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Abstract

In this note, we will roughly discuss some possible origins of the
complex number, and point out some important points,in the limited
view of the teaching assistant, relating to what was lectured by the
porfessor. After all those preparations, we will give the reference key
for some of our exercises. Some supplements might be given, according
to the reality.

1 Some Understanding of complex number

Understanding 1 (A Pair of Real Number). A real number pair (a,b) which
satisfy some computing rules

(a, b) + (c, d) = (a+ c, b+ d)

(a, b)× (c, d) = (ac− bd, bc+ ad)

Remark 1. Please check that the R2 with the computation metioned above
forms a Field in Abstract Algebra

this of course is the natural way to understand the complex number Field
C if you are totally not familar with this ”strange” structure while you are
quite comfortable with the real number R. I say this is natural since this
was anyway the original rigulous definitiong given to complex number Field
C. However, a clear definition never equals to the true understanding.

I might exemplify this by another story which you must be very famil-
iar with in the lecture Mathematical Analysis, namely the Real number R.
Looking back how ancient poeple got to reveal the existence of irrational
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number,
√

2, right? Despite the tragedy of the discoverer of this important
number, people still made every effort to understand what this freak was.
x2 = 2, yes, it was the definition. Nevertheless, it never explained. Since
rational number at that time was already completely mastered, and people
believe that they can really densely describe any ”length” in this world, and
there must be some important connections between the freak with the known.
Certainly, It takes centuries to find out the truth, i.e, Cauchy Sequence to
portrait and connect.

1.4 1.41 1.414 1.4142 1.41421 ...

Very similarly, the moment the imaginary number firstly came out, people
could not dirrectly understand this brand new object, which broke the exact
connection between geometric ”length” with the totally number.(note that
the primiar definition or description of

√
2 is the length of the diagonal line

of unit square.)
And since i was given by the necessaty representation of formula per-

formed to solve the general algebraic equations, people feel ashamed that
this kind of ”number” was only something by imagination and never existed
in the ”real” world, and that was also why the name was given in the his-
tory. However, some great mathematicians would never gave in to the simple
explanition of some thing only formally. Some great work,accordingly, was
done in the late years, where the first step was only an trivial linear expansion
(holds since i can’t lies in R).i.e.

z = a+ bi

where a, b ∈ R That is exactly equivalent with the Understanding 1 given at
the beginning.

Understanding 2 (by finite dimenisonal field extension). Algebraically, we
can obtain the complex field by finite dimensional field expansion with the
help of irreducible polynomial x2 + 1, i.e.

C = R[x]/x2 + 1

Remark 2. Please check the Ring isomorphism for the definition given by
Understanding 1 and Understanding 2

[Hint: (a, b)→ a+ bx]
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Remark 3. As for more details and tricks for finite dimenison field exten-
sion, just enjoy your Abstract Algebra and Galois Theory classes

Understanding 3 (Complex Analysis). Understand the complex number z
as a whole, which means you have already had a good idea of what complex
number is, so that just understand it as a point on the complex plane with
its own topology and category(holomorphism).

Remark 4. you see here how topology coincides with algebra! And actually,
this is the typical example of TVS (over R)

Remark 5. Only when people had a great progess in Complex Analysis, dare
people asserted that they had already swallowed the new Field.

Remark 6. From the class, it is obvious that this understanding of complex
number turn out to be the required understanding of complex number anyhow.

2 The magic sqaure roots

It is remarkable that there are three important and extraordinary square
roots in human’s history!

The first is a natural geometric observation as I have already mentioned
above, namely

√
2 is the length of the diagonal line of unit square.

The second is from the attempt to give the formula of solution to general
algebraic equation. i.e.

ax3 + bx2 + cx+ d = 0

And this is actually the origin of the complex number, which means people
were eager to find some “imaginary number” I such that i2 = −1 . (though
at that moment or even within a hundred years, people did not actually
understand what that number actually meant.) this brand new idea had
been puzzling people at that time until the complex analysis became mature.
Afterwards, the complex number, mastered and understood by people, has
become an important part of human’s life. It’s not an overstatement that
people never described the very world without complex number.

While the last is in fact the origin of famous H, by conducting square
root of Klein-Gordan Equation.

1

c2

∂2

∂t2
ψ −∇2ψ +

m2c2

~2
ψ = 0
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(This indicated the existence of the positive electronics, which was exceed-
ingly shocking and amazing when a few years later this prophecy was proved
by experiment! See how magic the mathematics is!)

What turns out to be amazing is that, each magic square roots expand
the number in an unbelievable degree. As the first is from countable to
uncountable, whereas the second and the third is the extension of dimension.

3 Homework

1. 设 f 和 g 都在 z0 处可微, 且 f (z0) = g (z0) = 0, g′ (z0) 6= 0 证明:

limz→z0
f(z)
g(z)

= f ′(z0)
g′(z0)

提示: limz→z0
f(z)
g(z)

= limz→z0
f(z)−f(z0)
g(z)−g(z0)

= lim
z→z0

f(z)− f (z0)

z − z0

· z − z0

g(z)− g (z0)
=
f ′ (z0)

g′ (z0)

2. 设域 G 和域 D 关于实轴对称, 证明: 如果 f(z) 是 D 上的全纯函数, 那

么 f̄(z̄) 是 G 上 的全纯函数. 提示: lim∆z→0
f(z+∆z)−f(z̄)

∆z

= lim∆z→0

[
f(z̄+∆z)−f(z̄)

∆z

]
f ′(z), z ∈ G

... It seems that my typing is kind of ugly... I then choose to cut some
photos with some marvelous masterpiece among you.

a
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a
a
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Exercise Class Note for Complex Analysis

Prof. H.Z.Li T.A. Yueheng Bao

Apr 16th

Abstract

In this note, we will roughly discuss the basic ideas of universal
covering space and the understanding of multivalue function. We will
also review some important points,in the limited view of the teaching
assistant, relating to what was lectured by the porfessor as we have
done last time. After all those preparations, we will give the reference
key for some of our exercises. Some supplements might be given,
according to the reality.

1 Covering Space

As for this part, you can mainly refer to [1], and [3]. And you might alse see
some examples from [2], Chapter 1.

Definition 1 (Covering Space). Let X be a topological space. A covering

space of X is a topological space X̃ together with a continuous map p : X̃ → X
i.e. covering map, such that for any x ∈ X, there exists an open neighborhood
U of x with the property
(1) p−1(U) = ∪αVα is a disjoint union of open sets Vα in X̃,
(2) For each α, the map pα := p|Vα : Vα → U is a homeomorphism.

Remark 1. The space X̃ is called the total space of the covering space, and
X is called the base space, and for each x ∈ X, the pre-image p−1(x) is called
the fiber over x.

Remark 2. We will always assume that both X and X̃ are path-connected
since

1



(1) If X̃ is a covering space of X,X0 ⊂ X is a subspace, then

X̃0 := p−1 (X0)

is a covering space of X0  We may (and will) assume X is path connected.

In this case one can check - p is always surjective (provided X̃ 6= ∅ ). - for
each x the fiber p−1(x) has the same cardinality (called the number of sheets
of the covering). If |p−1(x)| = n, we will call the covering an n-fold covering.

(2) If X is path connected, then any path connected component of X̃ is a cov-

ering space of X  We may (and will) always assume X̃ is path connected.

I assert this idea is quite essential in Complex Analysis, for there are some
abundant origins you can pick up from the complex plane. See as follow,

Example 1. R is a covering space of S1 ↔ with covering map p : R →
S1, x 7→ e2πix. Similarly, S1 is a covering space of S1 in many different
ways: For each n ∈ Z\{0},

pn : S1 → S1, z → zn

gives an |n|-fold covering of S1.

Example 2. The complex exponential map

exp : C→ C∗ = C\{0}

is a covering map: for any z = reiθ ∈ C∗, we have exp−1(z) = {log r+(2kπ+
θ)i | k ∈ Z}, from which it is easy to check exp is a covering map. Similarly
the map

pn : C∗ → C∗, z 7→ zn

is a |n|-fold covering map for any integer n ∈ Z\{0}.

exercise 1. Please check what have mentioned in the example above is really
covering maps

exercise 2. Show that the same map pn : C → C, z 7→ zn is not a covering
map.
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2 The Lifting Lemma

Now let X̃ be a covering space of X and p : X̃ → X a covering map.

Definition 2. Suppose f : Y → X is a continuous map. A lifting of f is a
continuous map f̃ : Y → X̃ such that the diagram commutes, i.e.

f̃ = p ◦ f

X̃

Y X

p
f̃

f

Lemma 1 (The Lifting Lemma). Let p : X̃ → X be a covering map. Given

any continuous F : P × I → X and any lifting F̃0 : P → X̃ of F0 =
F |P×{0} : P × {0} → X, there exists a unique lifting F̃ : P × I → X̃ of F

s.t. F̃
∣∣∣
P×{0}

= F̃ 0.

By taking P = {pt} and P = [0, 1] respectively, we get

Corollary 1 (Path lifting property). Let p : X̃ → X be a covering. Given
any path γ : [0, 1] → X with γ(0) = x0 and any x̃0 ∈ p−1 (x0), there exists

a unique path γ̃ : [0, 1] → X̃ with γ̃(0) = x̃0 which is a lifting of γ, i.e.
p ◦ γ̃ = γ.

Corollary 2 (Homotopy lifting property). Let p : X̃ → X be a covering.
Given any homotopy F : [0, 1] × [0, 1] → X with F (s, 0) = x0 So that F is
a homotopy fixing start points and any x̃0 ∈ p−1 (x0), there exists a unique

lifting F̃ : [0, 1] × [0, 1] → X̃ with F̃ (s, 0) = x̃0 which is a lifting of F , i.e.

p ◦ F̃ = F .

Uniqueness of lifting. Now we consider a general lifting. It turns out that
the uniqueness of lifting always holds.

Proposition 1. Let p : X̃ → X be a covering, f : Y → X be a continuous
map, and let f̃1, f̃2 : Y → X̃ be two liftings of f . Suppose Y is connected,
and suppose there exists y0 ∈ Y s.t. f̃1 (y0) = f̃2 (y0). Then f̃1 = f̃2 on Y .
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Proof. Given any y ∈ Y , we let U be an open neighborhood of f(y) in X
such that

p−1(U) =
⋃
α

Ũα,

(disjoint union)
and such that each

pα := p|Ũα : Ũα → U

is a homeomorphism. Take Ũ1 and Ũ2 such that

f̃1(y) ∈ Ũ1, f̃2(y) ∈ Ũ2.

Now we use connectedness argument.

