
 Solutions 

              1 



 Chapter 1 Solutions S-3

       1.1         Personal computer (includes workstation and laptop):  Personal computers 
emphasize delivery of good performance to single users at low cost and usually 
execute third-party soft ware. 

  Personal mobile device (PMD, includes tablets):  PMDs are battery operated 
with wireless connectivity to the Internet and typically cost hundreds of 
dollars, and, like PCs, users can download soft ware (“apps”) to run on them. 
Unlike PCs, they no longer have a keyboard and mouse, and are more likely 
to rely on a touch-sensitive screen or even speech input. 

  Server:  Computer used to run large problems and usually accessed via a 
network. 

  Warehouse-scale computer:  Th ousands of processors forming a large cluster. 

  Supercomputer:  Computer composed of hundreds to thousands of processors 
and terabytes of memory. 

  Embedded computer:  Computer designed to run one application or one set 
of related applications and integrated into a single system.  

    1.2     

   a.     Performance via Pipelining  
  b.     Dependability via Redundancy  
  c.     Performance via Prediction  
  d.     Make the Common Case Fast  
  e.     Hierarchy of Memories  
  f.     Performance via Parallelism  
  g.     Design for Moore’s Law  
  h.     Use Abstraction to Simplify Design  

       1.3        Th e program is compiled into an assembly language program, which is then 
assembled into a machine language program.  

    1.4     

   a.        1280   ×   1024 pixels   =   1,310,720 pixels   =    >   1,310,720   ×   3 =   3,932,160 bytes/
frame.  

  b.     3,932,160 bytes   ×   (8 bits/byte) /100E6 bits/second   =   0.31 seconds  

       1.5     

   a.     performance of P1 (instructions/sec)   =   3 ×   10 9 /1.5   =   2 ×   10 9  
 performance of P2 (instructions/sec)   =   2.5 ×   10 9 /1.0   =   2.5 ×   10 9  
 performance of P3 (instructions/sec)   =   4 ×   10 9 /2.2   =   1.8 ×   10 9   



S-4 Chapter 1 Solutions

  b.     cycles(P1)   =   10 ×   3 ×   10 9  = 30 ×   10 9  s 

 cycles(P2)   =   10 ×   2.5 ×   10 9  = 25 ×   10 9  s 

 cycles(P3)   =   10 ×   4 ×   10 9  = 40 ×   10 9  s  

  c.     No. instructions(P1)   =   30 ×   10 9 /1.5   =   20   ×   10 9  

 No. instructions(P2)   =   25 ×   10 9 /1   =   25   ×   10 9  

 No. instructions(P3)   =   40 ×   10 9 /2.2   =   18.18   ×   10 9  

 CPI new    =   CPI old    ×   1.2, then CPI(P1)   =   1.8, CPI(P2)   =   1.2, CPI(P3)   =   2.6 

  f    =   No. instr.   ×   CPI/time, then 

  f (P1)   =   20   ×   10 9    ×   1.8/7   =   5.14     GHz 

  f (P2)   =   25   ×   10 9    ×   1.2/7   =   4.28     GHz 

  f (P1)   =   18.18   ×   10 9    ×   2.6/7   =   6.75     GHz  

       1.6     

   a.        Class A: 10 5  instr. Class B: 2   ×   10 5  instr. Class C: 5   ×   10 5  instr. Class D: 2   ×   10 5  
instr. 

 Time   =   No. instr.   ×   CPI/clock rate 

 Total time P1   =   (10 5    +   2   ×   10 5    ×   2   +   5   ×   10 5    ×   3   +   2 ×   10 5  ×   3)/(2.5   ×   10 9 )   =  
 10.4   ×   10 −4  s 

 Total time P2   =   (10 5    ×   2   +   2 ×   10 5    ×   2   +   5   ×   10 5    ×   2   +   2   ×   10 5    ×   2)/(3   ×   10 9 )   =  
 6.66   ×   10 −4  s 

 CPI(P1)   =   10.4   ×   10 −4    ×   2.5   ×   10 9 /10 6    =   2.6 

 CPI(P2)   =   6.66   ×   10 −4    ×   3   ×   10 9 /10 6    =   2.0  

  b.     clock cycles(P1)   =   10 5  ×   1   +   2   ×   10 5    ×   2   +   5   ×   10 5  ×   3   +   2   ×   10 5    ×   3   =   26   ×   10 5  

 clock cycles(P2)   =   10 5  ×   2   +   2   ×   10 5    ×   2   +   5   ×   10 5  ×   2   +   2   ×   10 5    ×   2   =   20   ×   10 5   

       1.7     

   a.     CPI   =   T exec  × f/No. instr. 

 Compiler A CPI   =   1.1 

 Compiler B CPI   =   1.25  

  b.     f B /f A    =   (No. instr.(B)   ×   CPI(B))/(No. instr.(A)   ×   CPI(A))   =   1.37  

  c.     T A /T new  =   1.67 

 T B /T new  =   2.27  



 Chapter 1 Solutions S-5

       1.8     

   1.8.1     C   =   2   ×   DP/(V 2  × F) 

 Pentium 4: C   =   3.2E–8F 

 Core i5 Ivy Bridge: C   =   2.9E–8F  

  1.8.2     Pentium 4: 10/100   =   10% 

 Core i5 Ivy Bridge: 30/70   =   42.9%  

  1.8.3     (S new  + D new )/(S old  + D old )   =   0.90 

 D new    =   C   ×   V new  2   ×   F 

 S old    =   V old    ×   I 
 S new    =   V new    ×   I 
 Therefore: 
 V new    =   [D new /(C   ×   F)] 1/2  
 D new    =   0.90   ×   (S old  + D old ) −   S new  
 S new    =   V new    ×   (S old /V old ) 
 Pentium 4: 
 S new    =   V new    ×   (10/1.25)   =   V new  × 8 
 D new    =   0.90 ×   100 −   V new  × 8 =   90 −   V new  × 8 
 V new    =   [(90 −   V new  × 8)/(3.2E8 ×   3.6E9)] 1/2  
 V new  = 0.85     V 
 Core i5: 
 S new  = V new    ×   (30/0.9)   =   V new  × 33.3 
 D new  = 0.90 ×   70 −   V new  × 33.3 =   63 −   V new  × 33.3 
 V new    =   [(63 −   V new  × 33.3)/(2.9E8 ×   3.4E9)] 1/2  
 V new  = 0.64     V  

       1.9     

   1.9.1             



S-6 Chapter 1 Solutions

  1.9.2             

  1.9.3     3  

       1.10     

   1.10.1     die area 15cm    =   wafer area/dies per wafer   =   π × 7.5 2 /84   =   2.10     cm 2  

 yield 15cm    =   1/(1   +   (0.020 × 2.10/2)) 2    =   0.9593 

 die area 20cm    =   wafer area/dies per wafer   =   π × 10 2 /100   =   3.14     cm 2  

 yield 20cm  =   1/(1   +   (0.031 × 3.14/2)) 2  =   0.9093  

  1.10.2     cost/die 15cm  = 12/(84 × 0.9593)   =   0.1489 

 cost/die 20cm  = 15/(100 × 0.9093)   =   0.1650  

  1.10.3     die area 15cm  = wafer area/dies per wafer =   π × 7.5 2 /(84 × 1.1)   =   1.91     cm 2  

 yield 15cm  = 1/(1 +   (0.020 × 1.15 × 1.91/2)) 2  = 0.9575 

 die area 20cm  = wafer area/dies per wafer =   π × 10 2 /(100 × 1.1)   =   2.86     cm 2  

 yield 20cm  = 1/(1 +   (0.03 × 1.15 × 2.86/2)) 2  = 0.9082  

  1.10.4        defects per area 0.92    =   (1–y .5 )/(y .5  × die_area/2)   =   (1 −   0.92 .5 )/  
(0.92 .5  × 2/2)   =   0.043 defects/cm 2  

 defects per area 0.95    =   (1–y .5 )/(y .5  × die_area/2)   =   (1 −   0.95 .5 )/  
(0.95 .5  × 2/2)   =   0.026 defects/cm 2   

       1.11     

     1.11.1     CPI   =   clock rate   ×   CPU time/instr. count 

 clock rate   =   1/cycle time   =   3     GHz 

 CPI(bzip2)   =   3 ×   10 9    ×   750/(2389   ×   10 9 )   =   0.94  

    1.11.2     SPEC ratio   =   ref. time/execution time 

 SPEC ratio(bzip2)   =   9650/750   =   12.86  

    1.11.3     CPU time   =   No. instr.   ×   CPI/clock rate 

 If CPI and clock rate do not change, the CPU time increase is equal to the 
increase in the number of instructions, that is 10%.  



 Chapter 1 Solutions S-7

    1.11.4     CPU time(before)   =   No. instr.   ×   CPI/clock rate 

 CPU time(aft er)   =   1.1 ×   No. instr.   ×   1.05 ×   CPI/clock rate 

 CPU time(aft er)/CPU time(before)   =   1.1 ×   1.05 =   1.155. Th us, CPU time is 
increased by 15.5%.  

    1.11.5     SPECratio =   reference time/CPU time 

 SPECratio(aft er)/SPECratio(before)   =   CPU time(before)/CPU time(aft er)  
 =   1/1.1555 =   0.86. Th e SPECratio is decreased by 14%.  

    1.11.6     CPI =   (CPU time ×   clock rate)/No. instr. 

 CPI =   700 ×   4 ×   10 9 /(0.85 ×   2389 ×   10 9 )   =   1.37  

    1.11.7     Clock rate ratio =   4     GHz/3     GHz =   1.33 

 CPI @ 4     GHz =   1.37, CPI @ 3     GHz =   0.94, ratio =   1.45 

 Th ey are diff erent because, although the number of instructions has been 
reduced by 15%, the CPU time has been reduced by a lower percentage.  

    1.11.8     700/750 =   0.933. CPU time reduction: 6.7%  

    1.11.9     No. instr.   =   CPU time ×   clock rate/CPI 

 No. instr.   =   960 ×   0.9 ×   4 ×   10 9 /1.61 =   2146 ×   10 9   

    1.11.10     Clock rate =   No. instr.   ×   CPI/CPU time. 

 Clock rate new  = No. instr.   ×   CPI/0.9 ×   CPU time =   1/0.9 clock rate old    =  
 3.33     GHz  

    1.11.11     Clock rate =   No. instr.   ×   CPI/CPU time. 

 Clock rate new  = No. instr.   ×   0.85 ×   CPI/0.80 CPU time =   0.85/0.80, clock 
rate old  = 3.18     GHz  

       1.12     

   1.12.1     T(P1)   =   5 ×   10 9  × 0.9/(4 ×   10 9 )   =   1.125     s 

 T(P2)   =   10 9  × 0.75/(3 ×   10 9 )   =   0.25     s 

 clock rate(P1) >   clock rate(P2), performance(P1) <   performance(P2)  

  1.12.2     T(P1)   =   No. instr.   ×   CPI/clock rate 

 T(P1)   =   2.25 3 1021     s 

 T(P2) 5 N ×   0.75/(3 ×   10 9 ), then N =   9 ×   10 8   

  1.12.3     MIPS =   Clock rate ×   10 −6 /CPI 

 MIPS(P1)   =   4 ×   10 9  × 10 −6 /0.9 =   4.44 ×   10 3  



S-8 Chapter 1 Solutions

 MIPS(P2)   =   3 ×   10 9  × 10 −6 /0.75 =   4.0 ×   10 3  

 MIPS(P1) >   MIPS(P2), performance(P1) <   performance(P2) (from 11a)  
  1.12.4     MFLOPS =   No. FP operations ×   10 −6 /T 

 MFLOPS(P1)   =   .4 ×   5E9 ×   1E-6/1.125 =   1.78E3 

 MFLOPS(P2)   =   .4 ×   1E9 ×   1E-6/.25 =   1.60E3 

 MFLOPS(P1) >   MFLOPS(P2), performance(P1) <   performance(P2) (from 
11a)  

       1.13     

   1.13.1     T fp  = 70 ×   0.8 =   56     s. T new  = 56 +   85 +   55 +   40 =   236     s. Reduction: 5.6%  

  1.13.2        T new  = 250 ×   0.8 =   200     s, T fp  + T l/s  + T branch  = 165     s, T int  = 35     s. Reduction time 
INT: 58.8%  

  1.13.3     T new  = 250 ×   0.8 =   200     s, T fp  + T int  + T l/s  = 210     s. NO  

       1.14     

   1.14.1        Clock cycles =   CPI fp  × No. FP instr.   +   CPI int  × No. INT instr.   +   CPI l/s  × No. 
L/S instr.   +   CPI branch  × No. branch instr. 

 T CPU  = clock cycles/clock rate =   clock cycles/2 ×   10 9  

 clock cycles =   512 ×   10 6 ; T CPU  = 0.256     s 

 To have the number of clock cycles by improving the CPI of FP instructions: 

 CPI improved fp  × No. FP instr.   +   CPI int  × No. INT instr.   +   CPI l/s  × No. L/S instr.   +  
 CPI branch  × No. branch instr.   =   clock cycles/2 

 CPI improved fp    =   (clock cycles/2 −   (CPI int  × No. INT instr.   +   CPI l/s  × No. L/S 
instr.   +   CPI branch  × No. branch instr.)) / No. FP instr. 

 CPI improved fp    =   (256 −   462)/50 <   0 =   =     >   not possible  

  1.14.2     Using the clock cycle data from a. 

 To have the number of clock cycles improving the CPI of L/S instructions: 

 CPI fp  × No. FP instr.   +   CPI int  × No. INT instr.   +   CPI improved l/s  × No. L/S instr.  
 +   CPI branch  × No. branch instr.   =   clock cycles/2 

 CPI improved l/s    =   (clock cycles/2 −   (CPI fp  × No. FP instr.   +   CPI int  × No. INT 
instr.   +   CPI branch  × No. branch instr.)) / No. L/S instr. 

 CPI improved l/s    =   (256 −   198)/80 =   0.725  
  1.14.3        Clock cycles =   CPI fp  × No. FP instr.   +   CPI int  × No. INT instr.   +   CPI l/s  × No. 

L/S instr.   +   CPI branch  × No. branch instr. 



 Chapter 1 Solutions S-9

 T CPU  = clock cycles/clock rate =   clock cycles/2 ×   10 9  

 CPI int  = 0.6 ×   1 =   0.6; CPI fp  = 0.6 ×   1 =   0.6; CPI l/s  = 0.7 ×   4 =   2.8; CPI branch  = 
0.7 ×   2 =   1.4 
 T CPU  (before improv.)   =   0.256     s; T CPU  (aft er improv.)   =   0.171     s      

     1.15     

           



 Solutions 

              2 



 Chapter 2 Solutions S-3

       2.1      addi x5, x7,-5  
  add     x5, x5, x6  
  [addi f,h,-5 (note, no subi) add   f,f,g]   

    2.2      f = g+h+i   

    2.3      sub     x30, x28, x29            // compute i-j  
  slli     x30, x30, 3               //    multiply by 8 to convert the 

word offset to a byte offset  
  ld     x30, 0(x3)            // load A[i-j]  
  sd     x30, 64(x11)     // store in B[8]   

    2.4      B[g]= A[f] + A[f+1]  

  slli     x30, x5, 3            // x30 = f*8  
  add     x30, x10, x30            // x30 = &A[f]  
  slli     x31, x6, 3            // x31 = g*8  
  add     x31, x11, x31            // x31 = &B[g]  
  ld     x5, 0(x30)            // f = A[f]  
  addi     x12, x30, 8             // x12 = &A[f]+8   (i.e. &A[f+1])  
  ld     x30, 0(x12)            // x30 = A[f+1]  
  add     x30, x30, x5            // x30 = A[f+1] + A[f]  
  sd     x30, 0(x31)            // B[g] = x30 (i.e. A[f+1] + A[f])   

    2.5     

      

    2.6      2882400018   

    2.7      slli     x28, x28, 3       // x28 = i*8  
  ld     x28, 0(x10)     // x28 = A[i]  
  slli     x29, x29, 3            // x29 = j*8  
  ld     x29, 0(x11)     // x29 = B[j]  
  add     x29, x28, x29            // Compute x29 = A[i] + B[j]  
  sd     x29, 64(x11)            // Store result in   B[8]   



S-4 Chapter 2 Solutions

    2.8      f = 2*(&A)  
  addi     x30, x10, 8     // x30 = &A[1]  
  addi     x31, x10, 0            // x31 = &A  
  sd     x31, 0(x30)     // A[1] = &A  
  ld     x30, 0(x30)            // x30 = A[1] = &A  
  add     x5, x30, x31            // f = &A + &A = 2*(&A)   

    2.9     

 

addi x30,x10,8

addi x31,x10,0

sd x31,0(x30)

ld x30,0(x30)

add x5, x30, x31

I-type 0x13, 0x0, --

0x13, 0x0, --

0x23, 0x3, --

0x3, 0x3, --

0x33, 0x0, 0x0

R-type

R-type

S-type

I-type

10 -- 30

30

5

31 0

8

0

0

--

--

--

--

30

31

10

31

30

30

opcode,
funct3,7 immtype rs1 rs2 rd

     

    2.10     

   2.10.1      0x5000000000000000   
  2.10.2      overflow   
  2.10.3      0xB000000000000000   
  2.10.4      no overflow   
  2.10.5      0xD000000000000000   
  2.10.6      overflow   

       2.11    

   2.11.1     Th ere is an overfl ow if 128 +  x6  > 2 63  − 1. 
 In other words, if  x6  > 2 63  − 129. 
 Th ere is also an overfl ow if 128 +  x6  < −2 63 . 
 In other words, if  x6  < −2 63  − 128 (which is impossible given the   
range of  x6 ).  

  2.11.2     Th ere is an overfl ow if 128 –  x6  > 2 63  − 1. 
 In other words, if  x6  < −2 63  + 129. 
 Th ere is also an overfl ow if 128 –  x6  < −2 63 . 
 In other words, if  x6  > 2 63  + 128 (which is impossible given the   
range of  x6 ).  

  2.11.3     Th ere is an overfl ow if  x6  − 128 > 2 63  − 1. 
 In other words, if  x6  < 2 63  + 127 (which is impossible given the   
range of  x6 ). 
 Th ere is also an overfl ow if  x6  − 128 < −2 63 . 
 In other words, if  x6  < −2 63  + 128.  

       2.12      R-type: add x1, x1, x1   



 Chapter 2 Solutions S-5

    2.13         S-type: 0x25F3023 (0000 0010 0101 1111 0011 0000 0010 
0011)   

    2.14         R-type: sub x6, x7, x5 (0x40538333: 0100 0000 0101 0011 
1000 0011 0011 0011)   

    2.15         I-type: ld x3, 4(x27) (0x4DB183: 0000 0000 0100 1101 
1011 0001 1000 0011)   

    2.16     

   2.16.1     Th e opcode would expand from 7 bits to 9. 

 Th e  rs1 ,  rs2 , and  rd  fi elds would increase from 5 bits to 7 bits.  

  2.16.2     Th e opcode would expand from 7 bits to 12. 

 Th e  rs1  and  rd  fi elds would increase from 5 bits to 7 bits. Th is change 
does not aff ect the  imm  fi eld  per se , but it might force the ISA designer to 
consider shortening the immediate fi eld to avoid an increase in overall 
instruction size.  

  2.16.3        * Increasing the size of each bit fi eld potentially makes each instruction 
longer, potentially increasing the code size overall. 
 * However, increasing the number of registers could lead to less register 
spillage, which would reduce the total number of instructions, possibly 
reducing the code size overall.  

       2.17    
   2.17.1      0x1234567ababefef8   
  2.17.2      0x2345678123456780   
  2.17.3      0x545   

       2.18     It can be done in eight RISC-V instructions: 

  addi     x7,     x0,     0x3f     // Create bit mask for bits 16 to 11  
  slli     x7,     x7,     11            // Shift the masked bits  
  and     x28,     x5,     x7     // Apply the mask to x5  
  slli     x7,     x6,     15               //    Shift the mask to cover bits 31 

to 26  
  xori     x7,     x7,     -1            // This is a NOT operation  
  and     x6,     x6,     x7        //  “Zero out” positions 31 to 

26 of x6  
  slli     x28,     x28,     15               //    Move selection from x5 into 

positions 31 to 26  
  or     x6,     x6,     x28            // Load bits 31 to 26 from x28   

    2.19      xori x5, x6, -1   



S-6 Chapter 2 Solutions

    2.20      ld     x6, 0(x17)  
  slli x6, x6, 4   

    2.21      x6 = 2   

    2.22    

   2.22.1      [0x1ff00000, 0x200FFFFE]   

    2.22.2      [0x1FFFF000, 0x20000ffe]      

    2.23    

   2.23.1        Th e UJ instruction format would be most appropriate because it would 
allow the maximum number of bits possible for the “ loop ” parameter, 
thereby maximizing the utility of the instruction.  

    2.23.2     It can be done in three instructions: 

  loop:  
addi     x29, x29, -1       // Subtract 1 from x29  
  bgt     x29, x0, loop           //    Continue if x29 not 

negative  
  addi     x29, x29, 1       //    Add back 1 that shouldn’t 

have been subtracted.      

    2.24    

   2.24.1     Th e fi nal value of  xs  is  20 .  

  2.24.2      acc = 0;  
  i = 10;  
  while (i ! = 0) {  

            acc += 2;  
            i--;  

  }   

  2.24.3      4*N + 1  instructions.  

  2.24.4     (Note: change condition ! = to > = in the while loop) 

  acc = 0;  
  i = 10;  
  while (i >= 0) {  

            acc += 2;  
            i--;  

  }   



 Chapter 2 Solutions S-7

       2.25        Th e C code can be implemented in RISC-V assembly as follows.  

       LOOPI: 
     addi     x7,     x0, 0     // Init i = 0  
          bge     x7,     x5, ENDI     // While i < a  
       addi     x30,     x10, 0     // x30 = &D  
       addi     x29,     x0, 0     // Init j = 0  

  LOOPJ: 
     bge     x29,     x6, ENDJ     // While j < b  
       add     x31,     x7, x29     // x31 = i+j  
       sd     x31,     0(x30)     // D[4*j] = x31  
       addi     x30,     x30, 32     // x30 = &D[4*(j+1)]  
       addi     x29,     x29, 1     // j++  
       jal     x0,     LOOPJ  

  ENDJ:    
      addi     x7,     x7, 1     // i++;  
       jal     x0,     LOOPI  

  ENDI:   

    2.26      Th e code requires 13 RISC-V instructions. When a = 10 and b = 1, this 
results in 123 instructions being executed.  

    2.27         // This C code corresponds most directly to the given 
assembly.  

  int i;  
  for (i = 0; i < 100; i++) {  
            result += *MemArray;  
            MemArray++;  

  }  
  return result;  

  // However, many people would write the code this way:  

  int i;  
  for (i = 0; i < 100; i++) {  
            result += MemArray[i];  
  }  
  return result;   



S-8 Chapter 2 Solutions

    2.28         The address of the last element of MemArray can be 
used to terminate the loop:  
  add x29, x10, 800     // x29 = &MemArray[101]  

  LOOP:  
  ld     x7,     0(x10)  
  add     x5,     x5, x7  
  addi     x10,     x10, 8  
  blt     x10,     x29, LOOP     //    Loop until MemArray points 

to one-past the last element   

    2.29 

        // IMPORTANT! Stack pointer must reamin a multiple 
of 16!!!!  

  fib:  
  beq     x10,     x0, done   // If n==0, return 0  
  addi     x5,     x0, 1  
  beq     x10,     x5, done    // If n==1, return 1  
  addi     x2,     x2, -16   //    Allocate 2 words of stack 

space  
  sd     x1,     0(x2)   // Save the return address  
  sd     x10,     8(x2)   // Save the current n  
  addi     x10,     x10, -1     // x10 = n-1  
  jal     x1,     fib   // fib(n-1)  
  ld     x5,     8(x2)   // Load old n from the stack  
  sd     x10,     8(x2)   // Push fib(n-1) onto the stack  
  addi     x10,     x5, -2   // x10 = n-2  
  jal     x1,     fib   // Call fib(n-2)  
  ld     x5,     8(x2)   // x5 = fib(n-1)  
  add     x10,     x10, x5   // x10 = fib(n-1)+fib(n-2)  

  // Clean up:  
  ld     x1,     0(x2)   // Load saved return address  
  addi     x2,     x2, 16   // Pop two words from the stack  

  done:  
  jalr     x0,     x1   

    2.30     [answers will vary]  



 Chapter 2 Solutions S-9

    2.31 

    // IMPORTANT! Stack pointer must remain a multiple of 16!!!  
  f:  
  addi     x2, x2, -16     //    Allocate stack space for 2 words  
  sd     x1, 0(x2)     // Save return address  
  add     x5, x12, x13     // x5 = c+d  
  sd     x5, 8(x2)       // Save c+d on the stack  
  jal     x1, g       // Call x10 = g(a,b)  
  ld     x11, 8(x2)       // Reload x11= c+d from the stack  
  jal     x1, g       // Call x10 = g(g(a,b), c+d)  
  ld     x1, 0(x2)     // Restore return address  
  addi     x2, x2, 16     // Restore stack pointer  
  jalr     x0, x1   

    2.32        We can use the tail-call optimization for the second call to  g , saving one 
instruction: 

  // IMPORTANT! Stack pointer must remain a multiple of 16!!!  
  f:  
  addi     x2, x2, -16     //    Allocate stack space for 2 words  
  sd     x1, 0(x2)     // Save return address  
  add     x5, x12, x13     // x5 = c+d  
  sd     x5, 8(x2)     // Save c+d on the stack  
  jal     x1, g     // Call x10 = g(a,b)  
  ld     x11, 8(x2)     // Reload x11 = c+d from the stack  
  ld     x1, 0(x2)     // Restore return address  
  addi     x2, x2, 16     // Restore stack pointer  
  jal     x0, g     // Call x10 = g(g(a,b), c+d)   

    2.33        *We have no idea what the contents of  x10-x14  are, g can set them as it 
pleases. 

