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Abstract

In this note, we will roughly discuss some possible origins of the
complex number, and point out some important points,in the limited
view of the teaching assistant, relating to what was lectured by the
porfessor. After all those preparations, we will give the reference key
for some of our exercises. Some supplements might be given, according
to the reality.

1 Some Understanding of complex number

Understanding 1 (A Pair of Real Number). A real number pair (a,b) which
satisfy some computing rules

(a,b) + (¢,d) = (a+¢,b+d)
(a,b) X (¢,d) = (ac — bd,bc + ad)

Remark 1. Please check that the R? with the computation metioned above
forms a Field in Abstract Algebra

this of course is the natural way to understand the complex number Field
C if you are totally not familar with this ”strange” structure while you are
quite comfortable with the real number R. I say this is natural since this
was anyway the original rigulous definitiong given to complex number Field
C. However, a clear definition never equals to the true understanding.

I might exemplify this by another story which you must be very famil-
iar with in the lecture Mathematical Analysis, namely the Real number R.
Looking back how ancient poeple got to reveal the existence of irrational



number, v/2, right? Despite the tragedy of the discoverer of this important
number, people still made every effort to understand what this freak was.
2% = 2, yes, it was the definition. Nevertheless, it never explained. Since
rational number at that time was already completely mastered, and people
believe that they can really densely describe any ”length” in this world, and
there must be some important connections between the freak with the known.
Certainly, It takes centuries to find out the truth, i.e, Cauchy Sequence to
portrait and connect.

1.4 141 1.414 1.4142 1.41421 ...

Very similarly, the moment the imaginary number firstly came out, people
could not dirrectly understand this brand new object, which broke the exact
connection between geometric "length” with the totally number.(note that
the primiar definition or description of v/2 is the length of the diagonal line
of unit square.)

And since ¢ was given by the necessaty representation of formula per-
formed to solve the general algebraic equations, people feel ashamed that
this kind of "number” was only something by imagination and never existed
in the "real” world, and that was also why the name was given in the his-
tory. However, some great mathematicians would never gave in to the simple
explanition of some thing only formally. Some great work,accordingly, was
done in the late years, where the first step was only an trivial linear expansion
(holds since i can’t lies in R).i.e.

z=a-+bi

where a,b € R That is exactly equivalent with the Understanding 1 given at
the beginning.

Understanding 2 (by finite dimenisonal field extension). Algebraically, we
can obtain the complex field by finite dimensional field expansion with the
help of irreducible polynomial 2% + 1, i.e.

C = R[z]/* + 1

Remark 2. Please check the Ring isomorphism for the definition given by
Understanding 1 and Understanding 2
[Hint: (a,b) — a + bx]



Remark 3. As for more details and tricks for finite dimenison field exten-
sion, just enjoy your Abstract Algebra and Galois Theory classes

Understanding 3 (Complex Analysis). Understand the complex number z
as a whole, which means you have already had a good idea of what complex
number s, so that just understand it as a point on the complex plane with
its own topology and category(holomorphism,).

Remark 4. you see here how topology coincides with algebra! And actually,
this is the typical example of TVS (over R)

Remark 5. Only when people had a great progess in Complex Analysis, dare
people asserted that they had already swallowed the new Field.

Remark 6. From the class, it is obvious that this understanding of complex
number turn out to be the required understanding of complex number anyhow.

2 The magic sqaure roots

It is remarkable that there are three important and extraordinary square
roots in human’s history!

The first is a natural geometric observation as I have already mentioned
above, namely v/2 is the length of the diagonal line of unit square.

The second is from the attempt to give the formula of solution to general
algebraic equation. i.e.

ar® + b’ +cx+d=0

And this is actually the origin of the complex number, which means people
were eager to find some “imaginary number” I such that > = —1 . (though
at that moment or even within a hundred years, people did not actually
understand what that number actually meant.) this brand new idea had
been puzzling people at that time until the complex analysis became mature.
Afterwards, the complex number, mastered and understood by people, has
become an important part of human’s life. It’s not an overstatement that
people never described the very world without complex number.
While the last is in fact the origin of famous H, by conducting square
root of Klein-Gordan Equation.
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(This indicated the existence of the positive electronics, which was exceed-
ingly shocking and amazing when a few years later this prophecy was proved
by experiment! See how magic the mathematics is!)

What turns out to be amazing is that, each magic square roots expand
the number in an unbelievable degree. As the first is from countable to
uncountable, whereas the second and the third is the extension of dimension.

3 Homework
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. It seems that my typing is kind of ugly... I then choose to cut some
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Exercise Class Note for Complex Analysis

Prof. HZ.Li T.A. Yueheng Bao
Apr 16th

Abstract

In this note, we will roughly discuss the basic ideas of universal
covering space and the understanding of multivalue function. We will
also review some important points,in the limited view of the teaching
assistant, relating to what was lectured by the porfessor as we have
done last time. After all those preparations, we will give the reference
key for some of our exercises. Some supplements might be given,
according to the reality.

1 Covering Space

As for this part, you can mainly refer to [1], and [3]. And you might alse see
some examples from [2], Chapter 1.

Definition 1 (Covering Space). Let X be a topological space. A covering
space of X is a topological space X together with a continuous map p : X > X
i.e. covering map, such that for any x € X, there exists an open neighborhood
U of x with the property B

(1) p~Y(U) = U,V,, is a disjoint union of open sets V, in X,

(2) For each o, the map p, := p|Va : Vo, = U is a homeomorphism.

Remark 1. The space X is called the total space of the covering space, and
X s called the base space, and for each x € X, the pre-image p~*(x) is called
the fiber over .

Remark 2. We will always assume that both X and X are path-connected
since



(1) If)ﬂ(i is a covering space of X, Xo C X is a subspace, then
Xo=p~! (Xo)

is a covering space of Xo ~~ We may (and will) assume X is path connected.
In this case one can check - p is always surjective (provided X #10 ). - for
each x the fiber p~*(x) has the same cardinality (called the number of sheets
of the covering). If |p~'(z)| = n, we will call the covering an n-fold covering.
(2) If X is path connected, then any path connected component of)? 1S a cov-
ering space of X ~~ We may (and will) always assume X is path connected.

I assert this idea is quite essential in Complex Analysis, for there are some
abundant origins you can pick up from the complex plane. See as follow,

Example 1. R is a covering space of S' «+ with covering map p : R —
Stz — €™ Similarly, S* is a covering space of S' in many different
ways: For each n € Z\{0},

pp St —= St - "
gives an |n|-fold covering of S*.
Example 2. The complex exponential map

exp : C — C* = C\{0}

is a covering map: for any z = e’ € C*, we have exp~1(z) = {log r+ (2km+
0)i | k € Z}, from which it is easy to check exp is a covering map. Similarly
the map

pp:Cr—C*, 2z 2"

is a |n|-fold covering map for any integer n € Z\{0}.

exercise 1. Please check what have mentioned in the example above is really
COVETINGg Mmaps

exercise 2. Show that the same map p, : C — C, z — 2" is not a covering
map.



2 The Lifting Lemma

Now let X be a covering space of X and p : X > Xa covering map.

Definition 2. Suppose [ : Y — X is a continuous map. A lifting of f is a
continuous map f :Y — X such that the diagram commutes, i.e.

J=pof

X
Ok
y L x
Lemma 1 (The Lifting Lemma). Let p : X=X bea covering map. Given

any continuous F' : P x I — X and any lifting Fy : P — X of Fy =
Flpyioy o P X {0} — X, there exists a unique lifting F : P x I — X of F

s.t. F =F 0-
Px{0}

By taking P = {pt} and P = [0, 1] respectively, we get

Corollary 1 (Path lifting property). Let p : X > X bea covering. Given
any path v : [0,1] — X with y(0) = 2o and any Ty € p~' (v9), there exists
a unique path 5 : [0,1] — X with 4(0) = T which is a lifting of v, i.e.
poy=7.