Y0 =
{
y ∈ Y | |f̃1(y) = f̃2(y)

}
. Then Y0 6= ∅ since y0 ∈ Y0. In what follows we prove Y0 is both open and
closed. Suppose y /∈ Y0. Then we have Ũ1 6= Ũ2, which implies Ũ1 ∩ Ũ2 = ∅.
By continuity, there exists an open neighborhood N of y in Y such that

f̃1(N) ⊂ Ũ1, f̃2(N) ⊂ Ũ2.

It follows N ∩ Y0 = ∅. So Y c
0 is open, i.e. Y0 is closed. - Suppose y ∈ Y0.

Then we have Ũ1 ∩ Ũ2 6= ∅ and thus Ũ1 = Ũ2. Again we will get an open
neighborhood N of y as above. Since p is injective on Ũ1 = Ũ2, and since

p ◦ f̃1 = p ◦ f̃2,

we conclude that f̃1 = f̃2 on N .(Here you see how important the local homeo-
morphism can be) So N ⊂ Y0, i.e. Y0 is open. Finally since Y is connected, Y0
is non-empty and is both open and closed, we conclude Y0 = Y , i.e. f̃1 = f̃2
on Y .

Remark 3. The existence of a general lifting is more complicated. Suppose
a lifting f of exists. Then by functoriality of π1, we must have

f∗ (π1 (Y, y0)) = p∗

(
f̃∗ (π1 (Y, y0))

)
⊂ p∗

(
π1

(
X̃, x̃0

))
.

It turns out that the condition above is also sutticient for the existence of a
lifting, a long as we assume Y is path-connected and locally path-connected:
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Theorem 1 (necessary and sufficient conditions for Existence of lifting ).

Suppose p :
(
X̃, x̃0

)
→ (X, x0) is a covering, and f : (Y, y0) → (X, x0) is

continuous. If Y is path-connected and locally path-connected, then a lifting
f̃ of f exists if and only if (∗)

f∗ (π1 (Y, y0)) ⊂ p∗

(
π1

(
X̃, x̃0

))
.

(X̃, x̃0)

(Y, y0) (X, x0)

p
f̃

f

Remark 4. This part is actually very difficult, since a new concept has
come to you (to those who haven’t perviouly learned the Topology),i.e. The
fundamental group. Consequently, this part may not be detailedly given since
Master Rocket will give you very marvelous courses over these objects.

3 An application to complex analysis

We have seen above that the exponential map

exp : C→ C∗ = C\{0}

is a covering map. Now let’s try to define the complex logarithm function.
In complex analysis there are two different meanings of complex logarithm:
(1) Given 0 6= z = reiθ, log z is any complex number of the form ln r + i(θ +
2kπ), where k ∈ Z. So this function log is a multi-valued function.
(2) Given subset U ⊂ C∗, one would like to define a (single-valued) complex
valued function log : U → C which is a ”right inverse” of exp, i.e. exp ◦ log =
Id.
Here we refer to the second one, i.e. the existence of a function log : U →
mathbbC satisfying exp ◦ log = Id. Using the language of covering exp :
C→ C∗,

Proposition 2. The logarithm log : U → C is a lifting of the inclusion
map ι : U ↪→ C∗.

According to the existence criterion of lifting,
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Remark 5. log can not be defined on the whole of C∗, i.e. the map Id :
C∗ → C∗ has no lifting, since Id∗ (π1 (C∗)) 6⊂ exp ∗ (π1(C)).

Remark 6. the logarithm log : U → C exists if and only if

i∗ (π1(U)) ⊂ exp∗ (π1(C)) = {e},

i.e. if and only if i∗ (π1(U)) = {e} (or in other words, if and only if U
contains no loop surrounding the origin).

Remark 7. - log is well-defined if U is a simply connected region, but simply-
connectedness is NOT a necessary condition. - the function

zt = et log z

is a well-defined continuous function on U for all t if and only if i∗ (π1(U)) =
{e}, i.e. if and only if U contains no loop surrounding the origin.

As a consequence, F (t, z) := zt is not a well-defined continuous function on
S1 and thus does not give a homotopy between the identity and the constant
map on S1. Similarly for any integer d > 1, the map

pd : C∗ → C∗, z 7→ zd

is a p-fold covering map. There does not exist a map z1/d on C∗ since

(pd)∗ (π1 (C∗)) ' dZ 6⊃ Z ' π1 (C∗) = Id∗ (π1 (C∗))

Remark 8. In fact, by the same argument as above, it is easy to see that
the map z1/d is welldefined on U ⊂ C∗ if and only if U contains no loop
surrounding the origin (since i∗ (π1(U)) is either Z or {e}).

More generally, given any polynomial f = f(z), one may ask: can we define
f 1/d on a region U ⊂ C\Zf , where Zf is the zero set of f ? The answer is:
we can define f 1/d on U if and only if

f∗ (π1(U)) ⊂ dZ ' (pd)∗ (π1 (C∗)) ⊂ Z ' π1 (C∗)

For example, if a1 < a2 < · · · < a2n are real numbers, and

f(z) = (z − a1) (z − a2) · · · (z − a2n)

then we can define
√
f(z) on the set

U = C\ d1≤k≤n [a2k−1, a2k]

since each closed curve γ in U must surround even number of zeros of f ,
which implies that [γ]p (and thus f∗ ([γ]p) ) is an ”even” class.
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Remark 9. The fact mentioned above in fact plays a very important role in
the theory of Riemann surfaces.

4 Homework

(4.2.2)

(ii) n

√
1

2n2 =
1

2n
，n→∞时为0，由此收敛半径为无穷，

(iv) limn→∞
n

√
nn

n!
= e，由此收敛半径为1

e
。

(4.2.4)
(i) |z| < 1时

∑∞
n=0 |anzn| <

∑∞
n=0 a0|zn| = a0

1−|z|，由此绝对收敛，故收敛，

从而R ≥ 1。

(ii) *R > 1时有反例。如令an =

{
1

(k+1)4n
n = 4k

1
(k+1)4n+1 n = 4k + 1, 4k + 2, 4k + 3

，可

发现收敛半径为4，但在z = 4i不收敛。
当R = 1, z 6= 1时，由于|

∑A
n=0 z

n| =
∣∣1−zn+1

1−z

∣∣ ≤ 1
|1−z|对A有界，an单调趋

于0，由Dirichlet判别法知收敛。
(4.2.7)
由一致收敛，∀0 < r < 1,

∫
|z|=r f(z)f(z)dz = 2π

∑∞
n=0 anr

n·anrn = 2π
∑∞

n=0 |an|2r2n。
由f有界M，此式对0 < r < 1有上界2πM2。由此，

∑∞
n=0 |an|2的任意部分

和由极限可知不超过M2，从而根据单调有界知收敛，即得证。
(4.2.8)

(i) 由定义limn→∞ n
√
an < ∞，而limn→∞

n

√
1
n!

= 0，由此知收敛半径为无

穷，即为整函数。
(ii) *区域应为|z| ≤ r < R，且将不等式中R换为r。
由
∑∞

n=0 anr
n收敛，可知|anrn|有上界M。

|ϕ(k)(z)| =
∣∣∣∣ ∞∑
n=0

an+k
n!

zn
∣∣∣∣ ≤ ∞∑

n=0

∣∣∣∣an+kn!

∣∣∣∣|z|n ≤ ∞∑
n=0

M

rk
|z|n

rnn!
=
M

rk
e

|z|
r

(4.3.1) 令g(z) = (z − a)f(z)，定义g(a) = 0。由f全纯可知g在B\{a}全纯，
又利用连续由Cauchy积分定理可知在B上全纯，因此a至少为1阶零点，从
而由命题4.3.4知f在a点全纯。
(4.3.4)
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(i)

1

2πi

∫
|ζ|=R

f(ζ)
ζn+1 − zn+1

(ζ − z)ζn+1
dζ =

n∑
k=0

1

2πi

∫
|ζ|=R

f(ζ)
zk

ζz+1
dζ =

n∑
k=0

zk

k!
· k!

2πi

∫
|ζ|=R

f(ζ)

ζz+1
dζ

由Cauchy积分公式知即为左式。
(ii) 由f(z) = 1

2πi

∫
|ζ|=R

f(ζ)
ζ−zdζ减去第一问即得结果。

(4.3.6)

(i) 由定义an = f (n)(0)
n!
，记Re f(z) = u(z)，与习题3.4.9类似得结果。

(ii)
1

π

∫ 2π

0

u(reiθ)e−inθdθ =
1

π

∫ 2π

0

(
u(reiθ)− A(r)

)
e−inθdθ

≤ 1

π

∫ 2π

0

∣∣u(reiθ)− A(r)
∣∣dθ =

1

π

∫ 2π

0

(
A(r)− u(reiθ)

)
dθ = 2A(r)− 2u(0)

最后一步利用Cauchy积分公式取实部。
(4.3.7)

(i)记Re f(z) = u(z)，由习题4.3.6(i)，|an| ≤ 1
π

∫ 2π

0
|u(eiθ)|dθ = 1

π

∫ 2π

0
u(eiθ)dθ =

2u(0) = 2。
(ii) 第一个不等号：取|z| < r < 1，由习题3.4.8知

u(z) =
1

2π

∫ 2π

0

u

(
reiθ + z

reiθ − z

)
u(reiθ)dθ =

1

2π

∫ 2π

0

r2 − |z|2

|reiθ − z|2
u(reiθ)dθ

≥ r − |z|
r + |z|

1

2π

∫ 2π

0

u(reiθ)dθ =
r − |z|
r + |z|

令r → 1−可知成立。
第二个不等号：由模定义可知结果。
第三个不等号：|f(z)| ≤ 1 +

∑∞
n=1 |anzn| ≤ 1 +

∑∞
n=1 2|z|n = 1+|z|

1−|z|。

(iii) 由(ii)知g(z) = 1
f(z)
也满足题设条件，考虑其二次、三次项利用(i)得结

果。
(4.3.14)
(i)
∑∞

n=0 f
(n)(a)zn收敛半径至少为1，由习题4.2.8(i)知结论。

(ii) C上的紧集不妨设包含在B(a,R)中。则∣∣∣∣ n+p∑
k=n+1

f (k)(a)

∣∣∣∣ =

∣∣∣∣ n+p∑
k=n+1

∞∑
m=0

(z − a)m

m!
f (k+m)(a)

∣∣∣∣
8



=

∣∣∣∣ ∞∑
m=0

(z − a)m

m!

p−1∑
k=0

f (k+m)(a)

∣∣∣∣ ≤ ∞∑
m=0

∣∣∣∣(z − a)m

m!

∣∣∣∣∣∣∣∣m+p−1∑
k=m

f (k)(a)

∣∣∣∣
由于收敛，可取n足够大使

∣∣∑m+p−1
k=m f (k)(a)

∣∣ < ε，此时原式不超过

∞∑
m=0

∣∣∣∣(z − a)m

m!