 *We don’t know what the precise contents of  x8  and  sp  are; but we do know 
that they are identical to the contents when  f  was called. 

 *Similarly, we don’t know what the precise contents of  x1  are; but, we do 
know that it is equal to the return address set by the “ jal x1, f ” instruction 
that invoked  f .  



S-10 Chapter 2 Solutions

    2.34 
  a_to_i:  

  addi     x28,     x0, 10   # Just stores the constant 10  
  addi     x29,     x0, 0   # Stores the running total  
  addi     x5,     x0, 1   #    Tracks whether input is positive 

or negative  
  # Test for initial ‘+’ or ‘-’  
  lbu     x6, 0(x10)   # Load the first character  
  addi     x7, x0, 45   # ASCII ‘-’  
  bne     x6, x7, noneg  
  addi     x5, x0, -1   # Set that input was negative  
  addi     x10, x10, 1   # str++  
  jal     x0, main_atoi_loop  

  noneg:  
  addi     x7, x0, 43   # ASCII ‘+’  
  bne     x6, x7, main_atoi_loop  
  addi     x10, x10, 1   # str++  

  main_atoi_loop:  
  lbu     x6, 0(x10)   # Load the next digit  
  beq     x6, x0, done     #  Make sure next char is a digit, 

or fail  
  addi     x7, x0, 48   # ASCII ‘0’  
  sub     x6, x6, x7  
  blt     x6, x0, fail   # *str < ‘0’  
  bge     x6, x28, fail   # *str >= ‘9’  

  # Next char is a digit, so accumulate it into x29  

  mul     x29, x29, x28   # x29 *= 10  
  add     x29, x29, x6   # x29 += *str - ‘0’  
  addi     x10, x10, 1   # str++  
  jal     x0, main_atoi_loop  

  done:  
  addi     x10, x29, 0   # Use x29 as output value  
  mul     x10, x10, x5   # Multiply by sign  
  jalr     x0, x1   # Return result  

  fail:  
  addi     x10, x0, -1  
  jalr     x0, x1   

    2.35    

   2.35.1      0x11   

  2.35.2      0x88   



 Chapter 2 Solutions S-11

       2.36      lui     x10,     0x11223  
  addi     x10,     x10, 0x344  
  slli     x10,     x10, 32  
  lui     x5,     0x55667  
  addi     x5,     x5, 0x788  
  add     x10,     x10, x5   

    2.37 

     setmax:  
  try:  
  lr.d     x5,     (x10)   # Load-reserve *shvar  
  bge     x5,     x11, release   # Skip update if *shvar > x  
  addi     x5,     x11, 0  

  release:  
  sc.d     x7,     x5, (x10)  
  bne     x7,     x0, try     #    If store-conditional failed, 

try again  
  jalr     x0,     x1   

    2.38        When two processors A and B begin executing this loop at the same time, at 
most one of them will execute the store-conditional instruction successfully, 
while the other will be forced to retry the loop. If processor A’s store-conditional 
successds initially, then B will re-enter the try block, and it will see the new 
value of shvar written by A when it fi nally succeeds. Th e hardware guarantees 
that both processors will eventually execute the code completely.  

    2.39    

   2.39.1     No. Th e resulting machine would be slower overall. 
 Current CPU requires (num arithmetic * 1 cycle) +   (num load/store * 10 
cycles) +   (num branch/jump * 3 cycles) =   500*1 +   300*10 +   100*3 =   3800 
cycles. 
 Th e new CPU requires (.75*num arithmetic * 1 cycle) +   (num load/store 
* 10 cycles) +   (num branch/jump * 3 cycles) =   375*1 +   300*10 +   100*3 
=   3675 cycles. 
 However, given that each of the new CPU’s cycles is 10% longer than the 
original CPU’s cycles, the new CPU’s 3675 cycles will take as long as 4042.5 
cycles on the original CPU.  

  2.39.2        If we double the performance of arithmetic instructions by reducing their 
CPI to 0.5, then the the CPU will run the reference program in (500*.5) + 
(300*10) + 100*3 = 3550 cycles. Th is represents a speedup of 1.07. 

 If we improve the performance of arithmetic instructions by a factor of 
10 (reducing their CPI to 0.1), then the the CPU will run the reference 
program in (500*.1) + (300*10) + 100*3 = 3350 cycles. Th is represents a 
speedup of 1.13.  



S-12 Chapter 2 Solutions

       2.40    

   2.40.1     Take the weighted average: 0.7*2 + 0.1*6 + 0.2*3 = 2.6  

  2.40.2        For a 25% improvement, we must reduce the CPU to 2.6*.75 = 1.95. Th us, 
we want 0.7*x + 0.1*6 + 0.2*3 <   =   1.95. Solving for x shows that the 
arithmetic instructions must have a CPI of at most 1.07.  

  2.40.3        For a 50% improvement, we must reduce the CPU to 2.6*.5 =   1.3. Th us, we 
want 0.7*x + 0.1*6 + 0.2*3 <   =   1.3. Solving for x shows that the arithmetic 
instructions must have a CPI of at most 0.14  

       2.41 
  ldr     x28, x5(x10), 3     // Load x28=A[f]  
  addi     x5, x5, 1       // f++  
  ldr     x29, x5(x10), 3     // Load x29=A[f+1]  
  add     x29, x29, x28       // Add x29 = A[f] + A[f+1]  
  sdr     x12, x6(x11), 3     // Store B[g] = x29   

    2.42      ldr     x28, x28, (x10), 3     // Load x28=A[i]  
  ldr     x29, x29, (x11), 3     // Load x29=B[j]  
 add     x29, x28, x29 
  sd     x29, 64(x11)       //    Store B[8]=x29 (don’t 

need scaled store here)   

   





 Solutions 

              3 



 Chapter 3 Solutions S-3

       3.1      5730   

    3.2      5730   

    3.3      0101111011010100  

 Th e attraction is that each hex digit contains one of 16 diff erent characters 
(0–9, A–E). Since with 4 binary bits you can represent 16 diff erent patterns, 
in hex each digit requires exactly 4 binary bits. And bytes are by defi nition 8 
bits long, so two hex digits are all that are required to represent the contents 
of 1 byte.  

    3.4     753  

    3.5     7777 (  −  3777)  

    3.6     Neither (63)  

    3.7     Neither (65)  

    3.8     Overfl ow (result =   −179, which does not fi t into an SM 8-bit format)  

    3.9     −105 −   42 =   −128 (  −  147)  

    3.10     −105 +   42 =   −63  

    3.11     151 +   214 =   255 (365)  

    3.12     62 ×   12 

         



S-4 Chapter 3 Solutions

    3.13     62 ×   12 

         

    3.14        For hardware, it takes one cycle to do the add, one cycle to do the shift , and 
one cycle to decide if we are done. So the loop takes (3 ×   A) cycles, with each 
cycle being B time units long. 

 For a soft ware implementation, it takes one cycle to decide what to add, one 
cycle to do the add, one cycle to do each shift , and one cycle to decide if we are 
done. So the loop takes (5 ×   A) cycles, with each cycle being B time units long. 

 (3 ×   8)   ×   4tu =   96 time units for hardware 

 (5 ×   8)   ×   4tu =   160 time units for soft ware  

    3.15        It takes B time units to get through an adder, and there will be A −   1 adders. 
Word is 8 bits wide, requiring 7 adders. 7 ×   4tu =   28 time units.  

    3.16        It takes B time units to get through an adder, and the adders are arranged in 
a tree structure. It will require log2(A) levels. An 8 bit wide word requires 
seven adders in three levels. 3 ×   4tu =   12 time units.  

    3.17        0x33 ×   0x55 =   0x10EF. 0x33 =   51, and 51 =   32 +   16 +   2 +   1. We can shift  
0x55 left  fi ve places (0xAA0), then add 0x55 shift ed left  four places (0x550), 
then add 0x55 shift ed left  once (0xAA), then add 0x55. 0xAA0 +   0x550 +  
 0xAA +   0x55 =   0x10EF. Th ree shift s, three adds. 

 (Could also use 0x55, which is 64 +   16 +   4 +   1, and shift  0x33 left  six times, 
add to it 0x33 shift ed left  four times, add to that 0x33 shift ed left  two times, 
and add to that 0x33. Same number of shift s and adds.)  



 Chapter 3 Solutions S-5

    3.18     74/21 =   3 remainder 9 

         

    3.19        In these solutions a 1 or a 0 was added to the Quotient if the remainder 
was greater than or equal to 0. However, an equally valid solution is to shift  
in a 1 or 0, but if you do this you must do a compensating right shift  of 
the remainder (only the remainder, not the entire remainder/quotient 
combination) aft er the last step. 

 74/21 =   3 remainder 11 

       



S-6 Chapter 3 Solutions

        

    3.20      201326592  in both cases.  

    3.21      jal 0x00000000   

    
3.22

 
    0    ×    0C000000     =     0000 1100 0000 0000 0000 0000 0000 0000 

     =     0 0001 1000 0000 0000 0000 0000 0000 000 

 sign is positive 

 exp     =     0     ×     18     =     24 −   127     =     −  103 

 there is a hidden 1 

 mantissa     =     0 

 answer     =     1.0     ×     2 −103   

    3.23     63.25 ×   10 0  = 111111.01 ×   2 0  

 normalize, move binary point fi ve to the left  

 1.1111101 ×   2 5  

 sign =   positive, exp =   127 +   5 =   132 

 Final bit pattern: 0 1000 0100 1111 1010 0000 0000 0000 000 

 = 0100 0010 0111 1101 0000 0000 0000 0000 =   0x427D0000  

    3.24     63.25 ×   10 0  = 111111.01 ×   2 0  

 normalize, move binary point fi ve to the left  

 1.1111101 ×   2 5  

 sign =   positive, exp =   1023 +   5 =   1028 

 Final bit pattern: 

 0 100 0000 0100 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 

 = 0x404FA00000000000  



 Chapter 3 Solutions S-7

    3.25     63.25 ×   10 0  = 111111.01 ×   2 0  = 3F.40 ×   16 0  

 move hex point two to the left  

 0.3F40 ×   16 2  

 sign =   positive, exp =   64 +   2 

 Final bit pattern: 01000010001111110100000000000000  

    3.26     −1.5625 ×   10 −1    =     −  0.15625 ×   10 0  

   =     −  0.00101 ×   2 0  

 move the binary point two to the right 

   =     −  0.101 ×   2 −2  

 exponent =   −2, fraction =     −  0.101000000000000000000000 

 answer: 111111111110101100000000000000000000  

    3.27     −1.5625 ×   10 −1    =     −  0.15625 ×   10 0  

   =     −  0.00101 ×   2 0  

 move the binary point three to the right, =   −1.01 ×   2 −3  

 exponent =   −3 =   −3 +   15 =   12, fraction =     −  0.0100000000 

 answer: 1011000100000000  

    3.28     −1.5625 ×   10 −1    =     −  0.15625 ×   10 0  

   =     −  0.00101 ×   2 0  

 move the binary point two to the right 

   =     −  0.101 ×   2 −2  

 exponent =   −2, fraction =     −  0.1010000000000000000000000000 

 answer: 10110000000000000000000000000101  

    3.29     2.6125 ×   10 1  + 4.150390625 ×   10 −1  

 2.6125 ×   10 1  = 26.125 =   11010.001 =   1.1010001000 ×   2 4  

 4.150390625 ×   10 −1    =   0.4150390625 =   0.011010100111 =   1.1010100111 ×   2 −2  

 Shift  binary point six to the left  to align exponents, 



S-8 Chapter 3 Solutions

               GR  

  1.1010001000 00  

  1.0000011010 10 0111 (Guard 5 1, Round 5 0,   
Sticky 5 1)  

  -------------------  

  1.1010100010 10  

 In this case the extra bit (G,R,S) is more than half of the least signifi cant bit (0). 

 Th us, the value is rounded up. 

 1.1010100011 ×   2 4  = 11010.100011 ×   2 0  = 26.546875 =   2.6546875 ×   10 1   

    3.30     −8.0546875 ×   −1.79931640625 ×   10 −1  

 −8.0546875 =   −1.0000000111 ×   2 3  

 −1.79931640625 ×   10 −1    =   −1.0111000010 ×   2 −3  

 Exp: −   3+   3 =   0, 0 +   16 =   16 (10000) 

 Signs: both negative, result positive 

 Fraction: 

                                                    1.0000000111  
                                           ×    1.0111000010  
                                                             ------------  
                                                              00000000000  
                                                         10000000111  
                                                    00000000000  
                                               00000000000  
                                          00000000000  
                                     00000000000  
                                10000000111  
                           10000000111  
                      10000000111  
                 00000000000  
            10000000111  

  1.01110011000001001110  

 1.0111001100 00 01001110 Guard =   0, Round =   0, Sticky =   1:NoRnd 



 Chapter 3 Solutions S-9

 1.0111001100 ×   2 0  = 0100000111001100 (1.0111001100 =   1.44921875) 

 −8.0546875 ×     −  0.179931640625 =   1.4492931365966796875 

 Some information was lost because the result did not fi t into the available 10-bit 
fi eld. Answer (only) off  by 0.0000743865966796875  

    3.31     8.625 ×   10 1 /   −   4.875 ×   10 0  

 8.625 ×   10 1  = 1.0101100100 ×   2 6  

 −4.875 =   −1.0011100000 ×   2 2  

 Exponent =   6 −   2 =   4, 4 +   15 =   19 (10011) 

 Signs: one positive, one negative, result negative 

 Fraction: 

                                                                           1.00011011000100111  
  10011100000. | 10101100100.0000000000000000  

                                            −   10011100000.  
                                               --------------  
                                                   10000100.0000  
                                                    −   1001110.0000  
                                                   --------------  
                                                           1100110.00000  
                                                        −   100111.00000  
                                                       --------------  
                                                               1111.0000000  
                                                                −   1001.1100000  
                                                               -------------  
                                                                       101.01000000  
                                                                        −   100.11100000  
                                                                       -------------  
                                                                               000.011000000000  
                                                                                        −   .010011100000  
                                                                                                   --------------  
                                                                                                           .000100100000000  
                                                                                                        −   .000010011100000  
                                                                                                           -----------------  
                                                                                                           .0000100001000000  
                                                                                                            −   .0000010011100000  
                                                                                                               ------------------  
                                                                                                                   .00000011011000000  
                                                                                                                    −   .00000010011100000  
                                                                                                                   --------------------  
                                                                                                                   .00000000110000000  



S-10 Chapter 3 Solutions

  1.000110110001001111  Guard =   0, Round =   1, Sticky =   1: No Round, fi x 
sign 

 −1.0001101100 ×   2 4  = 1101000001101100 =   10001.101100 =   −17.6875 

 86.25/   −   4.875 =   −17.692307692307 

 Some information was lost because the result did not fi t into the available 10-bit 
fi eld. Answer off  by 0.00480769230  

    3.32     (3.984375 ×   10 −1  + 3.4375 ×   10 −1 )   +   1.771 ×   10 3 ) 

 3.984375 ×   10 −1  = 1.1001100000 ×   2 −2  

 3.4375 ×   10 −1  = 1.0110000000 ×   2 −2  

 1.771 ×   10 3  = 1771 =   1.1011101011 ×   2 10  

 shift  binary point of smaller left  12 so exponents match 

  (A)               1.1001100000  
  (B)              + 1.0110000000  
                       -------------  
                       10.1111100000 Normalize,  
  (A+B)           1.0111110000    ×    2  − 1   
  (C)                  + 1.1011101011  
  (A+B)               .0000000000 10 111110000 Guard = 1,  

  Round = 0, Sticky = 1  
                           ---------------  
  (A+B)+C +1.1011101011 10 1 Round up  

  (A+B)+C =1.1011101100  ×    2   10    = 0110101011101100 = 1772   

    3.33     3.984375 ×   10 −1    +   (3.4375 ×   10 −1  + 1.771 ×   10 3 ) 

 3.984375 ×   10 −1  = 1.1001100000 ×   2 −2  

 3.4375 ×   10 −1  = 1.0110000000 ×   2 −2  

 1.771 ×   10 3  = 1771 =   1.1011101011 ×   2 10  

 shift  binary point of smaller left  12 so exponents match 
  (B)                                   .0000000000 01 0110000000 Guard = 0,  

  Round = 1, Sticky = 1  
  (C)                       +1.1011101011  
                           -------------  
  (B+C)                   +1.1011101011  



 Chapter 3 Solutions S-11

  (A)                           .0000000000 011001100000  
                               --------------  
  A + (B + C) + 1.1011101011     No round  
  A + (B + C) + 1.1011101011      ×    2   10    = 0110101011101011 = 1771   

    3.34        No, they are not equal: (A+  B)  +  C =   1772, A+  (B+  C)   =   1771 (steps shown 
above). 
 Exact: 0.398437 +   0.34375 +   1771 =   1771.742187  

    3.35     (3.41796875 ×   10 −3  × 6.34765625 ×   10 −3 )   ×   1.05625 ×   10 2  
 (A) 3.41796875 ×   10 −3  = 1.1100000000 ×   2 −9  
 (B) 4.150390625 ×   10 −3  = 1.0001000000 ×   2 −8  
 (C) 1.05625 ×   10 2  = 1.1010011010 ×   2 6  
 Exp: −  9−  8 =   −17 
 Signs: both positive, result positive 
 Fraction: 
  (A)                           1.1100000000  
  (B)                            ×    1.0001000000  
                                   --------------  
                       11100000000  
                   11100000000  
           ----------------------  
           1.11011100000000000000  
  A   ×   B           1.1101110000 00 00000000  
  Guard = 0, Round = 0, Sticky = 0: No Round  

 A×  B 1.1101110000 ×   2 −17  UNDERFLOW: Cannot represent number  

    3.36     3.41796875 ×   10 −3    ×   (6.34765625 ×   10 −3  × 1.05625 ×   10 2 ) 

 (A)   3.41796875 ×   10 −3  = 1.1100000000 ×   2 −9  

 (B)   4.150390625 ×   10 −3  = 1.0001000000 ×   2 −8  

 (C)   1.05625 ×   10 2  = 1.1010011010 ×   2 6  

 Exp: −   8   +   6 =   −2 



S-12 Chapter 3 Solutions

 Signs: both positive, result positive 

 Fraction: 
  (B)               1.0001000000  
  (C)            ×    1.1010011010  
                                   -------------  
                                       10001000000  
                       10001000000  
                       10001000000  
               10001000000  
               10001000000  
       10001000000  
  -----------------------  
  1.110000001110100000000  
  1.1100000011 10 100000000 Guard 5 1, Round 5 0, Sticky 
5 1: Round  

 B   ×   C         1.1100000100 ×   2 −2  

 Exp:   −  9−  2=   −11 

 Signs: both positive, result positive 

 Fraction: 
  (A)                   1.1100000000  
  (B  ×    C)    ×    1.1100000100  
                                   -------------  
                                       11100000000  
                           11100000000  
                   11100000000  
           11100000000  

  ---------------------  
  11.00010001110000000000               Normalize, add 1 to exponent  
     1.1000100011 10 0000000000 Guard=1, Round=0, Sticky=0: 
Round to even  

 A   ×   (B   ×   C) 1.1000100100 ×   2 −10   



 Chapter 3 Solutions S-13

    3.37     b) No: 
 A   ×   B =   1.1101110000 ×   2 −17  UNDERFLOW: Cannot represent 
 A   ×   (B   ×   C)   =   1.1000100100 ×   2 −10  
 A and B are both small, so their product does not fi t into the 
 16-bit fl oating point format being used.  

    3.38     1.666015625 ×   10 0    ×   (1.9760 ×   10 4  − 1.9744 ×   10 4 ) 
 (A)             1.666015625 ×   10 0  = 1.1010101010 ×   2 0  
 (B)             1.9760 ×   10 4  = 1.0011010011 ×   2 14  
 (C)             −1.9744 ×   10 4    =   −1.0011010010 ×   2 14  
 Exponents match, no shift ing necessary 
  (B)               1.0011010011  
  (C)                −   1.0011010010  
                               ----------------  
  (B   +   C)               0.0000000001  ×    2   14   
  (B   +   C)               1.0000000000  ×    2   4   
 Exp: 0   +   4 =   4 
 Signs: both positive, result positive 
 Fraction: 
  (A)                                           1.1010101010  
  (B   +   C)                                ×    1.0000000000  
                                                                   ------------  
                                   11010101010  
                                   -----------------------  
                                   1.10101010100000000000  
  A    ×    (B   +   C)                1.1010101010 0000000000 Guard = 0, Round =   

0, sticky = 0: No round  

 A   ×   (B   +   C)             1.1010101010 ×   2 4   

    3.39     1.666015625 ×   10 0    ×   (1.9760   ×   10 4  − 1.9744 ×   10 4 ) 

 (A) 1.666015625 ×   10 0  = 1.1010101010 ×   2 0  

 (B) 1.9760 ×   10 4  = 1.0011010011 ×   2 14  



S-14 Chapter 3 Solutions

 (C) −  1.9744 ×   10 4    =   −1.0011010010 ×   2 14  

 Exp: 0   +   14 =   14 

 Signs: both positive, result positive 

 Fraction: 
  (A)                                                   1.1010101010  
  (B)                                        ×    1.0011010011  
                                                               ------------  
                                                       11010101010  
                                       11010101010  
                               11010101010  
                       11010101010  
                   11010101010  
               11010101010  
           -------------------------------  
                           10.0000001001100001111    Normalize, add 1 to   

exponent  
  A    ×    B               1.0000000100 11 00001111    Guard = 1, Round = 1, 

Sticky = 1: Round  
  A    ×    B                   1.0000000101    ×    2   15   

 Exp: 0   +   14 =   14 

 Signs: one negative, one positive, result negative 

 Fraction: 
  (A)                                                               1.1010101010  
  (C)                                                        ×    1.0011010010  
                                                                           ------------  
                                                                           11010101010  
                                                               11010101010  
                                                   11010101010  
                                           11010101010  
                                   11010101010  
                                           -------------------------  
                                           10.0000000111110111010  
  Normalize, add 1 to exponent  
  A    ×    C                                               1.0000000011 11 101110100  
  Guard = 1, Round = 1, Sticky = 1: Round  
  A    ×    C                            −   1.0000000100  ×    2   15   
  A    ×    B                                       1.0000000101  ×    2   15   
  A    ×    C                                        −   1.0000000100  ×    2   15   
                                                   --------------  
  A    ×    B+A    ×    C                       .0000000001  ×    2   15   
  A    ×    B+A    ×    C                           1.0000000000  ×    2   5    



 Chapter 3 Solutions S-15

    3.40     b) No: 

 A×  (B+  C)   =   1.1010101010 ×   2 4  = 26.65625, and (A×  B)  +  (A×  C)   =  
 1.0000000000 ×   2 5  = 32 

 Exact: 1.666015625 ×   (19,760 −   19,744)   =   26.65625  

    3.41 

            

    3.42     b+  b+  b+  b =   −1 

 b ×   4 =   −1 

 Th ey are the same  

    3.43     0101 0101 0101 0101 0101 0101 

 No  

    3.44     0011 0011 0011 0011 0011 0011 

 No  

    3.45     0101 0000 0000 0000 0000 0000 

 0.5 

 Yes  

    3.46     01010 00000 00000 00000 

 0.A 

 Yes  

    3.47     Instruction assumptions: 

 (1) 8-lane 16-bit multiplies 

 (2) sum reductions of the four most signifi cant 16-bit values 

 (3) shift  and bitwise operations 

 (4) 128-, 64-, and 32-bit loads and stores of most signifi cant bits 

 Outline of solution: 

  load register F[bits 127:0] = f[3..0] & f[3..0] (64-bit 
load)  
  load register A[bits 127:0] = sig_in[7..0] (128-bit load)  



S-16 Chapter 3 Solutions

  for i = 0 to 15 do  
  load register B[bits 127:0] = sig_in[(i*8+7..i*8] 
(128-bit load)  

                       for j = 0 to7 do  
  (1) eight-lane multiply C[bits 127:0] = A*F  
  (eight 16-bit multiplies)  
  (2) set D[bits 15:0] = sum of the four 16-bit values 
in C[bits 63:0] (reduction of four 16-bit values)  

  (3) set D[bits 31:16] = sum of the four 16-bit 
values in C[bits 127:64] (reduction of four 16-
bit values)  

                                   (4) store D[bits 31:0] to sig_out (32-bit store)  
                                   (5) set A = A shifted 16 bits to the left  
                                   (6) set E = B shifted 112 shifts to the right  
                                   (7) set A = A OR E  
                                   (8) set B = B shifted 16 bits to the left  
           end for  

  end for      





 Solutions 

              4 



 Chapter 4 Solutions S-3

       4.1     

   4.1.1     Th e value of the signals is as follows:

       

 Mathematically, the  MemRead  control wire is a “don’t care”: the instruction 
will run correctly regardless of the chosen value. Practically, however, 
 MemRead  should be set to false to prevent causing a segment fault or cache 
miss.  