Corollary 2 (Homotopy lifting property). Let p : X > X bea covering.
Given any homotopy F : [0,1] x [0,1] — X with F(s,0) = xy So that F is
a homotopy fizing start points and any To € p~* (x0), there exists a unique
lifting F : [0,1] x [0,1] — X with F(s,0) = &, which is a lifting of F, i.e.
poF =F.

Uniqueness of lifting. Now we consider a general lifting. It turns out that
the uniqueness of lifting always holds.

Proposition 1. Let p : X — X be a covering, f:Y — X be a continuous
map, and let fi, fo 1 Y — X be two liftings of f. Suppose Y is connected,
and suppose there exists yo € Y s.t. fi1 (vo) = f2 (vo). Then fi = fo on Y.



Proof. Given any y € Y, we let U be an open neighborhood of f(y) in X

such that B
- U Uom

(disjoint union)
and such that each B
Po=plg, Ua—=U

is a homeomorphism. Take 171 and (72 such that
fl(y) € [71, fz(y) e Us.

Now we use connectedness argument.

Yo={yeY 1Al = L)}

. Then Yj # () since yg € Yy. In what follows we prove Y{ is both open and
closed. Suppose y ¢ Yy. Then we have Uy # Us, which implies Uy N Uy = 0.
By continuity, there exists an open neighborhood N of y in Y such that

fiN) C Uy,  fo(N) C Us.

It follows N NY, = (Z) So Yy is open, Le. Y is closed. - Suppose y € Yo.
Then we have U1 N U2 # () and thus U1 = U2 Again we will get an open
neighborhood N of y as above. Since p is injective on U; = U2, and since

poflzpofz,

we conclude that f; = f» on N. (Here you see how important the local homeo-
morphism can be) So N C Yy, i.e. Yj is open. Finally since Y is connected, Yj
is non-empty and is both open and closed, we conclude Yy =Y, i.e. fi = fo
onY. O

Remark 3. The existence of a general lifting is more complicated. Suppose
a lifting f of exists. Then by functoriality of w1, we must have

fo (0 (Vo)) = pe (£ (m1 (Vo)) € e (m (X, 0) ).

It turns out that the condition above is also sutticient for the existence of a
lifting, a long as we assume Y is path-connected and locally path-connected:

4



Theorem 1 (necessary and sufficient conditions for Existence of lifting ).
Suppose p : ()?,5:()) — (X, x0) is a covering, and f : (Y,yo) — (X, z0) is

continuous. If Y is path-connected and locally path-connected, then a lifting

f of [ exists if and only if (x)

fo(m1 (Y, 00)) C s <7T1 (55,950)) :

(X7 fO)

o

(Y, y0) —— (X, o)

Remark 4. This part is actually very difficult, since a new concept has
come to you (to those who haven’t perviouly learned the Topology),i.e. The
fundamental group. Consequently, this part may not be detailedly given since
Master Rocket unll give you very marvelous courses over these objects.

3 An application to complex analysis

We have seen above that the exponential map
exp: C— C*=C\{0}

is a covering map. Now let’s try to define the complex logarithm function.
In complex analysis there are two different meanings of complex logarithm:
(1) Given 0 # z = e, log z is any complex number of the form Inr + (6 +
2km), where k € Z. So this function log is a multi-valued function.

(2) Given subset U C C*, one would like to define a (single-valued) complex
valued function log : U — C which is a "right inverse” of exp, i.e. exp olog =
Id.

Here we refer to the second one, i.e. the existence of a function log : U —
mathbbC' satisfying expolog = Id. Using the language of covering exp :
C — C~,

Proposition 2. The logarithm log : U — C s a lifting of the inclusion
map¢ : U — C*.

According to the existence criterion of lifting,

5



Remark 5. log can not be defined on the whole of C*, i.e. the map Id :
C* — C* has no lifting, since 1d, (w1 (C*)) € exp . (m1(C)).

Remark 6. the logarithm log : U — C exists if and only if
i (m(U)) C exp, (m(C)) = {e},

i.e. if and only if i, (m(U)) = {e} (or in other words, if and only if U
contains no loop surrounding the origin).

Remark 7. - log is well-defined if U is a simply connected region, but simply-
connectedness is NOT a necessary condition. - the function

Zt — etlogz
is a well-defined continuous function on U for all t if and only if i, (w1 (U)) =
{e}, i.e. if and only if U contains no loop surrounding the origin.

As a consequence, F(t,2) := 2" is not a well-defined continuous function on
S and thus does not give a homotopy between the identity and the constant
map on S'. Similarly for any integer d > 1, the map

pa:C* = C*, 2z 2
is a p-fold covering map. There does not exist a map z/¢ on C* since
(Pa), (w1 (C7)) = dZ P Z ~ 7, (C*) = Id, (m, (C7))

Remark 8. In fact, by the same argument as above, it is easy to see that
the map 2"/ is welldefined on U C C* if and only if U contains no loop
surrounding the origin (since i, (m1(U)) is either Z or {e}).

More generally, given any polynomial f = f(z), one may ask: can we define
Y4 on a region U C C\Z;, where Z; is the zero set of f 7 The answer is:
we can define f1/¢ on U if and only if

fe (m(U)) C dZ =~ (pa), (m (C)) C Z ~m (C7)
For example, if a1 < ay < --- < asg, are real numbers, and
f(2) = (z—a)(z—az)- (2 — az)
then we can define y/ f(z) on the set
U = C\ Ui<k<n [ask—1, azx]
since each closed curve v in U must surround even number of zeros of f,

which implies that [y], (and thus f. ([7],) ) is an "even” class.

6



Remark 9. The fact mentioned above in fact plays a very important role in
the theory of Riemann surfaces.
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Exercise Class Note for Complex Analysis

Prof. HZ.Li T.A. Yueheng Bao
June 2nd

Abstract

In this note, we will roughly discuss the basic knowledge of complex
geometry. We will also review some important points,in the limited
view of the teaching assistant, relating to what was lectured by the
porfessor as we have done last time. After all those preparations, we
will give the reference key for some of our exercises. Some supplements
might be given, according to the reality.

1 Basic Simplectic Geometry

Let V be a (finite dimension) real vector space and 2 : V' x V — R a bilinear
map. € is called anti-symmetric if for all u, v € V,

Qu,v) = —=Qv,u)
It is called non-degenerate if the associate map
Q: V-V Q) =Q(u,v)
is bijective. Obviously the non-degeneracy is equal to the condition
Qu,v) =0,Yv e Q= u=0
Note that we can regard Q as a linear 2-form € A* (V *) via
Qu,v) = 1yt

Definition 1. A symplectic vector space is a pair V, §2), where V is a real
vector space, and §2 a non-degenerate anti-symmetric bilinear map. € is
called a linear symplectic structure or a symplectic form on V.



Ezxample. Let V = R?" = R" x R" and define

Qo((X,8), (y,m) = (z,8) — (y,m),

then (V,Q) is a symplectic vector space. Let {e;...e,, fi... fu} be the stan-
dard basis of R™ x R", then €2 is determined by the relations

QO(eia ej) = QO(f’iafj) = 07 QO(eia fj) = 52']'7 VZ,j

Donate by {ei...e, fi... f*} the dual basis of (R")* x (R™)*, than as a

linear 2-form one has
n

Qo= e Aff.

i=1
FExample. More generally for any finitely dimension vector space U, the vector
space V = U ¢ U* admits a canonical symplectic structure

Q((“? O‘)? (U, ﬁ)) = 6(u) - O‘(U)'

Definition 2. Let (Vi,Q1)and(Va,Qs) be two symplectic vector spaces. A
linear map F : Vi — Vy is called a linear symplectomorphism (or a linear
canonical transformaton) if it is a linear isomorphism and satisfies

F Qo = Q.

