
PROBLEM SET 1, PART 1: TOPOLOGY (H)

DUE: FEBRUARY 28, 2022, BEFORE CLASS

(1) [Topology of symbols]
Classify the following symbols according to the topology of their pictures:

Π,Σ,Ψ,Φ,Γ,Υ,Ω,Θ,Ξ,♥
φ, ϕ, π, θ, α, β, γ, µ, τ, δ, ε

+,×,⊗,∇,∪,∼,∝,→

(2) [Fake soccer!]
In Figure 1 you can see a soccer ball that I found from the internet. Obviously the
careless designer never learned topology. Explain why.

Figure 1. Fake soccer ball Figure 2. Inscribed square

(3) [Inscribed square problem: a simple case]
Let f : [0, 1]→ R be a continuous function with f(0) = f(1) = 0. Consider the simple
closed curve C that consists of the graph of f and the line segment of the x-axis from
x = 0 to x = 1. Prove: One can find four points on C that are the vertices of a
square. [Hint: Consider the function g(x) = f(x)− f(x+ f(x)). See Figure 2.]
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2 PROBLEM SET 1, PART 1: TOPOLOGY (H) DUE: FEBRUARY 28, 2022, BEFORE CLASS

(4) [Weierstrass’s counterexample to Dirichlet principle]
For any u ∈ A = {C1([−1, 1]) | u(−1) = 0, u(1) = 1}, define

F (u) =

∫ 1

−1
|xu′(x)|2dx.

(a) Prove: For each n ∈ N, the function

un(x) :=
(

sin
nπx

2

)2
χ[0,1/n](x) + χ(1/n,1](x)

is an element in A (where χA(x) is the characteristic function of the set A).
(b) Prove: limn→∞ F (un) = 0.
(c) Prove: There is no function u ∈ A that attains the minimum of F .



TOPOLOGY (H), PROBLEM SET 1, PART 2

DUE: FEBRUARY 28, 2022, BEFORE CLASS

(1) [Pseudo-metric]
A pseudo-metric on a set X is a map d : X ×X → [0,+∞) that satisfies
• d(x, x) = 0. [Note: this is weaker than being a metric.]
• d(x, y) = d(y, x).
• d(x, y) + d(y, z) ≥ d(x, z).

Let (X, d) be a pseudo-metric space. Define an equivalence relation on X via

x ∼ y ⇐⇒ d(x, y) = 0.

Let X = X/ ∼ be the quotient (i.e. the set of equivalent classes), and let p : X → X
be the quotient map. Prove: there is a unique metric d̄ on X so that

d(x, y) = d̄(p(x), p(y)).

(2) [Metric-preserving functions]
Let f : [0,+∞) → [0,+∞) be a function (which need not be continuous). We say f

is a metric-preserving function if for any metric space (X, d), the map d̃ : X×X → R
defined by d̃(x, y) := f(d(x, y)) is a metric on X.
(a) Prove: If f is a metric-preserving function, then f−1({0}) = {0} and f is sub-

additive:

f(α+ β) ≤ f(α) + f(β), ∀α, β ∈ [0,+∞).

(b) Prove: a function f : [0,+∞) → [0,+∞) satisfying f−1({0}) = {0} is metric-
preserving if any one of the following conditions holds:

(i) f is non-decreasing and sub-additive.
(ii) f is concave.

(iii) There exists constant c > 0 so that for any x > 0, f(x) ∈ [c, 2c].

(3) [Urysohn’s lemma]
Let (X, d) be a metric space, For any subset A ⊂ X, define

dA : X → [0,+∞), x 7→ dA(x) = inf
a∈A

d(x, a).

Prove:
(a) dA is a continuous function on X.
(b) A is closed if and only if dA(x) = 0 implies x ∈ A.
(c) (Urysohn’s lemma for metric spaces) If A and B are closed subsets in (X, d) and

A ∩B = ∅. Then there exists a continuous function f : X → [0, 1] such that

f ≡ 0 on A, and f ≡ 1 on B.
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2 TOPOLOGY (H), PROBLEM SET 1, PART 2 DUE: FEBRUARY 28, 2022, BEFORE CLASS

(4) [Uniform convergence as a metric convergence]
Let fn : (X, dX) → (Y, dY ) (n ∈ N) and f : (X, dX) → (Y, dY ) be maps between
metric spaces.
(a) Define “uniform convergence”: fn converges uniformly to f on X if ...
(b) Suppose fn are continuous, and converges to f uniformly. Prove: f is continuous.
(c) On the set Y X = {f : X → Y | f is any map}, define

d̄(f, g) := sup
x∈X

dY (f(x), g(x))

1 + dY (f(x), g(x))
.

(i) Prove: d̄ is a metric on Y X .
(ii) Prove: fn converges to f uniformly if and only if as elements in the metric

space (Y X , d̄), fn converges to f .



PROBLEM SET 2, PART 1: TOPOLOGY (H)

DUE: MARCH 07, 2022

(1) [“Uniform continuity” is not a topological conception]
Let (X, dX) and (Y, dY ) be metric spaces. We say a map f : (X, dX) → (Y, dY ) is
uniformly continuous if

∀ε > 0, ∃δ > 0, s.t. dX(x1, x2) < δ ⇒ dY (f(x1), f(x2)) < ε.

(a) Prove: d0(x, y) := | arctan(x)− arctan(y)| is a metric on R.
(b) Prove: The metric d0 and the absolute value metric d(x, y) = |x − y| on R are

topologically equivalent. Are they strongly equivalent?
(c) Let f : R → R be the identity map, i.e. f(x) = x. Is f : (R, d) → (R, d0)

uniformly continuous? Is f : (R, d0) → (R, d) uniformly continuous? Conclude
that “Uniform continuity” is not a topological conception.

(d) Is “uniform continuity” preserved if we replace metrics dX , dY by strongly e-
quivalent ones? Prove your conclusion.

(More generally, there is a structure called “uniform structure”, which is a general-
ization of metric structure, so that one can define uniform continuous maps between
spaces with uniform structures.For details, c.f. J.L. Kelley, General Topology.)

(2) [The product topology and product metrics]
(a) Prove Proposition 1.44 (the product topology is a topology).
(b) Let (X, dX) and (Y, dY ) be metric spaces. Endow the product space X ×Y with

the metric

dX×Y ((x1, y1), (x2, y2)) := dX(x1, x2) + dY (y1, y2).

Prove:
(i) If U is open in (X, dX), V is open in (Y, dY ), then U × V is open in

(X × Y, dX×Y ).
(ii) W is an open set in (X × Y, dX×Y ) if and only if for any (x, y) ∈W , there

exists r > 0 such that B(x, r) × B(y, r) ⊂ W . [So the metric topology
induced by the product metric is the same as the product topology induced
by metric topologies.]

(c) (NOT REQUIRED) Prove: The same conclusion holds if we replace the metric
dX×Y above by

dpX×Y ((x1, y1), (x2, y2)) := (dX(x1, x2)
p + dY (y1, y2)

p)1/p,

where 1 ≤ p ≤ +∞. Note: for p =∞ we define

d∞X×Y ((x1, y1), (x2, y2)) = max(dX(x1, x2), dY (y1, y2)).
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2 PROBLEM SET 2, PART 1: TOPOLOGY (H) DUE: MARCH 07, 2022

(3) [Equivalence of neighborhoods axioms and open sets axioms: Proposition 1.37]
(a) Given a neighborhood structure N on X, one can define a topology T via

T = {U ⊂ X : U ∈ N (x) for any x ∈ U.}
Check: T is a topology on X, i.e. it satisfies (O1)-(O3)

(b) Given a topology T on X, one can define, for any x ∈ X,

N (x) = {N ⊂ X : ∃U ∈ T s.t. x ∈ U and U ⊂ N}.
Check: N is a neighborhood structure on X, i.e. it satisfies (N1)-(N4).

(c) You may have already noticed that in doing part (a), you used only (N1)-(N3).
Can we conclude that the set of axioms (N1)-(N3) is equivalent to the set of
axioms (O1)-(O3)?

(d) (NOT REQUIRED) Prove: the set of axioms (N1)-(N4) is equivalent to the
set of axioms (O1)-(O3). Namely, the process T  N and N  T described
above are inverse to each other.

(4) [Furstenberg’s topological proof of the infinitude of primes]
For any a, b ∈ Z with b > 0 we define

Na,b := {a+ nb | n ∈ Z}.
(a) (NOT REQUIRED) Define a topology on Z by

TFurs = {U ⊂ Z | either U = ∅, or ∀a ∈ U,∃b ∈ Z>0 s.t. Na,b ⊂ U}.
(i) Prove: TFurs is a topology on Z.
(ii) Prove: Each Na,b is open.

(iii) Prove: Each Na,b is closed. [Hint: Na,b = Z \ ∪b−1i=1Na+i,b.]
(iv) Let P = {2, 3, · · · } be the set of all prime numbers. Prove:

Z \ {1,−1} = ∪p∈PN0,p.

(v) Conclude that P is not a finite set. [Hint: the set {1,−1} can’t be open.]
(b) Define a function d : Z× Z→ R by

d(a, b) =

{
0, a = b

2−τ(a−b), a 6= b,

where τ(a− b) is the smallest positive integer that does not divide a− b.
(i) Prove: d is a metric on Z.
(ii) Describe the metric balls B(a, r).

(iii) Show that the metric topology generated by d is the topology TFurs above.



PROBLEM SET 2, PART 2: TOPOLOGY (H)

DUE: MARCH 07, 2022

(1) [The Sorgenfrey line]
Endow R with the Sorgenfrey topology

TSorgenfrey = {U ⊂ R | ∀x ∈ U,∃ε > 0 s.t. [x, x + ε) ⊂ U}.
(a) Check: TSorgenfrey is a topology.
(b) Prove: Every left-closed-right-open interval [a, b) is both open and closed.
(c) Prove: TSorgenfrey is strictly stronger than the usual topology Tusual on R.
(d) Explore the meaning of convergence in (R,TSorgenfrey).
(e) Recall that a function f : R → R is right continuous if limxn→x0+ f(xn) =

f(x0). Prove: a function f : R → R is right continuous if and only if the map
f : (R,TSorgenfrey) → (R,Tusual) is continuous. [So people also call Sorgenfry
topology the right continuous topology.]

(f) [Upper semi-continuous topology] Let (X,T ) be any topological space.
We say a function f : X → R is upper semi-continuous at a point x0 ∈ X if
for any ε > 0, there exists a neighborhood U of x0 such that f(x) ≤ f(x0) + ε
holds for all x ∈ U , and we say f is an upper semi-continuous function if it
is upper semi-continuous everywhere. Construct a new topology Tu.s.c on R so
that a function f : X → R is upper semi-continuous if and only if the map
f : (X,T )→ (R,Tu.s.c) is continuous.