  4.1.2     Registers, ALUsrc mux, ALU, and the MemToReg mux.  

  4.1.3     All blocks produce some output. Th e outputs of DataMemory and Imm 
Gen are not used.  

       4.2      Reg2Loc  for  ld : When executing  ld , it doesn’t matter which value is passed 
to “Read register 2”, because the ALUSrc mux ignores the resulting “Read 
data 2” output and selects the sign extended immediate value instead. 

  MemToReg  for  sd  and  beq : Neither  sd  nor  beq  write a value to the register 
fi le. It doesn’t matter which value the MemToReg mux passes to the register 
fi le because the register fi le ignores that value.  

    4.3     

   4.3.1     25 +   10 =   35%. Only  Load  and  Store  use Data memory.  

  4.3.2        100% Every instruction must be fetched from instruction memory before 
it can be executed.  

  4.3.3        28 +   25 +   10 +   11 +   2 =   76%. Only R-type instructions do not use the Sign 
extender.  

  4.3.4        Th e sign extend produces an output during every cycle. If its output is not 
needed, it is simply ignored.  

       4.4     

   4.4.1     Only  loads  are broken.  MemToReg  is either 1 or “don’t care” for all other 
instructions.  

  4.4.2     I-type,  loads ,  stores  are all broken.  

       4.5     For context: Th e encoded instruction is  sd x12, 20(x13) 

   4.5.1     

        



S-4 Chapter 4 Solutions

  4.5.2     Th e new PC is the old PC +   4. Th is signal goes from the PC, through the 
“PC +   4” adder, through the “branch” mux, and back to the PC.  

  4.5.3      ALUsrc : Inputs:  Reg[x12]  and  0x0000000000000014 ; Output: 
 0x0000000000000014  

  MemToReg : Inputs:  Reg[x13] + 0x14  and  <undefined> ; output: 
 <undefined>  

  Branch:  Inputs:  PC+4  and  0x000000000000000A   

  4.5.4     ALU inputs:  Reg[x13]  and  0x0000000000000014  

 PC +   4 adder inputs:  PC  and  4  

 Branch adder inputs:  PC  and  0x0000000000000028   

       4.6     

   4.6.1     No additional logic blocks are needed.  

  4.6.2      Branch: false  
  MemRead: false  (See footnote from solution to problem 4.1.1.) 
  MemToReg: 0  
  ALUop: 10  (or simply saying “add” is suffi  cient for this problem) 
  MemWrite: false  
  ALUsrc: 1  
  RegWrite: 1      

    4.7 

    4.7.1      R-type : 30 +   250 +   150 +   25 +   200 +   25 +   20 =   700ps  

  4.7.2      ld : 30 +   250 +   150 +   25 +   200 +   250 +   25 +   20 =   950 ps  

  4.7.3      sd : 30 +   250 +   150 +   200 +   25 +   250 =   905  

  4.7.4      beq : 30 +   250 +   150 +   25 +   200 +   5 +   25 +   20 =   705  

  4.7.5      I-type : 30 +   250 +   150 +   25 +   200 +   25 +   20 =   700ps  



 Chapter 4 Solutions S-5

  4.7.6     950ps  

       4.8     Using the results from Problem 4.7, we see that the average time per 
instruction is 

 .52*700 +   .25*950 +   .11*905 +   .12 * 705 =   785.6ps 

 In contrast, a single-cycle CPU with a “normal” clock would require a 
clock cycle time of 950. 

 Th us, the speedup would be 925/787.6 =   1.174  

    4.9     

   4.9.1     Without improvement: 950; With improvement: 1250  

  4.9.2        Th e running time of a program on the original CPU is 950*n. Th e running 
time on the improved CPU is 1250*(0.95)*n =   1187.5. Th us, the “speedup” 
is 0.8. (Th us, this “improved” CPU is actually slower than the original).  

  4.9.3        Because adding a multiply instruction will remove 5% of the instructions, 
the cycle time can grow to as much as 950/(0.95)   =   1000. Th us, the time 
for the ALU can increase by up to 50 (from 200 to 250).  

       4.10     

   4.10.1        Th e additional registers will allow us to remove 12% of the loads and 
stores, or (0.12)*(0.25 +   0.1)   =   4.2% of all instructions. Th us, the time to 
run n instructions will decrease from 950*n to 960*.958*n =   919.68*n. 
Th at corresponds to a speedup of 950/895.73 =   1.03.  

  4.10.2        Th e cost of the original CPU is 4507; the cost of the improved CPU is 4707. 

 PC: 5 
 I-Mem: 1000 
 Register fi le: 200 
 ALU: 100 
 D-Mem: 2000 
 Sign Extend: 1002 
 Controls: 10002 
 adders: 30*24 
 muxes: 4*102 
 single gates: 2*1 

 Th us, for a 3% increase in performance, the cost of the CPU increases by 
about 4.4%.  



S-6 Chapter 4 Solutions

  4.10.3        From a strictly mathematical standpoint it does not make sense to add 
more registers because the new CPU costs more per unit of performance. 
However, that simple calculation does not account for the utility of the 
performance. For example, in a real-time system, a 3% performance may 
make the diff erence between meeting or missing deadlines. In which case, 
the improvement would be well worth the 4.4% additional cost.  

       4.11     

   4.11.1     No   new functional blocks are needed.  

  4.11.2     Only the control unit needs modifi cation.  

  4.11.3     No new data paths are needed.  

  4.11.4     No new signals are needed.  

       4.12     

   4.12.1     No new functional blocks are needed.  

  4.12.2        Th e register fi le needs to be modifi ed so that it can write to two registers 
in the same cycle. Th e ALU would also need to be modifi ed to allow read 
data 1 or 2 to be passed through to write data 1.  

  4.12.3        Th e answer depends on the answer given in 4.12.2: whichever input was 
not allowed to pass through the ALU above must now have a data path to 
write data 2.  

  4.12.4     Th ere would need to be a second RegWrite control wire.  

  4.12.5     Many possible solutions.     

       4.13     

   4.13.1     We need some additional muxes to drive the data paths discussed in 4.13.3.  

  4.13.2     No functional blocks need to be modifi ed.  

  4.13.3        Th ere needs to be a path from the ALU output to data memory’s write 
data port. Th ere also needs to be a path from read data 2 directly to Data 
memory’s Address input.  

  4.13.4        Th ese new data paths will need to be driven by muxes. Th ese muxes will 
require control wires for the selector.  

  4.13.5     Many possible solutions.     



 Chapter 4 Solutions S-7

       4.14        None: all instructions that use sign extend also use the register fi le, which 
is slower.  

    4.15     

   4.15.1        Th e new clock cycle time would be 750. ALU and Data Memory will now 
run in parallel, so we have eff ectively removed the faster of the two (the 
ALU with time 200) from the critical path.  

  4.15.2        Slower. Th e original CPU takes 950*n picoseconds to run n instructions. 
Th e same program will have approximately 1.35*n instructions when 
compiled for the new machine. Th us, the time on the new machine will be 
750*1.35n =   1012.5*n. Th is represents a “speedup” of .93.  

  4.15.3        Th e number of loads and stores is the primary factor. How the loads and 
stores are used can also have an eff ect. For example, a program whose 
loads and stores tend to be to only a few diff erent address may also run 
faster on the new machine.  

  4.15.4     Th is answer is a matter of opinion.       

       4.16     

   4.16.1     Pipelined: 350; non-pipelined: 1250  

  4.16.2     Pipelined: 1250; non-pipelined: 1250  

  4.16.3     Split the ID stage. Th is reduces the clock-cycle time to 300ps.  

  4.16.4     35%.  

  4.16.5     65%  

       4.17     n +   k −   1. Let’s look at when each instruction is in the WB stage. In a 
k-stage pipeline, the 1st instruction doesn’t enter the WB stage until cycle 
k. From that point on, at most one of the remaining n −   1 instructions is 
in the WB stage during every cycle. 

 Th is gives us a minimum of k +   (n −   1)   =   n +   k −   1 cycles.  

    4.18     x13 =   33 and x14 =   36  

    4.19     x15 =   54 (Th e code will run correctly because the result of the fi rst 
instruction is written back to the register fi le at the beginning of the 5th 
cycle, whereas the fi nal instruction reads the updated value of x1 during 
the second half of this cycle.)  



S-8 Chapter 4 Solutions

    4.20      addi x11, x12, 5  
  NOP  
  NOP  
  add x13, x11, x12  
  addi x14, x11, 15  
  NOP  
  add x15, x13, x12   

    4.21     

   4.21.1        Pipeline without forwarding requires 1.4*n*250ps. Pipeline with 
forwarding requires 1.05*n*300ps. Th e speedup is therefore (1.4*250)/
(1.05*300)   =   1.11.  

  4.21.2        Our goal is for the pipeline with forwarding to be faster than the 
pipeline without forwarding. Let y be the number of stalls remaining 
as a percentage of “code” instructions. Our goal is for 300*(1+y)*n   
< 250*1.4*n. Th us, y must be less than 16.7%.  

  4.21.3        Th is time, our goal is for 300(1 +   y)*n <   250(1 +   x)*n. Th is happens when 
y <   (250x −   50)/300.  

  4.21.4        It cannot. In the best case, where forwarding eliminates the need for 
every NOP, the program will take time 300*n to run on the pipeline with 
forwarding. Th is is slower than the 250*1.075*n required on the pipeline 
with no forwarding.  

  4.21.5        Speedup is not possible when the solution to 4.21.3 is less than 0. Solving 
0<   (250x −   50)/300 for x gives that x must be at least 0.2.  

       4.22     

   4.22.1     Stalls are marked with **: 

  sd      x29, 12(x16)      IF ID EX ME WB  
  ld      x29, 8(x16)          IF ID EX ME WB  
  sub x17, x15, x14           IF ID EX ME WB  
  bez x17, label                 ** ** IF ID EX ME WB  
  add x15, x11, x14                       IF ID EX ME WB  
  sub x15,x30,x14                            IF ID EX ME WB   

  4.22.2        Reordering code won’t help. Every instruction must be fetched; thus, 
every data access causes a stall. Reordering code will just change the pair 
of instructions that are in confl ict.  



 Chapter 4 Solutions S-9

  4.22.3        You can’t solve this structural hazard with NOPs, because even the NOPs 
must be fetched from instruction memory.  

  4.22.4     35%. Every data access will cause a stall.  

       4.23     

   4.23.1        Th e clock period won’t change because we aren’t making any changes to 
the slowest stage.  

  4.23.2        Moving the MEM stage in parallel with the EX stage will eliminate the 
need for a cycle between loads and operations that use the result of the 
loads. Th is can potentially reduce the number of stalls in a program.  

  4.23.3        Removing the off set from  ld  and  sd  may increase the total number of 
instructions because some  ld  and  sd  instructions will need to be replaced 
with a  addi/ld  or  addi/sd  pair.  

         4.24          Th e second one. A careful examination of  Figure 4.59  shows that the need 
for a stall is detected during the ID stage. It is this stage that prevents the 
fetch of a new instruction, eff ectively causing the add to repeat its ID stage.  

      4.25     

   4.25.1     … indicates a stall.  !  indicates a stage that does not do useful work. 

  ld x10, 0(x13)         IF ID EX ME | WB  
  ld x11, 8(x13)            IF ID EX | ME WB  
  add x12, x10, x11            IF ID | .. EX ME! WB  
  addi x13, x13, -16              IF | .. ID EX      ME! WB  
  bnez x12, LOOP                     | .. IF ID      EX      ME! WB!  
  ld x10, 0(x13)                             IF      ID      EX      ME      WB  
  ld x11, 8(x13)                                 IF      ID      EX      ME WB  
  add x12, x10, x11                                  IF      ID      .. EX | ME! WB  
  addi x13, x13, -16                                     IF      .. ID | EX      ME! WB  
  bnez x12, LOOP                                                IF | ID      EX      ME! WB!  
  Completely busy                    | N      N      N       N       N       N       N    N    |   

  4.25.2        In a particular clock cycle, a pipeline stage is not doing useful work if it 
is stalled or if the instruction going through that stage is not doing any 
useful work there. As the diagram above shows, there are not any cycles 
during which every pipeline stage is doing useful work.  



S-10 Chapter 4 Solutions

     4.26     

   4.26.1      // EX to 1st only:  
  add x11, x12, x13  
  add x14, x11, x15  
  add x5, x6, x7  

  // MEM to 1st only:  
  ld x11, 0(x12)  
  add x15, x11, x13  
  add x5, x6, x7  

  // EX to 2nd only:  
  add x11, x12, x13  
  add x5, x6, x7  
  add x14, x11, x12  

  // MEM to 2nd only:  
  ld x11, 0(x12)  
  add x5, x6, x7  
  add x14, x11, x13  

  // EX to 1st and EX to 2nd:  
  add x11, x12, x13  
  add x5, x11, x15  
  add x16, x11, x12   

  4.26.2      // EX to 1st only: 2 nops  
  add x11, x12, x13  
  nop  
  nop  
  add x14, x11, x15  
  add x5, x6, x7  

  // MEM to 1st only: 2 stalls  
  ld x11, 0(x12)  
  nop  
  nop  
  add x15, x11, x13  
  add x5, x6, x7  

  // EX to 2nd only: 1 nop  
  add x11, x12, x13  
  add x5, x6, x7  
  nop  
  add x14, x11, x12  



 Chapter 4 Solutions S-11

  // MEM to 2nd only: 1 nop  
  ld x11, 0(x12)  
  add x5, x6, x7  
  nop  
  add x14, x11, x13  

  // EX to 1st and EX to 2nd: 2 nops  
  add x11, x12, x13  
  nop  
  nop  
  add x5, x11, x15  
  add x16, x11, x12   

  4.26.3     Consider this code: 

  ld      x11, 0(x5)     # MEM to 2nd --- one stall  
  add x12, x6, x7      # EX to 1st    --- two stalls  
  add x13, x11, x12  
  add x28, x29, x30  

 If we analyze each instruction separately, we would calculate that we need 
to add 3 stalls (one for a “MEM to 2nd” and two for an “EX to 1st only”. 
However, as we can see below, we need only two stalls: 

  ld     x11, 0(x5)  
  add      x12, x6, x7  
  nop  
  nop  
  add                    x13, x11, x12  
  add                    x28, x29, x30   

  4.26.4        Taking a weighted average of the answers from 4.26.2 gives 0.05*2 +   0.2*2 
+   0.05*1 +   0.1*1 +   0.1*2 =   0.85 stalls per instruction (on average) for a 
CPI of 1.85. Th is means that 0.85/1.85 cycles, or 46%, are stalls.  

  4.26.5        Th e only dependency that cannot be handled by forwarding is from the 
MEM stage to the next instruction. Th us, 20% of instructions will generate 
one stall for a CPI of 1.2. Th is means that 0.2 out of 1.2 cycles, or 17%, are 
stalls.  

  4.26.6        If we forward from the EX/MEM register only, we have the following 
stalls/NOPs 

 EX to 1st:     0 
 MEM to 1st:     2 
 EX to 2nd:     1 
 MEM to 2nd:     1 
 EX to 1st and 2nd:     1 



S-12 Chapter 4 Solutions

 Th is represents an average of 0.05*0 +   0.2*2 +   0.05*1 +   0.10*1 +   0.10*1 =  
 0.65 stalls/instruction. Th us, the CPI is 1.65 

 IF we forward from MEM/WB only, we have the following stalls/NOPs 

 EX to 1st:     1 
 MEM to 1st:     1 
 EX to 2nd:     0 
 MEM to 2nd:     0 
 EX to 1st and 2nd:     1 

 Th is represents an average of 0.05*1 +   0.2*1 +   0.1*1 =   0.35 stalls/instruction. 
Th us, the CPI is 1.35.  

  4.26.7     

        
  4.26.8     CPI for full forwarding is 1.2 

 CPI for “time travel” forwarding is 1.0 
 clock period for full forwarding is 130 
 clock period for “time travel” forwarding is 230 

 Speedup =   (1.2*130)/ (1*230)   =   0.68 (Th at means that “time travel” 
forwarding actually slows the CPU.)  

  4.26.9        When considering the “EX/MEM” forwarding in 4.26.6, the “EX to 1st” 
generates no stalls, but “EX to 1st and EX to 2nd” generates one stall. 
However, “MEM to 1st” and “MEM to 1st and MEM to 2nd” will always 
generate the same number of stalls. (All “MEM to 1st” dependencies 
cause a stall, regardless of the type of forwarding. Th is stall causes the 2nd 
instruction’s ID phase to overlap with the base instruction’s WB phase, in 
which case no forwarding is needed.)  

     4.27     

   4.27.1      add           x15, x12, x11  
  nop  
  nop  
  ld           x13, 4(x15)  
  ld           x12, 0(x2)  
  nop  
  or           x13, x15, x13  
  nop  
  nop  
  sd           x13, 0(x15)   



 Chapter 4 Solutions S-13

  4.27.2        It is not possible to reduce the number of NOPs.  

  4.27.3        Th e code executes correctly. We need hazard detection only to insert a 
stall when the instruction following a load uses the result of the load. Th at 
does not happen in this case.  

  4.27.4     

       
 Because there are no stalls in this code, PCWrite and IF/IDWrite are 
always 1 and the mux before ID/EX is always set to pass the control values 
through.

   (1)     ForwardA   =   X; ForwardB   =   X (no instruction in EX stage yet)  
  (2)     ForwardA   =   X; ForwardB   =   X (no instruction in EX stage yet)  
  (3)     ForwardA   =   0; ForwardB   =   0 (no forwarding; values taken from 

registers)  
  (4)     ForwardA   =   2; ForwardB   =   0 (base register taken from result of 

previous instruction)  
  (5)     ForwardA   =   1; ForwardB   =   1 (base reguster taken from result of two 

instructions previous )  
  (6)     ForwardA   =   0; ForwardB   =   2 (rs1   =   x15 taken from register;   

rs2   =   x13 taken from result of 1st ld—two instructions ago)  
  (7)     ForwardA   =   0; ForwardB   =   2 (base register taken from register fi le. 

Data to be written taken from previous instruction)     

  4.27.5        Th e hazard detection unit additionally needs the values of rd that comes 
out of the MEM/WB register. Th e instruction that is currently in the ID 
stage needs to be stalled if it depends on a value produced by (or forwarded 
from) the instruction in the EX or the instruction in the MEM stage. So 
we need to check the destination register of these two instructions. Th e 
Hazard unit already has the value of  rd  from the EX/MEM register as 
inputs, so we need only add the value from the MEM/WB register. 

 No additional outputs are needed. We can stall the pipeline using the three 
output signals that we already have. 

 Th e value of  rd  from EX/MEM is needed to detect the data hazard 
between the  add  and the following  ld . Th e value of  rd  form MEM/WB is 
needed to detect the data hazard between the fi rst  ld  instruction and the 
 or  instruction.  



S-14 Chapter 4 Solutions

  4.27.6     

      

   (1)     PCWrite =   1; IF/IDWrite =   1; control mux =   0  

  (2)     PCWrite =   1; IF/IDWrite =   1; control mux =   0  

  (3)     PCWrite =   1; IF/IDWrite =   1; control mux =   0  

  (4)     PCWrite =   0; IF/IDWrite =   0; control mux =   1  

  (5)     PCWrite =   0; IF/IDWrite =   0; control mux =   1  

        4.28     

   4.28.1     Th e CPI increases from 1 to 1.4125. 

 An incorrectly predicted branch will cause three instructions to be fl ushed: the 
instructions currently in the IF, ID, and EX stages. (At this point, the branch 
instruction reaches the MEM stage and updates the PC with the correct next 
instruction.) In other words, 55% of the branches will result in the fl ushing of 
three instructions, giving us a CPI of 1 +   (1 −   0.45)(0.25)3 =   1.4125. (Just to 
be clear: the always-taken predictor is correct 45% of the time, which means, 
of course, that it is incorrect 1 −   0.45 =   55% of the time.)  

  4.28.2     Th e CPI increases from 1 to 1.3375. (1 +   (.25)(1 −   .55) =   1.1125)  

  4.28.3     Th e CPI increases from 1 to 1.1125. (1 +   (.25)(1 −   .85) =   1.0375)  

  4.28.4     Th e speedup is approximately 1.019. 

 Changing half of the branch instructions to an ALU instruction reduces 
the percentage of instructions that are branches from 25% to 12.5%. 
Because predicted and mispredicted branches are replaced equally, the 
misprediction rate remains 15%. Th us, the new CPU is 1 + (.125)(1 − .85) 
= 1.01875. Th is represents a speedup of 1.0375 / 1.01875 = 1.0184  

  4.28.5     Th e “speedup” is .91. 

 Th ere are two ways to look at this problem. One way is to look at the 
two ADD instruction as a branch with an “extra” cycle. Th us, half of the 
branches have 1 extra cycle; 15% of the other half have 1 extra cycles   
(the pipeline fl ush); and the remaining branches (those correctly 
predicted) have no extra cycles. Th is gives us a CPI of 1 + (.5)(.25)*1 + 
(.5)(.25)(.15)*1 = 1.14375 and a speedup of 1.0375 / 1.14375 = .91. 

 We can also treat the ADD instructions as separate instructions. Th e 
modifi ed program now has 1.125n instructions (half of 25% produce 



 Chapter 4 Solutions S-15

an extra instruction). .125n of these 1.125n instruction (or 11.1%) are 
branches. Th e CPI for this new program is 1 + (.111)(.15)*1 = 1.01665. 
When we factor in the 12.5% increase in instructions, we get a speedup of 
1.0375 / (1.125 * 1.01665) = .91.  

  4.28.6        Th e predictor is 25% accurate on the remaining branches. We know that 
80% of branches are always predicted correctly and the overall accuracy is 
0.85. Th us, 0.8*1 +   0.2*x =   0.85. Solving for x shows that x =   0.25.  

     4.29     

   4.29.1     

        

  4.29.2     

        

  4.29.3        Th e fi rst few recurrences of this pattern do not have the same accuracy 
as the later ones because the predictor is still warming up. To determine 
the accuracy in the “steady state”, we must work through the branch 
predictions until the predictor values start repeating (i.e. until the predictor 
has the same value at the start of the current and the next recurrence of 
the pattern).

        

  4.29.4        Th e predictor should be an N-bit shift  register, where N is the number 
of branch outcomes in the target pattern. Th e shift  register should be 
initialized with the pattern itself (0 for NT, 1 for T), and the prediction is 
always the value in the left most bit of the shift  register. Th e register should 
be shift ed aft er each predicted branch.  

  4.29.5        Since the predictor’s output is always the opposite of the actual outcome of 
the branch instruction, the accuracy is zero.  