FExample. Any linear isomorphism L : U; — U, lifts to a linear symplecto-
morphism

F:UieUf »hel;, F(ua)= (L), (L) ()
Proof. ¥(u,«a), (v, B) € Uy @ Uy, we have

F*Qz((U,CY), (U,ﬂ)) = Q2 F((“? O‘))vF((%B))
i

SO F*QQ = Ql



Theorem 1. For any linear vector space (V, ), there ezists a basis {e1 ...en, f1...

of V' so that
QO(ei7ej> :QO(fzaf]) :Oa QO(ei7fj) :5Z]a \V/Z,j
The basis is called the Darbouz basis of (V, ).

Remarks.
(1)The Theorem is equivalent to saying that given any symplectic vector
space(V, 1), there exists a dual basis {e]...e!, fi ... f} of V* so that as a

linear 2-form,
n

Qo= e Aff.

=1

This is also equivalent to saying that there exist a linear symplectomorphism
F:(V,Q) = (R*, Q)
in particular,
e Any symplectic vector space is even dimensional.
e Any even dimensional vector sapce admits a linear symplectic form.

e Up to linear symplectomorphism, there is a unique linear symplectic
form on each even dimensional vector space.

proof of the linear Darboux Theorem. Apply the Gram-Schmidt process. De-
tails will be added later. O

Let M be a smooth manifold, and
w € V(M) =T>*(A*T*M)

a smooth 2-form on M. Recall that by definition this means that for any
p inM,
Q,:T,M xT,M—R

is a skew-symplectic bilinear map (almost a symplectic form), and w, depends
smoothly on p.

Definition 3. We call w a symplectic form on M if

fn}



(1) (closeness) w is a closed 2-form, i.e. dw = 0.

(2) (non-degenerate) for each p € M,w, is a linear symplectic form on
T,M.

We will call the pair (M,w) a symplectic manifold.
Remarks.According to the linear theory:
o dim M = dim7,M must be even.

e if we denote dimM = 2n, then
w—p"#0,Vpe M

i.e. w is a non-vanish 2n form, thus a volumeform, on M. As a con-
sequence, M must be orientable. We will call ‘;’1—7 the Liouwille volume
form of(M, w)

e If w is not only closed but also exact, i.e. there exacts a 1-form « on
M so that w = da, then we say (M, w) is an exact symplectic manifold.

Example 1. o (R*™, Q) is the simplest symplectic manifold.
o Let S be any oriented surface and w any volume form on S. Then

— w 18 non-degenerate since it is a volume form;

— w 1s close since it is a top form.
So (S,w) is a symplectic manifold.

Definition 4. A complex structure on a vector space V is an automorphism
J 'V — Vsuch that J*> = —Id. Such a pair(V,J) is called a complex vector
space.

The basic example is of course C* = M?", with standard complex structure
Jo corresponding to the map “multiplication by i = /—1":

Joxi = yi, Joyi = —x;
. Remarks. Complex structure is very similar to symplectic structure:

(1) Since det(—1Id) = det(J?) > 0, dim V must be even.

4



(2) For any 2n dimensional vector space V with basis x1...Z,,y1 ... Yn,
the linear map J defined by

Joxi = yi, Joyi = —x;
is a complex structure on V'

Now, suppose (V,2) is a symplectic vector space which admits with a com-
plex structure J.

Definition 5. Let (V,Q) be a symplectic vector space, and J is a complex
structure on V.

(1) We say J is tamed by Q if the quadratic form Q(v, Jv) is positive de-
fined.

(2) We say J is compatible with Q if it is tamed by Q0 and J is a symplec-
tomorphism, 1i.e.

Q(Ju, Jv) = Q(u,v)
An euqivalent condition for J compatible with €2 is that
G(u,v) = Q(u, Jv)
defines a inner product on V.

Proposition 1. Every symplectic vector space admits a compatible complex
structure. Moreover, given any inner product g(-,-) on V, one can canonically
construct such a J.

Proof. m

Definition 6. An almost complex structure J on a (real) manifold is an
assignment of complex structure J, on the tangent space T,M which depends
smoothly on p. The pair (M, J) is called an almost complez manifold.

Remark. As in the symplectic case, an almost complex manifold must be
even dimensional. Moreover, it is not hard to prove that an almost complex
manifold must be orientable.
FExample.As in the symplectic case, an orientable surface admits an almost
complex structure. Let

v o toS?



be the Gauss map with every point x € ¢ the outward unit normal vector
v(zx). Define J, : T,M — T,M by

Jyu=ve Xu

where x is the cross product between vectors in R3.
Example.S? andS® are the only spheres that admit almost complex structure.

Now let(M, Q) be asymplectic manifold, and J the almost complex structure
on M.

Definition 7. We say an almost complex structure J on M is compatible
with a symplectic structure w on M if at each p, J, is compatible with w,.

As we mentioned before, this is equivalently to saying that the assignment
gp: T,M x T,M — R, g,(u,v) := w(u, Jv)

defines a Riemann metric on M. So we get three structures on M: the sym-
plectic structurew, an almost complex structure J and a Riemann structure
g. They are related by

where g and w are the linear isomorphism form 7;,M to T;; M induced by g
and w respectively. Such a triple (w, g, J) is called a compatible triple.

Let (M, J) be an almost complex manifold. Denote by Tc M = TM ® C the
complexified tangent bundle. We extend J linear to TcM by

Jovz)=Ju)®z veTM,zeC.

Then again J? = —Id, but now on a complex vector space instead of a real
vector space. So J has eigenvalues 44, and we have a eigenspace decomposi-
tion

TM &® C= Tl,O D TO,l;
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where
Tip={veTMClJu=iu}={v®l—-JvxiveTM}
is the +i-eigenspace of J and
Toa={veTMClJu=—iu} ={vel+ Jvxive TM}

is the —i-eigenspace of J. We call vectors in 17 the J-holomorphic vec-
tors and vectors in Ty, the J-anti-holomorphic vectors. They are both n
dimensional (real) vector space. Moreover, Let

1
7T1702TM—>T1’0 U|—>§(’U®1—JU®Z>

and ]
7T0712TM—>T071 U'—>§(U®1+JU®2)

It is not hard to check They are (real) bundle isomorphism such that
1,0 © J = 7;7T1,0, and 70,1 © J = —i7T071.
Similarly one can split the complexified cotangent space T*M ® C as

T*M ® C _ Tl,O o 770,17
where

T = (Ti0)" = {n € T*"M & C|J*(n) = in}
={E@1-J (¢ @il e T M}

is the dual space of T}y and

T = (Tya)" = {n € T+ M & C|lJ*(n) = —in}
= {E@ 1+ J*(&) ®i|¢ inT*M}

is the dual space of T} . Moreover, any cotangent vector 7 has a splitting
— 0 40t

where

1 1,
' =gm—inolJ), n"=cn+inol).



Let QF(M,C) := I'°(A*(T*M ® C)) i.e. the complex-value k-forms on M.
where
FOO(Ak<T*M ® (C)) — Ak(Tl,O D TO,l)
= Brrm—k (A (TH0)) A (A™(T™))

= B AT
Definition 8. The differential forms of type (I,m) on (M,J) are the sections
of Abm:
Ql,m = Foo(Al,m)
Then

Qk(MJ (C) = EBH—m:le’m
Let wb™ : A*(T*M ® C) — A'™ be the projection map, where [ +m = k. d
is the usual exterior derivative We define
a ::ﬂ_l—&—l,m od: Ql,m N Ql—&-l,m

5 ::ﬂ_l,m-i-l od: Ql,m N Ql,m—&—l
For 8 € Q'™ c QF(M,C), we have df € Q*1(M,C, and so

dﬁ: Z WT’Sdﬁ:7Tk+170d/8—|—...+aﬁ+5/8+_”+ﬂ_0,k+ldﬂ
r+s=k+1

Note that for functions we have df = df + 0f, while for more general differ-
ential forms we don‘t have d = 0 + 0

2 complex manifold

Definition 9. A complex manifold of complex dimension n is a manifold that
locally homeomorphism to open subsets in C™, with biholomorphic transition
function maps.

