S5 A S
Alice and Bob et al.

2022 £ 10 H 6 H

1 ERESH

Y0 R RIERCERY, FDifEhttps://gaia.cs.umass.edu/kurose_ross/wireshark.php. X
TIERARZE 7, %75 (P, TLS %) AUNEFRATER. RN LETEFRREHHY 8.1
IRATEATANFE, B R AR (R FR AT

2 SEER—2E) tip

L SIS TRESCHIEE, UM IRITAIARERIR 55 48— MO AR DA s ST AT (7890 REATHRIED
Pt AT M2 g N, RSB VPS B HRIINE /TR A E(S.
2. HRIISERONHALR 200 OK TREMEANEERHIR AL E. —R(E F12 MFHAYRIAS R A,

3. HRrSEER M T ESMG DNS, RIGERRZEITHURNSKIRES R, N7 ERZHATRE, R
AIEFRER DNS 23 HAth /33t DNS it

3 Wireshark I8N 1ETL
i H Wireshark fH ZAFUE A MAVNEILIRSIEIR T, AHEERIL 8% 7] ALIRESLER
FREE I
« Display Filter (S£5%FIfY)
o Capture Filter ([F] BPF, tcpdump 1&72%)

Hr, Display Filter XA EEMHEAR, 8T Capture Filter HIRZIEERE, fEARNE
SR TIEIE. SRS E L.

Capture Filter S2JFRUGHT BPF iE%, ETIMEZ AT EE, 1l AUERBEREAPHEIR.
XHSE?.

'https://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html

?https://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html

M The Wireshark Network Analyzer
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AW I @® XE | ZETsxEQQar

(W [xpply a display filter . <Cui/> | =]

Welcome to Wireshark

Capture

...using this filter: [[L‘ﬂ\\tf a capture filter ~ | | All interfaces shown ¥

AHhIEE" 10

A HFEE 9

FHhEE 8 -
VEthernet (Default Switch) MA
IWLAN | Y SN
AHhERE 2

AR 1 -
Adapter for loopback traffic capture _sA_sn—MA_.

Learn

User's Guide - Wiki - Questions and Answers - Mailing Lists

You are running Wireshark 3.6.7 (v3.6.7-0-g4a304d7ec222). You receive automatic updates.
Ready to load or capture No Packets Profile: Default

K 1: Wireshark W5 HE, LAWK EHEPR]DIEES Display Filter, HRIAE GHEHR] DUEE
Capture Filter.

AP, HBLIEH TCP B H RS 80 AIEL, AT IR BN N IEZE N :
Display Filter Capture Filter

tcp.dstport == 80 | tcp dst port 80

4 IPv6 tHXNE

Hl, fERMMZIAES, #A TREKPREHRZ IPve MIAEE G RAY IPva. JATEE LAY
Khute T HEMARMER 1Pva MENBIFRITER. KRR ENAR. ERFTILRESBHEL I
BT T A5, (HRARBEFEE.

NHZBE] IPv6 AHSC AN MR T %

1. KM 1Pve thilteR, [FHRE| IPv4: Eofthide S B —RMiE (7T BT R N RS0 7T
%)
2. FREBLMHH 1IPv6 AR (R, %8 top-down HUHEEIREZRIMLEE)
X B A — R AT REFR R B MY tip:
« IPv6 2K 128bit, DA 16bit A—H, FLHLES “7 B, 28 8 H. BRI eRE
AP ABGE TS, E— “7, f5RATURAE—R, g HEEsE—1 “7
2001 :0db8:0000:0000:0000:0000:0000:0001 A] A E 2001:db8::1. *

o WA IPv6 HMEE I nslookup -type=AAAA www.ustc.edu.cn

31E DNS SE8eRh 78 7 — 4yl O&Hd IPv6 BhlAR), 1E IP L shse 77—
4¥ %% Wlhttps://zh.wikipedia.org/wiki/IPv6

o 7E Wireshark CHFZRAYELHIS I8 IPv6 FHOC G FRBATBIARIN MR

ipv6.src

ip.src

ipv6.dst
ip.dst

ipv6.addr

ip.addr

PRATAT DAL ipv6.src == 2001:db8: :1 HIETENIT HEAH M [£l

Wireshark Lab:
Getting Started v7.0

Supplement to Computer Networking: A Top-Down
Approach, 7" ed., J.F. Kurose and K.W. Ross

A TOP-DOWN APPROACH
<
S

KUROSE * ROSS

“Tell me and I forget. Show me and I remember. Involve me and 1
understand.” Chinese proverb

© 2005-2016, J.F Kurose and K.W. Ross, All Rights Reserved

One’s understanding of network protocols can often be greatly deepened by “seeing
protocols in action” and by “playing around with protocols” — observing the sequence of
messages exchanged between two protocol entities, delving down into the details of
protocol operation, and causing protocols to perform certain actions and then observing
these actions and their consequences. This can be done in simulated scenarios or in a
“real” network environment such as the Internet. In the Wireshark labs you’ll be doing in
this course, you’ll be running various network applications in different scenarios using
your own computer (or you can borrow a friends; let me know if you don’t have access to
a computer where you can install/run Wireshark). You’ll observe the network protocols
in your computer “in action,” interacting and exchanging messages with protocol entities
executing elsewhere in the Internet. Thus, you and your computer will be an integral
part of these “live” labs. You’ll observe, and you’ll learn, by doing.

In this first Wireshark lab, you’ll get acquainted with Wireshark, and make some simple
packet captures and observations.

The basic tool for observing the messages exchanged between executing protocol entities
is called a packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”)
messages being sent/received from/by your computer; it will also typically store and/or
display the contents of the various protocol fields in these captured messages. A packet
sniffer itself is passive. It observes messages being sent and received by applications and
protocols running on your computer, but never sends packets itself. Similarly, received
packets are never explicitly addressed to the packet sniffer. Instead, a packet sniffer
receives a copy of packets that are sent/received from/by application and protocols
executing on your machine.

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols
(in this case, Internet protocols) and applications (such as a web browser or ftp client)
that normally run on your computer. The packet sniffer, shown within the dashed
rectangle in Figure 1 is an addition to the usual software in your computer, and consists

of two parts. The packet capture library receives a copy of every link-layer frame that
is sent from or received by your computer. Recall from the discussion from section 1.5 in
the text (Figure 1.24") that messages exchanged by higher layer protocols such as HTTP,
FTP, TCP, UDP, DNS, or IP all are eventually encapsulated in link-layer frames that are
transmitted over physical media such as an Ethernet cable. In Figure 1, the assumed
physical media is an Ethernet, and so all upper-layer protocols are eventually
encapsulated within an Ethernet frame. Capturing all link-layer frames thus gives you all
messages sent/received from/by all protocols and applications executing in your
computer.

packet sniffer

i packet

L application (e.g., www
! analyzer : ERRle el browser, ftp client)
| — a I
i i operating
i | system Transport (TCP/UDP)
i | packet : Network (IP)
% ' | capture _copy of all Ethernet Link (Ethernet)
—_— I (pcap) 1 frames sent/received
i pcap 0 Physical
—
to/from network to/from network

Figure 1: Packet sniffer structure

The second component of a packet sniffer is the packet analyzer, which displays the
contents of all fields within a protocol message. In order to do so, the packet analyzer
must “understand” the structure of all messages exchanged by protocols. For example,
suppose we are interested in displaying the various fields in messages exchanged by the
HTTP protocol in Figure 1. The packet analyzer understands the format of Ethernet
frames, and so can identify the IP datagram within an Ethernet frame. It also understands
the IP datagram format, so that it can extract the TCP segment within the IP datagram.
Finally, it understands the TCP segment structure, so it can extract the HTTP message
contained in the TCP segment. Finally, it understands the HTTP protocol and so, for
example, knows that the first bytes of an HTTP message will contain the string “GET,”
“POST,” or “HEAD,” as shown in Figure 2.8 in the text.

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs,
allowing us to display the contents of messages being sent/received from/by protocols at
different levels of the protocol stack. (Technically speaking, Wireshark is a packet
analyzer that uses a packet capture library in your computer). Wireshark is a free network
protocol analyzer that runs on Windows, Mac, and Linux/Unix computer. It’s an ideal
packet analyzer for our labs — it is stable, has a large user base and well-documented
support that includes a user-guide (http://www.wireshark.org/docs/wsug_html chunked/),

! References to figures and sections are for the 7™ edition of our text, Computer Networks, A Top-down

Approach, 7" ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2016.

man pages (http://www.wireshark.org/docs/man-pages/), and a detailed FAQ
(http://www.wireshark.org/faq.html), rich functionality that includes the capability to
analyze hundreds of protocols, and a well-designed user interface. It operates in
computers using Ethernet, serial (PPP and SLIP), 802.11 wireless LANs, and many other
link-layer technologies (if the OS on which it's running allows Wireshark to do so).

Getting Wireshark

In order to run Wireshark, you will need to have access to a computer that supports both
Wireshark and the libpcap or WinPCap packet capture library. The libpcap software will
be installed for you, if it is not installed within your operating system, when you install
Wireshark. See http://www.wireshark.org/download.html for a list of supported
operating systems and download sites

Download and install the Wireshark software:
* Go to http://www.wireshark.org/download.html and download and install the
Wireshark binary for your computer.
The Wireshark FAQ has a number of helpful hints and interesting tidbits of information,
particularly if you have trouble installing or running Wireshark.

Running Wireshark

When you run the Wireshark program, you’ll get a startup screen that looks something
like the screen below. Different versions of Wireshark will have different startup screens
—so don’t panic if yours doesn’t look exactly like the screen below! The Wireshark
documentation states “As Wireshark runs on many different platforms with many
different window managers, different styles applied and there are different versions of the
underlying GUI toolkit used, your screen might look different from the provided
screenshots. But as there are no real differences in functionality these screenshots should
still be well understandable.” Well said.

L2 e &) & It

Welcome to Wireshark

/Users/kurose/templ/file2.pcapng (not found)

/Users /kurose/Umass/book/wireshark_labs_6th_ed/traces/ethernet-ethereal-trace-1 (6707 Bytes)
JUsers/kurose/Umass/book/wireshark_labs_6th_ed/traces /http-ethereal-trace-5 (12 KB)
JUsers/kurose/Umass/book/wireshark_labs_6th_ed/traces/http-ethereal-trace-4 (26 KB)

/Users /kurose/Umass/book/wireshark_labs_6th_ed/traces /http-ethereal-trace-3 (7151 Bytes)
/Users /kurose/Umass/book/wireshark_labs_6th_ed/traces/dhcp-ethereal-trace-1 (11105 Bytes)

...using this filter:

Wi-Fi: en0 Nrinn
p2p0 -
Loopback: (00 MWW

User's Guide - Wiki - Questions and Answers - Mailing Lists

You are running Wireshark 2.0.5 (v2.0.5-0-ga3be9c6 from master-2.0).

Figure 2: Initial Wireshark Screen

There’s not much interesting on this screen. But note that under the Capture section,
there is a list of so-called interfaces. The computer we’re taking these screenshots from
has just one real interface — “Wi-Fi en0,” which is the interface for Wi-Fi access. All
packets to/from this computer will pass through the Wi-Fi interface, so it’s here where we
want to capture packets. On a Mac, double click on this interface (or on another
computer locate the interface on startup page through which you are getting Internet
connectivity, e.g., mostly likely a WiFi or Ethernet interface, and select that interface.

Let’s take Wireshark out for a spin! If you click on one of these interfaces to start packet
capture (i.e., for Wireshark to begin capturing all packets being sent to/from that
interface), a screen like the one below will be displayed, showing information about the
packets being captured. Once you start packet capture, you can stop it by using the
Capture pull down menu and selecting Stop.

command
menus

display filter
specification

<

listing of

captured
packets

details of <

selected
packet
header

packet content
in hexadecimal
and ASCII

= E3

{Untitled) - Wireshark
Ele Edt Yew Go Capture &nalyze Statistics Help

BWeeM pUx%8 Beso7 2 EHEQAQ D]

Eiker: v Expression.., Clear Apply

-

(.

