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The Course

* Learn how to solve math problems with tools
* Matlab, Mathematica, Python, Eigen, Ceres, etc...
* Grading policy:

= Homework&Programming: 80%

= Final Project: 20%




Covered Topics

Image Processing, Image Filtering

Face Detection, Face Recognition

Image Stitching, Image Warping

Tracking, Optical Flow,

Stereo Matching, Epipolar Geometry

Structure From Motion, 3D Surface Reconstruction
Neural Network, etc...
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Digital Image

a grid of squares,
each of which
contains a single
color

each square is
called a pixel (for
picture element)

Color images have 3 values per
pixel; monochrome images have 1
value per pixel.

intensity




Pixels

» A digital image, /, is a mapping from a 2D grid of uniformly spaced
discrete points, {p = (r,c)}, into a set of positive integer values, {/(p)},
or a set of vector values, e.g., {[R G B]"(p)}.

¢ At each column location in each row of / there is a value.

* The pair ( p, I(p) ) is called a “pixel” (for picture element).

©



Pixels

p = (r,c) is the pixel location indexed by row, r, and column, c.
I( p) = I(r,¢) is the value of the pixel at location p.
If I( p) is a single number then I is monochrome.

If I( p) is a vector (ordered list of numbers) then I has multiple bands
(e.g., a color image).

©



Pixels

column ¢

Boy, Do
Need Relief!

value

1(B) =MKr , ©)

p=(r,0)

Jocaticrmi

Pixel Location: p = (r, c)

Pixel Value: I(p) = I(r , c)

Pixel : [p, I(p)]

Do



Pixels

column ¢

Pixel : [ p, I(p)]

value

I(p) =Wr,c)
5= (r'y )
Ih'»mllinn :
p=(r.c)
= (row #, col #) 1<p):{g§§:]:[é;]
= (272, 277)




Read an Image into Matlab

4 Command Window. =
i ety owkp Wt

To get started, select MATLAE Help or Demos from the Help menu.

. B e el
images ple\Fanous e i S pem Tou Oatep oy b 5
>> I = imread('L isie.ipg', ' Ipgty; fEUB k Qass & 08 a0

1200 3




Read an Image into Matlab

4 Command Winden
Sl €51 by Ouki Wb

To get started, select MATLAB Help or Demos from the Help menu. ‘

riure 1 _|ofx
>> I = imread('Les_Boingeoisie.jpg''3pg’): Osdsek @AN®| € 0820

>> class(I)

Les Boingeoisie: The Boing-Boing Bloggers.

ing-]

2006, wew.bartn

20 a0 o0 1000 1200
Photo: Bart Nagel, 2006, www.bartnagel.com




Read an Image into Matlab

B e

DeWa|k[RaGs w08 wO

4 Command Winden
S £ ntun Dok i

Les Boingeoisie: The Boing-Boing Bloggers

200 400 600 800 1000 1200
Photo: Bart Nagel, 2006, www.bartnagel.com




Crop the Image

=lalx|

1 First, select a
.. .. egion using
>> 1 the magnifier.
o

Cut out a region

from the image drag to here and release

400 600 800
Photo: Bart Nagel, 2006, www.bartnagel.com




Saving Images as Files

b Command Window
Fib egt bakug Cedop Wwrdow relp

>>
>>
>>
>>
>>
>
>>
>>
>>
>>
>>
>
>>
>>
>>
>>

v

v

% truecolor as .bmp
imwrite (I,’image name.bmp’,’bmp’);

% truecolor as .jpg (default quality = 75)
imwrite (I,’image_name.jpg’,’Jjpg’);

% truecolor as .Jjpg (quality = 100)

imwrite (I,’image_name.jpg’,’jpg’,’Quality’,100);

% colormapped as .bmp
imwrite (I, cmap,’image_name.bmp’,’bmp’);

% colormapped as .gif
imwrite (I, cmap,’image_name.gif’,’gif’);

Assuming that
‘T’ contains the image of
the correct class,

that
‘cmap' is a colormap,

and that

‘image_name' is the

file-name that you want.




Double Exposure: Adding Two Images

Rayden Woodring - The Ecstasy of Bumperillo (?)
Mark Rayden - The Ecstasy of Cecelia




Double Exposure: Adding Two Images

JW = imread('Jim Woodring - Bumperillo.jpg','ipg'); Example
figure |
image Matlab Code

truesize
title('Bumperillo')

xlabel ('Jim Woodring')

MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg'):
figure

image (MR)

truesize

title('The Ecstasy of Cecelia')

xlabel ('Mark Ryden')

[RMR, CMR, DMR] = size (MR);

[RJW, CIW, D = size(JW);

rb = round((RIW-RMR)/2) ;

cb = round((CJIW-CMR)/2);

JWplusMR = 8 ((double (JW (rb: (rb+RMR-1) ,cb: (cb+CMR-1) , 1)) +double (MR)) /2) ;

WplusMR)

image (
truesize

title('The Ecstasy of Bumperillo')
xlabel ('Jim Woodring + Mark Ryden')




Double Exposure: Adding Two Images

Example
| Matlab Code
>> truesize
>> title('Bumperillo")
>> xlabel ('Jim Woodring')
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg');
>> figure
>> image (MR)
>> truesize
>> title('The Ecstasy of Cecelia')

>> Tlabe; ('Mark Ryden') ) I Cut a section out of the middle of the larger

>> [RMR,CMR,DMR] = size ; - q .
e ’ i e same size as the smaller image.

>> [RIW,CJIW,DIW] = size (JW); iaochilielsgn m meg

>> rb = round((RJW-RMR) /2) ; 1

>> cb = round((CJW-CMR) /2) ; A

>> JWplusMR =
>> figure

>> image (JWplusMR)

>> truesize

>> title('The Ecstasy of Bumperillo')
>> xlabel ('Jim Woodring + Mark Ryden')

-»
£8 ((double iJW(rb: (rb+RMR-1) ,cb: (cb+CMR-1), :)|) +double (MR) ) /2) ;




Double Exposure: Adding Two Images

Example
| Matlab Code
>> truesize
>> title('Bumperillo")
>> xlabel ('Jim Woodring')
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg');
>> figure
>> image (MR)
>> truesize
>> title('The Ecstasy of Cecelia')

>> xlabel ('Mark Ryden') || Note that the images are averaged, pixelwise.

>> [RMR,CMR,DMR] = size (MR);

>> [RJW,CJW,DIW] = size (JW);

>> rb = round((RJW-RMR) /2) ; |
>> cb = round ( (CIN-EMR

>> JiplusMR =
>> figure

>> image (JWplusMR)

>> truesize

>> title('The Ecstasy of Bumperillo')
>> xlabel ('Jim Woodring + Mark Ryden')

-»
tBI( (double (JW (rb: (rb+RMR-1),cb: (cb+CMR-1); 1) ) +double (MR)) /2)|;




Double Exposure: Adding Two Images

>>

>>
>>
>>

>>
>>
>>
>>
S
>>

Example
| Matlab Code
truesize

title('Bumperillo')
xlabel ('Jim Woodring')

MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg'):
figure

image (MR)

truesize

title('The Ecstasy of Cecelia')

xlabel ('Mark Ryden')

[RMR, CMR, DMR] = size (MR);

[RJW, CIW, DIW] = size (JW);

rb = round ((RIW-RMR) /2) ;

cb = roun 7

JWplusMR 1 8 (||double (|Jw(rb: (rb+RMR-1), cb: (Cb+CMR-1) , 1) ){doub e (PR) )/2);
figure

image (JWplut ) L || Note the data class conversions. L

truesize

title('The Ecstasy of Bumperillo')

xlabel ('Jim Woodring + Mark Ryden')




Intensity Masking: Multiplying Two Images

Rayden Waoodring - Bumperillo Ecstasy (2)

Mark Rayden - The Ecstasy of Cecelia




Intensity Masking: Multiplying Two Images

W = ead ('Jim Woodring - Bumperillo.jpg' og')

MR = imread('Mark Ryden - The Ecstasy of Cecelia. FaiEb
[RMR, CMR, DMR] = size (MR) ; Matlab Code
[RIW, CIW, DIW] = size(JW);

rb = round ((RJW-RMR)/2);

cb = round((CJW-CMR)/2);

WplusM uint8 ((double (JW (rb: (rb+RMR-1),cb: (cb+CMR-1), :)) +double (MR)) /2) ;
figure

image (JWplusMR)

truesize

title('The Extacsy of Bumperillo')

xlabel ('Jim Woodring + Mark Ryden')

JWtimesMR = double (JW(rb: (rb+RMR-1),cb: (chb+CMR-1),:)).*double (MR) ;

min (JWtimesMR (:)) ;

JWtimesMR = uint8(255* (double (JWtimesMR)-m)/ (M-m)) ;
figure

image (JWtimesMR)

truesize

title('EcstasyBumperillo')




Intensity Masking: Multiplying Two Images

>>

>>
>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

JW = imread('Jim Woodring - Bumperillo.jpg','jpg'); Example
MR = imread('Mark Ryden - The Ecstasy of Ce . ; |

[RMR, CMR, DMR] = size (MR); Matlab Code
[RJW, CIW, DIW] = size (JW);

rb = round((RJW-RMR)/2);
cb = round((CJW-CMR)/2);

JWplusMR = uint8((double (JW(rb: (rb+RMR-1),cb: (cb+CMR-1), :))+double (MR)) /2) ;
figure

image (JWplusMR) | Note that the images are multiplied, pixelwise.
truesize 1

title('The Extacsy of Bumperillo')

xlabel ('Jim Woodring + Mark Ryden')
JWtimesMR = double (JW(rb: (rb+RMR-1),cb: (cb+CMR-1), : *double (MR) ;

M = max (JWtimesMR(:));

m min (JWtime

JWtimesMR = uint8|(255* (double (JWtimesMR) -m)/ (M-m))l

figure

image (JWtimesMR)

truesize

title ('EcstasyBumperillo') Note how the image intensities are
scaled back into the range 0-255.




Pixel Indexing in Matlab

>> I = imread('Lawraa - Flickr - 278635073_883bd89lec_o.jpg', 'jpg');

>> size(I)
Bl et HEE
ans = Fle Ed vew wert Tods Descun wndow telp B
576 768 3 B ISR LI

>> r = randperm(576) ;

>> ¢ = randperm(768);

>> J = I(r,c,:);

>> figure

>> image (J)

>> truesize

>> title('Scrambled Image')
>> xlabel ('What is it?"')

Scrambled Imago.

v

v v




Point Processing of Images

* In a digital image, point = pixel.

* Point processing transforms a pixel’s value as function of its
value alone;

* it does not depend on the values of the pixel’s neighbors.




Point Processing of Images

Brightness and contrast adjustment
Gamma correction

Histogram equalization

Histogram matching

Color correction.

(=
©



Point Processing

+ brightness

+gamma

2 4

14
histogram mod

>
- contrast original + contrast histogram EQ




The Histogram of a Grayscale Image

o LetIbe a l-band (grayscale) image.
o I(r,c) is an 8-bit integer between 0 and 255.
o Histogram, 4y, of I:

- a256-element array, /;

- hy(g), forg=1,2,3, ..., 256, is an integer

—  hy(g) = number of pixels in I that have value g-1.

©



The Histogram of a Grayscale Image

8 Ausueyur yum sjexid syiew 3oeiq

lower RHC: number of pixels with intensity g

16-level (4-bit) image

(=
©



The Histogram of a Grayscale Image

Black marks

1| Ty B pixels with
et T o intensity g
h -
Plot of histogram:
number of pixels with intensity g . .

2932 2454 2343 2125 2151 2237 2500 2937 3131 4859 9026 12709 11389 3896

0 24 603
M) W) A3) ) KS) KE) KT) AE) AO) K10) K(11) A1) K(13) A14) K1S) K16)

8=0 g=1g=2 g=3 g=4 g=5 g=6 g=7 g=8 g=9g=10g=11g=12g=13g=1g=15




The Histogram of a Grayscale Image

Black marks
pixels with
intensity g

Plot of histogram:
number of pixels with intensity g

2932 2454 2343 2125 2151 2237 2500 2937 3131 4859 9026 12709 11389 3896 2.
M) W) A3) ) KS) KE) KT) AE) AO) K10) K(11) A1) K(13) A14) K1S) K16)
8=0 g=1g=2 g=3 g=4 g=5 g=6 g=7 g=8 g=9g=10g=11g=12g=13g=1g=15




The Histogram of a Grayscale Image

pixels in I with

d 7 (g+1)= the number of
graylevel g.

Chamnel: Luminosty —————————
Mean: 10588 Level: 207
Std Dev: 45.32 Count: 496

Median: 96 Percentile: 94.47
Pixels: 514500 Cache Level: 1




The Histogram of a Color Image

e IfTis a3-band image (truecolor, 24-bit)
o then I(r,c,b) is an integer between 0 and 255.
o Either I has 3 histograms:
— hr(g+1)=+#of pixels in I(:,:,1) with intensity value g
— hg(g+1)=# of pixels in I(:,:,2) with intensity value g
— hp(g+1)=*# of pixels in I(:,:,3) with intensity value g
e or 1 vector-valued histogram, 4(g, 1,b) where
- h(g+1,1,1) =# of pixels in I with red intensity value g
~ h(g+1,1,2) =# of pixels in I with green intensity value g
— h(g+1,1,3) =# of pixels in I with blue intensity value g

(=
©



The Histogram of a Color Image

There is one histo-
gram per color band
R, G, & B. Value
histogram is from 1
band = (R+6+B)/3

e [ Fes |

Mean: 107.05 Level Mean: 3076 Level
StaDev: 5057 Cant StdDev: 4481 Count:
Median: 54 Percentie: Medan: 77 Percentie:

Phels: 514500 CarteLevel: | Piels: 514500 CacteLevel: |

Chamel- Luminosity.

Mean: 10588 Level: 207
StaDev: 4532 Count: 496

Median: 96 Percentile: 5447

Pels: 514500 CacteLevel: |
———

Chame [ B |




Value or Luminance Histograms

The Value histogram of a 3-band (truecolor) image, I, is the
histogram of the value image,

V(r,c)= é[R(r,c)+G(r,c)+B(r,c)]

Where R, G, and B are the red, green, and blue bands of I.
The luminance histogram of I is the histogram of the luminance
image,

L(r,c) = 0.299-R(r,c)+0.587-G(r,c)+041 14-B(r,c)




Value Histogram

Value image, V.

>

Histogram of the value image.

| ‘ ‘ (T ‘
50 100 150 200 250




Luminance Histogram

o

o

o

[T
50 100 1 200

50

Luminance image, L. Histogram of the luminance image.




Multi-Band Histogram Calculator in Matlab

% Multi-band histogram calculator
function h=histogram(I)

[R C Bl=size(I);

% allocate the histogram
h=zeros (256,1,B);

% range through the intensity values
for g=0:255

h(g+l,1,:) = sum(sum(I==g)); % accumulate
end

return;

©



Multi-Band Histogram Calculator in Matlab

% Multi-band histogram calg .

function h=histogram(T) Loop through all intensity levels (0-255)

Tag the elements that have value g.
The result is an RXCxB /ogical array that

[R C Bl=size(I); has a 1 wherever I(r,c,b) =g and 0's
everywhere else.
% allocate the histogram Compute the number of ones in each band of
h=zeros(256,1,B); the image for intensity g.
Store that value in the 256x1xB histogram
% range through the intensi at h(g+1,1.b).
for g=0:255
h(g+l,1,:) = sum(sum(I==g)); % accumulate

end
L . . sum (sum(I==g)) computes one
If B==3, thenh(g+1,1, :) eoEls I number for each band in the image.
3 numbers: the number of pixels in ‘
bands 1, 2, & 3 that have intensity g.




Point Ops via Functional Mappings

Image: :H ;’;;:;’;2} ﬂl

Input Output
Pixel: ‘ I(r,c) H function, f = J(7,¢) I If I(r,c)=¢g
and f(g)=k
The transformation of image I into image J is then J(r,c)=*k.

accomplished by replacing each input intensity, g, with
a specific output intensity, &, at every location (,c)

where I(r.c) = g- The rule that associates k with g is usually

specified with a function, f, so that f'(g) = k.




Point Ops via Functional Mappings

One-band Image | J(r.c)=f(1(r,c)).

for all pixels locations (r,c¢).

Three-band Image | I(r,e,b)= f(1(r,c,b)), or

I(r,e,b)= £, (1(r,c,b)),
for b=1,2,3 andall (r,c).

©
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Point Ops via Functional Mappings

One-band Image | J(r.c)=f(1(r,c)).

Either all 3 bands for all pixels locations (r,c¢).
are mapped through
the same function, f,

I(r.e,0)= £, (1(r,c,b)),

for b=1,2,3 andall (r,c - eachbandis
mapped through
a separate func-
tion, fy.

J(r,c,b)=f(1(r,c,b)), orJ

©
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Point Operations using Look-up Tables

Alook-up table (LUT) then the LUT
implements a jthat implements f
functional mapping. is a 256x1 array

whose (g +1)t
value is k = f(g).

If k=1 (g)
for g=0,...,255,
andif & takes on Toremap a 1-band
. image, I, to J :
valuesin {0,...,255}, ... J=LUT(I+1)

©



Point Operations using Look-up Tables

If I is 3-band, then

a) each band is mapped separately using the same
LUT for each band or

b) each band is mapped using different LUTs — one for
each band.

a) J=LUT(I+1),0r
b) J(::,b)=LUT, (I(:,:,b)+1) for b=1,2,3.




Point Operations = Look-up Table Ops

output value

255

0

127
input value

255

‘ E.g.:| index | value
101 64
102 68
103 69
104 70
105 70
106 71
input output

©



Look-Up Tables

a pixel with
this value

)

cell ind
contents

output

is mapbed to
this value

(=
@



Point Processes:

Original Image

Kinkaku-ji (3 Temple of the
Golden Pavilion), also known as
Rokuon-ji (Eg3E ¥ Deer Garden
Temple), is a Zen Buddhist temple
in Kyoto, Japan.

Photo by Richard Alan Peters I, August 1993.

50 100 150 200

Luminance Histogram

(=
©



Point Processes: Increase Brightness

_ [I(r,c,b)+ g, if I(r,c,b)+g <256
J(”"b)‘{zss, if 1(r,c,b)+ g > 255

220 and pE{1,2,3} is the band index.

127

.~ saturation point

0

127
transform mapping

255

o>



Point Processes: Decrease Brightness

vt [ Lomincsty —

h

Mean: 4222 Level
Stdper 357 Count
Nsin: 30 Percenti

Phes SIS0 CacheLevel |

255

zero point

8-66T

127

v [0, if I(r,c,b)- g<0
J(r"’b)f{l(r,c,b)- g, if I(r,c,b)- g>0

. . 0 127 255
g=0 and bE { 1,2,3 } is the band index. transform mapping




Point Processes: Decrease Contrast

"
b
&

| Here, s = 127

vt [ Lomincsty —
e 11682 Level
StdDes 2322 Count
N 12 ente:
Phels SIS0 CacheLevel |

T(r,c,b) =a[l(r,c,b)- s|+s,
where 0<a<1.0,

be{123}.

sis the
center of

s€{0,1,2,...,255}, and | the contrast

function.

=
a

ok

0 127
transform mapping

255




Point Processes: Increase Contrast

vt [ Lomincsty B
e
Mean: 6022 Level

StdDe. 7454 Count

Nt 61 Percenie:
PhesiSUS0  CacheLevel |

"
b

o ‘zero point| )
| Here, s = 127 T

127

T(r,c,b)=a[l(r,c,b)- s]+s ‘

0, if T(r.c.b)<0,
J(r,e,b)=1 T(r.c,b), if 0=T(r,c,b)=255, sat. point
<
255, if T(r,c.b)>255. 0 127 255

a>1, s€{0,...,255}, b€{123} transform mapping




Point Processes: Increased Gamma

Phels: 514500

CaceLeve: |

0

127 255
transform mapping

o >



Point Processes: Decreased Gamma

rrrrrr

255

127

1
J(V’E)=255.[I(V,C)}y for y<1.0 cof m 127 M 255

transform mapping




The Probability Density Function of an Image

paf

255
[lower case]

Let 4 =thlk (g+1).
o
Note that since A, (g + 1) is the number of pixels in

I, (the th color band of image I) with value g,
A is the number of pixels in I.  That is if I is
R rows by C columns then 4= RxC.

Then, This is the probability
that an arbitrary pixel

1
p(g+1)= < (g+1) from I, has value g.

is the graylevel probability density function of I,.




The Probability Density Function of an Image

* Poand(gt1) is the fraction of pixels in (a specific band of) an
image that have intensity value g.

* Puana(gt]) is the probability that a pixel randomly selected
from the given band has intensity value g.

* Whereas the sum of the histogram /4,,,4(g+1) over all g from
1 to 256 is equal to the number of pixels in the image, the
sum of py,nq(g+1) over all gis 1.

* Ppand 1S the normalized histogram of the band.