  4.29.6        Th e predictor is the same as in part d, except that it should compare its 
prediction to the actual outcome and invert (logical NOT) all the bits in 
the shift  register if the prediction is incorrect. Th is predictor still always 
perfectly predicts the given pattern. For the opposite pattern, the fi rst 
prediction will be incorrect, so the predictor’s state is inverted and aft er 



S-16 Chapter 4 Solutions

that the predictions are always correct. Overall, there is no warm-up 
period for the given pattern, and the warm-up period for the opposite 
pattern is only one branch.  

     4.30     

   4.30.1     

        

  4.30.2        Th e Mux that selects the next PC must have inputs added to it. Each input 
is a constant address of an exception handler. Th e exception detectors 
must be added to the appropriate pipeline stage and the outputs of these 
detectors must be used to control the pre-PC Mux, and also to convert to 
NOPs instructions that are already in the pipeline behind the exception-
triggering instruction.  

  4.30.3        Instructions are fetched normally until the exception is detected. 
When the exception is detected, all instructions that are in the pipeline 
aft er the fi rst instruction must be converted to NOPs. As a result, the 
second instruction never completes and does not aff ect pipeline state. 
In the cycle that immediately follows the cycle in which the exception 
is detected, the processor will fetch the fi rst instruction of the exception 
handler.  

  4.30.4        Th is approach requires us to fetch the address of the handler from memory. 
We must add the code of the exception to the address of the exception 
vector table, read the handler’s address from memory, and jump to that 
address. One way of doing this is to handle it like a special instruction that 
puts the address in EX, loads the handler’s address in MEM, and sets the 
PC in WB.  

  4.30.5        We need a special instruction that allows us to move a value from the 
(exception) Cause register to a general-purpose register. We must fi rst 
save the general-purpose register (so we can restore it later), load the 
Cause register into it, add the address of the vector table to it, use the 
result as an address for a load that gets the address of the right exception 
handler from memory, and fi nally jump to that handler.     



  4.
3

1
.1

     
  

  
     

  
  

  
  

  
  

  
  

  
  

 1    
  2

     
 3    
  4

     
 5    
  6

     
 7    
  8

     
 9 

10
 1
1 
12
 1
3 
14
 1
5 
16
 1
7 
18
 1
9 
20
 2
1 
22
 2
3 
24
 2
5 
26
 2
7 
28
  

  li
 x

12
, 

0    
  

  
  

  
  

  I
F 

ID
 E

X 
ME

 W
B  

  ja
l 

EN
T    
  

  
  

  
  

  
  I
F 

ID
 .

. 
EX

 M
E 

WB
  

  bn
e 

x1
2,

 x
13

, 
TO

P     
  

  
  

 IF
 .

. 
ID

 E
X 

ME
 W
B  

  sl
li

 x
5,

 x
12

, 
3    
  

  
  

  
 IF
 .

. 
ID

 .
. 

EX
 M
E 
WB
  

  ad
d 

x6
, 

x1
0,

 x
5    
  

  
  

  
  

  
  

 IF
 .

. 
ID
 E
X 
ME
 W
B  

  ld
 x

7,
 0

(x
6)

     
  

  
  

  
  

  
  

  
 IF
 .

. 
ID
 .
. 
EX
 M
E 
WB
  

  ld
 x

29
, 

8(
x6

)    
  

  
  

  
  

  
  

  
  

  
  

 IF
 .
. 
ID
 E
X 
ME
 W
B  

  su
b 

x3
0,

 x
7,

 x
29

     
  

  
  

  
  

  
  

  
  

 IF
 .
. 
ID
 .
. 
..
 E
X 
ME
 W
B  

  ad
d 

x3
1,

 x
11

, 
x5

     
  

  
  

  
  

  
  

  
  

  
  
  
 IF
 .
. 
..
 I
D 
EX
 M
E 
WB
  

  sd
 x

30
, 

0(
x3

1)
     

  
  

  
  

  
  

  
  

  
  

  
  
  
 IF
 .
. 
..
 I
D 
..
 E
X 
ME
 W
B  

  ad
di

 x
12

, 
x1

2,
 2

     
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  I
F 
..
 I
D 
EX
 M
E 
WB
  

  bn
e 

x1
2,

 x
13

, 
TO

P    
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  I
F 
..
 I
D 
..
 E
X 
ME
 W
B  

  sl
li

 x
5,

 x
12

, 
3    
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  I
F 
..
 I
D 
EX
 M
E 
WB
  

  ad
d 

x6
, 

x1
0,

 x
5    
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  I
F 
..
 I
D 
..
 E
X 
ME
 W
B  

  ld
 x

7,
 0

(x
6)

     
  

  
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  I
F 
..
 I
D 
EX
 M
E 
WB
  

  ld
 x

29
, 

8(
x6

)    
  

  
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  I
F 
..
 I
D 
..
 E
X 
ME
 W
B  

  su
b 

x3
0,

 x
7,

 x
29

     
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  I
F 
..
 I
D 
..
 E
X 
ME
 W
B  

  ad
d 

x3
1,

 x
11

, 
x5

     
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  I
F 
..
 I
D 
..
 .
. 
EX
 M
E 
WB

  

  sd
 x

30
, 

0(
x3

1)
     

  
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  I
F 
..
 .
. 
ID
 E
X 
ME
 W
B  

  ad
di

 x
12

, 
x1

2,
 2

     
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  I
F 
..
 .
. 
ID
 .
. 
EX
 M
E 
WB
  

  bn
e 

x1
2,

 x
13

, 
TO

P    
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 IF
 .
. 
ID
 E
X 
ME
 W
B  

  sl
li

 x
5,

 x
12

, 
3    
  

  
  

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 IF
 .
. 
ID
 .
. 
EX
 M
E 
WB
   



S-18 Chapter 4 Solutions

  4.31.2        Th e original code requires 10 cycles/loop on a 1-issue machine (stalls 
shown below) and 10 cycles/loop on the 2-issue machine. Th is gives no 
net speedup. (Th at’s a terrible result considering we nearly doubled the 
amount of hardware.) We know that the code takes 10 cycles/iteration 
on the 2-issue machine because the fi rst instruction in loop 1 (Th e slli) 
begins execution in cycle 6 and the fi rst instruction in iteration 3 begins 
execution in cycle 26, so (26–6)/2 = 10. 

    li x12,0  
  jal ENT  

  TOP:  
  slli x5, x12, 3  
  add x6, x10, x5  
  ld x7, 0(x6)  
  ld x29, 8(x6)  
  <stall>  
  sub x30, x7, x29  
  add x31, x11, x5  
  sd x30, 0(x31)  
  addi x12, x12, 2  

  ENT:  
  bne x12, x13, TOP   

  4.31.3     Here is one possibility: 

      beqz x13, DONE  
      li x12, 0  
      jal ENT  

  TOP:  
      slli x5, x12, 3  
      add x6, x10, x5  
      ld x7, 0(x6)  
      ld x29, 8(x6)  
      addi x12, x12, 2  
      sub x30, x7, x29  
      add x31, x11, x5  
      sd x30, 0(x31)  

      ENT:  
      bne x12, x13, TOP  

  DONE:  

 If we switch to a “pointer-based” approach, we can save one cycle/loop. 



 Chapter 4 Solutions S-19

 Th e code below does this: 

  for (i = 0; i ! = j; i+ = 2) {  
      *b = *a - *(a+1);  
      b+=2;  
      a+=2;  

  }  

      bez x13, DONE  
      li x12, 0  
      jal ENT  

  TOP:  
      ld x7, 0(x10)  
      ld x29, 8(x10)  
      addi x12, x12, 2  
      sub x30, x7, x29  
      sd x30, 0(x11)  
      addi x10, x10, 16  
      addi x11, x11, 16  

      ENT:  
      bne x12,x13,TOP  

  DONE:   

  4.31.4     Here is one possibility: 

      beqz x13, DONE  
      li x12, 0  

  TOP:  
      slli x5, x12, 3  

      add x6, x10, x5  

      ld x7, 0(x6)  
      add x31, x11, x5  

      ld x29, 8(x6)  
      addi x12, x12, 2  

      sub x30, x7, x29  

      sd x30, 0(x31)  

      bne x12, x13, TOP  
  DONE:  

 If we switch to a “pointer-based” approach, we can save one cycle/loop. 



S-20 Chapter 4 Solutions

 Th e code below does this: 
  for (i = 0; i ! = j; i+ = 2) {  

      *b = *a - *(a+1);  
      b+=2;  
      a+=2;  

  }  
      beqz x13, DONE  

      li x12, 0  
  TOP:  

      ld x7, 0(x6)  
      addi x12, x12, 2  

      ld x29, 8(x6)  
      addi x6, x6, 16  

      sub x30, x7, x29  

      sd x30, 0(x31)  

      bne x12, x13, TOP  
  DONE:   

  4.31.5 

                         1    2    3    4    5    6    7    8    9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
  beqz x13, DONE        IF ID EX ME WB  
  li x12, 0             IF ID .. EX ME WB  

  slli x5, x12, 3          IF .. ID EX ME WB  
  add x6, x10, x5          IF .. ID .. EX ME WB  

  ld x7, 0(x6)                   IF .. ID EX ME WB  
  add x31, x11, x5               IF .. ID EX ME WB  

  ld x29, 8(x6)                        IF ID EX ME WB  
  addi x12, x12, 2                     IF ID EX ME WB  

  sub x30, x7, x29                        IF ID .. EX ME WB  
  sd x30, 0(x31)                          IF ID .. .. EX ME WB  

  bne x12, x13, TOP                          IF .. .. ID EX ME WB  
  slli x5, x12, 3                            IF .. .. ID .. EX ME WB  

  add x6, x10, x5                                     IF .. ID EX ME WB  
  ld x7, 0(x6)                                        IF .. ID .. EX ME WB  

  add x31, x11, x5                                          IF .. ID EX ME WB  
  ld x29, 8(x6)                                             IF .. ID EX ME WB  

  addi x12, x12, 2                                                IF ID EX ME WB  
  sub x30, x7, x29                                                IF ID .. EX ME WB  

  sd x30, 0(x31)                                                     IF .. ID EX ME WB  
  bne x12, x13, TOP                                                  IF .. ID EX ME WB  

  slli x5, x12, 3                                                          IF ID EX ME WB  
  add x6, x10, x5                                                          IF ID .. EX ME WB   

  4.31.6        Th e code from 4.31.3 requires 9 cycles per iteration. Th e code from 4.31.5 
requires 7.5 cycles per iteration. Th us, the speedup is 1.2.  



 Chapter 4 Solutions S-21

  4.31.7     Here is one possibility: 
  beqz x13, DONE  
  li x12, 0  

 TOP: 

  slli x5, x12, 3  
  add x6, x10, x5  
  add x31, x11, x5  
  ld x7, 0(x6)  
  ld x29, 8(x6)  
  ld x5, 16(x6)  
  ld x15, 24(x6)  
  addi x12, x12, 4  
  sub x30, x7, x29  
      sub x14, x5, x15  
  sd x30, 0(x31)  
      sd x14, 16(x31)  
  bne x12, x13, TOP  

 DONE:  

  4.31.8     Here is one possibility: 

      beqz x13, DONE  
      li x12, 0  
  addi x6, x10, 0  

  TOP:  
      ld x7, 0(x6)  
      add x31, x11, x5  
      ld x29, 8(x6)  
      addi x12, x12, 4  
      ld x16, 16(x6)  
      slli x5, x12, 3  
      ld x15, 24(x6)  
      sub x30, x7, x29  
      sd x30, 0(x31)  
      sub x14, x16, x15  
      sd x14, 16(x31)  
      add x6, x10, x5  
      bne x12,x13,TOP  

  DONE:   

  4.31.9        Th e code from 4.31.7 requires 13 cycles per unrolled iteration. Th is is equivalent to 6.5 cycles per 
original iteration. Th e code from 4.30.4 requires 7.5 cycles per unrolled iteration. Th is is equivalent 
to 3.75 cycles per original iteration. Th us, the speedup is 1.73.  



        
  
  
  
  

  
  
  
  
  
  
  
  1
     
 2    
  3

     
 4    
  5
     

 6    
  7
     

 8    
  9
 1

0 
11

 1
2 

13
 1

4 
15

 1
6 

17
 1

8 
19

 2
0 

21
 2

2 
23

 2
4  

  be
qz
 x
13
, 
DO
NE
     
  
  
  
  
 IF
 I
D 
EX

 M
E 

WB
  

  li
 x
12
, 
0    
  
  
  
  
  
  
  
 IF
 I
D 
..

 E
X 

ME
 W

B  

  ad
di
 x
6,
 x
10
, 
0    
  
  
  
  
  
  I
F 
..

 I
D 

EX
 M

E 
WB

  
  ld
 x
7,
 0
(x
6)
     
  
  
  
  
  
  
  I
F 
..

 I
D 

..
 E

X 
ME

 W
B  

  ad
d 
x3
1,
 x
11
, 
x5
     
  
  
  
  
  
  
  

  I
F 

..
 I

D 
EX

 M
E 

WB
  

  ld
 x
29
, 
8(
x6
)    
  
  
  
  
  
  
  
  
  

  I
F 

..
 I

D 
EX

 M
E 

WB
  

  ad
di
 x
12
, 
x1
2,
 4
     
  
  
  
  
  
  
  

  
  

  
  I
F 

ID
 E

X 
ME

 W
B  

  ld
 x
16
, 
16
(x
6)
     
  
  
  
  
  
  
  
  

  
  

  
  I
F 

ID
 E

X 
ME

 W
B  

  sl
li
 x
5,
 x
12
, 
3    
  
  
  
  
  
  
  
  

  
  

  
  

  
 IF
 I

D 
EX

 M
E 

WB
  

  ld
 x
15
, 
24
(x
6)
     
  
  
  
  
  
  
  
  

  
  

  
  

  
 IF
 I

D 
EX

 M
E 

WB
  

  su
b 
x3
0,
 x
7,
 x
29
     
  
  
  
  
  
  
  

  
  

  
  

  
  

  I
F 

ID
 E

X 
ME

 W
B  

  sd
 x
30
, 
0(
x3
1)
     
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  I
F 

ID
 .

. 
EX

 M
E 

WB
  

  su
b 
x1
4,
 x
16
, 
x1
5    
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

 IF
 .

. 
ID

 E
X 

ME
 W

B  
  sd
 x
14
, 
16
(x
31
)    
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

 IF
 .

. 
ID

 E
X 

ME
 W

B  

  ad
d 
x6
, 
x1
0,
 x
5    
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
 IF
 I

D 
EX

 M
E 

WB
  

  bn
e 
x1
2,
x1
3,
TO
P    
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
 IF
 I

D 
EX

 M
E 

WB
  

  ld
 x
7,
 0
(x

6)
     
  
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  I
F 

ID
 E

X 
ME

 W
B  

  ad
d 
x3
1,
 x
11
, 
x5
     
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  I
F 

ID
 E

X 
ME

 W
B  

  ld
 x
29
, 
8(
x6
)    
  
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 IF
 I

D 
EX

 M
E 

WB
  

  ad
di
 x
12
, 
x1
2,
 4
     
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 IF
 I

D 
EX

 M
E 

WB
  

  ld
 x
16
, 
16
(x
6)
     
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  I
F 

ID
 E

X 
ME

 W
B  

  sl
li
 x
5,
 x
12
, 
3    
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  I
F 

ID
 E

X 
ME

 W
B  

  ld
 x
15
, 
24
(x
6)
     
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 IF
 I

D 
EX

 M
E 

WB
  

  su
b 
x3
0,
 x
7,
 x
29
     
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 IF
 I

D 
EX

 M
E 

WB
  

  sd
 x
30
, 
0(
x3
1)
     
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  I
F 

ID
 E

X 
ME

 W
B  

  su
b 
x1
4,
 x
16
, 
x1
5    
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  I
F 

ID
 .
. 

EX
 M

E 
WB

  

  sd
 x
14
, 
16
(x
31
)    
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 IF
 .

. 
ID

 E
X 

ME
 W

B  
  ad
d 
x6
, 
x1
0,
 x
5    
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 IF
 .

. 
ID

 E
X 

ME
 W

B  

  bn
e 
x1
2,
x1
3,
TO
P    
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  
  

 IF
 I

D 
EX

 M
E 

WB
  

  ld
 x
7,
 0
(x
6)
     
  
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  
  

 IF
 I

D 
EX

 M
E 

WB
     

 



 Chapter 4 Solutions S-23

  4.31.10      Using the same code as in 4.31.8, the new data path provides no net 
improvement, because there are no stalls due to structural hazards.  

  4.32     

   4.32.1        Th e energy for the two designs is the same: I-Mem is read, two registers 
are read, and a register is written. We have: 140pJ +   2*70pJ +   60j =   340pJ.  

  4.32.2        Th e instruction memory is read for all instructions. Every instruction also 
results in two register reads (even if only one of those values is actually 
used). A load instruction results in a memory read and a register write; 
a store instruction results in a memory write; all other instructions result 
in at most a single register write. Because the sum of memory read and 
register write energy is larger than memory write energy, the worst-case 
instruction is a load instruction. For the energy spent by a load, we have: 
140pJ +   2*70pJ +   60pJ +   140pJ =   480pJ.  

  4.32.3        Instruction memory must be read for every instruction. However, we can 
avoid reading registers whose values are not going to be used. To do this, 
we must add RegRead1 and RegRead2 control inputs to the Registers unit 
to enable or disable each register read. We must generate these control 
signals quickly to avoid lengthening the clock cycle time. With these new 
control signals, a load instruction results in only one register read (we still 
must read the register used to generate the address), so our change saves 
70pJ (one register read) per load. Th is is a savings of 70/480 =   14.6%.  

  4.32.4         jal  will benefi t, because it need not read any registers at all. I-type 
instructions will also benefi t because they need only read one register. If 
we add logic to detect x0 as a source register, then instructions such as 
 beqz  (i.e.  beq x0 , …) and  li  ( addi xn, x0 , …) could benefi t as well.  

  4.32.5        Before the change, the Control unit decodes the instruction while 
register reads are happening. Aft er the change, the latencies of Control 
and Register Read cannot be overlapped. Th is increases the latency of the 
ID stage and could aff ect the processor’s clock cycle time if the ID stage 
becomes the longest-latency stage. However, the sum of the latencies for 
the register read (90ps) and control unit (150ps) are less than the current 
250ps cycle time.  

  4.32.6        If memory is read in every cycle, the value is either needed (for a load 
instruction), or it does not get past the WB Mux (for a non-load instruction 
that writes to a register), or it does not get written to any register (all 
other instructions, including branches and stalls). Th is change does not 
aff ect clock cycle time because the clock cycle time must already allow 
enough time for memory to be read in the MEM stage. It can aff ect overall 
performance if the unused memory reads cause cache misses. 



S-24 Chapter 4 Solutions

 Th e change also aff ects energy: A memory read occurs in every cycle 
instead of only in cycles when a load instruction is in the MEM stage. Th is 
increases the energy consumption by 140pJ during 75% of the 250ps clock 
cycles. Th is corresponds to a consumption of approximately 0.46 Watts 
(not counting any energy consumed as a result of cache misses).  

     4.33     

   4.33.1        To test for a stuck-at-0 fault on a wire, we need an instruction that puts 
that wire to a value of 1 and has a diff erent result if the value on the wire 
is stuck at zero. 

 If the least signifi cant bit of the write register line is stuck at zero, an 
instruction that writes to an odd-numbered register will end up writing to 
the even-numbered register. To test for this (1) place a value of 10 in  x1 , 
35 in  x2 , and 45 in  x3 , then (2) execute  add x3, x1, x1 . Th e value of 
 x3  is supposed to be 20. If bit 0 of the Write Register input to the registers 
unit is stuck at zero, the value is written to  x2  instead, which means that 
 x2  will be 40 and  x3  will remain at 45.  

  4.33.2        Th e test for stuck-at-zero requires an instruction that sets the signal to 1; 
and the test for stuck-at-1 requires an instruction that sets the signal to 0. 
Because the signal cannot be both 0 and 1 in the same cycle, we cannot 
test the same signal simultaneously for stuck-at-0 and stuck-at-1 using 
only one instruction. 

 Th e test for stuck-at-1 is analogous to the stuck-at-0 test: (1) Place a value 
of 10 in  x1 , 35 in  x2 , and 45 in  x3 , then (2) execute  add x2, x1, x1 . 
Th e value of  x2  is supposed to be 20. If bit 0 of the Write Register input 
to the registers unit is stuck at 1, the value is written to  x3  instead, which 
means that  x3  will be 40 and  x2  will remain at 35.  

  4.33.3        Th e CPU is still usable. Th e “simplest” solution is to re-write the compiler 
so that it uses odd-numbered registers only (not that writing compliers is 
especially simple). We could also write a “translator” that would convert 
machine code; however, this would be more complicated because the 
translator would need to detect when two “colliding” registers are used 
simultaneously and either (1) place one of the values in an unused register, 
or (2) push that value onto the stack.  

  4.33.4        To test for this fault, we need an instruction for which MemRead is 
set to 1, so it has to be ld. The instruction also needs to have branch 
set to 0, which is the case for ld. Finally, the instruction needs to have 
a different result MemRead is incorrectly set to 0. For a load, setting 
MemRead to 0 results in not reading memory. When this happens, the 
value placed in the register is “random” (whatever happened to be at 



 Chapter 4 Solutions S-25

the output of the memory unit). Unfortunately, this “random” value 
can be the same as the one already in the register, so this test is not 
conclusive.  

  4.33.5        Only R-type instructions set RegRd to 1. Most R-type instructions 
would fail to detect this error because reads are non-destructive—the 
erroneous read would simply be ignored. However, suppose we issued this 
instruction:  add x1, x0, x0 . In this case, if MemRead were incorrectly 
set to 1, the data memory would attempt to read the value in memory 
location 0. In many operating systems, address 0 can only be accessed by 
a process running in protected/kernel mode. If this is the case, then this 
instruction would cause a segmentation fault in the presence of this error.  

      



 Solutions 

              5 



 Chapter 5 Solutions S-3

       5.1     

   5.1.1     2.  

  5.1.2     I, J, and B[I][0].  

  5.1.3     A[I][J].  

  5.1.4     I, J, and B[I][0].  

  5.1.5     A(J, I) and B[I][0].  

  5.1.6     32,004 with Matlab. 32,008 with C. 
 Th e code references 8*8000   =   64,000 integers from matrix A. At two integers 
per 16-byte block, we need 32,000 blocks. 
 Th e code also references the fi rst element in each of eight rows of Matrix B. 
Matlab stores matrix data in column-major order; therefore, all eight 
integers are contiguous and fi t in four blocks. C stores matrix data in row-
major order; therefore, the fi rst element of each row is in a diff erent block.  

       5.2     

   5.2.1             

  5.2.2             



S-4 Chapter 5 Solutions

  5.2.3            

 Cache 1 miss rate   =   100% 

 Cache 1 total cycles   =   12   ×   25   +   12   ×   2   =   324 

 Cache 2 miss rate   =   10/12   =   83% 

 Cache 2 total cycles   =   10   ×   25   +   12   ×   3   =   286 

 Cache 3 miss rate   =   11/12   =   92% 

 Cache 3 total cycles   =   11   ×   25   +   12   ×   5   =   335 

 Cache 2 provides the best performance.  

       5.3     

   5.3.1     Total size is 364,544 bits   =   45,568 bytes 

 Each word is 8 bytes; each block contains two words; thus, each block contains   
16   =   2^4 bytes. 

 Th e cache contains 32KiB   =   2^15 bytes of data. Th us, it has 2^15/2^4   =   2^11 
lines of data. 

 Each 64-bit address is divided into: (1) a 3-bit word off set, (2) a 1-bit block off set, 
(3) an 11-bit index (because there are 2^11 lines), and (4) a 49-bit tag (64   −   3   −   1  
 −   11   =   49). 

 Th e cache is composed of: 2^15 * 8 bits of data   +   2^11*49 bits of tag   +   2^11*1 
valid bits   =   364,544 bits.  



 Chapter 5 Solutions S-5

  5.3.2     549,376 bits   =   68,672 bytes. Th is is a 51% increase. 

 Each word is 8 bytes; each block contains 16 words; thus, each block contains   
128   =   2^7 bytes. 

 Th e cache contains 64KiB   =   2^16 bytes of data. Th us, it has 2^16/2^7   =   2^9 lines 
of data. 

 Each 64-bit address is divided into: (1) a 3-bit word off set, (2) a 4-bit block off set, 
(3) a 9-bit index (because there are 2^9 lines), and (4) a 48-bit tag (64   −   3   −   4   −   9  
 =   48). 