∣∣∣∣ε =
∞∑
m=0

|z − a|m

m!
ε = e|z−a|ε ≤ eRε

由此即有内闭一致收敛。
利用习题4.1.12(ii)中引理知B(a,R)中任何闭集必然包含于某B(a, r), r <
R，可取到r > 1满足要求，再利用习题4.2.8(ii)知结论。
(5.1.2)
(i) −

∑∞
n=−1(n+ 2)(1− z)n

(iii) 原式为Log(1− 1
z
)− Log(1− 2

z
)，即

∑∞
n=0

2n−1
n
z−n。

(iv) 分别展开后相乘可知结果为±
∞∑
n=0

n∑
k=0

(−1)n2k
(

1
2

n− k

)(
1
2

k

)
z−n+1

(5.2.6)
由有一列零点逼近z0可知z0不为极点，若其为可去奇点，由唯一性定理
知f恒为0，矛盾，从而得证。
(5.2.7)
A = ∞直接取极点逼近即可。假设对所有有限的A，都有收敛于z0的点
列zn满足f(zn) = A，结论成立，否则设某A不满足此条件，即存在r使
得f(z) 6= A,∀z ∈ B(z0, r)\z0，考虑B(z0, r)\z0中的 1

f(z)−A，由习题5.2.6可

知z0为
1

f(z)−A的本性奇点，计算知
1

f(z)−A收敛到C∞中任何数可得f亦有此性
质，从而得证。
(5.2.8)
由于Re f(z) > 0，不可能存在子列收敛到实部小于0的数，从而不为本性奇
点。由实部不为0可知 1

f
亦在此区域全纯，且计算得其非零处实部大于0。

利用习题3.2.5可知 1
f
在零点处实部大于0，因此不为0，从而得证。 (5.3.5)

(i)设f(z) =
∑∞

n=0 anz
n考虑g(z) = f(z)+f(−z)

2
=
∑∞

n=0 a2nz
2n，由于0为R, iR的

交可知a0 = 0，从而h(z) = g(z)
z2
仍为整函数且满足h(R) ⊂ R, h(iR) ⊂ iR，

由此归纳可知g = 0，即得证。
(ii) 记f0(z) = zf(z)，满足上问条件，因此为奇函数，从而考虑展开式可
知f(z)为偶函数。
(5.3.6)
由定理5.3.3知f为有理函数。因此其为z2 + z + 1

z−1 + 1
z−2 + 1

(z−2)2 + 5
4
。
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(补充题)
定义Fε(z) = F (z)e−εz

α
, 1 < α < 2，则其在S上全纯，S上连续。当arg z =

±π
4
时，考虑辐角可知|Fε(z)| = |f(z)|e−ε|z|2 cos πα4 ≤ 1，且类似得limz→∞ Fε(z) =

0，因此将区域分为两部分后由最大模原理知|Fε(z)| ≤ 1，令ε → 0即得结
果。
(4.5.4)
若否，不妨设M(r0) > M(r1), r0 < r1，则B(0, r1)上的最大模不在边界取
到，矛盾。
(4.5.5)
若某不为常数的多项式P (z)无根，则考虑 1

P (z)
可发现其无穷远处趋于0，

且无零点。但利用习题4.5.4可知M(r)在[0,∞)上递增，与存在R使|z| >
R时

∣∣ 1
P (z)

∣∣ < ∣∣ 1
P (0)

∣∣矛盾。
(4.5.6)
设g(z) = f

(
R2

z

)
，由limz→∞ f(z)存在知0是g的可去奇点，从而可使g ∈

H(B(0, R)) ∪ C(B(0, R))，利用习题4.5.4知maxz=r |g(z)|随r增加单调增，
由非常数可知严格递增，从而M(r)严格减。
(4.5.9)
当M(r1) = 0或M(r2) = 0时，类似习题3.4.7使用Schwarz对称原理可知f恒

为0，否则记g(z) = M(r1)
log r2/z
log r2/r1M(r2)

log z/r1
log r2/r1，有|g(z)| = M(r1)

log r2/|z|
log r2/r1M(r2)

log |z|/r1
log r2/r1，

由此知边界上有|f(z)| ≤ |g(z)|，对f
g
运用最大模原理可知Ω中|f(z)| ≤

|g(z)|，从而M(r) ≤M(r1)
log r2/r
log r2/r1M(r2)

log r/r1
log r2/r1，两边取log即得结论。

(4.4.1)
在每个点附近作充分小圆盘，利用Cauchy积分定理知只需考虑一个零
点处。设某零点z0附近f(z) = (z − z0)

kh(z)，h(z0) 6= 0，则去掉全纯部

分h′(z)
h(z)
后积分即为 1

2πi

∫
B(z0,ε)

g(z)k
z−z0 = kg(z0)，因此得证。

(4.4.3)
由介值定理可知其有正实根，由于右半平面|e−z| < 1，根一定落在|z−λ| =
1内，而记g(z) = z−λ，利用Rouché定理可知f(z)在此内的根个数与g(z)相
同，即得证。
(4.4.4)
先说明P (z) =

∑n
k=0 akz

k零点都在B(0, 1)中。其显然无正实根，而若z0为
零点，考虑(1−z0)P (z0)可知anz

n+1
0 = a0+

∑n
k=1(ak−ak−1)zk0，若|z0| ≥ 1，

利用无正实根可估算得左侧模大于右侧，矛盾。
利用其有n个零点，可知z绕|z| = 1转一圈时P (z)转了n圈，从而与虚轴
有2n个交点，即至少有2n个不同的θ使得ReP (eiθ)为0，即题目中的式子至
少有2n个不同零点。
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另一方面，记z = eiθ，则所求式子乘zn后为z的2n次多项式，因此至多
有2n个不同零点，即得证。 (4.4.6)
由于此级数在B(0, 1)收敛于 1

(1−z)2，且幂级数的收敛满足内闭一致收敛，利

用Hurwitz定理得证。
(4.4.7)
由于此级数在复平面上收敛于ez，且幂级数的收敛满足内闭一致收敛，利
用Hurwitz定理得证。
(4.4.11)
(ii) |z| = 1时|2z5 − z3 + 3z2 − z| ≤ 2 + 1 + 3 + 1 < 8，不存在零点。
(iv) |z| = 1时|ez + 1| ≤ |e + 1| < 4，因此其零点个数与−4zn相同，为n个。
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Exercise Class Note for Complex Analysis

Prof. H.Z.Li T.A. Yueheng Bao

June 2nd

Abstract

In this note, we will roughly discuss the basic knowledge of complex
geometry. We will also review some important points,in the limited
view of the teaching assistant, relating to what was lectured by the
porfessor as we have done last time. After all those preparations, we
will give the reference key for some of our exercises. Some supplements
might be given, according to the reality.

1 Basic Simplectic Geometry

Let V be a (finite dimension) real vector space and Ω :V × V→ R a bilinear
map. Ω is called anti-symmetric if for all u, v ∈ V,

Ω(u, v) = −Ω(v, u)

It is called non-degenerate if the associate map

Ω̃ : V → V ∗, Ω̃(u)(v) = Ω(u, v)

is bijective. Obviously the non-degeneracy is equal to the condition

Ω(u, v) = 0,∀v ∈ Ω =⇒ u = 0

Note that we can regard Ω as a linear 2-form Ω ∈ Λ2 (V ∗) via

Ω(u, v) = ιvιuΩ

Definition 1. A symplectic vector space is a pair V, Ω), where V is a real
vector space, and Ω a non-degenerate anti-symmetric bilinear map. Ω is
called a linear symplectic structure or a symplectic form on V.
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Example. Let V = R2n = Rn × Rn and define

Ω0((X, ξ), (y, η)) := 〈x, ξ〉 − 〈y, η〉,

then (V ,Ω) is a symplectic vector space. Let {e1 . . . en, f1 . . . fn} be the stan-
dard basis of Rn × Rn, then Ω is determined by the relations

Ω0(ei, ej) = Ω0(fi, fj) = 0, Ω0(ei, fj) = δij, ∀i, j.

Donate by {e∗1 . . . e∗n, f ∗1 . . . f ∗n} the dual basis of (Rn)∗ × (Rn)∗, than as a
linear 2-form one has

Ω0 =
n∑
i=1

e∗i ∧ f ∗i .

Example. More generally for any finitely dimension vector space U , the vector
space V = U ⊕ U∗ admits a canonical symplectic structure

Ω((u, α), (v, β)) = β(u)− α(v).

Definition 2. Let (V1,Ω1)and(V2,Ω2) be two symplectic vector spaces. A
linear map F : V1 → V2 is called a linear symplectomorphism (or a linear
canonical transformaton) if it is a linear isomorphism and satisfies

F ∗Ω2 = Ω1.

Example. Any linear isomorphism L : U1 → U2 lifts to a linear symplecto-
morphism

F : U1 ⊕ U∗1 → U2 ⊕ U∗2 , F ((u, α)) = (L(u), (L∗)−1(α))

Proof. ∀(u, α), (v, β) ∈ U1 ⊕ U∗1 , we have

F ∗Ω2((u, α), (v, β)) = Ω2(F ((u, α)), F ((v, β)))

= Ω2((L(u), (L∗)−1(α)), (L(v), (L∗)−1(β)))

= (L∗)−1(β)(L(u))− (L∗)−1(α)(L(v))

= β(u)− α(v)

= Ω1((u, α), (v, β))

so F ∗Ω2 = Ω1
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Theorem 1. For any linear vector space (V,Ω), there exists a basis {e1 . . . en, f1 . . . fn}
of V so that

Ω0(ei, ej) = Ω0(fi, fj) = 0, Ω0(ei, fj) = δij, ∀i, j.

The basis is called the Darboux basis of (V,Ω).

Remarks.
(1)The Theorem is equivalent to saying that given any symplectic vector
space(V,Ω), there exists a dual basis {e∗1 . . . e∗n, f ∗1 . . . f ∗n} of V ∗ so that as a
linear 2-form,

Ω0 =
n∑
i=1

e∗i ∧ f ∗i .

This is also equivalent to saying that there exist a linear symplectomorphism

F : (V,Ω)→ (R2n,Ω0)

in particular,

• Any symplectic vector space is even dimensional.

• Any even dimensional vector sapce admits a linear symplectic form.

• Up to linear symplectomorphism, there is a unique linear symplectic
form on each even dimensional vector space.

proof of the linear Darboux Theorem. Apply the Gram-Schmidt process. De-
tails will be added later.

Let M be a smooth manifold, and

ω ∈ Ω2(M) = Γ∞(Λ2T ∗M)

a smooth 2-form on M. Recall that by definition this means that for any
p inM ,

Ωp : TpM × TpM → R

is a skew-symplectic bilinear map (almost a symplectic form), and ωp depends
smoothly on p.

Definition 3. We call ω a symplectic form on M if
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(1) (closeness) ω is a closed 2-form, i.e. dw = 0.