The Probability Distribution Function of an Image

]
Let q =[q; q» q3] = I(r,¢) be the value of a PDF
randomly selected pixel from I. Let g be a

[upper case]

specific graylevel. The probability that q, < g

is given by

S (1)
B (e+) = 3p, (1) = L3 1) = H———
=0 =0 Ehh (y+l)
7=0
where Ay(y +1) is the
histogram of the Ath band
of I

This is the probability that any
given pixel from I, has value less
than or equal to g.

\

(=
©



Point Processes: Histogram Equalization

Task: remap image I so that its histogram is as close to
constant as possible

Let B (g +1) be the probability distribution function of I.

Then J has, as closely as possible, the correct histogram if
J(r.c,b)= 255 B[1(r,c,b)+1]

. . all bands
The PDF itself is used as the LUT. processed
similarly




Point Processes: Histogram Equalization

J(r.c,b)= 255 (g+1),
g=1I(r.c.,b), be{1,2,3}.




Histogram EQ

The PDF is the LUT
for remapping.

pdf




Histogram EQ

pdf

The PDF is the LUT
for remapping.




Histogram EQ

pdf

The PDF is the LUT
for remapping.




Point Processes: Histogram Equalization

Task: remap image I with min = m; and max = M; so that its
histogram is as close to constant as possible and has min = my

and max = Mj.
Let P, (g +1) be the probability distribution function of L.

Then J has, as closely as possible, the correct histogram if

Using P\I(r,c)+1|- P (m, +1
intensity | () =, m L0
extrema LA N




Point Processes: Histogram Matching

Task: remap image I so that it has, as closely as
possible, the same histogram as image J.

Because the images are digital it is not, in general,
possible to make 4 = Ay . Therefore, p; # py .

Q: How, then, can the matching be done?
A: By matching percentiles.




Matching Percentiles

... assuming a 1-band
image or a single band
of a color image.

Recall:
* The PDF of image I is such that 0 < P;(g;) < 1.

* P;(g;+1) = c means that c is the fraction of pixels in I that have a
value less than or equal to g;.

* 100c is the percentile of pixels in I that are less than or equal to gj.

To match percentiles, replace all occurrences of value gy in image
I with the value, gy, from image J whose percentile in J most
closely matches the percentile of g; in image I.

©



Matching Percentiles

... assuming a 1-band
image or a single band
of a color image.

So, to create an image, K, from image I such that K
has nearly the same PDF as image J do the following:

Example:
If I(,c) = g then let K(1;,¢) = gy where g; is such that 1(rc) =5
o e & Py(5) = 0.65
Py(9)=0.56
Py(g) > Py(gz-1) AND Py(g)) < Py(gy). Pr10) =067
K(r¢)=10
e—
';7’ 0r . - ':7) 0r )
E 08 - E sk
06 06
04} I I 0l | H
02 02
00 I 00 mll I‘ I u
S 012345678910112131415 g T 012345678910111213141 g/

(=
©



Histogram Matching Algorithm

[RC] =size();
K=zeros(R,C);
&y = my;
for g = my to M

while & <255 AND B (g,+1)<1 AND

B(gy+1)<A(g+1)
g, =g, +1
end

; K=K+[g1'(l==gl)]

Assuming a 1-band
image or a single band
of a color image.

This directly matches
image I to image J.
P,(g,+1) : PDF of I
P,(g,+1) : PDF of J.

my; = minJ,

My = maxJ,

m; = minl,

M, = maxL

Better to use a LUT.




Example: Histogram Matching

a8
=
B 0251 Imaga -
probability density function,
£,
020~ oA
015
0.10 -
0.05
0.00

Image pdf Image with
16 intensity
030 values

0123456789101112131415 g




Image PDF

Example: Histogram Matching

10 Image - _
Probability Distribution

|_ Function,
08 PDE,*
06
04+
02 |
| )
0

0.0
123456789101112131415 &

PDFy(g)

*a.k.a Cumulative Distribution Function, CDF ;.




Example: Histogram Matching

Target pdf Target with
16 intensity

PR values

) 045 Target

%‘ probability density function,

£ 012 pdfy

0123456789101112131415 g




Target PDF

Example: Histogram Matching

M Target -

Probability Distribution Function,
0.8 PDF,*
0.6~
04
02 I H |
1 | I )

0.0
0123456789101112131415 &

PDFy(g)

*a.k.a Cumulative Distribution Function, CDF,.

u]

8
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Histogram Matching with a Lookup Table

Often it is faster or more versatile to use a lookup table (LUT).
Rather than remapping each pixel in the image separately, one
can create a table that indicates to which target value each input
value should be mapped. Then

K = LUT[I+1]

In Matlab if the LUT is a 256 X 1 matrix with values from 0 to
255 and if image I is of type uints8, it can be remapped with

the following code:

K = uint8 (LUT(I+1)) ;




LUT Creation

Image PDF I Il Target PDF

’I 08
of | ‘
02
IlIIHI
2345678

9@11 12131415

LUT

101112131415




Look Up Table for Histogram Matching

LUT = zeros (256,1) ; This creates a look-up table
gy =0; which can then be used to

remap the image.
for g = 0 to 255 -
while P (g, +1)<F (g +1) AND g, <255

g =gt .
end ! ! P.(g."'l). PDF of 1,
LUT(g +1)=g,; P,(g,+1): PDFofJ,
end LUT(g,+1): Look- Up Table




Input & Target PDFs, LUT and Resultant PDF

Pi(g)

LUT(g)

o w o ©

Input

01234567 809101112131415 &

LUT

0123456789101112131415 g

P,(g)

Pr(g)

1.0

o8 ‘ Target
0.6

04

0.2

00 0123456789101112131415 ¢
;i | Result
06

04

0.2

00

0123456789101112131415 &

(=
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Example: Histogram Matching

original target remapped
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Spatial Filtering

Let I and J be images such that J = T[I].
T[] represents a transformation, such that,

J(r,c) = T[I](r,c) =
f({l(p,x) ‘ pPE {r—s,...,r,...r+s}, X E {c— d,...,c,...c+d} })
That is, the value of the transformed image, J, at pixel location (7,c)

is a function of the values of the original image, I, ina2s+1 X 2d
+1 rectangular neighborhood centered on pixel location (7;c).

©



Moving Windows

* The value, J(r,c) = T[I](r,c), is a function of a rectangular neighborhood
centered on pixel location (r,c) in L.

* There is a different neighborhood for each pixel location, but if the
dimensions of the neighbor-hood are the same for each location, then
transform T is sometimes called a moving window transform.

©



Moving-Window Transformations

Neutral Buoyancy
Facility at NASA

Johnson Space
Center

We' Il take a section
1 of this image to

demonstrate the
1 MWT

photo: R.A.Peters 11, 1999

o>



Moving-Window Transformations

operate on this region

o>



Moving-Window Transformations

Pixelize the section o
better see the effects.

- 7
<3
i §

_iA T

e

apply a pixel grid

o>



Moving-Window Transformations

Pixelize the section o

better see the effects.

S

sample (average
in the squares).

o>



Moving-Window Transformations

lets get some  |gummns
perspective on | &
this

©



Moving-Window Transformations

a neighborhood defined
by a weight matrix




Moving-Window Transformations

neighborhoods at other pixel locations




Linear Moving-Window Transformations
(i.e. convolution)

The output of the
transform at each pixel
is the (weighted)
average of the pixels in
the neighborhood.




Moving-Window Transformations

m
I

o =

jumm

result of a9 x 9
uniform averaging

o>



Convolution: Mathematical Representation

If a MW transformation is /inear then it is a convolution:
J(r,e)=[1=h](r,0)= | [10-=p.c— )h(p, x)dpd
for a real image (I: Rx R — R), or for a digital image (I: Zx Z — Z):

30 =[trh)(ne) = 3 S 10 pe-h(p. )

p=-s x=—d




Convolution Mask (Weight Matrix)

* The object, h(p, ¥), in the equation is a weighting function, or in the
discrete case, a rectangular matrix of numbers.

* The matrix is the moving window.

* Pixel (7,c¢) in the output image is the weighted sum of pixels from the
original image in the neighborhood of (7,c) traced by the matrix.

» Each pixel in the neighborhood of (7,¢) is multiplied by the
corresponding matrix value — after the matrix is rotated by 180°.

* The sum of those products is the value of pixel (r,¢) in the output
image




Convolution Masks: Moving Window

|
h(-2,-2)|(-2.-1)| h(-2,0) | h(-2,1) | h(-2,2) @ow | o | (0w |- | (-
-1-2) -1 )| B-1.0) | A1) | h-1.2) @ | Gou| o |G| @=u
mask Ot A(0.0) | K(O.0) | A(0.2) ow | (row | owsro-rotate
origin 4 4 180°
W(1,-2) | i(1-1)| h(4.0) | h(1.1) | h(1.2) @ | (e | - | =10 (&= 14
h(2-2) | h(2-1)| h(3.0) | RQ2.D) | h(2.2) @ | (e | o (17| (-7
translate to T .. around pixel
loc (r,c) —_

pixel loc (r,c)




Convolution Masks: Moving Window

i i multiplies
ol ; I ixel I(r-1.c)
h(-2-2)|h(-2-1)| h(-2.0 mUHIPheS plxel @ | (row | (0w (t-':)qp),uw
I(r-1,c-2) 2
h(-1-2)(h(-1-1)| h(-.0) | h(-1.1) M-l.?)r\ @ | ow | ey | G-Dy| (@~Dy
h(0-2) | h(O}-1) | A(Q.0) | h(0.1) | A(0.2 o | (row | (00 |(2-0 | (z-0n
A
T
h(1,-2) | h(1}-1) | h(1,0) | h(1.1) | KD (:‘17 @ |y (= 1)|(- 1w
h(2-2) | b2J-1) | A(2,0) | HQ2.1) | h(2.2) mUH’lleeS pixel 0T |(1-TN(Z-TM
\ I(r,c-1) " multiplies pixel
) I(r+1,c+1)




Convolution by Moving Window

(=
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Another example

Moving Window Transform: Example

original

3x3 average

o>



Moving Window Transform: Example

original

3x3 average

o>



Moving Window Transform: Example

original

3x3 average

o>



Moving Window Transform: Example

original

3x3 average

o>



Moving Window Transform: Example

original

3x3 average

o>



Moving Window Transform: Example

original

3x3 average

o>



Moving Window Transform: Example

original

3x3 average

o>



Convolution Examples: Original Images




Convolution Examples: 3 X3 Blur

111
LI
o111

I
F%




Convolution Examples: 5 X5 Blur

11111
11111
REEEEE
Bl1111 7
11111




Convolution Examples: 9 X9 Blur

IRERREREE!
111111111
111111111
'EEEREREE!

EAEERRRERE!

ISEERREEE!
111111111
'RERREREE!
'EEEREREE!




Convolution Examples: 17 X 17 Blur




Vertical Edge Detection

R 2

Imagel P

0 | o
c

W 255

I(r, I(ry,c—1
Backward (ro - (ro <D
Difference

1 -1 +1
p— . (15,6) =1 (7, )I
Difference 0 v

21(rD,c)—I(ru,c—1)—I(r0,c+l)|

Sum of P
Differences 0 ¢




Symmetric Edge Detection

oo 21(r,¢)=I(r,c—1) 21(r,c) = 1(r-1,¢) ;‘(I:fi)c—)_l(r“ Y-
dul | —I(r,c+1) —I(r+1,c) I(r,c—’l)—I(r,c-:-l)

-1 1
121 2 141
-1 1




Convolution Examples: Original Images




Convolution Examples: Vertical Difference




Convolution Examples: Horizontal Difference
[-1 2 -]




0-1
-1 4-1
0-1

0

Convolution Examples: H +V Diff.
|

Nlﬁ,




Convolution Examples: Diagonal Difference

S O~
[=2 \S ¥}
—_ O O




Convolution Examples: Diagonal Difference




S

Convolution Examples: D + D Difference
-1




Convolution Examples: H+V + D Diff.
-1-1 —1]

-1 8 -1
-1-1-1

|




The Median Filter

Returns the median value of the pixels in a neighborhood
Is non-linear

Is similar to a uniform blurring filter which returns the mean value of
the pixels in a neighborhood of a pixel

Unlike a mean value filter the median tends to preserve step edges

original

g jtascilen ! « Jevos| median |9yl
filtered

©



Median Filter: General Definition

med{I,Z}(p) = median {I(q)}

qesupp( Z+p)

This can be computed as follows:

1. LetIbea monochrome (1-band) image.

2. Let Z define a neighborhood of arbitrary shape.

3. Ateach pixel location, p = (r,¢), inI ...

4. ... select the n pixels in the Z-neighborhood of p,

5 . sort the n pixels in the neig,hborhood of p, by
value, into a list L(j) forj=1,.

6. The output value at p is L(m), where m = |_ |+1




Median Filter: General Definition

1
sorted intensity | 133
values from 133
neighborhood | 136
of p. 140

143
147

1521
median 154
assigned to 157
pixel loc p in }gg
output image. 163
164
165
171

u]

8
I
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A Noisy Step Edge

1s
[

H(n-325)+0.25

_J 0.25 for n<32
1.25 for n=33

H(n—32.5)+u(n)
where
u(n)=unif (-0.25,0.25)

!




Blurred Noisy 1D Step Edge




Blurred Noisy 1D Step Edge

J(32-4:32+4)=
0.1920
0.3416
0.0464
0.0177 mean
0.3062
13043
10079
10082 J(33-4:33+4)=
1.0950 0.3416
0.0464
0.0177
meaN 3062
0.7134 [1.3043
1.0079
1.0082
. . 10950
12935




Median Filtered Noisy 1D Step Edge

) =med (h(n + RN WFJHWFTM

Eaiinr

o)
©



Median Filtered Noisy 1D Step Edge

J(32-4:32+4)=  sorted
0.1920 00177 F- , . g :
03416 0.0464
0.0464 0.1920
00177 03062 Pmedian
03062
1.3043
1.0079
1.0082
1.0950

J(33-4:33+4)=
03416
0.0464
0.0177
03062
13043
K 1.0079
10950 1.0082
12935 1.0950
13043 12935




Median vs. Blurred

15

The median filter
preserves the step
edge better than the
blurring filter.

median
blurred

noisy




Median Filtering of Binary Images

Noisy Original




Median Filtering of Binary Images

Median Filtered Noisy Original




Filtering of Grayscale Images

Noisy Original




Filtering of Grayscale Images

Noisy Noisy

©



Filtering of Grayscale Images

3x3-blur x 1 3x3-median x 1

©



Filtering of Grayscale Images

3x3-blur x 2 3x3-median x 2

©



Filtering of Grayscale Images

3x3-blur x 3 3x3-median x 3

©



Filtering of Grayscale Images

3x3-blur x 4 3x3-median x 4

©



Filtering of Grayscale Images

3x3-blur x 5 3x3-median x 5

©



Filtering of Grayscale Images

3x3-blur x 10 3x3-median x 10

©



Limit and Root Images

Fact: if you repeatedly filter an image with the same blurring filter or
median filter, eventually the output does not change. That is, let

1[#h] =(((1*h)«h)---h), & times, and

1[med 2] =(((1 med Z) med Z)-+-med Z), & times.
Then

limI[+h ] =1[+h] =1, and

limI[med 2] =1[med 2]" =1,

where n and m are integers (< ), I, is a single-valued image and I, is
called the median root of 1.

(=
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Limit and Root Images

3x3-blur x 10 3x3-median x 10

©



Limit and Root Images

3 x 3-blur xn — oo

3x3-median root




Median Filter Algorithm in Matlab

function D = median_filt (I, SE,origy,origx)

[R,C] = size(I); % assumes l-band image
[SER,SEC] = size(SE); % SE < 0 not in nbhd
N = sum(sum(SE>=0)) ; no £ in nbhd
A= *OneS(R+SER 1,C+SEC-1, N), cumulator
into band n i
ighborhood

if SE(j,i) >= 0 % then is ohd pixel

A(j: (R+j-1),i:(C+i-1),n) I;
n=n+l; % next accumu band
end
end
end
% pixe se mediar e bands of A

A= sh1ftd1m(med1an(shlftdlm(A 2)),1),
D = A( origy: (Rtorigy-1) , origx: (Ctorigx-1) );
return;




Vector Median Filter

A vector median filter selects
from among a set of vectors,

the one vector that is closest

to all the others.

That is, if S is a set of vectors,
in F” the median,v, is

V=argmin{H v, —v/.H ‘Vk,v,. eS }
k= X

<IF" is an n-dimensional linear vector space over the field, F.)

(=
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Color Median Filter

Jim Woodring — A Warm Shoulder Sparse noise, 32% coverage in each band




Color Median Filter

3% 3 color median filter applied once 3 x 3 color median filter applied twice




Color Median Filter

Sparse noise, 32% coverage in each band Jim Woodring — A Warm Shoulder




Color Median Filter

Absolute differences
displayed as negatives
to enhance visibility

(3% 3 CMF?2 of noisy) — original

(3 x 3 CMF2 of noisy) — (3 x 3 CMF2 of original)




CMF vs. Standard Median on Individual Bands

A color median filter has to compute the distances between all the color vectors
in the neighborhood of each pixel. That’ s expensive computationally.

Q: Why not simply take the 1-band median of each color band individually?

A: The result at a pixel could be a color that did not exist in the pixel’ s
neighborhood in the input image. The result is not the median of the
colors — it is the median of the intensities of each color band treated
independently.

Q: Is that a problem?

A: Maybe. Maybe not. It depends on the application. It may make little
difference visually. If the colors need to be preserved, it could be
problematic.

(=
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CMF vs. Standard Median on Individual Bands

Jim Woodring — A Warm Shoulder Sparse noise, 32% coverage in each band




CMF vs. Standard Median on Individual Bands

3% 3 color median filter applied once 3 x 3 color median filter applied twice




CMF vs. Standard Median on Individual Bands

3 x 3 median filter applied to each band once 3 % 3 median filter applied to each band twice




RN % > .
FEBZLLKE
University of Science and Technology of China

Gradient Image Processing

Juyong Zhang
School of Mathematics, USTC



Today: Gradient manipulation

Idea:

Human visual system is very sensitive to gradient
Gradient encode edges and local contrast quite well

Do your editing in the gradient domain
Reconstruct image from gradient ;

Various instances of this idea, 1" Il mostly follow Perez et al. Siggraph 2003
http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf




Problems with direct cloning

sources/destinations

cloning

From Perez et al. 2003

o>



Solution: clone gradient

sources/destinations

seamless cloning

o>



Gradients and grayscale images

Grayscale image: n X n scalars

Gradient: n X n 2D vectors

Overcomplete!

What' s up with this?

Not all vector fields are the gradient of an image!
Only if they are curl-free (a.k.a. conservative)

— But it does not matter for us

©



Today message I

* Manipulating the gradient is powerful




Today message II

* Optimization is powerful
— In particular least square

* Good Least square optimization reduces to a big linear system

* Linear algebra is your friend
— Big sparse linear systems can be solved efficiently

©



Today message 111

» Toy examples are good to further understanding
* 1D can however be overly simplifying, n-D is much more complicated




Seamless Poisson cloning

* Given vector field v (pasted gradient), find the value of f/in unknown
region that optimize: Py,
Wiy 50
. V - 2 . th % D’”O /;Zl/.g t’b/;
min [[ [Vf—v[" with floq = [*[oq 2
f JJQ d//bhs
Pasted gradient Mask

PECAN
AR

region
Q
‘T oQ

;’ g Background

Figure 1: Guided interpolation notations. Unknown function f
interpolates in domain © the destination function f*, under guid-

ance of vector field v, which might be or not the gradient field of a
source function g.




Discrete 1D example: minimization

Copy

O =N WwWhHhu o

01234567 01234567
Min ((£;-f})-1)?
Min ((f3-f,)-(-1))*
Min ((fy-f3)-2)?

* Min ((f5-f)-(-1))? 1\‘N=It6h
« Min ((fo-fy)-(-1))? =1
=




1D example: minimization

Copy g to 6
5

4 4

3 3

2 2

1 1

0 0

01234567 01234567

Min ((£,-6)-1)2 = £2+49-14f,
Min (B-f)-(-1)? == £+H21-266 126,26
Min ((f,-£,)-2)? = [HEHAE, -4,
Min (f-f)-(-1)? == 221268, 126,-2f,
Min ((1-f5)-(-1))* => f+4-4f;




1D example: big quadratic

* Copy

= N W h 1O

* Min (f22+49-14f§ 01234567
+ £5,24+6,2+1-2£5f, +215-2f,
+ £,24+,2+4-215f, -4f,+41;
+ f2+,2+1-2f, +215-21,
+ f24+4-41)
Denote it Q

O =N wbh O

01234567




1D example: derivatives

* Copy g g
4 4
3 3
2 2
1 1
0 0
01234567 01234567
Min (f,2+49-14f, % =2fo+2fo — 2fs — 16
+ £,241,241-2f,f, +2f,-2f, d;
+ 122420, AT af, g = 2f3 —2fo+2+2f3 - 2fs +4
+ f 24 24 26f, 426526, 40
e treadty F=2f1—2fs—4+2f1—2f; -2
Denote it Q Jile)

afs =2fs —2f4+2+2f5 -4




1D example: set derivatives to zero

* Copy

1

6 6

5 5

4 4

3 3

2 2

1 1

0 0
01234567 01234567

dQ =2fo+2f —2f3 - 16
#%=2f3—2f2+2+2f3—2f4+4

F=2i—2fs—4+2f1—2f;-2

9@ _ ot o oaar 4 4 -2 0 0 fi 16
pr fs—2fa+2+2f5 22 4 —3 0 | =6
o o2 2l BT 6

0 -2 4 s 2




1D example

* Copy to
6 6
> 5
4 4
3 3
2 2
1 1
0 0

0123456867

4 =2 0 0 2 16 fo 6
-2 4 -2 0 ]| -6 5] _| 4
0 -2 4 =2 Fi - 6 fa 5
0 0 -2 4 fs 2 f5 3

u]

8
I
i

!