L
Ho. - | Time | souwce | estination [Protocol [nfo 4
1 0.000000 192.168.1.46 128.121.50.122 TCP 1163 > http [SvN] Seg=0 Len=0 MSS=1460

2 0.127987

128.121.50.122 192.168.1.46 TCP hitp > 1163 [S¥N, AcKk] Seg=0 Ack=1l win=37

Ted.lol. Su. 1ae
192.168.1.46

Frame 4 (710 bytes on wire, 710 bytes captured)
Ethernet II, Src: Netgear_61:8e:6d (00:09:5h:€1:8e!6d), Dst: westellT_9f:92:h9 (00:0f:db:9f:92:b9)
Internet Protocol, Src: 192.168,1.46 (192.168.1.46), Dst: 128.121,50.122 (128.121.50.122)

B
-l Hypertext Transfer Protocol
[GET /hews/ HTTR/L.1\r\n
Host: www.wireshark.orgirin
User-agent: Mozilla/5.0 (windows; U; windows NT 5.1; en-us; rv:il.B8.1.40 Gecko/ /20070515 Firefox/2.0.0.4"
Aaccept: text/wml,applicationml, application/xhtml+xm], text html; g=0. %, text/plain; g=0. 8, image/png, */;
Accept-Language: en-us,en;g=0. 5%y
accept-Encoding: gzip,deflatehrin
Accept-Charset: IS0-8859-1,utf-8;qg=0.7,%;g=0.7r\n
keep-alive: 300%ryn
Connection: keep-aliveirin
referer: hitp:/Jeew.wireshark. org/fag. htm1srin
Cookie: __utma=87653150.62471437.1181007382.11810073682.118116%142.2; __utmz=876353150,1181007382.1. L. utr
\rwn

| | 0|
0000 00 OF db OF 92 b9 00 09 55 61 Ba 6d 08 00 45 00 =
0010 02 b& Of 25 40 00 B0 06 74 51 cO a8 Ol 2e 80 79 .. .

0020 32 7a 04 8b 00 50 ed bc B8e ib d4e c6 1 18 50 18 22...P.. ..N...P.

0030 FF FF 77 74 00 00 47 45 54 20 2f 6e 65 77 73 2f ..wr..GE —
0040 20 48 54 54 50 2F 31 2e 31 Od 03 48 6F 73 74 3a HTTR/L.

0050 20 77 77 77 28 77 63 72 65 73 68 61 72 6b 2e 6F www.wir

0060 72 67 0d Oa 55 73 65 72 2d 41 67 65 6e 74 3a 20 rg..User

0070 4d &F 7a 69 6c Bc GL 2 35 2e 30 20 28 57 69 Ae Mazillas

0080 64 &F 77 73 3b 20 55 3b 20 57 69 6e 64 6F 77 73 dows; U;

0090 20 4e 54 20 35 2e 31 3b 20 65 6e 2d 55 53 3b 20 NT 5.1;

0020 72 76 3a 31 2e 38 2e 31 2e 34 20 20 47 65 63 6b rvil.8.1 .4) Geck

00bo 6F 2f 32 30 30 37 30 35 31 35 20 46 69 72 65 66 0/200705 15 Firef =]
Fill: "C/\DOCUME 1\ PAULAW~ 1\ OCAL S~ 11T srmp\ether <1:0a00324" 453 KB 00:00:... | P: 671 D: 671 M: O Drops: 0 /

Figure 3: Wireshark Graphical User Interface, during packet capture and analysis

This looks more interesting! The Wireshark interface has five major components:

The command menus are standard pulldown menus located at the top of the

window. Of interest to us now are the File and Capture menus. The File menu
allows you to save captured packet data or open a file containing previously
captured packet data, and exit the Wireshark application. The Capture menu
allows you to begin packet capture.

The packet-listing window displays a one-line summary for each packet
captured, including the packet number (assigned by Wireshark; this is not a
packet number contained in any protocol’s header), the time at which the packet
was captured, the packet’s source and destination addresses, the protocol type,
and protocol-specific information contained in the packet. The packet listing can
be sorted according to any of these categories by clicking on a column name. The
protocol type field lists the highest-level protocol that sent or received this packet,
1.e., the protocol that is the source or ultimate sink for this packet.

The packet-header details window provides details about the packet selected
(highlighted) in the packet-listing window. (To select a packet in the packet-
listing window, place the cursor over the packet’s one-line summary in the
packet-listing window and click with the left mouse button.). These details
include information about the Ethernet frame (assuming the packet was
sent/received over an Ethernet interface) and IP datagram that contains this
packet. The amount of Ethernet and IP-layer detail displayed can be expanded or
minimized by clicking on the plus minus boxes to the left of the Ethernet frame or
IP datagram line in the packet details window. If the packet has been carried over
TCP or UDP, TCP or UDP details will also be displayed, which can similarly be
expanded or minimized. Finally, details about the highest-level protocol that sent
or received this packet are also provided.

The packet-contents window displays the entire contents of the captured frame,
in both ASCII and hexadecimal format.

Towards the top of the Wireshark graphical user interface, is the packet display
filter field, into which a protocol name or other information can be entered in
order to filter the information displayed in the packet-listing window (and hence
the packet-header and packet-contents windows). In the example below, we’ll
use the packet-display filter field to have Wireshark hide (not display) packets
except those that correspond to HTTP messages.

Taking Wireshark for a Test Run

The best way to learn about any new piece of software is to try it out! We’ll assume that
your computer is connected to the Internet via a wired Ethernet interface. Indeed, I
recommend that you do this first lab on a computer that has a wired Ethernet connection,
rather than just a wireless connection. Do the following

1.

2.

Start up your favorite web browser, which will display your selected homepage.

Start up the Wireshark software. You will initially see a window similar to that
shown in Figure 2. Wireshark has not yet begun capturing packets.

To begin packet capture, select the Capture pull down menu and select Interfaces.
This will cause the “Wireshark: Capture Interfaces” window to be displayed, as
shown in Figure 4.

Description P Packets Packets/s
E#] Intel(R) 82567LM Gigabit Network Connection fe80:8442:1239:ab19:74ea 28 0 [Start| | Options | | Details |
] Microsoft 192.168.1.100 17 0 |[Start| | Options | | Details |

Figure 4: Wireshark Capture Interface Window

4. You’ll see a list of the interfaces on your computer as well as a count of the
packets that have been observed on that interface so far. Click on Start for the
interface on which you want to begin packet capture (in the case, the Gigabit
network Connection). Packet capture will now begin - Wireshark is now
capturing all packets being sent/received from/by your computer!

5. Once you begin packet capture, a window similar to that shown in Figure 3 will
appear. This window shows the packets being captured. By selecting Capture
pulldown menu and selecting Stop, you can stop packet capture. But don’t stop
packet capture yet. Let’s capture some interesting packets first. To do so, we’ll
need to generate some network traffic. Let’s do so using a web browser, which
will use the HTTP protocol that we will study in detail in class to download
content from a website.

6. While Wireshark is running, enter the URL:
http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html
and have that page displayed in your browser. In order to display this page, your
browser will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP
messages with the server in order to download this page, as discussed in section
2.2 of the text. The Ethernet frames containing these HTTP messages (as well as
all other frames passing through your Ethernet adapter) will be captured by
Wireshark.

7. After your browser has displayed the INTRO-wireshark-filel.html page (it is a
simple one line of congratulations), stop Wireshark packet capture by selecting
stop in the Wireshark capture window. The main Wireshark window should now
look similar to Figure 3. You now have live packet data that contains all protocol
messages exchanged between your computer and other network entities! The
HTTP message exchanges with the gaia.cs.umass.edu web server should appear
somewhere in the listing of packets captured. But there will be many other types
of packets displayed as well (see, e.g., the many different protocol types shown in
the Protocol column in Figure 3). Even though the only action you took was to
download a web page, there were evidently many other protocols running on your
computer that are unseen by the user. We’ll learn much more about these
protocols as we progress through the text! For now, you should just be aware that
there is often much more going on than “meet’s the eye”!

8. Type in “http” (without the quotes, and in lower case — all protocol names are in
lower case in Wireshark) into the display filter specification window at the top of
the main Wireshark window. Then select Apply (to the right of where you entered
“http””). This will cause only HTTP message to be displayed in the packet-listing
window.

9. Find the HTTP GET message that was sent from your computer to the
gaia.cs.umass.edu HTTP server. (Look for an HTTP GET message in the “listing
of captured packets” portion of the Wireshark window (see Figure 3) that shows
“GET” followed by the gaia.cs.umass.edu URL that you entered. When you
select the HTTP GET message, the Ethernet frame, IP datagram, TCP segment,
and HTTP message header information will be displayed in the packet-header
window?. By clicking on ‘+* and ‘-* right-pointing and down-pointing arrowheads
to the left side of the packet details window, minimize the amount of Frame,
Ethernet, Internet Protocol, and Transmission Control Protocol information
displayed. Maximize the amount information displayed about the HTTP protocol.
Your Wireshark display should now look roughly as shown in Figure 5. (Note, in
particular, the minimized amount of protocol information for all protocols except
HTTP, and the maximized amount of protocol information for HTTP in the
packet-header window).

10. Exit Wireshark

Congratulations! You’ve now completed the first lab.

* Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained within a
TCP segment, which is contained (encapsulated) in an IP datagram, which is encapsulated in an Ethernet
frame. If this process of encapsulation isn’t quite clear yet, review section 1.5 in the text

839 45. 687572 128.119.245.12 192.168.1.101

841 45.739188 128.119.245.12 192.168.1.101

848 48.689680 128.119.245.12 192.168.1.101

564 HTTP/1.1 404 Not Found (text/html)

564 HTTP/1.1 404 Not Found (text/html)

564 HTTP/1.1 404 Not Found (text/html)

< | "

= Frame 835: 489 bytes on wire (3912 bits), 489 bytes captured (3912 bits)

Ethernet II, Src: HonHaiPr_Od:ca:8f (00:22:68:0d:ca:8f), Dst: Cisco-Li_45:1f:1b (00:22:6b:45:1f:1b)
®
@ Transmission Control Protocol, Src Port: 57522 (57522), Dst Port: http (80), Seq: 1, Ack: 1, Len: 435
-/ Hypertext Transfer Protocol
+ GET /wireshark-1abs/INTRO-wireshark-filel.html HTTP/1.1\r\n
Host: gaia.cs.umass.edu\r\n

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,%/%;q=0.8\r\n
Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: IS0-8859-1,utf-8;q=0.7,%;q=0.7\r\n

Keep-Alive: 115\r\n

connection: keep-alive\r\n

\r\n

[Full request URI: http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-filel.html]

0000 45 1f 1b 00 08 00 45 00

(Xm0l db 29 13 40 00 80 06

[Z{ 5 Oc e0 b2 00 50 ca 16 89 b3 d9 41 bl 83 50 18

[EIRI0 29 39 5f 00 00 47 45 54 20 2f 77 69 72 65 73| @ cc

[(WZIEN68 61 72 6b 2d 6c 61 62 73 2f 49 4e 54 52 4f 2d hark-1ab s/INTRO-]
nncn &0 = 2 Ebh_od ¢ o = o - S
@ | Frame (frame), 489 bytes Packets: 850 Displayed: 132 Marked: 0 Dropped: 0

user-agent: Mozilla/5.0 (windows; U; windows NT 6.1; en-us; rv:1.9.2.22) Gecko/20110902 Firefox/3.6.22 (.NET CLR 3.5.30729)\r\n

Profile: Default

Ifile Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
BUALY EEXEE AesDTL QAR | #®E% % &8
Filter: ' http EExpression... Clear Apply
No. Time Source Destination Protocol Length Info
S == - e e e -
816 43.996668 66.103.80.47 192.168.1.101 HTTP 60 HTTP/1.1 200 OK (text/plain)
828 44.507171 204.9.163.166 192.168.1.101 HTTP 271 HTTP/1.1 200 OK
835 45.629833 192.168.1.101 128.119.245.12 HTTP 489 GET /wireshark-labs/INTRO-wireshark-fil
837 45.646802 128.119.245.12 192.168.1.101 HTTP 434 HTTP/1.1 200 OK (text/html)

»

«]

Figure 5: Wireshark window after step 9

What to hand in

The goal of this first lab was primarily to introduce you to Wireshark. The following
questions will demonstrate that you’ve been able to get Wireshark up and running, and
have explored some of its capabilities. Answer the following questions, based on your
Wireshark experimentation:

1.

2.

List 3 different protocols that appear in the protocol column in the unfiltered
packet-listing window in step 7 above.

How long did it take from when the HTTP GET message was sent until the HTTP
OK reply was received? (By default, the value of the Time column in the packet-
listing window is the amount of time, in seconds, since Wireshark tracing began.
To display the Time field in time-of-day format, select the Wireshark View pull
down menu, then select Time Display Format, then select Time-of-day.)

. What is the Internet address of the gaia.cs.umass.edu (also known as www-

net.cs.umass.edu)? What is the Internet address of your computer?

Print the two HTTP messages (GET and OK) referred to in question 2 above. To
do so, select Print from the Wireshark File command menu, and select the
“Selected Packet Only” and “Print as displayed” radial buttons, and then click
OK.

Wireshark Lab: HTTP v7.0

Supplement to Computer Networking: A Top-Down
Approach, 7" ed., J.F. Kurose and K.W. Ross ——

KUROSE * ROSS

“Tell me and I forget. Show me and I remember. Involve me and 1
understand.” Chinese proverb

© 2005-2016, J.F Kurose and K.W. Ross, All Rights Reserved

Having gotten our feet wet with the Wireshark packet sniffer in the introductory lab,
we’re now ready to use Wireshark to investigate protocols in operation. In this lab, we’ll
explore several aspects of the HTTP protocol: the basic GET/response interaction, HTTP
message formats, retrieving large HTML files, retrieving HTML files with embedded
objects, and HTTP authentication and security. Before beginning these labs, you might
want to review Section 2.2 of the text.'