Obviously any n-dimensional complex manifold is a real manifold of dimen-
sion 2n. and must be orientable if view as a real manifold (use the Cauchy-
Riemann equation).

Proposition 2. Any complex manifold has a canonical almost complex struc-
ture.



Proof. Let M be a complex manifold and (U, V, ) be a complex chart of
M, where u is an open set in M and V is an open set in C. We denote

© = (21,..+,2n), With z; = z; + v/—1y;. Then (x1,...,Zn,91,...,Yn) is a
coordinate system on U when we view M as a real manifold. So

T,M = IRspanof{a ¥ |z—1 M}

We define J on U by the recipe
0 0 0 0
o) =5 ) = o
oz;” Oy dYi Ox;
for i = 1,...,n, and extends to T,M by linearity. Obviously J? = —1. Tt
remains to prove that J is global defined, i.e. it is independent of the choice
of complex coordinate charts.

Suppose (U, V', ¢') is another coordinate chart, with ¢’ = (w;...,w,) and
w; = u; + v/ —1v;. Then on the overlap U N U’, the transition map

VopUNU) = pUNU), z2—w=1(z2)
is a biholomorphism. If we write the map as
Ui:Ui(fB,y), ,Uizvi(may)

in real coordinates, then the real tangent vectors are related by

8 Z(auj 0 +8vji>
&vk(?uj 8:L‘ka’l}j

dxy,
g au] 81)] 0
8yk Z OYp Guj 8yk (?v]

while the Cauchy-Riemann equation gives

Oui _Ov;  Ouy 0y

Oxy, B 3yk’ Oxy, Oy,
It follows that

0 Ju; 0 81} v, 8u- 0 0
! / J J J J _
/ <8azk> / (Z(axk Ou, 8xk (%] Z oYk 81)3 8yk ou; Oy
Since J? = —Id, we must have J’(%) = —% O
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Remarks. One can find that for an almost complex manifold, we define the
complex structure point by point. but for the complex manifold, we have an
global definition on each coordinate chart. This will play a huge role later.

Now suppose M is a complex manifold and J is the canonical almost complex
structure. Then in local coordinates

T,M ® C = C-span of {%, 0

—nh=1,... .
zayi|2 ’ ’n}

We define
0 1, 0 .0 0 1,0 o,

oz 295, oy 05 2'o5; oy

Then the two eigenspace of J are
T —(Csanof{a|'—1 n} T —(Csanof{a]'—l n}
1,0 — p aij— [ 0,1 — p 8,%]— PR 9

Similarity if we put
dzj = dzr; +1idy; dz; = dr; —idy;
then
T = C-span of {dz;|j =1,...,n} T"' = C-span of {dz]j =1,...,n},

If we use muti-index notation:J = (J1,...,Jm), 1 < j1 < -+ < jm < 0, |J| =
m,dzy = dzj, N--- ANdzj, then

Q' =1,m — forms = { Z byxdzy N dzg|bsx € C2(U,C)}
=LK |=k

Theorem 2. On complex manifolds d = 0 + 0 for any (I, m)-forms.

Proof. left as an exercise. m

3 Another view of Complex Geometry

Definition 10. An d-structure, Sy;, on a K-manifold M is a family of K-
valued continuous functions defined on the open sets M such that

10



1. For every p € M, there exists an open neighborhood U of p and a
homeomorphism h : U — U’, where U’ is open in K™, such that for
any open set V C U

f:V—o>KeSy

if and only if foh™t € S(h(V)).

2. If f: U = K, where U = |, U; and U; is open in M, then f € Sy if
and only if f|, € Su for each i.

Definition 11. - An S-morphism F : (M,Sy) — (N,Sn) is a continuous
map, F: M — N, such that f € Sy implies foF' € Syy. FF: M — N isa
homeomorphism, and

F~1:(N,Sy) = (M,Sy)

is an S-morphism.It follows from the above definitions that if on an S-
manifold (M, Syr) we have two coordinate systems hy : Uy — K™ and hy :
Uy — K™ such that Uy N"Uy = &, then

h2 o hl_l : hl (Ul N Ug) — hg (Ul N Uz)
is an S-isomorphism on open subsets of (K™, Sgn).

Definition 12. Conversely, if we have an open covering {Uas},cq of M, a
topological manifold, and a family of homeomorphisms {hy, : Uy, — U! C K"}
satisfying above, then this defines an S-structure on M by setting Sy = {f :
U — K} such that U is open in M and foh,' € S(ho (UNUy,)) for all
a € A;i.e., the functions in Sy are pullbacks of functions in S by the home-
omorphisms {ha} The collection {(Un,ha)}aeq 15 called an atlas for
(M, Sy).

acA

a€cA-”

Definition 13. Let N be a closed subset of an S-manifold M ; then N 1is called
an S-submanifold of M if for each point xo € N, there is a coordinate system
h:U — U C K", where xo € U, with the property that U N N is mapped
onto U'NK*, where 0 < k < n. Here K¥ C K" is the standard embedding of
the linear subspace K* into K™, and k is called the K-dimension of N, and
n — k s called the K-codimension of N.

Remark 1. It is easy to see that an S-submanifold of an S-manifold M is
itself an d-manifold with the S-structure given by dn|y. Since the implicit
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function theorem is valid in each of our three categories, it is easy to verify
that the above definition of submanifold coincides with the more common one
that an 0-submanifold (of k dimensions) is a closed subset of an d-manifold M
which is locally the common set of zeros of n — k S-functions whose Jacobian
matriz has maximal rank.

Example 2. K" (R",C"). For every p € K", U = K™ and h = i identity.
Then R™ becomes a real-analytic (hence differentiable)manifold and C™ is a
complez-analytic manifold.

Example 3. If (M, Sy) is an S-mantfold, then any open subset U of M has
an S-structure, Sy = {f | U : f € Su}.

Example 4 (Projective space). If V is a finite dimensional vector space over
K, then P(V') := { the set of one-dimensional subspaces of V'} is called the
projective space of V.. We shall study certain special projective spaces,

P,(R):=P (R"") P,(C):=P (C")

We show how P, (R) can be made into a differentiable manifold. There is a
natural map 7 : R" — {0} — P,(R) gwen by n(z) = 7 (xg,...,7,) := {
subspace spanned by v = (xg,...,z,) € R"1}

Theorem 3 (Whitney). Let M be a differentiable n-manifoid. Then there
exists a differentiable embedding f of M into R***. Moreover, the image of
M, f(M) can be realized as a real-analytic submanifold of R*"1.

Theorem 4. Let X be a connnected compact complex manifold and let f €
O(X). Then f is constant; i.e., global holomorphic functions are necessarily
constant.

Proof. Suppose that f € O(X). Then, since f is a continuous function on
a compact space, |f| assumes its maximum at some point o € X and S =
{z: f(x) = f(xg)} is closed. Let z = (z1,...,2,) be local coordinates at
x € 8, with z = 0 corresponding to the point . Consider a small ball B
about z = 0 and let z € B. Then the function g(\) = f(Az) is a function of
one complex variable (\) which assumes its maximum absolute value at A = 0
and is hence constant by the maximum principle. Therefore, g(1) = ¢(0)
and hence f(z) = f(0), for all z € B. By connectedness, S = X, and f is
constant. [
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Corollary 1. There are no compact complex submanifolds of C" of positive
dimension.