(2) [The pasting lemma]
Let X,Y be topological spaces. Consider a map f : X → Y .
(a) Suppose X = A

⋃
B, where A,B are both closed subsets in X. Suppose f |A :

A→ Y and f |B : B → Y are continuous. Prove: f : X → Y is continuous.
(b) Show that the same result fails for X =

⋃∞
n=1An, where each An is closed in X.

(c) Prove: If X = ∪αUα, where each Uα is open in X, and if f |Uα : Uα → Y is
continuous, then f : X → Y is continuous.

(3) [Homeomorphisms]
(a) Let N = (0, · · · , 0, 1) be the “north pole” of Sn = {(x1, · · · , xn+1)|x21 + · · · +

x2n+1 = 1} ⊂ Rn+1. Show that Sn \ {N} is homeomorphic to Rn by explicitly
construct a homeomorphism. [Hint: stereographic projection.]

(b) Use Brouwer’s invariance of domain theorem (see the end of Remark 1.58) to
prove: If n 6= m, then Rn is not homeomorphic to Rm.

(c) Prove: If f : X → Y is a homeomorphism, then for any A ⊂ X, f : X \ A →
Y \ f(A) is a homeomorphism.

(d) Let Homeo(X) be the set of all homeomorphisms from X to X. Prove: Homeo(X)
is a group (with respect to the composition of maps). Moreover, if X and Y are
homeomorphic, then the groups Homeo(X) and Homeo(Y ) are isomorphic.
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2 PROBLEM SET 2, PART 2: TOPOLOGY (H) DUE: MARCH 07, 2022

(4) (NOT REQUIRED) [Convergence in measure, almost everywhere convergence]
Let X be the set of all bounded measurable functions defined on [0, 1]. For any
f, g ∈ X, we define

d(f, g) =

∫ 1

0
min(|f(x)− g(x)|, 1)dx.

(a) Prove: d is a metric on X.
(b) Prove: fn ∈ X converges to f in measure if and only if fn converges to f

with respect to the metric d. (So in particular, “convergence in measure” is a
topological convergence)

(c) Prove: almost everywhere convergence is not a topological convergence, i.e. there
is no topology on X so that fn → f a.e. if and only if fn → f in that topology.
[Hint: In real analysis, we learned that Riesz’s theorem, which claims that if
fn → f in measure, then there is a subsequence fnk → f a.e.. Suppose there
is such a topology. Find a sequence fn in X that converges to f in measure,
but fails to converge to f a.e.. Suppose such a topology exists. Since fn fails to
converge to f a.e., there is an open neighborhood U of f so that a subsequence
sits outside U . But that subsequence still converges in measure, and thus has a
sub-subsequence that converges a.e. to f , a contradiction.]



PROBLEM SET 3, PART 1: TOPOLOGY (H)

DUE: MARCH 14, 2022

(1) [Neighborhood basis]
Like a basis, we can define a neighborhood basis (or neighborhood base) as follows: A
family B(x) ⊂ N (x) of neighborhoods of x is called a neighborhood basis at x if for
any A ∈ N (x), there exists B ∈ B(x) such that B ⊂ A.
(a) Express N (x) in terms of a neighborhood basis B(x).
(b) Define a conception of neighborhood sub-basis.
(c) Write down a theorem that characterize the continuity of a map f at a point x

via neighborhood basis and via neighborhood sub-basis, and prove your theorem.

(2) [Topologies on RN]
Consider the space of sequences of real numbers,

X = RN = {(x1, x2, · · · ) | xn ∈ R}.
On X we have defined three topologies: the box topology Tbox, the product topology
Tproduct, and the “uniform topology” Tuniform induced from the uniform metric

duniform((xn), (yn)) = sup
n∈N

min(|xn − yn|, 1).

(a) Prove: Tproduct ⊂ Tuniform ⊂ Tbox.
(b) One can also regard every element (x1, x2, · · · ) in X as a map

f : N→ R, n 7→ xn

and thus identify X with the space of maps M(N,R). Define the pointwise
convergence topology Tp.c. on X, and prove Tp.c. = Tproduct.

(c) Fix two elements (a1, a2, · · · ) and (b1, b2, · · · ) in X, and define a map

f : X → X, (x1, x2, · · · , ) 7→ (a1x1 + b1, a2x2 + b2, · · · ).
Prove that if we endow X with the product topology, then f is continuous. What
if we endow X with the box topology?

(3) [Universality of the induced and co-induced topologies]
(a) Prove Proposition 1.96.
(b) Read page 38-39 on “co-induced topology” and prove Proposition 1.100.

(4) [“Product operation” for topologies is commutative and associative]
Let Xα (α ∈ Λ) be topological spaces. Prove: For any decomposition Λ =

⋃
β Λβ of

the set of indices Λ (where Λβ ∩ Λβ′ = ∅ for β 6= β′), the product topological space∏
α∈ΛXα is homeomorphic to the product topological space

∏
β

(∏
α∈Λβ

Xα

)
, where

each product appeared above is endowed with the product topology.

1



PROBLEM SET 3, PART 2: TOPOLOGY (H)

DUE: MARCH 14, 2022

(1) [Embedding RP2 into R4]
Consider the map

f : S2 → R4, (x, y, z) 7→ (y2 − x2, xy, xz, yz).
Prove: the image is homeomorphic to RP2.

(2) [Cone and suspension of Sn]
Prove the following by constructing a homeomorphism for each pair of spaces.
(a) C(Sn) ' Bn+1.
(b) S(Sn) ' Sn+1.
(c) Bn/Sn−1 ' Sn.

(3) [Quotient map v.s. open/closed map]
(a) Suppose p : X → Y is a surjective continuous map. Prove: If p is either open or

closed, then it is a quotient map.
(b) Construct a quotient map that is neither open nor closed.
(c) (Not required) Let SO(n) be the special orthogonal group. Define a map

f : SO(n)→ Sn−1, A 7→ Ae1,

where e1 = (0, · · · , 0, 1) is the “north pole vector” on Sn−1.
(i) Prove: f is surjective, continuous and open, and thus is a quotient map.
(ii) Consider the natural (right) action of SO(n− 1) on SO(n) by

B ·A := A

(
B 0
0 1

)
, ∀B ∈ SO(n− 1), A ∈ SO(n).

Prove: the orbits of this action are the fibers of the quotient map f .
(iii) Conclude that SO(n)/SO(n− 1) ' Sn−1.

(4) [Covering space action]
Let G be a group acting on a topological space X. Let Y = X/G be the orbit space,
and p : X → Y be the quotient map. Let U ⊂ X be an open set, such that

g · U ∩ U = ∅, ∀g 6= e ∈ G.
Prove:
(a) V := p(U) is an open set in Y .
(b) For any g ∈ G, the map pg = p ◦ τg : g−1 · U → V is a homeomorphism.

1



PROBLEM SET 4, PART 1: TOPOLOGY (H)

DUE: MARCH 21, 2022

(1) [“sequential conitnuous=continuous” for (A1) spaces]
Let X be an (A1) space, Y be any topological space. Prove: A map f : X → Y is
continuous at x0 if and only if it is sequentially continuous at x0.

(2) [Locally finiteness]
Let (X,T ) be a topological space.
(a) Let A,B be subsets in X. Prove: A ∪B = A ∪B.
(b) Let Aα be a family of subsets in X. Prove: ∪αAα ⊂ ∪αAα
(c) Find an example so that ∪αAα 6= ∪αAα for a family of subsets Aα ∈ R.
(d) We say a family {Aα} of subsets in X is locally finite if for any x ∈ X, there

exists an open neighborhood Ux of x so that Aα ∩ Ux 6= ∅ for only finitely many
α’s. Prove: If {Aα} is a locally finite family, then ∪αAα = ∪αAα.

(3) [Characterize continuity via interior]
In class we proved

A map f : X → Y between two topological spaces is continuous if and only
if f(A) ⊂ f(A) holds for any A ⊂ X.

Apply the idea of “open-closed” duality, write down the corresponding characteriza-
tion of continuity of f via the interior operation, and then prove it.

(4) [Not required] [Convergence by net]
We call (P,�) a directed set if
• (P,�) is a partially ordered set (c.f. Def. 1.84),
• for any α, β ∈ P , there exists γ ∈ P such that α � γ and β � γ.

For a topological space X, a net is a map f : (P,�)→ X from a directed set (P,�)
to X. We will use the notation (xα) instead of a map “f : α 7→ xα” if there is
no ambiguity. We say a net (xα) converges to x0, denoted by xα → x0, if for any
neighborhood U of x, there is an α ∈ P such that xβ ∈ U holds for any α � β.
(a) Realize N (x) as a directed set. [You need to carefully choose the partial order

relation so that it can be used in part (b) below.]
(b) Prove: x ∈ A if and only if there exists a net (xα) in A which converges to x0.
(c) Prove: A map f : X → Y is continuous if and only if for any net (xα) in X

which converges to a limit x0, the net (f(xα)) in Y converges in Y to f(x0).

1



PROBLEM SET 4, PART 2: TOPOLOGY (H)

DUE: MARCH 21, 2022

(1) [Continuous maps from compact space to Hausdorff space]
Prove Lemma 2.1.20, Corollary 2.1.21 and Proposition 2.1.22.

(2) [Compactness for the “upper semi-continuous” topology]
In PSet2-2-1(f) you constructed the upper semi-continuous topology on R,

Tu.s.c = {(−∞, a) | a ∈ R}.
(a) Is (R,Tu.s.c) compact? sequentially compact? limit point compact?
(b) Describe all compact subsets in (R,Tu.s.c).
(c) State a theorem called “the extremal value theorem for upper semi-continuous

functions” and prove it.

(3) [Countably compact]
A topological space X is called countably compact if every countable open covering
of X has a finite subcovering.
(a) Prove: Closed subspace of a countably compact space is countably compact.
(b) Prove: Any countably compact space is limit point compact.
(c) Prove: X is countably compact if and only if it has the nested sequence prop-

erty : for any nested sequence of non-empty closed sets F1 ⊃ F2 ⊃ · · · , we have⋂∞
n=1 Fn 6= ∅.

(d) Prove: Any sequentially compact space is countably compact.
(e) Prove: The continuous image of a countably compact space is countably compact.