1. The Basic HTTP GET/response interaction

Let’s begin our exploration of HTTP by downloading a very simple HTML file - one that
is very short, and contains no embedded objects. Do the following:

1. Start up your web browser.

2. Start up the Wireshark packet sniffer, as described in the Introductory lab (but
don’t yet begin packet capture). Enter “http” (just the letters, not the quotation
marks) in the display-filter-specification window, so that only captured HTTP
messages will be displayed later in the packet-listing window. (We’re only
interested in the HTTP protocol here, and don’t want to see the clutter of all
captured packets).

3. Wait a bit more than one minute (we’ll see why shortly), and then begin
Wireshark packet capture.

4. Enter the following to your browser
http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file1.html
Your browser should display the very simple, one-line HTML file.

5. Stop Wireshark packet capture.

! References to figures and sections are for the 7™ edition of our text, Computer Networks, A Top-down
Approach, 7" ed., J.F. Kurose and K.W. Ross, Addison- Wesley/Pearson, 2016.

Your Wireshark window should look similar to the window shown in Figure 1. If you
are unable to run Wireshark on a live network connection, you can download a packet
trace that was created when the steps above were followed.

en0 [Wireshark 1.6.7 (SVN Rev 41973 from /trunk-1.6)]

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Becaee cEAXSE Aes»uTFTE[EE QaaH #$¥E% &

Filter: |http ¥ | Expression... Clear
No. |Time |Source | Destination | Protocol| Length| Info

73 3.738231 10.61.0.119 128.119.245.12 HTTP 830 GET /wireshark-labs/HTTP-wireshark-filel.
<€ :] >
D A

D Ethernet II, Src: Dell_33:56:bl (00:1e:4f:33:56:b1), Dst: Apple_05:24:9a (68:a8:6d:05:24:9a)
D Internet Protocol Version 4, Src: 128.119.245.12 (128.119.245.12), Dst: 10.61.0.119 (10.61.0.119)
D Transmission Control Protocol, Src Port: http (80), Dst Port: 63169 (63169), Seq: 446, Ack: 765, Len: 128
P [2 Reassembled TCP Segments (573 bytes): #90(445), #92(128)]
v Hypertext Transfer Protocol
P HTTP/1.0 200 OK\r\n
Date: Wed, 09 May 2012 13:36:40 GMT\r\n
Server: Apache/2.2.3 (Cent0S)\r\n
Last-Modified: Wed, 09 May 2012 13:36:01 GMT\r\n
ETag: "8734d-80-95817240"\r\n
Accept-Ranges: bytes\r\n
b Fantant.l anaths 192\ rin

0000 A

0010
0020
0030

0040
0050
0060
0070
nnan

Frame (194 bytes) | Reassembled TCP (573 bytes)l
O[Frame (frame), 194 bytes {Packets: 196 Displayed: 2 Marked: O Dropped: 0 {Profile: Default

Figure 1: Wireshark Display after http://gaia.cs.umass.edu/wireshark-labs/ HTTP-
wireshark-file1.html has been retrieved by your browser

The example in Figure 1 shows in the packet-listing window that two HTTP messages
were captured: the GET message (from your browser to the gaia.cs.umass.edu web
server) and the response message from the server to your browser. The packet-contents
window shows details of the selected message (in this case the HTTP OK message,
which is highlighted in the packet-listing window). Recall that since the HTTP message
was carried inside a TCP segment, which was carried inside an IP datagram, which was
carried within an Ethernet frame, Wireshark displays the Frame, Ethernet, IP, and TCP
packet information as well. We want to minimize the amount of non-HTTP data
displayed (we’re interested in HTTP here, and will be investigating these other protocols
is later labs), so make sure the boxes at the far left of the Frame, Ethernet, IP and TCP
information have a plus sign or a right-pointing triangle (which means there is hidden,
undisplayed information), and the HTTP line has a minus sign or a down-pointing
triangle (which means that all information about the HTTP message is displayed).

2 Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file
http-ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s
computers, while performing the steps indicated in the Wireshark lab. Once you have downloaded the
trace, you can load it into Wireshark and view the trace using the File pull down menu, choosing Open, and
then selecting the http-ethereal-trace-1 trace file. The resulting display should look similar to Figure 1.
(The Wireshark user interface displays just a bit differently on different operating systems, and in different
versions of Wireshark).

(Note: You should ignore any HTTP GET and response for favicon.ico. If you see a reference to
this file, it is your browser automatically asking the server if it (the server) has a small icon file
that should be displayed next to the displayed URL in your browser. We’ll ignore references to
this pesky file in this lab.).

By looking at the information in the HTTP GET and response messages, answer the
following questions. When answering the following questions, you should print out the
GET and response messages (see the introductory Wireshark lab for an explanation of
how to do this) and indicate where in the message you’ve found the information that
answers the following questions. When you hand in your assignment, annotate the output
so that it’s clear where in the output you’re getting the information for your answer (e.g.,
for our classes, we ask that students markup paper copies with a pen, or annotate
electronic copies with text in a colored font).

1. Is your browser running HTTP version 1.0 or 1.1? What version of HTTP is the

server running?

2. What languages (if any) does your browser indicate that it can accept to the
server?
What is the IP address of your computer? Of the gaia.cs.umass.edu server?
What is the status code returned from the server to your browser?
When was the HTML file that you are retrieving last modified at the server?
How many bytes of content are being returned to your browser?
By inspecting the raw data in the packet content window, do you see any headers
within the data that are not displayed in the packet-listing window? If so, name
one.

NoankW

In your answer to question 5 above, you might have been surprised to find that the
document you just retrieved was last modified within a minute before you downloaded
the document. That’s because (for this particular file), the gaia.cs.umass.edu server is
setting the file’s last-modified time to be the current time, and is doing so once per
minute. Thus, if you wait a minute between accesses, the file will appear to have been
recently modified, and hence your browser will download a “new” copy of the document.

2. The HTTP CONDITIONAL GET/response interaction

Recall from Section 2.2.5 of the text, that most web browsers perform object caching and
thus perform a conditional GET when retrieving an HTTP object. Before performing the
steps below, make sure your browser’s cache is empty. (To do this under Firefox, select
Tools->Clear Recent History and check the Cache box, or for Internet Explorer, select
Tools->Internet Options->Delete File; these actions will remove cached files from your
browser’s cache.) Now do the following:
* Start up your web browser, and make sure your browser’s cache is cleared, as
discussed above.
* Start up the Wireshark packet sniffer
* Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/HT TP-wireshark-file2.html
Your browser should display a very simple five-line HTML file.

Quickly enter the same URL into your browser again (or simply select the refresh
button on your browser)

Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed later in the
packet-listing window.

(Note: If you are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-2 packet trace to answer the questions below; see
footnote 1. This trace file was gathered while performing the steps above on one
of the author’s computers.)

Answer the following questions:

8.

9.

10.

11.

Inspect the contents of the first HTTP GET request from your browser to the
server. Do you see an “IF-MODIFIED-SINCE” line in the HTTP GET?

Inspect the contents of the server response. Did the server explicitly return the
contents of the file? How can you tell?

Now inspect the contents of the second HTTP GET request from your browser to
the server. Do you see an “IF-MODIFIED-SINCE:” line in the HTTP GET? If
so, what information follows the “IF-MODIFIED-SINCE:” header?

What is the HTTP status code and phrase returned from the server in response to
this second HTTP GET? Did the server explicitly return the contents of the file?
Explain.

3. Retrieving Long Documents

In our examples thus far, the documents retrieved have been simple and short HTML
files. Let’s next see what happens when we download a long HTML file. Do the
following:

Start up your web browser, and make sure your browser’s cache is cleared, as
discussed above.

Start up the Wireshark packet sniffer

Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file3.html

Your browser should display the rather lengthy US Bill of Rights.

Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed.

(Note: If you are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-3 packet trace to answer the questions below; see
footnote 1. This trace file was gathered while performing the steps above on one
of the author’s computers.)

In the packet-listing window, you should see your HTTP GET message, followed by a
multiple-packet TCP response to your HTTP GET request. This multiple-packet
response deserves a bit of explanation. Recall from Section 2.2 (see Figure 2.9 in the
text) that the HTTP response message consists of a status line, followed by header lines,
followed by a blank line, followed by the entity body. In the case of our HTTP GET, the

entity body in the response is the entire requested HTML file. In our case here, the
HTML file is rather long, and at 4500 bytes is too large to fit in one TCP packet. The
single HTTP response message is thus broken into several pieces by TCP, with each
piece being contained within a separate TCP segment (see Figure 1.24 in the text). In
recent versions of Wireshark, Wireshark indicates each TCP segment as a separate
packet, and the fact that the single HTTP response was fragmented across multiple TCP
packets is indicated by the “TCP segment of a reassembled PDU” in the Info column of
the Wireshark display. Earlier versions of Wireshark used the “Continuation” phrase to
indicated that the entire content of an HTTP message was broken across multiple TCP
segments.. We stress here that there is no “Continuation” message in HTTP!

Answer the following questions:

12. How many HTTP GET request messages did your browser send? Which packet
number in the trace contains the GET message for the Bill or Rights?

13. Which packet number in the trace contains the status code and phrase associated
with the response to the HTTP GET request?

14. What is the status code and phrase in the response?

15. How many data-containing TCP segments were needed to carry the single HTTP
response and the text of the Bill of Rights?

4. HTML Documents with Embedded Objects

Now that we’ve seen how Wireshark displays the captured packet traffic for large HTML
files, we can look at what happens when your browser downloads a file with embedded
objects, i.e., a file that includes other objects (in the example below, image files) that are
stored on another server(s).

Do the following:

* Start up your web browser, and make sure your browser’s cache is cleared, as
discussed above.

* Start up the Wireshark packet sniffer

* Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/HT TP-wireshark-file4.html
Your browser should display a short HTML file with two images. These two
images are referenced in the base HTML file. That is, the images themselves are
not contained in the HTML; instead the URLs for the images are contained in the
downloaded HTML file. As discussed in the textbook, your browser will have to
retrieve these logos from the indicated web sites. Our publisher’s logo is
retrieved from the gaia.cs.umass.edu web site. The image of the cover for our 5™
edition (one of our favorite covers) is stored at the caite.cs.umass.edu server.
(These are two different web servers inside cs.umass.edu).

* Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed.

* (Note: Ifyou are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-4 packet trace to answer the questions below; see
footnote 1. This trace file was gathered while performing the steps above on one
of the author’s computers.)

Answer the following questions:
16. How many HTTP GET request messages did your browser send? To which
Internet addresses were these GET requests sent?
17. Can you tell whether your browser downloaded the two images serially, or
whether they were downloaded from the two web sites in parallel? Explain.

5 HTTP Authentication

Finally, let’s try visiting a web site that is password-protected and examine the sequence
of HTTP message exchanged for such a site. The URL
http://gaia.cs.umass.edu/wireshark-labs/protected pages/HTTP-wireshark-file5.html is
password protected. The username is “wireshark-students” (without the quotes), and the
password is “network” (again, without the quotes). So let’s access this “secure”
password-protected site. Do the following:

* Make sure your browser’s cache is cleared, as discussed above, and close down
your browser. Then, start up your browser

* Start up the Wireshark packet sniffer

* Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/protected pages/HTTP-wireshark-
fileS5.html
Type the requested user name and password into the pop up box.

* Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed later in the
packet-listing window.

* (Note: If you are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-5 packet trace to answer the questions below; see
footnote 2. This trace file was gathered while performing the steps above on one
of the author’s computers.)

Now let’s examine the Wireshark output. You might want to first read up on HTTP
authentication by reviewing the easy-to-read material on “HTTP Access Authentication
Framework™ at http://frontier.userland.com/stories/storyReader$2159

Answer the following questions:
18. What is the server’s response (status code and phrase) in response to the initial
HTTP GET message from your browser?
19. When your browser’s sends the HTTP GET message for the second time, what
new field is included in the HTTP GET message?

The username (wireshark-students) and password (network) that you entered are encoded
in the string of characters (d2lyZXNoY XJrLXNOdWRIbnRzOmS5ldHdvems=) following

the “Authorization: Basic” header in the client’s HTTP GET message. While it
may appear that your username and password are encrypted, they are simply encoded in a
format known as Base64 format. The username and password are not encrypted! To see
this, go to http://www.motobit.com/util/base64-decoder-encoder.asp and enter the
base64-encoded string d2lyZXNoY XJrLXNOdWRIbnRz and decode. Voila! You have
translated from Base64 encoding to ASCII encoding, and thus should see your username!
To view the password, enter the remainder of the string Om5ldHdvems= and press
decode. Since anyone can download a tool like Wireshark and sniff packets (not just
their own) passing by their network adaptor, and anyone can translate from Base64 to
ASCII (you just did it!), it should be clear to you that simple passwords on WWW sites
are not secure unless additional measures are taken.