 Th e cache is composed of: 2^16 * 8 bits of data   +   2^9*48 bits of tag   +   2^9*1 valid 
bits   =   549,376 bits  

  5.3.3     Th e larger block size may require an increased hit time and an increased 
miss penalty than the original cache. Th e fewer number of blocks may cause a higher 
confl ict miss rate than the original cache.  

  5.3.4     Associative caches are designed to reduce the rate of confl ict misses. As such, 
a sequence of read requests with the same 12-bit index fi eld but a diff erent tag fi eld 
will generate many misses. For the cache described above, the sequence 0, 32768, 0, 
32768, 0, 32768, …, would miss on every access, while a two-way set associate cache 
with LRU replacement, even one with a signifi cantly smaller overall capacity, would 
hit on every access aft er the fi rst two.  

       5.4     Yes it is possible. To implement a direct-mapped cache, we need only a 
function that will take an address as input and produce a 10-bit output. Although 
it is possible to implement a cache in this manner, it is not clear that such an 
implementation will be benefi cial. (1) Th e cache would require a larger tag and (2) 
there would likely be more confl ict misses.  

    5.5     

   5.5.1     Each cache block consists of four 8-byte words. Th e total off set is 5 bits. 
Th ree of those 5 bits is the word off set (the off set into an 8-byte word). Th e 
remaining two bits are the block off set. Two bits allows us to enumerate 2^2   =   4 
words.  

  5.5.2     Th ere are fi ve index bits. Th is tells us there are 2^5   =   32 lines in the cache.  

  5.5.3     Th e ratio is 1.21. Th e cache stores a total of 32 lines * 4 words/block * 8 bytes/
word   =   1024 bytes   =   8192 bits. 

 In addition to the data, each line contains 54 tag bits and 1 valid bit. Th us, 
the total bits required   =   8192   +   54*32   +   1*32   =   9952 bits.  



S-6 Chapter 5 Solutions

  5.5.4             

  5.5.5     4/12   =   33%.  

  5.5.6      <index, tag, data>  

  <0, 3, Mem[0xC00]-Mem[0xC1F]>  

  <4, 2, Mem[0x880]-Mem[0x89f]>  

  <5, 0, Mem[0x0A0]-Mem[0x0Bf]>  

  <7, 0, Mem[0x0e0]-Mem[0x0ff]>   

       5.6     

   5.6.1     Th e L1 cache has a low write miss penalty while the L2 cache has a high write 
miss penalty. A write buff er between the L1 and L2 cache would hide the write miss 
latency of the L2 cache. Th e L2 cache would benefi t from write buff ers when 
replacing a dirty block, since the new block would be read in before the dirty block 
is physically written to memory.  

  5.6.2     On an L1 write miss, the word is written directly to L2 without bringing its 
block into the L1 cache. If this results in an L2 miss, its block must be brought into 
the L2 cache, possibly replacing a dirty block, which must fi rst be written to memory.  

  5.6.3     Aft er an L1 write miss, the block will reside in L2 but not in L1. A subsequent 
read miss on the same block will require that the block in L2 be written back to 
memory, transferred to L1, and invalidated in L2.  



 Chapter 5 Solutions S-7

       5.7     

   5.7.1     When the CPI is 2, there are, on average, 0.5 instruction accesses per cycle. 
0.3% of these instruction accesses cause a cache miss (and subsequent memory 
request). Assuming each miss requests one block, instruction accesses generate an 
average of 0.5*.003*64   =   0.096 bytes/cycle of read traffi  c. 

 25% of instructions generate a read request. 2% of these generate a cache miss; 
thus, read misses generate an average of 0.5*0.25*0.02*64   =   0.16 bytes/cycle of 
read traffi  c. 
 10% of instructions generate a write request. 2% of these generate a cache miss. 
Because the cache is a write-through cache, only one word (8 bytes) must be 
written back to memory; but, every write is written through to memory (not just 
the cache misses). Th us, write misses generate an average of 0.5*0.1*8   =   0.4 bytes/
cycle of write traffi  c. Because the cache is a write-allocate cache, a write miss also 
makes a read request to RAM. Th us, write misses require an average of 
0.5*0.1*0.02*64   =   0.064 bytes/cycle of read traffi  c. 
 Hence: Th e total read bandwidth   =   0.096   +   0.16   +   0.064   =   0.32 bytes/cycle, and 
the total write bandwidth is 0.4 bytes/cycle.  

  5.7.2     Th e instruction and data read bandwidth requirement is the same as in 5.4.4. 
 With a write-back cache, data are only written to memory on a cache miss. But, it 
is written on every cache miss (both read and write), because any line could have 
dirty data when evicted, even if the eviction is caused by a read request. Th us, the 
data write bandwidth requirement becomes 0.5*(0.25   +   0.1)*0.02*0.3*64   =  
 0.0672 bytes/cycle.  

       5.8     

   5.8.1     Th e addresses are given as word addresses; each 32-bit block contains four 
words. Th us, every fourth access will be a miss (i.e., a miss rate of 1/4). All misses are 
compulsory misses. Th e miss rate is not sensitive to the size of the cache or the size 
of the working set. It is, however, sensitive to the access pattern and block size.  

  5.8.2     Th e miss rates are 1/2, 1/8, and 1/16, respectively. Th e workload is exploiting 
spatial locality.  

  5.8.3     In this case the miss rate is 0: Th e pre-fetch buff er always has the next request 
ready.  

       5.9     

   5.9.1     AMAT for B   =   8: 0.040   ×   (20   ×   8)   =   6.40 
 AMAT for B   =   16: 0.030   ×   (20   ×   16)   =   9.60 
 AMAT for B   =   32: 0.020   ×   (20   ×   32)   =   12.80 
 AMAT for B   =   64: 0.015   ×   (20   ×   64)   =   19.20 



S-8 Chapter 5 Solutions

 AMAT for B   =   128: 0.010   ×   (20   ×   128)   =   25.60 
 B   =   8 is optimal.  

  5.9.2     AMAT for B   =   8: 0.040   ×   (24   +   8)   =   1.28 
 AMAT for B   =   16: 0.030   ×   (24   +   16)   =   1.20 
 AMAT for B   =   32: 0.020   ×   (24   +   32)   =   1.12 
 AMAT for B   =   64: 0.015   ×   (24   +   64)   =   1.32 
 AMAT for B   =   128: 0.010   ×   (24   +   128)   =   1.52 
 B   =   32 is optimal  

  5.9.3     B   =   128 is optimal: Minimizing the miss rate minimizes the total miss 
latency.  

       5.10     

   5.10.1    

 P1  1.515     GHz 

 P2  1.11     GHz 

  5.10.2    

 P1  6.31     ns  9.56 cycles 

 P2  5.11     ns  5.68 cycles 

 For P1 all memory accesses require at least one cycle (to access L1). 8% of memory 
accesses additionally require a 70     ns access to main memory. Th is is 70/0.66   =  
 106.06 cycles. However, we can’t divide cycles; therefore, we must round up to 107 
cycles. Th us, the Average Memory Access time is 1   +   0.08*107   =   9.56 cycles, or 
6.31     ps. 
 For P2, a main memory access takes 70     ns. Th is is 70/0.66   =   77.78 cycles. Because 
we can’t divide cycles, we must round up to 78 cycles. Th us the Average Memory 
Access time is 1   +   0.06*78   =   5.68 cycles, or 6.11     ps.  

  5.10.3    

 P1  12.64 CPI  8.34     ns per inst 

 P2  7.36 CPI  6.63     ns per inst 

 For P1, every instruction requires at least one cycle. In addition, 8% of all 
instructions miss in the instruction cache and incur a 107-cycle delay. 
Furthermore, 36% of the instructions are data accesses. 8% of these 36% are cache 
misses, which adds an additional 107 cycles. 

 1   +   .08*107   +   .36*.08*107   =   12.64 
 With a clock cycle of 0.66     ps, each instruction requires 8.34     ns. 
 Using the same logic, we can see that P2 has a CPI of 7.36 and an average of only 
6.63     ns/instruction.  



 Chapter 5 Solutions S-9

  5.10.4    

 AMAT   =   9.85 cycles  Worse 

 An L2 access requires nine cycles (5.62/0.66 rounded up to the next integer). 
 All memory accesses require at least one cycle. 8% of memory accesses miss in the 
L1 cache and make an L2 access, which takes nine cycles. 95% of all L2 access are 
misses and require a 107 cycle memory lookup. 

 1   +   .08[9   +   0.95*107]   =   9.85  

  5.10.5 

 13.04 

 Notice that we can compute the answer to 5.6.3 as follows: AMAT   +   %memory * 
(AMAT-1). 

 Using this formula, we see that the CPI for P1 with an L2 cache is 9.85 * 0.36*8.85   =    
 13.04  

  5.10.6     Because the clock cycle time and percentage of memory instructions is the 
same for both versions of P1, it is suffi  cient to focus on AMAT. We want 

 AMAT with L2   <   AMAT with L1 only 
 1   +   0.08[9   +   m*107]   <   9.56 
 Th is happens when m<   .916.  

  5.10.7     We want P1’s average time per instruction to be less than 6.63     ns. Th is 
means that we want 

 (CPI_P1 * 0.66)   <   6.63. Th us, we need CPI_P1   <   10.05 

 CPI_P1   =   AMAT_P1   +   0.36(AMAT_P1 – 1) 

 Th us, we want 

 AMAT_P1+   0.36(AMAT_P1-1)   <   10.05 

 Th is happens when AMAT_P1<   7.65. 

 Finally, we solve for 

 1+   0.08[9+   m*107]   <   7.65 

 and fi nd that 

 m<   0.693 

 Th is miss rate can be at most 69.3%.  

       5.11     

   5.11.1     Each line in the cache will have a total of six blocks (two in each of three 
ways). Th ere will be a total of 48/6   =   8 lines.  



S-10 Chapter 5 Solutions

  5.11.2     T(x) is the tag at index x.        



 Chapter 5 Solutions S-11

  5.11.3     No solution given.     
  5.11.4     Because this cache is fully associative and has one-word blocks, there is no 
index and no off set. Consequently, the word address is equivalent to the tag.

        
  5.11.5     No solution given.     
  5.11.6     Because this cache is fully associative, there is no index. (Contents shown 
in the order the data were accessed. Order does not imply physical location.)

        



S-12 Chapter 5 Solutions

  5.11.7     (Contents shown in the order the data were accessed. Order does not 
imply physical location.)

        
  5.11.8     Because this cache is fully associative, there is no index.  

         



 Chapter 5 Solutions S-13

    5.12     

   5.12.1     Standard memory time: Each cycle on a 2-    Ghz machine takes 0.5     ps. Th us, 
a main memory access requires 100/0.5   =   200 cycles.

   ■     L1 only: 1.5   +   0.07*200   =   15.5  

  ■     Direct mapped L2: 1.5   +   .07   ×   (12   +   0.035   ×   200)   =   2.83  

  ■     8-way set associated L2: 1.5   +   .07   ×   (28   +   0.015   ×   200)   =   3.67. 

 Doubled memory access time (thus, a main memory access requires 400 cycles)  

  ■     L1 only: 1.5   +   0.07*400   =   29.5 (90% increase)  

  ■     Direct mapped L2: 1.5   +   .07   ×   (12   +   0.035   ×   400)   =   3.32 (17% increase)  

  ■     8-way set associated L2: 1.5   +   .07   ×   (28   +   0.015   ×   400)   =   3.88 (5% increase).  

     5.12.2     1.5   =   0.07   ×   (12   +   0.035   ×   (50   +   0.013   ×   100))   =   2.47 

 Adding the L3 cache does reduce the overall memory access time, which is the main 
advantage of having an L3 cache. Th e disadvantage is that the L3 cache takes real 
estate away from having other types of resources, such as functional units.  

  5.12.3     No size will achieve the performance goal. 

 We want the CPI of the CPU with an external L2 cache to be at most 2.83. Let x be 
the necessary miss rate. 

 1.5   +   0.07*(50   +   x*200)   <   2.83 

 Solving for x gives that x   <     −   0.155. Th is means that even if the miss rate of the L2 
cache was 0, a 50-    ns access time gives a CPI of 1.5   +   0.07*(50   +   0*200)   =   5, which is 
greater than the 2.83 given by the on-chip L2 caches. As such, no size will achieve 
the performance goal.  

       5.13     

   5.13.1    

 3 years and 1 day  1096 days  26304 hours 

  5.13.2     

 1095/1096   =   99.90875912% 

  5.13.3     Availability approaches 1.0. With the emergence of inexpensive drives, 
having a nearly 0 replacement time  for hardware  is quite feasible. However, replacing 
fi le systems and other data can take signifi cant time. Although a drive manufacturer 
will not include this time in their statistics, it is certainly a part of replacing a disk.  

  5.13.4     MTTR becomes the dominant factor in determining availability. However, 
availability would be quite high if MTTF also grew measurably. If MTTF is 1000 
times MTTR, it the specifi c value of MTTR is not signifi cant.  



S-14 Chapter 5 Solutions

       5.14     

   5.14.1     9. For SEC, we need to fi nd minimum p such that 2 p    >   =   p   +   d   +   1 and then 
add one. Th at gives us p   =   8. We then need to add one more bit for SEC/DED.  

  5.14.2     Th e (72,64) code described in the chapter requires an overhead of 8/64   =  
 12.5% additional bits to tolerate the loss of any single bit within 72 bits, providing a 
protection rate of 1.4%. Th e (137,128) code from part a requires an overhead of 
9/128   =   7.0% additional bits to tolerate the loss of any single bit within 137 bits, 
providing a protection rate of 0.73%. Th e cost/performance of both codes is as 
follows: 

 (72,64) code   =   >12.5/1.4   =   8.9 

 (136,128) code   =   >7.0/0.73   =   9.6 

 Th e (72,64) code has better cost/performance ratio.  

  5.14.3     Using the bit numbering from  Section 5.5 , bit 8 is in error so the value 
would be corrected to 0x365.  

       5.15     Instructors can change the disk latency, transfer rate and optimal page size 
for more variants. Refer to Jim Gray’s paper on the 5-minute rule 10 years later.

   5.15.1     32     KB. 

 To solve this problem, I used the following gnuplot command and looked for the 
maximum. 

  plot [16:128] log((x*1024/128) *0.7)/(log(2)*(10   +   0.1*x))   

  5.15.2     Still 32     KB. (Modify the gnuplot command above by changing 0.7 to 0.5.)  

  5.15.3     64     KB. Because the disk bandwidth grows much faster than seek latency, 
future paging cost will be more close to constant, thus favoring larger pages. 

 1987/1997/2007: 205/267/308 seconds. (or roughly fi ve minutes). 

 1987/1997/2007: 51/533/4935 seconds. (or 10 times longer for every 10 years).  

  5.15.4     (1) DRAM cost/MB scaling trend dramatically slows down; or (2) disk 
$/access/sec dramatically increase. (2) is more likely to happen due to the emerging 
fl ash technology.  



 Chapter 5 Solutions S-15

       5.16     

   5.16.1    

         



S-16 Chapter 5 Solutions

  5.16.2            

 A larger page size reduces the TLB miss rate but can lead to higher fragmentation 
and lower utilization of the physical memory.  



 Chapter 5 Solutions S-17

  5.16.3     Two-way set associative

        



S-18 Chapter 5 Solutions

  5.16.4     Direct mapped

        
  5.16.5     Without a TLB, almost every memory access would require two accesses to 
RAM: An access to the page table, followed by an access to the requested data.  

       5.17     

   5.17.1     Th e tag size is 32–log2(8192)   =   32–13   =   19 bits. All fi ve page tables would 
require 5   ×   (2^19   ×   4) bytes   =   10     MB.  

  5.17.2     In the two-level approach, the 2^19 page table entries are divided into 256 
segments that are allocated on demand. Each of the second-level tables contains 
2^(19   −   8)   =   2048 entries, requiring 2048   ×   4   =   8     KB each and covering 2048   ×   8     KB  
 =   16     MB (2^24) of the virtual address space. 



 Chapter 5 Solutions S-19

 If we assume that “half the memory” means 2^31 bytes, then the minimum amount of 
memory required for the second-level tables would be 5   ×   (2^31/2^24)*8     KB   =   5     MB. 
Th e fi rst-level tables would require an additional 5   ×   128   ×   6 bytes   =   3840 bytes. 

 Th e maximum amount would be if all 1st-level segments were activated, requiring 
the use of all 256 segments in each application. Th is would require 5   ×   256   ×   8     KB   =  
 10     MB for the second-level tables and 7680 bytes for the fi rst-level tables.  

  5.17.3     Th e page index is 13 bits (address bits 12 down to 0). 

 A 16     KB direct-mapped cache with two 64-bit words per block would have 16-byte 
blocks and thus 16     KB/16 bytes   =   1024 blocks. Th us, it would have 10 index bits and 
4 off set bits and the index would extend outside of the page index. 

 Th e designer could increase the cache’s associativity. Th is would reduce the number 
of index bits so that the cache’s index fi ts completely inside the page index.  

       5.18     

   5.18.1     Worst case is 2^(43   −   12)   =   2^31 entries, requiring 2^(31)   ×   4 bytes   =  
 2^33   =   8     GB.  

  5.18.2     With only two levels, the designer can select the size of each page table segment. 
In a multi-level scheme, reading a PTE requires an access to each level of the table.  

  5.18.3     Yes, if segment table entries are assumed to be the physical page numbers 
of segment pages, and one bit is reserved as the valid bit, then each one has an 
eff ective reach of (2 31 )   *   4KiB   =   8TiB, which is more than enough to cover the 
physical address space of the machine (16     GiB).  

  5.18.4     Each page table level contains 4KiB/4B   =   1024 entries, and so translates 
log2(1024)   =   10 bits of virtual address. Using 43-bit virtual addresses and 4KiB 
pages, we need ceil((43   −   12)/10)   =   4 levels of translation.  

  5.18.5     In an inverted page table, the number of PTEs can be reduced to the size of 
the hash table plus the cost of collisions. In this case, serving a TLB miss requires an 
extra reference to compare the tag or tags stored in the hash table.  

       5.19     

   5.19.1     It would be invalid if it was paged out to disk.  

  5.19.2     A write to page 30 would generate a TLB miss. Soft ware-managed TLBs are 
faster in cases where the soft ware can pre-fetch TLB entries.  

  5.19.3     When an instruction writes to VA page 200, an interrupt would be 
generated because the page is marked as read only.  

       5.20     

   5.20.1     Th ere are no hits.  



S-20 Chapter 5 Solutions

  5.20.2     Direct mapped

 0  1  2  3  4  5  6  7  0  1  2  3  4  5  6  7  0 

 M  M  M  M  M  M  M  M  H  H  M  M  M  M  H  H  M 

  5.20.3     Answers will vary.  

  5.20.4     MRU is an optimal policy.  

  5.20.5     Th e best block to evict is the one that will cause the fewest misses in the 
future. Unfortunately, a cache controller cannot know the future! Our best alternative 
is to make a good prediction.  

  5.20.6     If you knew that an address had limited temporal locality and would confl ict 
with another block in the cache, choosing not to cache it could improve the miss rate. 
On the other hand, you could worsen the miss rate by choosing poorly which 
addresses to cache.  

       5.21     

   5.21.1     CPI   =   1.5   +   120/10000   ×   (15   +   175)   =   3.78 

 If VMM overhead doubles   =   >CPI   =   1.5   +   120/10000   ×   (15   +   350)   =   5.88 

 If VMM overhead halves   =   >CPI   =   1.5   +   120/10000   ×   (15   +   87.5)   =   2.73 

 Th e CPI of a machine running on native hardware is 1.5   +   120/10000*15   =   1.68. 
To keep the performance degradation to 10%, we need 

 1.5   +   120/10000*(15   +   x)   <   1.1*1.68 

 Solving for x shows that a trap to the VMM can take at most 14 cycles.  

  5.21.2     Non-virtualized CPI   =   1.5   +   120/10000   ×   15   +   30/10000   ×   1100   =   4.98 

 Virtualized CPI   =   1.5   +   120/10000   ×   (15   +   175)   +   30/10000   ×   (1100   +   175)   =   7.60 

 Non-virtualized CPI with half I/O   =   1.5   +   120/10000   ×   15   +   15/10000   ×   1100   =  
 3.33 

 Virtualized CPI with half I/O   =   1.5   +   120/10000   ×   (15   +   175)   +   15/10000   ×   (1100  
 +   175)   =   5.69.  

     5.22     Virtual memory aims to provide each application with the illusion of the 
entire address space of the machine. Virtual machines aim to provide each operating 
system with the illusion of having the entire machine at its disposal. Th us they both 
serve very similar goals, and off er benefi ts such as increased security. Virtual 
memory can allow for many applications running in the same memory space to not 
have to manage keeping their memory separate.  

    5.23     Emulating a diff erent ISA requires specifi c handling of that ISA’s API. Each 
ISA has specifi c behaviors that will happen upon instruction execution, interrupts, 
trapping to kernel mode, etc. that therefore must be emulated. Th is can require many 



 Chapter 5 Solutions S-21

more instructions to be executed to emulate each instruction than was originally 
necessary in the target ISA. Th is can cause a large performance degradation and 
make it diffi  cult to properly communicate with external devices. An emulated 
system can potentially run faster than on its native ISA if the emulated code can be 
dynamically examined and optimized. For example, if the underlying machine’s 
ISA has a single instruction that can handle the execution of several of the emulated 
system’s instructions, then potentially the number of instructions executed can be 
reduced. Th is is similar to the recent Intel processors that do micro-op fusion, 
allowing several instructions to be handled by fewer instructions.  

    5.24     

   5.24.1     Th e cache should be able to satisfy the request since it is otherwise idle 
when the write buff er is writing back to memory. If the cache is not able to satisfy 
hits while writing back from the write buff er, the cache will perform little or no 
better than the cache without the write buff er, since requests will still be serialized 
behind writebacks.  

  5.24.2     Unfortunately, the cache will have to wait until the writeback is complete 
since the memory channel is occupied. Once the memory channel is free, the cache 
is able to issue the read request to satisfy the miss.  

  5.24.3     Correct solutions should exhibit the following features:

   1.     Th e memory read should come before memory writes.  

  2.     Th e cache should signal “Ready” to the processor before completing the write.  

          5.25     

   5.25.1     Th ere are six possible orderings for these instructions. 

 Ordering 1:

       
 Results: (5,5) 

 Ordering 2:

       
 Results: (5,5) 



S-22 Chapter 5 Solutions

 Ordering 3:

       
 Results: (6,3) 

 Ordering 4:

       
 Results: (5,3) 

 Ordering 5:

       
 Results: (6,5) 

 Ordering 6:

       
 (6,3) 

 If coherency isn’t ensured: 
 P2’s operations take precedence over P1’s: (5,2).  

  5.25.2     Direct mapped

        



 Chapter 5 Solutions S-23

  5.25.3     Best case: 
 Orderings 1 and 6 above, which require only two total misses. 
 Worst case: 
 Orderings 2 and 3 above, which require four total cache misses.  

  5.25.4    

 Ordering 1:  

       
 Result: (3,3) 

 Ordering 2:

       
 Result: (2,3) 

 Ordering 3:

       
 Result: (2,3) 



S-24 Chapter 5 Solutions

 Ordering 4:

       
 Result: (0,3) 

 Ordering 5:

       
 Result: (0,3) 

 Ordering 6:

       
 Result: (2,3) 

 Ordering 7:

       
 Result: (2,3) 



 Chapter 5 Solutions S-25

 Ordering 8:

       
 Result: (0,3) 

 Ordering 9:

       
 Result: (0,3) 

 Ordering 10:

       
 Result: (2,1) 

 Ordering 11:

       
 Result: (0,1) 



S-26 Chapter 5 Solutions

 Ordering 12:

       
 Result: (0,1) 

 Ordering 13:

       
 Result: (0,1) 

 Ordering 14:

       
 Result: (0,1) 

 Ordering 15:

       
 Result: (0,0)  



 Chapter 5 Solutions S-27

  5.25.5     Assume B   =   0 is seen by P2 but not preceding A   =   1 
 Result: (2,0).  

  5.25.6     Write back is simpler than write through, since it facilitates the use of 
exclusive access blocks and lowers the frequency of invalidates. It prevents the use of 
write-broadcasts, but this is a more complex protocol. 

 Th e allocation policy has little eff ect on the protocol.  