(4) [One point compactification]
Given any topological space (X,T ), we say a compact topological space Y is a com-
pactification of X if there exists a homeomorphism f : X → f(X) ⊂ Y such that

f(X) = Y .
(a) Prove: both S1 and [0, 1] are compactifications of R.
(b) For any non-compact topological space (X,T ), define a topology T ∗ on the set

X∗ = X ∪ {∞} by

space T ∗ = T
⋃{

X∗
}⋃{

Kc ∪ {∞} | K ⊂ X is closed and compact.
}
.

Prove: T ∗ is a topology on X∗, and (X∗,T ∗) is a compactification of (X,T ).
[This is called the one-point compactification of (X,T ).]

(c) Prove: the one-point compactification of N is homeomorphic to {0}∪{ 1n | n ∈ N}
(as a subset in R).

(d) Construct a compact Hausdorff topology on any set X. [Hint: start with the
discrete topology on X \ {x0}]

1



PROBLEM SET 5, PART 1: TOPOLOGY (H)

DUE: MARCH 28, 2022

(1) [The topology of the Cantor set]
Recall that the Cantor set C is the following subset of [0, 1],

C = [0, 1] \
∞⋃
n=1

3n−1−1⋃
k=0

(
3k + 1

3n
,
3k + 2

3n

)
.

(a) Prove: Every point in the Cantor set is a limit point.
(b) Prove: As a subset of [0, 1], the Cantor set is nowhere dense.
(c) (Not required) For any closed subset F ⊂ C, prove: there exists a continuous

map f : C → F so that f(x) = x on F .
[Hints: F c is the union of open intervals. Pick an element in each such interval
that is not in C, and “push” points in the intervals to the “boundary points”. ]

(d) Define a map

g : {0, 1}N → [0, 1], a = (a1, a2, · · · ) 7→
∞∑
k=1

2ak
3k

.

Prove: g induces a homeomorphism between ({0, 1}N, Tproduct) and C.
(e) (Not required) Show that there is continuous surjective map from C to [0, 1]2,

by showing that

h : {0, 1}N → [0, 1]2, a = (a1, a2, · · · ) 7→

( ∞∑
k=1

a2k−1
2k

,
∞∑
k=1

a2k
2k

)
is continuous and surjective. Is h injective?

(2) [Sequentially compactness for products]
(a) Let X1, · · · , Xn be sequentially compact topological spaces. Prove: the product

space X = X1 × · · · ×Xn is sequentially compact.
(b) Is X = {0, 1}N sequentially compact when equipped with the box topology Tbox?

Prove you claim.
(c) Now suppose (Xn, dn) are compact metric spaces. Define a product metric on

X =
∏∞

n=1Xn via

d((xn), (yn)) :=
∞∑
n=1

dn(xn, yn)

(1 + diam(Xk)) · 2n
.

Prove: The metric topology on X induced by d coincides with the product
topology on X.

1



2 PROBLEM SET 5, PART 1: TOPOLOGY (H) DUE: MARCH 28, 2022

(3) [Compactness in order topology]
Let (X,≤) be a totally ordered set. For any subset A ⊂ X, we say x ∈ X is a least
upper bound of A if x is an upper bound of A, and there is no x′ < x which is an
upper bound of A. Now endowed X with the order topology introduced in Definition
1.85. Prove: X is compact if and only if every subset (including the empty set ∅) of
X has a least upper bound.
[Hints: X has a least upper bound implies that X has a maximal element. ∅ has a
least upper bound implies that X has a minimal element. Try to prove that for any
sub-base covering U , there are a < b so that {x|x < b} and {x|x > a} are elements in
U , and then apply Alexander subbase theorem.]

(4) [The existence of Banach limit](Not required)
Consider the vector space of all bounded sequences of real numbers,

X = l∞ = {(a1, a2, · · · ) | ai ∈ R and sup
n
|an| <∞}.

On X there is a naturally defined shift operator

T : X → X, {a1, a2, · · · } 7→ {a2, a3, · · · }.
A mean on X is a linear map L : X → R such that

inf an ≤ L({an}) ≤ sup an

holds for all {an} ∈ X. A Banach limit is a mean that is invariant under the shift
operator T , i.e. such that L({an}) = L(T ({an})) holds for all {an} ∈ X.
(a) Define Lm : X → R by Lm({an}) = 1

m

∑m
i=1 ai. Prove: Lm is a mean for each

m, and limm→∞ |Lm(T ({an}))− Lm({an})| = 0.
(b) LetM be the set of all means on X. One can regardM as a subset ofM(X,R) =

RX , equipped with the product topology. Prove: M is compact.
[Hint: M is contained in

∏
{an}∈X [inf an, sup an].]

(c) Prove: There exists a Banach limit on X.
[Hint: Compact implies limit point compact. Use (a).]

(d) What is the Banach limit of a convergent sequence? What is the Banach limit
of {0, 1, 0, 1, 0, · · · }?



PROBLEM SET 5, PART 2: TOPOLOGY (H)

DUE: MARCH 28, 2022

(1) [Completion of metric spaces]
Let X be a set, and (Y, dY ) be metric spaces. Consider the space of bounded maps,

B(X,Y ) = {f : X → Y | f(X) is bounded in Y }
(a) Prove: the supremum metric d∞(f, g) := sup

x∈X
dY (f(x), g(x)) is a metric on B(X,Y ).

(b) Prove: If Y is complete, so is (B(X,Y ), d∞).
In what follows, suppose (X, dX) is a metric space, and take Y = R.
(c) Fix a point x0 ∈ X. For any a ∈ X, define a function fa : X → R via fa(x) :=

dX(x, a)− dX(x, x0). Prove: fa ∈ B(X,R).
(d) Prove: the map

Φ : (X, d)→ (B(X,R), d∞), a 7→ fa

is an isometric embedding, i.e. dX(a, b) = d∞(fa, fb) for any a, b ∈ X.
(e) Prove: Any metric space (X, dX) admits a completion.
(f) (Not required) Prove: If (Y1, d1) and (Y2, d2) are two completions of (X, dX),

then (Y1, d1) and (Y2, d2) are isometric.

(2) [From limit point compact to sequentially compact]
In the proof of Proposition 2.3.25, we only used the following two properties:
• Every x ∈ X has a descending countable neighborhood basis Ux

1 ⊃ Ux
2 ⊃ · · · .

• If x is a limit point of A, then every neighbourhood of x contains infinitely many
points of A.

As a consequence, there are many other topological spaces in which limit point com-
pact is equivalent to sequentially compact:
(a) Prove Proposition 2.3.26.
(b) Prove that in Proposition 2.3.26, one can weaken the Hausdorff condition to the

following (T1) condition:
(T1): For any x 6= y in X, there exists open sets U and V in X so
that x ∈ U \ V and y ∈ V \ U .

(c) The (T1) condition is equivalent to a sentence on page 1 of today’s notes. Find
out it and prove the equivalence.

(3) [Closed unit ball in l2]
Consider the metric space l2 given in Example 1.6(3).
(a) Prove: l2 is complete.

(b) Prove: The closed unit ball B(0, 1) and the unit sphere S(0, 1) are non-compact.
(c) Prove: If K ⊂ l2 is compact, then K has no interior point.

1



2 PROBLEM SET 5, PART 2: TOPOLOGY (H) DUE: MARCH 28, 2022

(4) [Lebesgue property]
We say a metric space (X, d) has the Lebesgue property if any open covering of X
has a positive Lebesgue number.
(a) Look at our proof of “sequentially compact =⇒ compact” in the proof of The-

orem 2.3.28. What did we really proved? Your answer should be of the form
[“condition A”+“condition B” implies compactness], and thus we have a new
characterization of compactness in metric space.

(b) Prove: If (X, dX) has the Lebesgue property, then it is complete.
(c) Prove: (X, dX) has the Lebesgue property if and only if for any metric space

(Y, dY ), any continuous map f : X → Y is uniformly continuous.
(d) Suppose (X, dX) has the Lebesgue property. Prove: If A,B are non-empty dis-

joint closed subsets in (X, d), then dist(A,B) := inf{d(x, y) | x ∈ A, y ∈ B} > 0.



PROBLEM SET 6, PART 1: TOPOLOGY (H)

DUE: APRIL 6, 2022

(1) [More on LCH]
(a) [Structure of noncompact LCH]

(i) Let K be a compact Hausdorff space, p ∈ K and X = K \ {p} is non-
compact. Prove: X is LCH.

(ii) Conversely, suppose X be a non-compact LCH. Let X∗ = X ∪{∞} be the
one-point compactification of X. Prove: X∗ is compact and Hausdorff.

(b) [The evaluation map could fail to be continuous without local compactness]
Consider the evaluation map

e : Q× C(Q, [0, 1])→ [0, 1], (x, f) 7→ e(x, f) = f(x).

(i) Prove: Q is not locally compact.
(ii) Prove: for any q1 ∈ Q and any closed subset A ⊂ Q with q1 6∈ A, there is

a continuous function f1 ∈ C(Q, [0, 1]) such that f(q1) = 1, f(A) = 0.
(iii) (Not required) Now let f0 ∈ C(Q, [0, 1]) be the zero map f0(Q) = 0, and

take any q0 ∈ Q. Prove: e is not continuous at (q0, f0) (where we endow
C(Q, [0, 1]) with the compact convergence topology).
[Hint: For any open neighborhood U of q0 and any compact set K in Q,
there exists q1 ∈ U \K. Construct a continuous function using (b). ]

(2) [More on compact-open topology]
(a) Prove Proposition 2.4.22, i.e. (Y, d) is a metric space, then Tc.c. = Tc.o..
(b) Prove Proposition 2.4.23, i.e. if Y s LCH, then the composition map is continuous

with respect to Tc.o..
(c) Prove: If X is locally compact and Hausdorff, then

S({x}, U) =
⋃

compact neighborhood K of x

S(K,U).

[Hint for (b) and (c): Use Proposition 2.4.16]

(3) [Compactly generated spaces]
(a) Read the materials on compactly generated spaces (page 99), and prove: any

locally compact space is compactly generated.
(b) Prove: Any first countable space is compactly generated.
(c) Find a compactly generated space that is not locally compact. [Hint: PSet5-2]
(d) Let (X,T ) be any topological space. Prove: there exists a topology T ′ ⊃ T

such that (X,T ′) is compactly generated, and a set is compact with respect to
T ′ if and only if it is compact with respect to T .
[Hint: Construct topology by needs!]

1



2 PROBLEM SET 6, PART 1: TOPOLOGY (H) DUE: APRIL 6, 2022

(4) [Applications of Arzela-Ascoli]
(a) Suppose k = k(x, y) ∈ C([0, 1]× [0, 1],R). For any f ∈ C([0, 1],R), define

Kf(x) =

∫ 1

0
k(x, y)f(y)dy.