Fear not! As we will see in Chapter 8, there are ways to make WWW access more secure.
However, we’ll clearly need something that goes beyond the basic HTTP authentication
framework!

Wireshark Lab: DNS v7.0

Supplement to Computer Networking: A Top-Down
Approach, 7" ed., J.F. Kurose and K.W. Ross Sl e

KUROSE * ROSS

“Tell me and I forget. Show me and I remember. Involve me and [
understand.” Chinese proverb

© 2005-2016, J.F Kurose and K.W. Ross, All Rights Reserved

As described in Section 2.4 of the text', the Domain Name System (DNS) translates
hostnames to IP addresses, fulfilling a critical role in the Internet infrastructure. In this
lab, we’ll take a closer look at the client side of DNS. Recall that the client’s role in the
DNS is relatively simple — a client sends a query to its local DNS server, and receives a
response back. As shown in Figures 2.19 and 2.20 in the textbook, much can go on
“under the covers,” invisible to the DNS clients, as the hierarchical DNS servers
communicate with each other to either recursively or iteratively resolve the client’s DNS
query. From the DNS client’s standpoint, however, the protocol is quite simple — a query
is formulated to the local DNS server and a response is received from that server.

Before beginning this lab, you’ll probably want to review DNS by reading Section 2.4 of
the text. In particular, you may want to review the material on local DNS servers, DNS
caching, DNS records and messages, and the TYPE field in the DNS record.

1. nslookup

In this lab, we’ll make extensive use of the nslookup tool, which is available in most
Linux/Unix and Microsoft platforms today. To run nslookup in Linux/Unix, you just type
the nslookup command on the command line. To run it in Windows, open the Command
Prompt and run nslookup on the command line.

In it is most basic operation, nslookup tool allows the host running the tool to query any
specified DNS server for a DNS record. The queried DNS server can be a root DNS
server, a top-level-domain DNS server, an authoritative DNS server, or an intermediate
DNS server (see the textbook for definitions of these terms). To accomplish this task,
nslookup sends a DNS query to the specified DNS server, receives a DNS reply from that
same DNS server, and displays the result.

! References to figures and sections are for the 7™ edition of our text, Computer Networks, A Top-down
Approach, 7" ed., 1.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2016.

¢+, Command Prompt

C:\>nslookup wuw.mit.edu
Server: dns—prime.poly.edu
Address: 128.238.29.22

wuw.mit .edu
18.7.22.83

C:\>nslookup —type=NS mit.edu
Server: dns—prime.poly.edu
Address: 128.238.29.22

Non—authoritative answer:

mit.edu nameserver = bhitsy.mit.edu
mit.edu nameserver = strawb.mit.edu
mit.edu nameserver = w2Bns.mit.edu

hitsy.mit.edu internet address 18.72.8.3
stravbh.mit.edu internet address 18.71.6.151
w2@ns ..mit .edu internet address 18.78.6.160

C:\>nslookup wuww.aiit.or.kr bitsy.mit.edu
Server: BITSY.MIT.EDU
Address: 18.72.8.3

Non—authoritative answer:
wuw.aiit.or. ke
218.36.94.200

The above screenshot shows the results of three independent nslookup commands
(displayed in the Windows Command Prompt). In this example, the client host is located
on the campus of Polytechnic University in Brooklyn, where the default local DNS server
is dns-prime.poly.edu. When running nslookup, if no DNS server is specified, then
nslookup sends the query to the default DNS server, which in this case is dns-
prime.poly.edu. Consider the first command:

nslookup www.mit.edu

In words, this command is saying “please send me the IP address for the host
www.mit.edu”. As shown in the screenshot, the response from this command provides
two pieces of information: (1) the name and IP address of the DNS server that provides
the answer; and (2) the answer itself, which is the host name and IP address of
www.mit.edu. Although the response came from the local DNS server at Polytechnic
University, it is quite possible that this local DNS server iteratively contacted several
other DNS servers to get the answer, as described in Section 2.4 of the textbook.

Now consider the second command:
nslookup —-type=NS mit.edu

In this example, we have provided the option “-type=NS” and the domain “mit.edu”. This
causes nslookup to send a query for a type-NS record to the default local DNS server. In

words, the query is saying, “please send me the host names of the authoritative DNS for
mit.edu”. (When the —type option is not used, nslookup uses the default, which is to query
for type A records.) The answer, displayed in the above screenshot, first indicates the
DNS server that is providing the answer (which is the default local DNS server) along
with three MIT nameservers. Each of these servers is indeed an authoritative DNS server
for the hosts on the MIT campus. However, nslookup also indicates that the answer is
“non-authoritative,” meaning that this answer came from the cache of some server rather
than from an authoritative MIT DNS server. Finally, the answer also includes the IP
addresses of the authoritative DNS servers at MIT. (Even though the type-NS query
generated by nslookup did not explicitly ask for the IP addresses, the local DNS server
returned these “for free” and nslookup displays the result.)

Now finally consider the third command:

nslookup www.aiit.or.kr bitsy.mit.edu

In this example, we indicate that we want to the query sent to the DNS server
bitsy.mit.edu rather than to the default DNS server (dns-prime.poly.edu). Thus, the query
and reply transaction takes place directly between our querying host and bitsy.mit.edu. In
this example, the DNS server bitsy.mit.edu provides the IP address of the host
www.aiit.or.kr, which is a web server at the Advanced Institute of Information
Technology (in Korea).

Now that we have gone through a few illustrative examples, you are perhaps wondering
about the general syntax of nslookup commands. The syntax is:

nslookup -optionl -option2 host-to-find dns-server

In general, nslookup can be run with zero, one, two or more options. And as we have seen
in the above examples, the dns-server is optional as well; if it is not supplied, the query is
sent to the default local DNS server.

Now that we have provided an overview of nslookup, it is time for you to test drive it
yourself. Do the following (and write down the results):

1. Run nslookup to obtain the IP address of a Web server in Asia. What is the IP
address of that server?

2. Run nslookup to determine the authoritative DNS servers for a university in
Europe.

3. Run nslookup so that one of the DNS servers obtained in Question 2 is queried for
the mail servers for Yahoo! mail. What is its IP address?

2. ipconfig

ipconfig (for Windows) and ifconfig (for Linux/Unix) are among the most useful little
utilities in your host, especially for debugging network issues. Here we’ll only describe

ipconfig, although the Linux/Unix ifconfig is very similar. ipconfig can be used to show
your current TCP/IP information, including your address, DNS server addresses, adapter
type and so on. For example, if you all this information about your host simply by

entering

ipconfig \all

into the Command Prompt, as shown in the following screenshot.

¢+, Command Prompt
C:\>ipconfig rall

Windows IP Configuration

Host Name .
Primary Dns Suffix
Node Type . .

IP Routing Enahled
WINS Proxy Enabled.

Ethernet adapter Local Area Connection:

Connection—specific DNS Suffix
Description - e e e e e .

Physical Address.

Dhcp Enabled. .
Rutoconflguxatlon Enabled
IP Address.

Subnet Mask . . .

Default Gateway .

DHCP Server .

DNS Servers

Primary WINS Server . .
Secondary WINS Server .
Lease Obtained.

Lease Expires

: USG11631-ZMWQAG
: Hybrid

: No

: No

poly.edu
Intel(R> PRO/188 UE Network Connecti

: B9-B9-6B-16-68-929

Yes

: Yes

128.238.38.160

: 255.255.255.@

128.238.38.1

128.238.29.25
128.238.29.22
128.238.29.23
128.238.2.38

128.238.32.22
128.238.29.23
128.238.29.22

- Monday, August 30, 20084 1:30:58 PM
: Monday. August 30, 2004 7:38:56 PM

ipconfig is also very useful for managing the DNS information stored in your host. In
Section 2.5 we learned that a host can cache DNS records it recently obtained. To see
these cached records, after the prompt C:\> provide the following command:

ipconfig /displaydns

Each entry shows the remaining Time to Live (TTL) in seconds. To clear the cache, enter

ipconfig /flushdns

Flushing the DNS cache clears all entries and reloads the entries from the hosts file.

3. Tracing DNS with Wireshark

Now that we are familiar with nslookup and ipconfig, we’re ready to get down to some
serious business. Let’s first capture the DNS packets that are generated by ordinary Web-
surfing activity.

* Use ipconfig to empty the DNS cache in your host.

* Open your browser and empty your browser cache. (With Internet Explorer,
go to Tools menu and select Internet Options; then in the General tab select
Delete Files.)

* Open Wireshark and enter “ip.addr == your IP_address” into the filter, where
you obtain your IP address with ipconfig. This filter removes all packets that
neither originate nor are destined to your host.

e Start packet capture in Wireshark.

* With your browser, visit the Web page: http://www.ietf.org

* Stop packet capture.

If you are unable to run Wireshark on a live network connection, you can download a
packet trace file that was captured while following the steps above on one of the author’s
computers®. Answer the following questions. Whenever possible, when answering a
question below, you should hand in a printout of the packet(s) within the trace that you
used to answer the question asked. Annotate the printout’ to explain your answer. To
print a packet, use File->Print, choose Selected packet only, choose Packet summary
line, and select the minimum amount of packet detail that you need to answer the
question.

4. Locate the DNS query and response messages. Are then sent over UDP or TCP?

5. What is the destination port for the DNS query message? What is the source port
of DNS response message?

6. To what IP address is the DNS query message sent? Use ipconfig to determine the
IP address of your local DNS server. Are these two IP addresses the same?

7. Examine the DNS query message. What “Type” of DNS query is it? Does the
query message contain any “answers”?

8. Examine the DNS response message. How many “answers” are provided? What
do each of these answers contain?

2 Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zipand extract the file dns-
ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s
computers, while performing the steps indicated in the Wireshark lab. Once you have downloaded the
trace, you can load it into Wireshark and view the trace using the File pull down menu, choosing Open, and
then selecting the dns-ethereal-trace-1 trace file.

* What do we mean by “annotate™? If you hand in a paper copy, please highlight where in the printout
you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what
you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and
annotate.

9. Consider the subsequent TCP SYN packet sent by your host. Does the destination
IP address of the SYN packet correspond to any of the IP addresses provided in
the DNS response message?

10. This web page contains images. Before retrieving each image, does your host
issue new DNS queries?

Now let’s play with nslookup®.
» Start packet capture.
* Do an nslookup on www.mit.edu

* Stop packet capture.

You should get a trace that looks something like the following:

7 (Untitled) - Wireshark = [=] x:
File Edit Yiew Go Capture Analyze Statistics Help
B W e e e ol x @ 8 R« »»F & BE &aaQ |
Filter: Iip.addr==192415342.145 ¥ Expression... Clear Apply
No. - |Time |Source |Destination IProtocoI |Info -
1 0.000000 192.168.2.145 152.168.1.1 DNS Standard gquery PTR 1.1.168.192.in-addr.ar
2 0.004228 152.168.1.1 152.168.2.145 DNS Standard gquery response PTR dslrouter
3 0.013858 152.168.2.145 152.168.1.1 DNS Standard query A www.mit.edu.myhome.weste
4 0.074954 192.168.1.1 192.168.2.145 DNS Standard query response
. 084 5 Y] 192.168.2. B e ey [e
6 0.140633 152.168.1.1 152.168.2.145 DNS Standard gquery response A 18.7.22.83 B
| | i |
pestination: LinksysG_45:90:a8 (00:0c:41:45:90:a8) (el
Source: Netgear_61:8e:6d (00:09:5b:61:8e:6d)
Type: IP (0x0800)
Internet Protocol, Src: 192.168.2.145 (192.168.2.145), Dst: 192.168.1.1 (192.168.1.1)
User Datagram Protocol, Src Port: 1565 (1565), Dst Port: domain (53)
= Domain Name System (guery)
Response In: 6
Transaction ID: Ox0003
Flags: 0x0100 (Standard query)
Questions: 1
Answer RRs: 0
Authority RRs: O
Additional RRs: 0
= Queries
E www.mit.edu: type A, class IN
Name: www.mit.edu
Type: A (Host address)
Class: IN (0Ox0001) =
i ["
0000 00 OC 41 45 90 a8 00 00 &b 61 8e 6d 08 00 45 00 ..AE.... [a.m..E. =
0010 00 39 73 28 00 00 80 11 42 a% cO a8 02 91 cO a8 L95Cei. Bevunnnn
0020 01 01 06 1d 00 35 00 25 21 ¢l 00 03 01 00 00 01 5.% e
0030 00 00 00 00 Q00 Q0 03 77 77 77 03 6d 69 74 03 65 woww.mit. e
0040 64 75 00 00 01 00 01 du..... z'
File: "C:\DOCUME~1\PAULAW~1\LOCALS~1\TempletherkXxXa01796" 713 Bytes 00:00:(j P: 6 D: 6 M: O Drops: 0 A

We see from the above screenshot that nslookup actually sent three DNS queries and
received three DNS responses. For the purpose of this assignment, in answering the
following questions, ignore the first two sets of queries/responses, as they are specific to
nslookup and are not normally generated by standard Internet applications. You should
instead focus on the last query and response messages.