1D example: remarks

Copy

. 4 -2 0
s -2 4 -2
3 0o -2 4
:
:
01234567 001236567

Matrix is sparse
Matrix is symmetric
Everything is a multiple of 2
— because square and derivative of square
Matrix is a convolution (kernel -2 4 -2)
Matrix is independent of gradient field. Only RHS is
Matrix is a second derivative

0

0
-2

4

|

P
3
fa
fs

H

16
-6
6
2

|




Let’ s try to further analyze

* What is a simple case?




Membrane interpolation
* What if v is null?

* Laplace equation (a.k.a. membrane equation )

min [ 197 with floa = £*la0
fJJja

o>



1D example: minimization

Minimize derivatives to interpolate

O = N W h &

01234567

Min (£,-f,?
Min (£5-f,)?
Min (f,-f3)? f,=6
Min (f;-£,)2
Min (fo-£;)?




1D example: derivatives

* Minimize derivatives to interpolate

Min (f,2+36-12f,
+ f,241,2-2f,f,
+ f,2+f,2-2f,f,
+ f52+f,2-2ff,
+ f241-2f;)
Denote it Q

aQ
dfa
d

dfs
aQ
dfs
aQ
dfs

O = N W h &

01234567
=2fo+2fa—2f3—12
=2fs—2f2+2f3 - 2f4
=2f1—2fs+2f1 —2f5

=2fs —2f1+2f5 — 2




1D example: set derivatives to zero

* Minimize derivatives to interpolate

O = N W h &

%:2f2+2f2—2f3—12 01234567

F=2fs—2f>+2f3— 2[4
gf_?:zf4_2f3+2f4—2fs
4 -2 0 0 b 12
%:2f5_2f4+2f5—2 2 4 -2 0 fi -
— 0 -2 4 =2 fa | ™
0

0 -2 4

OO




1D example

* Minimize derivatives to interpolate

* Pretty much says that second
derivative should be zero

12-1)

is a second derivative filter

J2
fs
Ja
fs

—_
no

[}

o= N Wwh o

01234567

fa 5
fs | _ | 4
fa 3
fs 2




Intuition

* In 1D; just linear interpolation!
— The min of [ f'is the slope integrated over the interval

* Locally, if the second derivative was not zero, this would mean that the
first derivative is varying, which is bad since we want | f'to be
minimized

* Note that, in 1D: by setting ", we leave two degrees of freedom. This is
exactly what we need to control the boundary condition at x, and x,

©



In 2D: membrane interpolation

o>



Membrane interpolation

What if v is null?
Laplace equation (a.k.a. membrane equation )

m}n//Q IV£I? with floq = f*|o0

Mathematicians will tell you there is an
Associated Euler-Lagrange equation:

Af =0 over Q with fly0 = f*[sq

— Where the Laplacian A is similar to -1 2 -1in 1D

Kind of the idea that we want a minimum, so we kind of derive and get
a simpler equation

o




What is v is not null?

= seamless cloning
sources/destinations




What if v is not null?

1D case

Seamlessly paste W/\ onto

M

Xy

X

Just add a linear function so that the boundary condition is respected

X

%

Xy




(Review) Seamless Poisson cloning

* Given vector field v (pasted gradient), find the value of /in unknown
region that optimize:

/00;?
/'
mm// V£ —v|? with flyo = |90 D”C/;/ (Lo

ey,
/f,ons
Pasted gradient Mask

. \A‘:\k
AR
[N

\~,+\‘\\|
\ A ¥

g Background
Figure 1: Guided interpolation notations. Unknown function f

interpolates in domain Q the destination function f*, under guid

ance of vector field v, which might be or not the gradient field of a
source function g.




What if v is not null: 2D

* Variational minimization (integral of a functional)
with boundary condition

min ||| 19 =V with flaq = |0

* Euler-Lagrange equation:

Af =divv over Q, with f|yo = f*|sa

where divv = % + % is the divergence of v = (u,v)

©



In 2D, if v is conservative

* Ifvis the gradient of an image g
* Correction function f sothat f = g 4 f
. f performs membrane interpolation overQ :

Af =0overQ, floa=("—2)lsa

S

T 2Q

v 8




1D example

* Copy 6

5

4

3

2

1

0
01234567 01234567

Difference Solve Laplace Add Result
6 6
6
5 5 .
4 4 2
3 3 3
2 2 2
1 1 1
0 0 0
01234 7 01234 6 7 01234567




In 2D, if v is NOT conservative

* Also need to project the vector field v to a conservative field
* And do the membrane thing

« Of course, we do not need to worry about it, it’ s all handled naturally by
the least square approach

\\{134 Q

©



Recap

Find image whose gradient best approximates the input gradient
— least square Minimization

Discrete case: turns into linear equation

— Set derivatives to zero

— Derivatives of quadratic ==> linear

Continuous: turns into Euler-Lagrange form

— Af=divv

When gradient is null, membrane interpolation

— Linear interpolation in 1D

©



Discrete solver: Recall 1D

Copy

O =N wh u o

012345617
P =2p+2f-2f-16
%=2f3—2f2+2+2f3—2f4+4
92 =0fy—2fs —4+2f1—2fs — 2

B—ofs—2f1+2+2f5—4 42 —42 02
0 -2 4

==>
0 0 -2

O =N wbh O

01234567

0 o 16
0 O
) 7
4 s 2




Discrete Poisson solver

* Two approaches:
— Minimize variational problem e / /Q IV.f = V[ with f]50 = /|20,
— Solve Euler-Lagrange equation Af = divy over Q. with flaq = *laa
In practice, variational is best

* In both cases, need to discretize derivatives
— Finite differences over 4 pixel neighbors
— We are going to work using pairs

« Partial derivatives are easy on pairs

* Same for the discretization of v

©



Discrete Poisson solver

* Minimize variational problem

min

fla |

P.q)NQF£D Discretized
(all pairs that v: g(p)-9(a)

Discretized
gradient

Y (fo—fy=vpy), with f, = £, foral

are in Q)

* Rearrange and call N, the neighbors of p

forall pe Q. |Np|f),— Z Jo=

» Big yet sparse linear system qEN,NQ

[

&

9]

min // IV.f = v[* with flp0 = f
7 Ja

“lag:

1pedQ

Boundary condition

Y fit Lo

qeN,N9IQ qeN,

Only for boundary pixels




Result (eye candy)

source/destination cloning seamless cloning

©



Recap

* Find image whose gradient best approximates the input gradient
— least square Minimization

* Discrete case: turns into big sparse linear equation
— Set derivatives to zero
— Derivatives of quadratic ==> linear




Solving big matrix systems

e Ax=b
* You can use Matlab’ s \

— (Gaussian elimination)
— But not very scalable




Iterative solvers

Important ideas

* Do not inverse matrix

 Maintain a vector X’ that progresses towards the solution
» Updates mostly require to apply the matrix.

— In many cases, it means you do no even need to store the matrix (e.g. for a
convolution matrix you only need the kernel)

* Usually, you don’ t even wait until convergence
* Big questions: in which direction do you walk?

— Yes, very similar to gradient descent

©



Solving big matrix systems

* Ax=b, where A is sparse (many zero entries)

* In Pset 3, we ask you to use conjugate gradient
— http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
— http://www.library.cornell.edu/nr/bookcpdf/c10-6.pdf




Ax=b

A is square, symmetric and positive-definite
When A is dense, you'’ re stuck, use backsubstitution

When A is sparse, iterative techniques (such as Conjugate Gradient) are
faster and more memory efficient

Simple example:

{32

5 E) ) 7 T o
26 =8 2 21 + 622 = —8




Turn Ax=b into a minimization problem

* Minimization is more logical to analvze iteration (gradient ascent/descent)

* Quadratic form flx) = LT Az — 0T + ¢
— c can be ignored because we want to minimize
* Intuition:

— the solution of a linear system is always the intersection of n hyperplanes
— Take the square distance to them
— A needs to be positive-definite so that we have a nice parabola

Graph of quadratic form f(z) = 12”7 Az — Tz + c. The Contours of the quadratic form. Each ellipsoidal curve has
minimum point of this surface is the solution to Az = b. constant f().




Conjugate gradient

* Smarter choice of direction
— Ideally, step directions should be orthogonal to one another (no redundancy)
— But tough to achieve

— Next best thing: make them A-orthogonal (conjugate)
That is, orthogonal when transformed by A: dg) A d(j) —0

= AN
s St
—— = \b '7m) 'J

e A-orthogonal ... because these pairs of vectors are orthogonal,




Recap

Poisson image cloning: paste gradient, enforce boundary condition

Variational formulation " ‘
min [ V7 =V with floq = " loa

Af =divy over Q, with f|yq = /"]

Also Euler-Lagrange formulation

Discretize variational version,
leads to big but sparse linear system

Conjugate gradient is a smart iterative technique to solve it

©



Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-

tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

o>



sources destinations cloning seamless cloning




Manipulate the gradient

* Mix gradients of g & f: take the max

source/destination seamless cloning mixed seamless cloning

Figure 8: Inserting one object close to another. With seamless
cloning, an object in the destination image touching the selected
region Q bleeds into it. Bleeding is inhibited by using mixed gradi-
ents as the guidance field.

u]
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(c) seamless cloning and destination av-

eraged

(d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.




swapped textures

o>



source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks

out whichever of source or destination structure is the more salient
at each location.

o>



Reduce big gradients

* Dynamic range compression
¢ See Fattal et al. 2002

A

Figure 10: Local illumination changes. Applying an appropriate
non-linear transformation to the gradient field inside the selection
and then integrating back with a Poisson solver, modifies locally
the apparent illumination of an image. This is useful to highlight
under-exposed foreground objects or to reduce specular reflections.




Seamless Image Stitching in the Gradient Domain

* Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss

http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf
http://eprints.pascal-network.org/archive/00001062/01/tips05-blending.pdf

¢ Various strategies ( otirnal cut. featering)

-

Input image I» Stitching result

Fig. 1. Tmage stitching. On the left are the input images. w is the overlap region. On top right is a
simple pasting of the input images. On the bottom right is the result of the GIST1 algorithm.




Poisson Matting

* Sun et al. Siggraph 2004

» Assume gradient of F & B is negligible

* Plus various image-editing tools to refine matte
I=oF+(1—a)B
VI=(F-B)Voa+aVF+(1—a)VB

Figure 1: Pulling of matte from a complex scene. From left to right: a complex natural image for existing matting techniques where the color background
is complex. a high quality matte generated by Poisson matting. a composite image with the extracted koala and a constant-color background, and a composite

image with the extracted koala and a different background.




Poisson-ish mesh editing

* http://portal.acm.org/citation.cfm?id=1057432.1057456
e http://www.cad.zju.edu.cn/home/xudong/Projects/mesh_ec
* http:/people.csail.mit.edu/sumner/research/deftransfer/

Figure 1: An unknown mythical creature. Left: mesh components
for merging and deformation (the arm), Right: final editing result.

Reference

i
3 H H . ﬂ 1“ . N ‘m
o
a
¥ | |
g \
=

‘ Output :
Figure 1: Defc ion transfer copies the deformations exhibited by a source mesh onto a different target mesh. In this iple. deformations
of the reference horse mesh are transfered to the reference camel, generating seven new camel poses. Both gross skeletal changes as well as
more subtle skin deformations are successfully




Alternative to membrane

* Thin plate:

minimize second derivative

minf//f§$+2f§y+fy2ydxdy

Data

Membrane interpolation

Thin-plate interpolation




Inpainting

* More elaborate energy functional/PDEs

htt

://www-mount.ee.umn.edu/~guille/inpainting.htm




Key references

Socolinsky, D. Dynamic Range Constraints in Image Fusion and Visualization 2000.
http://www.equinoxsensors.com/news.html

Elder, Image editing in the contour domain, 2001
http://elderlab.yorku.ca/~elder/publications/journals/ElderPAMIO1.pdf

Fattal et al. 2002

Gradient Domain HDR Compression http://www.cs.huji.ac.il/%7Edanix/hdr/
Poisson Image Editing Perez et al.
http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf
Covariant Derivatives and Vision, Todor Georgiev (Adobe Systems) ECCV 2006




A Gentle Introduction t
to Bilateral Filtering

d its Applicati
i SIGGRAPH2007

Naive Image Smoothing:
Gaussian Blur

Sylvain Paris — MIT CSAIL

«40>» «F>» «E» (E=>» = o v



Notation and Definitions

* Image = 2D array of pixels L

* Pixel = intensity (scalar) or color (3D vector)
* I, = value of image [ at position: p=(p,, p,)

e [ 1] = output of filter F applied to image /

«40>» «F>» «E» (E=>» = o v



Strategy for Smoothing Images

* Images are not smooth because
adjacent pixels are different.

* Smoothing = making adjacent pixels
look more similar.

* Smoothing strategy
pixel — average of its neighbors

> = Q>



Box Average

square neighborhood

«O0>» «F» «E>»

«E>»

Q>



Equation of Box Average

ZIVAREDS

qes f
result at intensity at
pixel p sum over pixel q
all pixels q
normalized
box function
0

a
U

Q>



Square Box Generates Defects
* Axis-aligned streaks

* Blocky results

output

«O0>» «F» «E>»

«E>»

Q>



Box Profile

pixel
weight

unrelated
pixels

related

pixel
pixels

position
unrelated

pixels
4[]}‘5’ <:E>

4

>

DA



Strategy to Solve these Problems

* Use an isotropic (i.e. circular) window.

* Use a window with a smooth falloff.

box window Gaussian window

«40>» «F>» «E» (E=>» = o v



Gaussian Blur

per-plxel multiplication
EX

output

«O» «F» <«

> <=

Q>






box average




Gaussian blur




Equation of Gaussian Blur

Same idea: weighted average of pixels.
GBI, =Y.

qes

I

q

normalized
) Gaussian function

a
U

Q>



Gaussian Profile

G,(x)= exp| —
20

pixel

weight

unrelated  uncertain

pixels

pixel
related uncertain  unrelated
pixels pixels pixels pixels

«O0>» «F» «E>»

position

4

>

Q>




Spatial Parameter

GB[I], = ZG:(” p—q ||)1q 7.

size of the window

small &

N

limited smoothing

strong smoothing

Or «&F»>» «=

«E>»

DA

)inb



How to set o

* Depends on the application.

* Common strategy: proportional to image size
—e.g. 2% of the image diagonal

— property: independent of image resolution

«40>» «F>» «E» (E=>» = o v



Properties of Gaussian Blur

* Weights independent of spatial location
— linear convolution
— well-known operation

— efficient computation (recursive algorithm, FFT )

«40>» «F>» «E» (E=>» = o v



Properties of Gaussian Blur

* Does smooth images

input

* But smoothes too much:
edges are blurred.

— Only spatial distance matters
— No edge term

———

«O0>» «F» «E>»

«E>»

Q>



A Gentle Introduction t
to Bilateral Filtering

d its Applicati
i SIGGRAPH2007

“Fixing the Gaussian Blur”:
the Bilateral Filter

Sylvain Paris — MIT CSAIL

«40>» «F>» «E» (E=>» = o v



Blur Comes from

Averaging across Edges

output

Same Gaussian kernel everywhere.

O» «F» «=

L | >

Q>



Bilatel'al Fllter [Aurich 95, Smith 97, Tomasi 98]

No Averaging across Edges

‘ﬁ.*’#’c

The kernel shape depends on the image content.

«O0>» «F» «E>»

«E>»

Q>



Bilateral Filter Definition:
an Additional Edge Term

Same idea: weighted average of pixels.

new

not new new
BF (1], = o Z G, (1, ~1,1)1,
qes
normalization space weight range weight
factor

«40>» «F>» «E» (E=>» = o v



lllustration a 1D Image

* 1D image = line of pixels

HEENE
* Better visualized as a plot
i
08 I 9
pixel W o6 | 4
intensity 8., | J
&d 7]
L

pixel position

u]
8]
it
it
it

Q>



Gaussian Blur and Bilateral Filter

Gaussian blur

08 p

06 -

q. Ga11), = 3
i space

o
n
=]
3

<+ space =

Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]

08 P

«0O0» «F» «E» «

3

L 1
o 1= 2 G
02 o 1% space
[

Q>



BF [I]

D =

Bilateral Filter on a Height Field

—Zg a(llp qll) G. (1

I,-1,1) 1

q

>

reproduced
» fronEDuranyt(ey



Space and Range Parameters

BF [I WZG (lp-al)G, (1, -1,1)1,

P g /

* space o, : spatial extent of the kernel, size of
the considered neighborhood.

* range o, : “minimum” amplitude of an edge

> = Q>



Influence of Pixels

Only pixels close in space and in range are considered

02 -

20

range

«O0>» «F» «E>»

4

v
it

Q>



Exploring the Parameter Space

0,=0.1

.= 025

0, =0

(Gaussian blur)

!
v
i
v

Q>



Varying the Range Parameter

0, =
(Gaussian blur)

0,=0.25













O, = &
‘ (Gaussian blur)




Varying the Space Parameter

;= ®
0,=0.25 (Gaussian blur)

«O» <«F»















How to Set the Parameters

Depends on the application. For instance:

* space parameter: proportional to image size

— e.g., 2% of image diagonal

* range parameter: proportional to edge amplitude

— e.g., mean or median of image gradients

* independent of resolution and exposure

«40>» «F>» «E» (E=>» = o v



A Few
More Advanced
Remarks



Bilateral Filter Crosses Thin Lines

* Bilateral filter averages across
features thinner than ~2o;,

* Desirable for smoothing: more pixels = more robust
* Different from diffusion that stops at thin lines

close-up kernel

-

E

«40>» «F>» «E» (E=>»

Q>



Iterating the Bilateral Filter
1(n+1) = BF [](n)]

* Generate more piecewise-flat images

* Often not needed in computational photo.

«40>» «F>» «E» (E=>» = o v






1 iteration




2 iterations




4 iterations




Bilateral Filtering Color Images

For gray- Ievel images

BFI, = — 3.6, (Ip-al)G, (I=R)E

p qes

For color images

BF[I], = Wi 36, (Ip-al)G, ([€y=€1)E}

The bilateral filter is

extremely easy to adapt to your need.



Hard to Compute

e Nonlinear  5r[1], = G, (lp-al)G, (11, -1, 1)1,

1
W, &

qe

* Complex, spatially varying kernels

— Cannot be precomputed, no FFT
|
. 8 7 s

* Brute-force implementation is slow > 10min

«40>» «F>» «E» (E=>» = o v



Questions ?



Image Smoothing
via LO Gradient Minimization

Li Xu, Cewu Lu, Yi Xu, Jiaya Jia
The Chinese University of Hong Kong



Image Smoothing

+ Afundamentally important tool

IR RN

[Kass and Solomon 10] [Farbman etal. 08]




Image Smoothing

General goals:

» Suppress insignificant details
* Maintain major edges







Our New Smoothing Method

A general and effective global smoothing strategy
based on a sparsity measure

c(f)::#{p”pr\;tO}

\ 4

which corresponds to the LO-norm of gradient



Two Features

LB L] W
7 . ‘
"//‘z d ;.
f A
!

1. Flattening insignificant details

By removing small non-zero

gradients

4




Two Features

2. Enhancing prominent edges

Because large gradients receive
the same penalty as small ones

A‘ J [

>
#{p||Vf,| = 0}=#p||aVf,|= 0}




Our Framework in 1D

* Constrain # of non-zero gradients
c(f)=#{p||f, - .| = 0}=k

* Make the result similar to the input g

min D (f,—-9,)
p

* Objective function
mfinzp“(fp—gp)2 st. c(f)=k



Our Framework in 1D

* Input 1D signal 9

mfinZ(fp—gp)2 st. c(f)=1



Our Framework in 1D

* Input 1D signal 9

mfinZ(fp—gp)2 st.  ¢(f)=2



Our Framework in 1D

* Input 1D signal 9

mfinZ(fp -g9,)° st c(f)=5



Our Framework in 1D

* Input 1D signal 9

mfinzp“(fp -g,)* st c(f)=200



Transformation

mfinZ(fp—gp)2 st. c(f)=
S |
mfinZ(fp—gp)2+ .c(f) 10

O N B O ©
T

51

101



2D Image

mfinzp:(fp -g,)*+4-c(0,f,0,f)

c,f,0,f)=#{p|

axfp\+\ayfp\¢0}



Approximation

mfinzp:(fp—gp)er/l-C( h,v )

Separately estimate f and (h,v)



lterative Optimization

Both the sub-problems are with

closed-form solutions



One Example

Iteration #38




Smoothing Strength
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Smoothing Strength
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Smoothing Strength
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Smoothing Strength
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Comparison
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Comparison

Total Variation Our Result



Another Example

5 tlmes

Input 1 times 20 times




Applications




Edge Enhancement and Extraction




Edge Enhancement and Extraction

Gradient Map




Edge Enhancement and Extraction

Extracted Edge




Edge Enhancement and Extraction

Smoothing result




Edge Enhancement and Extraction

Extracted Edge




Edge Enhancement and Extraction
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Edge Enhancement and Extraction




Edge Enhancement and Extraction




Edge Enhancement and Extraction

Without smoothing With smoothing




Clip-Art JPEG Artifact Removal




Clip-Art JPEG Artifact Removal




Clip-Art JPEG Artifact Removal




Clip-Art JPEG Artifact Removal

HIPPOVIHIPPOY




Image Abstraction




Image Abstraction




Pencil Sketch




Image Abstraction




Image Abstraction




Pencil Sketch




Detail Manipulation

Base layer




Detail Manipulation

Base layer




Edge Adjustment

§®,




N .'\ \ “ : *
\ )’ \ » _./'

Detail Boosting




Detail Manipulation

; A},&r&"<
Image oF[Faeran et al.