       5.26     

   5.26.1     Benchmark A 

 AMATprivate   =   1   +   0.03*[5   +   0.1*180]   =   1.69 

 AMATshared   =   1   +   0.03*[20   +   0.04*180]   =   1.82 

 Benchmark B 

 AMATprivate   =   1+   0.03*[5   +   0.02*180]   =   1.26 

 AMATshared   =   1+   0.03*[20   +   0.01*180]   =   1.65 

 Private cache is superior for both benchmarks.  

  5.26.2     In a private cache system, the fi rst link of the chip is the link from the 
private L2 caches to memory. Th us, the memory latency doubles to 360. In a shared 
cache system, the fi rst link off  the chip is the link to the L2 cache. Th us, in this case, 
the shared cache latency doubles to 40. 

 Benchmark A 

 AMAT private    =   1   +   .03*[5   +   .1*360]   =   2.23 

 AMAT shared    =   1   +   .03*[40   +   .04*180]   =   2.416 

 Benchmark B 

 AMAT private    =   1   +   .03*[5   +   .02*360]   =   1.37 

 AMAT shared    =   1   +   .03*[40   +   .01*180]   =   2.25 

 Private cache is superior for both benchmarks.  

  5.26.3            



S-28 Chapter 5 Solutions

 Having private L2 caches with a shared L3 cache is an eff ective compromise for 
many workloads, and this is the scheme used by many modern processors.  

  5.26.4     A non-blocking shared L2 cache would reduce the latency of the L2 cache 
by allowing hits for one CPU to be serviced while a miss is serviced for another 
CPU, or allow for misses from both CPUs to be serviced simultaneously. A non-
blocking private L2 would reduce latency assuming that multiple memory 
instructions can be executed concurrently.  

  5.26.5     Four times.  

  5.26.6     Additional DRAM bandwidth, dynamic memory schedulers, multi-
banked memory systems, higher cache associativity, and additional levels of cache.  

       5.27     

   5.27.1      srcIP  and  refTime  fi elds. Two misses per entry.  

  5.27.2     Group the  srcIP  and  refTime  fi elds into a separate array. (I.e., create two 
parallel arrays. One with  srcIP  and  refTime , and the other with the remaining 
fi elds.)  

  5.27.3      peak_hour (int status); // peak hours of a given status  

 Group  srcIP, refTime  and  status  together.  

       5.28     

   5.28.1     Answers will vary depending on which data set is used. 
 Confl ict misses do not occur in fully associative caches. 
 Compulsory (cold) misses are not aff ected by associativity. 
 Capacity miss rate is computed by subtracting the compulsory miss rate and the 
fully associative miss rate (compulsory   +   capacity misses) from the total miss 
rate. Confl ict miss rate is computed by subtracting the cold and the newly 
computed capacity miss rate from the total miss rate. 
 Th e values reported are miss rate per instruction, as opposed to miss rate per 
memory instruction.  

  5.28.2     Answers will vary depending on which data set is used.  

  5.28.3     Answers will vary.  



 Chapter 5 Solutions S-29

       5.29     

   5.29.1     Shadow page table: (1) VM creates page table, hypervisor updates shadow 
table; (2) nothing; (3) hypervisor intercepts page fault, creates new mapping, and 
invalidates the old mapping in TLB; (4) VM notifi es the hypervisor to invalidate the 
process’s TLB entries. Nested page table: (1) VM creates new page table, hypervisor 
adds new mappings in PA to MA table. (2) Hardware walks both page tables to 
translate VA to MA; (3) VM and hypervisor update their page tables, hypervisor 
invalidates stale TLB entries; (4) same as shadow page table.  

  5.29.2     Native: 4; NPT: 24 (instructors can change the levels of page table) 

 Native: L; NPT: L   ×   (L   +   2).  

  5.29.3     Shadow page table: page fault rate. 

 NPT: TLB miss rate.  

  5.29.4     Shadow page table: 1.03 

 NPT: 1.04.  

  5.29.5     Combining multiple page table updates.  

  5.29.6     NPT caching (similar to TLB caching).        



 Solutions 

              6 



 Chapter 6 Solutions S-3

       6.1              Th ere is no single right answer for this question. Th e purpose is to get 
students to think about parallelism present in their daily lives. Th e answer 
should have at least 10 activities identifi ed.

   6.1.1       Any reasonable answer is correct here.  

  6.1.2       Any reasonable answer is correct here.  

  6.1.3       Any reasonable answer is correct here.  

  6.1.4       Th e student is asked to quantify the savings due to parallelism. Th e answer 
should consider the amount of overlap provided through parallelism and 
should be less than or equal to (if no parallelism was possible) the original 
time computed if each activity was carried out serially.  

       6.2     

   6.2.1       For this set of resources, we can pipeline the preparation. We assume that 
we do not have to reheat the oven for each cake. 

 Preheat Oven 

 Mix ingredients in bowl for Cake 1 

 Fill cake pan with contents of bowl and bake Cake 1. Mix ingredients for 
Cake 2 in bowl. 

 Finish baking Cake 1. Empty cake pan. Fill cake pan with bowl contents for 
Cake 2 and bake Cake 2. Mix ingredients in bowl for Cake 3. 

 Finish baking Cake 2. Empty cake pan. Fill cake pan with bowl contents for 
Cake 3 and bake Cake 3. 

 Finish baking Cake 3. Empty cake pan.  

  6.2.2       Now we have 3 bowls, 3 cake pans and 3 mixers. We will name them A, B, 
and C. 

 Preheat Oven 

 Mix incredients in bowl A for Cake 1 

 Fill cake pan A with contents of bowl A and bake for Cake 1. Mix ingredients 
for Cake 2 in bowl A. 

 Finish baking Cake 1. Empty cake pan A. Fill cake pan A with contents of 
bowl A for Cake 2. Mix ingredients in bowl A for Cake 3. 

 Finish baking Cake 2. Empty cake pan A. Fill cake pan A with contents of 
bowl A for Cake 3. 



S-4 Chapter 6 Solutions

 Finish baking Cake 3. Empty cake pan A. 

 Th e point here is that we cannot carry out any of these items in parallel 
because we either have one person doing the work, or we have limited 
capacity in our oven.  

  6.2.3       Each step can be done in parallel for each cake. Th e time to bake 1 cake, 2 
cakes or 3 cakes is exactly the same.  

  6.2.4       Th e loop computation is equivalent to the steps involved to make one 
cake. Given that we have multiple processors (or ovens and cooks), we can 
execute instructions (or cook multiple cakes) in parallel. Th e instructions 
in the loop (or cooking steps) may have some dependencies on prior 
instructions (or cooking steps) in the loop body (cooking a single cake). 

 Data-level parallelism occurs when loop iterations are independent (i.e., no 
loop carried dependencies). 

 Task-level parallelism includes any instructions that can be computed on 
parallel execution units, similar to the independent operations involved in 
making multiple cakes.  

       6.3     

   6.3.1       While binary search has very good serial performance, it is diffi  cult to 
parallelize without modifying the code. So part A asks to compute the 
speedup factor, but increasing X beyond 2 or 3 should have no benefi ts. 
While we can perform the comparison of low and high on one core, the 
computation for mid on a second core, and the comparison for A[mid] on 
a third core, without some restructuring or speculative execution, we will 
not obtain any speedup. Th e answer should include a graph, showing that 
no speedup is obtained aft er the values of 1, 2, or 3 (this value depends 
somewhat on the assumption made) for Y.  

  6.3.2       In this question, we suggest that we can increase the number of cores (to 
each of the number of array elements). Again, given the current code, we 
really cannot obtain any benefi t from these extra cores. But if we create 
threads to compare the N elements to the value X and perform these 
in parallel, then we can get ideal speedup (Y times speedup), and the 
comparison can be completed in the amount of time to perform a single 
comparison.  

       6.4            Th is problem illustrates that some computations can be done in parallel if 
serial code is restructured. But, more importantly, we may want to provide 
for SIMD operations in our ISA, and allow for data-level parallelism when 
performing the same operation on multiple data items.



 Chapter 6 Solutions S-5

   6.4.1       As shown below, each iteration of the loop requires 16 cycles. Th e loop runs 
999 times. Th us, the total number of cycles is 16 ×   999 +   3 =   15984. 

                      li                                x5, 8000  
                      add                                x12, x10, x5  
                      addi                           x11, x10, 16  

  LOOP:                                                         fld                           f0, -16(x11)  
                      fld                           f1, -1(x11)  
                      stall  
                      stall  
                      stall  
                      stall  
                      stall  
                      stall  
                      fadd    .  d f2, f0, f1  
                      stall  
                      stall  
                      stall  
                      stall  
                      fsd                           f2, 0(x11)  
                      addi                           x11, x11, 8  
                      ble                                x11, x12, LOOP   

  6.4.2      Th e following code removes one stall per iteration: 

 a.                          li                                x5, 8000  
                      add                                x12, x10, x5  
                      addi                           x11, x10, 16  

  LOOP:                                                         fld                           f0, -16(x11)  
                      fld                           f1, -1(x11)  
                      stall  
                      stall  
                      stall  
                      stall  
                      stall  
                      stall  
                      fadd    .  d f2, f0, f1  
                      addi                           x11, x11, 8  
                      stall  
                      stall  
                      stall  
                      fsd                           f2, -8(x11)  
                      ble                                x11, x12, LOOP  

 b.   Th us, the new loop takes 15×999=14958 cycles.  



S-6 Chapter 6 Solutions

  6.4.3      Array elements  D[j]  and  D[j−1]  will have loop carried dependencies. 
Th e value loaded into  D0  during iteration  i  was produced during iteration 
 i−1 .  

  6.4.4                           li                                    x5, 8000  
                      add                                     x12, x10, x5  
                      fld                                f0, 0(x11)  
                      fld                                f1, 8(x11)  
                      addi                                x11, x11, 8  
                      stall  
                      stall  
                      stall  
                      stall  
                      stall  

  LOOP:                                     fadd    .  d f2, f0, f1  
                      addi                                x11, x11, 8  
                      fmv    .  d f0, f1  
                      fmv    .  d f1, f2  
                      stall                                    
                      fsd                                f2, 0(x11)  
                      ble                                x11, x12, LOOP  

 Th is loop takes seven cycles and runs 999 times. Th us, the total number of 
cycles is 7 ×   999 +   10 =   7003.  

  6.4.5                           fld                                f0, 0(x11)  
                      fld                                f1, 8(x11)  
                      li                                     x5, 8000  
                      add                                     x12, x10, x5  
                      addi                                x11, x11, 16  
                      stall  
                      stall  
                      stall  

   LOOP:                                                    fadd    .  d f2, f0, f1  
                      stall  
                      stall  
                      stall  
                      stall  
                      fadd    .  d f0, f2, f1  
                      fsd                                f2, 0(x11)  
                      stall  
                      stall  
                      stall  
                      fadd    .  d f1, f2, f0  
                      fsd                                f0, 8(x11)  
                      addi                                x11, x11, 24  
                      stall                                    



 Chapter 6 Solutions S-7

                      stall  
                      fsd                                f1, -8(x11)  
                      bne                                x11, x12, LOOP  

 Th e unrolled loop takes 17 cycles, but runs only 333 times. Th us, the total 
number of cycles is 17 ×   333 +   10 =   5671.  

  6.4.6       Include two copies of the loop: Th e unrolled loop and the original loop. 
Suppose you unrolled the loop U times. Run the unrolled loop until the 
number of iterations left  is less than U. (In some sense your unrolled loop 
will be doing this:  for (i = 0; i + U < MAX; i+= U) .) At this 
point, switch to the unrolled loop. (In some sense, your original loop will 
be doing this:  for (; i < MAX; i++) .)  

  6.4.7        It is not possible to use message passing to improve performance—even 
if the message passing system has no latency. Th ere is simply not enough 
work that can be done in parallel to benefi t from using multiple CPUs. All 
the work that can be done in parallel can be scheduled between dependent 
fl oating point instructions.  

       6.5     

   6.5.1          Th is problem is again a divide and conquer problem, but utilizes recursion 
to produce a very compact piece of code. In part A the student is asked to 
compute the speedup when the number of cores is small. When forming 
the lists, we spawn a thread for the computation of left  in the MergeSort 
code, and spawn a thread for the computation of the right. If we consider 
this recursively, for m initial elements in the array, we can utilize 1 +   2 +  
 4 +   8 +   16 +   …. log 2  (m) processors to obtain speedup.  

  6.5.2       In this question, log 2  (m) is the largest value of Y for which we can obtain 
any speedup without restructuring. But if we had m cores, we could 
perform sorting using a very diff erent algorithm. For instance, if we have 
greater than m/2 cores, we can compare all pairs of data elements, swap 
the elements if the left  element is greater than the right element, and then 
repeat this step m times. So this is one possible answer for the question. It 
is known as parallel comparison sort. Various comparison sort algorithms 
include odd-even sort and cocktail sort.  

       6.6     

   6.6.1       Th is problem presents an “embarrassingly parallel” computation and 
asks the student to fi nd the speedup obtained on a four-core system. Th e 
computations involved are: (m   ×   p   ×   n) multiplications and (m   ×   p   ×   (n−   1))   
additions. Th e multiplications and additions associated with a single 
element in C are dependent (we cannot start summing up the results of the 
multiplications for an element until two products are available). So in this 
question, the speedup should be very close to 4.  



S-8 Chapter 6 Solutions

  6.6.2       Th is question asks about how speedup is aff ected due to cache misses 
caused by the four cores all working on diff erent matrix elements that map 
to the same cache line. Each update would incur the cost of a cache miss, 
and so will reduce the speedup obtained by a factor of 3 times the cost of 
servicing a cache miss.  

  6.6.3       In this question, we are asked how to fi x this problem. Th e easiest way to 
solve the false sharing problem is to compute the elements in C by traversing 
the matrix across columns instead of rows (i.e., using index-j instead of 
index-i). Th ese elements will be mapped to diff erent cache lines. Th en we 
just need to make sure we process the matrix index that is computed (i, j) 
and (i +   1, j) on the same core. Th is will eliminate false sharing.  

       6.7     

   6.7.1       x = 2, y = 2, w = 1, z = 0 
 x = 2, y = 2, w = 3, z = 0 
 x = 2, y = 2, w = 5, z = 0 
 x = 2, y = 2, w = 1, z = 2 
 x = 2, y = 2, w = 3, z = 2 
 x = 2, y = 2, w = 5, z = 2 
 x = 2, y = 2, w = 1, z = 4 
 x = 2, y = 2, w = 3, z = 4 
 x = 3, y = 2, w = 5, z = 4  

  6.7.2       We could set synchronization instructions aft er each operation so that all 
cores see the same value on all nodes.  

       6.8     

   6.8.1       If every philosopher simultaneously picks up the left  fork, then there will 
be no right fork to pick up. Th is will lead to starvation.  

  6.8.2       Th e basic solution is that whenever a philosopher wants to eat, she checks 
both forks. If they are free, then she eats. Otherwise, she waits until a 
neighbor contacts her. Whenever a philosopher fi nishes eating, she checks 
to see if her neighbors want to eat and are waiting. If so, then she releases 
the fork to one of them and lets them eat. Th e diffi  culty is to fi rst be able to 
obtain both forks without another philosopher interrupting the transition 
between checking and acquisition. We can implement this a number of 
ways, but a simple way is to accept requests for forks in a centralized queue, 
and give out forks based on the priority defi ned by being closest to the head 
of the queue. Th is provides both deadlock prevention and fairness.  

  6.8.3       Th ere are a number or right answers here, but basically showing a case 
where the request of the head of the queue does not have the closest forks 
available, though there are forks available for other philosophers.  



 Chapter 6 Solutions S-9

  6.8.4        By periodically repeating the request, the request will move to the head of 
the queue. Th is only partially solves the problem unless you can guarantee 
that all philosophers eat for exactly the same amount of time, and can use 
this time to schedule the issuance of the repeated request.  

       6.9     

   6.9.1            

    6.9.2      Answer is same as 6.9.1.  

  6.9.3            

  6.9.4               

       6.10      Th is is an open-ended question.  

    6.10.1      Th ere is no solution to this problem (it is an open-ended question-no 
need to change the solutions document).  

    6.10.2      Th ere is no solution to this problem (it is an open-ended question-no 
need to change the solutions document).  

    6.11     

   6.11.1      Th e answer should include an RISC-V program that includes four diff erent 
processes that will compute ¼ of the sums. Assuming that memory latency 
is not an issue, the program should get linear speed when run on the four 
processors (there is no communication necessary between threads). If 



S-10 Chapter 6 Solutions

memory is being considered in the answer, then the array blocking should 
consider preserving spatial locality so that false sharing is not created.  

  6.11.2     Since this program is highly data parallel and there are no data dependencies, 
an 8 ×   speedup should be observed. In terms of instructions, the SIMD 
machine should have fewer instructions (though this will depend upon 
the SIMD extensions).  

       6.12         Th is is an open-ended question that could have many possible answers. 
Th e key is that the student learns about MISD and compares it to an SIMD 
machine.  

    6.12.1        Th ere is no solution to this problem (it is an open-ended question-no 
need to change the solutions document).  

    6.12.2        Th ere is no solution to this problem (it is an open-ended question-no 
need to change the solutions document).  

    6.13         Th is is an open-ended question that could have many answers. Th e key is 
that the students learn about warps.  

    6.13.1        Th ere is no solution to this problem (it is an open-ended question-no 
need to change the solutions document).  

    6.14         Th is is an open-ended programming assignment. Th e code should be 
tested for correctness.  

    6.14.1        Th ere is no solution to this problem (it is an open-ended question-no 
need to change the solutions document).  

    6.14.2        Th ere is no solution to this problem (it is an open-ended question-no 
need to change the solutions document).  

    6.15         Th is question will require the students to research on the Internet both the 
AMD Fusion architecture and the Intel QuickPath technology. Th e key is 
that students become aware of these technologies. Th e actual bandwidth 
and latency values should be available right off  the company websites, and 
will change as the technology evolves.  

    6.15.1        Th ere is no solution to this problem (it is a lab-based question-no need to 
change the solutions document).  

    6.16     

   6.16.1     For an n-cube of order N (2 N  nodes), the interconnection network can 
sustain N −   1 broken links and still guarantee that there is a path to all 
nodes in the network.  



 Chapter 6 Solutions S-11

  6.16.2     Th e plot below shows the number of network links that can fail and still 
guarantee that the network is not disconnected.  

   

1

10

100

1000

10000

100000

Network order

N
um

be
r 

of
 fa

ul
ty

 li
nk

s

n-cube

fully connected

4 8 162

          6.17     

   6.17.1     Major diff erences between these suites include: 
 Whetstone—designed for fl oating point performance specifi cally 
 PARSEC—these workloads are focused on multithreaded programs.  

  6.17.2     Only the PARSEC benchmarks should be impacted by sharing and 
synchronization. Th is should not be a factor in Whetstone.  

       6.18     

   6.18.1     Any reasonable C program that performs the transformation should be 
accepted.  

  6.18.2     Th e storage space should be equal to (R+   R) times the size of a single 
precision fl oating point number+   (m+1) times the size of the index, 
where R is the number of non-zero elements and m is the number of rows. 
We will assume each fl oating-point number is 4 bytes, and each index is a 
short unsigned integer that is 2 bytes. For Matrix  X  this equals 111 bytes.  

  6.18.3     Th e answer should include results for both a brute-force and a computation 
using the Yale Sparse Matrix Format.  

  6.18.4     Th ere are a number of more effi  cient formats, but their impact should be 
marginal for the small matrices used in this problem.  



S-12 Chapter 6 Solutions

       6.19     

   6.19.1     Th is question presents three diff erent CPU models to consider when 
executing the following code: 

  if (X[i][j] > Y[i][j])  
                 count++;   

  6.19.2         Th ere are a number of acceptable answers here, but they should consider 
the capabilities of each CPU and also its frequency. What follows is one 
possible answer: 
 Since X and Y are FP numbers, we should utilize the vector processor 
(CPU C) to issue two loads, eight matrix elements in parallel from A and 
eight matrix elements from B, into a single vector register and then 
perform a vector subtract. We would then issue two vector stores to put the 
result in memory. 
 Since the vector processor does not have comparison instructions, we 
would have CPU A perform two parallel conditional jumps based on 
fl oating point registers. We would increment two counts based on the 
conditional compare. Finally, we could just add the two counts for the 
entire matrix. We would not need to use core B.  

       6.20          Th is question looks at the amount of queuing that is occurring in the 
system given a maximum transaction processing rate, and the latency 
observed on average by a transaction. Th e latency includes both the service 
time (which is computed by the maximum rate) and the queue time.

   6.20.1     So for a max transaction processing rate of 5000/sec, and we have four 
cores contributing, we would see an average latency of 0.8     ms if there was 
no queuing taking place. Th us, each core must have 1.25 transactions 
either executing or in some amount of completion on average. 
 So the answers are: 

       

  6.20.2     We should be able to double the maximum transaction rate by doubling 
the number of cores.  

  6.20.3     Th e reason this does not happen is due to memory contention on the 
shared memory system.        





                                                       A P P E N D I X  Graphics and 
Computing GPUs 
   John     Nickolls  
   Director of Architecture   
NVIDIA           

   David     Kirk  
   Chief Scientist   
NVIDIA         

 Imagination is more   
important than   
knowledge. 
  Albert Einstein    

 On Science, 1930s  

B 



 B.1 Introduction B-3

     B.1     Introduction 

 Th is appendix focuses on the   GPU  —the ubiquitous   graphics processing unit   
in every PC, laptop, desktop computer, and workstation. In its most basic form, 
the GPU generates 2D and 3D graphics, images, and video that enable Window-
based operating systems, graphical user interfaces, video games, visual imaging 
applications, and video. Th e modern GPU that we describe here is a highly parallel, 
highly multithreaded multiprocessor optimized for   visual computing  . To provide 
real-time visual interaction with computed objects via graphics, images, and video, 
the GPU has a unifi ed graphics and computing architecture that serves as both a 
programmable graphics processor and a scalable parallel computing platform. PCs 
and game consoles combine a GPU with a CPU to form   heterogeneous systems  .       

  A Brief History of GPU Evolution 
 Fift een years ago, there was no such thing as a GPU. Graphics on a PC were 
performed by a  video graphics array  (VGA) controller. A VGA controller was 
simply a memory controller and display generator connected to some DRAM. In 
the 1990s, semiconductor technology advanced suffi  ciently that more functions 
could be added to the VGA controller. By 1997, VGA controllers were beginning 
to incorporate some  three-dimensional  (3D) acceleration functions, including 

   gr aphics processing 
unit (GPU)          A processor 
optimized for 2D and 3D 
graphics, video, visual 
computing, and display.   

    visual computing          A mix 
of graphics processing 
and computing that lets 
you visually interact with 
computed objects via 
graphics, images, and 
video.   

    heterogeneous 
system          A system 
combining diff erent 
processor types. A PC is a 
heterogeneous CPU–GPU 
system.   

      B.1     Introduction     B-3  
    B.2     GPU System Architectures     B-7  
    B.3     Programming GPUs     B-12  
    B.4     Multithreaded Multiprocessor Architecture     B-25  
    B.5     Parallel Memory System     B-36  
    B.6     Floating-point Arithmetic     B-41  
    B.7     Real Stuff: The NVIDIA GeForce 8800     B-46  
    B.8     Real Stuff: Mapping Applications to GPUs     B-55  
    B.9     Fallacies and Pitfalls     B-72  
    B.10     Concluding Remarks     B-76  
    B.11     Historical Perspective and Further Reading     B-77       



B-4 Appendix B Graphics and Computing GPUs

hardware for triangle setup and rasterization (dicing triangles into individual 
pixels) and texture mapping and shading (applying “decals” or patterns to pixels 
and blending colors). 

 In 2000, the single chip graphics processor incorporated almost every detail of 
the traditional high-end workstation graphics pipeline and, therefore, deserved a 
new name beyond VGA controller. Th e term GPU was coined to denote that the 
graphics device had become a processor. 

 Over time, GPUs became more programmable, as programmable processors 
replaced fi xed-function dedicated logic while maintaining the basic 3D graphics 
pipeline organization. In addition, computations became more precise over time, 
progressing from indexed arithmetic, to integer and fi xed point, to single-precision 
fl oating-point, and recently to double-precision fl oating-point. GPUs have become 
massively parallel programmable processors with hundreds of cores and thousands 
of threads. 

 Recently, processor instructions and memory hardware were added to support 
general purpose programming languages, and a programming environment was 
created to allow GPUs to be programmed using familiar languages, including C 
and C++. Th is innovation makes a GPU a fully general-purpose, programmable, 
manycore processor, albeit still with some special benefi ts and limitations. 