Prove: K is a compact operator, i.e. it maps any bounded subset in (C([0, 1],R), d∞)
into a compact subset in the same space.

(b) (Not required) We want to minimize the functional Φ[f ] :=
∫ 1
−1 f(t)dt. Consider

the set

morespaceF = {f ∈ C([−1, 1], [0, 1]) | f(−1) = f(1) = 1}.
(i) What is inff∈F Φ[f ]? Is the infimum attained?

(ii) For any constant C > 0, let

FC = {f ∈ F | |f(x)− f(y)| ≤ C|x− y|}.
Prove: The infimum inff∈FC

Φ[f ] is attained. Can you find the function?
(c) (Not required) Prove Theorem 2.5.12.



PROBLEM SET 6, PART 2: TOPOLOGY (H)

DUE: APRIL 06, 2022

(1) [Topological algebra]
Let X be a topological space. Endow C(X,R) with the compact convergence topology.
(a) Prove: The addition, multiplication and the scalar multiplication

a : C(X,R)× C(X,R)→ C(X,R), (f, g) 7→ a(f, g) = f + g,

m : C(X,R)× C(X,R)→ C(X,R), (f, g) 7→ m(f, g) = fg,

s : R× C(X,R)→ C(X,R), (λ, g) 7→ s(λ, f) = λg

are continuous. (As a consequence, C(X,R) is a topological algebra.)
(b) Prove Proposition 2.6.4 (the closure of a subalgebra of topological algebra is a

closed subalgebra).

(2) [Applications of Stone-Weierstrass]
(a) Prove: Any continuous function on [0, 1] can be approximated uniformly by

functions of the form

a0 + a1e
x + a2e

2x + · · ·+ ane
nx, n ∈ N.

• As a consequence, prove if f is a continuous function on [0, 1] satisfying

(*)

∫ 1

0
f(x)enxdx = 0, n = 0, 1, 2 · · · ,

then f = 0.
• What if (*) holds only for even n?

(b) Let X,Y be compact Hausdorff spaces. Prove: any f ∈ C(X × Y,R) can be
approximated uniformly by functions of the form

f1(x)g1(y) + f2(x)g2(y) + · · ·+ fn(x)gn(y), n ∈ N,
where fk ∈ C(X,R), gk ∈ C(Y,R).

(3) [Stone-Weierstrass for complex-valued functions]
(a) Prove Theorem 2.6.14 (Stone-Weierstrass for complex-valued functions).
(b) Prove: Any complex-valued continuous function on S1 = R/Z can be approxi-

mated uniformly by functions of the form

ghostghostgho

n∑
k=−n

ake
−2πikx, n ∈ N.

1
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(4) [Stone-Weierstrass on LCH] (Not requried)
(a) Let X be LCH. Prove: C0(X,R) is an algebra.
(b) Prove Theorem 2.6.15 (Stone-Weierstrass theorem on LCH).
(c) Prove: Any f ∈ C0([0,+∞),R) can be approximated uniformly by functions of

the form

ghostghostgho
n∑

k=−n
ake

−kx, n ∈ N.



PROBLEM SET 7, PART 1: TOPOLOGY (H)

DUE: APRIL 11, 2022

(1) [Lindelöff Property]
(a) Prove Proposition 2.7.13.
(b) Prove Proposition 2.7.14.
(c) Check: (R,Tcocountable) is Lindelöf but not σ-compact.
(d) Check: The Sorgenfrey line (R,TSorgenfrey) is Lindelöf.

(2) [The Sorgenfrey plane]
Consider the product of two Sorgenfrey lines,

(R2,TSorgenfrey) := (R,TSorgenfrey)× (R,TSorgenfrey),

which is known as the Sorgenfrey plane.
(a) Prove: It is first countable, separable but not second countable.
(b) Prove: Is it Hausdorff?
(c) Consider the subspace A = {(x,−x) | x ∈ R}. Is it closed? What is the induced

subspace topology on A?
(d) Prove: It is not Lindelöf.

(3) [Closedness of graph]
Let X, Y be topological spaces, define the graph of a map f : X → Y to be the set

Gf := {(x, f(x) | x ∈ X} ⊂ X × Y.
(a) Prove: Y is Hausdorff ⇐⇒ for any X and f ∈ C(X,Y ), Gf is closed in X × Y .
(b) Construct a discontinuous function f : R→ R whose graph is closed.
(c) Prove: If Y is compact Hausdorff, then f is continuous ⇐⇒ Gf is closed.

(4) [Hereditary properties]
A topological property P is called hereditary if

(X,T ) satisfies P =⇒ Any subspace Y of X satisfies P .

(a) Prove: (A1) and (A2) are hereditary, but (T4) is not hereditary.
[Hint: Given any (X,T ), consider (X ∪ {∞},T ∪ {X ∪ {∞}})]

(b) Which of the following properties are hereditary:
compact/sequentially compact/locally compact/separable/Lindelöf/(T1)/(T2)/(T3)

(c) A topological property P is called closed hereditary if

(X,T ) satisfies P =⇒ Any closed subspace Y of X satisfies P .

For those non-hereditary properties above, determine whether they are closed
hereditary.

1
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DUE: APRIL 11, 2022

(1) [Productive properties]
A topological property P is called productive if

Each (Xα,Tα) satisfies P =⇒ (
∏
αXα,Tprodcut) satisfies P .

(a) Prove: (T1), (T2) and (T3) are productive.
(b) Conversely, if (

∏
αXα,Tprodcut) is (T1), (T2) or (T3), can we conclude that each

(Xα,Tα) is (T1), (T2) or (T3)?
(c) Is (T4) productive? Is Lindelöf productive?
(d) Prove: separable and metrizable are not productive. What about (A1), (A2)?
(e) Can you introduce a weaker version of productivity, so that those non-productive

properties in part (d) satisfy the weaker one?

(2) [Baire space]
A topological space is called a Baire space if every intersection of a countable collection
of open dense sets in the space is also dense.
(a) Use “open-closed” duality to give an equivalent characterization of Baire space.
(b) Prove: Any complete metric space is a Baire space.
(c) Prove: Any compact Hausdorff space is a Baire space.
(d) Prove: Any locally compact Hausdorff space is a Baire space.

(3) [Applications of Urysohn lemma]
(a) Let X be a compact Hausdorff space, x0 ∈ X, and U is an open neighborhood of

x0. Prove: For any ε > 0 and any continuous function f : X → R, there exists a
continuous function g : X → R satisfying all of the following three conditions:
• supx∈X |g(x)− f(x)| < ε.
• g = f on U c.
• there exists a neighborhood V of x0 such that g(x) ≡ f(x0) on V .

(b) Let X be LCH. Recall
• Cb(X,R) = {f : X → R | f is continuous and bounded}.
• Cc(X,R) = {f : X → R | f is continuous and compactly supported}.
• C0(X,R) = {f : X → R | f is continuous and vanishes at infinity}.

On Cb(X,R) we have a metric d∞(f, g) := supx∈X |f(x) − g(x)|. Prove: The
closure of Cc(X,R) in Cb(X,R) is C0(X,R).

(4) [Locally metrizable] (Not required)
A topological space X is said to be locally metrizable if for any x ∈ X, there is a
neighborhood U of x that is metrizable. Prove: If X is compact Hausdorff, then X
is metrizable if and only if it is locally metrizable.
[Hint: Cover X by finitely many compact metrizable neighborhood.]

1



PROBLEM SET 8, PART 1: TOPOLOGY (H)

DUE: APRIL 18, 2022

(1) [Uniqueness of extension]
Let X,Y be topological spaces, A ⊂ X be a dense subset, and f : A → Y be a
continuous map.
(a) Prove: If Y is a (T2) space, then f admits at most one continuous extension.
(b) Does the same conclusion hold if Y is a (T1) space? If yes, prove it; if no, give

a counterexample.

(2) [Tietze extensions with restrictions]
Let (X,T ) be a (T4) space, A ⊂ X be closed.
(a) Let f : A→ C be a continuous complex-valued function with

|f(x)| ≤ 1, ∀x ∈ A.

Prove: f can be extended to a continuous function f̃ : X → C so that

|f̃(x)| ≤ 1, ∀x ∈ X.

(b) Let f : A→ R and g1, g2 : X → R be continuous functions, and suppose

g1(x) ≤ f(x) ≤ g2(x), ∀x ∈ A and g1(x) ≤ g2(x), ∀x ∈ X.

Prove: f can be extended to a continuous function f̃ : X → R such that

g1(x) ≤ f̃(x) ≤ g2(x), ∀x ∈ X.

(3) [Retraction]
Let X be a topological space, A ⊂ X be a subspace. We say A is a retract of X if
there exists a continuous map r : X → A such that

r(x) = x, ∀x ∈ A.

Such a map r is called a retraction.
(a) Prove: If X is Hausdorff, A is a retract of X, then A is closed.
(b) Prove: A is a retract of X if and only if for any topological space Y , any contin-

uous map f : A→ Y has an extension f̃ : X → Y .
(c) Suppose X is normal and A is closed. Prove: If Y is a retract of RJ (with product

topology, where J is any set), then any continuous map f : A → Y admits a

continuous extension f̃ : X → Y .

(4) [Different compactifications][Not required]
Let X,Y, Z be LCH spaces.
(a) Construct at least three different compactifications of the interval R2.

1



2 PROBLEM SET 8, PART 1: TOPOLOGY (H) DUE: APRIL 18, 2022

(b) Prove that the Cech-Stone compactification βX is the largest compactification
of X: For any compact Hausdorff compatification K of X (with an embedding
ϕ : X → K), there is a surjective continuous closed map F : βX → K which
extends the embedding ϕ : X → K.

(c) Similarly, prove that the one point compactification X∗ is the smallest compact-
ification of X.

(d) Given any continuous map ϕ : X → Y , we constructed a continuous map βϕ :
βX → βY . Prove that the “lifting” ϕ  βϕ is “functorial” in the following
sense:

(i) If IdX is the identity map, then βIdX = IdβX .
(ii) If ϕ : X → Y , ψ : Y → Z be continuous maps, then β(ψ ◦ ϕ) = βψ ◦ βϕ.



PROBLEM SET 8, PART 2: TOPOLOGY (H)

DUE: APRIL 18, 2022

(1) [Products of paracompact spaces]
(a) Prove: The Sorgenfrey line is paracompact, while the Sorgenfrey plane is not.