Detail Manipulation




Detail Manipulation




HDR Tone Mapping

HDR Inputgamma adjusted)




HDR Tone Mapping

Log-base layer to be compressed
I S s oY



HDR Tone Mapping

Detail layer
I S s oY



HDR Tone Mapping




HDR Tone Mapping

HDR Input (gamma adjusted)
I S s oY



HDR Tone Mapping




HDR Tone Mapping




HDR Tone Mapping




Combined with other smoothing

Strong texture will be preserved
SO (g. J=> 1= = 9o



Combined with other smoothing




Combined with other smoothing




Combined with other smoothing




Implementation

e Matlab source code and Windows software
are available




Conclusion

* A simple and general smoothing framework
* Approximate LO-norm gradient measure
* Flatten low-amplitude details
* Enhance prominent structures
* Possible extensions in graphics and vision
* Video
* 3D surface (modeling)
* Depth



We wish to thank

* Michael S. Brown for narrating the video.

* The anonymous reviewers for constructive
comments.

* Flicker Users: John McCormick, conner395,
cyber-seb, T-KONI, Remi Longva, dms_a_jem
for allowing us to use their pictures.



The End
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Image Stitching
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Overview

* Image stitching is to combine multiple photos to create a larger
photo.

* This technology is now widely available. It’s on pretty much all
smart phones that are in market today.

* It’s also used in other domains, such as medical imaging, and
remote sensing.

©



Image Stitching

Image 1

Image 2
How would you align these images?

Image 3




Image Stitching

Image 1

Image 2

Find corresponding points
(using feature detectors like SIFT)




Image Stitching

Image ] ~~—_ " Image2 ™~ Image3

Find geometric relationship between the images




Image Stitching

Warp images so that corresponding points align




Image Stitching

o<

Blended Image
Blend images to remove hard seams




Image Stitching

Topics:

* 2x2 Image Transformations

* 3x3 Image Transformations

* Computing Homography

* Dealing with Outliers:RANSAC
* Warping and Blending Images




2x2 Image Transformations

Image Filtering: Change range (brightness)
g(x,y) = To(f(x,y))

“. T

m—

Image Warping: Change domain (location)

9(@,y) = f(Ta(z,y))
Transformation Ty is a coordinate changing operator




Global Warping/Transformation

Rotation Scaling and Aspect

9(z,y) = f(T(z.y))

Translation

Projective '
. . . Barrel
Transformation T is the same over entire domain

often can be described by just a few parameters




2x2 Linear Transformations

T can be represented by a matrix.

L2| _ (@11 G112 €y
Y2 a1 a2 |

Ty €
-7 =T
L N R




Scaling(Stretching and Squishing)




2D Rotation

Y
Yo P2
y v D1
6 r
&
T

z9 = rcos(é+0)
29 = 1 c0os(0) cos(f) — rsin(¢p) sin(f)

9 = 1 cos(f) — yi sin(h)

21 = rcos(¢)

y1 = 7sin(¢)

ya = rsin(¢ + 0)

)

Y

w2

= 1 cos(¢) sin(#) + rsin(¢) cos(d)

y2 = w1 sin(6) + y1 cos(f)




Rotation

Y w Y
R |
l R} 7
[
x T

Forward:
29 = 1 cos(6) — yq sin(6)

yo = 1 sin(0) + y1 cos(9)

(2] = r[2] = [oosor amtol ]

Inverse:
21 = @3 cos(f) + yo sin()
y1 = —xasin(0) + yz cos(0)

R et |




Skew

Horizontal Skew:

Ty = X1 + myy

Y2 =1t

1 mg| [z
0 1] [n

Vertical Skew:

Yo = myT1 + Y1

=] =L, ST 1)




T

Mirrow about line y = x:
T2 =1

Y2 =T




2x2 Matrix Transformations

Any transformation of the form:
= Lo w2l
Y2 Q21 G22] (Y1
* Origin maps to the origin
* Lines map to lines

* Parallel lines remain parallel
* Closed under composition

p2 = 1o1p1

P3 = 130p2 p P3 = T32p2 = T32151p1 = T31 = 1327121

pP3 = 131p1

©



Translation

Y

T

To =21 + 1y Y2 =y1+ 1ty

Can translation be expressed as a 2x2 matrix? No




Homogenous Coordinates

The homogenous representation of a 2D point p = (x, y) is a 3D
point P = (X, ¥, Z). The third coordinate Z # 0 is fictitious such that:

z L
T 7
r=—= y== Y
z z
x Zx T .
P=|y| = || = |yl =P Y
1 Z Z

Every point on line L(except origin) represent the
homogenous coordinate of p(x, y)

©



Translation

Y




Scaling, Rotation, Skew, Translation

To Sy 0 Of [z To 1 m, O [z
7~2 = 0 Sy 0 1 3]2 =10 1 0 Y1
Z9 0o 0 1 1 2 0 0 1 1

Scaling Skew
T 10 t| |21 Xy cosf —sin® 0] [y
y2| =10 1 ty| |0 Yva| = [sin® cosf O |y
% 00 1|1 % 0 0 1] |1
Translation Rotation




Affine Transformation

Any transformation of the form:

T2 T2 a1 a2 aiz| |71
Y2 | = |y2| = |a21 a2 ao3 Y1
1 2 oo | | A




Affine Transformation

Any transformation of the form:
T2 .’172 ayp Q12 ais .’1:71
Yo | = |y2| = a1 aze az| |41
1 ZNQ 0 0 1 Z“1

* Lines map to lines
* Parallel lines remain parallel
* Closed under composition




Projective Transformation

Any transformation of the form:

.’ENQ }Ln h12 }113 fl
Yo | = |har hao  hos U1 p2 = Hp;
E2) iz hsshas | | 2

Also called




Projective Transformation

Mapping of one plane to another through a point

p1
Plane I 1
p2 = Hp1
Point“‘\‘
T2 hir hiz hag| |21
Y2 | = |har hoo  hog 1
Plane 11 ;\' Z9 ,’1‘31 hgg h’;’; 21
P2

Same as imaging a plane through a pinhole




Projective Transformation

Homography can only be defined up to a scale.

hi1 his his| | @ T hiir hie his| |71
hoi haz  has | = =k |hai haa hos Y1
har haa haz| |2 2 ha1 hs2  has| |21

If we fix scale such that Z(hij)Q then 8 free parameters

v

=

<
RN

0

* Lines map to lines

* Closed under composition




Remember Vanishing Points?




Camera

Plane II,,
Hy Hig Hp Hy Hys
Useful in stitching planar panoramas

o>



Computing Homography

Image 1 Image 2

Given a set of matching features/points between image images 1

and 2, find the homography // that best “agrees” with the matches.




Computing Homography

Source Image Destination Image

4 Zq hir hiz hig| |z
Ya| = |Ya| = [h2r Doz hos Ys
1 Z~,1 }131 h32 hf;f; 1

How many unknows? 9 ...But & degrees of freedom

How many minimum pairs of matching points? 4




Computing Homography

For a given pair i of corresponding points:
ff,z) hit: L + /ngys + hys
0 @

d

(7)
£xr =
¢ ha1zs” + haoyl” + hag
(l) l/(ll) /I/Ql'l‘ o + 11221/ 2 + ]1/23
Ya =0 T 0 B
24 31T ’$2Us )+ 133

Rearranging the terms:
) (h312% + hagy™ + has) = hiial) + haoy() + hag

y((il) (}L315L'g1) + hfggygl) + h‘g‘g) = hg][L'gi) + hggy‘gi) + h23




Computing Homography

.Lf;) (h‘;l‘LgO -+ hggygm -+ hf;fg) = hnfL’l(J) -+ hlgygj’) + h13
y,(;)(h:sll‘@ + haoy$D + haz) = hor () + ooy + hog

Rearranging the terms and writing as linear equation:
hi1
h’12
hi3
7(51) :U.gi) 1 04 0, 0 —:z:fz):zrﬁé —:z:;f)y(ﬁf) f.'z:((z) Z;; _ [()}
0 0 0 2 Y 1 0L Py P
(Known) hs1
h32
| 133 |

(Unknown)




Computing Homography

Combining the equation for all corresponding points:

B

0 0
2y
0 0

Solve for h :

1 0 0 0 —ala® 0,0
0 mgl) yg) 1 (1) (1) /(1)1(1)
1 0 0 0 2l >,/E) —’I‘(;)T/(I)
0 20 y,@ 1 () 2P l/(lt)ygl)
1 0 0 0 —TIZEIM."I?_E") — (IVL) (n)
0 :Eglz) ygn) 1 7]/(([”).1‘,(90 (n) (71)
A
(Known)
2
Ah = 0| such that ||h|" =

_ (1)‘ - .
(1> h11 0
“Yaq his 0

has :

—{) ;121 0
@ (|72 = o

“Ya has

}L31 :
(u) hsa 0
ha:

71/[(;1)_ L /433 10]

h
(Unknown)




Constrained Least Squares

Solve for h: | Ah =0/ such that |[h|* =1

Define least squares problem:

n}nin | Ah|* such that |[h|® =1

We know that:
|Ah|* = (Ah)" Ah =h"A"Ah and |h|*=h"h=1

m}in(hTATAh) such that Hh||2 =1




Constrained Least Squares

nilin(hTATAh) such that ||h|® =1

Define :
L(h,\) =hT" AT Ah — A(h"h - 1)
Taking derivatives of L(h, A) w.r.th: 2ATAh-21h =0

AT Ah = \h

h with A of matrix ATA
minimizes the loss function L(h).

Matlab: returns eigenvalues and vectors of AT A

©



What could go wrong?

Image 1 Image 2




What could go wrong?

Image 1 Image 2
Outliers!

We need to robustly compute transformation in the
presence of wrong matches.

If number of outliers < 50%, then RANSAC to the rescue!




RANdom SAmple Consensus

General RANSAC algorithm:

1. Randomly choose s samples. Typically s is the minimum samples
to fit the model.

2. Fit the model to the randomly chosen samples.

3. Count the number // of data points(inliers) that fit the model
within a measure of error ¢.

4. Repeat Steps 1-3 /V times

5. Choose the model that has the largest number // of inliers.

For homography:

=4 points. ¢ is acceptable alignment error in pixels.




RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting RANSAC Interation 1
Inliers:2 Inliers:4




RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting RANSAC Interation 2
Inliers:2 Inliers:3




RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting RANSAC Interation i
Inliers:2 Inliers:20




Warping Images

Given a transformation 7 and a image f{(x,y), compute the
transformed image g(x,y)

g(z,y) = f(T(x,y))|

S(z,y) g(z,y)




Forward Warping

Send each pixel (x,y) in f{x,y) to its corresponding location 7(x,y) in

gxy)
g(x,y) = f(T(x,y))

Y Y

—

Tz y) T g(z,y) ’




Forward Warping

Send each pixel (x,y) in f{x,y) to its corresponding location 7(x,y) in

gxy)
g(x,y) = f(T(x,y))

Y Y

T . .

flx,y) * g(z,y) I
What if pixel lands in between pixels?
What if not all pixels in g(x,y) are filled?




Backward Warping

Get each pixel (x,y) in g(x,y) from its corresponding location T~(x,y)

in fix,y)
g(z,y) = f(T(x,y))
Yy Yy

.

Tz y) T g(z,y) ’

©



Backward Warping

Get each pixel (x,y) in g(x,y) from its corresponding location T~(x,y)

in flx,y)
g(z,y) = f(T(x,y))

Y Y
u T !
m G—
flx,y) * g(z,y) I
What if pixel lands between pixels?
Use or




Image Alignment Process

Reference Image
(Image 2)




Image Alignment Process

Reference Image
Compute the bounds of Image 1 and Image 3 in reference image space




Image Alignment Process

Reference Image

For each pixel within bounds, compute its location in captured image




Image Alignment Process

Reference Image
For each pixel within bounds, compute its location in captured image




Blending Images

Overlaid Aligned Images

Hard seams due to vignetting, exposure differences, etc.




Blending Images: Averaging

Averaged Images

Seams still visible




Blending Images

Say we want to blend images I; and I, at the center

+ =
1 W S ;' S A ¢ 2
Image I Image I, Blended Image Iyenqg
wily + walp
. 0 Ibl(zn(l -
Weight w, Weight ws wy + w2




Computing Weighting Functions

Image 1 Image 2 Image 3

Weight wy Weight w, Weight w3

Pixels closer to the edge get a lower weight.
Ex: Distance Transform ( in MATLAB)

©



Weighted Blending

o<

Blended Image




Image Stitching Example

Source Images Aligned Images




Image Stitching Example

Source Images Blended Images

(=
©
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What is Face Detection?

Locate human faces in images

o>



Image Stitching

Locate human faces in images.

* Uses of Face Detection

» Haar Features for Face Detection
* Integral Image

* Nearest Neighbor Classifier

* Support Vector Machine




Where 1s Face Detection Used?

Google gates “, o s

Search

Finding People using Search Engines

(=
©



Where 1s Face Detection Used?

Finding People using Search Engines




Where 1s Face Detection Used?

(=
©



Where 1s Face Detection Used?

Biometrics, Surveillance, Monitoring




Face Detection in Computers

Slide windows of different sizes across image.

At each location match window to face model.

o>



Face Detection Framework

For each window:

‘\’, Extract Match Face
sa  Features [ fi| Model
‘ Yes / No

Features: Which features represent faces well?

Classifier: How to construct a face model and efficiently
classify features as face or not?




What are Good Features?

Interest Points (Edges, Corners, SIFT)?
we¥

o>



Charateristics of Good Features

Discriminate Face/Non-Face
PQ‘
) : A ?é
’ /@

Extremely Fast to Compute
Need to evaluate millions of windows in an image




Haar Features

Set of Correlation Responses to Haar Filters

Input Image

Haar Filters

Va [i.g]
Vg [i.4]
Ve li-j]

Vp [i.5]

Haar Fcaljrcs
fli /]




Discriminative Ability of Haar Feature

[}

Vi =64

) ‘I ¢ &

Vai=16 Va = —127

Haar Features are of Patterns




Haar Features

Compute Haar Features at different scales to
detect faces of different sizes.

1 1 1
e
T I K
d




Haar Features

o |-

White = 1, Black = —
Response to Filter H, at location (i, j)
Vali,jl = ZZI —i,n—j] Ham,n]
li,j] = Z (p1x01 intensities in white arca)

— Z (pixels intensities in black area)

o>



Haar Features: Computation Cost

Value = Z(puel intensities in white area) — Z(pixels intensities in black area)
Computation cost = (NxM - 1) additions per pixel per filter per scale

Can We Do Better?




Integral Image

A table that holds the sum of all pixel values
to the left and top of a given pixel,

98 | 208 | 329 | 454 | 576 | 705
197 | 417 | 658 | 899 | 1137 | 1395
294 | 623 | 988 | 1340 | 1701 | 2093
392 | 833 | 1330 | 1790 | 2274 | 2799
489 | 1043 | 1687 | 2255 | 2864 | 3531
584 | 1249 | 2061 | 2751 | 3490 | 4294
680 | 1449 [ 2433 | 3253 | 4118 | 5052

98 110 121 125 122 129
99 110 120 116 116 129
97 109 124 111 123 134
98 112 132 108 123 133
97 113 147 108 125 142
95 111 168 122 130 137
96 104 172 130 126 130
Image 1

Integral Iimage 17

©



Integral Image

A table that holds the sum of all pixel values
to the left and top of a given pixel,

98 | 208 | 329 | 454 | 576 | 705
197 | 417 | 658 | 899 | 1137 | 1395
294 | 623 [ 988 | 1340 | 1701 | 2093
392 | 833 | 1330 | 1790 | 2274 | 2799
489 | 1043 | 1687 | 2255 | 2864 | 3531
584 | 1249 | 2061 | 2751 | 3490 | 4294
680 | 1449 | 2433 | 3253 | 4118 | 5052

98 110 121 125 122 129
99 110 120 116 116 129
97 109 124 111 123 134
98 112 132 108 123 133
97 113 147 108 125 142
95 111 168 122 130 137
96 104 172 130 126 130
Image 1

Integral Image 11




Integral Image

A table that holds the sum of all pixel values
to the left and top of a given pixel, inclusive.

98 208 329 454 576 705

197 | 417 | 658 | 899 | 1137 | 1395

294 623 988 1340 | 1701 | 2093

392 | 833 [ 1330 | 1790 | 2274 | 2799

480 | 1043 | 1687 | 2255 | 2864 | 3531

584 1249 | 2061 | 2751 4294

680 | 1449 | 2433 | 3253 | 4118 | 5052

Image 1 Integral Iimage 17

u]
8
I
i
!

o>



Summation Within a Rectangle

Fast summations of arbitrary rectangles using integral images

98 1o | 12t o125 | 122 | 129 98 | 208 | 329 | 454 | 576 | 705
99 1o | 120 [ 16 | 116 | 129 197 | 417 | 658 | 899 | 1137 | 1395
97 109 [ 124 [l o123 | 134 294 | 623 | 988 | 1340 | 1701 | 2093
98 2 fas2 a8 [ 123 | 133 392 | 833 | 1330 | 1790 | 2274 | 2799
97 13 [i47 108 [ 125 | 142 480 | 1043 | 1687 | 2255 | 2864 | 3531
95 e faes a2 [ 130 | 137 584 | 1249 | 2061 | 2751 | 3490 | 4294
96 104 | 172 | 130 | 126 | 130 680 | 1449 | 2433 | 3253 | 4118 | 5052

Image 1 Integral Image 17




Summation Within a Rectangle

Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129 98 208 329 454 576 705
99 110 120 116 116 129 197 417 658 899 1137 1395
97 109 124 111 123 134 294 623 988 1340 1701 2093
98 12 132 108 123 133 392 833 1330 1790 2274 2799
97 13 147 108 125 142 489 1043 1687 2255 2864 3531
95 111 168 122 130 137 584 1249 2061 2751 3490 \%
96 104 172 130 126 130 680 1449 | 2433 3253 4118 5052
Image 1 Integral Image 17
Sum=11Ip+...

©



Summation Within a Rectangle

Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129 98 208 329 454 576 705

99 110 120 116 116 129 197 417 658 899 1137 ‘H{ Q
97 109 124 111 123 134 294 623 988 1340 1701 2093

98 12 132 108 123 133 392 833 1330 1790 2274 2799

97 13 147 108 125 142 489 1043 1687 2255 2864 3531

95 111 168 122 130 137 584 1249 2061 2751 3490 \%

96 104 172 130 126 130 680 1449 | 2433 3253 4118 5052

Image 1 Integral Image 17
Sum = 1IIp—1Ilg+...

©



Summation Within a Rectangle

Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129
99 110 120 116 116 129
97 109 124 111 123 134
98 112 132 108 123 133
97 13 147 108 125 142
95 111 168 122 130 137
96 104 172 130 126 130
Image [

Sum=1IIp—1Ilg—1Ilg+...
=3490 — 1137 — 1249 + ...