Proof. Otherwise at least one of the coordinate functions z1, ..., z, would be
a nonconstant function when restricted to such a submanifold. m

Definition 14 (vector bundle). A continuous map 7 : E — X of one Haus-
dorff space, E, onto another, X, is called a K-vector bundle of rank r if the
following conditions are satisfied:

1. E, := 7 Yp), for p € X, is a K-vector space of dimension r(E, is
called the fibre over p ).

2. For every p € X there is a neighborhood U of p and a homeomorphism
h:7 Y U) = U x K" such that h(E,) C p x K", and h?, defined by
the composition

W B, px KT "4 KT

1s a K-vector space isomorphism
Remark 2. the pair (U, h) is called a local trivialization

Remark 3. For a K-vector bundle m : E — X, E is called the total space
and X 1is called the base space, and we often say that E is a vector bundle
over X. Notice that for two local trivializations (U,, ha) and (Ug, hg) the
map he o h/gl : (UaNUg) x K" — (U, NUg) x K" induces a map

Jap - Ua N Ug — GL(T‘, K)

where gag(p) = h2 o (h’é)_1 : K" — K". The functions gap are called the
transition functions of the K-vector bundle m : E — X. The transition
functions gop satisfy the following compatibility conditions:
9aB 98y " Gya = I on U, NUgNU,
Joa = Ir on Ua

where the product is a matriz product and I, is the identity matriz of rank r.

Definition 15. A K-vector bundle of rank r,m : E — X, is said to be
an S-manifolds, © is an S-morphism, and the local trivializations are S-
1somorphisms.
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Remark: Suppose that on an S-manifold we are given an open covering I
= {U,} and that to each ordered nonempty intersection U, N U, we have
assigned an § -function

Jap : Ua ﬂUg — GL(T, K)

satisfying the compatibility conditions (2.2). Then one can construct a vec-
tor bundle £ —% X having these transition functions. An outline of the
construction is as follows: Let

E= U U, x K" (disjoint union)

equipped with the natural product topology and s-structure. Define an equiv-
alence relation in E by setting

(,v) ~ (y,w), for (z,v) € Ug x K", (y,w) € Uy x K"

if and only if
y=2z and w = gup(x)v,

The fact that this is a well-defined equivalence relation is a consequence of
the compatibility conditions (2.2). Let E = E/ ~ (the set of equivalence
classes), equipped with the quotient topology, and let 7 : E — X be the
mapping which sends a representative (x,v) of a point p € E into the first
coordinate. One then shows that an F so constructed carries on S-structure
and is an S-vector bundle. In the examples discussed below we shall see more
details of such a construction.

Definition 16. Let 7 : E — X be an S-bundle and U an open subset of
X. Then the restriction of £ to U, denoted by Ey is the S-bundle 7,1y :
T U)—=U

Definition 17. Let E and F be S-bundles over X; i.e., g : E — X and
mrp: ' — X. Then

1. a homomorphism of S-bundles, f : E — F, is an S-morphism of
the total spaces which preserves fibres and is K-linear on each fibre;
i.e., f commutes with the projections and is a K-linear mapping when
restricted to fibres.
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2. An S-bundle isomorphism is an S-bundle homomorphism which is an
S-isomorphism on the total spaces and a K-vector space isomorphism
on the fibres.

3. Two S-bundles are equivalent if there is some S-bundle isomorphism
between them. This clearly defines an equivalence relation on the S-
bundles over an S-manifold, X.

Definition 18. Let E — X be an S-bundle. An S-submanifold F C E is
said to be an S-subbundle of E if

1. FNE, is a vector subspace of E,.

2. m|p: F — X has the structure of an d-bundle induced by the S-bundie
structure of E, i.e., there exist local trivializations for E and F which
are compatible as in the following diagram. where the map j is the nat-

ural inclusion mapping of K* as a subspace of K" and i is the inclusion
of F'in E.

suppose that f : E — F 1is a vector bundle homomorphism of K-vector bun-
dles over a space X. We define Kerf = |J,.x Kerf fo, Imf = U,ex Imfe,
where f, = fg,. Moreover, we say that f has constant rank on X if rankt
(as a K-linear mapping) is constant for v € X.

Ely — UX K"

ZT z‘dij

Fly — U x K* s<r

Definition 19. An S-section of an S-bundle E — X is an S-morphism
s: X — F such that
mos=1,

where 1x is the identity on X; i.e., s maps a point in the base space into the
fibre over that point.

0(X, E) will denote the S-sections of E over X. S(U,E) will denote the
d-sections of E|,; over U C X;ie., S(U,E) =S (U, E|,)

Remark 4. we shall also occasionally use the common notation I'(X, E)
for sections, provided that there is no confusion as to which category we are
dealing with
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Definition 20. An S-bundle morphism between two S-bundles mg : E — X
and g : F — Y is an s-morphism f : E — F which takes fibres of E
isomorphically (as vector spaces) onto fibres in F. An S-bundle morphism
[+ E — F induces the following diagram commutes:

E—fF

[
7

X —Y

TF

Let V be a real vector space and suppose that J is an R-linear isomorphism./ :
V — V such that J2 = —I. Then J is called a complex structure on V .
Suppose that V and a complex structure J are given. Then we can equip V
with the structure of a complex vector space in the following manner:

(a+if)v = av+ pfJv(a, f € R,i = sqrt—1)

Thus scalar multiplication on V by complex numbers is defined, and it is

easy to check that V becomes a complex vector space.
Conversely, if V is a complex vector space, then it can also be considered as a
vector space over R, and the operation of multiplication by i is an R-linear en-
domorphism of V onto itself, which we can call J , and is a complex structure.
Moreover, if vy, ..., v, is a basis for V over C, then vy, ..., v,..., Juy, ..., Jv, will
be a basis for V over R.

Let V be a real vector space with a complex structure J, and consider
V ®r C. The R-linear mapping J extends to a C-linear mapping on V Qg C
by setting J(v ® o) = J(v) ® a for v € V,a € C. Moreover, the extension
has the property that J> = —I, and J has two eigenvalues {4, —i}. Let V1°
be the eigenspace corresponding to the eigenvalue i and V%! to —i. Then
VerC=V"0g Vol

Moreover, conjugation on V ®g C is defined by v@a =v® @ for v € V
and o € C. Thus V1 = V%! ( conjugate-linear mapping). The complex
vector space obtained from V' by means of the complex structure .J, is C-
linearly isomorphic to V19 and we identify V; with V1°. We now want
to consider the exterior algebras of these complex vector spaces V ®r C by
V., and consider the exterior algebras AV,, AVY? and AV®! Then we have
natural injections

exercise 1. Specifically write down these isomorphisms and injections
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We let AP?V be the subspace of AV, generated by elements of the form
p A w, where p € APV0 and w € A9V%. Thus we have the direct sum
(letting n = dim¢ V10 )

2n
AV, = Z Z APV

r=0 p+q=r

We now want to carry out the above algebraic construction on the tangent
bundle to a manifold.

Definition 21. Let X be a differentiable manifold of dimension 2n. Suppose
that J is a differentiable vector bundle isomorphism J : T'(X) — T(X) such
that J, : To(X) — T,(X) is a complex structure for T,(X); i.e., J*> = —1I,
where I is the identity vector bundle isomorphism acting on T(X). Then J
is called an almost complex structure for the differentiable manifold X. If
X is equipped with an almost complex structure J, then (X, J) is called an
almost complex manifold.

Remark 5. We see that a differentiable manifold having an almost complex
structure is equivalent to prescribing a C-vector bundle structure on the R-
linear tangent bundle.