   GPU Graphics Trends 
 GPUs and their associated drivers implement the OpenGL and DirectX 
models of graphics processing. OpenGL is an open standard for 3D graphics 
programming available for most computers. DirectX is a series of Microsoft  
multimedia programming interfaces, including Direct3D for 3D graphics. Since 
these   application programming interfaces (APIs)   have well-defi ned behavior, 
it is possible to build eff ective hardware acceleration of the graphics processing 
functions defi ned by the APIs. Th is is one of the reasons (in addition to increasing 
device density) why new GPUs are being developed every 12 to 18 months that 
double the performance of the previous generation on existing applications. 

   Frequent doubling of GPU performance enables new applications that were 
not previously possible. Th e intersection of graphics processing and parallel 
computing invites a new paradigm for graphics, known as visual computing. It 
replaces large sections of the traditional sequential hardware graphics pipeline 
model with programmable elements for geometry, vertex, and pixel programs. 
Visual computing in a modern GPU combines graphics processing and parallel 
computing in novel ways that permit new graphics algorithms to be implemented, 
and opens the door to entirely new parallel processing applications on pervasive 
high-performance GPUs. 

   Heterogeneous System 
 Although the GPU is arguably the most parallel and most powerful processor in 
a typical PC, it is certainly not the only processor. Th e CPU, now multicore and 

    application 
programming interface 
(API)          A set of function 
and data structure 
defi nitions providing an 
interface to a library of 
functions.   



 B.1 Introduction B-5

soon to be manycore, is a complementary, primarily serial processor companion 
to the massively parallel manycore GPU. Together, these two types of processors 
comprise a heterogeneous multiprocessor system. 

 Th e best performance for many applications comes from using both the CPU 
and the GPU. Th is appendix will help you understand how and when to best split 
the work between these two increasingly parallel processors. 

   GPU Evolves into Scalable Parallel Processor 
 GPUs have evolved functionally from hardwired, limited capability VGA controllers 
to programmable parallel processors. Th is evolution has proceeded by changing 
the logical (API-based) graphics pipeline to incorporate programmable elements 
and also by making the underlying hardware pipeline stages less specialized and 
more programmable. Eventually, it made sense to merge disparate programmable 
pipeline elements into one unifi ed array of many programmable processors. 

 In the GeForce 8-series generation of GPUs, the geometry, vertex, and pixel 
processing all run on the same type of processor. Th is unifi cation allows for 
dramatic scalability. More programmable processor cores increase the total system 
throughput. Unifying the processors also delivers very eff ective load balancing, 
since any processing function can use the whole processor array. At the other end 
of the spectrum, a processor array can now be built with very few processors, since 
all of the functions can be run on the same processors. 

   Why CUDA and GPU Computing? 
 Th is uniform and scalable array of processors invites a new model of programming 
for the GPU. Th e large amount of fl oating-point processing power in the GPU 
processor array is very attractive for solving nongraphics problems. Given the large 
degree of parallelism and the range of scalability of the processor array for graphics 
applications, the programming model for more general computing must express 
the massive parallelism directly, but allow for scalable execution. 

   GPU computing   is the term coined for using the GPU for computing via a 
parallel programming language and API, without using the traditional graphics 
API and graphics pipeline model. Th is is in contrast to the earlier   General Purpose 
computation on GPU (GPGPU)   approach, which involves programming the GPU 
using a graphics API and graphics pipeline to perform nongraphics tasks.   

     Compute Unifed Device Architecture (CUDA)   is a scalable parallel programming 
model and soft ware platform for the GPU and other parallel processors that allows 
the programmer to bypass the graphics API and graphics interfaces of the GPU 
and simply program in C or C++. Th e CUDA programming model has an SPMD 
(single-program multiple data) soft ware style, in which a programmer writes a 
program for one thread that is instanced and executed by many threads in parallel 
on the multiple processors of the GPU. In fact, CUDA also provides a facility for 
programming multiple CPU cores as well, so CUDA is an environment for writing 
parallel programs for the entire heterogeneous computer system. 

    GPU computing          Using 
a GPU for computing via 
a parallel programming 
language and API.   

    GPGPU          Using a GPU 
for general-purpose 
computation via a 
traditional graphics API 
and graphics pipeline.   

    CUDA          A scalable 
parallel programming 
model and language based 
on C/C++. It is a parallel 
programming platform 
for GPUs and multicore 
CPUs.   



B-6 Appendix B Graphics and Computing GPUs

     GPU Unifes Graphics and Computing 
 With the addition of CUDA and GPU computing to the capabilities of the GPU, 
it is now possible to use the GPU as both a graphics processor and a computing 
processor at the same time, and to combine these uses in visual computing 
applications. Th e underlying processor architecture of the GPU is exposed in two 
ways: fi rst, as implementing the programmable graphics APIs, and second, as a 
massively parallel processor array programmable in C/C++ with CUDA. 

 Although the underlying processors of the GPU are unifi ed, it is not necessary 
that all of the SPMD thread programs are the same. Th e GPU can run graphics 
shader programs for the graphics aspect of the GPU, processing geometry, vertices, 
and pixels, and also run thread programs in CUDA. 

 Th e GPU is truly a versatile multiprocessor architecture, supporting a variety of 
processing tasks. GPUs are excellent at graphics and visual computing as they were 
specifi cally designed for these applications. GPUs are also excellent at many general-
purpose throughput applications that are “fi rst cousins” of graphics, in that they 
perform a lot of parallel work, as well as having a lot of regular problem structure. 
In general, they are a good match to data-parallel problems (see  Chapter  6 ), 
particularly large problems, but less so for less regular, smaller problems. 

   GPU Visual Computing Applications 
 Visual computing includes the traditional types of graphics applications plus many 
new applications. Th e original purview of a GPU was “anything with pixels,” but it 
now includes many problems without pixels but with regular computation and/or 
data structure. GPUs are eff ective at 2D and 3D graphics, since that is the purpose 
for which they are designed. Failure to deliver this application performance would 
be fatal. 2D and 3D graphics use the GPU in its “graphics mode,” accessing the 
processing power of the GPU through the graphics APIs, OpenGL™, and DirectX™. 
Games are built on the 3D graphics processing capability. 

 Beyond 2D and 3D graphics, image processing and video are important 
applications for GPUs. Th ese can be implemented using the graphics APIs or as 
computational programs, using CUDA to program the GPU in computing mode. 
Using CUDA, image processing is simply another data-parallel array program. To 
the extent that the data access is regular and there is good locality, the program 
will be effi  cient. In practice, image processing is a very good application for GPUs. 
Video processing, especially encode and decode (compression and decompression 
according to some standard algorithms), is quite effi  cient. 

 Th e greatest opportunity for visual computing applications on GPUs is to “break 
the graphics pipeline.” Early GPUs implemented only specifi c graphics APIs, albeit at 
very high performance. Th is was wonderful if the API supported the operations that 
you wanted to do. If not, the GPU could not accelerate your task, because early GPU 
functionality was immutable. Now, with the advent of GPU computing and CUDA, 
these GPUs can be programmed to implement a diff erent virtual pipeline by simply 
writing a CUDA program to describe the computation and data fl ow that is desired. So, 
all applications are now possible, which will stimulate new visual computing approaches. 



 B.2 GPU System Architectures B-7

       B.2     GPU System Architectures 

 In this section, we survey GPU system architectures in common use today. We 
discuss system confi gurations, GPU functions and services, standard programming 
interfaces, and a basic GPU internal architecture. 

  Heterogeneous CPU–GPU System Architecture 
 A heterogeneous computer system architecture using a GPU and a CPU can be 
described at a high level by two primary characteristics: fi rst, how many functional 
subsystems and/or chips are used and what are their interconnection technologies 
and topology; and second, what memory subsystems are available to these 
functional subsystems. See  Chapter 6  for background on the PC I/O systems and 
chip sets. 

  The Historical PC (circa 1990) 

  Figure B.2.1    shows a high-level block diagram of a legacy PC, circa 1990. Th e north 
bridge (see  Chapter 6 ) contains high-bandwidth interfaces, connecting the CPU, 
memory, and PCI bus. Th e south bridge contains legacy interfaces and devices: 
ISA bus (audio, LAN), interrupt controller; DMA controller; time/counter. In   
this system, the display was driven by a simple framebuff er subsystem known   

CPU

North
Bridge

South
Bridge

Front Side Bus

PCI Bus

Framebuffer
Memory

VGA
Controller

Memory

UARTLAN
VGA

Display

 FIGURE B.2.1      Historical PC.     VGA controller drives graphics display from framebuff er memory.    



B-8 Appendix B Graphics and Computing GPUs

as a VGA ( video graphics array ) which was attached to the PCI bus. Graphics 
subsystems with built-in processing elements (GPUs) did not exist in the PC 
landscape of 1990. 

  Figure B.2.2    illustrates two confgurations in common use today. Th ese are 
characterized by a separate GPU (discrete GPU) and CPU with respective memory 
subsystems. In  Figure B.2.2a , with an Intel CPU, we see the GPU attached via a   
16-lane   PCI-Express   2.0 link to provide a peak 16     GB/s transfer rate (peak of 
8     GB/s in each direction). Similarly, in  Figure B.2.2b , with an AMD CPU, the GPU   

    PCI-Express (PCIe)      
      A standard system I/O 
interconnect that uses 
point-to-point links. 
Links have a confi gurable 
number of lanes and 
bandwidth.   

Front Side Bus

GPU
Memory

South
Bridge

North
Bridge

Intel
CPU

DDR2
Memory

x16 PCI-Express Link

x4 PCI-Express Link
derivative

128-bit
667 MT/s

display
GPU

128-bit
667 MT/s

internal bus

GPU
Memory

DDR2
Memory

x16 PCI-Express Link

Chipset

CPU
core

AMD
CPU

GPU

North
Bridge

HyperTransport 1.03

display

(a)

(b)

 FIGURE B.2.2      Contemporary PCs with Intel and AMD CPUs.     See Chapter 6 for an explanation of 
the components and interconnects in this fi gure.    



 B.2 GPU System Architectures B-9

is attached to the chipset, also via PCI-Express with the same available bandwidth. 
In both cases, the GPUs and CPUs may access each other’s memory, albeit with less 
available bandwidth than their access to the more directly attached memories. In 
the case of the AMD system, the north bridge or memory controller is integrated 
into the same die as the CPU. 

   A low-cost variation on these systems, a   unifi ed memory architecture (UMA)   
system, uses only CPU system memory, omitting GPU memory from the system. 
Th ese systems have relatively low-performance GPUs, since their achieved 
performance is limited by the available system memory bandwidth and increased 
latency of memory access, whereas dedicated GPU memory provides high 
bandwidth and low latency. 

   A high-performance system variation uses multiple attached GPUs, typically 
two to four working in parallel, with their displays daisy-chained. An example 
is the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for 
high-performance gaming and workstations. 

 Th e next system category integrates the GPU with the north bridge (Intel) or 
chipset (AMD) with and without dedicated graphics memory. 

  Chapter 5  explains how caches maintain coherence in a shared address space. 
With CPUs and GPUs, there are multiple address spaces. GPUs can access their 
own physical local memory and the CPU system’s physical memory using virtual 
addresses that are translated by an MMU on the GPU. Th e operating system kernel 
manages the GPU’s page tables. A system physical page can be accessed using either 
coherent or noncoherent PCI-Express transactions, determined by an attribute in 
the GPU’s page table. Th e CPU can access GPU’s local memory through an address 
range (also called aperture) in the PCI-Express address space. 

   Game Consoles 

 Console systems such as the Sony PlayStation 3 and the Microsoft  Xbox 360 
resemble the PC system architectures previously described. Console systems are 
designed to be shipped with identical performance and functionality over a lifespan 
that can last fi ve years or more. During this time, a system may be reimplemented 
many times to exploit more advanced silicon manufacturing processes and thereby 
to provide constant capability at ever lower costs. Console systems do not need 
to have their subsystems expanded and upgraded the way PC systems do, so the 
major internal system buses tend to be customized rather than standardized. 

    GPU Interfaces and Drivers 
 In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations 
used   AGP  . Graphics applications call OpenGL [ Segal and Akeley, 2006 ] or Direct3D 
[Microsoft  DirectX Specifcation] API functions that use the GPU as a coprocessor. 
Th e APIs send commands, programs, and data to the GPU via a graphics device 
driver optimized for the particular GPU. 

    unifi ed memory 
architecture (UMA)      
      A system architecture in 
which the CPU and GPU 
share a common system 
memory.   

    AGP          An extended 
version of the original PCI 
I/O bus, which provided 
up to eight times the 
bandwidth of the original 
PCI bus to a single card 
slot. Its primary purpose 
was to connect graphics 
subsystems into PC 
systems.   



B-10 Appendix B Graphics and Computing GPUs

     Graphics Logical Pipeline 
 Th e graphics logical pipeline is described in  Section B.3 .  Figure B.2.3    illustrates 
the major processing stages, and highlights the important programmable stages 
(vertex, geometry, and pixel shader stages). 

Input
Assembler

Vertex
Shader

Geometry
Shader

Setup &
Rasterizer

Pixel
Shader

Raster Operations/
Output Merger

 FIGURE B.2.3      Graphics logical pipeline.     Programmable graphics shader stages are blue, and fi xed-function blocks are white.    

   Mapping Graphics Pipeline to Unifi ed GPU Processors 
  Figure B.2.4    shows how the logical pipeline comprising separate independent 
programmable stages is mapped onto a physical distributed array of processors. 

   Basic Unifi ed GPU Architecture 
 Unifi ed GPU architectures are based on a parallel array of many programmable 
processors. Th ey unify vertex, geometry, and pixel shader processing and parallel 
computing on the same processors, unlike earlier GPUs which had separate 
processors dedicated to each processing type. Th e programmable processor array is 
tightly integrated with fi xed function processors for texture fi ltering, rasterization, 
raster operations, anti-aliasing, compression, decompression, display, video 
decoding, and high-defi nition video processing. Although the fi xed-function 
processors signifi cantly outperform more general programmable processors in 
terms of absolute performance constrained by an area, cost, or power budget, we 
will focus on the programmable processors here. 

 Compared with multicore CPUs, manycore GPUs have a diff erent architectural 
design point, one focused on executing many parallel threads effi  ciently on many 

Unified Processor
Array 

Input
Assembler

Vertex
Shader

Setup &
Rasterizer 

Raster Operations/
Output Merger 

Geometry
Shader

Pixel
Shader

 FIGURE B.2.4      Logical pipeline mapped to physical processors.     Th e programmable shader 
stages execute on the array of unifi ed processors, and the logical graphics pipeline datafl ow recirculates 
through the processors.    



 B.2 GPU System Architectures B-11

processor cores. By using many simpler cores and optimizing for data-parallel 
behavior among groups of threads, more of the per-chip transistor budget is 
devoted to computation, and less to on-chip caches and overhead. 

   Processor Array 
 A unifi ed GPU processor array contains many processor cores, typically organized 
into multithreaded multiprocessors.  Figure B.2.5    shows a GPU with an array of 
112  streaming processor  (SP) cores, organized as 14 multithreaded  streaming 
multiprocessors  (SMs). Each SP core is highly multithreaded, managing 96 
concurrent threads and their state in hardware. Th e processors connect with 
four 64-bit-wide DRAM partitions via an interconnection network. Each SM 
has eight SP cores, two  special function units  (SFUs), instruction and constant 
caches, a multithreaded instruction unit, and a shared memory. Th is is the basic 
Tesla architecture implemented by the NVIDIA GeForce 8800. It has a unifi ed 
architecture in which the traditional graphics programs for vertex, geometry, and 
pixel shading run on the unifi ed SMs and their SP cores, and computing programs 
run on the same processors. 

GPU

Host CPU System Memory

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

Vertex Work
Distribution 

Input Assembler

Host Interface

Bridge

Pixel Work
Distribution 

Viewport/Clip/
Setup/Raster/

ZCull

Compute Work
Distribution

SP

Shared
Memory

SP

SP SP

SP SP

SP

SM

SP

I-Cache

MT Issue

C-Cache

SFU SFU

Interconnection Network

Display Interface

Display

High-Definition
Video Processors

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

 FIGURE B.2.5      Basic unifi ed GPU architecture.     Example GPU with 112  streaming processor  (SP) cores organized in 14  streaming 
multiprocessors  (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. Th e processors 
connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two  special function units  (SFUs), 
instruction and constant caches, a multithreaded instruction unit, and a shared memory.    



B-12 Appendix B Graphics and Computing GPUs

 Th e processor array architecture is scalable to smaller and larger GPU 
confi gurations by scaling the number of multiprocessors and the number of 
memory partitions.  Figure B.2.5  shows seven clusters of two SMs sharing a texture 
unit and a texture L1 cache. Th e texture unit delivers fi ltered results to the SM 
given a set of coordinates into a texture map. Because fi lter regions of support 
oft en overlap for successive texture requests, a small streaming L1 texture cache is 
eff ective to reduce the number of requests to the memory system. Th e processor 
array connects with  raster operation processors  (ROPs), L2 texture caches, external 
DRAM memories, and system memory via a GPU-wide interconnection network. 
Th e number of processors and number of memories can scale to design balanced 
GPU systems for diff erent performance and market segments. 

       B.3     Programming GPUs 

 Programming multiprocessor GPUs is qualitatively diff erent than programming 
other multiprocessors like multicore CPUs. GPUs provide two to three orders of 
magnitude more thread and data parallelism than CPUs, scaling to hundreds of 
processor cores and tens of thousands of concurrent threads. GPUs continue 
to increase their parallelism, doubling it about every 12 to 18 months, enabled 
by Moore’s law [ 1965 ] of increasing integrated circuit density and by improving 
architectural effi  ciency. To span the wide price and performance range of diff erent 
market segments, diff erent GPU products implement widely varying numbers of 
processors and threads. Yet users expect games, graphics, imaging, and computing 
applications to work on any GPU, regardless of how many parallel threads it 
executes or how many parallel processor cores it has, and they expect more 
expensive GPUs (with more threads and cores) to run applications faster. As a 
result, GPU programming models and application programs are designed to scale 
transparently to a wide range of parallelism. 

 Th e driving force behind the large number of parallel threads and cores in a 
GPU is real-time graphics performance—the need to render complex 3D scenes 
with high resolution at interactive frame rates, at least 60 frames per second. 
Correspondingly, the scalable programming models of graphics shading languages 
such as Cg (C for graphics) and HLSL ( high-level shading language ) are designed to 
exploit large degrees of parallelism via many independent parallel threads and to 
scale to any number of processor cores. Th e CUDA scalable parallel programming 
model similarly enables general parallel computing applications to leverage large 
numbers of parallel threads and scale to any number of parallel processor cores, 
transparently to the application. 

 In these scalable programming models, the programmer writes code for a single 
thread, and the GPU runs myriad thread instances in parallel. Programs thus scale 
transparently over a wide range of hardware parallelism. Th is simple paradigm 
arose from graphics APIs and shading languages that describe how to shade one 



 B.3 Programming GPUs B-13

vertex or one pixel. It has remained an eff ective paradigm as GPUs have rapidly 
increased their parallelism and performance since the late 1990s. 

 Th is section briefl y describes programming GPUs for real-time graphics 
applications using graphics APIs and programming languages. It then describes 
programming GPUs for visual computing and general parallel computing 
applications using the C language and the CUDA programming model. 

  Programming Real-Time Graphics 
 APIs have played an important role in the rapid, successful development of GPUs 
and processors. Th ere are two primary standard graphics APIs:   OpenGL   and 
  Direct3D  , one of the Microsoft  DirectX multimedia programming interfaces. 
OpenGL, an open standard, was originally proposed and defi ned by Silicon 
Graphics Incorporated. Th e ongoing development and extension of the OpenGL 
standard [ Segal and Akeley, 2006 ;  Kessenich, 2006 ] is managed by Khronos, an 
industry consortium. Direct3D [ Blythe, 2006 ], a de facto standard, is defi ned 
and evolved forward by Microsoft  and partners. OpenGL and Direct3D are 
similarly structured, and continue to evolve rapidly with GPU hardware advances. 
Th ey defi ne a logical graphics processing pipeline that is mapped onto the GPU 
hardware and processors, along with programming models and languages for the 
programmable pipeline stages.   

     Logical Graphics Pipeline 
  Figure B.3.1    illustrates the Direct3D 10 logical graphics pipeline. OpenGL has a 
similar graphics pipeline structure. Th e API and logical pipeline provide a streaming 
datafl ow infrastructure and plumbing for the programmable shader stages, shown in 
blue. Th e 3D application sends the GPU a sequence of vertices grouped into geometric 
primitives—points, lines, triangles, and polygons. Th e input assembler collects 
vertices and primitives. Th e vertex shader program executes per-vertex processing, 

    OpenGL          An open-
standard graphics API.   

    Direct3D          A graphics 
API defi ned by Microsoft  
and partners.   

Input
Assembler

Vertex
Shader

Geometry
Shader

Setup &
Rasterizer

Pixel
Shader

Raster Operations/
Output Merger

Vertex
Buffer

Texture Texture Texture Render
Target

Sampler Sampler Sampler

Constant

Depth
Z-Buffer

Constant Constant

Stream
Buffer

Stream
Out

Index Buffer
Memory

Stencil

GPU

 FIGURE B.3.1      Direct3D 10 graphics pipeline.     Each logical pipeline stage maps to GPU hardware or to a GPU processor.   
Programmable shader stages are blue, fi xed-function blocks are white, and memory objects are gray. Each stage processes a vertex, geometric 
primitive, or pixel in a streaming datafl ow fashion.    



B-14 Appendix B Graphics and Computing GPUs

including transforming the vertex 3D position into a screen position and lighting the 
vertex to determine its color. Th e geometry shader program executes per-primitive 
processing and can add or drop primitives. Th e setup and rasterizer unit generates 
pixel fragments (fragments are potential contributions to pixels) that are covered by 
a geometric primitive. Th e pixel shader program performs per-fragment processing, 
including interpolating per-fragment parameters, texturing, and coloring. Pixel 
shaders make extensive use of sampled and fi ltered lookups into large 1D, 2D, or 
3D arrays called   textures  , using interpolated fl oating-point coordinates. Shaders use 
texture accesses for maps, functions, decals, images, and data. Th e raster operations 
processing (or output merger) stage performs Z-buff er depth testing and stencil 
testing, which may discard a hidden pixel fragment or replace the pixel’s depth with 
the fragment’s depth, and performs a color blending operation that combines the 
fragment color with the pixel color and writes the pixel with the blended color. 

   Th e graphics API and graphics pipeline provide input, output, memory objects, 
and infrastructure for the shader programs that process each vertex, primitive, and 
pixel fragment. 

   Graphics Shader Programs 
 Real-time graphics applications use many diff erent   shader   programs to model 
how light interacts with diff erent materials and to render complex lighting and 
shadows.   Shading languages   are based on a datafl ow or streaming programming 
model that corresponds with the logical graphics pipeline. Vertex shader programs 
map the position of triangle vertices onto the screen, altering their position, color, 
or orientation. Typically a vertex shader thread inputs a fl oating-point (x, y, z, w) 
vertex position and computes a fl oating-point (x, y, z) screen position. Geometry 
shader programs operate on geometric primitives (such as lines and triangles) 
defi ned by multiple vertices, changing them or generating additional primitives. 
Pixel fragment shaders each “shade” one pixel, computing a fl oating-point  red, 
green, blue, alpha  (RGBA) color contribution to the rendered image at its pixel 
sample (x, y) image position. Shaders (and GPUs) use fl oating-point arithmetic 
for all pixel color calculations to eliminate visible artifacts while computing the 
extreme range of pixel contribution values encountered while rendering scenes with 
complex lighting, shadows, and high dynamic range. For all three types of graphics 
shaders, many program instances can be run in parallel, as independent parallel 
threads, because each works on independent data, produces independent results, 
and has no side eff ects. Independent vertices, primitives, and pixels further enable 
the same graphics program to run on diff erently sized GPUs that process diff erent 
numbers of vertices, primitives, and pixels in parallel. Graphics programs thus scale 
transparently to GPUs with diff erent amounts of parallelism and performance.   

   Users program all three logical graphics threads with a common targeted high-
level language. HLSL (high-level shading language) and Cg (C for graphics) are 
commonly used. Th ey have C-like syntax and a rich set of library functions for 
matrix operations, trigonometry, interpolation, and texture access and fi ltering, 
but are far from general computing languages: they currently lack general memory 

    texture          A 1D, 2D, or 
3D array that supports 
sampled and fi ltered 
lookups with interpolated 
coordinates.   

    shader          A program that 
operates on graphics data 
such as a vertex or a pixel 
fragment.   

    shading language      
      A graphics rendering 
language, usually having 
a datafl ow or streaming 
programming model.   