98 | 208 | 329 | 454 | 576 | 705
197 | 417 | 68 | 809 (SIS | Q
294 | 623 | 988 | 1340 | 1701 | 2093
392 | 833 | 1330 | 1790 | 2274 | 2799
489 | 1043 | 1687 | 2255 | 2864 | 3531
584 11249 | 2061 | 2751 | 3490 %
680 | 1449 | 2433 | 3253 | 4118 | 5052

Integral Image 11

©



Summation Within a Rectangle

Fast summations of arbitrary rectangles using integral images

98 110 121 125 122 129
99 110 120 116 116 129
97 109 124 111 123 134
98 112 132 108 123 133
97 13 147 108 125 142
95 1 168 122 130 137
96 104 172 130 126 130
Image [

S/UTTL:]I[.)*I]Q7]IS<|>]I“

R/

98 | 208 | 329 | 454 | 576 | 705

| o7 P ess | 890 (MBS | Q
294 | 623 | 988 | 1340 | 1701 | 2093
392 | 833 | 1330 | 1790 | 2274 | 2799
489 | 1043 | 1687 | 2255 | 2864 | 3531
58451249 | 2061 | 2751 | 3490 _J%
680 | 1449 | 2433 | 3253 | 4118 | 5052

= 3490 — 1137 — 1249 + 417 = 1521

Integral Image 11




Haar Response using Integral Image

98 | 208 | 329 | 454 | 576 | 705
197 | 417 | 658 | 899 | 1137 | 1395
294 | 623 | 988 | 1340 [ 1701 | 2093
392 | 833 | 1330 | 1790 | 2274 | 2799
489 | 1043 | 1687 | 2255 | 2864 | 3531
584 | 1249 | 2061 | 2751 | 3490 | 4294
680 | 1449 [ 2433 | 3253 | 4118 | 5052

98 110 121 129
99 110 120 129
97 109 124 134
98 112 132 133
97 113 147 142
95 111 168 137
96 104 172 130
Image 1

Integral Iinage 17

V= Z(piw('l.s in white) — Z(pi:r(tls in black)




Haar Response using Integral Image

T
98 110 121 129 / 98 208 329 } 454 1576 705
99 110 120 129 R 197 417 658 899 1137 1395 [ Q
97 109 124 134 294 623 988 1340 1701 2093
98 12 132 133 392 833 1330 1790 2274 | 2799
97 113 147 142 489 1043 1687 2255 2864 3531
95 11 168 137 / 584 J;’Lq_. 2061 2751 3490 < 4294
96 104 172 130 g R 680 1449 2433 3253 4118 5052 [ P
Image I Integral Iinage 17

Va= Z(p'i;l;el intensities in white) — Z(p'ixcl intensities in black)
= (IIo — Iy + I — IIg) — (ITp — Il + Iy — I1p)
— (2061 — 329 + 98 — 584) — (3490 — 576 + 320 — 2061) = 64




Computing Integral Image

i Raster
e . Scanning
B S




Computing Integral Image

Raster
Scanning

Let I4 and 114 be the values of Image and Integral Image,

respectively, at pixel A.

Iy =g+ 1 -1+




Haar Features using Integral Images

Integral image needs to be computed once per test image.

Allows fast computations of Haar features.

, ""' - ﬂ Hy  Valijl
T M Vel
g (W=~ vl

E Hp Vp [i.4]

Haar Filters

W TV ——

&l
&

Input Image

(=
©



Classifier for Face Detection?

Given the features for a window, how to decide
whether it contains a face or not?




Feature Space

Haar Features f (a vector) at a pixel
is a point in an n-D space.f € R"

Training Data Training Data
of Face of Non-Face




Feature Space

Haar Features f (a vector) at a pixel
is a point in an n-D space.f € R"

/
ki

Test Image

Training Data
of Non-Face

Training Data
of Face




Feature Space

Find the Nearest training sample using L? distance
and assign its label.

Training Data
of Non-Face

Training Data
of Face




Feature Space

Find the Nearest training sample using L? distance
and assign its label.

\m\h

Not Face

Training Data
of Non-Face

Training Data
of Face




Feature Space

Find the Nearest training sample using L? distance
and assign its label.

Training Data
of Non-Face

Training Data
of Face




Feature Space

Larger the training set, more robust the NN classifier

\L\\ \.\
-

Tra1n1ng Data Trammg Data
of Face Non-Face of Non-Face




Feature Space

Larger the training set, slower the NN classifier

In
\L\\ \.\
-

Tra1n1ng Data Trammg Data
of Face Non-Face of Non-Face




Feature Space

A simple dicision boundary separating

Training Data

of Face

- “anarati ¥
face and non-face classes will suffice

Training Data
of Non-Face




Linear Dicision Boundaries

A Linear Decision Boundary in 2-D space is a

f2
Equation of Line:
. . wy fi1+wafo+b=0
S °° ., [’wl wz} L}} +b=0
wif+b>0 ° ¢ . 2
\ \L—%fl WTf+b:()
wlf+b<0




Linear Dicision Boundaries

A Linear Decision Boundary in 3-D space is a 2-ID Plane

Equation of Plane:

wy f1 +wafo+wsfzs+b=0

wif+b=0




Linear Dicision Boundaries

A Linear Decision Boundary in n-D space
f2

is a (n-1)-D Hyperplane

Equation of Hyperplane:

wifi+wafot - F+wyfn+b=0

wif+b=0




Decision Boundary (w,b)

What is the decision boundary?
N .
. Decision Boundary
R : , wlif+b=0
Faces ’ 7 e ..,

wlf+b>0 \ .
\ Non-Faces

wif+b<0

(=
©



Evaluating a Decision Boundary

Margin or Safe Zone: The width that the boundary
could be increased by, before hitting a feature point.

o>



Evaluating a Decision Boundary

Margin II

Decision I: Face

Decision II: Non-Face
Choose Decision Boundary with Maximum Margin!

o>



Support Vector Machine (SVM)

Classifier optimized to Maximum Margin

. e \ Margin

° ) © .

Closest data samples to the boundary
Decision Boundary & Margin depend only on Support Vectors

©



Support Vector Machine (SVM)

* ktraining images {I1, I, . . ., I;;} and their Haar features
{fi,£5, ..., f}

* k corresponding labels {14, 4, ..., 4}, where 4; = +1if [; isa
face and 4; = -1 if [; is not a face.

Margin p

Decision Boundary w’f 4+ b =0 S e e

with Maximum Margin p .* .

wif4+b=0

©



Finding Decision Boundary (w,b)

For each training sample (f;, 1;):
It =-1: WTfZ+b§—p/2

} N (WTf; 4+ b) > p/2

Margin p

wit+b>p/2 < ° o .

o
¢ ©
wlf+b=p/2 (o} °
. wlit+b < —p/2
wlif+b=0 wlf+b=—p/2




Finding Decision Boundary (w,b)

For each training sample (f;, 1;):

If A = —1: WTf¢+b§—p/2} A(w £ +0) 2 p/2

If § is the set of support vectors,
Then for every support vector s € §: |\ (was +b)=p/2

Numerical methods exist to find
w,b and S that maximize p

MATLAB:

©



Support Vector Machine (SVM)

Haar features f for an image window and

SVM parameters w,b,p,S

Compute d = w’f +b

d 2p/2
d>0andd <p/2
If: 5
d<0andd >-p/2

d <-p/2

Face
Probably Face
Probably Not-Face

Not-Face




Face Detection Results




Remarks

Current face detection systems are mature but not perfect.
Frontal and side poses usually require different face models.

Successful vision technology used in cameras, surveillance,
biometrics, search.

Performance continues to improve.

©



P

A_./.~>\\ i - '
@ ¢¥RBZEL XS
== University of Science and Technology of China

.

Camera Calibration

KA G
FEAFHEARKF



Camera Calibration

* Method to find a camera's internal and external parameters.

Topics:

* (1) Linear Camera Model

* (2) Camera Calibration

* (3) Extracting Intrinsic and Extrinsic Matrices
* (4) Example Application: Simple Stereo




Pinhole Yw
Z ) x,
Xc 2 fw
CW
2
Camera v World
Coordinate l(joordlxte
Frame C rame
Image Camera World
Coordinates Coordinates Coordinates
xC ‘xW
x.
xi:[’] mmm X = (Ve < Xy = |Jw
Yi VA Z
c w
Perspective Coordinate
Projection Transformation

A
©



Forward Imaging Model: 3D to 2D

~

Pinhole

Image Plane . P

Zc p N
w ~
Xc > —_— Xy
yc Cy /

Z

f / Camera w World

Coordinate lfoordlxte
x Frame C rame
c

We know that X = %¢ apd %L = 2
f Zc f Zc

Therefore: x; = fﬁ and y; = f&

Zc Zc




Image Plane to Image Sensor Mapping

Image Plane Image Sensor
£, (mm) u (pixels)
(0x, Oy)
Vi v
(mm) (pixels)

Pixels may be rectangular.
If m, and m,, are the pixel densities (pixels/mm) in x and y

directions, respectively, then pixel coordinates are:

‘xC
u=mxxi=mxfz— v=myyl-=myfz—
c c




Image Plane to Image Sensor Mapping

I S
Image Plane Mage Sensot u (pixels)
v
(pixels) T
X; (mm) (0x,0y)
X; (mm)
i
(mm)

We usually treat the top-left corner of the image sensor as its origin
(easier for indexing). If pixel (04 , 0,) is the Principle Point where
the optical axis pierces the sensor, then:

- Xe Ye
u—mxf + o, y:myf—+oy
Zc Zc




Perspective Projection

-xc yC
U=Myf — + 0y v=myf—+0y
Zc Zc
Xc Y,
u= —+o0 v = i 0.
foc x fch+ y

where: ( frr fy) = (myf,myf) are the focal lengths in pixels in
the x and y directions.

(fx fy> 0x, 0): Intrinsic parameters of the camera.
They represent the camera's internal geometry.




Perspective Projection

-xc yC
u:mxf—+0x v=myf—+0y
Zc Zc
Xc Y,
u= —+o v = i 0.
foC x fyZC+ y

Equations for perspective projection are Non-Linear.
It is convenient to express them as linear equations.




Homogenous Coordinates

The homogenous representation of a 2D point u = (u, v)
is a 3D point & = (&, ¥, W). The third coordinate W #0 is

fictitious such that: 1 w L

u v
u=—_ v=—
w w —
u 4
/ = (ii,7,Ww)
~ - P 1%
U wu i A
uz[v]z wvl=|sl=1 - u
1 i i u

Every point on line L (except origin) represents
the homogenous coordinate of u(u, v)




Homogenous Coordinates

The homogenous representation of a 3D point x = (x,y,z) €
R3 is a 4D point ¥ = (%, 7, Z, W) € R*.The fourth coordinate
w #0 is fictitious such that:

=

11l
RN R

Il

1NN

<
N N R




Perspective Projection

Perspective projection equations:

xC yC
u=f,—+o v=f,—+o
fo x fyzc y

c

Homogenous coordinates of (u, v) :

faXc + 20y fx 0 o O ;C
[ ] = [zc ] fyYe +zc0y[ =10 f, o0, Of|F
Z 0o o 1 ol

—

where: (u, v) = (ii/Ww, /W)

Linear Model for Perspective Projection




Intrinsic Matrix

u i e 0 o0, 0] Xe
[v] = [ﬁ] =[0 £ o) 0 ZC
olwl Lo oo 1 o[y

Calibration Matrix: Intrinsic Matrix:

f 0 o, O
Mintz[K|0]=[0 fy oy 0]
0 0 1 0

Upper Right Triangular Matrix

U=[K|0]X; = MnXc




Forward Imaging Model: 3D to 2D

Pinhole

2>

Image Plane R v
Z; Py
w ~
Xc ° — Xy
yc Cw /
2
f Yo World
Camera Coordinat
Coordinate Foor l$ ¢
% Frame C rame
c
Image Camera World
Coordinates Coordinates Coordinates
X, X
_ % < ¢ < w
Xi = . M X, = Ve 2 Xy, = [Iw
Vi int .
Zc Zw
Perspective Coordinate
Projection Transformation

N
©
&/



Extrinsic Parameters

Pinhole Jw
Camera Z
. ¢ P x,
Coordinate o &
X — Xy
Frame C N
Ve Cw World Coordinate

Zy Frame W
X

Position c,, and Orientation R of the camera in the world
coordinate frame W are the camera's Extrinsic Parameters.

11 Tz T3
21 T2 T23
31 T32 T33

— Row 1: Direction of X, in world coordinate frame

R= — Row 2: Direction of J, in world coordinate frame

— Row 3: Direction of Z, in world coordinate frame

Orientation/Rotation Matrix R is Orthonormal




Orthonormal Vectors and Matrices

Orthonormal Vectors: Two vectors u and v are orthonormal
if and only if:

dot(u,v) =uTv=0 and uu=vTv=1
(Orthogonality) (Unit length)

Example: The x-, y- and z-axes of R® Euclidean space

Orthonormal Matrix: A square matrix R whose row (or column)
vectors are orthonormal. For such a matrix:

R'=RT R'R=RR" =1

A Rotation Matrix is an Orthonormal Matrix




World-to-Camera Transformation

Pinhole Jw
Camera Z
. ¢ P x,
Coordinate o &
Xc _— Xy
Frame C N
Ve Cw World Coordinate
2w Frame W
X

Given the extrinsic parameters (R, c,,) of the camera, the
camera-centric location of the point P in the world coordinate

frame is:
x. = R(x,, — ¢,,) = Rx,, —Rc,, = Rx,, +1 t = —Rcy,
Xc N1 Tz T3] [Xw tx
Xe=|Yc|=|T21 T2z T23||Vw|+ |ty
Zc 31 T32 T33l1l2w t,

N
B
&/



Extrinsic Matrix

Rewriting using homogenous coordinates:

W
rzz 7'23
Zc 7‘31 T32 7"33

T12
R3><3 ] T22

P . M =
Extrinsic Matrix: ext = 01><3 1 r31 Taa
0

Xe = Mext Xy

713 by
723 ty
33 Iz

0 1




Forward Imaging Model: 3D to 2D

Pinhole

2>

Image Plane R v
Z; Py
w ~
Xc ° — Xy
yc Cw /
2
f Yo World
Camera Coordinat
Coordinate Foor l$ ¢
% Frame C rame
c
Image Camera World
Coordinates Coordinates Coordinates
X, X
X = [xl] < _ y” < _ yw
o My, %= |° Mexy *w = [IW
Zc Zy
Perspective Coordinate
Projection Transformation

N
©
&/



Projection Matrix P

Camera to Pixel World to Camera

i £, 0 o, 01 Xc "1 Tz Tz G| pxw
5= {0 ol |7 Ye| _ |21 T2 Tez ty||yw
v fy oy z.1= ez
W o o 1 ol c 31 T32 T33 Ll2]|%w
1 1 o0 o o 1]i1
U = MipXe X = Mextxw

Combining the above two equations, we get the full projection matrix P:
i = My Mext X, = PX,

i P11 P12 P13 DPia ;C}W
U|=|P21 P22 P2z D2af|”

w. P31 P32 P33 DP3a

w

1




Camera Calibration Procedure

Step1: Capture an image of an object with known geometry.

)

P W
w
Object of Known Geometry




Camera Calibration Procedure

Step 2: Identify correspondences between 3D scene points and image points.

Captured Image

, Jw W
Object of Known Geometry




Camera Calibration Procedure

Step 2: Identify correspondences between 3D scene points and image points.

Yw W Captured
Object of Knowaneometry apruted fmage

o 5= ;”Z] - ‘33] w=[] =[]
Zw
(injhes) (pixels)




Camera Calibration Procedure

Step 2: Identify correspondences between 3D scene points and image points.

Captured Image

, Jw W
Object of Known Geometry

o 5= ;f:]= ‘33] w=[] =[]
Zw
(injhes) (pixels)




Camera Calibration Procedure

Step 3: For each corresponding point i in scene and image:

u(‘) P11
p® P21
P31

Known

X
P12 P13 Pua]| (p
P22 P23 p24] Yw
P32 P33 DPs3a Z‘S)
1
Unknown
Known

Expanding the matrix as linear equations:

0 = P11x(l) + Plz}’m(/l) + P13Z|Evl) + P1g
p31x )+ P32y )+ pssznsvl) + P3a

o + P23Z\Evl) + D24

o = p21x +p2y

@

P31Xy,” + P32YW + p33z$) + P34

N
B
&/



Camera Calibration Procedure

Step4: Rearranging the terms

P11
B G S S S O € o o RS C R 212 ,g_
13
00 0 0wy g 1 e e sl e o
;. :. :4 H H H H H : . H . H . p21 0
vy oz 1 0 0 0 0 —wx) —ww)  —wzg)  —w||p2|_|o
0 0 0 0 x&f) y‘E}) z&;) 1 —vix$) —viyv(;) —viz&f) —v; [|P23 0
: : : : : : : : : : : : P24 0
Lo 0 0 0 x® y® ™ 1 oo sl Lo
A LD34-
Known p
Step5: Solve for P Unknown

Ap=0




Scale of Projection Matrix

Projection matrix acts on homogenous coordinates.

i
We know that: |:ﬁ:| = k[
W

_ <

) P11 P12 P13 Pia ;W P11 P12z P13
Thatis: |p,; Doz P2z Paa ZW =k|P21 D22 D23
P31 P32 P33 D34 i” P31 P32 P33

Therefore, Projection Matrices P and kP produce the same
homogenous pixel coordinates.

Projection Matrix P is defined only up to a scale.

i
”] (k #0 is any constant)

pra1 [

p Yw
24

paal [
34 1

N
B
&/




Scale of Projection Matrix

Scale =k,
Scaling projection matrix, implies simultaneously scaling
the world and camera, which does not change the image.

Set projection matrix to some arbitrary scale!




Least squares Solution for P

Option 1: Set scale so that: p34, = 1
Option 2: Set scale so that: | ||p]|? =1

We want Ap as close to 0 as possible and ||p]|? = 1:
min ||Ap||? such that ||p]|? =1
p
min(pTATAp) suchthat p™p =1
P

Define Loss function L(p,2):
L(p,2) =p"ATAp — A(p"p - 1)

(Similar to Solving Homography in Image Stitching)




Constrained Least Squares Solution

Taking derivatives of L(p, 1) wrtp: 2ATAp—2Ap =0

ATAp = Ap Eigenvalue Problem

Eigenvector p with smallest eigenvalue A of matrix AT A minimizes
the loss function L(p) .

Rearrange solution p to form the projection matrix P.




Extracting Intrinsic/Extrinsic Parameters

We know that:
11 Tz T3 Iy

P11 P12 D13 DPia fx 0 o O P T et
P =|P21 P22 P23 P2a|=|0 f, o0, O r21 rzz r23 ty
31 T32 133 Iz
P31 P32 P33 P34 0 0 1 o0 0 0 0o 1
That is: Mint Mext
P11 P12 T2 T3
P21 P22 22 T23||=KR
P31 P32 T32 733

Given that K is an Upper Right Triangular matrix and R is an
Orthonormal matrix, it is possible to uniquely "decouple" K
and R from their product using "QR factorization".




Extracting Intrinsic/Extrinsic Parameters

We know that:

P11
D21
P31

P12
D22
P32

P =

That is:

P14
D24
P34

Therefore:

P13 | P14’ fr 0 oy
P23 (P2a|=|0 f, o,
P33 P34. 0o 0 1
Mint
fr 0 ox][tx
=10 fy Oy ty =Kt
0 0o 1l
P14
t=K1|D2a
P34

0 1 Tiz T3
0 21 T2 T23
0 31 T32 133

0 0 0
Mext




Camera Calibration

Pinholes do not exhibit image distortions. But, lenses do!
Actual

Image Obj ect Ob_] ect

Tangential Distortion Radial Distortion

The intrinsic model of the camera will need to include
the distortion coefficients. We ignore distortions here.




Backward Projection: From 2D to 3D

Given a calibrated camera, can we find the 3D scene point from a
single 2D image?

Camera/World y
Coordinate
Frame C
(0,0,0 2

N

Z

Plane




Backward Projection: From 2D to 3D

Given a calibrated camera, can we find the 3D scene point from a
single 2D image?

S
Camera/World cene

Coordinate
Frame C
(0,0,0

y

Projection of an image point back
into the scene results in an
outgoing ray.

Plane




Computing 2D-to-3D Outgoing Ray

Scene
Camera/World

Coordinate
Frame C
(0,0,0

ID-to-2D: Wy T ox

(Point) v=f, i_c +o,
c

x=z/fr(u—0y)
y = z/f,(v—oy)
z>0

2D-to-3D:
(Ray)

Plane




Triangulation using Two Cameras

y (xy,2)

fxrfy' b, oy, 0Oy

Stereo System ~ S€/y; 3 Right are known.

(Binocular Vision) Camera




Simple Stereo: Depth and Disparity

From perspective projection:
x y x—b y
) = (5 +onf2+0,) @nw) = (67" +ouf 7 +0))

Solving for (x,y, z):

o bu—o0,)  bf(vi—o0y) bfx

w-w) 7T K- | m—u)

where (u; — u,) is called Disparity.

Depth z is inversely proportional to Disparity.

Disparity is proportional to Baseline.




A Simple Stereo Camera

Fujifilm FinePix REAL 3D W3




Stereo Matching: Finding Disparities

Goal: Find the disparity between left and right stereo pairs.

Al 1.3

Left/Right Camera Images
From perspective projection: v=v=f,=+o0,

Corresponding scene points lie on the same horizontal scan line.




Window Based Methods

Determine Disparity using Template Matching
Template Window T Search Scan Line L

Left Camera Image E;




Window Based Methods

Determine Disparity using Template Matching
Template Window T Search Scan Line L

Left Camera Image E;




Window Based Methods

Determine Disparity using Template Matching
Template Window T Search Scan Line L

. i
Left Camera Image E, Right Camera Image E,
bf,
Disparity: d =u; —u, Depth: z = o _xu )
l T




Similarity Metrics for Template Matching

Find pixel (k, 1) € L with Minimum Sum of Absolute Differences:

SAD (e, ) = Z |E,Gi,j) — ExGi+ Kk, j + D)
(i,))eT

Find pixel (k, 1) € L with Minimum Sum of Squared Differences:
SSDUD =) B0 = Eri+kj+DP
(L.j)eT

Find pixel (k, 1) € L with Maximum Normalized Cross-Correlation:
Yijper EGNE(+kj+D

Jz(i,,-)er By )2 B per Br i+ K, j + D2

NCC(k, 1) =




Issues with Stereo Matching

» Surface must have (non-repetitive) texture




How Large Should Window Be?