Let X be a differentiable m-manifold, let 7'(X). = T(X) ®g C be the com-
plexification of the tangent bundle, and let T*(X). be the complexification
of the cotangent bundle. We can form the exterior algebra bundle AT*(X).,
we let

gr(X)c =e (X’ /\TT*(X)C)

These are the complex-valued differential forms of total degree r on X. We
shall usually drop the subscript c. In local coordinates we have ¢ € £7(X) if
and only if ¢ can be expressed in a coordinate neighborhood by

p(2) = 3 pi(a)de;

|I|=r

and pr(z) is a C* complex valued function on the neighborhood. The exte-
rior derivative d is extended by complex linearity to act on complex-valued
differential forms, and we have the sequence



where d? = 0. Suppose that (X,.J) is an almost complex manifold. Then
we can apply the linear algebra to T'(X)c.J extends to a C-linear bundle
isomorphism on T(X)c and has (fibrewise) eigenvalues +i. Let T(X)' be
the bundle of (+i)-eigenspaces for J and let T'(X)%! be the (—i) for J [note
that these are differentiable subbundles of T'(X).]. We define a conjugation
on T(X),,by fibrewise conjugation,

Q:T(X)" — T(x)™
is a conjugate-linear isomorphism. Moreover, there is a C-linear isomorphism
T(X), =T(X)"

where T'(X), is the C-linear bundle constructed from 7'(X) by means of
J. Let T*(X)'0 T*(X)%! denote the C-dual bundles. Consider the exterior
algebra bundles, we have T*(X), = T*(X)"* & T*(X)*!. We let Ap, ¢T*(X)
be the bundle whose fibre is Ap, g7 (X ). The sections are the complex-valued
differential forms of type (p,q) on X, which we denote by

ePU(X) = £ (X, AT (X))

Moreover, we have that
E'(X)= )Y E™(X)

Definition 22. Let E — X be an S-bundle of rank r and let U be an open
subset of X. A frame for E over U is a set of r S-sections {s1,,s.}, s; €
(U, E), such that {s1(x),,s,(x)} is a basis for Ex for any x € U.

Any base space. Let U be a trivializing neighborhood for E so that h :
E|;, = U x K", and thus we have an isomorphism

he:S (U, El,;) — S (U, U x K")

Consider the vector-valued functions e; = (1,0,...,0),e; = (0,1,...,0),...,
e, = (0,...,0,1), which clearly form a (constant) frame for U x K", and
thus {(h*)f1 (e1) ..., (h)"! (e;)} forms a frame for E|;, since the bundle
mapping h is an isomorphism on fibres, carrying a basis to a basis. Therefore
we see that having a frame is equivalent to having a trivialization and that
the existence of a global frame (defined over X ) is equivalent to the bundle
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being trivial. Let now (X, J) be an almost complex manifold as before and let
{wy,...,w,} be alocal frame (defined over some open set U ) for T*(X ).
It follows that {W;,...,W,} is a local frame for T*(X)%!. Then a local
frame for AP9T*(X) is given by

{fw"Aw’} Il =p, |J|=gq, (I,J strictly increasing )

Therefore any section s € EP4(X) can be written (in U) as

s = Z aryw’ Nw’,ary; € 2(U)
|=p,|J|=q
Note that
ds = Z daIJ/\wI/\w‘]+a1Jd(wlAwJ)
[|=p,|J|=q
where the second term is not necessarily zero, since w;(x) is not necessarily
a constant function of the local coordinates in the base space. We now have,

based on the almost complex structure, a direct sum decomposition of £"(X)
into subspaces ¢”(X). Let m,, denote the natural projection operators

Tpg  E(X) = EMUX),p+q=r
We have in general
d:EPMX) = TN (X)) = Y EM(X)
r+s=p+q+1
by restricting d to £P9. We define
0: EPI(X) — EPTHI(X)
0 :EPUX) — EPITL(X)
by setting
a - 7Tp+17q o d
5 = Tp,q+1 od
We then extend 9 and 0 to all

dim X

E(X) =) &(X)
r=0
by complex linearity.
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Proposition 3. For f € ¢*(X),we have

QO(Qf) =0f

Proof.
Qmpqef = 1, Qf and Qdf = dQ f

It follows from Proposition that 0% = 0 if and only if 9> = 0. In general
d:EPI(X) — EPTTTL(X)
can be decomposed as

d= Y meod=0+0+-

r+s=p+q+1
If, however, d = 0 + 0, then
d* = 0*+ 00 + 90 + &

and since each operator projects to a different summand of e?T42(X) (in
which case the operators are said to be of different type), we obtain

9 =00+ 00 =" =0
If d = 0+ 0 then we say that the almost complex structure is integrable.

Theorem 5. The induced almost complex structure on a compler manifold
15 integrable.

Theorem 6 ( Newlander-Nirenberg). Let (X, J) be an integrable almost
complex manifold. Then there exists a unique complex structure Ox on X
which induces the almost complex structure J.

4 Homework

REREH L ANEREPFE | NER
S
IZI‘I/j:I:X . . . ZOSIHINT, BT RIFE2ZEAT - M IR e FE R -
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(4.4.12)

HT|f(2)| < |z[EEDFAL, FHRouché €2 — f(2)5274EB(0, 1) NEA
AR, RIS -

(4.4.13)

(1) FH>T@1.1.5%0| 2] = 18| f(2)]
TRABMEE, FTRIESf(2)F R
1E
(miwmmmmmﬁﬁﬂbﬂ)%WanmiﬁAﬂMH BIB(0, 1)K
TES, AR LEf2) = IR EES, WNHAFTHBAF)BENZF
Moo f(z) = VI FRRT 2R EZ T (ar — 2) — b[[iey (1 — @2),
Y5240 MORF| 2| > 1, RUELETHEERS A N0, Fh UL 2 T A ] B
G285 N0, RIS EEAR R0, EHI NS AR, AEHE -
(4.4.14)

RIS AEEAL [ dd = N, %2 = RVAIL [ 2420 =
N, BSEERRIA RIS R R E> N -
(4.4.17)
HEHE44.65FEMETTHf(D) = G, TRMNEMf(2),2 € D, ﬁﬂ@¢
r F(2) = f (20)TE DR M ECH (YT Bl 2 E A R 51 [ -G de =
ot Jr wmfedw, TEER 2 = f(20) EEGHRAITEL, Jﬁ[ﬁjl U\ﬁﬁﬁ
1E
(4.5.12)
B RNEEE, BEGEBAL -
L PTAFHES(0) = ORF, HISJR4.5.115| f(Rz)| < 29 P AR A
Efﬁ%ﬂzm(mﬂ{e f)RVAFIRE, HERMEDFIE) -

2 f(0) # OFF, “g(2) = f(2) = £0), WIf(2)] < |g(2)| + |£(0)]. FFIH L
— I LR A0

, M EHRouché E AN f(2)—b5 f(2)7EB(0, 1)
f HNay, ... an, FILEB0,1)H, MG

HTII

M(r) £ 27— maxg(2) +1(0)] £ 7 AR) + 77— 7(0)] +1£(0)
WREBLEE
(4.5.13)

(i) Rp(z) = =5, ERFAFFERBSEB0,1), H1BE20, HitXw =

z+1
¢ o fRIFSchwarz5 | BEANw(z)| < \z|, PR f(2) = T -
A e =R O 1+w(z) 1 |w(2)]? 1—|w(z)] 1—|z|
f_/l\xig 0 ﬁ%%mei(ﬁ) €TuG) ~ TGl = Fee) = 173 °
BNAES HESSEEEE AL -
FEANES WHEHf(2) < e <1

1—|w(

+lzl
Izl 7
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(ii) Hzob%E 5 BOLATHEH |w(20)] = |20], MTw(z) = €2, RARIFIE-
(4.5.15)

MTBO,1)NEE, BEEFELF LT ANEERS, FikfERN0, F
[&. HEEEREZZ S, KOS 45174 Meg(2), AM)—gg H
iﬁpp:wﬂﬁ%1,Eﬁuﬂan)czxan\m} Z RS LATH|R(2)] = 1
EE@Z.Q.meﬂh(z)RﬁEﬁﬁiﬁ, B A 1IZE N, Nf(z) = ef(2)-
Hf)hEEE, HFEEZR, 258y EELMET TS, TE, Fit
HEEf(2) = ef2m e

(4.5.17)

