLP colors/densities

Ground truth
image

Results

NeRF encodes convincing view-dependent effects using
directional dependence

NeRF encodes convincing view-dependent effects using
directional dependence

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry

Summary

• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each pixel
• Optimize MLP parameters by rendering to a set of known

viewpoints and comparing to ground truth images

	1-Introduction
	2-ImageFiltering
	3-GradientImageProcessing
	4-ImageSmoothing-a
	4-ImageSmoothing-b
	5-ImageStitching
	6-FaceDetection
	7-CameraCalibration
	8-UncalibratedStereo
	9-OpticalFlow
	10-StructionFromMotion
	11-BundleAdjustment
	12-Registration
	13-ObjectTracking
	14-3DFaceReconstruction
	15-NeRF