* If you are unable to run Wireshark and capture a trace file, use the trace file dns-ethereal-trace-2 in the
zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip

11.

12.

13.

14.

15.

What is the destination port for the DNS query message? What is the source port
of DNS response message?

To what IP address is the DNS query message sent? Is this the IP address of your
default local DNS server?

Examine the DNS query message. What “Type” of DNS query is it? Does the
query message contain any “answers”’?

Examine the DNS response message. How many “answers” are provided? What
do each of these answers contain?

Provide a screenshot.

Now repeat the previous experiment, but instead issue the command:

nslookup —-type=NS mit.edu

Answer the following questions” :

16.

17.

18.

19.

To what IP address is the DNS query message sent? Is this the IP address of your
default local DNS server?

Examine the DNS query message. What “Type” of DNS query is it? Does the
query message contain any “answers’’?

Examine the DNS response message. What MIT nameservers does the response
message provide? Does this response message also provide the IP addresses of the
MIT namesers?

Provide a screenshot.

Now repeat the previous experiment, but instead issue the command:

nslookup www.aiit.or.kr bitsy.mit.edu

Answer the following questions®:

20.

21.

22.

23

To what IP address is the DNS query message sent? Is this the IP address of your
default local DNS server? If not, what does the IP address correspond to?
Examine the DNS query message. What “Type” of DNS query is it? Does the
query message contain any “answers”?

Examine the DNS response message. How many “answers” are provided? What
does each of these answers contain?

. Provide a screenshot.

> If you are unable to run Wireshark and capture a trace file, use the trace file dns-ethereal-trace-3 in the
zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip

% If you are unable to run Wireshark and capture a trace file, use the trace file dns-ethereal-trace-4 in the
zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip

Wireshark Lab: TCP v7.0

Supplement to Computer Networking: A Top-Down
Approach, 7" ed., J.F. Kurose and K.W. Ross Sl e

KUROSE * ROSS

“Tell me and I forget. Show me and I remember. Involve me and [
understand.” Chinese proverb

© 2005-2016, J.F Kurose and K.W. Ross, All Rights Reserved

In this lab, we’ll investigate the behavior of the celebrated TCP protocol in detail. We’ll
do so by analyzing a trace of the TCP segments sent and received in transferring a 150KB
file (containing the text of Lewis Carrol’s Alice’s Adventures in Wonderland) from your
computer to a remote server. We’ll study TCP’s use of sequence and acknowledgement
numbers for providing reliable data transfer; we’ll see TCP’s congestion control
algorithm — slow start and congestion avoidance — in action; and we’ll look at TCP’s
receiver-advertised flow control mechanism. We’ll also briefly consider TCP connection
setup and we’ll investigate the performance (throughput and round-trip time) of the TCP
connection between your computer and the server.

Before beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the
text'.

1. Capturing a bulk TCP transfer from your computer to a remote
server

Before beginning our exploration of TCP, we’ll need to use Wireshark to obtain a packet
trace of the TCP transfer of a file from your computer to a remote server. You’ll do so by
accessing a Web page that will allow you to enter the name of a file stored on your
computer (which contains the ASCII text of Alice in Wonderland), and then transfer the
file to a Web server using the HTTP POST method (see section 2.2.3 in the text). We’re
using the POST method rather than the GET method as we’d like to transfer a large
amount of data from your computer to another computer. Of course, we’ll be running
Wireshark during this time to obtain the trace of the TCP segments sent and received
from your computer.

! References to figures and sections are for the 7™ edition of our text, Computer Networks, A Top-down
Approach, 7" ed., J.F. Kurose and K.W. Ross, Addison- Wesley/Pearson, 2016.

Do the following:

* Start up your web browser. Go the http://gaia.cs.umass.edu/wireshark-
labs/alice.txt and retrieve an ASCII copy of Alice in Wonderland. Store this file
somewhere on your computer.

* Next go to http://gaia.cs.umass.edu/wireshark-labs/TCP-wireshark-filel.html.

* You should see a screen that looks like:

%) Upload page for TCP Wireshark Lab - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<§| - j’ - l@ @ || http:/lgaia.cs.umass.edufwireshark-labs{ TCP-wireshark-file1.html N @ Go l@'

andrew appel programming - Google Search |_| Upload page for TCP Wireshark Lab 8

>

Upload page for TCP Wireshark Lab

Computer Networking: A Top Down Approach, 4th edition
Copyright 2007 JF. Kurose and K W. Ross, All Rights Reserved

If you have followed the instructions for the TCP Ethereal Lab, you have already downloaded an ASCIl copy of Alice and Wonderland from
http:/fgaia.cs umass . edufethereal-labs/alice bd and you also already have the Wireshark packet sniffer running and capturing packets on
your computer.

Click on the Browse button below to select the directoryffile name for the copy of alice bd that is stored on your computer.

Browse...

Once you have selected the file, click on the "Upload alice b file" button below. This will cause your browser to send a copy of alice b over
an HTTP connection {using TCP) to the web server at gaia.cs.umass.edu. After clicking on the button, wait until a short message is
displayed indicating the the upload is complete. Then stop your Wireshark packet sniffer - you're ready to begin analyzing the TCP transfer
of alice b from your computer to gaia.cs umass.edull

Upload alice.txt file

E Find: | request © Find Next © Find Previous [=] Highlight all [[] Match case

Done

* Use the Browse button in this form to enter the name of the file (full path name)
on your computer containing Alice in Wonderland (or do so manually). Don’t yet
press the “Upload alice.txt file” button.

* Now start up Wireshark and begin packet capture (Capture->Start) and then press
OK on the Wireshark Packet Capture Options screen (we’ll not need to select any
options here).

* Returning to your browser, press the “Upload alice.txt file” button to upload the
file to the gaia.cs.umass.edu server. Once the file has been uploaded, a short
congratulations message will be displayed in your browser window.

* Stop Wireshark packet capture. Your Wireshark window should look similar to
the window shown below.

e O 0 \ tcp-ethereal-trace-1 [Wireshark 1.6.7 (SVN Rev 41973 from /trunk-1.6)]]

|

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help [

} =) A El € D & %S @ A @ 7

\EEL @!i Eﬂi i@i é@g EEX S =) e F I BE & a @ [éﬁi [v

‘ Filter: |tcp v | Expression... Clear |

‘ No. ITime |Source I Destination | Protocol | Lengthl Info 3

i 20 0.306692 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reassem
21 0.307571 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reasserrm

| 22 0.308699 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reassem

| 23 0.309553 192.168.1.102 128.119.245.12 TCP 946 [TCP segment of a reassem
24 0.356437 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
25 0.400164 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
26 0.448613 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
27 0.500029 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC

’ 28 0.545052 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
29 0.576417 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC

| 30 0.576671 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reassem

|

| 32 0.578329 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reassem v

| «E— =3 >

|b Frame 31: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) A

| Ethernet II, Src: Actionte_8a:70:1la (00:20:e0:8a:70:1a), Dst: LinksysG da:af:73 (00:06:25:da:af:73)

|~ Internet Protocol Version 4, Src: 192.168.1.102 (192.168.1.102), Dst: 128.119.245.12 (128.119.245.12)

| Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))

Total Length: 1500

Identification: Oxle2f (7727)

Flags: 0x02 (Don't Fragment)

Fragment offset: 0O

Time to live: 128

Protocol: TCP (8) v
/0000 00 06 25 da af 73 00 20 0 8a 70 la 08 00 45 00
0010 05 dc 1e 2f 40 00 80 06 9f Sa cO a8 01 66 80 77

0020 f5 Oc 04 89 00 50 0d d6 4a dd 34 a2 74 la 50 10
0030 44 70 91 a4 00 00 20 74 6f 20 68 65 72 20 67 72

-

~

[
|
[
[
[
|

Dp.... t o her gr
10040 65 61 74 20 64 65 6¢c 69 67 68 74 20 69 74 20 66 eat deli aht it f) 1

[Ol File: "/Users/kurose/Umass/... §| Packets: 213 Displayed: 202 Marked: 0 Load time: 0:00.009 3| Profile: Default

If you are unable to run Wireshark on a live network connection, you can download a
packet trace file that was captured while following the steps above on one of the author’s
computers®. You may well find it valuable to download this trace even if you’ve
captured your own trace and use it, as well as your own trace, when you explore the
questions below.

2. Afirst look at the captured trace

Before analyzing the behavior of the TCP connection in detail, let’s take a high level
view of the trace.
* First, filter the packets displayed in the Wireshark window by entering “tcp”
(lowercase, no quotes, and don’t forget to press return after entering!) into the
display filter specification window towards the top of the Wireshark window.

What you should see is series of TCP and HTTP messages between your computer and
gaia.cs.umass.edu. You should see the initial three-way handshake containing a SYN
message. You should see an HTTP POST message. Depending on the version of

2 Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file tcp-
ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s
computers, while performing the steps indicated in the Wireshark lab. Once you have downloaded the
trace, you can load it into Wireshark and view the trace using the File pull down menu, choosing Open, and
then selecting the tcp-ethereal-trace-1 trace file.

Wireshark you are using, you might see a series of “HTTP Continuation” messages being
sent from your computer to gaia.cs.umass.edu. Recall from our discussion in the earlier
HTTP Wireshark lab, that is no such thing as an HTTP Continuation message — this is
Wireshark’s way of indicating that there are multiple TCP segments being used to carry a
single HTTP message. In more recent versions of Wireshark, you’ll see “[TCP segment
of a reassembled PDU]” in the Info column of the Wireshark display to indicate that this
TCP segment contained data that belonged to an upper layer protocol message (in our
case here, HTTP). You should also see TCP ACK segments being returned from
gaia.cs.umass.edu to your computer.

Answer the following questions, by opening the Wireshark captured packet file tcp-
ethereal-trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip (that is
download the trace and open that trace in Wireshark; see footnote 2). Whenever possible,
when answering a question you should hand in a printout of the packet(s) within the trace
that you used to answer the question asked. Annotate the printout’ to explain your
answer. To print a packet, use File->Print, choose Selected packet only, choose Packet
summary line, and select the minimum amount of packet detail that you need to answer
the question.

1. What is the IP address and TCP port number used by the client computer (source)
that is transferring the file to gaia.cs.umass.edu? To answer this question, it’s
probably easiest to select an HTTP message and explore the details of the TCP
packet used to carry this HTTP message, using the “details of the selected packet
header window” (refer to Figure 2 in the “Getting Started with Wireshark™ Lab if
you’re uncertain about the Wireshark windows.

2. What is the IP address of gaia.cs.umass.edu? On what port number is it sending
and receiving TCP segments for this connection?

If you have been able to create your own trace, answer the following question:

3. What is the IP address and TCP port number used by your client computer
(source) to transfer the file to gaia.cs.umass.edu?

Since this lab is about TCP rather than HTTP, let’s change Wireshark’s “listing of
captured packets” window so that it shows information about the TCP segments
containing the HTTP messages, rather than about the HTTP messages. To have
Wireshark do this, select Analyze->FEnabled Protocols. Then uncheck the HTTP box and
select OK. You should now see a Wireshark window that looks like:

’ What do we mean by “annotate™? If you hand in a paper copy, please highlight where in the printout
you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what
you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and
annotate.

e 00 \ tcp-ethereal-trace-1 [Wireshark 1.6.7 (SVN Rev 41973 from /trunk-1.6)]

File Edit View Co Capture Analyze Statistics Telephony Tools Internals Help

o A A& B | e ‘ = n @D O

Eheee 2pEXELE A @ FLIEBEB QaQal @bE -

Filter: |tcp v | Expression... Clear

No. |Time |Source | Destination | Protocol | Lengthl Info @
2 0.023172 128.119.245.12 192.168.1.102 TCP 62 http > health-polling [SY
3 0.023265 192.168.1.102 128.119.245.12 TCP 54 health-polling > http [AC
4 0.026477 192.168.1.102 128.119.245.12 TCP 619 health-polling > http [PS
5 0.041737 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [PS
6 0.053937 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
7 0.054026 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [AC
8 0.054690 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [AC
9 0.077294 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
10 0.077405 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [AC
11 0.078157 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [AC
12 0.124085 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
13 0.124185 192.168.1.102 128.119.245.12 TCP 1201 health-polling > http [PS v

«& D S

P Frame 1: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) A

v Ethernet II, Src: Actionte_8a:70:1a (00:20:e0:8a:70:1a), Dst: LinksysG da:af:73 (00:06:25:da:af:73)
v Destination: LinksysG da:af:73 (00:06:25:da:af:73)

Address: LinksysG_da:af:73 (00:06:25:da:
................ = IG bit:

weee 2200 s Lie. wies ... = LG bit:
v Source: Actionte_8a:70:la (00:20:e0:8a:70:

af:73)

Individual address (unicast)

Globally unique address (factory default)
la)

Address: Actionte_8a:70:1a (00:20:e0:8a:70:1a)
....... O .evv wvve weww www. = 1IG bit: Individual address (unicast)
weee 20 .. tiu. vue. w... = LG bit: Globally unique address (factory default) M
0000 00 06 25 da af 73 00 20 e0 8a 70 la 08 00 45 00 %..S «sp...E.
2010 00 30 le 1d 40 00 80 06 a5 18 cO a8 Ol 66 80 77 .0..@...f.w
2020 fS Oc 04 89 00 50 0d d6 01 f4 00 00 0O 00 70 02 = p.
0030 40 00 f6 e9 00 00 02 04 0S b4 01 01 04 02 P

Ol File: "/Users/kurose/Umass/... il Packets: 213 Displaved: 202 Marked: 0 Load time: 0:00.011 i Profile: Default

This is what we’re looking for - a series of TCP segments sent between your computer
and gaia.cs.umass.edu. We will use the packet trace that you have captured (and/or the
packet trace tcp-ethereal-trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-
traces.zip; see earlier footnote) to study TCP behavior in the rest of this lab.