MRS BEEONIN, &f(z) =0, FIFAEHEL5.6EEME W, FIHEG
%, MR SESEERNE — IR

":Llfiﬁ ,,,, ﬁﬁﬁjﬂfﬁf 1Xf(21)j7/€1E735\, Eﬁﬁf() (Z 21) () (Z)ﬁ
@Tﬁﬁﬂ@mﬁ,@mxﬁiﬁ,%ﬁmazﬂ@%%—mza) Lg(2)(1-
Z12), HT1 - z2i2EBO, )T EF A, h(z) REaNF B f(2)b—
B, NMEREELOE - 1. RHRGEBSERNFR| 2= | BIELE .
(4.5.20)

EhL:) = SRS Ha w8 () — SOBATIC) €

H(B(0,1))- |z| = 18}|A(z |_|fZ1 \ Hf(B(0,1)) c B(0,1)FIHER

I, AT AR E IR (B0, )) C B( 1), HItRO) <1, AR
1k
(4.5.24)
iBw(z) = 21, BNy LAEFREEIB0,1)ELEFM, HIEEWEe - Aut(B(0,1)) —
Aut(CH), o(f) =wlo fow, AIHIEHEEFEM, HILATFIAut(CH)ENHFr
w o fow, EFf e Aut(B(0,1))-
(4.5.22)

F| FH Schwarz- Ple/—\E}ET%D‘If(})(Tf(zl |z|, i2g(z) = - [;)(O)f((z MHg(2)&

f
o f () BRI R T AL R £(0) |22 — g(2)] < |2]]1 — F(0)g(2)|. RIFHIG
A= R (|2 — |g(2)[) (1 = [2][£(0)[?) > 0, AIMIALAL «
(4.5.29)
W PR R %z = 0, TERIEAEDH IIFABIRB(0, r) B I A Taylordk
B>, anz" o FIEHERa, £ 0K T IS NN, iLH m - iLf.(2) R f(2)E
RERHIREL, ATRILf, () ATEABIS A BT N2+ Nanz™+. .. - HDE R
&ﬁﬁﬁiﬁM’%ﬁBmmLmﬂﬁTﬂw%mw—bﬁ?Mrw —imiqg),
K ARERE | Na,r™| < MIERINAGSL, Sa,, # 0T &
(4.5.30)
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ig(z) = tan L2 A% Hg(2) € B(0,1)Hg(0) =0, Mifilg(z)| < |2
tanw| = [Srn| = |Sert|. AT < |Sest| fRAw = 2f(2)FE
A 155 Rl E) = - A

A—JH, FHA|tanw| = ‘22;:—3|ﬂ%ﬂtan|f{ew| < |tanw|, RANE AT
BT -

(FhFEA) ‘ , ,
Lf(z) = 922, fiz = o7 I I A5, 4. 5% Res (f, 2) = 7e™ 7" sin (e@),
M SRR 23 F14mi 22:0 e sin (e@) o

(5.5.1)

(1) f(2) = ZHRBEE, T EHES B (—oco,c0) LB ME . FIF K
1£5.5. 20 FIEH2mi Res(f, %) +2mi Res(f, e ') = 2i(535 + 575) = V27,
TSRSy e —2e . B2

(7) BORR BB K, FUL A B EEE RS - i8f(2) = 25, A
FIE 24k BT 75 KRB EE, H EFSER2mi Res(f, b)) = me ., T
FHJordan5 | 3 A F02F B BB 43 7E T 55 m AR 3 & 170, AT L B hy S 2l AR
51, BHILFTREE R F Teab.

(5.5.1)

* fFRONE TR R

(14) #ZBIm 2 € (0,27),|Rez| < tMFHE XA, R R~ 4
i, Ht — cof EAMAMS T, ML FRSH T HFRE -2,
FCR AR EE RN TR AN (1—e*™P) T = 2mi Res(f, mi), BB = 25 (—e™) =

sin pm

(15) AT & Res(f,1) = S5 Res(f, —i) = S, HEH5.5.1480 = 1 -
p, s = pAl FALEIL -

(17) AT & HRes(f,1) = L4 Res(f, —i) = =8, HEHS 51480 = 3,5 =
LATHIZEIE -

(21) E7R 2 R R0, ﬁ’ﬁ%@Wﬂaa1QEI%D§JLK2)%LHM&BE%R®:%0, N
TSRS 5 BRI MR SR, ISR TSRS FoRe (f° 52 4 (ah)) =

T [0 1 72
5Jo made ="

(29) Z£RUF5.5. 12502 = VL SEGTT BT 4 R AL, LSy lge-l gy =
log(z —1)|_, ==, &z= e”)ﬁﬂl%%ﬁﬁf%ﬂfi” log |1 —€*|df = 0, HHXIHR
PERTHA [ log |1 — €1df = 0, Ti[1 — €] = 2sin g, FCAHITTRIATENLE IS -
(6.1.2)

AWYi &z € B(a,r), HTLEEME, FTBCR TR D ¢ DiERE
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HEB(a, )N T 2090 E & HAf(2) = AR SRR A - ZEHAILg(2) =
= (f(z) — A), AI&ZHg(D' N IB(a,r)) C OB(0, R) BAEE A 24E, M
H|FA Schwarz W FR 3 AT IEH - B A 1R A e S rTAn7E s F A IR
59@1@2@%/\ 7‘70 fD%EB(a T)M\E’J*B \T)ﬁﬁg( ) = w(f(Z) -
—KJIW'E Eiﬁ:f( ) = g g(z ) g(z )TD’ éﬁE T%ﬂf’(zo) =

zwo

0L Res(f,wo) = (wo — z0)g(wo), X Hg(z0)5g(wo) X TOB(0, R)X
T%Mnllﬁ

(6.1.3)

FFNER, ATESETOB(0, r) W DS fA£D N B(0, R)\B(0, r) LfER
R0, I Schwarz b R R E TR FAEFRZ D b, RIS A R — P e 3
AIENfEA0, FE -

(6.1.4)

53] 5506.1.3UEFAAR ] -

(6.2.3)

NYilzg = 1. BMHEREG S anZ AIAT

RACLE #H6.2.3UE A AR R AL N B(0,6),0 > 1 ERTLAE R % f(2), W]
WHAE I Laurent BIF 72 + 3 (b, (2 — 1), 10g(z) = f(z) — 2.
A RIMELEB(0, 0) &40 - TMELEORIEIF R ((a, +b)z", HIERERE
KF1E BT Hlim, o an + b = 0, MIMlim, o an, = —b, BRI Z
FEAR PR AT

(6.2.9)

KAUSTH6 2 3FEF Dy, . b TEY 0 anz"+ 3, 28, RITRH: =
1A S0lim,, oo @y — Yo ez V=0, Milim, e |an| < > oy 1bwl ==]lig
AAER . (6.2.10) W T 2 (EXFEREE)

(7.1.3)

FHMontel & #EA £, /6 N 1 — B 751, SEWSES, kg, = f. — [,
My, o0 gn(2k) = 0,Vke FEAEfATE %Kj: o N —B S T0, HT
AR IERRR, 77— Solea LI 8ss B 0B 751, Bk licacsn,
Hh(z) = 0, VERI S ME—MEE P g, MNMEIE -

(7.1.4)

KLSIH41.12, DR MEEK, AP ikEREKFEEAE,HH
FAERW A GFELENBEEMER - B ST & S AEB(2, ) BUE
JEEDT, FHE3.4.97] 51 (2) = L fZWReZ%—reie)e’ied@, B AT
B(f'(2)] < 2Re f(2) < 2|f(2)]- }}\ﬁ'ﬁfrlﬁﬁf&ﬁ%ﬂ”%f('ﬂlﬂﬁﬁf(z)E’M‘EK
A | f (20)[e2M/7 FRUBLPN A —E0E 5, FIMontel 5 1A TEHU -
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B SRR R BN £,(2) = n
(7.1.6)

HDH FEATHIR M, = P OEED k| f(2)] < LEL RS AL M, -
DR E AT SRR, 2505 L4, 1 12FT (68 K PR 4525 2 £ B (2, ) BUF R
DS, T A A

M,
// f(w)dxdy’ // w)|dzdy < —
B(z,r) (z,7) mr?