(2) (non-degenerate) for each p ∈ M,ωp is a linear symplectic form on
TpM .

We will call the pair (M,ω) a symplectic manifold.

Remarks.According to the linear theory:

• dim M = dimTpM must be even.

• if we denote dimM = 2n, then

ω − pn 6= 0, ∀p ∈M

i.e. ω is a non-vanish 2n form, thus a volumeform, on M . As a con-
sequence, M must be orientable. We will call ωn

n!
the Liouville volume

form of(M,ω)

• If w is not only closed but also exact, i.e. there exacts a 1-form α on
M so that ω = dα, then we say (M,ω) is an exact symplectic manifold.

Example 1. � (R2n,Ω0) is the simplest symplectic manifold.

� Let S be any oriented surface and ω any volume form on S. Then

– ω is non-degenerate since it is a volume form;

– ω is close since it is a top form.

So (S, ω) is a symplectic manifold.

Definition 4. A complex structure on a vector space V is an automorphism
J : V → V such that J2 = −Id. Such a pair(V, J) is called a complex vector
space.

The basic example is of course Cn = M2n, with standard complex structure
J0 corresponding to the map “multiplication by i =

√
−1”:

J0xi = yi, J0yi = −xi

. Remarks. Complex structure is very similar to symplectic structure:

(1) Since det(−Id) = det(J2) ≥ 0, dim V must be even.
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(2) For any 2n dimensional vector space V with basis x1 . . . xn, y1 . . . yn,
the linear map J defined by

J0xi = yi, J0yi = −xi

is a complex structure on V

Now, suppose (V,Ω) is a symplectic vector space which admits with a com-
plex structure J .

Definition 5. Let (V,Ω) be a symplectic vector space, and J is a complex
structure on V .

(1) We say J is tamed by Ω if the quadratic form Ω(v, Jv) is positive de-
fined.

(2) We say J is compatible with Ω if it is tamed by Ω and J is a symplec-
tomorphism, i.e.

Ω(Ju, Jv) = Ω(u, v)

An euqivalent condition for J compatible with Ω is that

G(u, v) = Ω(u, Jv)

defines a inner product on V .

Proposition 1. Every symplectic vector space admits a compatible complex
structure. Moreover, given any inner product g(·, ·) on V, one can canonically
construct such a J.

Proof.

Definition 6. An almost complex structure J on a (real) manifold is an
assignment of complex structure Jp on the tangent space TpM which depends
smoothly on p. The pair (M,J) is called an almost complex manifold.

Remark. As in the symplectic case, an almost complex manifold must be
even dimensional. Moreover, it is not hard to prove that an almost complex
manifold must be orientable.
Example.As in the symplectic case, an orientable surface admits an almost
complex structure. Let

ν : σ toS2
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be the Gauss map with every point x ∈ σ the outward unit normal vector
ν(x). Define Jx : TpM → TpM by

Jxu = νx× u

where × is the cross product between vectors in R3.
Example.S2 andS6 are the only spheres that admit almost complex structure.

Now let(M,Ω) be asymplectic manifold, and J the almost complex structure
on M .

Definition 7. We say an almost complex structure J on M is compatible
with a symplectic structure ω on M if at each p, Jp is compatible with ωp.

As we mentioned before, this is equivalently to saying that the assignment

gp : TpM × TpM → R, gp(u, v) := ω(u, Jv)

defines a Riemann metric on M . So we get three structures on M : the sym-
plectic structureω, an almost complex structure J and a Riemann structure
g. They are related by

g(u, v) = ω(u, Jv)

ω(u, v) = g(Ju, v)

J(u) = g̃−1(̃ω(u))

where g̃ and ω̃ are the linear isomorphism form TpM to T ∗pM induced by g
and ω respectively. Such a triple (ω, g, J) is called a compatible triple.

Let (M,J) be an almost complex manifold. Denote by TCM = TM ⊗C the
complexified tangent bundle. We extend J linear to TCM by

J(v ⊗ z) = J(u)⊗ z, v ∈ TM, z ∈ C.

Then again J2 = −Id, but now on a complex vector space instead of a real
vector space. So J has eigenvalues ±i, and we have a eigenspace decomposi-
tion

TM ⊗ C = T1,0 ⊕ T0,1,
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where

T1,0 = {v ∈ TM ⊗ C|Ju = iu} = {v ⊗ 1− Jv × i|v ∈ TM}

is the +i-eigenspace of J and

T0,1 = {v ∈ TM ⊗ C|Ju = −iu} = {v ⊗ 1 + Jv × i|v ∈ TM}

is the −i-eigenspace of J . We call vectors in T1,0 the J-holomorphic vec-
tors and vectors in T0,1 the J-anti-holomorphic vectors. They are both n
dimensional (real) vector space. Moreover, Let

π1,0 : TM → T1,0 v 7→ 1

2
(v ⊗ 1− Jv ⊗ i)

and

π0,1 : TM → T0,1 v 7→ 1

2
(v ⊗ 1 + Jv ⊗ i)

It is not hard to check They are (real) bundle isomorphism such that
π1,0 ◦ J = iπ1,0, and π0,1 ◦ J = −iπ0,1.
Similarly one can split the complexified cotangent space T ∗M ⊗ C as

T ∗M ⊗ C = T 1,0 ⊕ T 0,1,

where

T 1,0 = (T1,0)∗ = {η ∈ T ∗M ⊗ C|J∗(η) = iη}
= {ξ ⊗ 1− J∗(ξ)⊗ i|ξ ∈ T ∗M}

is the dual space of T1,0 and

T 0,1 = (T0,1)∗ = {η ∈ T ∗M ⊗ C|J∗(η) = −iη}
= {ξ ⊗ 1 + J∗(ξ)⊗ i|ξ inT ∗M}

is the dual space of T1,0. Moreover, any cotangent vector η has a splitting

η = η1,0 + η0,1,

where

η1,0 =
1

2
(η − iη ◦ J), η0,1 =

1

2
(η + iη ◦ J).
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Let Ωk(M,C) := Γ∞(Λk(T ∗M ⊗ C)) i.e. the complex-value k-forms on M .
where

Γ∞(Λk(T ∗M ⊗ C)) = Λk(T 1,0 ⊕ T 0,1)

= ⊕l+m=k(Λ
l(T 1,0)) ∧ (Λm(T 0,1))

:= ⊕l+m=kΛ
l,m

Definition 8. The differential forms of type (l,m) on (M,J) are the sections
of Λl,m:

Ωl,m := Γ∞(Λl,m)

Then
Ωk(M,C) = ⊕l+m=kΩ

l,m

Let πl,m : Λk(T ∗M ⊗ C)→ Λl,m be the projection map, where l + m = k. d
is the usual exterior derivative We define

∂ :=πl+1,m ◦ d : Ωl,m → Ωl+1,m

∂̄ :=πl,m+1 ◦ d : Ωl,m → Ωl,m+1

For β ∈ Ωl,m ⊂ Ωk(M,C), we have dβ ∈ Ωk+1(M,C, and so

dβ =
∑

r+s=k+1

πr,sdβ = πk+1,0dβ + · · ·+ ∂β + ∂̄β + · · ·+ π0,k+1dβ

Note that for functions we have df = ∂f + ∂̄f , while for more general differ-
ential forms we don‘t have d = ∂ + ∂̄

2 complex manifold

Definition 9. A complex manifold of complex dimension n is a manifold that
locally homeomorphism to open subsets in Cn, with biholomorphic transition
function maps.

Obviously any n-dimensional complex manifold is a real manifold of dimen-
sion 2n. and must be orientable if view as a real manifold (use the Cauchy-
Riemann equation).

Proposition 2. Any complex manifold has a canonical almost complex struc-
ture.
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Proof. Let M be a complex manifold and (U, V, ϕ) be a complex chart of
M , where u is an open set in M and V is an open set in C. We denote
ϕ = (z1, . . . , zn), with zi = xi +

√
−1yi. Then (x1, . . . , xn, y1, . . . , yn) is a

coordinate system on U when we view M as a real manifold. So

TpM = R-span of { ∂
∂xi

,
∂

∂yi
|i = 1, . . . , n}.

We define J on U by the recipe

J(
∂

∂xi
) =

∂

∂yi
, J(

∂

∂yi
) = − ∂

∂xi

for i = 1, . . . , n, and extends to TpM by linearity. Obviously J2 = −1. It
remains to prove that J is global defined, i.e. it is independent of the choice
of complex coordinate charts.
Suppose (U ′, V ′, ϕ′) is another coordinate chart, with ϕ′ = (ω1 . . . , ωn) and
ωi = ui +

√
−1vi. Then on the overlap U ∩ U ′, the transition map

ψ : ϕ(U ∩ U ′)→ ϕ(U ∩ U ′), z → ω = ψ(z)

is a biholomorphism. If we write the map as

ui = ui(x, y), vi = vi(x, y)

in real coordinates, then the real tangent vectors are related by

∂

∂xk
=
∑
j

(
∂uj
∂xk

∂

∂uj
+
∂vj
∂xk

∂

∂vj
)

∂

∂yk
=
∑
j

(
∂uj
∂yk

∂

∂uj
+
∂vj
∂yk

∂

∂vj
)

while the Cauchy-Riemann equation gives

∂ui
∂xk

=
∂vj
∂yk

,
∂uj
∂xk

= −∂vj
∂yk

It follows that

J ′(
∂

∂xk
) = J ′(

∑
j

(
∂uj
∂xk

∂

∂uj
+
∂vj
∂xk

∂

∂vj
)) =

∑
j

∂vj
∂yk

∂

∂vj
+
∂uj
∂yk

∂

∂uj
=

∂

∂yk
.

Since J ′2 = −Id, we must have J ′( ∂
∂yk

) = − ∂
∂xk
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Remarks. One can find that for an almost complex manifold, we define the
complex structure point by point. but for the complex manifold, we have an
global definition on each coordinate chart. This will play a huge role later.

Now suppose M is a complex manifold and J is the canonical almost complex
structure. Then in local coordinates

TpM ⊗ C = C-span of { ∂
∂xi

,
∂

∂yi
|i = 1, . . . , n}.

We define
∂

∂zj
=

1

2
(
∂

∂xj
− i ∂

∂yj
)

∂

∂z̄j
=

1

2
(
∂

∂xj
+ i

∂

∂yj
)

Then the two eigenspace of J are

T1,0 = C-span of { ∂
∂zj
|j = 1, . . . , n} T0,1 = C-span of { ∂

∂z̄j
|j = 1, . . . , n},

Similarity if we put

dzj = dxj + idyj dz̄j = dxj − idyj

then

T 1,0 = C-span of {dzj|j = 1, . . . , n} T 0,1 = C-span of {dz̄j|j = 1, . . . , n},

If we use muti-index notation:J = (j1, . . . , jm), 1 ≤ j1 < · · · < jm ≤ n, |J | =
m, dzJ = dzj1 ∧ · · · ∧ dzjm then

Ωl,m = l,m− forms = {
∑

|J |=l,|K|=k

bJ,KdzJ ∧ ¯dzK |bJ,K ∈ C∞(U,C)}

Theorem 2. On complex manifolds d = ∂ + ∂̄ for any (l,m)-forms.