3. TCP Basics

Answer the following questions for the TCP segments:

4. What is the sequence number of the TCP SYN segment that is used to initiate the
TCP connection between the client computer and gaia.cs.umass.edu? What is it
in the segment that identifies the segment as a SYN segment?

What is the sequence number of the SYNACK segment sent by gaia.cs.umass.edu
to the client computer in reply to the SYN? What is the value of the
Acknowledgement field in the SYNACK segment? How did gaia.cs.umass.edu
determine that value? What is it in the segment that identifies the segment as a
SYNACK segment?

What is the sequence number of the TCP segment containing the HTTP POST
command? Note that in order to find the POST command, you’ll need to dig into
the packet content field at the bottom of the Wireshark window, looking for a
segment with a “POST” within its DATA field.

Consider the TCP segment containing the HTTP POST as the first segment in the
TCP connection. What are the sequence numbers of the first six segments in the

TCP connection (including the segment containing the HTTP POST)? At what
time was each segment sent? When was the ACK for each segment received?
Given the difference between when each TCP segment was sent, and when its
acknowledgement was received, what is the RTT value for each of the six
segments? What is the EstimatedRTT value (see Section 3.5.3, page 242 in
text) after the receipt of each ACK? Assume that the value of the
EstimatedRTT is equal to the measured RTT for the first segment, and then is
computed using the EstimatedRTT equation on page 242 for all subsequent
segments.
Note: Wireshark has a nice feature that allows you to plot the RTT for
each of the TCP segments sent. Select a TCP segment in the “listing of
captured packets” window that is being sent from the client to the
gaia.cs.umass.edu server. Then select: Statistics->TCP Stream Graph-
>Round Trip Time Graph.

8. What is the length of each of the first six TCP segments?*

9. What is the minimum amount of available buffer space advertised at the received
for the entire trace? Does the lack of receiver buffer space ever throttle the
sender?

10. Are there any retransmitted segments in the trace file? What did you check for (in
the trace) in order to answer this question?

11. How much data does the receiver typically acknowledge in an ACK? Can you
identify cases where the receiver is ACKing every other received segment (see
Table 3.2 on page 250 in the text).

12. What is the throughput (bytes transferred per unit time) for the TCP connection?
Explain how you calculated this value.

* The TCP segments in the tcp-ethereal-trace-1 trace file are all less that 1460 bytes. This is because the
computer on which the trace was gathered has an Ethernet card that limits the length of the maximum IP
packet to 1500 bytes (40 bytes of TCP/IP header data and 1460 bytes of TCP payload). This 1500 byte
value is the standard maximum length allowed by Ethernet. If your trace indicates a TCP length greater
than 1500 bytes, and your computer is using an Ethernet connection, then Wireshark is reporting the wrong
TCP segment length; it will likely also show only one large TCP segment rather than multiple smaller
segments. Your computer is indeed probably sending multiple smaller segments, as indicated by the ACKs
it receives. This inconsistency in reported segment lengths is due to the interaction between the Ethernet
driver and the Wireshark software. We recommend that if you have this inconsistency, that you perform
this lab using the provided trace file.

4. TCP congestion control in action

Let’s now examine the amount of data sent per unit time from the client to the server.
Rather than (tediously!) calculating this from the raw data in the Wireshark window,
we’ll use one of Wireshark’s TCP graphing utilities - Time-Sequence-Graph(Stevens) - to
plot out data.

* Select a TCP segment in the Wireshark’s “listing of captured-packets” window.
Then select the menu : Statistics->TCP Stream Graph-> Time-Sequence-
Graph(Stevens). You should see a plot that looks similar to the following plot,
which was created from the captured packets in the packet trace tcp-ethereal-
trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip (see earlier
footnote):

"2 TCP Graph 8: tcp-ethereal-trace-1 192.168.1.102:1161 -> 128.119

Sequence

number[B] Time/Sequence Graph

150000 —

100000 —

e
rTTT

IIIIIIIIIIIIIIIIIIIIIIIIIII[IIIIIIII|IIII|I
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Time[s]

Here, each dot represents a TCP segment sent, plotting the sequence number of
the segment versus the time at which it was sent. Note that a set of dots stacked
above each other represents a series of packets that were sent back-to-back by the
sender.

Answer the following questions for the TCP segments the packet trace tcp-ethereal-
trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip

13.

14.

Use the Time-Sequence-Graph(Stevens) plotting tool to view the sequence
number versus time plot of segments being sent from the client to the
gaia.cs.umass.edu server. Can you identify where TCP’s slowstart phase begins
and ends, and where congestion avoidance takes over? Comment on ways in
which the measured data differs from the idealized behavior of TCP that we’ve
studied in the text.

Answer each of two questions above for the trace that you have gathered when
you transferred a file from your computer to gaia.cs.umass.edu

Wireshark Lab: IP v7.0

Supplement to Computer Networking: A Top-Down
Approach, 7" ed., J.F. Kurose and K.W. Ross Sl e

KUROSE * ROSS

“Tell me and I forget. Show me and I remember. Involve me and [
understand.” Chinese proverb

© 2005-2016, J.F Kurose and K.W. Ross, All Rights Reserved

In this lab, we’ll investigate the IP protocol, focusing on the IP datagram. We’ll do so by
analyzing a trace of IP datagrams sent and received by an execution of the traceroute
program (the t raceroute program itself is explored in more detail in the Wireshark
ICMP lab). We’ll investigate the various fields in the IP datagram, and study [P
fragmentation in detail.

Before beginning this lab, you’ll probably want to review sections 1.4.3 in the text' and
section 3.4 of RFC 2151 [ftp:/ftp.rfc-editor.org/in-notes/rfc2151.txt] to update yourself
on the operation of the traceroute program. You’ll also want to read Section 4.3 in
the text, and probably also have RFC 791 [ftp://ftp.rfc-editor.org/in-notes/rfc791.txt] on
hand as well, for a discussion of the IP protocol.

1. Capturing packets from an execution of traceroute

In order to generate a trace of IP datagrams for this lab, we’ll use the traceroute
program to send datagrams of different sizes towards some destination, X. Recall that
traceroute operates by first sending one or more datagrams with the time-to-live
(TTL) field in the IP header set to 1; it then sends a series of one or more datagrams
towards the same destination with a TTL value of 2; it then sends a series of datagrams
towards the same destination with a TTL value of 3; and so on. Recall that a router must
decrement the TTL in each received datagram by 1 (actually, RFC 791 says that the
router must decrement the TTL by at least one). If the TTL reaches 0, the router returns
an ICMP message (type 11 — TTL-exceeded) to the sending host. As a result of this
behavior, a datagram with a TTL of 1 (sent by the host executing t raceroute) will
cause the router one hop away from the sender to send an ICMP TTL-exceeded message
back to the sender; the datagram sent with a TTL of 2 will cause the router two hops

! References to figures and sections are for the 7™ edition of our text, Computer Networks, A Top-down
Approach, 7" ed., J.F. Kurose and K.W. Ross, Addison- Wesley/Pearson, 2016.

away to send an ICMP message back to the sender; the datagram sent with a TTL of 3
will cause the router three hops away to send an ICMP message back to the sender; and
so on. In this manner, the host executing t raceroute can learn the identities of the
routers between itself and destination X by looking at the source IP addresses in the
datagrams containing the ICMP TTL-exceeded messages.

We’ll want to run traceroute and have it send datagrams of various lengths.

* Windows. The tracert program (used for our ICMP Wireshark lab) provided
with Windows does not allow one to change the size of the ICMP echo request
(ping) message sent by the t racert program. A nicer Windows traceroute
program is pingplotter, available both in free version and shareware versions at
http://www.pingplotter.com. Download and install pingplotter, and test it out by
performing a few traceroutes to your favorite sites. The size of the ICMP echo
request message can be explicitly set in pingplotter by selecting the menu item
Edit-> Options->Packet Options and then filling in the Packet Size field. The
default packet size is 56 bytes. Once pingplotter has sent a series of packets with
the increasing TTL values, it restarts the sending process again with a TTL of 1,
after waiting Trace Interval amount of time. The value of Trace Interval and the
number of intervals can be explicitly set in pingplotter.

* Linux/Unix/MacOS. With the Unix/MacOS traceroute command, the size
of the UDP datagram sent towards the destination can be explicitly set by
indicating the number of bytes in the datagram; this value is entered in the
traceroute command line immediately after the name or address of the
destination. For example, to send t raceroute datagrams of 2000 bytes
towards gaia.cs.umass.edu, the command would be:

%traceroute gaia.cs.umass.edu 2000

Do the following:

* Start up Wireshark and begin packet capture (Capture->Start) and then press OK
on the Wireshark Packet Capture Options screen (we’ll not need to select any
options here).

* Ifyou are using a Windows platform, start up pingplotter and enter the name of a
target destination in the “Address to Trace Window.” Enter 3 in the “# of times to
Trace” field, so you don’t gather too much data. Select the menu item Edit-
>Advanced Options->Packet Options and enter a value of 56 in the Packet Size
field and then press OK. Then press the Trace button. You should see a
pingplotter window that looks something like this:

#: gaia.cs.umass.edu - Ping Plotter ;jglll

File Edit View Help

Address to Trace: Target Name: gaia.cs.umass.edu
gaia.cs.umass.edu IP: 128.119.245.12 201-500
Frpryym—— Sample Set Time: 8/22/2004 9:57:07 PM - 8/22/2004 9:57:09 PM
e amith el Hop|PL%| IP [DNSName [Avg| Cur |) Graph .
newworld.cs.umass edu 10.216.228.1 1313 >
WYYy CS Umass.edu 24.218.0153 11 N
vy aol.com 24128190197 bar01-p4-0.wsfdhel.ma.attbb.net 13 14 ==X
ﬁingge‘l‘fwm 241280101 bar02-p6-0ndhmhel.ma.atibb.net 15 17 N
\www pingplotter.com 24.91.0157 bar02-p2-0.cmbrhel.ma.attbb.net 18 17 >°\—'
192589137 e 20 17 -)T
192.5.89.102 ABILENE-GIGAPOPNE.nox.org 20 20 =
128.119.2193 lgrc-t-106-8.gw.umass.edu 24 21 e
128.119.3.153 2 23 —=x
128.119.24512 gaia.cs.umass.edu 19 20 s
Round Trip: 19 20
" . l—_,3 =
CIEHIES s =1 128.119.3.153 Graph time = 5 minutes
- 23 £30%
Trace Interval: |1 second _j;
0
Statistics %3 5 BEN 6p o7
Samples to include: |11 :: gaia.cs.umass.edu (128.119.245.12) Graph time = § minutes
(P =5 F30%
| Resume | o
9%3p 9%54p 9%55p 9%56p 9%7p |
[[Trace Count: 3 |Displayed Samples: 1 to 3 * UPDATE AVAILABLE *

Next, send a set of datagrams with a longer length, by selecting Edit->Advanced
Options->Packet Options and enter a value of 2000 in the Packet Size field and
then press OK. Then press the Resume button.

Finally, send a set of datagrams with a longer length, by selecting Edit-
>Advanced Options->Packet Options and enter a value of 3500 in the Packet Size
field and then press OK. Then press the Resume button.

Stop Wireshark tracing.

* Ifyou are using a Unix or Mac platform, enter three t raceroute commands,
one with a length of 56 bytes, one with a length of 2000 bytes, and one with a
length of 3500 bytes.

Stop Wireshark tracing.

If you are unable to run Wireshark on a live network connection, you can download a
packet trace file that was captured while following the steps above on one of the author’s
Windows computers”. You may well find it valuable to download this trace even if
you’ve captured your own trace and use it, as well as your own trace, when you explore
the questions below.

2 Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file ip-
ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s
computers, while performing the steps indicated in the Wireshark lab. Once you have downloaded the
trace, you can load it into Wireshark and view the trace using the File pull down menu, choosing Open, and
then selecting the ip-ethereal-trace-1 trace file.