[Hint: The Sorgenfrey plane is not normal.]
(b) Is paracompactness productive? Is it preserved under continuous maps?
(c) Prove: If X is compact, Y is paracompact, then X × Y is paracompact.

(2) [LCH version of P.O.U.]
Let X be a locally compact, σ-compact, Hausdorff space, and U = {Uα} is an open
cover of X. Prove:
(a) There exits two locally finite open coverings V = {Vn} and W = {Wn} such that

• Wn ⊂Wn ⊂ Vn ⊂ Vn, and Vn is compact,
• For each n, there exists Uα ∈ U such that Vn ⊂ Uα.

(b) Prove Theorem 2.10.15(LCH version of P.O.U.).

(3) [Examples and non-Examples of topological manifolds]
(a) Prove: Every topological manifold is σ-compact.
(b) Prove: RPn is a topological manifold.
(c) (line with doubled point) Let X = (R × {0, 1})/ ∼, where (x, 0) ∼ (x, 1) for all

x 6= 0. Prove: X is (A2) and locally Euclidian, but not (T2).
(d) [NOT Required] (long line) Let Ω be the smallest uncountable well-ordered set.

That is, Ω is an uncountable set, and there is a well-order < on Ω such that for
any a ∈ Ω, the set {b ∈ Ω | b < a} is countable. Let L= Ω× [0, 1). Define an
order on L via

(a, t) ≺ (b, s) if and only if “a < b” or “a = b and t < s”.

For any x ≺ y in L, we define (x, y) = {z ∈ L | x ≺ z ≺ y}.
(i) Prove: These “intervals” (x, y) form a basis of a topology on L.
(ii) Prove: With respect to this topology, L is (T2), locally Euclidean but not

(A2). It is called the long line.
[Hint: By the definition of well-order, for any a ∈ Ω, the set {b ∈ Ω | a < b}
has a minimal element, called the successor of a. Define charts on L by

aaaaaaaaaaaaaaϕ : {a} × (0, 1] ∪ {a′} × (0, 1)→ (−1, 1), ϕ(a, t) = t− 1 and ϕ(a′, t) = t.

where a′ is the successor of a.]

(4) [An application of P.O.U.]
Let X be Hausdorff and paracompact, f : X → R be lower semi-continuous and
g : X → R be upper semi-continuous. Moreover, assume f(x) > g(x), ∀x ∈ X. Prove:
there exists a continuous function h : X → R such that f(x) > h(x) > g(x),∀x ∈ X.

1



PROBLEM SET 9, PART 1: TOPOLOGY (H)

DUE: MAY 07, 2022

(1) [Connectedness of subspace]
Let (X,T ) be a topological space, and Y ⊂ X be a subspace. Which of the following
statements are equivalent to the fact

ghostspaceghostspace Y is disconnected ?
Prove the equivalence for the correct ones and give counterexamples for the wrong
ones:
(a) There exists non-empty sets A,B ⊂ X with A ∩ B = A ∩ B = ∅, such that

Y = A ∪B, where the closure is taken in to be the closure in X.
(b) There exists open sets A,B in X with A∩B ∩ Y = ∅, such that Y ⊂ A∪B and

A ∩ Y 6= ∅, B ∩ Y 6= ∅.
(c) There exists disjoint open sets A,B in X with A ∩ Y 6= ∅, B ∩ Y 6= ∅, such that

Y ⊂ A ∪B.
(d) There exists disjoint closed sets A,B in X with A∩Y 6= ∅, B ∩Y 6= ∅, such that

Y ⊂ A ∪B.
(e) There exists a set A which is both open and closed in X such that A ∩ Y 6= ∅

and A ∩ Y 6= Y .
(f) There is a surjective continuous map f : Y → {0, 1}.

(2) [Connected components]
Let X be a topological space. The connected component containing x ∈ X is defined
to be the maximal connected subsets of X containing x.
(a) Prove: The connected component containing x is the union of all connected

subsets of X that contains x.
(b) Prove: Each connected component is a closed subset.
(c) Give an example showing that the connected component need not be open.
(d) (Generalization of Proposition 3.1.8) Prove: If f : X → Y is continuous, then

for any subset A of X, the cardinality of connected components of f(A) is no
more than the cardinality of connected components of A.

(e) (Generalization of Proposition 3.1.18) Denote the connected component of Xα

containing xα to be C(xα). Prove: the connected component of
∏
αXα contain-

ing the point (xα) is
∏
αC(xα).

1
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(3) [Non-homeomorphic spaces]
(a) Show that the following spaces are pairwise non-homeomorphic:

R, Z, S1, R2, [0, 1], [0, 1)

(b) Consider

A = (0, 1) ∪ {2} ∪ (3, 4) ∪ {5} ∪ · · · ∪ (3n, 3n + 1) ∪ {3n + 2} ∪ · · · ,
B = (0, 1] ∪ (3, 4) ∪ {5} ∪ · · · ∪ (3n, 3n + 1) ∪ {3n + 2} ∪ · · · .
Prove: There exists continuous bijection f : A → B and continuous bijection
g : B → A, however, A and B are not homeomorphic.
[You may compare this with Cantor–Schröder–Bernstein theorem in set theory]

(4) [Connected + suitable separation axioms v.s. countability]
(a) Prove: If (X,T ) is (T1), (T4) and connected, and X contains at least two

elements, then X contains uncountably many elements.
(b) Can we replace (T4) by (T3)?
(c) [Not required][The Golomb space] Define a topology on N>0 as follows: For any

coprime positive integers a and b, let Da,b = N>0 ∩{a+ bk | k ∈ N≥0}. Consider
the topology TGolomb generated by these Da,b’s. It turns out that (N>0,TGolomb)
is (T2), connected but contains countably elements:

(i) Prove: B = {Da,b | a, b are coprime positive integers} is a basis of TGolomb.
(ii) Prove: (N>0,TGolomb) is (T2).

(iii) Prove: (N>0,TGolomb) is connected. Is it compact or (T3) or metrizable?
[In proving connectedness, you may need the following consequence of Chi-
nese remainder theorem from number theory: If b1 and b2 are coprime, then
Da1,b1 ∩Da2,b2 6= ∅.]

(iv) The Dirichlet Theorem in number theory asserts that every Da,b (with a, b
coprime) contains infinitely many prime numbers. Explain this using the
language of topology.



PROBLEM SET 9, PART 2: TOPOLOGY (H)

DUE: MAY 04, 2022

(1) [Path connectedness: examples]
(a) Although looks quite non-obvious, the set R2 − Q2 is path-connected. We give

two proofs here:

First proof. Since Q2 is a countable set, for any x ∈ R2 − Q2, there exist un-
countably many lines l s.t.

x ∈ l ⊂ R2 −Q2.

Now for x 6= y ∈ R2 − Q2, pick two such lines, one contains x and the other
contains y, such that they are not parallel. Now you can connect x to the
intersection point through the first line, then to y through the second line. �

Second proof. Suppose (x1, y1), (x2, y2) ∈ R2 − Q2. If x1, x2 ∈ R − Q, then we
pick y0 ∈ R − Q, and connect (x1, y1) to (x1, y0) through the line x = x1, and
connect (x1, y0) to (x2, y0) through the line y = y0, and finally connect (x2, y0)
to (x2, y2) through the line x = x2. Similar arguments holds if x1, y2 ∈ R−Q or
y1, y2 ∈ R−Q or x2, y1 ∈ R−Q. �

It turns out that each proof can be extended to prove a more general result on
path-connectedness:

Proposition 0.1. Let S ⊂ Rn be ... then Rn − S is path connected.

Proposition 0.2. Let X,Y are path-connected, and ...

Complete the full statements.
(b) Show that the topological space

(X = {v, s},T = {∅, {s}, {v, s}}
is path-connected.

(2) [Locally connectedness]
(a) Define the conception:

Definition 0.3. We say a topological space X is locally connected if ......

(b) Consider (R,Tcocountable). Is it connected? locally connected? path connected?
locally path connected?

(c) For simplicity, let’s denote
C=connected, LC=locally connected,
PC=path connected, LPC=locally path connected.

Give examples in region 1-6 for the following picture: (the remaining two parts
are more complicated. You can try if you want to challenge yourself..)

1
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(d) Prove: IfX is compact and locally connected, thenX has finitely many connected
components. Can we remove the locally connectedness condition?

(e) Prove: X is locally connected if and only if for any open set U in X, any
connected component of U is open.
(In particular,

::::
any

::::::::::
connected

:::::::::::
component

:::
of

:
a
:::::::
locally

:::::::::::
connected

:::::
space

:::
is

:::::
open.)

(f) (Not required) Suppose X is locally connected, f : X → Y is continuous. Prove:
if f is either open or closed, then f(X) is locally connected.
Can we remove the assumption “f is either open or closed”?

(3) [Components and path components]
(a) Find the components and path component for the following spaces:

(i) The Sorgenfrey line.
(ii) (R,Tcocountable).

(iii) (RN,Tuniform).
(b) Prove Proposition 3.2.22 and Proposition 3.2.23, namely, π0 and πc are functors.

(4) (Not required) [Components of topological groups]
Let G be a topological group.
(a) Prove: For any normal subgroup N of G, the quotient group G/N is a topological

group.
(b) Prove: π0(G), πc(G) are both topological groups. What’s the relation between

these two groups?
(c) Are π0(G) and πc(G) Hausdorff spaces?
(d) Find the relations between π0(G1 × G2) and π0(G1), π0(G2), where G1, G2 are

topological groups.



PROBLEM SET 10, PART 1: TOPOLOGY (H)

DUE: MAY 9, 2022

(1) [Constructing homotopies]
(a) Prove Proposition 3.3.3 (composition, pull-back and push-forward)
(b) Prove that “homotopy equivalence between topological spaces” is an equivalence

relation (Remark 3.3.9(3)).
(c) Prove Proposition 3.3.17(1) and (3).

(2) [Maps to Sn]
(a) Prove: Any non-surjective continuous map f : X → Sn is null-homotopic.
(b) Let f, g : X → Sn be continuous maps. Suppose they are never anti-podal, i.e.

g(x) 6= −f(x) holds for all x. Prove: f is homotopic to g.

(c) Let Bn+1 be the closed unit ball in Rn+1. Prove: There exists a retraction

f ∈ C(Bn+1, Sn) if and only if IdSn is null-homotopic.

[Hint: For “only if” part, use the fact Bn+1 is convex; for “if” part, use the fact

“Bn+1 is the cone over Sn”.]