MM —EE R, HMontel & AN H IEHE -

(7.2.1)

LR DAL 2 B(0,1), Mpo fAHFEERE, ATMHNFEE, Hekh
BTN FHAE

(7.2.2)

HPPBE AT Ra = 0, LT AERX LG DR R -

FZEp : B(0,1) = D,p(z) = rz, AIRINSf o g HIRFFIR S EIB(0,1) —
B(0, 1), FIFHSchwarz5 [ FEAIEI(f 0 ) (0) < 1, Blrf/(a) < 1, WA
E WA SUEEITE

Ry D — B(0,1),¢(2) = £, ATRIY o fARNRFFEAKBO,1) —
B(0, )W, F| FSchwarz3| BEA[ &I(y o f71Y(0) < 1, BIUSO < 4,
H(f71)(0) = g A AT UG 90 -

(7.2.3)

Le(z) = f_*]f(g’))/ FEBpo fogt, A RIMEFOBG 0KIB(0,1)H [F
1, T E Re?z, WM Rg(2) Pl Flp(f(2) = e99(z) Blz = aff
RS (a)| f(p)|* = e’g'(a), Hf'(a) > ORI KIS g (a) TT R, M
Mig(2) = e p(f(2)) = |gE ;|90(f( ). BIREKIER) T -

mr?
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(Stein P127)
1.
Notice that

a© -8 = ([ +[) swensena

_ / f(l,)e—Qm'{(z—t) dx

— e?ﬂi&t /OO f(a:)e—%rifx dz
= f(€) =0.
Then A(§) = B(§), VeeR. Let

Then by (a) we have F' continuous on {Im(z) = O}. Notice that for Im(z) =
b >0,

/t 0 f(m)e—Qﬂiz(x—t)‘ de = /t ’f(x) . <_27TZ($ . t)e_sz(x_t))ldm

00 0z —00

=27 /t ()] - (t — 2)e” 22 dy

+00 A
(y=t—z) < 27r/ m ~ye 2™ dy  which is bounded.
0 Y=

Also,
t a ) t

/ }f(x)eﬂmz(“t)\ dr = / 0dx = 0.
w O0Z

- —00

Then by dominated convergence theorem, F’(z) exists while 0F(z)/0zZ = 0
when Im(z) > 0, which yields that F' is holomorphic in the upper half-plane.
The same is true for the lower half-plane similarly. With the continuity on

{Im(z) = 0} and Morera theorem, we have F' entire.
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Notice that for Im(z) =b > 0,

F(2)] < / |F(2)] - [e¥=0=2) dgy

—00

t
— [ U@l da

—0o0

+oo
g/ |f(z)|dx which is bounded.

o

The same is true for the lower half-plane similarly. With the continuity on
Im(z) =0 p, we have F bounded in C.

By Liouville theorem, F'is constant. Let z = ib, b — 400, by dominated
convergence theorem, we have F' = 0.
By (b) we have F'(0) = 0, thus

/_too f(z)dz = 0.

Notice the equation above holds for all ¢ € R. With the continuity of f, we

have f = 0.
3.
To prove
+oo
l a e—2m’m§ dr = e—27ra\§|
T ) o a®+ 22 ’
let a
_ —2miz€
z) = ———=€ .
/() a? + 2?2

For £ < 0, we choose the contour as
By residue theorem we have

(2) dz = 27i - Res(f, ai) = me?™".

YUYR
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Let R — oo, we have

+00 a o
/f(Z) dZ —>/ me_ iz dCC'

27rz£RelG 0
|/ F(2) de| = |/ i Rie 0

27T§Rsm9
s / FEEr

T a
</0 —R2_a2-Rd0—>0.

Then

1 [T a :
_/ —e—2wzz§ dr = 627”15, vé- <0.

2 2
TJ) o a°+ZT

For £ > 0, choose the contour as the lower semi-circle instead(be aware of
the direction of the path), we have

1 [* a ~
% /oo me—%rwf dr = =271 - RGS(f, —(ll) — e—?waf7 V£ > 0.

Then it holds that

+oo
l/ Lefﬁrixé dr = efQﬂa\ﬂ.

2 2
T J)_ o O°+T

Notice that

e e~ 272¢ is holomorphic in {|Im(z)| <b< a}, and it suffices

that
4 A <0 >0
| a e M| , for § or ¢
a? + 22 14 22 0<Im(z) <b —b < Im(2) <0

Then by Fourier inverse transforms, we have

+oo
/ 6727ra|£|627ri§x dr = l . a )
- a’ + 2?2

N

o0

6. Let




It’s obvious that f € Fa.
By Exercise 3 we have

f(€) = o2kl

By Possion summation formula we have

Y fy= ) f)

Thus
- o —2maln|
Z s = >
n=-—o0 n=-—00
-9 Z e~ 2man _ |
n=0
B 2
T 1— e—27ra
= coth7a
8.

By inversion formula, we have

By the uniqueness of Taylor expansion, we have

/ i 2m (=2m)" - & dg—( 273 )" /M fle) - ende.

n! Y

Then

l
1

wtant = 2nl [ fie)-enag”
v 1
< 2rM (/_M]f(f)d§]> — 2 M.
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In the converse direction, by Cauchy-Hadamard theorem and Stirling theo-
rem, the convergence radius of >~ ja,z" is

L )T (2 en
- > lim ~—— = lim ———— = oo.
lim SUD,, o0 ‘an‘ﬁ n—oo 2 M n—00 2rMe
Then f is holomorphic in C.
Ve > 0, 3N subject to
2m(M n
’an’ < M’ vn > N.
n!
Then
al X (M + o))"
FEIS D ol D ==l
n=0 n=N+1
al (27 (M + €)™
= 62“(M+6)|Z| + Z (|an| _ T) |Z|n
n=0
<A, - o2 (M+e)lz|
10.

Let ¢ = & + ni, we have

9 - oo >
/ E)—Cf(x)e_%”ﬂC dz| < / 27| z|ce ™™ ™" d

—00

a2 Ty :
= 2mce o - |z]e «)"dz Afinite.

And
+oo a ) +oo
/ — f(z)e 2™ dg| = / 0dz = 0.
—00 aC —00

By dominated convergence theorem, we have f (¢) derivable with respect to
¢ in C, while

o .

¢

Then f (¢) is entire.
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Notice that

+oo

\f(f +ni)| = | f(x)ef27rix(§+m') dz|
oo s o mg 4
(rectangle contour) = | flz — 351)6—27”(%—;&)@%) dz|

+oo
< [ U= Teigeneieneon gl

o0

too 2 7"252 T ¢2
</ ce 4 + eQw(am—Eg )dl'

(o]
7262 | 2292 +oo e
= ce R a(z—=1) dz

2§2 2.2

A S
b+a

. [§
00
™
= ce . —
a

_ 2 /2,2
= o™ ",
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5 Advertisement Moment

I strongly reccomend you considering about learning Geometry,
which is really intriguing and fanscinating further!!

And if you are interested in Geometric Analysis, welcome to
talk with me about this. And I suppose Prof. Li, who is really a
master and an excellent expert in this field, would also be glad
if you contact him to learn about Geometric Analysis!!

In addition, I am going to set up a reading seminar to learn
about some Ricci flow theory. Anyone who is interested are
welcomed to participate. And I am willing to offer help if any-
one are determined to learn some basic Differential Manifold or
Differential Geometry and want some guidance.

Anyway, feel free to chat with me for further learning plan.
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Plus, I express my gratitude to some classmates among you who
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