Window size = 30 pixels
(Sensitive to noise) (Poor localization)

Adaptive Window Method Solution: For each point, match using
windows of multiple sizes and use the disparity that is a result of the
best similarity measure (minimize SSD per pixel).




Window Based Methods: Results

R )
ol

Left mage Ground Truths
SSD - Adaptive Window  SD (Window size=21) State of the Art

http://vision.middlebury.edu/stereo
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Simple (Calibrated) Stereo

y (xy,2)

fxr fys b, 0x, 0, are
in pixel units.

Stereo System nyg/l;;é p AT Right
(Binocular Vision) Camera




Depth and Disparity

Solving for (x,y, z):

L _bu—o) _bi(w-o) | _ b

(u —uy) B fy(ul - u) B (w —uy)

where (u; — u,) is called Disparity.




Uncalibrated stereo

e Method to estimate 3D structure of a static scene from two
arbitrary views.

Topics:

* (1) Problem of Uncalibrated Stereo
* (2) Epipolar Geometry

* (3) Estimating Fundamental Matrix
* (4) Finding Dense Correspondences

* (5) Computing Depth




Uncalibrated Stereo

Compute 3D structure of static scene from two arbitrary views

Left

Right
Camera

Camera

Instrinsics (fy, fy, 0x, 0,) are known for both views/cameras.

Extrinsics (relative position/orientation of cameras) are unknown.

@



Uncalibrated Stereo

Scene

5 p Right
Left ! Camera
Camera § o
X Dy )
xT
40, g Or 2,

o 1. Assume Camera Matrix K is known for each camera
2. Find a few Reliable Corresponding Points




Initial Correspondence

Find a set of corresponding features (at least 8) in left and right
images (e.g. using SIFT or hand-picked).

Left image Right image

() @)
PY (ul(m): Vz(m)) ° (uﬁm):, vr(m))

©



Uncalibrated Stereo

Right
Left Camera
Camera

%

A

2

O 1. Assume Camera Matrix K is known for each camera
@ 2. Find a few Reliable Corresponding Points
3. Find Relative Camera Position t and Orientation R

4. Find Dense Correspondence
5. Compute Depth using Triangulation




Epipolar Geometry: Epipoles

Right
Left Camera
Camera
2y

2 Ol X 1
Epipole: Image point of origin/pinhole of one camera as
viewed by the other camera.

e; and e, are the epipoles.
e; and e, are unique for a given stereo pair.




Epipolar Geometry: Epipolar Plane

Right

Left Camera

Camera

Xr

Epipolar Plane of Scene Point P: The plane formed by camera
origins (0; and O, ), epipoles (e; and e,. ) and scene point P.

Every scene point lies on a unique epipolar plane.




Epipolar Constraint

P Scene Point

Normal
vector Epipolar
n = txx; Plane Right
Left Camera
Camera o
t,R Xy

210 % 0, "z
Vector normal to the epipolar plane: n = tXx;

Dot product of n and x; (perpendicular vectors) is zero:

Xy (txxl) =0




Epipolar Constraint

Writing the epipolar constraint in matrix form:
x; - (txx) =0

tyZl =tV
Xt Yo Z]|tx -tz =0 Cross-product definition
eV — tyxl
0 —tz ty X
[x1 i zi]| ¢, 0 —t.flm]=0 Matrix-vector form
—t, t 0|lz

T,
t3x1: Position of Right Camera in Left Camera's Frame
R3y3: Orientation of Left Camera in Right Camera's Frame

T11 r12 r13 Xy tx
X, =Rx, +t 7’21 22 Yr
32 T33 Zy tz




Epipolar Constraint

Substituting into the epipolar constraint gives:

2 T3] [Xr
X1y 2] tz —t [ T2 Ta3||¥r tz —t [ ]
—t, 732 T33llZr —ty Ly

tXt =

[x1 Y1 zZi]|ez21 e22
€31 €32 €33

Essential Matrix E

€11 €12 913]

Xr
yr] =0

Zr

E =T«R
[Longuet-Higgins 1981]




Essential Matrix E: Decomposition

E =T«R

€11 €12 €13 0 tyllrir 1z 73]
€1 €2 ex3|=||t; 0 21 T2 T3
e e 33 ty 0

e
31 €32 € 1731 732 T133]

Given that Tx is a Skew-Symmetric matrix (a;; = —a;;) and R is
an Orthonormal matrix, it is possible to "decouple" Ty, and R
from their product using "Singular Value Decomposition".

Take Away: If E is known, we can calculate t and R.

©



How do we find E?

Relates 3D position (x;, y;, z;) of scene point w.r.t left
camera to its 3D position (X, ¥, z,) w.r.t right camera

xTEx, =0
€11 €12 €137 [Xr
[X1 Y1 Zi]|€21 €22 exs|{¥|=0

/ €31 €32 €337

3D position in left 3x3 Essential Matrix 3D position in right
camera coordinates camera coordinates

Unfortunately, we don't have x; and x,..

But we do know corresponding points in image coordinates.




Incorporating the Image Coordinate

Perspective projection equations for left camera:

_ rOx () _ Dy ()
u = f ;:+ox v, —fy z—;+0y

Ziuy = ()xl +z; 0() Zv = yl + zlo()

Representing in matrix form:

[Zlul] x()xl +z 0() fx(l) 0 OJ(Cl) [xl

U
Z; []]l = |Z;V; (O] + 0] = 0 [0} O] Vi
1 z f yl Zl O 0 36 Oi 7

Known
Camera Matrix K;

|




Incorporating the Image Coordinate

Left camera: Right camera:

up [K 0 o] wy [£7 0 o
Z [111]= 0 y(l) 0}(]1) }Z’z z- (V| =] o y(r) 03(,T) Yr
o o 1™ ole o 1l
Kl KT
cu,
xl=[w v 1]Zsz_1T x.K'Z, = [vlr ]




Incorporating the Image Coordinate

Epipolar constraint:
€11 €12 €13 [Xr
[x1 Y1 zi]|ez1 €22 exs||(¥|[=0
€31 €32 €33]1Zr

Rewriting in terms of image coordinates:

€11 €12 €13 Uy
[, v 1MK1_1 €1 € €33 Kr‘1% v | =
€31 €3z €33 1

Zl;tO
z, #0




Incorporating the Image Coordinate

Epipolar constraint:
€11 €12 €13 [Xr
[x1 Y1 zi]|ez1 €22 exs||(¥|[=0
€31 €32 €33]1Zr

Rewriting in terms of image coordinates:

€11 €12 €13 U,
[up v, 1)K '|exr e exn|K it v |=0
€31 €32 €33 1




Fundamental Matrix F

Epipolar constraint:

€11 €12 €13 [Xr
[x1 Y1 zi]|ez1 €22 exs||(¥|[=0

€31 €32 €33]1Zr

Rewriting in terms of image coordinates:

fir fiz fis Uy
[wi vi 1|fox faz fa3 [Vr]=0
fa1 fzz fez|'1

Fundamental Matrix F
E = K[ FK, E=T«R

[Fagueras 1992, Luong 1992]




Stereo Calibration Procedure

Find a set of corresponding features in left and right images(e.g.
using SIFT or hand-picked)

Left image

Right image




Stereo Calibration Procedure

Find a set of corresponding features in left and right images(e.g.
using SIFT or hand-picked)

Left image Right image

() @)
PY (ul(m): Vz(m)) ° (uﬁm):, vr(m))




Stereo Calibration Procedure

Step A: For each correspondence i, write out epipolar constraint.

. . fin fiz fis uﬁi)
[ulm UI(L) |for faz fos y®|=0
fs1 fzz f3 1

Known Unknown Known

Expand the matrix to get linear equation:

(fuuf) + f1er(l) + f13) uz(L) + (f21u$) + fzzvr(l) + fza) UL(L) + f31u1(»l) + f32v,fl) + f33

=0




Stereo Calibration Procedure

Step B: Rearrange terms to form a linear system. itk
fa1
wu® v P P ® s,
K K i K : : : : Hl 21
ufl)uﬁl) ul(’)v,gl) ul(’) vl(’)uﬁl) vl(i)vr(i) vl(i) ul(i) uﬁi) 1{[fez [|=
: : : : : : : i || f2s
N R B O ORCORY | /N
f32
A Lf33]
Known
( ) f
(Unknown)

Af =0




The Tale of Missing Scale

Fundamental matrix acts on homogenous coordinates.

fir fiz fus|ur kfir kfiz kfis|u,
[w v 1|far faz fas||or|=0=[w v 1|kfor kfzz kfas [Ur]
fa1 faz faz|t1l kfs1 kfsy kfss|t1

Fundamental Matrix F and kF describe the same epipolar
geometry. That is, F is defined only up to a scale.

Set Fundamental Matrix to some arbitrary scale.

IfII? =1




Solving for F

Step C: Find least squares solution for fundamental matrix F.
We want Afas close to 0 as possible and || f||> = 1:
Ir}in [IAf]|? such that || f||? = 1

Constrained linear least squares problem

Like solving Projection Matrix during Camera Calibration.
Or, Homography Matrix for Image Stitching.

Rearrange solution f to form the fundamental matrix F.




Extracting Rotation and Translation

Step D: Compute essential matrix E from known left and
right intrinsic camera matrices and fundamental matrix F.

E = K[FK,

Step E: Extract R and t from E.

E=TR

(Using Singular Value Decomposition)




Uncalibrated Stereo

Right
Left Camera
Camera

%

A

2

O 1. Assume Camera Matrix K is known for each camera
@ 2. Find a few Reliable Corresponding Points
Q 3. Find Relative Camera Position t and Orientation R

4. Find Dense Correspondence
5. Compute Depth using Triangulation




Simple Stereo: Finding Correspondences

Goal: Find the disparity between left and right stereo pairs.

Left/Right Camera Images Disparity Map(Ground Truth)

Corresponding scene points lie on the same horizontal scan-line
Finding correspondence is a 1D search.




Epipolar Geometry: Epipolar Line

Right

Left Camera

Camera

Epipolar Line: Intersection of image plane and epipolar plane.

Every scene point has two corresponding epipolar lines, one each
on the two image planes.




Epipolar Geometry: Epipolar Line

Right

Left Camera

Camera

Given a point in one image, the corresponding point in the
other image must lie on the epipolar line.

Finding correspondence reduces to a 1D search.




Finding Epipolar Lines

Given: Fundamental matrix F and point on left image (u, v)
Find: Equation of Epipolar line in the right image

Epipolar Constraint Equation:

[w vi 1|for faz fas
f31 fzz fi3

Expanding the matrix equation gives:

(firw + forvi + fs)ur + (fiowy + f2201 + f32)vr + (fizwy + f2301 + f33) = 0

fir fiz fas|ue
[17,.]:0
1

Equation for right epipolar line: au, + by, +¢, =0

Similarly we can calculate epipolar line in left image for a point
in right image.




Finding Epipolar Lines: Example

Left Image Right Image

Given the Fundamental matrix,

F=]-.003 -.008 -29.2

—-.003 -—.028 13.19]
297 5638 -9999

©



Finding Epipolar Lines: Example

Given the Fundamental matrix, Left Image Right Image

—-.003 -.028 13.19
=|-.003 -.008 —29.2
297 5638 -9999

and the left image point
343
=12 2 1

The equation for the epipolar line in the right image is:

—.003 —-.003 2.97 7[343
[wr v 1](—-.028 -.008 56.38 221 =0
13.19 -29.2 -9999




Finding Epipolar Lines: Example

Left Image Right Image

Given the Fundamental matrix,

-.003 -.028 13.19
=1-.003 —-.008 -—-29.2
297 5638 -9999

and the left image point
343
=12 2 1

The equation for the epipolar line in the right image is:

Epipolar Line

03w, +.99v, — 265 =0

©



Finding Correspondence

Epipolar Line

Left Image Right Image

Corresponding scene points lie on the epipolar lines.
Finding correspondence is a 1D search.




Finding Correspondence

Epipolar Line

Left Image Right Image

Corresponding scene points lie on the epipolar lines.
Finding correspondence is a 1D search.




Uncalibrated Stereo

Right

Left Camera

Camera

Xr

Q 1. Assume Camera Matrix K is known for each camera
@ 2. Find a few Reliable Corresponding Points
Q 3. Find Relative Camera Position t and Orientation R

0 4. Find Dense Correspondence
5. Compute Depth using Triangulation




Computing Depth

Right
Left Camera
Camera
%
Z
Given the intrinsic parameters, the projections of scene point
on the two image Sensors are:
Q) ( X
- o) D0 o 0 o
Uz (l) (l) 0 0 y(r) 0}(]r) 0| |z,
0 0 1 oll1




Computing Depth

Left Camera Imaging Equation Right Camera Imaging Equation
wy [£0 o o) wy [£D o
l = () ()
s B A
1 0dt1 0

We also know the relative position and orientation between the two

cameras.
T2 Tz Iy %r
T2 T2z ty||Wr
Z l T31 7"32 7'33 tz||%r
11t1




Computing Depth

Left Camera Imaging Equation:

D oolff1 Tz Tz L]

O] (
21 Tz T2z ty||Vr
v (l) (l) v
l] [ oy” 0 31 T32 133

t: |2
0dilo o o 1

u; = Px;
Right Camera Imaging Equation:
Q) Og(cr) ol [*r
ERE

1 oit1

u, = Mintrxr




Computing Depth

The imaging equation:

u, = M, x, u, = Px,
X
X T
u, Myy Mqp Mgz Mgy yr U B P11 P12 P13 D14 v,
V| =|Mar My My My, ZT = (P21 P22 P23 DP2s z,
1 Mgy Mzy Maz Mgy 17‘ 1 P31 P32 P33 DP3a 1
Known Unknown Known Unknown
Rearranging the terms:
UrM3zqp —Mq1 UpMgy — My UpMizz — My3 — Mgzy
UrMgzy —Mp1  VyM3zp — My UpMgz — Myg y — Mgy
T
Uip31 — P11 UiP32 — P12 Uip33 — P13 P14 D34
UiP31 — P21 UiP32 — P22 U1P33 — P23 D24 — P34




Computing Depth: Least Squares Solution

UrMzqg —Mq1 UpyMzy — My UpMzz — My3 X Mig — M3y
UrMzq — Mp1  VpyMgy — Mz VpMzz — My3 yr |24 — M3y
Uip31 — P11 UiP32 — P12 Uip33 — P13 ZT || P14 — P34
VP31 — P21 VP32 — P22 ViP33 — P23 " P24 — P34

Az Xr bsx1
(Known) (Unknown)  (Known)

Find least squares solution using pseudo-inverse:
Ax,. =Db
ATAx, = ATh

x,= (ATA)"1ATh




3D Reconstruction with Internet Images

St. Peter's Basilica (1275 Images)

[Snavely 2006]




3D Reconstruction with Internet Images

St. Peter's Basilica (1275 Images)

[Snavely 2006]




3D Reconstruction with Internet Images

Piazza San Marco (13709 Images)

[Furukawa 2010]




3D Reconstruction with Internet Images

Piazza San Marco (13709 Images)

[Furukawa 2010]




Active Stereo Results

3D Structure

Left Image Right Image

[Zhang 2003]




Active Stereo Results

3D Structure

Left Image Right Image

[Zhang 2003]
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Overview

Method to estimate apparent motion of scene points from a
sequence of images

(1) Motion Field and Optical Flow
(2) Optical Flow Constraint Equation
(3) Lucas-Kanada Method

(4) Coarse-to-Fine Flow Estimation

(5) Applications of Optical Flow




Motion Field

Pinhole
Sensor s © Vo * 6t
f To+ 0T @ py Scene
Point
z To
Di Ti
. N rp_To
v, - 6t 1 r; +6r; Perspective projection: 7 =z
dr; (ro - 2)vg — (Vo - )1 dr,
Image Point Velocity: v; = d_tl = fﬁeene(—rﬁ(?}a}%elee& Vo = d_to

_ (roxvy)xz

T (ry - 2)?




Optical Flow

Motion of brightness patterns in the image

Image Sequence
(2 frames)

Optical Flow




When is Optical Flow # Motion Field ?

Spinning Sphere Stationary Sphere
Stationary Light Source Moving Light Source

Motion Field exists No Motion Field exists
But no Optical Flow But there is Optical Flow




When is Optical Flow # Motion Field ?

Barber Pole
Illusion




Motion Illusions

0 V\eeop)\ves) (\ceo
@0 )\W(g%uvaj ) Qe

eeoP |\eeod )\ve00 )\
Veegd (\eeod ) \eap |
}%yvyj)\\ﬁf(?%gvyj

Veeo) |\eeo (Y 1 74
o0 0\e=e0) |V\eeod |\ve
oo ()\s=0) (|Vaeop )\
W(}&xuu) )Q e ( %
Veeod |V\ee0) () \eeod
)Qeeod |V\ees) (A aesod

Do kko” (Donguri wave), produced by Akiy




Optical Flow

)

(x + 6x,y + 8y)
Displacement: (6x, 8y)

) 6x Oy
Optical Flow: (w,v) = (E'E




Optical Flow Constraint Equation

I(x,y,t) I(x + 6x,y + 8y, t + 6t)

Assumption #1 :

Brightness of image point remains constant over time

I(x +6x,y + 8y, t +6t) =1(x,y,t)




Optical Flow Constraint Equation

I(x,y,t) I(x + 6x,y + 8y, t + 6t)

Assumption #2:

Dispacement (8x, §y) and time step &t are small

I(x + 6x,y + 6y, t + 6t) = I( t)+616 +616 +616t
X X,y Y, =1x,Yy, Ax X ay y at

QG+ 8x,y + 8y, t+6t) = 1(x,y,t) + L5x + 1,8y + [,6t




Optical Flow Constraint Equation

I(x+6x,y+ 6y, t+6t) =1(x,y,t)
I(x + 6x,y + 8y, t +6t) = I(x,y,t) + [,6x + ,,6y + 16t

Subtract (1) from (2): I,6x + I,,6y + I;6t = 0

dy

—~41,=0
at 't

x
Divide by 6t and take limitas 6t = 0 : Ixa +1,
Lu+lyv+1,=0 (u, v): Optical Flow

(Lo, Iy, 1)




Computing Partial Derivatives I, 1,,1;

L(k, L)

1
=Z[1(k+1,l,t)+I(k+1,l+1,t)+1(k+1,l,t+1)+1(k+1,l+1,t+1)]

[uny

— UL +10 1+ 1,0 + 10 Lt +1) +1(k 1+ 1t + D)

Similarly find and




Geometric interpretation

For any point (x,y) in the image,
its optical flow (u, v) lies on the
line:

Lu+Lv+I=0

Optical Flow can be split into two
components.

u=u,+u,

uy:

up:

v

Constraint line
Lu+Lv+I=0

,1 (Ix' Iy)

Up

u(u, v)




Normal Flow

v Constraint line
. . Lu+Lv+I=0
Unit vector perpendicular to the
constraint line:
~ (le Iy) . (Ix1 Iy)
U, =—=
[12+12 ¢
X y Up
u"l
u(u, v)
Distance of origin from the u
constant line:
||
luy| = — |1

= Lo 1
/1§+1§ Un (1§+1§)(x 2




Parallel Flow

v Constraint line
Lu+Lv+I=0

x (Ix' Iy)
We s /

the optical flow component u, =?
u"l

parallel to the constraint line. u(w, v)




Aperture Problem




Optical Flow is Under constrained

Constraint Equation: | Lu+L,v+ 1, =0

2 unknowns, 1 equation.




Lucas-Kanada Solution

For each pixel, assume Motion Field, and hence Optical

Flow (u, v), is constant within a small neighbourhood W.

That is for all points (k, 1) € W:
Le(k, Du + L, (k, v + I:(k, 1) = 0




Lucas-Kanada Solution

For all points (k,1) € W: L. (k,Du + L,(k, D)v + I:(k,1) = 0
Let the size of window W be nxn

In matrix form:

L(11)  L,(1,1) 1,(1,1)

Lo by ([ == kD

() L(n,n) I(n,m)
A u B

(Known)  (Unknown) (Known)
n?x2 2x1 n?x1




When Dose Optical Flow Estimation Work?

Au =B ATAu = ATB

+ ATA must be invertible. That is det(4TA) # 0
+ ATA must be well-conditioned.

If A; and A, are eigen values of AT A, then




Smooth Regions (Bad)

M~2y

Both are small

Equations for all pixels in window are both more or less the same

Cannot reliably compute flow!




Edges (Bad)

Badly conditioned. Prominent gradient in one direction.

Cannot reliably compute flow!

Same as Aperture Problem.




Textured Regions (Good)

A~
Both are Large

Well conditioned. Large and diverse gradient magnitudes.

Can reliably compute optical flow!