Proof. left as an exercise.

3 Another view of Complex Geometry

Definition 10. An δ-structure, SM , on a K-manifold M is a family of K-
valued continuous functions defined on the open sets M such that
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1. For every p ∈ M , there exists an open neighborhood U of p and a
homeomorphism h : U → U ′, where U ′ is open in Kn, such that for
any open set V ⊂ U

f : V → K ∈ SM
if and only if f ◦ h−1 ∈ S(h(V )).

2. If f : U → K, where U =
⋃
i Ui and Ui is open in M , then f ∈ SM if

and only if f |Ui ∈ SM for each i.

Definition 11. - An S-morphism F : (M,SM) → (N,SN) is a continuous
map, F : M → N , such that f ∈ SN implies f ◦ F ∈ SM . F : M → N is a
homeomorphism, and

F−1 : (N,SN)→ (M,SM)

is an S-morphism.It follows from the above definitions that if on an S-
manifold (M,SM) we have two coordinate systems h1 : U1 → Kn and h2 :
U2 → Kn such that U1 ∩ U2 = ∅, then

h2 ◦ h−1
1 : h1 (U1 ∩ U2)→ h2 (U1 ∩ U2)

is an S-isomorphism on open subsets of (Kn,SKn).

Definition 12. Conversely, if we have an open covering {Uα}α∈A of M , a
topological manifold, and a family of homeomorphisms {hα : Uα → U ′α ⊂ Kn}α∈A
satisfying above, then this defines an S-structure on M by setting SM = {f :
U → K} such that U is open in M and f ◦ h−1

α ∈ S (hα (U ∩ Uα)) for all
α ∈ A; i.e., the functions in SM are pullbacks of functions in S by the home-
omorphisms {hα}α∈A. The collection {(Uα, hα)}α∈A is called an atlas for
(M,SM).

Definition 13. Let N be a closed subset of an S-manifold M ; then N is called
an S-submanifold of M if for each point x0 ∈ N , there is a coordinate system
h : U → U ′ ⊂ Kn, where x0 ∈ U , with the property that U ∩ N is mapped
onto U ′∩Kk, where 0 6 k 6 n. Here Kk ⊂ Kn is the standard embedding of
the linear subspace Kk into Kn, and k is called the K-dimension of N , and
n− k is called the K-codimension of N .

Remark 1. It is easy to see that an S-submanifold of an S-manifold M is
itself an δ-manifold with the S-structure given by δM |N . Since the implicit
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function theorem is valid in each of our three categories, it is easy to verify
that the above definition of submanifold coincides with the more common one
that an δ-submanifold (of k dimensions) is a closed subset of an δ-manifold M
which is locally the common set of zeros of n− k S-functions whose Jacobian
matrix has maximal rank.

Example 2. Kn, (Rn, Cn). For every p ∈ Kn, U = Kn and h = i identity.
Then Rn becomes a real-analytic (hence differentiable)manifold and Cn is a
complex-analytic manifold.

Example 3. If (M,SM) is an S-mantfold, then any open subset U of M has
an S-structure, SU = {f | U : f ∈ SM}.

Example 4 (Projective space). If V is a finite dimensional vector space over
K, then P(V ) := { the set of one-dimensional subspaces of V } is called the
projective space of V . We shall study certain special projective spaces,

Pn(R) := P
(
Rn+1

)
Pn(C) := P

(
Cn+1

)
We show how Pn(R) can be made into a differentiable manifold. There is a
natural map π : Rn+1 − {0} → Pn(R) given by π(x) = π (x0, . . . , xn) := {
subspace spanned by x = (x0, . . . , xn) ∈ Rn+1}

Theorem 3 (Whitney). Let M be a differentiable n-manifoid. Then there
exists a differentiable embedding f of M into R2n+1. Moreover, the image of
M, f(M) can be realized as a real-analytic submanifold of R2n+1.

Theorem 4. Let X be a connnected compact complex manifold and let f ∈
O(X). Then f is constant; i.e., global holomorphic functions are necessarily
constant.

Proof. Suppose that f ∈ O(X). Then, since f is a continuous function on
a compact space, |f | assumes its maximum at some point x0 ∈ X and S =
{x : f(x) = f (x0)} is closed. Let z = (z1, . . . , zn) be local coordinates at
x ∈ S, with z = 0 corresponding to the point x. Consider a small ball B
about z = 0 and let z ∈ B. Then the function g(λ) = f(λz) is a function of
one complex variable (λ) which assumes its maximum absolute value at λ = 0
and is hence constant by the maximum principle. Therefore, g(1) = g(0)
and hence f(z) = f(0), for all z ∈ B. By connectedness, S = X, and f is
constant.

12



Corollary 1. There are no compact complex submanifolds of Cn of positive
dimension.

Proof. Otherwise at least one of the coordinate functions z1, . . . , zn would be
a nonconstant function when restricted to such a submanifold.

Definition 14 (vector bundle). A continuous map π : E → X of one Haus-
dorff space, E, onto another, X, is called a K-vector bundle of rank r if the
following conditions are satisfied:

1. Ep := π−1(p), for p ∈ X, is a K-vector space of dimension r (Ep is
called the fibre over p ).

2. For every p ∈ X there is a neighborhood U of p and a homeomorphism
h : π−1(U) → U × Kr such that h (Ep) ⊂ p × Kr, and hp, defined by
the composition

hp : Ep
h−→ p×Kr proj−→ Kr

is a K-vector space isomorphism

Remark 2. the pair (U, h) is called a local trivialization

Remark 3. For a K-vector bundle π : E → X,E is called the total space
and X is called the base space, and we often say that E is a vector bundle
over X. Notice that for two local trivializations (Uα, hα) and (Uβ, hβ) the
map hα ◦ h−1

β : (Uα ∩ Uβ)×Kr → (Uα ∩ Uβ)×Kr induces a map

gαβ : Uα ∩ Uβ → GL(r,K)

where gαβ(p) = hpα ◦
(
hpβ
)−1

: Kr → Kr. The functions gαβ are called the
transition functions of the K-vector bundle π : E → X. The transition
functions gαβ satisfy the following compatibility conditions:

gαβ · gβγ · gγα = Ir on Uα ∩ Uβ ∩ Uγ
gαα = Ir on Uα

where the product is a matrix product and Ir is the identity matrix of rank r.

Definition 15. A K-vector bundle of rank r, π : E → X, is said to be
an S-manifolds, π is an S-morphism, and the local trivializations are S-
isomorphisms.

13



Remark: Suppose that on an S-manifold we are given an open covering I
= {Ua} and that to each ordered nonempty intersection Ua ∩ Ub we have
assigned an δ -function

gαβ : Uα ∩ Uβ −→ GL(r,K)

satisfying the compatibility conditions (2.2). Then one can construct a vec-
tor bundle E

a−→ X having these transition functions. An outline of the
construction is as follows: Let

Ẽ =
⋃
a

Ua ×Kr (disjoint union)

equipped with the natural product topology and s-structure. Define an equiv-
alence relation in Ẽ by setting

(x, v) ∼ (y, w), for (x, v) ∈ Uβ ×Kr, (y, w) ∈ Uα ×Kr

if and only if
y = x and w = gαβ(x)v,

The fact that this is a well-defined equivalence relation is a consequence of
the compatibility conditions (2.2). Let E = Ẽ/ ∼ (the set of equivalence
classes), equipped with the quotient topology, and let π : E → X be the
mapping which sends a representative (x, v) of a point p ∈ E into the first
coordinate. One then shows that an E so constructed carries on S-structure
and is an S-vector bundle. In the examples discussed below we shall see more
details of such a construction.

Definition 16. Let π : E → X be an S-bundle and U an open subset of
X. Then the restriction of E to U , denoted by EU is the S-bundle ππ−1(U) :
π−1(U)→ U

Definition 17. Let E and F be S-bundles over X; i.e., πE : E → X and
πF : F → X. Then

1. a homomorphism of S-bundles, f : E → F , is an S-morphism of
the total spaces which preserves fibres and is K-linear on each fibre;
i.e., f commutes with the projections and is a K-linear mapping when
restricted to fibres.

14



2. An S-bundle isomorphism is an S-bundle homomorphism which is an
S-isomorphism on the total spaces and a K-vector space isomorphism
on the fibres.

3. Two S-bundles are equivalent if there is some S-bundle isomorphism
between them. This clearly defines an equivalence relation on the S-
bundles over an S-manifold, X.

Definition 18. Let E → X be an S-bundle. An S-submanifold F ⊂ E is
said to be an S-subbundle of E if

1. F ∩ Ex is a vector subspace of Ex.

2. π|F : F → X has the structure of an δ-bundle induced by the S-bundie
structure of E, i.e., there exist local trivializations for E and F which
are compatible as in the following diagram. where the map j is the nat-
ural inclusion mapping of Ks as a subspace of Kr and i is the inclusion
of F in E.

suppose that f : E → F is a vector bundle homomorphism of K-vector bun-
dles over a space X. We define Kerf =

⋃
x∈X Kerf fx, Imf =

⋃
x∈X Imfx,

where fx = fEx. Moreover, we say that f has constant rank on X if rankt
(as a K-linear mapping) is constant for x ∈ X.

E|U U ×Kr

F |U U ×Ks s ≤ r

˜

i

˜

id×j

Definition 19. An S-section of an S-bundle E → X is an S-morphism
s : X → E such that

π ◦ s = 1x

where 1X is the identity on X; i.e., s maps a point in the base space into the
fibre over that point.

δ(X,E) will denote the S-sections of E over X. S(U,E) will denote the
δ-sections of E|U over U ⊂ X; i.e., S(U,E) = S (U, E|U)

Remark 4. we shall also occasionally use the common notation Γ(X,E)
for sections, provided that there is no confusion as to which category we are
dealing with
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Definition 20. An S-bundle morphism between two S-bundles πE : E → X
and πF : F → Y is an s-morphism f : E → F which takes fibres of E
isomorphically (as vector spaces) onto fibres in F . An S-bundle morphism
f : E → F induces the following diagram commutes:

E F

X Y

f

πE πF

f̄

Let V be a real vector space and suppose that J is an R-linear isomorphismJ :
V → V such that J2 = −I. Then J is called a complex structure on V .
Suppose that V and a complex structure J are given. Then we can equip V
with the structure of a complex vector space in the following manner:

(α + iβ)v := αv + βJv(α, β ∈ R, i = sqrt−1)

Thus scalar multiplication on V by complex numbers is defined, and it is
easy to check that V becomes a complex vector space.
Conversely, if V is a complex vector space, then it can also be considered as a
vector space over R, and the operation of multiplication by i is an R-linear en-
domorphism of V onto itself, which we can call J , and is a complex structure.
Moreover, if v1, ..., vn is a basis for V over C, then v1, ..., vn..., Jv1, ..., Jvn will
be a basis for V over R.