(3) [Deformation retract]
We say A is a weak deformation retract of X if there exists a retraction r : X → A
so that IdX is homotopic to ι ◦ r : X → X, where ι : A ↪→ X is the inclusion map. In
other words, A is a weak deformation retract of X if there exists a continuous map
(called a weak deformation retraction) F : [0, 1]×X → X such that

F (0, x) = x, F (1, x) ∈ A, ∀x ∈ X and F (1, a) = a,∀a ∈ A.
A weak deformation retraction F is called a strong deformation retraction if

F (t, a) = a, ∀a ∈ A,∀t ∈ [0, 1].

[In some books, people call weak deformation retract defined above a deformation
retract, while in some other books (includes Munkres’s book and Hatcher’s book)
people call strong deformation retract defined above a deformation retract.]
(a) Construct a strong deformation retraction Rn+1 \ {0} to Sn.
(b) Construct a strong deformation retraction from T2 − {pt} (i.e. the torus with

one point removed) S1 ∨ S1 (i.e. “figure 8”).
(c) Prove: If A ⊂ X is a weak deformation retract, then A ∼ X.
(d) (Not required)[Compare with Exercise for Section 2.9] Prove: A ⊂ X is a weak

deformation retract of X if and only if it satisfies the following two properties:
• For any topological space Y , any continuous map f : A→ Y has a contin-

uous extension f̃ : X → Y .
• For any topological space Y and any continuous maps f, g : X → Y , if f |A

is homotopic to g|A, then f is homotopic to g.

1
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(4) [Contractible spaces]
(a) Prove that the following are equivalent:

(i) X is contractible.
(ii) X is homotopy equivalent to a point.

(iii) X weak deformation retracts to a point. [However, there are examples
of topological spaces that are contractible but do not strong deformation
retract to any point(c.f. Hatcher, Algebraic Topology, Exercise 1.6).]

(b) Recall that the (topological) cone C(X) of any space topological space X is

C(X) = X × [0, 1]/X × {0}.
(i) Prove: For any X, the topological cone C(X) is contractible.

(ii) (Not required) Let Y be any topological space, and f ∈ C(X,Y ) be a con-
tinuous map. Prove: f is null-homotopic if and only if f has a continuous
extension f̂ : C(X)→ Y .

(c) Suppose Brouwer’s fixed point theorem holds, i.e. any continuous map f : Bn →
Bn has a fixed point (that is, a point p with f(p) = p). Prove: Sn−1 is not
contractible.

(d) (Not required) Find “(Bing’s) house with two rooms” from literature/internet
and show that it is contractible.



PROBLEM SET 10, PART 2: TOPOLOGY (H)

DUE: MAY 9 , 2022

(1) [Simply connected]
(a) Let X be path connected. Prove that the following statements are equivalent:

(i) X is simply connected, i.e. π1(X) = {e}.
(ii) Any loop in X can be continuously deformed to a point in X.

(iii) For any x0, x1 ∈ X, any two paths γ1, γ2 ∈ Ω(X;x0, x1) are path homo-
topic.

(b) Show that “simply connectedness” is a topological property. Is it multiplicative?
preserved under continuous maps? hereditary?

(2) [The fundamental group of the product space]
(a) Prove: π1(X × Y, (x0, y0)) ' π1(X,x0)× π1(Y, y0).
(b) (Not required) Write down a formula for the fundamental group of an arbitrary

product, π1(
∏
αXα, (xα)), and prove your formula.

[Warning: for infinitely many groups Gα, there are two ways to “multiply” them
together: the direct sum

⊕
αGα and the direct product

⊗
αGα. ]

(3) [Base point change isomorphism]
Let X be path connected, x0, x1 ∈ X. We have seen in Proposition 3.4.9 that any
path λ from x0 to x1 induces a group isomorphism Γλ : π1(X,x1)→ π1(X,x2).
(a) Suppose λ1 is a path from x0 to x1, and λ2 is a path from x1 to x2.

Prove: Γλ1∗λ2 = Γλ2 ◦ Γλ1 .
(b) Prove: π1(X,x0) is abelian if and only if for any two paths λ1, λ2 from x0 to x1,

we have Γλ1 = Γλ2 .
(c) Suppose X,Y are path connected, and f ∈ C(X,Y ). I have a vague idea that the

group homomorphism f∗ : π1(X,x0)→ π1(Y, f(x0)) is independent of the choice
of x0. Please write down an explicit formula/rigorous statement and prove it.

(4) [The fundamental group of topological groups]
Let G be a topological group. We want to prove π1(G, e) is an abelian group. There
is a one-sentence proof:

Topological groups are
:::::
group

::::::::
objects in the category T OP, so under the

functor π1 (which preserves products), they become group objects in the
category GROUP, which are abelian groups.

Unfortunately, I don’t understand that fancy proof. So I want more elementary
proofs. In what follows we give two proofs.
We let γ1, γ2 be two loops in G based at e.

1
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(a) (First proof) Denote by γe the constant loop at e. Check:

F (s, t) = (γ1 ∗ γe)(max(0, t− s

2
)) • (γe ∗ γ2)(min(1, t+

s

2
))

is a path homotopy between γ1∗γ2 and γ2∗γ1, where • is the group multiplication.
(b) (Not required)(Second proof) Construct explicit path homotopies to verify

(i) γ1(t) • γ2(t) ∼ γ2(t) • γ1(t);
(ii) (γ1 ∗ γ2)(t) ∼ γ1(t) • γ2(t).

(Hint: γ1 ∗ γ2 = (γ1 ∗ γe) • (γe ∗ γ2))



PROBLEM SET 11, PART 1: TOPOLOGY (H)

DUE: MAY 16, 2022

(1) [More fundamental groups]
Find the fundamental groups of the following spaces:
(a) Rn+k \ (Rn × {(0, · · · , 0)}) (k ≥ 2)
(b) R3 \ Z3

(c) S2 ∨ S2 (See section 1.4 for the definition of the wedge product)
(d) S1 ∨ S2

(e) {(x, y, 0) | x, y ∈ R} ∪ {(0, y, z) | y2 + z2 = 1, z ≥ 0}
(f) R3 \ ({(0, 0, z) | z ∈ R} ∪ {(x, y, 0) | x2 + y2 = 1})
(g) (Not required) R3 \ {(x, y, 0)|x2 + y2 = 1}
(h) (Not required) R3 \ ({(0, 0, 0)} ∪ {(1, 1, z) | z ∈ R})

(2) [Maps with trivial induced homomorphism]
(a) Suppose h : S1 → X is a continuous map. Prove: The following are equivalent

(i) The induced homomorphism h∗ : π1(S
1, 1) → π1(X,h(1)) is the trivial

homomorphism (i.e. h∗([γ]p) = e holds for all [γ]p ∈ π1(S1, 1)).
(ii) h is null homotopic.

(iii) h can be extended to a smooth map H : D → S1.
(b) Now suppose X = S1. Prove: (i)-(iii) are equivalent to

(iv) h can be lifted to a continuous map h̃ : S1 → R so that p ◦ h̃ = h.
(c) Read the proof of Borsuk-Ulam theorem (in which (i)=⇒(iv) is used) and the

proof of pancake theorem on page 220-221.

(3) [The degree for maps between the circle]
For any continuous map f : S1 → S1, there exists n ∈ Z such that f∗([γ1]p) = [γn]p.
The integer n is called the degree of the map f , and is denoted by deg(f).
(a) Prove: If f ∈ C(S1, S1) is not surjective, then deg(f) = 0.
(b) Prove: If f, g ∈ C(S1, S1), then deg(f ◦ g) = deg(f)deg(g).
(c) Prove: f is homotopic to g if and only if deg(f) = deg(g).
(d) Read the following paragraph which gives a descriptive definition of the winding

number:
Suppose γ : S1 → R2 is a continuous map and p 6∈ Im(γ). The
winding number W (γ, p) of the closed curve γ around the point p is
defined to be the integer representing the total number of times that
curve travels counterclockwise around the point.

Use the language of mapping degree to give a rigorous definition of winding
number W (γ, p).

1
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(4) (Not required) [Not-so-fundamental group]
Let X be a path connected topological space, and x0 ∈ X be a base point. Given any
two loops γ0, γ1 based at x0, we define a pseudo-homotopy between γ0 and γ1 to be
a map [NOT NECESSARY CONTINUOUS] F : [0, 1]× [0, 1]→ X s.t.
• For any fixed t, the map γt(s) := F (t, s) is continuous in s.
• For any fixed s, the map λs(t) := F (t, s) is continuous in t.
• For any s, F (0, s) = γ0(s), F (1, s) = γ1(s).
• For any t, F (t, 0) = F (t, 1) = x0.

We define the “NOT-SO-Fundamental group” of X at x0 to be the pseudo-homotopy
classes.
(a) Show that the “NOT-SO-Fundamental group” of S1 is the trivial group {e}.
(b) Show that the “NOT-SO-Fundamental group” is not so interesting, since it is

always the trivial group {e}.
(c) In proving π1(S

1) ' Z, where did we use the continuity of the homotopy?



PROBLEM SET 11, PART 2: TOPOLOGY (H)

DUE: MAY 16, 2022

(1) (NOT required). [Abelianization]
Let G be a group.
(a) Let [G,G] be the subgroup of G that is generated by all elements of the form

xyx−1y−1 for all x, y ∈ G. Prove: [G,G] is a normal subgroup of G.
(b) Prove: The group Ab(G) := G/[G,G] is abelian (called the abelianization of G).
(c) Prove: The abelianization defines a functor from GROUP to ABELGROUP.
(d) What is the abelianization of Z ∗ · · · ∗ Z?
(e) Prove: Ab(〈a1, b1, · · · , an, bn|a1b1a−1

1 b−1
1 · · · anbna−1

n b−1
n = 1〉) = Z2n.

(f) Prove: Ab(〈a1, · · · , an|a21 · · · a2n = 1〉) = Zn−1 × Z2.

(2) [The wedge sum of circles]
(a) Finite wedge sum and applications.

(i) Prove: π1(S
1 ∨ S1 ∨ · · · ∨ S1) ' Z ∗ Z ∗ · · · ∗ Z.

(ii) What is the fundamental group of R2 − {finitely many points}?
(iii) (NOT required) What is the fundamental group of R2 − Z2?
(iv) (Not required) What is the fundamental group of the set

R3 − {finitely many lines passing 0}?
(v) (NOT required). A group is called finitely presented if it has a presentation

G = 〈S|R〉 where both S andR are finite sets. Prove: any finitely presented
group is the fundamental group of some compact Hausdorff space.
[Hint: First construct a wedge sum of circles with fundamental group 〈S〉,
then for each element in R attach a disk to kill the relation. ]

(b) Infinite wedge sum.
(i) Let X = ∪n≥1Cn, where Cn is the circle in R2 of radius n centered at

(n, 0). Compute π1(X).