What if we have Large Motion?

Taylor Series approximation of

I(x + 6x,y + 8y, t + 6t) is not valid

Our simple linear constraint
equation not valid

Lu+Lv+I, #0




Large Motion: Coarse-to-Fine Estimation

Resolution Resolution Resolution Resolution
NN NN NN
NXN 272 %77 878

At lowest resolution, motion < 1 pixel




Coarse-to-Fine Estimation Algorithm

t ﬁu v)© t+ 6t
t+ 6t

t
s e S Alu, v)®

Ay, v)™




Results: Tree Sequence

Image Sequence Optical Flow




Results: Rotating Ball

Image Sequence

s 4 4 4 4 &
ot Ay

DN

Y,
A
7

PRVSEERRSS
et smeetsi e L

N NP R
& R Ay

A

Optical Flow




Alternative Approach: Template Matching

Determine Flow using Template Matching

| 14

- < R el 73
Template window T'

Search window S

Image I at time t Image I, at time t + &t

For each template window T in image I,
find the corresponding match in image I,




Alternative Approach: Template Matching

Determine Flow using Template Matching

— fon L=

Template window T' Search window S

Image I at time t Image I, at time t + &t




Applications: Optical Mouse

Mouse button CMOs ( Camera)

Mirror

Estimating Mouse Movements




Applications: Traffic Monitoring

Finding Velocities of Vehicles




Applications: Video Retiming

Frame Sampling Optical Flow
110

Optical Flow is used to determine the intermediate frames
to produce slow-motion effect.
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Uncontrolled (Casual) Video




Overview

Compute 3D scene structure and camera motion from a sequence
of frames.

(1) Structure from Motion Problem
(2) SFM Observation Matrix
(3) Rank of Observation Matrix

(4) Tomasi-Kanade Factorization




Feature Detection and Tracking

* Detect feature points: Corners , SIFT points , ...
* Track feature points: Template Matching, Optical Flow...

©



Orthographic Structure from Motion

p =1,2,...,N points

Frame F

6 | ° [ ]
Frame 1
E] Frame f

Given sets of corresponding image points (2D): (ugp, Vg p)
Find scene points (3D) By, assuming orthographic camera.




From 3D to 2D: Orthographic Projection

Scene Point

Image Plane
u=i-x.=i"x.
v=j-x=j"x
Perspective cameras exhibit orthographic projection when

distance of scene from camera is large compared to depth
variation within scene (magnification is nearly constant).




From 3D to 2D: Orthographic Projection

Scene Point

World
Coordinate W

Image Plane

u=iTx,=i"(x, —c,) =iT(P-0C)

v=jTx=J" (=) =jT(P-0C)
u=IiT(P-2C)
v=j"(P-0C)




Orthographic SFM
y

p =1,2,...,N points

f=1,2,...N
L o frames

>

Given corresponding image points (2D) (uf p, Vs p)
Find scene points {B, }.
Camera Positions {Cf}, camera orientations {(if, jr)} are unknown.




Orthographic SFM
y

p =1,2,...,N points

f=1,2,...N
L e frames

ug, = if (B, — Cp)
vrp =Jf (B — Cp)
Known  Unknown
We can remove C from equations to simply SFM problem.

Image of point P in camera frame £ :




Centering Trick

3D centroid y

Frame f
X
Scene Jr
G
Assume origin of world at centroid of scene points:
N
1 _
N Pp =P = 0
p=1

We will compute scene points w.r.t their centroid!




Centering Trick

3D centroid y
Frame f

Scene il 5 2D centroid (i, 7y)

Centroid (i, U5) of the image points in frame f :

_ 1 — 1 1 .
U =3 Xp=rUpp = Zp 1if (B =Cp) U= TZp=1Vp = p=1Jf (B, = Cp)

— _1.r - _ 1.7 1N T
U = g b~y Xp-aif G Uy _ym_ﬁzpﬂff Cr

- _ .T = T
'Llf = —lf Cf Uf = —]f Cf




Centering Trick

3D centroid y
Frame f

Scene Jr 2D centroid (i, 7y)

Shift camera origin to the centroid (uy, Uy) .

Image points w.r.t. (if, Uy) :

~ — ) . ~ _ — _.T .T
Upp =upp — T =if (B —Cr) +1f G Tpp =vpp— T =Ji (B = Cp) +Jf Cf
lpp = if By rp =Jf B

Camera locations Cy now removed from equations.




Observation Matrix W

Image 1

Image 2

Image F

Image 1

Image 2

Image F

~ .T
Up=1if P Urp] |
) ) = R,
P

Urp =Jf B
Point 1 Point 2 Point N
U1, (2203 .- ui,N
U2, U2,> b [22-39,%
UF UF.,2 .- UF N
Vi1 Vi.2 R Vi.N
Va2 V2,2 b Vao,nN
7V1~‘,1 VF.,2 .- VF.,N
W2F><N

Centroid-Subtracted
Feature Points (Known)

Usp

Point N

7]

o
i
_;. Point 1 Point 2
z
- %z A
J1
T2 S3><N
: Scene Struction
| Jx (Unknown)
M3 px3
Camera Motion
(Unknown)




Observation Matrix W

Point 1 Point 2 Point N
Image 1 ;1,1 L~£1.2 - Z~ll,N i n

—_~ o~ ~ 1
Image 2 U2, U222 .- Uz2.N -7

>

~ ~ ~ | Point1 Point2 PointN
ImageF | ¢z 71 Ur,2 ... Ur N i

e e = N[ B B - By
Image 1 Vi1 Vi2 .- Vi,N J1

- - - T s
Image 2 Vo V2o .- Vo.nN J2 3XN

: Scene Struction

~ ~ ~ Jn (Unknown)

ImageF | V7.1 VF,2 c- - VFE.N ] - -
Warxn M3 px3
Centroid-Subtracted Camera Motion
Feature Points (Known) (Unknown)

Can we find M and s from W ?




Linear Independence of Vectors

A set of vectors {vq, vy, ... U, } is said to be linearly independent
if no vector can be represented as a weighted linear sum of the
others.

{i,j} is linearly independent.

{i,j, vy} is linearly dependent. Ve
21
{i,j,v3} is linearly dependent.

{v41, v, v3} is linearly dependent.




Rank of a Matrix

¢ Column Rank: The number of linearly independent columns of
the matrix.

* Row Rank: The number of linearly independent rows of the

matrix. v’
T
.
m A = [c1 c, c, ] =|
o7
n n
ColumnRank(A)<n ColumnRank(A)<m

ColumnRank(A) = RowRank(A) = Rank(A)
Rank(A) < min(m,n)




Geometric Meaning of Matrix Rank

Rank is the dimensionality of the space spanned by column or row
vectors of the matrix.

a by o
a, b, Cz] =[la b (]
as bz c3

Rank(A)=1  4em—p “4/

A=




Geometric Meaning of Matrix Rank

Rank is the dimensionality of the space spanned by column or row
vectors of the matrix.

a; by
A=|a; b, Cz] =[la b c]
as b3 C3 a
5
Rank(A)=2  Gemmp &




Geometric Meaning of Matrix Rank

Rank is the dimensionality of the space spanned by column or row
vectors of the matrix.

a by o
a, b, Cz] =[la b (]
as bz c3

A=

Rank(A)=3 ¢




Important Properties of Matrix Rank

Rank (AT) = Rank(A)

Rank(Amxn Bnxp ) = min (Rank(Apxn), Rank(Bpxy))

< min(m, n, p)

Rank(A AT) = Rank(AT A) = Rank(A) = Rank(AT)

* A,xm 1s invertible iff Rank(Apxm ) = m




..Back to Observation Matrix W

Point 1 Point 2 Point N
Image 1 Ijtl,l ;ll,z R ;I,N 7l'T 7

- - - 1
Image2 | 2454 w22 -+ UzwN T

>

| F ~ ~ ~ ’ -T Point1 Point2 Point N
mage UF.1 Ur.,2 .- Uur,N 1592

STt T ST T T ST ST e e s I e == "'_;:' [Pl P2 R PN ]
Image1 [ Vi1 Vi.2 vi,n J1

~ ~ ~ -7 5
Image2 [ 5 Va2 .- Vo N J2 3XN

: : Scene Struction

~ ~ ~ I (Unknown)

ImageF | V7.1 VF.2 .. ve.N | - -
Warxn Mrx3
Centroid-Subtracted Camera Motion

Feature Points (Known) (Unknown)




Rank of Observation Matrix

W = MxS§
2FXN  2Fx3  3xN

We know:
Rank(MS) < Rank(M) Rank(MS) < Rank(S)

C—) Rank(MS) < min(3,2F)  Rank(MS) < min(3,N)

C—> Rank(W) = Rank(MS) < min(3, N, 2F)

Rank throem : Rank(W) < 3 We can “factorize” W into M and S!




Singular Value Decomposition (SVD)

For any matrix A there exists a factorization:
— T
Apxn = Umsmt - Zmuxn - Vsn

Where Upyxpand Vi are orthonormal and Xy is diagonal.
Mathlab : [U,S,V] = svd(A)

s 0 0 0 0
0 o, 0 0 0
0 0 o O 0

s |0 0 0 o - 0 04, ..., Oy : Singular Values
wNTlo 0 0 0 .0
0 0 0 0 - o
0 0 0 0 - 0

If Rank(A) = r then A has r non-zero singular values.




Enforcing Rank Constraint

Using SVD:
w=Uxv"
[ i o, 0 0 0 o
0 o, 0 0 0
0 0 o 0 0
_ U 0 0 0 o, 0 pr
0 0 0 0 0
0 0 0 0 - oy
0 0 0 o - 0
- 2FX2F o 2FxN - NxN

Where: o4 > 0, >... > oy are the singular values of Z.




Enforcing Rank Constraint

Using SVD:
w=Uxv"
[ ] _Gl 0o 0 O ol
0 o, 0 O 0
0 0 o O 0
o 0 0 O 0 r
= U V
o o0 o0 o0 0
o 0 0 o 0
o 0 0 O 0
- 2Fx2F o ' .ZFXN. o NxN

Since Rank(W) < 3, Rank(X) < 3.
All expect first 3 diagonal elements of £ must be 0.




Enforcing Rank Constraint

Using SVD:
w=Uzy’
_ gm0y o ol
0 o, 0 O 0 7T
0 0 o O 0 !
0 0 0 0 0
= U, v,
0 0 0 0 0
0 0 0 0 0
VT
0 0 0 0 0 2
L R 2F3 - L . : . . . 1L
2Fx2F 2FxN Nx

Since Rank(W) < 3, Rank(X) < 3.

Submatrices U, and VJ do not contribute to W.




Enforcing Rank Constraint

Using SVD:
w=Uzy"
_ _[lEpmommon o ol T
0 0 0
O-z VIT ,
0 0 o, O 0
0 0 0 O 0
= U1 Uz
0 0 0 0 0
0 0 0 0 0 L
0 0 0 0 0 2 N
| : v A 1 |
2Fx2F 2FxN NxN
W=U; 3, VI
=Up 21 Vg

(2Fx3)(3%3)(3%xP)




Factorization (Finding M , S)

1 1
W =U; (22 (2)2V{
(2Fx3) (3xN)
=M? =57
Not so fast. Decomposition not unique!

For any 3X3 non-singular matrix Q :

1 1
W=UE)2Q Q' (22l isalsovalid.
(2Fx3) (3xN)
=M = § for some Q

How to find the matrix Q ?




Orthonormality of M

The Motion Matrix M:
il i i
M = l; _U(Z )1/2Q_ i; Q_ i;
i i A
Jk i Ji
Orthonormality Constraints:
Ty —
ipip=ifip=1 iFQQT; =1

Jjredp=Jfir=1 memmmp | J;0Q7j;=1

. . _ .T. _
b jr=1ipjy=0 FQQ"jy =0




Orthonormality of M

* We have computed (i)Tc,j]Tc) forf=1,...,F.
00"y =1
JrooTjr =1 Q is unknown.
00" =0

* () is 3x3 matrix, 9 variables, 3F quadratic equations.

* () can be solved with 3 or more images (> 3) using
Newton's method.

1 1
Final Solution: M=U;(Z)20Q S=QtE)zVf

Camera Motion Scene struction




Summary: Orthographic SFM

1. Detect and track feature points.

. Create the centroid subtracted matrix w of corresponding
feature points.

. Compute SVD of W and enforce rank constraint.

w=uvuzvli=u, 2, vl
(2Fx3)(3%3)(3%xP)
1 1
SetM =U; (2;)2Qand S = Q™1 (Z,)z V.
. Find Q by enforcing the orthonormality constraint.




Result

/
£ 5

Input image sequence Estimated 3D points




Result

3D reconstruction 3D reconstruction




Result

10N

Structure from Mot
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Bundle Adjustment
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Two-view Reconstruction

keypoints

fundamental _ essential

match-> matrix matrix

keypoints/ i F

-> [R]t] = triangulation -» ;\g




Pipeline

) \ )
I

Structure from Motion (SFM) Multi-view Stereo (MVS) @)



Pipeline




Merge Two Point Cloud




Merge Two Point Cloud

\ .
Vil

There can be only one [R,|t, |




Merge Two Point Cloud

From the 1%t and 2" images, we have
[R/]t,] and [R,]t,]
From the 2" and 3" images, we have
[R2|t2] and [Rs[t,]
How to transform the coordinate system of the second point

cloud to align with the first point cloud so that there is only
one [R2|t2]?




Merge Two Point Cloud




R G
ok

-
See From a Different Angle




Bundle Adjustment

©



Rethinking the SFM problem

* Input: Observed 2D image position

| 52

Xl X1

Sl 32 33

XZ X2 X2

| =3
* Output: X; X;

Unknown Camera Parameters (with some guess)
[R, [t ].[R,]t,].[R,]t,]
Unknown Point 3D coordinate (with some guess)
X' X2x3...




Bundle Adjustment

A valid solution [R1 |t1]’[R2 |t2]’[R3 |t3] and X' X2.X°,...

must let

K[R |t]X" x=K[R|]X*

Re- prOJectlon x=K[R,[t,]X' x;=K[R,[t,]X* x;=K[R,]|t,]X’
s=K[R,t, X' x; =K[Ry|t,|X*

X

X

XX
Observation { . 2 &
X, X

©



Bundle Adjustment

A valid solution [Ry[t, ][R, |t,],[R,]t,] and X' X2, X°,--
must let the Re-projection close to the Observation, i.e. to
minimize the reprojection error

t]X’)

min ¥ ¥ (%/ -K[R,
i




Solving This Optimization Problem

* Theory:
The Levenberg—Marquardt algorithm

http://en.wikipedia.org/wiki/Levenberg-Marquardt algorithm

* Practice:

The Ceres-Solver from Google

http://code.google.com/p/ceres-solver/




Ceres-solver: A Nonlinear Least Squares Minimizer

Toy problem to solve  min (10 - x)2

class SimpleCostFunction
: public ceres::SizedCostFunction<l /# number of residuals */,
1 /* size of first parameter */> {
public:
virtual “SimpleCostFunction() {}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
const double x = parameters[0] [0];
residuals[0] = 10 - x; // f(x) = 10 - «x
// Compute the Jacobian if asked for.
if (jacobiams != NULL &% jacobians[0] != NULL) {
jacobians[0][0] = -1;
}

return true;




Ceres-solver: A Nonlinear Least Squares Minimizer

Toy problem to solve  min (10 - x)2

int main(int argc, char** argv) {
double x = 5.0;
ceres: :Problem problem;

// The problem object takes oumership of the newly allocated
// SimpleCostFunction and uses it to optimize the value of z.
problem.AddResidualBlock(new SimpleCostFunction, NULL, &x);

// Run the solver!

Solver: :0Options options;
options.max_num_iterations = 10;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true;
Solver: :Summary summary;

Solve(options, &problem, &summary);

std::cout << summary.BriefReport() << "\n";
std::cout << "x : 5.0 -> " << x << "\n";
return 0;




Ceres-solver: A Nonlinear Least Squares Minimizer

Toy problem to solve  min (10 - x)2

0: £: 1.250000e+01 d: 0.00e+00 g: 5.00e+00 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 1li: O
1: £: 1.249750e-07 d: 1.25e+01 g: 5.00e-04 h: 5.00e+00 rho: 1.00e+00 mu: 3.33e-05 1li:
2: f: 1.388518e-16 d: 1.25e-07 g: 1.67e-08 h: 5.00e-04 rho: 1.00e+00 mu: 1.11e-05 1i: 1
Ceres Solver Report: Iteratioms: 2, Imitial cost: 1.250000e+01, \

Final cost: 1.388518e-16, Termination: PARAMETER_TOLERANCE.

x:5->10

[
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FEHRRE

» Same object in a different position: size and shape preserving

— Rigid-body transformation (rotation and translation)
— Six degrees of freedom

+ translation t = (y, ty, t)T

Trigid (X) =Rx+t

4 rotation (a, B,y)

—cosfsiny cosacosy —sinasinfsiny sinacosy+ cosasinfsiny t,
sin B —sinacos 8 cos a cos t,
0 0 0 1

cosfBcosy cosasiny +sinasinfcosy sinasiny —cosasinfcosy tp| |z
Trigia(x) = gz/
1




FeihsBl

* Affine or Linear Transformation
- Rigid-body transformation (rotation and translation)
- Scaling and Shearing
- Twelve degrees of freedom

oo Gp1 Qo2 Qo3
aip a1 ai2 ais

az2p 0a21 0a22 G23
0 0 0 1

=

\eJ

I
RN 8




(a)

Example of different types of transformations of a square

(a) identity transformation (c) affine transformation

(b) rigid transformation (d) nonrigid transformation




T [0 P o gt b 4

missing data

Partial matching

Illumination changes




Ao RS

o RO n) R e A /M ] R
argmaxE,.,(T, P, Q)
T

Ereg (T» P, Q) = Ematch(T; P, Q) + Eprior (T)

Pe e 1R 7 iRz
AR e RO AESE R R ? AR 5T 2




Ao RS

o MoiEiRE
Ereg(T» P,Q) = Emaeen(T, P, Q) + Eprior(T)

Ematen(T,P,Q) = [ ,¢(T(p), Q)dx

N

B T8 FE R
X X
7(%) T(X)




Ao RS

. AR

Erea(T,P,Q) = Emaeen(T, P, Q) + Eprior(T)

—
(pseudo-) elastic g,
deformation prior | -
"\ %
«J M 15 Elastic -2 |
Sl((lelleta! data-driven
model prior prior
S A

Articulated Composite
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Aligning 3D Data




Corresponding Point Set Alignment

* Let M be a model point set.
* Let S be a scene point set.

1. NM=NS

We assume: M (model) \
2. Each point S; correspond to s (scene) |




Corresponding Point Set Alignment

The MSE objective function :

f(R, T)— ZHm —Rot(s,) - TransH

flg)= VS;H’"’ ~R(q)s, — 4

The alignment is:

(rot,trans,d__)=Dd(M,S)

mse

©



Aligning 3D Data

* If correct correspondences are known, can find correct relative
rotation/translation




Aligning 3D Data

* How to find correspondences: User input? Feature detection?
Signatures?

* Alternative: assume closest points correspond




Aligning 3D Data

* How to find correspondences: User input? Feature detection?
Signatures?

* Alternative: assume closest points correspond

—7 \—

©



Aligning 3D Data

» Converges if starting position “close enough*

N~ =




Closest Point

* Given 2 points r; and r, , the Euclidean distance is:

d(’/iﬁr2):||rl —1’2”:\/()61 _x2)2 +(n _y2)2 +(z _22)2

* Given a point r; and set of points A , the Euclidean
distance is:

d(r,A)=mind(,a,)




Finding Matches

* The scene shape S is aligned to be in the best
alignment with the model shape M.

* The distance of each point s of the scene from the
model is :

d(s,M) :minde—sH

meM




Finding Matches

d(s,M)=mind|m~s|=d(s,y)
yveM

Y =C(S,M)

YoM

C — the closest point operator

Y — the set of closest points to S




Finding Matches

* Finding each match is performed in O(N,,) worst case.
* Given Y we can calculate alignment

(rot,trans,d) = ®(S,Y)

* Sisupdated to be :

S .., =rot(S)+trans




The Algorithm

|

Init the error to oo

i

Y = CP(M,S),e

Calculate correspondence

i

(rot,trans,d)

Calculate alignment

{

S'= rot(S)+trans

Apply alignment

Y

d=d

Update error

Y

If error > threshold




Convergence Theorem

* The ICP algorithm always converges monotonically to a local
minimum with respect to the MSE distance objective function.