Let V be a real vector space with a complex structure J , and consider
V ⊗R C. The R-linear mapping J extends to a C-linear mapping on V ⊗R C
by setting J(v ⊗ α) = J(v) ⊗ α for v ∈ V, α ∈ C. Moreover, the extension
has the property that J2 = −I, and J has two eigenvalues {i,−i}. Let V 1,0

be the eigenspace corresponding to the eigenvalue i and V 0,1 to −i. Then
V ⊗R C = V 1,0 ⊕ V 0,1.

Moreover, conjugation on V ⊗R C is defined by v ⊗ α = v ⊗ ᾱ for v ∈ V
and α ∈ C. Thus V 1,0 ∼=R V 0,1 ( conjugate-linear mapping). The complex
vector space obtained from V by means of the complex structure J , is C-
linearly isomorphic to V 1,0, and we identify VJ with V 1,0. We now want
to consider the exterior algebras of these complex vector spaces V ⊗R C by
Vc and consider the exterior algebras ∧Vc,∧V 1,0, and ∧V 0,1 Then we have
natural injections

exercise 1. Specifically write down these isomorphisms and injections
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We let ∧p,qV be the subspace of ∧Vc generated by elements of the form
µ ∧ ω, where µ ∈ ∧pV 1,0 and w ∈ ∧qV 0,1. Thus we have the direct sum
(letting n = dimC V

1,0 )

∧Vc =
2n∑
r=0

∑
p+q=r

∧p,qV

We now want to carry out the above algebraic construction on the tangent
bundle to a manifold.

Definition 21. Let X be a differentiable manifold of dimension 2n. Suppose
that J is a differentiable vector bundle isomorphism J : T (X)→ T (X) such
that Jx : Tx(X) → Tx(X) is a complex structure for Tx(X); i.e., J2 = −I,
where I is the identity vector bundle isomorphism acting on T (X). Then J
is called an almost complex structure for the differentiable manifold X. If
X is equipped with an almost complex structure J , then (X, J) is called an
almost complex manifold.

Remark 5. We see that a differentiable manifold having an almost complex
structure is equivalent to prescribing a C-vector bundle structure on the R-
linear tangent bundle.

Let X be a differentiable m-manifold, let T (X)c = T (X) ⊗R C be the com-
plexification of the tangent bundle, and let T ∗(X)c be the complexification
of the cotangent bundle. We can form the exterior algebra bundle ∧T ∗(X)c,
we let

εr(X)c = ε (X,∧rT ∗(X)c)

These are the complex-valued differential forms of total degree r on X. We
shall usually drop the subscript c. In local coordinates we have ϕ ∈ Er(X) if
and only if ϕ can be expressed in a coordinate neighborhood by

ϕ(x) =
∑
|I|=r

ϕI(x)dxI

and ϕI(x) is a C∞ complex valued function on the neighborhood. The exte-
rior derivative d is extended by complex linearity to act on complex-valued
differential forms, and we have the sequence

ε0(X)
d−→ ε1(X)

d−→ · · · d−→ εm(X)→ 0

17



where d2 = 0. Suppose that (X, J) is an almost complex manifold. Then
we can apply the linear algebra to T (X)C .J extends to a C-linear bundle
isomorphism on T (X)C and has (fibrewise) eigenvalues ±i. Let T (X)1,0 be
the bundle of (+i)-eigenspaces for J and let T (X)0,1 be the (−i) for J [note
that these are differentiable subbundles of T (X)c]. We define a conjugation
on T (X)c,by fibrewise conjugation,

Q : T (X)1,0 → T (X)0,1

is a conjugate-linear isomorphism. Moreover, there is a C-linear isomorphism

T (X)J ∼= T (X)1,0

where T (X)J is the C-linear bundle constructed from T (X) by means of
J. Let T ∗(X)1,0, T ∗(X)0,1 denote the C-dual bundles. Consider the exterior
algebra bundles, we have T ∗(X)c = T ∗(X)1,0⊕ T ∗(X)0,1. We let ∧p, qT ∗(X)
be the bundle whose fibre is ∧p, qT ∗x (X). The sections are the complex-valued
differential forms of type (p, q) on X, which we denote by

εp,q(X) = ε (X,∧p,qT ∗(X))

Moreover, we have that

Er(X) =
∑
p+q=r

Ep,q(X)

Definition 22. Let E → X be an S-bundle of rank r and let U be an open
subset of X. A frame for E over U is a set of r S-sections {s1, , sr}, sj ∈
(U,E), such that {s1(x), , sr(x)} is a basis for Ex for any x ∈ U.

Any base space. Let U be a trivializing neighborhood for E so that h :
E|U → U ×Kr, and thus we have an isomorphism

h∗ : S (U, E|U)→ S (U,U ×Kr)

Consider the vector-valued functions e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . .,
er = (0, . . . , 0, 1), which clearly form a (constant) frame for U × Kn, and
thus

{
(h∗)

−1 (e1) , . . . , (h∗)
−1 (er)

}
forms a frame for E|U , since the bundle

mapping h is an isomorphism on fibres, carrying a basis to a basis. Therefore
we see that having a frame is equivalent to having a trivialization and that
the existence of a global frame (defined over X ) is equivalent to the bundle
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being trivial. Let now (X, J) be an almost complex manifold as before and let
{w1, . . . , wn} be a local frame (defined over some open set U ) for T ∗(X)1,0.
It follows that

{
W̄1, . . . , W̄n

}
is a local frame for T ∗(X)0,1. Then a local

frame for ∧p,qT ∗(X) is given by{
wI ∧ w̄J

}
, |I| = p, |J | = q, (I, J strictly increasing )

Therefore any section s ∈ Ep,q(X) can be written (in U) as

s =
∑

|I|=p,|J |=q

aIJw
I ∧ w̄J , aIJ ∈ ε0(U)

Note that
ds =

∑
|I|=p,|J |=q

daIJ ∧ wI ∧ w̄J + aIJd
(
wI ∧ w̄J

)
where the second term is not necessarily zero, since wi(x) is not necessarily
a constant function of the local coordinates in the base space. We now have,
based on the almost complex structure, a direct sum decomposition of εr(X)
into subspaces εp,q(X). Let πp,q denote the natural projection operators

πp,q : Er(X)→ Ep,q(X), p+ q = r

We have in general

d : Ep,q(X)→ Ep+q+1(X) =
∑

r+s=p+q+1

Er,s(X)

by restricting d to Ep,q. We define

∂ : Ep,q(X)→ Ep+1,q(X)

∂̄ : Ep,q(X)→ Ep,q+1(X)

by setting
∂ = πp+1,q ◦ d
∂̄ = πp,q+1 ◦ d

We then extend ∂ and ∂̄ to all

E∗(X) =
dimX∑
r=0

Er(X)

by complex linearity.

19



Proposition 3. For f ∈ ε∗(X),we have

Q∂(Qf) = ∂f

Proof.
Qπp,qf = πq,pQf and Qdf = dQf

It follows from Proposition that ∂̄2 = 0 if and only if ∂2 = 0. In general

d : Ep,q(X)→ Ep+q+1(X)

can be decomposed as

d =
∑

r+s=p+q+1

πr,s ◦ d = ∂ + ∂̄ + · · ·

If, however, d = ∂ + ∂̄, then

d2 = ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2

and since each operator projects to a different summand of εp+q+2(X) (in
which case the operators are said to be of different type), we obtain

∂2 = ∂∂̄ + ∂̄∂ = ∂̄2 = 0

If d = ∂ + ∂̄ then we say that the almost complex structure is integrable.

Theorem 5. The induced almost complex structure on a complex manifold
is integrable.

Theorem 6 ( Newlander-Nirenberg). Let (X, J) be an integrable almost
complex manifold. Then there exists a unique complex structure OX on X
which induces the almost complex structure J.

4 Homework

不要迷信讲义！ 不要迷信讲义！！ 不要迷
信讲义！！！ 学会独立判断，善于和同学交流。当然也欢迎来指出错误。
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(4.4.12)
由于|f(z)| < |z|在边界成立，由Rouché定理知z − f(z)与z在B(0, 1)内解个
数相同，即得证。
(4.4.13)
(i)由习题1.1.5知|z| = 1时|f(z)| = 1，从而由Rouché定理知f(z)−b与f(z)在B(0, 1)内
零点个数相同，可验证f(z)零点恰为a1, . . . , an，均在B(0, 1)中，从而得
证。
(ii)类似(i)由Rouché定理知b−f(z)与b在B(0, 1)内零点个数相同，即B(0, 1)内
无零点，而边界上|f(z)| = 1因此无零点，从而只需说明f(z)有n个零
点。f(z) − b的分子为关于z的n次多项式

∏n
k=1(ak − z) − b

∏n
k=1(1 − akz)，

当后半部分为0时|z| > 1，因此前半部分不为0，由此此多项式的根不可能
使后半部分为0，也即分母不为0，因此均为整个分式的根，从而得证。
(4.4.14)

利用辐角原理知 1
2πi

∫
|z|=R

f ′(z)
f(z)

dz = N，令z = Reiθ可得 1
2π

∫ 2π

0
z f
′(z)
f(z)

dθ =

N，取实部即可知实部最大值≥ N。
(4.4.17)
由定理4.4.6与连续性可知f(D) = G，于是对任何f(z0), z0 ∈ D，有f(z0) /∈
Γ。f(z)−f(z0)在D中根的个数为(不妨设两曲线定向相同) 1

2πi

∫
γ

f ′(z)
f(z)−f(z0)

dz =
1

2πi

∫
Γ

w
w−f(z0)

dw，而后者即为z = f(z0)在G中根的个数，因此为1，从而得

证。
(4.5.12)
当f为常数时，直接估算知成立。
当f不为常数且f(0) = 0时，由习题4.5.11知|f(Rz)| ≤ 2A(R)|z|

1−|z| ，再由最大模

原理知结论(由于Re f(z)为调和函数，其最大值在边界取到)。
当f(0) 6= 0时，令g(z) = f(z)− f(0)，则|f(z)| ≤ |g(z)| + |f(0)|，再利用上
一种情况可知