(ii) Let Y = {(x, 0) | x ∈ R} ∪
⋃

n≥1 C̃n, where C̃n is the circle in R2 of radius

1/3 centered at (n, 1/3). Compute π1(Y ). Are X and Y homeomorphic?
homotopic equivalent?

(iii) (NOT required). Let Z = ∪n≥1C1/n, where C1/n is the circle of radius 1/n
centered at (1/n, 0). Prove: There is a surjective homeomorphism from
π1(Z) to the direct product

∏
n≥1 Z. As a consequence, π1(Z) contains

uncountably many elements [So Z is not homotopy equivalent to X or Y ].
(iv) (NOT required).Use (iii) to prove: π1(R2 \Q2) contains uncountably many

elements.

(3) [Application of van Kampen]
Use van Kampen theorem to compute the fundamental group of

1
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(a) RP2

(b) The Klein bottle.
(c) (Not required) The n-fold dunce cap. [Split the boundary circle of a closed disk

into n parts (by n red dots), and identify the boundary segments according to
the picture below (but keep the interior of the disk unchanged.]

(d) Prove: The fundamental group of Σg = T2# · · ·#T2︸ ︷︷ ︸
g

is given by

π1(Σg) ∼= 〈a1, b1, · · · , ag, bg | a1b1a−1
1 b−1

1 · · · agbga
−1
g b−1

g = 1〉.
(e) Remove k small disjoint discs from Σg and denote the resulting space by Σg,m.

Compute π1(Σg,m)

(f) (Not required) Compute the fundamental group of RP2# · · ·#RP2

(4) [The fundamental group of topological manifolds]
Let X,Y be connected topological manifolds.
(a) Suppose dimX > 2. Prove: For any point x ∈ X, π1(X) ' π1(X \ x).
(b) Prove: π1(X ∨ Y ) ' π1(X) ∗ π1(Y ).
(c) Suppose dimX = dimY > 2. Prove: π1(X#Y ) ' π1(X) ∗ π1(Y ).
(d) (NOT required) Prove: The fundamental group of any topological manifold is

countable (i.e. contains only countably many elements).
[Hint: cover X by countably many open sets Ui that are homeomorphic to Eu-
clidean balls. Pick a point from each Ui and from each component of all possible
Ui ∩ Uj . Try to show that each loop is path homotopic to loops consisting of
segments connecting the chosen points.]



PROBLEM SET 12, PART 1: TOPOLOGY (H)

DUE: MAY 23, 2022

(1) [Products of coverings]

(a) Prove: If X is connected, X̃ 6= ∅, then p is surjective, and the cardinality of
p−1(x) is independent of x.

(b) Prove: If p : X̃ → X and p′ : X̃ ′ → X ′ are covering maps, so is their product

p× p′ : X̃ × X̃ ′ → X ×X ′.
(c) Let p : R → S1 be the standard covering map. Prove: The infinite product∏

n∈N p :
∏

n∈NR→
∏

n∈N S
1 is NOT a covering map.

(2) [Fundamental groups of covering spaces]

Suppose X, X̃ are path-connected, p : X̃ → X is a covering map, and p(x̃0) = x0.

(a) Suppose γ is a loop in X based at x0. Prove: γ can be lifted to a loop in X̃

based at x̃0 if and only if [γ] ∈ p∗(π1(X̃, x̃0)).
(b) Prove: the index of the subgroup p∗(π1(X̃, x̃0)) in π1(X,x0) is the cardinality of

p−1(x0).
(c) Prove: If the base space X is simply connected, then p is a homeomorphism.
(d) Suppose x̃1 ∈ p−1(x0). Prove: as subgroups of π1(X,x0), the two groups

p∗(π1(X̃, x̃0)) and p∗(π1(X̃, x̃1)) are conjugate to each other.

(3) [properly discontinuous actions]
(a) Let G = 〈a, b|a−1bab = 1〉. Consider the action of G on R2 generated by

a · (x, y) := (−x, y − 1), b · (x, y) = (x+ 1, y).

(i) Show that this action is a properly discontinuous action. What is the
fundamental group of the Klein bottle?

(ii) Also check that the quotient space in Example 3.7.6 is Klein bottle, and
thus T2 is a double covering of the Klein bottle.

(b) (Not required) Suppose group G acts on X̃. We say the action is free if

for any g 6= e and any x ∈ X̃, g · x 6= x.

Prove: If X̃ is Hausdorff, G is a finite group, and the G-action on X̃ is free, then
the action is properly discontinuous.

(c) (Not required) More generally, Let X̃ be a LCH space. Suppose the G-action on

X̃ is free, and satisfies the following condition (known as proper action):

for any compact subset C ⊂ X̃, the set {g | g · C ∩ C 6= ∅} is finite,

Prove: the G-action is properly discontinuous, and X̃/G is a LCH space.
[Hint: By locally finiteness, for any compact C, ∪gg · C is closed. ]

1
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(4) [SU(2) and SO(3)](Not required)
Let SU(2) be the special unitary group, i.e. the group of 2 × 2 unitary matrices
with determinant 1, and SO(3) the special orthogonal group, i.e. the group of 3× 3
orthogonal matrices with determinant 1.
(a) Prove: SU(2) is homeomorphic to S3 (and thus is simply connected).
(b) Prove: SU(2) is a double covering of SO(3) (and thus SO(3) ' RP3).
(c) What is the fundamental group of SO(3)?



PROBLEM SET 12, PART 2: TOPOLOGY (H)

DUE: MAY 23, 2022

(1) [Covering of covering space]
Let X,Y, Z be path-connected and locally path-connected spaces, and f : X → Y ,
g : Y → Z be continuous maps.
(a) Suppose both g and g ◦ f are covering maps. Prove: f is a covering map.
(b) Suppose both f and g ◦ f are covering maps. Prove: g is a covering map.
(c) Suppose f is a covering, and g is finite covering. Prove: g ◦ f is a covering.
(d) Suppose f and g are covering, and suppose Z is semi-locally simply connected.

Prove: g ◦ f is a covering.
(e) (Not required) Let X be the second space below, Y be the first space below,

and Z be the Hawaii earing. Construct a natural covering map g : Y → Z, and
a natural double covering map f : X → Y (as a double covering), so that the
composition g ◦ f is NOT a covering map. [So in general the composition of
covering maps may fail to be a covering map.]

(2) [Classify covering spaces]
(a) Find all path connected covering spaces of S1 ∨ S2.
(b) Find all path connected covering spaces of T2 = S1 × S1.

[You may use the fact that the subgroups of Z2 are
• {(0, 0)},
• {k(p, q) |k ∈ Z} (where (p, q) ∈ Z2)
• {k1(p, q) + k2(r, s) | k1, k2 ∈ Z} (where (p, q), (r, s) ∈ Z, and ps− qr 6= 0.]

1
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(3) [Covering of topological groups and manifolds]
(a) (Not required) Let G be a topological group which is path-connected and locally

path-connected.

(i) Suppose G̃ is path-connected, and let p : G̃ → G be a covering map. Fix

an element ẽ ∈ p−1(e). Define a map m : G̃× G̃→ G by

m(ã, b̃) := p(ã) · p(b̃)

Prove: m can be lifted to a map m̃ : G̃× G̃→ G̃ with m̃(ẽ, ẽ) = ẽ.
(ii) Prove: Any covering space of a topological group is a topological group.

(b) Let M be a topological manifold.
(i) Prove: Any topological manifold admits a universal covering.
(ii) Prove: Any covering space of a topological manifold is still a topologi-

cal manifold. [It follows that any Lie group admits a universal covering
which is still a Lie group. This fact plays an important role in classify-
ing Lie groups.][Hint:what do we know about the fundamental group of a
topological manifold?]

(4) [Deck transformation] (Not required)

Let p : (X̃, x̃0)→ (X,x0) be a covering. Its Deck transformation group is

Aut(p) := {h : X̃ → X̃ | h is a covering space isomorphism}.
(a) For each path connected covering space of S1, find its Deck transformation group.
(b) Below are two covering spaces of S1∨S1. Find their Deck transformation groups.

(c) Suppose G acts on X̃ which is path-connected, and suppose the action is properly

discontinuous. Prove: G is the deck transformation group of the covering p : X̃ →
X = X̃/G.

(d) Let p : (X̃, x̃0)→(X,x0) be a universal covering. Define an action of G=π1(X,x0)

on X̃, and prove that the action you defined is properly discontinuous..
[Thus the deck transformation group of the universal covering is π1(X,x0).]



PROBLEM SET 13, PART 1: TOPOLOGY (H)

DUE: MAY 30, 2022

(1) [Applications of Brouwer’s Fixed Point Theorem]
(a) [A special case of Poincare-Hopf Theorem, proved by Hadamard] Let f : Bn →

Rn be a continuous map (i.e. f is a vector field on Bn) such that x · f(x) > 0
for all x ∈ Sn−1 = ∂Bn. Prove: there exists x ∈ Bn such that f(x) = 0.

(b) [Poincare-Bohl] Let f : Bn → Rn be a continuous map such that f(x) 6∈
{αx | α > 0} for any x ∈ Sn−1. Prove: there exists x ∈ Bn such that f(x) = 0.

(c) [Perron-Frobenius] Any n × n real matrix with positive entries has a positive
eigenvalue, and the corresponding eigenvector can be chosen to have strictly
positive entries.

(d) [Kuratowski-Steinhuas] Let f : Bn → Bn be a continuous map such that
f(Sn−1) ⊂ Sn−1, and suppose for any x ∈ Sn−1, f(x) 6= x. Prove: f(Bn) = Bn.

(2) [Brouwer’s Fixed Point Theorem, 2nd version](Not required)
Let K ⊂ Rn be any non-empty compact convex subset.
(a) Suppose K has non-empty interior. Prove: K is homeomorphic to Bn.
(b) Prove: K has non-empty interior if and only if K is not contained in a proper

hyperplane (i.e. a set of the form x0 + V , where V ⊂ Rn is a linear subspace).
(c) Prove Theorem 4.1.5.

(3) [Poincaré-Miranda theorem]
The following theorem was first announced by H. Poincaré in 1883, which can be
viewed at first glance as a higher dimension generalization of intermediate value the-
oremz. Miranda showed in 1940 that the theorem was equivalent to the Brouwer’s
fixed point theorem.