Convergence Theorem

* Correspondence error :

| & 2
&, =2 2 i =5l
k ik ik
NS i=1

* Alignment error:

1 s
dk 272")"1'1( _ROI;C(S,«O)—TranSkHZ

Ny o




Convergence Theorem

E

i

Calculate correspondence

i

Calculate alignment

S'= rot(S)+trans

V

Apply alignment

i

Calculate correspondence

i

Dy

i

Calculate alignment

'




Convergence Theorem

e Proof:

S, =Rot, (S,)+Trans,

Y, =C(M,s,)
& :Lf‘,”%k _Sik||2
“TN, 4
1 Ng 2
d, =N—Z||yik —Rotk(sio)—Transk”
s i=l




Convergence Theorem

* Proof: d, <e
If not - the identity transform would yield a
smaller MSE than the least square alignment.
Apply the alignment g on Sy 2 S

Assuming the correspondences are maintained :
the MSE is still d,.

| W 2
d, :N_Z”yik _Sik”

M =1




Convergence Theorem

¢ Proof:

After the last alignment, the closest point
operator is applied : Y,,, =C(M,S,,,)
It is clear that:

||yi,k+1 =S, || S ||yik =S,
e <d,
Thus : 0<d,,<e. <d <e




Time analysis

Each iteration includes 3 main steps
A. Finding the closest points :
O(Ny) per each point
O(Ny™Ny) total.
B. Calculating the alignment: O(Ng)
C. Updating the scene: O(Ng)




Optimizing the Algorithm

The best match/nearest neighbor problem :

Given a record, and a dissimilarity measure D, find the closest
record from a set to the query record.




Closest Point Search

* Find closest point of a query point

— Brute force: O(n) complexity

* Use hierarchical BSP tree
— Binary space partitioning tree (also kD-tree)
— Recursively partition 3D space by planes
— Tree should be balanced, put plane at median
— log(n) tree levels, complexity O(log n)




BSP Closest Point




BSP Closest Point

BSPNode: :dist (Point x, Scalar& dmin)

if (leaf_node())
for each sample point p[i]
dmin = min(dmin, dist(x, p[i]));

else

{
d = dist_to_plane(x);
if (d < 0)
{

left child->dist(x, dmin);
if (|d| < dmin) right_child->dist(x, dmin);
}
else
{
right_child->dist(x, dmin);
if (|d| < dmin) left_child->dist(x, dmin);
}
}
}




BSP Closest Point




BSP Closest Point




BSP Closest Point




BSP Closest Point




ICP Variants

* Variants on the following stages of ICP have been proposed:

— Selecting sample points (from one or both meshes)
— Matching to points in the other mesh

— Weighting the correspondences

— Rejecting certain (outlier) point pairs

— Assigning an error metric to the current transform

— Minimizing the error metric w.r.t. transformation




Real Time ICP
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Overview

Track the location of target objects in each frame of a video
sequence

(1) Change Detection

(2) Gaussian Mixture Model

(3) Object Tracking using Templates
(4) Tracking by Feature Detection




Change Detection

Given: Static cameras observing scene (room, street, etc.)
Find: Meaningful changes (moving objects, people, etc.)

Robust and real-time classification of each pixel as
“foreground” (motion/change) or “background” (static).




Change Detection: Challenges

Ignore uninteresting changes:

® Background fluctuations

® [mage noise

® Rain, snow, turbulence

® [llumination changes & shadows

® Camera shake




Simple Frame Difference

Label significant difference between current and previous
frames as background.

Fr=|l; —I;_1| >T T: threshold

Input video sequence Frame difference

Not Robust!




Background Modeling: Average

Build simple model of background before classification.

Background B Input Frame I, Foreground F;
median{l, I,,..., I} F,=|I,—B|>T
(First K frames)

Cannot handle change in lighting, background, etc.




Background Modeling: Median

Build simple model of background before classification.

Background By Input Frame I, Foreground F;

median{l;_1, l;—2,...,
le_i}
(Last K frames)

thllt_B|>T

Cannot handle change in lighting, background, etc.




Background Modeling: Moving Median

Build simple adaptive model of background over time.

Background B
median{l;_1, [;—5,...,
le-x}

(Last K frames)

Input Frame I, Foreground F;
Ft = |It - Bl >T

Requires keeping the last K frames in memory.
Finding median for each pixel is expensive.




Background Modeling: Moving Median

Build simple adaptive model of background over time.

Background B
median{l;_q, l;—5,...,
le-x}

(Last K frames)

Input Frame I, Foreground F;
Ft = |1t - Bl >T

Cannot handle significant pixel fluctuations
(weather shadow, shake, etc.)




Mixture Model

Intensity distribution at each pixel over time:
No. of Pixels BG

Intensity 255
Input video sequence Intensity histogram for a pixel over time

Intensity variations due to static scene (road), noise (snow),
and occasional moving objects(vehicles)

Intuition: Pixels are background most of time.




Gaussian Model

Probability Distribution Gaussian
P(x) (x: pixel intensity) w,n(x,u,0)
1-Dimensional Gaussian: u: Mean
1 P a: Std. Deviation
wn(xpo)=w e T
2no w: Scale




Mixture of Gaussians

Probability Distribution Mixture of Gaussians
P(x) (x: pixel intensity) WM (%, Uy, Ox)

Assume P(x) is made of K different Gaussians.




Gaussian Mixture Model ( GMM )

Probability Distribution Mixture of Gaussians  Gaussian Mixture Model

P(x) (x: pixel intensity) WMk (X, tx, o) P(x) = ZK o i)
k=1

GMM Distribution: Weighted sum of K Gaussians
| K

K
P(x) = Z Wi (x, 1y, 0y such that Z wy =1
k=1 k=1




High Dimensional Model

Let P(X) be a probability distribution of a D-dimensional
random variable X € RP.For example: X = [r, g, b]”

GMM of P(X) : Sum of K D-dimensional Gaussians

P(X) = YR_1 wenie(X, g, Zi) such that ¥R, wy = 1

1 T ryy—1
where: n(X, u, %) = We X)) ()T X-p)
Ur 6> 0 0
Mean u = |4g| Covariance matrixZ=|0 g2 0 l (can be a full matrix)
Up 0 0 o?

GMM can be estimated from P(X). (MATLAB: gmdistribution.fit)




Background Modeling with GMM

Given: A GMM for intensity/color variation at a pixel over time
Classify: Individual Gaussians as foreground/background

BG

Input video sequence Intensity histogram for a pixel over time

Intuition: Pixels are background most of time.That is,Gaussians
with large supporting evidence w and small o.

Large %: Background Small % Foreground




Change Detection using GMM

For each pixel:

1.

Compute pixel color histogram H using first N frames.

2. Normalize histogram: H « H/|l H ||.
3.
4. For each subsequent frame:

Model A as mixture of K (3 to 5) Gaussians.

a. The pixel value X belongs to Gaussian k in GMM for which
[IX — g ll is minimum and [IX — g |l < 2.50;

b. If ®k/g; islarge then classify pixel as background.
Else classify as foreground.
c. Update histogram H using new pixel intensity.

d. If A and H/Il H |l differ alot (| — 7 /||H Il is large), H « H/Il H |
and refit GMM.




Adaptive GMM based change detection

Foreground

Input video Foreground




Adaptive GMM based change detection

Foreground Frground
ing Median Method Adaptive GMM Method




Object Tracking

Given: Location of target in initial or previous frame.
Find: Location of target in current frame.




Target templates for Tracking

Appearance based Tracking:

Image
Template

Histogram
Template




Tracking using Appearance Matching

Frame I,_, Object Template Frame I,

Given template window S in frame I;_,, search neighborhood to
find match in image I,.

Simple implementation.Not robust to change in scale,viewpoint,
Occlusion,etc.




Similarity Metrics for Template Matching

Find pixel (k, 1) € S with Minimum Sum of Absolute Differences:

SADGeD = ' (@) = LG+ + D)
(L)er
Find pixel (k, 1) € S with Minimum Sum of Squared Differences:

SSD(k, 1) = Z (i) = L(i+ K, j+ D2
(i,j)eT

Find pixel (k, 1) € S with Minimum Normalized Cross-Correlation:

Yajper LGNLE+kKj+1D)

Yaper WD Zaper L3E+kj+1)?

NCC(k, 1) =




Target templates for Tracking

Appearance based Tracking:

Image
Template

Histogram
Template




Computing Weighted Histogram

= - m

Epanechnikov
Kernel

Histogram H

Weighted histogram gives more importance to pixels at center.

Epanechnikov Kernel:

o 1NN X<l o, [(x—x)/W
k(x)—{o’ otherwise = L(y —¥.)/H

Comparing Histograms: Correlation, Intersection, etc.




Tracking using Histogram Matching

Frame I,_, Histogram Template H,

Given a histogram template H, and location x;_; in I;_;, search
neighborhood in I, to find window in matching histogram.

More resilient to changes in object pose and/or scale




Histogram Based Tracking: Results

Robust when object appearance is unique in the
environment and its size remains more or less the same.




Tracking by Feature Detection

Frame 1 with
bounding box
and SIFT features.




Tracking by Feature Detection

Background
Model

Frame 1 with
bounding box
and SIFT features.




Tracking by Feature Detection

Frame 1 with v, Subsequent frame:
bounding box :

and SIFT features.




Tracking by Feature Detection

Frame 1 with %,
bounding box RS
and SIFT features.

Subsequent frame:

Object Model




Tracking by Feature Detection

Background
Model

Frame 1 with 5 Subsequent frame:

bounding box b W Find window with
and SIFT features. ' most matches.

Object Model




Tracking Intialization

At frame 1:

1. User selects a bounding box W; as
object/target.

2. Compute SIFT (or similar) features for
the frame.

3. Classify features within the box as object
and assign them to set 0;.

4. Classify remaining features as
background and assign them to set B.




Object Tracking

At frame t :

1. Compute SIFT features and SIFT
descriptors {v;, ..., v} for frame I;.
2. For each feature and corresponding
descriptor v; :
a. Compute distance d, between v; and the
best match in object set 0,_,
b. Compute distance dz between v; and the
best match in background set B.
C. C(Vi) =
+1 ifdy/dp < 0.5(v; may belong to object )
—1 otherwise (v; does not belong to object )




Object Tracking

3. For each Search Window W :
a. Compute @ (W) = Y.C(v;) for all
features v; inside W.
b. Compute a heuristic t(W, W;_,) that
penalizes large deviations from
previous location, size and shape W;_;.

C. Compute Match Score
wW) = W) — (W, W;_1)

4. Select window W, with the best match
score as new object location.

5. Update object appearance model: 0, =
0;—1 U{v;}¥v; inside W; such that
C(Vi) = +1.




Tracking Results: Scale and Orientation

Resilient to changes in scale and orientation.




Tracking Results: Occlusion

SCIENTIFIC

B AME NICALY

Resilient to occlusion.




Tracking Applications




Tracking Applications

Tracking people in the wild.

1.19




Tracking Applications

T 7

Traffic Monitoring.




Tracking Applications
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Mean Face Identity Expression Displacement

F= (F + Aidaid + Aexpaexp) + Fdisp

£990069
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Method | RMSE [mm] | MAE [mm]
[61] 5.946 4420
[60] 5367 3923
Ours 4915 3.846

[Richardson et al.] [Jackson et al.]
Input CVPR 17 Icev 17 Ours

dataset

Quantitative comparison results
with other methods on FRGC
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Input

Real Camera

Synthesized with
virtual camera
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Outside the seam:

content from the original image

Inside the seam:

content from the rendered face J

Eseam = E C!(Z,y) : (”I(Z) - J(m)HQ
(z,y)EP
+1(y) = J(Y)l2)

P : adjacent pixels across the
?. seam




Al & -Laplacianfil &

S
l" ]
.‘\.’ ’ 5 -.9
Overlay Te
Optimization

o [

A



Rl & -Laplacianfl &

Laplacian Blending




ST

(a) Input (b) Gigeret al. (2014) (¢) Ours (a) Input (b) Gigeret al. (2014)

(¢) Ours
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FO(X) = (y17y27 e 7yk)

Query coordinate

occupancy, SDF, color, ... Image regression Shape regression Neural rendering
(x,y) — RGB (x,y,z) — occupancy (x,y,z) — density,RGB

5



SR Np)

5D Input Output Volume Rendering
Position + Direction Color -+ Density Rendering Loss
(x0.2.6, D — (RGBa)
(‘ o~ ) _\wm. s TN
e "

o RaAFR: Fo:(X,D) - (c,0)
XA s, DX Fiview direction
c: T‘Jﬁ‘i)’]ﬂﬂ@ FXPIBU, o T S X P density

< ME N -
ZT 1 — exp(—0:d;))c; , where T; = exp —Zaé

i=1 =1

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Mildenhall et al. ECCV 2020
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At STt

* Learning 3D representation from 2D images :

applications

Learning
3D representation

Posed input Images
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Prior-Guided Multi-View 3D Head Reconstruction
IEEE Transactions on Multimedia (TMM), 2021
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(a) Capture Setting (b) Input Frames (c) Head Prior Guidance
[

Head Proxy Geometry Semantic Segmentation

(d) Reconstruction Results

3D Head Model Normal Map

HeadRecon: High-Fidelity 3D Head Reconstruction from Monocular Video
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SelfRecon: Self Reconstruction Your Digital Avatar from Monocular Video
CVPR, Oral Presentation, 2022
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v' Single camera
v" Easy to capture
v" High-fidelity result
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Skinning
Deformation

Non-rigid
Deformation

Differential
Rendering
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N Di(P) —c) xv
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5 [[0:(P) — Il
"""" Differential Non-rigid Ray-casting
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B - —+ Canonical Space -+
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Implicit et 1
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Input video Non-rigid deformation Whole deformations
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Reconstructing Personalized Semantic Facial NeRF Models From Monocular Video
Conditionally Accepted to the Journal Track of SIGGRAPH Asia, 2022
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With audio and pose input only, AD-NeRF could
synthesize high-fidelity talking head video
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Neural Radiance Fields
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Computer vision as inverse rendering

3D

Scene ﬁ

Representation Rendering




Comp

uter vision as inverse rendering

ﬁ

3D
Scene
Inverse Rendering RepEsEnEe

Rendering




Neural Radiance Fields (NeRF) as an approach to inverse rendering

Neural
Radiance
Inverse Rendering R

Rendering




Deep learning for 3D reconstruction

* Previously: we reconstruct geometry by running stereo or
multi-view stereo on a set of images

— “Classical” approach

* How can we leverage powerful tools of deep learning?
— Deep neural networks
— GPU-accelerated stochastic gradient descent



NeRF and related methods - Key ideas

* We need to create a loss function and a scene representation
that we can optimize using gradient descent to reconstruct
the scene

* Differentiable rendering



Side Topic: Stereo Photography




Stereo Photography
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Stereo Photography

Queen Victoria at World Fair, 1851



Stereo Photography




Issue: Narrow Baseline

~6.5cm ~1.5cm













Problem Statement

E=N
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Output Input Output




Challenges
Extrapolation Non-Lambertian Effects

Large disocclusion Reflections, transparencies, etc.

TN

Output Input Output
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Neural prediction of scene representations

Output views

Input views @ m
4 m Neural Net

- Scene
w / Representatlon

iﬁ
S



Comp

uter vision as inverse rendering
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3D
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Inverse Rendering RepEsEnEe

Rendering




Paradigm 1: “Feedforward” inverse rendering

%C\
3D
MU Scene ﬁ
Inverse Rendering e

Rendering




Paradigm 1: “Feedforward” inverse rendering

%C\
3D
MU Scene
Inverse Rendering

Representation

Rendering




Paradigm 2: “Render-and-compare”

3D

ﬁ Scene 6 ﬁ

Inverse Rendering e Rendering




Paradigm 2: “Render-and-compare”

3D

ﬁ Scene

Inverse Rendering RepEsEnEe

Rendering




What representation to use?

* Could use triangle meshes, but hard
to differentiate during rendering

* Multiplane images (MPIs) are easy to
differentiate, but only allow for
rendering a small range of views






NeRF == Differentiable Rendering with a
Neural Volumetric Representation



Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields




Neural Volumetric Rendering



Rendering

querying the radiance value
along rays through 3D space

What color?



Volumetric

continuous, differentiable
rendering model without concrete
ray/surface intersections




Neural

using a neural network as a
scene representation, rather
than a voxel grid of data

x,y,z)» % % Scene properties

Multi-layer Perceptron
(Neural Network)



NeRF: Representing Scenes
as Neural Radiance Fields
for View Synthesis

ECCV 2020

Ben Mildenhall* Pratul Srinivasan® Matt Tancik* Jon Barron Ravi Ramamoorthi Ren Ng
-
<~‘- = l .
Al

Google Research UC San Diego UC Berkeley

Google  UCSanDiego // -

UC Berkeley
W Google




Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle



NeRF Overview

> Volumetric rendering
> Neural networks as representations for spatial data

> Neural Radiance Fields (NeRF)



NeRF Overview

> Volumetric rendering



S.Chandrasekhar

RADIATIVE Traditional volumetric rendering

TR

> Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

Ray tracing simulated cumulus cloud [Kajiya

Chandrasekhar 1950, Radiative Transfer
Kajiya 1984, Ray Tracing Volume Densities



Traditional volumetric rendering

PReyes = Foreground over Hiide over Backrovnd

Alpha compositing [Porter and Duff]

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images

> Adapted for visualising medical data and linked with alpha
compositing



Traditional volumetric rendering

o " » Modern path tracers use sophisticated Monte Carlo methods
Physically-based Monte Carlo rendering [Novak et al] .
to render volumetric effects

Novak et al 2018, Monte Carlo methods for physically based volume rendering



Volumetric formulation for NeRF

Scene is a cloud of colored fog

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral




Volumetric formulation for NeRF

Rayr(t) =o+td

Camera Consider a ray traveling through the scene, and a point at
distance t along this ray. We look up its color ¢(t), and its
opacity (alpha value) a(t)



Volumetric formulation for NeRF

P[no hits before t] = T(t)

But £ may also be blocked by earlier points along the ray.
T (t): probability that the ray didn't hit any particles earlier.
T(t) is called “transmittance”



Volume rendering estimation: integrating color along a ray
Rendering model for ray r(t) = o + td:
n
c= ) Tia;c; /
= \l O

final rendered colors
color along ray weights

How much light is blocked earlier along ray:

i—1 tl/ . 3D volume
Ti=T(1-a) e

‘ Camera

J=1

Computing the color for a
set of rays through the
pixels of an image yields a
rendered image




Volume rendering estimation: integrating color along a ray

3D volume

Camera

Slight modification: a is not directly stored in the volume, ‘
but instead is derived from a stored volume density sigma (o)

that is multiplied by the distance between samples delta (5):

a; =1 — exp(—0;6;)



Volume rendering estimation: integrating color along a ray

3D volume
t /
1 T;
/ How do we store the values of
‘ €, 0 at each point in space?
Camera



NeRF Overview

> Neural networks as representations for spatial data



Toy problem: storing 2D image data

(x,y) (r,g,b)

Usually we store an image as a 2D
grid of RGB color values



Toy problem: storing 2D image data

Fq
) —»lll—» (r,g,b)

What if we train a simple fully-connected network
(MLP) to do this instead?



Recall the TensorFlow playground

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise

S ° " 000,000 o T None o Cnsifston

DATA FEATURES + — 2 HIDDEN LAYERS ouTPUT

Which o s Testloss 0.505
jou v o @ h @ Training loss 0.502
IE' 4neurons 2neurons

oooo

Same concept as before, except we are computing an image, instead of a classifier!



Naive approach fails!

Ground truth image

Neural network output fit
with gradient descent

DHa



Problem:

“Standard” coordinate-based MLPs cannot represent
high frequency functions



Solution:

Pass input coordinates through a high
frequency mapping first



Example mapping: “positional encoding”
sin(v), cos(v)

sin(2v), cos(2v)
sin(4v), cos(4v) _ylll_yy

sin(2X71v), cos(2F v



Positional encoding

X sin(x)
sin(2*x)
sin(4*x)
sin(8*x)

PNl
y

\lc/

Raw encoding of a number x “Positional encoding” of a number x




Problem solved!

Ground truth image

Neural network output without
high frequency mapping

Neural network output with high
frequency mapping

o>



Sometimes a better input encoding is all you
need o

DATA FEATURES + = 2 HIDDENLAYERS OUTPUT

Testloss 0.001
o - o o Training loss 0.00
anautons 2neurons

Recall “squared” encoding in TensorFlow Playground



NeRF Overview

> Neural Radiance Fields (NeRF)



NeRF = volume rendering +
coordinate-based network



How do we store the values of ¢, g at each point in space

o>
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How do we store the values of ¢, g at each point in space
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Extension: view-dependent field

MLP

Positional
encoding
o
Q

3D point
Include the ray direction in
‘ the input to the MLP >
allows for capturing and
rendering view-dependent
effects (e.g., shiny surfaces)



Putting it all together

Ray 1 /_\ o
/ || M-t
. 2
Ray 2 2
VA [ 5-ee |
2
" RayDisance




Train network using gradient descent
to reproduce all input views of scene

o~ a Volume renderingof ~ Ground truth
N \VARRV:| MLP colors/densities image

— | &

14




Results



f ryt_.uﬁ‘
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NeRF encodes convincing view-dependent effects using
directional dependence




NeRF encodes convincing view-dependent effects using
directional dependence




NeRF encodes detailed scene geometry with occlusion effects




NeRF encodes detailed scene geometry with occlusion effects




NeRF encodes detailed scene geometry




Summary

* Represent the scene as volumetric colored “fog”

* Store the fog color and density at each point as an MLP
mapping 3D position (x, y, z) to color c and density o

* Render image by shooting a ray through the fog for each pixel

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images
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