M(r) ≤ 2r

R− r
max
|z|=R

g(z) + |f(0)| ≤ 2r

R− r
A(R) +

2r

R− r
|f(0)|+ |f(0)|

化简得结论。
(4.5.13)
(i) 令ϕ(z) = z−1

z+1
，其将右半平面映射到B(0, 1)，且1映射到0，因此对w =

ϕ ◦ f利用Schwarz引理知|w(z)| ≤ |z|，此时f(z) = 1+w(z)
1−w(z)

。

第一个不等号：计算知Re f(z) = Re 1+w(z)
1−w(z)

= 1−|w(z)|2
|1−w(z)|2 ≥

1−|w(z)|
1+|w(z)| ≥

1−|z|
1+|z|。

第二个不等号：由实部与模定义知结论。
第三个不等号：计算知|f(z)| ≤ 1+|w(z)|

1−|w(z)| ≤
1+|z|
1−|z|。
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(ii) 由z0处等号成立可推出|w(z0)| = |z0|，从而w(z) = eiθz，代入即得证。
(4.5.15)
由于B(0, 1)为紧集，若其中有无穷多零点则存在聚点，因此f恒为0，矛

盾。由其有有限多零点，类似习题4.5.17右侧gg(z)，令h(z) = f(z)
g(z)
，其

在|z| = 1时模为1，且h(B(0, 1)) ⊂ B(0, 1)\{0}，考虑h与 1
h
可知|h(z)| = 1，

由习题2.2.2可知h(z)只能为常数，由模为1设其为eiθ，则f(z) = eiθg(z)。
由f(z)为整函数，若有非零根，会导致g(z)在某处趋于无穷，矛盾，因此
只能f(z) = eiθzn。
(4.5.17)
当f零点总重数为1时，设f(z1) = 0，利用定理4.5.6直接知结论，利用归纳
法，下假设f零点总重数为k − 1时结论成立。
当f零点总重数为k时，设f(z1)为k1重零点，可设f(z) = (z−z1)k1g(z)，g(z)其
他零点与f(z)相同，但z1不为零点，考虑h(z) = f(z)1−z1z

z1−z = (z−z1)k1−1g(z)(1−
z1z)，由于1 − z1z在B(0, 1)中无零点，h(z)只有z1的零点重数比f(z)少一
重，从而零点总重数为k − 1。利用归纳假设后两侧同乘

∣∣ z1−z
1−z1z

∣∣即得证。
(4.5.20)

记h(z) = f(z1)−f(z)

1−f(z1)f(z)

1−z1z
z1−z

1−z2z
z2−z ，由z1, z2均为f(z1) − f(z)零点可知h(z) ∈

H(B(0, 1))。|z| = 1时|h(z)| =
∣∣ f(z1)−f(z)

1−f(z1)f(z)

∣∣，由f(B(0, 1)) ⊂ B(0, 1)知模不

超过1，从而由最大模原理h(B(0, 1)) ⊂ B(0, 1)，由此|h(0)| ≤ 1，代入得
证。
(4.5.24)
记w(z) = z−i

z+i
，其为上半平面到B(0, 1)的全纯同构，由此构造ϕ : Aut(B(0, 1))→

Aut(C+)，ϕ(f) = w−1 ◦ f ◦ w，可知ϕ为群同构，由此可知Aut(C+)即为所
有w−1 ◦ f ◦ w，其中f ∈ Aut(B(0, 1))。
(4.5.22)

利用Schwarz-Pick定理可知
∣∣ f(0)−f(z)

1−f(0)f(z)

∣∣ ≤ |z|，记g(z) = f(0)−f(z)

1−f(0)f(z)
，利用g(z)替

换f(z)知要证的式子可化为|f(0)|z|2 − g(z)| ≤ |z||1 − f(0)g(z)|，同平方后
可进一步化为(|z|2 − |g(z)|2)(1− |z|2|f(0)|2) ≥ 0，从而成立。
(4.5.29)
通过平移可不妨设z0 = 0，在闭包在D中的某邻域B(0, r)展开为Taylor级
数z+

∑∞
n=2 anz

n。考虑使得an 6= 0的大于1的最小的n，记其为m。记fk(z)为f(z)迭
代k次的函数，可发现fk(z)可在邻域中展开为z+Namz

m+ . . .。由D有界可

设fk(z)有上界M，考虑B(0, r)上的积分可知|Namrm| =
∣∣ 1

2π

∫ 2π

0
fN(reiθ)e−imθdθ

∣∣，
由长大不等式知|Namrm| < M对任何N成立，与am 6= 0矛盾。
(4.5.30)

22



记g(z) = tan πf(z)
4
，可发现g(z) ∈ B(0, 1)且g(0) = 0，从而|g(z)| ≤ |z|。

| tanw| =
∣∣ eiw−e−iw

eiw+e−iw

∣∣ =
∣∣ e2iw−1

e2iw+1

∣∣，由于 |e2iw|−1
|e2iw|+1

≤
∣∣ e2iw−1

e2iw+1

∣∣，代入w = π
4
f(z)后化

简可得第二问的式子。
另一方面，利用| tanw| =

∣∣ e2iw−1
e2iw+1

∣∣可知tan |Rew| ≤ | tanw|，代入化简可得
第一问的式子。
(补充题)

记f(z) = sin z
z7−1
，在z = e

2kπi
7 时利用命题5.4.5知Res(f, z) = 7e

12kπi
7 sin

(
e

2kπi
7

)
，

从而所求积分为14πi
∑6

k=0 e
12kπi

7 sin
(
e

2kπi
7

)
。

(5.5.1)
(1) f(z) = z2+1

z4+1
为偶函数，可直接考虑(−∞,∞)上积分的值，利用推

论5.5.2可知其为2πi Res(f, e
πi
4 )+2πi Res(f, e

3πi
4 ) = 2πi( 1

2
√

2i
+ 1

2
√

2i
) =
√

2π，

从而所求积分为其一半，即
√

2
2
π。

(7) 被积函数为偶函数，因此可考虑实轴上积分。记f(z) = zeiaz

z2+b2
，利

用正实轴上方充分大半圆围道，其上积分值为2πi Res(f, bi) = πe−ab，而
由Jordan引理可知半圆部分在无穷远处积分趋于0，从而此即为实轴上积
分，由此所求结果为π

2
e−ab。

(5.5.1)
*f表示题目中的被积函数
(14) 考虑Im z ∈ (0, 2π), |Re z| < t的矩形区域边界，区域中只有πi处不全
纯，且t → ∞时左右边界积分趋于0，而上边界积分为下边界的−e2πip倍，
由此设积分结果为I可知(1−e2πip)I = 2πi Res(f, πi)，因此I = 2πi

1−e2πip
(−eπip) =

π
sin pπ
。

(15) 可发现Res(f, i) = (−i−1)p

2
,Res(f,−i) = (i−1)p

2
，由定理5.5.14取r = 1 −

p, s = p可知结论。

(17) 可发现Res(f, i) =
4√−4i

2i
,Res(f,−i) = −

4√4i
2i
，由定理5.5.14取r = 3

4
, s =

1
4
可知结论。

(21) 图示曲线上积分为0，而类似例5.5.12可知弧线上取极限积分为0，从

而实轴积分与虚轴积分相等，取实部知所求积分为Re
( ∫∞

0

log x+iπ
2

−x2−1
d(xi)

)
=

π
2

∫∞
0

1
x2+1

dx = π2

4
。

(29)类似例5.5.12知z = 1处先绕开再逼近结果不改变，因此
∫
|z|=1

log(z−1)
z

dz =

log(z − 1)
∣∣
z=0

= πi，令z = eiθ后取实部可知
∫ 2π

0
log |1 − eiθ|dθ = 0，由对称

性可知
∫ π

0
log |1− eiθ|dθ = 0，而|1− eiθ| = 2 sin θ

2
，代入换元即可知结论。

(6.1.2)
不妨设z0 ∈ B(a, r)，由于亚纯性，可取关于边界对称的域D′ ⊂ D使得
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其在B(a, r)内除了z0外不包含其他f(z) = A的点或极点。在其中记g(z) =
z−w0

z−z0 (f(z) − A)，可发现g(D′ ∩ ∂B(a, r)) ⊂ ∂B(0, R)且在其中全纯，从而

利用Schwarz对称原理可延拓。由去掉极点后连续性可知在域中零点有极限
点的亚纯函数亦只能为0，在D′在B(a, r)外的部分仍有g(z) = z−w0

z−z0 (f(z) −
A)，由g(w0)与g(z0)关于∂B(0, R)对称可知g(w0)为非零实数，因此只能w0为f的
一阶极点。由于f(z) = A + z−z0

z−w0
g(z)，g(z)在D′上全纯，可知f ′(z0) =

g(z0)
z0−w0

，Res(f, w0) = (w0 − z0)g(w0)，又由g(z0)与g(w0)关于∂B(0, R)对称

可知结论。
(6.1.3)
若f不恒为0，可取关于∂B(0, r)对称的D使得f在D∩B(0, R)\B(0, r)上恒不
为0，由此利用Schwarz对称原理可将f延拓至D上，但此时利用唯一性定理
可知f恒为0，矛盾。
(6.1.4)
与习题6.1.3证明相同。
(6.2.3)
不妨设z0 = 1，否则考虑级数

∑∞
n=0 an

zn

zn0
即可。

类似定理6.2.3证明可将幂级数延拓为B(0, δ), δ > 1上的亚纯函数f(z)，可
设其在1处的Laurent展开为 b

z−1
+
∑∞

n=0 bn(z − 1)n，记g(z) = f(z) − b
z−1
，

可发现其在B(0, δ)全纯。而其在0处的展开为
∑∞

n=0(an + b)zn，由收敛半径
大于1考虑1处可知limn→∞ an + b = 0，从而limn→∞ an = −b，因此两项之
比极限为1。
(6.2.9)
类似习题6.2.3知存在b1, . . . , bm使

∑∞
n=0 anz

n+
∑m

k=1
bk

zk−z
收敛，展开后取z =

1可知limn→∞ an −
∑m

k=1 bkz
−n−1
k = 0，从而limn→∞ |an| ≤

∑m
k=1 |bk|，由此

可知有界。 (6.2.10)参见丁袭明讲义（已发在群里）
(7.1.3)
由Montel定理知fn有内闭一致收敛子列，设其收敛至f，记gn = fn − f，
则limn→∞ gn(zk) = 0,∀k。在任何紧集K上，若gn不一致收敛于0，由于
其仍为正规族，存在一致收敛且收敛结果不为0的子列，假设收敛到h，
由h(zk) = 0, ∀k即与唯一性定理矛盾，从而得证。
(7.1.4)
类似习题4.1.12，对D中任何紧集K，可扩张至紧集K ′使得其包含z0且其
中任意两点存在长度不超过M的道路。取r使得K ′中每点z作B(z, r)取并