Poincaré-Miranda Theorem. Let f = (f1, · · · , fn) : [0, 1]n → Rn be continuous. Sup-
pose for any 1 ≤ i ≤ n, we have

fi ≤ 0 on {x ∈ [0, 1]n | xi = 0},
fi ≥ 0 on {x ∈ [0, 1]n | xi = 1}.

Then there exists p ∈ [0, 1]n such that f(p) = 0.

(a) Prove Poincaré-Miranda theorem via Brouwer’s fixed point theorem.
[Hint: Let r : R → [0, 1] be the retraction with r((−∞, 0)) = 0, r((1,+∞)) = 1
and let r(x) = (r(x1), · · · , r(xn)). Consider h(x) = r(x)− f(r(x)). Then h maps
into a large ball into itself. Show that the fixed point of h lies in [0, 1]n.]

(b) Prove Brouwer’s fixed point theorem via Poincaré-Miranda theorem.

1
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(4) [Applications of Brouwer’s invariance of domain theorem]
(a) Prove: there is no injective continuous map f : Sn → Rn.

• Then show that there is no proper subset of Sn that is homeomorphic to
Sn itself.

(b) Show that conception of the boundary point is well-defined in the definition of
“topological manifold with boundary”.
• Then show that if X is a topological manifold with boundary of dimension
n, then its boundary ∂X is a topological manifold of dimension n− 1.
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DUE: MAY 30, 2022

(1) [A story about love and hates]
In a certain country there are two towns, A and B, and two disjoint roads, α and β,
connecting them. Two lovers in town A must travel to town B, one by road α and one
by road β. So great is the force of their love that if at any instant they are separated
by ten kilometers or more, they will surely die. There are also two enemies, one lives
in town A and must travel to town B by road α, while the other lives in town B and
must travel to town A by road β. So great is the force of their hatred that if at any
instant they are separated by ten kilometers or less, they will surely die.
(a) Show that at least two people will end up dead by converting the previous prob-

lem to the following one:
Let γ1 : [0, 1] → [0, 1]2 be a path from the point (0, 0) to the point
(1, 1), and γ2 : [0, 1] → [0, 1]2 be a path from the point (0, 1) to the
point (1, 0).

Claim: γ1 and γ2 must intersect.

(b) Here is a fake proof the claim above:
Since γ1 is a path in the square [0, 1]2 and since paths are continuous,
we may find a continuous function f : [0, 1]→ [0, 1] so that the image
of the path γ1 is the graph of f . Similarly we may find a continuous
function g whose graph is the path γ2. By assumption, we have
f(0) = 0, f(1) = 1 and g(0) = 1, g(1) = 0. Consider the function
h(x) := f(x)−g(x). Then h is a continuous function with h(0) = −1,
h(1) = 1, so there is x0 ∈ [0, 1] so that h(x0) = 0, i.e. f(x0) = g(x0).
So the paths γ1 and γ2 intersect at the point (x0, f(x0)).

Find the mistake in this proof.

(2) [Brouwer’s Invariance of domain theorem revisited]
(a) (Higher dimensional analogue of “arc non-separation” theorem) Prove: If K ⊂

Rn is compact and is a retract of Rn, then Rn \K is connected.
(b) Let D = {x ∈ R2 | |x| < 1} be the open unit disc. Use Jordan curve theorem to

prove: If f : D → R2 is continuous and injective, then f(D) is the interior (=the
bounded component) of the Jordan curve f(S1). [Hint: f(D) is a retract of R2.]

(c) (Not required) Assume Jordan-Brouwer Theorem holds. State a higher dimen-
sional analogue of (b) and prove it.

(3) [Application to the square peg problem]
Let J ⊂ R2 be a Jordan curve that is symmetric about the origin (i.e. P ∈ J if
and only if −P ∈ J). Moreover, assume the origin O lies in the bounded connected
component of R2 \ J . Prove: J has an inscribed square, i.e. there exists four points

1
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on J that are the vertices of a square.
[Hint: rotate the curve C by π/2 and try to find an intersection point.]

(4) [Applications to graph theory](Not required)
We say a graph G = (V,E) is a planar graph, if it can be embedded into R2, i.e. can
be drawn in R2 so that no edge cross.
(a) Prove: The graph K5 (=the graph with vertices V = {ai | 1 ≤ i ≤ 5} and edges
{aiaj | 1 ≤ i < j ≤ 5}) is not a planar graph.

(b) We say a space X ⊂ R2 is a θ-space if X is the union of three arcs A,B,C, so
that they intersect and only intersect each other at their end points (so that the

space looks like the letter “θ”). Prove: If X ⊂ R2 is a θ-space with arcs A,B,C,
then R2 \X has three connected components, whose boundaries are A∪B,B∪C
and C ∪A respectively.

(c) Prove: The graph K3,3 (=the graph with vertices V = {a1, a2, a3, b1, b2, b3} and
edges {aibj | 1 ≤ i, j ≤ 3}) is not a planar graph.
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(1) [Maps on intervals]
(a) Prove Lemma 4.3.5, Lemma 4.3.6 and Lemma 4.3.7.
(b) Construct two coordinate charts on the “line with two doubled point” (see PSet8-

2-3) that violates lemma 4.3.4.

(2) [Classification of 1-manifold with boundary]
(a) Write down an analogue of Proposition 4.3.8 (and of Lemma 4.3.4 if you want)

that can help you to prove the classification theorem of 1-manifold with boundary.
[You don’t need to prove your proposition.]

(b) [NOT Required] Prove Theorem 4.3.3 (Classification of 1-manifold with bound-
ary) using the proposition you wrote above.

(3) [Knot groups]
(a) For any knot K, show that the abelianization of the knot group π1(R3 \K) is Z.
(b) Write down the knot groups of the knots 41 and 71 (See figure 4.1).
(c) [Not required] Show that the unknot, the knot 31 and the knot 41 are pairwise

non-equivalent knots.

(4) [Knot in R4?] [Not required]
Let K be a polygonal knot in R4, that is, the image of an embedding of S1 into R4

that consists of finitely many line segments.
(a) Prove: There exists a direction v ∈ S3 in R4 such that for any x, y ∈ K, x− y is

not parallel to v.
(b) Use the projection prv : R4 → v⊥ to construct an ambient isotopy in R4 that

converts the knot K to a polygonal knot in v⊥ ' R3.
(c) Prove: Any knot in R4 is a trivial knot.

1
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(1) [Cut the Möbius band]
Prove your conclusion via polygonal presentation. (You may use scissor to find out
the answers.)
(a) Cut the Möbius band along the center circle, what do you get?
(b) Cut the Möbius band along a circle that is close to the boundary circle, what do

you get?
(c) What if you cut the Möbius band along both circles mentioned above? Does the

order of cutting matter?
(d) What if you cut the Möbius band along k circles that are parallel to the center

circle?

(2) [Cut and Paste Polygons]
Prove the following identities by doing “cutting and pasting” on the polygons.
[Hint: The first cutting is given. The first pasting is to eliminating a. You will need
a second cutting and pasting.]

(3) [Triangulated surface]
Let S be a compact surface which is connected and without boundary.
(a) Prove: If a finite simplicial complex K is a triangulation of S, then

(i) Any 1-simplex in K is the intersection of exactly two 2-simplexes in K.
[What if three triangles meeting at one edge? Use a theorem that we
learned in this chapter.]

(ii) For any 0-simplex v (i.e. vertex) in K, we can arrange the 2-simplexes
containing v “cyclicly” as σ1, σ2, · · · , σk, σ1, so that σi∩σi+1 is a 1-simplex
(where we denote σk+1 = σ1).
[What if these 2-simplexes can be arranged into more than two such “cy-
cles”?]

(b) (Not required) Conversely, suppose K is a simplicial complex consisting of finitely
many 2-simplexes and their faces, so that the conditions (i) and (ii) are satisfied.

1
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Show that |K| is a surface.
[You need to show that any point has an Euclidean neighborhood.]

(4) (Not required) [Polygon presentation is a surface]
(a) Complete the proof of Theorem 4.4.11 (the existence of polygonal presentation).
(b) Prove: Any polygon presentation is a surface.

[Again you need to show that any point has an Euclidean neighborhood. What
if many vertices get glued into one point? ]
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(1) [Symbolic presentation of surfaces]

Find out the surfaces in our list (i.e. S2,Σk, Σ̃l, S
2
m,Σk,m, Σ̃l,m with specified k, l,m)

which are homeomorphic to the ones given below:
(a) 〈a, b, c, d | acadbcb−1d〉.
(b) 〈a, b, c, d, e | abcb−1adede−1〉.
(c) See picture below.
(d) See picture below.

(2) [Orientability]
(a) Prove Proposition 4.4.21.
(b) (Not required) For each orientable compact surface (without boundary) Σk,m,

prove: there exists an orientation-reversing self-homomorphism (that is, a home-
omorphism f : Σk,m → Σk,m so that for some oriented triangulation K of σ, f
maps simplexes of K to simplexes of K, such that for each triangle ABC in K,
the orientation on 〈f(A), f(B), f(C)〉 is −[f(A)f(B)f(C)])
[Hint: Just put the surface at a nice position, and consider the map that maps
one coordinate to its inverse. You need to handle even/odd number of boundary
circles separately.]

(3) [Euler characteristic v.s. covering]
We know that S2 is a double covering of RP2. In Section 3.7 we have seen that Σ11

is a 5-fold covering space of Σ3.
(a) Compare χ(S2) and χ(RP2). Compare χ(Σ11) and χ(Σ3).
(b) In general, suppose S1, S2 are compact connected surfaces without boundary,

and p : S1 → S2 is a k-fold covering. Find the relations between χ(S1) and
χ(S2), and prove it.

(c) In general, if Σm is a covering space of Σn, Find the relation between m and n.
(d) [Not required] For each non-orientable connected surface without boundary, i.e.

Σ̃l,m, there exists an orientable connected surface which is a double covering of

Σ̃l,m. Which surface is it?
1
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(4) [Triangulation of surface] [Not required]
Let K be a triangulation of a compact surface S without boundary, and let |V |, |E|, |F |
be the number of vertices, edges and triangles in K. Prove:
(a) 3|F | = 2|E|.
(b) |E| = 3(|V | − χ(S)).

(c) |V | ≥ 7+
√

49−24χ(S)

2 . [So we have seen the triangulation of T2 and RP2 with least
vertices.][This is also related to the following question: how many color do you
need to color a map on surface S?]

[Last Problem]
We learned many beautiful theorems in this course. Write down at least two of them,
one from part one of this course, and the other from part two of this course.
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