2. Alook at the captured trace

In your trace, you should be able to see the series of ICMP Echo Request (in the case of
Windows machine) or the UDP segment (in the case of Unix) sent by your computer and
the ICMP TTL-exceeded messages returned to your computer by the intermediate
routers. In the questions below, we’ll assume you are using a Windows machine; the
corresponding questions for the case of a Unix machine should be clear. Whenever
possible, when answering a question below you should hand in a printout of the packet(s)
within the trace that you used to answer the question asked. When you hand in your
assignment, annotate the output so that it’s clear where in the output you’re getting the
information for your answer (e.g., for our classes, we ask that students markup paper
copies with a pen, or annotate electronic copies with text in a colored font).To print a
packet, use File->Print, choose Selected packet only, choose Packet summary line, and
select the minimum amount of packet detail that you need to answer the question.

1. Select the first ICMP Echo Request message sent by your computer, and expand
the Internet Protocol part of the packet in the packet details window.

e 00 \| ip-ethereal-trace-1 [Wireshark 1.6.7 (SVN Rev 41973 from /trunk-1.6)]
File Edit View Co Capture Analyze Statistics Telephony Tools Internals Help

BEeee pEXRE e TFLrEE QAR @PE% B
Filter: | j Expression...

No. |Time | Source | Destination | Protocol| Length| Info -
1 0.000000 Telebit_73:8d:ce Broadcast ARP 60 Who has 192.168.1.1177 Tell 192.168.1.104
2 4.866867 192.168.1.100 192.168.1.1 174 Source port: 30955 Destination port: ssdp
3 4.868147 192.168.1.100 192.168.1.1 175 Source port: 30955 Destination port: ssdp
4 5.363536 192.168.1.100 192.168.1.1 174 Source port: 30955 Destination port: ssdp

5 5.364799 192.168.1.100 192.168.1.1 175 Source port: 30955 Destination port: ssdp
6 5.864428 192.168.1.100 192.168.1.1 174 Source port: 30955 Destination port: ssdp
7 5.865461 192.168.1.100 192.168.1.1 175 Source port: 30955 Destination port: ssdp

10 6.188629 192.168.1.102 128.59.23. 100 ICMP 98 Echo (p1ng) request 1d—0x0300 seq—20739/849 ttl=2
11 6. .1 .1, MF - in 1

12 6.208597 192.168.1.102 128.59.23. 100 ICMP 98 Echo (plng) request 1d—0x0300 s5eq=20995/850, ttl=3

«E > »

b 24
D Ethernet II, Src: Actionte_8a:70:1a (00:20:e0:8a:70:1a), Dst: LinksysG_da:af:73 (00:06:25:da:af:73)

v Internet Protocol Version 4, Src: 192.168.1.102 (192.168.1.102), Dst: 128.59.23.100 (128.59.23.100)

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))

Total Length: 84

Identification: 0x32do (13008)

P Flags: 0x00

-

Fragment offset: 0 v
EERMO0 06 25 da af 73 00 20 €0 8a 70 la 08 00 45 OCJM. .%..s. ..p...c. NN i
2010
2020
2030
2040 U
2050
2060 »
@[Frame (frame), 98 bytes { Packets: 380 Displayed: 380 Marked: O Load time: 0:00.006 { Profile: Default

What is the IP address of your computer?

2. Within the IP packet header, what is the value in the upper layer protocol field?

3. How many bytes are in the IP header? How many bytes are in the payload of the
IP datagram? Explain how you determined the number of payload bytes.

4. Has this IP datagram been fragmented? Explain how you determined whether or
not the datagram has been fragmented.

Next, sort the traced packets according to IP source address by clicking on the Source
column header; a small downward pointing arrow should appear next to the word Source.
If the arrow points up, click on the Source column header again. Select the first ICMP
Echo Request message sent by your computer, and expand the Internet Protocol portion
in the “details of selected packet header” window. In the “listing of captured packets”
window, you should see all of the subsequent ICMP messages (perhaps with additional
interspersed packets sent by other protocols running on your computer) below this first
ICMP. Use the down arrow to move through the ICMP messages sent by your computer.

5. Which fields in the IP datagram always change from one datagram to the next
within this series of ICMP messages sent by your computer?

6. Which fields stay constant? Which of the fields must stay constant? Which fields
must change? Why?

7. Describe the pattern you see in the values in the Identification field of the IP
datagram

Next (with the packets still sorted by source address) find the series of ICMP TTL-
exceeded replies sent to your computer by the nearest (first hop) router.

8. What is the value in the Identification field and the TTL field?
9. Do these values remain unchanged for all of the ICMP TTL-exceeded replies sent
to your computer by the nearest (first hop) router? Why?

Fragmentation

Sort the packet listing according to time again by clicking on the Time column.

10. Find the first ICMP Echo Request message that was sent by your computer after
you changed the Packet Size in pingplotter to be 2000. Has that message been
fragmented across more than one IP datagram? [Note: if you find your packet has
not been fragmented, you should download the zip file
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the ip-
ethereal-trace- Ipacket trace. If your computer has an Ethernet interface, a packet
size of 2000 should cause fragmentation.’]

11. Print out the first fragment of the fragmented IP datagram. What information in
the IP header indicates that the datagram been fragmented? What information in
the IP header indicates whether this is the first fragment versus a latter fragment?
How long is this IP datagram?

3 The packets in the ip-ethereal-trace-1 trace file in http://gaia.cs.umass.edu/wireshark-labs/wireshark-
traces.zip are all less that 1500 bytes. This is because the computer on which the trace was gathered has an
Ethernet card that limits the length of the maximum IP packet to 1500 bytes (40 bytes of TCP/IP header
data and 1460 bytes of upper-layer protocol payload). This 1500 byte value is the standard maximum
length allowed by Ethernet. If your trace indicates a datagram longer 1500 bytes, and your computer is
using an Ethernet connection, then Wireshark is reporting the wrong IP datagram length; it will likely also
show only one large IP datagram rather than multiple smaller datagrams.. This inconsistency in reported
lengths is due to the interaction between the Ethernet driver and the Wireshark software. We recommend
that if you have this inconsistency, that you perform this lab using the ip-ethereal-trace-1 trace file.

12. Print out the second fragment of the fragmented IP datagram. What information in
the IP header indicates that this is not the first datagram fragment? Are the more
fragments? How can you tell?

13. What fields change in the IP header between the first and second fragment?

Now find the first ICMP Echo Request message that was sent by your computer after you
changed the Packet Size in pingplotter to be 3500.

14. How many fragments were created from the original datagram?
15. What fields change in the IP header among the fragments?

Wireshark Lab: Ethernet
and ARP v7.0

Supplement to Computer Networking: A Top-Down
Approach, 7" ed., J.F. Kurose and K.W. Ross

A TOP-DOWN APPROACH
B

KUROSE * ROSS

“Tell me and I forget. Show me and I remember. Involve me and [
understand.” Chinese proverb

© 2005-2016 J.F Kurose and K.W. Ross, All Rights Reserved

In this lab, we’ll investigate the Ethernet protocol and the ARP protocol. Before
beginning this lab, you’ll probably want to review sections 6.4.1 (Link-layer addressing
and ARP) and 6.4.2 (Ethernet) in the text'. RFC 826 (ftp:/ftp.rfc-editor.org/in-
notes/std/std37.txt) contains the gory details of the ARP protocol, which is used by an IP
device to determine the IP address of a remote interface whose Ethernet address is
known.

1. Capturing and analyzing Ethernet frames
Let’s begin by capturing a set of Ethernet frames to study. Do the following®:

* First, make sure your browser’s cache is empty. To do this under Mozilla Firefox
V3, select Tools->Clear Recent History and check the box for Cache. For Internet
Explorer, select Tools->Internet Options->Delete Files. Start up the Wireshark
packet sniffer

* Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/HT TP-ethereal-lab-file3.html
Your browser should display the rather lengthy US Bill of Rights.

! References to figures and sections are for the 7™ edition of our text, Computer Networks, A Top-down
Approach, 7" ed., 1.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2016.

If you are unable to run Wireshark live on a computer, you can download the zip file
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file ethernet--ethereal-trace-1.
The traces in this zip file were collected by Wireshark running on one of the author’s computers, while
performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it
into Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the
ethernet-ethereal-trace-1 trace file. You can then use this trace file to answer the questions below.

* Stop Wireshark packet capture. First, find the packet numbers (the leftmost
column in the upper Wireshark window) of the HTTP GET message that was sent
from your computer to gaia.cs.umass.edu, as well as the beginning of the HTTP
response message sent to your computer by gaia.cs.umass.edu. You should see a
screen that looks something like this (where packet 4 in the screen shot below
contains the HTTP GET message)

7! (Untitled) - Wireshark

File Edit Vew Go Capture Analyze Statistics

Help

IS [=] B3

B @ e e dpEx 9 8 Qe » F 2| BE & aQaaQd
Filter: | ¥ Expression... Clear Apply ‘
No. - lTime |Source |Destination IProtocol |Info 4

. 000000
. 050606

192.168.

il
2

.134167
.150302

0]

0

0.
0.128700
0

0

0

. 213639

0.403428

0.423932
3.383584
9.292197
10.389131

128.119.245.12
2

TCP
TCP

2038 > http [SYN] Seq=0 Len=0 MSS=1460
http > 2038 [SYN, ACK] Seq=0 Ack=1l win=§

GET /wireshark-la
http > 2038 [ACK]
[TCP segment of a
[TCP segment of a

Seq=1l Ack=453 wWin=6432
reassembled PDU]
reassembled PDU]

[TCP segment of a reassembled PDU]

HTTP/1.1 404'N0t Found (text/htm1)
2039 > http [SYN] Seq=q Len=0 MS5=1460

2035 > http [SYN] Seq=0 Len-0 M55=1460
2039 > http [SYN] Seq=0 Len=0 MSS=1460
http > 2038 [FIN, ACK] Seq=6235 Ack=793

Frame 4 (506 bytes on wire,

506 bytes captured)
Ethernet II, Src: Netgear_6l:8e:6d (00:09:5b:61:8e:6d), Dst:

LinksysG_45:90:a8 (00:0c:41:45:90:a8)

Internet Protocol, Src:
Transmisss
Hypertext Transfer Protocol

B GET Swireshark-Tabs/HTTP-ethereal-lab-file3.htm]l HTTR/L.1\r\n

jon Control P

0®FHEH

Request Method: GET
Request URI: fwireshark-labs/HTTP-ethereal-lab-file3.html
Request version: HTTP/1.1

Host: gaia.cs.umass.eduyrin

User-agent: Mozilla/5.0 (windows; U; windows NT 5.1; en-uUS; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.¢
Accept: text/xml,applications/xml, application/xhtml+xml, text /html; g=0.9,text/plain;g=0.8, image/png, ¥/

Accept-Language: en-us,en;g=0.5\r\n
Accept-Encoding: gzip,deflateirin

Accept-Charset: IS0-8859-1,utf-8;0=0.7,%;q=0.7\r\n
Keep-Alive: 300N\r\n

Connection: keep-alive\r\n

\r\n
il | i |
2
0040 s/HTTP-g| _J
0050 Tab-filg]
0060 TTP/1.1.
0070 ala.cs.u
0080 . .. User-a
0090 f ¢ 1 gent: Mo zilla/s. I

|P: 21 D: 21 M: 0 Drops: 0

BN

* Since this lab is about Ethernet and ARP, we’re not interested in IP or higher-
layer protocols. So let’s change Wireshark’s “listing of captured packets” window
so that it shows information only about protocols below IP. To have Wireshark do
this, select Analyze->Enabled Protocols. Then uncheck the IP box and select OK.
You should now see an Wireshark window that looks like:

! (Untitled) - Wireshark I =] X;
File Edit WView Go Capture Analyze Statistics Help
B @ e e e oUW x % 8 Q8 ¢ 2F 8 BE Q& QQq
Eilter:l ¥ Expression... Clear Apply ‘
No. - | Time: | Source | Destination | Protocol | Info B
1 0.000000 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
2 0.050606 LinksysG_45:90:a8 Netgear_6l:8e:6d 0x0800 IP
3 0.050729 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
4 0. el LINKSysG_4 0:as 0x0800
5 0.128700 LinksysG_45:90:a8 Netgear_6l:8e:6d 0x0800 IP
6 0.134167 LinksysG_45:90:a8 Netgear_6l:8e:6d 0x0800 IP
7 0.150302 LinksysG_45:90:a8 Netgear_61:8e:6d 0x0800 IP
8 0.150487 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
9 0.213639 LinksysG_45:90:a8 Netgear_6l:8e:6d 0x0800 IP
10 0.215724 LinksysG_45:90:a8 Netgear_6l:8e:6d 0x0800 IP
11 0.215947 Netgear_61:8e:6d LinksysG_45:90:a8 0x0800 IP
12 0.231749 LinksysG_45:90:a8 Netgear_6l:8e:6d 0x0800 IP
13 0.232145 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
14 0.320470 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
15 0.403428 LinksysG_45:90:a8 Netgear_6l:8e:6d 0x0800 IP
16 0.423932 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
17 0.579522 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
18 3.383584 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
19 9.392197 Netgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
20 10.389131 LinksysG_45:90:a8 Netgear_61:8e:6d 0x0800 IP
21 10.389258 Netgear_61:8e:6d LinksysG_45:90:a8 0x0800 IP r
0| | i
Frame 4 (506 bytes on wire, 506 hytes captured) -
= Ethernet II, Src: Netgear_61:8e:6d (00:09:5b:61:8e:6d), Dst: LinksysG_45:90:a8 (00:0c:41:45:90:a8)
= pestination: LinksysG_45:90:a8 (00:0c:41:45:90:a8)
Address: LinksysG_45:90:a8 (00:0c:41:45:90:a8)
....... 0 ivr veer veee wvw. = 1IG bit: Individual address (unicast)
e wn00 el sle we e = LG bit: Globally unique address (factory default)
[F Source: Netgear_6l:8e:6d (00:09:5b:61:8e:6d)
Address: Netgear_61:8e:6d (00:09:5b:61:8e:6d)
....... 0 vivr vive vewe ww.. = IG bit: Individual address (unicast)
ceee 2200 e wies weee wew. = LG bit: Globally unique address (factory default)
Type: IP (0x0800)
Data (492 hytes) =
i | ©
0000 00 Oc 41 45 90 a8 00 09 5b 61 Be 6d 08 00 45 00 . . AE. [a.m..E. E
0010 01 ec 87 e9 40 00 80 06 38 65 c0 a8 02 91 80 77@... 8..... w
0020 f5 0c 07 f6 00 50 7a 74 ¢4 58 7d a6 27 90 50 18 Pzt .xX}.'.P.
0030 ff ff 3a 9c 00 00 47 45 54 20 2f 77 69 72 65 73 L.l GE T fwires
0040 68 61 72 6b 2d 6c 61 62 73 2f 48 54 54 50 2d 65 hark-lab s/HTTP-e
0050 74 68 65 72 65 61 6c 2d 6¢C 61 62 2d 66 69 6¢C 65 thereal- Tab-file
0060 33 2e 68 74 6d 6¢c 20 48 54 54 50 2f 31 2e 31 od 3.html H TTP/1.1.
0070 0Oa 48 6f 73 74 3a 20 67 61 69 61 2e 63 73 2e 75 .Host: g aja.cs.u =
File: "C:\DOCUME~1\PAULAW~1\LOCALS~1\TempletherXXXXaD2620" 8584 Bytes 00:... | P: 21 D: 21 M: 0 Drops: 0 A

In order to answer the following questions, you’ll need to look into the packet details and
packet contents windows (the middle and lower display windows in Wireshark).

Select the Ethernet frame containing the HTTP GET message. (Recall that the HTTP
GET message is carried inside of a TCP segment, which is carried inside of an IP
datagram, which is carried inside of an Ethernet frame; reread section 1.5.2 in the text if
you find this encapsulation a bit confusing). Expand the Ethernet II information in the
packet details window. Note that the contents of the Ethernet frame (header as well as
payload) are displayed in the packet contents window.

Answer the following questions, based on the contents of the Ethernet frame containing
the HTTP GET message. Whenever possible, when answering a question you should
hand in a printout of the packet(s) within the trace that you used to answer the question
asked. Annotate the printout’ to explain your answer. To print a packet, use File->Print,
choose Selected packet only, choose Packet summary line, and select the minimum
amount of packet detail that you need to answer the question.

1. What is the 48-bit Ethernet address of your computer?
What is the 48-bit destination address in the Ethernet frame? Is this the Ethernet
address of gaia.cs.umass.edu? (Hint: the answer is no). What device has this as its
Ethernet address? [Note: this is an important question, and one that students
sometimes get wrong. Re-read pages 468-469 in the text and make sure you
understand the answer here.]

3. Give the hexadecimal value for the two-byte Frame type field. What upper layer
protocol does this correspond to?

4. How many bytes from the very start of the Ethernet frame does the ASCII “G” in
“GET” appear in the Ethernet frame?

Next, answer the following questions, based on the contents of the Ethernet frame
containing the first byte of the HTTP response message.

5. What is the value of the Ethernet source address? Is this the address of your
computer, or of gaia.cs.umass.edu (Hint: the answer is no). What device has this
as its Ethernet address?

6. What is the destination address in the Ethernet frame? Is this the Ethernet address
of your computer?

7. Give the hexadecimal value for the two-byte Frame type field. What upper layer
protocol does this correspond to?

8. How many bytes from the very start of the Ethernet frame does the ASCII “O” in
“OK” (i.e., the HTTP response code) appear in the Ethernet frame?

’ What do we mean by “annotate™? If you hand in a paper copy, please highlight where in the printout
you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what
you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and
annotate.

2. The Address Resolution Protocol

In this section, we’ll observe the ARP protocol in action. We strongly recommend that
you re-read section 6.4.1 in the text before proceeding.

ARP Caching

Recall that the ARP protocol typically maintains a cache of IP-to-Ethernet address
translation pairs on your comnputer The arp command (in both MSDOS and
Linux/Unix) is used to view and manipulate the contents of this cache. Since the arp
command and the ARP protocol have the same name, it’s understandably easy to confuse
them. But keep in mind that they are different - the arp command is used to view and
manipulate the ARP cache contents, while the ARP protocol defines the format and
meaning of the messages sent and received, and defines the actions taken on message
transmission and receipt.

Let’s take a look at the contents of the ARP cache on your computer:

* MS-DOS. The arp command is in c:\windows\system32, so type either “arp” or
“c:\windows\system32\arp” in the MS-DOS command line (without quotation
marks).

* Linux/Unix/MacOS. The executable for the arp command can be in various
places. Popular locations are /sbin/arp (for linux) and /usr/etc/arp (for some Unix
variants).

The Windows arp command with no arguments will display the contents of the ARP
cache on your computer. Run the arp command.

9. Write down the contents of your computer’s ARP cache. What is the meaning of
each column value?

In order to observe your computer sending and receiving ARP messages, we’ll need to
clear the ARP cache, since otherwise your computer is likely to find a needed IP-Ethernet
address translation pair in its cache and consequently not need to send out an ARP
message.

* MS-DOS. The MS-DOS arp —d * command will clear your ARP cache. The —d
flag indicates a deletion operation, and the * is the wildcard that says to delete all
table entries.

* Linux/Unix/MacOS. The arp —d * will clear your ARP cache. In order to run
this command you’ll need root privileges. If you don’t have root privileges and
can’t run Wireshark on a Windows machine, you can skip the trace collection part
of this lab and just use the trace discussed in the earlier footnote.

Observing ARP in action

Do the following4:

Clear your ARP cache, as described above.

Next, make sure your browser’s cache is empty. To do this under Mozilla Firefox
V3, select Tools->Clear Recent History and check the box for Cache. For Internet
Explorer, select Tools->Internet Options->Delete Files.

Start up the Wireshark packet sniffer

Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/HT TP-wireshark-lab-file3.html

Your browser should again display the rather lengthy US Bill of Rights.

Stop Wireshark packet capture. Again, we’re not interested in IP or higher-layer
protocols, so change Wireshark’s “listing of captured packets” window so that it
shows information only about protocols below IP. To have Wireshark do this,
select Analyze->FEnabled Protocols. Then uncheck the IP box and select OK.
You should now see an Wireshark window that looks like:

4 The ethernet-ethereal-trace-1 trace file in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip
was created using the steps below (in particular after the ARP cache had been flushed).

7 ethernet-ethereal-trace-1 - Wireshark O] x|
File Edit View Go Capture Analyze Statistics Help

B e e op@x v 3R« > F L EEH QQQ D)

Eilter:l ¥ Expression... Clear Apply ‘

No. -

Destination Protocol | Info

Broadcast who has 192. .

AMBDITMIC_aY:

. 000000 EEH: oAbz 1 68.1.10
2 0.001018 LinksysG_da:af:73 ambitMic_a9:3d:68 ARP 192.168.1.1 is at 00:06:25:da:af:73
3 0.001028 AambitMic_a%9:3d:68 LinksysG_da:af:73 0x0800 IP
4 2.962850 Ambitmic_a9:3d:68 LinksysG_da:af:73 0x0800 IP
5 8.971488 ambitmic_a9:3d:68 Linksysc_da:af:73 0x0800 IP
6 13.542974 Telebit_73:8d:ce Broadcast ARP who has 192.168.1.1177 Tell 152.168.1.104
7 17.444423 ambitmic_a9:3d:68 LinksysG_da:af:73 0x0800 IP
8 17.465902 LinksysG_da:af:73 ambitmic_a%9:3d:68 0x0800 IP
9 17.465927 ambitmMic_a9:3d:68 LinksysG_da:af:73 0x0800 IP
10 17.466468 ambitmic_a%9:3d:68 LinksysG_da:af:73 0x0800 IP
11 17.494766 LinksysG_da:af:73 ambitmic_a9:3d:68 0x0800 IP
12 17.498935 LinksysG_da:af:73 ambitmic_a9:3d:68 0x0800 IP
13 17.500025 LinksysG_da:af:73 ambitmic_a9:3d:68 0x0800 IP
14 17.500069 ambitmic_a%9:3d:68 LinksysG_da:af:73 0x0800 IP
15 17.527057 LinksysG_da:af:73 ambitmic_a9:3d:68 0x0800 IP
16 17.527422 LinksysG_da:af:73 ambitmic_a9:3d:68 0x0800 IP
17 17.527457 ambitmic_a9%9:3d:68 LinksysG_da:af:73 0x0800 IP
(=
| | i
Frame 1 (42 bytes on wire, 42 bytes captured)
Ethernet II, src: AmbitMic_a9:3d:68 (00:d0:59:a9:3d:68), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
= Address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
opcode: request (0Ox0001)
Sender MAC address: ambitmic_a%:3d:68 (00:d0:59:a9:3d:68)
sender IP address: 192.168.1.105 (192.168.1.105)
Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
Target IP address: 192.168.1.1 (192.168.1.1)
0000 ff £f £f £f ff T 00 d0 59 a% 3d 68 08 06 00 01
0010 08 00 06 04 00 01 00 d0 59 a9 3d 68 cO a8 01 69
0020 00 00 00 00 00 00 cO a8 01 01
HaTmmmmumﬁmm#whMmWWWmmMMmMM%wrawwhImﬂmnwo 4

In the example above, the first two frames in the trace contain ARP messages (as does the
6" message). The screen shot above corresponds to the trace referenced in footnote 1.

Answer the following questions:

10. What are the hexadecimal values for the source and destination addresses in the
Ethernet frame containing the ARP request message?
11. Give the hexadecimal value for the two-byte Ethernet Frame type field. What
upper layer protocol does this correspond to?
12. Download the ARP specification from
ftp://ftp.rfc-editor.org/in-notes/std/std37.txt. A readable, detailed discussion of
ARP is also at http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html.
a) How many bytes from the very beginning of the Ethernet frame does the
ARP opcode field begin?
b) What is the value of the opcode field within the ARP-payload part of the
Ethernet frame in which an ARP request is made?
c) Does the ARP message contain the IP address of the sender?

d) Where in the ARP request does the “question” appear — the Ethernet
address of the machine whose corresponding IP address is being queried?

13. Now find the ARP reply that was sent in response to the ARP request.

a) How many bytes from the very beginning of the Ethernet frame does the
ARP opcode field begin?

b) What is the value of the opcode field within the ARP-payload part of the
Ethernet frame in which an ARP response is made?

¢) Where in the ARP message does the “answer” to the earlier ARP request
appear — the IP address of the machine having the Ethernet address whose
corresponding IP address is being queried?

14. What are the hexadecimal values for the source and destination addresses in the
Ethernet frame containing the ARP reply message?

15. Open the ethernet-ethereal-trace-1 trace file in
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip. The first and second
ARP packets in this trace correspond to an ARP request sent by the computer
running Wireshark, and the ARP reply sent to the computer running Wireshark by
the computer with the ARP-requested Ethernet address. But there is yet another
computer on this network, as indicated by packet 6 — another ARP request. Why
is there no ARP reply (sent in response to the ARP request in packet 6) in the
packet trace?

Extra Credit
EX-1. The arp command:
arp -s InetAddr EtherAddr

allows you to manually add an entry to the ARP cache that resolves the IP address
InetAddr to the physical address EtherAddr. What would happen if, when you
manually added an entry, you entered the correct IP address, but the wrong
Ethernet address for that remote interface?

EX-2. What is the default amount of time that an entry remains in your ARP cache
before being removed. You can determine this empirically (by monitoring the
cache contents) or by looking this up in your operation system documentation.
Indicate how/where you determined this value.

	0
	1
	2
	3
	4
	5
	6