后仍在D中，利用习题3.4.9可知f ′(z) = 1
πr

∫ 2π

0
Re(z + reiθ)e−iθdθ，取模可

得|f ′(z)| ≤ 2
r

Re f(z) ≤ 2
r
|f(z)|。从而利用微分方程得K ′中任何f(z)的模不

超过|f(z0)|e2M/r，因此内闭一致有界，由Montel定理知为正规族。
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第二条不成立的反例为fn(z) = n。
(7.1.6)

由D有界可知取M0 = M+m(D)
2
即有D上|f(z)| ≤ |f(z)|2+1

2
的积分不超过M0。

对D中任何紧集K，类似习题4.1.12可取r使得K中每点z作B(z, r)取并后仍
在D中，利用平均值原理可知

|f(z)| = 1

πr2

∣∣∣∣ ∫∫
B(z,r)

f(w)dxdy

∣∣∣∣ ≤ 1

πr2

∫∫
B(z,r)

|f(w)|dxdy ≤ M0

πr2

从而内闭一致有界，由Montel定理知为正规族。
(7.2.1)
记ϕ将D双全纯映射至B(0, 1)，则ϕ ◦ f为有界整函数，从而为常值，由ϕ为
单射知f为常值。
(7.2.2)
由平移不妨设a = 0，记题中不等式左右分别为r, R。
考虑ϕ : B(0, 1) → D,ϕ(z) = rz，可发现f ◦ ϕ为保持原点的B(0, 1) →
B(0, 1)映射，利用Schwarz引理可知(f ◦ ϕ)′(0) ≤ 1，即rf ′(a) ≤ 1，从而不
等式左半边得证。
考虑ψ : D → B(0, 1), ψ(z) = z

R
，可发现ψ ◦ f−1为保持原点的B(0, 1) →

B(0, 1)映射，利用Schwarz引理可知(ψ ◦ f−1)′(0) ≤ 1，即 (f−1)′(0)
R

≤ 1，
由(f−1)′(0) = 1

f ′(0)
可知得不等式右半边。

(7.2.3)

记ϕ(z) = z−f(p)

1−f(p)z
，考虑ϕ ◦ f ◦ g−1，可发现其为0映射到0的B(0, 1)自同

构，从而其为eiθz，从而代换z为g(z)可知ϕ(f(z)) = eiθg(z)。取z = a后
两边求导得f ′(a)|f(p)|2 = eiθg′(a)，由f ′(a) > 0可知eiθ与g′(a)方向相反，从

而g(z) = e−iθϕ(f(z)) = g′(a)
|g′(a)|ϕ(f(z))，即为欲证的式子。
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(Stein P127)
1.
Notice that

A(ξ)−B(ξ) =

(∫ t

−∞
+

∫ ∞
t

)
f(x)e−2πiξ(x−t) dx

=

∫ ∞
−∞

f(x)e−2πiξ(x−t) dx

= e2πiξt

∫ ∞
−∞

f(x)e−2πiξx dx

= e2πiξtf̂(ξ) = 0.

Then A(ξ) = B(ξ), ∀ε ∈ R. Let

F (z) =

{
A(z), Im(z) > 0,

B(z), Im(z) < 0.

Then by (a) we have F continuous on

{
Im(z) = 0

}
. Notice that for Im(z) =

b > 0,∫ t

−∞
| ∂
∂z
f(x)e−2πiz(x−t)| dx =

∫ t

−∞
|f(x) ·

(
−2πi(x− t)e−2πiz(x−t))| dx

= 2π

∫ t

−∞
|f(x)| · (t− x)e−2πb(t−x) dx

(y = t− x) 6 2π

∫ +∞

0

A

1 + (y − t)2
· ye−2πby dy which is bounded.

Also, ∫ t

−∞
| ∂
∂z
f(x)e−2πiz(x−t)| dx =

∫ t

−∞
0 dx = 0.

Then by dominated convergence theorem, F ′(z) exists while ∂F (z)/∂z = 0
when Im(z) > 0, which yields that F is holomorphic in the upper half-plane.
The same is true for the lower half-plane similarly. With the continuity on{

Im(z) = 0

}
and Morera theorem, we have F entire.
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Notice that for Im(z) = b > 0,

|F (z)| 6
∫ t

−∞
|f(x)| · |e2πiz(t−x) dx|

=

∫ t

−∞
|f(x)|e−2πb(t−x) dx

6
∫ +∞

−∞
|f(x)| dx which is bounded.

The same is true for the lower half-plane similarly. With the continuity on{
Im(z) = 0

}
, we have F bounded in C.

By Liouville theorem, F is constant. Let z = ib, b → +∞, by dominated
convergence theorem, we have F ≡ 0.
By (b) we have F (0) = 0, thus∫ t

−∞
f(x) dx = 0.

Notice the equation above holds for all t ∈ R. With the continuity of f , we
have f ≡ 0.
3.
To prove

1

π

∫ +∞

−∞

a

a2 + x2
e−2πixξ dx = e−2πa|ξ|,

let
f(z) =

a

a2 + z2
e−2πizξ.

For ξ 6 0, we choose the contour as
By residue theorem we have∫

γtγR
f(z) dz = 2πi · Res(f, ai) = πe2πξa.
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Let R→∞, we have∫
γ

f(z) dz →
∫ +∞

−∞

a

a2 + x2
e−2πixξ dx.

|
∫
γR

f(z) dz| = |
∫ π

0

ae−2πiξReiθ

a2 +R2e2iθ
·Rieiθ dθ|

6
∫ π

0

ae2πξR sin θ

R2 − a2
·R dθ

6
∫ π

0

a

R2 − a2
·R dθ → 0.

Then
1

π

∫ +∞

−∞

a

a2 + x2
e−2πixξ dx = e2πaξ, ∀ξ 6 0.

For ξ > 0, choose the contour as the lower semi-circle instead(be aware of
the direction of the path), we have

1

π

∫ +∞

−∞

a

a2 + x2
e−2πixξ dx = −2πi · Res(f,−ai) = e−2πaξ, ∀ξ > 0.

Then it holds that

1

π

∫ +∞

−∞

a

a2 + x2
e−2πixξ dx = e−2πa|ξ|.

Notice that a
a2+z2

e−2πizξ is holomorphic in

{
|Im(z)| < b < a

}
, and it suffices

that

| a

a2 + z2
e−2πizξ| 6 A

1 + x2
, for

{
ξ 6 0

0 6 Im(z) 6 b
or

{
ξ > 0

−b 6 Im(z) < 0
.

Then by Fourier inverse transforms, we have∫ +∞

−∞
e−2πa|ξ|e2πiξx dx =

1

π
· a

a2 + x2
.

6. Let

f(z) =
1

π

a

a2 + z2
.
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It’s obvious that f ∈ Fa
2
.

By Exercise 3 we have
f̂(ξ) = e−2πa|ξ|.

By Possion summation formula we have

+∞∑
n=−∞

f(n) =
+∞∑

n=−∞

f̂(n).

Thus

1

π

+∞∑
n=−∞

a

a2 + n2
=

+∞∑
n=−∞

e−2πa|n|

= 2
+∞∑
n=0

e−2πan − 1

=
2

1− e−2πa
− 1

= cothπa.

8.
By inversion formula, we have

f(x) =

∫ M

−M
f̂(ξ)e−2πixξ dξ =

∫ M

−M
f̂(ξ)

(
∞∑
n=0

(−2πi)n · xn · ξn

n!

)
dξ =

∞∑
n=0

(
xn ·

∫ M

−M
f̂(ξ)

(−2πi)n · ξn

n!
dξ

)
.

By the uniqueness of Taylor expansion, we have

an =

∫ M

−M
f̂(ξ)

(−2πi)n · ξn

n!
dξ =

(−2πi)n

n!

∫ M

−M
f̂(ξ) · ξn dξ.

Then

|(n!an)
1
n | = 2π|

∫ M

−M
f̂(ξ) · ξn dξ|

1
n

6 2πM

(∫ M

−M
|f̂(ξ) dξ|

) 1
n

→ 2πM.
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In the converse direction, by Cauchy-Hadamard theorem and Stirling theo-
rem, the convergence radius of

∑∞
n=0 anz

n is

1

lim supn→∞ |an|
1
n

> lim
n→∞

(n!)
1
n

2πM
= lim

n→∞

(2πn)
1
2n · n

2πMe
=∞.

Then f is holomorphic in C.
∀ε > 0, ∃N subject to

|an| 6
(2π(M + ε))n

n!
, ∀n > N.

Then

|f(z)| 6
N∑
n=0

|anzn|+
∞∑

n=N+1

(2π(M + ε))n

n!
|z|n

= e2π(M+ε)|z| +
N∑
n=0

(
|an| −

(2π(M + ε))n

n!

)
|z|n

6 Aε · e2π(M+ε)|z|.

10.
Let ζ = ξ + ηi, we have∫ +∞

−∞
| ∂
∂ζ
f(x)e−2πixζ dx| 6

∫ +∞

−∞
2π|x|ce−ax2e2πηx dx

= 2πce
π2η2

a ·
∫ +∞

−∞
|x|e−a(x−πη

a
)2 dx finite.

And ∫ +∞

−∞
| ∂
∂ζ
f(x)e−2πixζ dx| =

∫ +∞

−∞
0 dx = 0.

By dominated convergence theorem, we have f̂(ζ) derivable with respect to
ζ in C, while

∂

∂ζ
f̂ = 0.

Then f̂(ζ) is entire.
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Notice that

|f̂(ξ + ηi)| = |
∫ +∞

−∞
f(x)e−2πix(ξ+ηi) dx|

(rectangle contour) = |
∫ +∞

−∞
f(x− π

b
ξi)e−2πi(x−π

b
ξi)(ξ+ηi) dx|

6
∫ +∞

−∞
|f(x− π

b
ξi)e−2πi(x−π

b
ξi)(ξ+ηi) dx|

6
∫ +∞

−∞
ce−ax

2+π2ξ2

b e2π(xη−π
b
ξ2) dx

= ce−
π2ξ2

b
+π2η2

a ·
∫ +∞

−∞
e−a(x−πη

a
)2 dx

= ce−
π2ξ2

b
+π2η2

a ·
√
π

a

= c′e−aξ
2+b′η2 .
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5 Advertisement Moment

I strongly reccomend you considering about learning Geometry,
which is really intriguing and fanscinating further!!
And if you are interested in Geometric Analysis, welcome to
talk with me about this. And I suppose Prof. Li, who is really a
master and an excellent expert in this field, would also be glad
if you contact him to learn about Geometric Analysis!!
In addition, I am going to set up a reading seminar to learn
about some Ricci flow theory. Anyone who is interested are
welcomed to participate. And I am willing to offer help if any-
one are determined to learn some basic Differential Manifold or
Differential Geometry and want some guidance.
Anyway, feel free to chat with me for further learning plan.
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