 B.3 Programming GPUs B-15

access, pointers, fi le I/O, and recursion. HLSL and Cg assume that programs live 
within a logical graphics pipeline, and thus I/O is implicit. For example, a pixel 
fragment shader may expect the geometric normal and multiple texture coordinates 
to have been interpolated from vertex values by upstream fi xed-function stages and 
can simply assign a value to the COLOR output parameter to pass it downstream to 
be blended with a pixel at an implied (x, y) position. 

 Th e GPU hardware creates a new independent thread to execute a vertex, 
geometry, or pixel shader program for every vertex, every primitive, and every pixel 
fragment. In video games, the bulk of threads execute pixel shader programs, as 
there are typically 10 to 20 times more pixel fragments than vertices, and complex 
lighting and shadows require even larger ratios of pixel to vertex shader threads. 
Th e graphics shader programming model drove the GPU architecture to effi  ciently 
execute thousands of independent fi ne-grained threads on many parallel processor 
cores. 

   Pixel Shader Example 
 Consider the following Cg pixel shader program that implements the “environment 
mapping” rendering technique. For each pixel thread, this shader is passed fi ve 
parameters, including 2D fl oating-point texture image coordinates needed to 
sample the surface color, and a 3D fl oating-point vector giving the refection of 
the view direction off  the surface. Th e other three “uniform” parameters do not 
vary from one pixel instance (thread) to the next. Th e shader looks up color in 
two texture images: a 2D texture access for the surface color, and a 3D texture 
access into a cube map (six images corresponding to the faces of a cube) to obtain 
the external world color corresponding to the refection direction. Th en the fi nal 
four-component (red, green, blue, alpha) fl oating-point color is computed using a 
weighted average called a “lerp” or linear interpolation function. 

  void refection(  
       float2            texCoord            : TEXCOORD0,  
       float3            refection_dir            : TEXCOORD1,  
       out float4            color            : COLOR,  
       uniform float            shiny,  
       uniform sampler2D            surfaceMap,  
       uniform samplerCUBE            envMap)  
  {  
  // Fetch the surface color from a texture  
       float4 surfaceColor = tex2D(surfaceMap, texCoord);  

  // Fetch reflected color by sampling a cube map  
       float4 reflectedColor = texCUBE(environmentMap, refection_dir);  

  // Output is weighted average of the two colors  
       color = lerp(surfaceColor, refectedColor, shiny);  
  }  



B-16 Appendix B Graphics and Computing GPUs

 Although this shader program is only three lines long, it activates a lot of GPU 
hardware. For each texture fetch, the GPU texture subsystem makes multiple 
memory accesses to sample image colors in the vicinity of the sampling coordinates, 
and then interpolates the fi nal result with fl oating-point fi ltering arithmetic. Th e 
multithreaded GPU executes thousands of these lightweight Cg pixel shader threads 
in parallel, deeply interleaving them to hide texture fetch and memory latency. 

 Cg focuses the programmer’s view to a single vertex or primitive or pixel, 
which the GPU implements as a single thread; the shader program transparently 
scales to exploit thread parallelism on the available processors. Being application-
specifi c, Cg provides a rich set of useful data types, library functions, and language 
constructs to express diverse rendering techniques. 

  Figure B.3.2    shows skin rendered by a fragment pixel shader. Real skin appears 
quite diff erent from fl esh-color paint because light bounces around a lot before 
re-emerging. In this complex shader, three separate skin layers, each with unique 
subsurface scattering behavior, are modeled to give the skin a visual depth and 
translucency. Scattering can be modeled by a blurring convolution in a fattened 
“texture” space, with red being blurred more than green, and blue blurred less. Th e 
compiled Cg shader executes 1400 instructions to compute the color of one skin pixel. 

 FIGURE B.3.2      GPU-rendered image.     To give the skin visual depth and translucency, the pixel shader 
program models three separate skin layers, each with unique subsurface scattering behavior. It executes 1400 
instructions to render the red, green, blue, and alpha color components of each skin pixel fragment.    



 B.3 Programming GPUs B-17

 As GPUs have evolved superior fl oating-point performance and very high 
streaming memory bandwidth for real-time graphics, they have attracted highly 
parallel applications beyond traditional graphics. At fi rst, access to this power 
was available only by couching an application as a graphics-rendering algorithm, 
but this GPGPU approach was oft en awkward and limiting. More recently, the 
CUDA programming model has provided a far easier way to exploit the scalable 
high-performance fl oating-point and memory bandwidth of GPUs with the C 
programming language. 

   Programming Parallel Computing Applications 
 CUDA, Brook, and CAL are programming interfaces for GPUs that are focused 
on data parallel computation rather than on graphics. CAL ( Compute Abstraction 
Layer ) is a low-level assembler language interface for AMD GPUs. Brook is a 
streaming language adapted for GPUs by  Buck et  al. [2004] . CUDA, developed   
by  NVIDIA [2007] , is an extension to the C and C+ + languages for scalable   
parallel programming of manycore GPUs and multicore CPUs. Th e CUDA 
programming model is described below, adapted from an article by  Nickolls et al. 
[2008] . 

 With the new model the GPU excels in data parallel and throughput computing, 
executing high-performance computing applications as well as graphics applications. 

  Data Parallel Problem Decomposition 

 To map large computing problems eff ectively to a highly parallel processing 
architecture, the programmer or compiler decomposes the problem into many 
small problems that can be solved in parallel. For example, the programmer 
partitions a large result data array into blocks and further partitions each block into 
elements, such that the result blocks can be computed independently in parallel, 
and the elements within each block are computed in parallel.  Figure B.3.3    shows 
a decomposition of a result data array into a 3   ×   2 grid of blocks, where each 
block is further decomposed into a 5   ×   3 array of elements. Th e two-level parallel 
decomposition maps naturally to the GPU architecture: parallel multiprocessors 
compute result blocks, and parallel threads compute result elements. 

 Th e programmer writes a program that computes a sequence of result data 
grids, partitioning each result grid into coarse-grained result blocks that can be 
computed independently in parallel. T0he program computes each result block 
with an array of fi ne-grained parallel threads, partitioning the work among threads 
so that each computes one or more result elements. 

    Scalable Parallel Programming with CUDA 
 Th e CUDA scalable parallel programming model extends the C and C++   
languages to exploit large degrees of parallelism for general applications on highly 
parallel multiprocessors, particularly GPUs. Early experience with CUDA shows 
that  many  sophisticated programs can be readily expressed with a few easily 
understood abstractions. Since NVIDIA released CUDA in 2007, developers have 



B-18 Appendix B Graphics and Computing GPUs

rapidly developed scalable parallel programs for a wide range of applications, 
including seismic data processing, computational chemistry, linear algebra, sparse 
matrix solvers, sorting, searching, physics models, and visual computing. Th ese 
applications scale transparently to hundreds of processor cores and thousands of 
concurrent threads. NVIDIA GPUs with the Tesla unifi ed graphics and computing 
architecture (described in  Sections B.4 and B.7 ) run CUDA C programs, and are 
widely available in laptops, PCs, workstations, and servers. Th e CUDA model is 
also applicable to other shared memory parallel processing architectures, including 
multicore CPUs. 

 CUDA provides three key abstractions—a  hierarchy of thread groups, shared 
memories , and  barrier synchronization —that provide a clear parallel structure to 
conventional C code for one thread of the hierarchy. Multiple levels of threads, 
memory, and synchronization provide fi ne-grained data parallelism and thread 
parallelism, nested within coarse-grained data parallelism and task parallelism. Th e 
abstractions guide the programmer to partition the problem into coarse subproblems 
that can be solved independently in parallel, and then into fi ner pieces that can be 
solved in parallel. Th e programming model scales transparently to large numbers of 
processor cores: a compiled CUDA program executes on any number of processors, 
and only the runtime system needs to know the physical processor count. 

Step 1:

Sequence

Block
(0,0)  

Block
(0,1)  

Step 2:

Result Data Grid 1 

Block
(1, 0) 

Block
(1, 1) 

Block
(2, 0) 

Block
(2, 1) 

Block (1, 1)

Elem
(0, 0)

Elem
(1, 0)

Elem
(2, 0)

Elem
(3, 0)

Elem
(4, 0)

Elem
(0, 1)

Elem
(1, 1)

Elem
(2, 1)

Elem
(3, 1)

Elem
(4, 1)

Elem
(0, 2)

Elem
(1, 2)

Elem
(2, 2)

Elem
(3, 2)

Elem
(4, 2)

Result Data Grid 2 

 FIGURE B.3.3      Decomposing result data into a grid of blocks of elements to be computed 
in parallel.    



 B.3 Programming GPUs B-19

  The CUDA Paradigm 

 CUDA is a minimal extension of the C and C++ programming languages. Th e 
programmer writes a serial program that calls parallel   kernels  , which may be simple 
functions or full programs. A kernel executes in parallel across a set of parallel 
threads. Th e programmer organizes these threads into a hierarchy of thread blocks 
and grids of thread blocks. A   thread block   is a set of concurrent threads that can 
cooperate among themselves through barrier synchronization and through shared 
access to a memory space private to the block. A   grid   is a set of thread blocks that 
may each be executed independently and thus may execute in parallel.     

   When invoking a kernel, the programmer specifi es the number of threads per 
block and the number of blocks comprising the grid. Each thread is given a unique 
 thread ID  number  threadIdx  within its thread block, numbered  0, 1, 2, …, 
blockDim-1 , and each thread block is given a unique  block ID  number  blockIdx  
within its grid. CUDA supports thread blocks containing up to 512 threads. For 
convenience, thread blocks and grids may have one, two, or three dimensions, 
accessed via  .x ,  .y , and  .z  index fi elds. 

 As a very simple example of parallel programming, suppose that we are given 
two vectors  x  and  y  of  n  fl oating-point numbers each and that we wish to compute 
the result of  y    =    ax    +    y  for some scalar value  a . Th is is the so-called  SAXPY  kernel 
defi ned by the BLAS linear algebra library.  Figure B.3.4    shows C code for performing 
this computation on both a serial processor and in parallel using CUDA. 

 Th e  __global__  declaration specifi er indicates that the procedure is a kernel 
entry point. CUDA programs launch parallel kernels with the extended function 
call syntax: 

  kernel<<<dimGrid, dimBlock>>>(… parameter list …);  

 where  dimGrid  and  dimBlock  are three-element vectors of type  dim3  that specify 
the dimensions of the grid in blocks and the dimensions of the blocks in threads, 
respectively. Unspecifi ed dimensions default to one. 

 In  Figure B.3.4 , we launch a grid of  n  threads that assigns one thread to each 
element of the vectors and puts 256 threads in each block. Each individual thread 
computes an element index from its thread and block IDs and then performs the 
desired calculation on the corresponding vector elements. Comparing the serial and 
parallel versions of this code, we see that they are strikingly similar. Th is represents 
a fairly common pattern. Th e serial code consists of a loop where each iteration is 
independent of all the others. Such loops can be mechanically transformed into 
parallel kernels: each loop iteration becomes an independent thread. By assigning 
a single thread to each output element, we avoid the need for any synchronization 
among threads when writing results to memory. 

 Th e text of a CUDA kernel is simply a C function for one sequential thread. 
Th us, it is generally straightforward to write and is typically simpler than writing 
parallel code for vector operations. Parallelism is determined clearly and explicitly 
by specifying the dimensions of a grid and its thread blocks when launching a 
kernel. 

    kernel          A program or 
function for one thread, 
designed to be executed 
by many threads.   

    thread block          A set 
of concurrent threads 
that execute the same 
thread program and may 
cooperate to compute a 
result.   

    grid          A set of thread 
blocks that execute the 
same kernel program.   



B-20 Appendix B Graphics and Computing GPUs

 Parallel execution and thread management is automatic. All thread creation, 
scheduling, and termination is handled for the programmer by the underlying 
system. Indeed, a Tesla architecture GPU performs all thread management directly 
in hardware. Th e threads of a block execute concurrently and may synchronize 
at a   synchronization barrier   by calling the  __syncthreads()  intrinsic. Th is 
guarantees that no thread in the block can proceed until all threads in the block 
have reached the barrier. Aft er passing the barrier, these threads are also guaranteed 
to see all writes to memory performed by threads in the block before the barrier. 
Th us, threads in a block may communicate with each other by writing and reading 
per-block shared memory at a synchronization barrier. 

   Since threads in a block may share memory and synchronize via barriers, they 
will reside together on the same physical processor or multiprocessor. Th e number 
of thread blocks can, however, greatly exceed the number of processors. Th e CUDA 
thread programming model virtualizes the processors and gives the programmer the 
fl exibility to parallelize at whatever granularity is most convenient. Virtualization 

    synchronization 
barrier          Th reads wait at 
a synchronization barrier 
until all threads in the 
thread block arrive at the 
barrier.   

Computing y = ax + y with a serial loop:

void saxpy_serial(int n, float alpha, float *x, float *y)
{
 for(int i = 0; i<n; ++i)
  y[i] = alpha*x[i] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y = ax + y in parallel using CUDA:

__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if( i<n ) y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

 FIGURE B.3.4      Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY 
(see Chapter 6).     CUDA   parallel threads replace the C serial loop—each thread computes the same result 
as one loop iteration. Th e parallel code computes  n  results with  n  threads organized in blocks of 256 threads.    



 B.3 Programming GPUs B-21

into threads and thread blocks allows intuitive problem decompositions, as the 
number of blocks can be dictated by the size of the data being processed rather than 
by the number of processors in the system. It also allows the same CUDA program 
to scale to widely varying numbers of processor cores. 

 To manage this processing element virtualization and provide scalability, CUDA 
requires that thread blocks be able to execute independently. It must be possible to 
execute blocks in any order, in parallel or in series. Diff erent blocks have no means of 
direct communication, although they may  coordinate  their activities using   atomic 
memory operations   on the global memory visible to all threads—by atomically 
incrementing queue pointers, for example. Th is independence requirement allows 
thread blocks to be scheduled in any order across any number of cores, making 
the CUDA model scalable across an arbitrary number of cores as well as across a 
variety of parallel architectures. It also helps to avoid the possibility of deadlock. 
An application may execute multiple grids either independently or dependently. 
Independent grids may execute concurrently, given suffi  cient hardware resources. 
Dependent grids execute sequentially, with an implicit interkernel barrier between 
them, thus guaranteeing that all blocks of the fi rst grid complete before any block 
of the second, dependent grid begins. 

   Th reads may access data from multiple memory spaces during their execution. 
Each thread has a private   local memory  . CUDA uses local memory for thread-
private variables that do not fi t in the thread’s registers, as well as for stack frames 
and register spilling. Each thread block has a   shared memory  , visible to all threads 
of the block, which has the same lifetime as the block. Finally, all threads have 
access to the same   global memory  . Programs declare variables in shared and 
global memory with the  __shared__  and  __device__  type qualifers. On a 
Tesla architecture GPU, these memory spaces correspond to physically separate 
memories: per-block shared memory is a low-latency on-chip RAM, while global 
memory resides in the fast DRAM on the graphics board.     

   Shared memory is expected to be a low-latency memory near each processor, 
much like an L1 cache. It can therefore provide high-performance communication 
and data sharing among the threads of a thread block. Since it has the same lifetime 
as its corresponding thread block, kernel code will typically initialize data in shared 
variables, compute using shared variables, and copy shared memory results to 
global memory. Th read blocks of sequentially dependent grids communicate via 
global memory, using it to read input and write results. 

  Figure B.3.5    shows diagrams of the nested levels of threads, thread blocks, 
and grids of thread blocks. It further shows the corresponding levels of memory 
sharing: local, shared, and global memories for per-thread, per-thread-block, and 
per-application data sharing. 

 A program manages the global memory space visible to kernels through calls 
to the CUDA runtime, such as  cudaMalloc()  and  cudaFree() . Kernels may 
execute on a physically separate device, as is the case when running kernels on 
the GPU. Consequently, the application must use  cudaMemcpy()  to copy data 
between the allocated space and the host system memory. 

    atomic memory 
operation          A memory 
read, modify, write 
operation sequence that 
completes without any 
intervening access.   

    local memory          Per-
thread local memory 
private to the thread.   

    shared memory          Per-
block memory shared by 
all threads of the block.   

    global memory          Per-
application memory 
shared by all threads.   



B-22 Appendix B Graphics and Computing GPUs

 Th e CUDA programming model is similar in style to the familiar   single- 
program multiple data (SPMD)   model—it expresses parallelism explicitly, and 
each kernel executes on a fi xed number of threads. However, CUDA is more fl exible 
than most realizations of SPMD, because each kernel call dynamically creates a 
new grid with the right number of thread blocks and threads for that application 
step. Th e programmer can use a convenient degree of parallelism for each kernel, 
rather than having to design all phases of the computation to use the same number 
of threads.  Figure B.3.6    shows an example of an SPMD-like CUDA code sequence. 
It fi rst instantiates  kernelF  on a 2D grid of 3   ×   2 blocks where each 2D thread 
block consists of 5   ×   3 threads. It then instantiates  kernelG  on a 1D grid of four 
1D thread blocks with six threads each. Because  kernelG  depends on the results 
of  kernelF , they are separated by an interkernel synchronization barrier. 

   Th e concurrent threads of a thread block express fi ne-grained data parallelism and 
thread parallelism. Th e independent thread blocks of a grid express coarse-grained 
data parallelism. Independent grids express coarse-grained task parallelism. A   
kernel is simply C code for one thread of the hierarchy. 

    single-program 
multiple data 
(SPMD)          A style of 
parallel programming 
model in which all 
threads execute the same 
program. SPMD threads 
typically coordinate with 
barrier synchronization.   

Thread

per-Thread Local Memory

Thread Block

per-Block
Shared Memory

Grid 0 

. . . 

Grid 1 

. . . 

Global Memory

Sequence

Inter-Grid Synchronization

 FIGURE B.3.5      Nested granularity levels—thread, thread block, and grid—have 
corresponding memory sharing levels—local, shared, and global.     Per-thread local memory is 
private to the thread. Per-block shared memory is shared by all threads of the block. Per-application global 
memory is shared by all threads.    



 B.3 Programming GPUs B-23

    Restrictions 
 For effi  ciency, and to simplify its implementation, the CUDA programming model 
has some restrictions. Th reads and thread blocks may only be created by invoking 
a parallel kernel, not from within a parallel kernel. Together with the required 
independence of thread blocks, this makes it possible to execute CUDA programs 
with a simple scheduler that introduces minimal runtime overhead. In fact, the 
Tesla GPU architecture implements  hardware  management and scheduling of 
threads and thread blocks. 

kernelG 1D Grid is 4 thread blocks; each block is 6 threads

Sequence

Interkernel Synchronization Barrier  

Block 2

Thread 5Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

kernelF<<<(3, 2), (5, 3)>>>(params);

kernelF 2D Grid is 3  2 thread blocks; each block is 5  3 threads

Block 1, 1

Thread 0, 0 Thread 1, 0 Thread 2, 0 Thread 3, 0 Thread 4, 0

Thread 0, 1 Thread 1, 1 Thread 2, 1 Thread 3, 1 Thread 4, 1

Thread 0, 2 Thread 1, 2 Thread 2, 2 Thread 3, 2 Thread 4, 2

Block 0, 1 Block 2, 1Block 1, 1

Block 0, 0 Block 2, 0Block 1, 0

kernelG<<<4, 6>>>(params);

Block 0 Block 2Block 1 Block 3

 FIGURE B.3.6      Sequence of kernel      F  instantiated on a 2D grid of 2D thread blocks, an interkernel 
synchronization barrier, followed by kernel  G  on a 1D grid of 1D thread blocks.    



B-24 Appendix B Graphics and Computing GPUs

 Task parallelism can be expressed at the thread block level but is diffi  cult to 
express within a thread block because thread synchronization barriers operate on 
all the threads of the block. To enable CUDA programs to run on any number of 
processors, dependencies among thread blocks within the same kernel grid are not 
allowed—blocks must execute independently. Since CUDA requires that thread 
blocks be independent and allows blocks to be executed in any order, combining 
results generated by multiple blocks must in general be done by launching a second 
kernel on a new grid of thread blocks (although thread blocks may  coordinate  their 
activities using atomic memory operations on the global memory visible to all 
threads—by atomically incrementing queue pointers, for example). 

 Recursive function calls are not currently allowed in CUDA kernels. Recursion 
is unattractive in a massively parallel kernel, because providing stack space for the 
tens of thousands of threads that may be active would require substantial amounts 
of memory. Serial algorithms that are normally expressed using recursion, such as 
quicksort, are typically best implemented using nested data parallelism rather than 
explicit recursion. 

 To support a heterogeneous system architecture combining a CPU and a 
GPU, each with its own memory system, CUDA programs must copy data and 
results between host memory and device memory. Th e overhead of CPU–GPU 
interaction and data transfers is minimized by using DMA block transfer engines 
and fast interconnects. Compute-intensive problems large enough to need a GPU 
performance boost amortize the overhead better than small problems. 

   Implications for Architecture 
 Th e parallel programming models for graphics and computing have driven 
GPU architecture to be diff erent than CPU architecture. Th e key aspects of GPU 
programs driving GPU processor architecture are:

   ■      Extensive use of fi ne-grained data parallelism:  Shader programs describe how 
to process a single pixel or vertex, and CUDA programs describe how to 
compute an individual result.  

  ■      Highly threaded programming model:  A shader thread program processes a 
single pixel or vertex, and a CUDA thread program may generate a single 
result. A GPU must create and execute millions of such thread programs per 
frame, at 60 frames per second.  

  ■      Scalability:  A program must automatically increase its performance when 
provided with additional processors, without recompiling.  

  ■      Intensive fl oating-point (or integer) computation .  

  ■      Support of high-throughput computations .  



 B.4 Multithreaded Multiprocessor Architecture B-25

         B.4     Multithreaded Multiprocessor 
Architecture 

 To address diff erent market segments, GPUs implement scalable numbers of multi-
processors—in fact, GPUs are multiprocessors composed of multiprocessors. 
Furthermore, each multiprocessor is highly multithreaded to execute many fi ne-
grained vertex and pixel shader threads effi  ciently. A quality basic GPU has two to 
four multiprocessors, while a gaming enthusiast’s GPU or computing platform has 
dozens of them. Th is section looks at the architecture of one such multithreaded 
multiprocessor, a simplifi ed version of the NVIDIA Tesla  streaming multiprocessor  
(SM) described in  Section B.7 . 

 Why use a multiprocessor, rather than several independent processors? Th e 
parallelism within each multiprocessor provides localized high performance and 
supports extensive multithreading for the fi ne-grained parallel programming 
models described in  Section B.3 . Th e individual threads of a thread block execute 
together within a multiprocessor to share data. Th e multithreaded multiprocessor 
design we describe here has eight scalar processor cores in a tightly coupled 
architecture, and executes up to 512 threads (the SM described in  Section B.7  
executes up to 768 threads). For area and power effi  ciency, the multiprocessor shares 
large complex units among the eight processor cores, including the instruction 
cache, the multithreaded instruction unit, and the shared memory RAM. 

  Massive Multithreading 
 GPU processors are highly multithreaded to achieve several goals:

   ■     Cover the latency of memory loads and texture fetches from DRAM  

  ■     Support fi ne-grained parallel graphics shader programming models  

  ■     Support fi ne-grained parallel computing programming models  

  ■     Virtualize the physical processors as threads and thread blocks to provide 
transparent scalability  

  ■     Simplify the parallel programming model to writing a serial program for one 
thread  

   Memory and texture fetch latency can require hundreds of processor clocks, 
because GPUs typically have small streaming caches rather than large working-set 
caches like CPUs. A fetch request generally requires a full DRAM access latency 
plus interconnect and buff ering latency. Multithreading helps cover the latency with 
useful computing—while one thread is waiting for a load or texture fetch to complete, 
the processor can execute another thread. Th e fi ne-grained parallel programming 
models provide literally thousands of independent threads that can keep many 
processors busy despite the long memory latency seen by individual threads. 



B-26 Appendix B Graphics and Computing GPUs

 A graphics vertex or pixel shader program is a program for a single thread that 
processes a vertex or a pixel. Similarly, a CUDA program is a C program for a 
single thread that computes a result. Graphics and computing programs instantiate 
many parallel threads to render complex images and compute large result arrays. 
To dynamically balance shift ing vertex and pixel shader thread workloads, each 
multiprocessor concurrently executes multiple diff erent thread programs and 
diff erent types of shader programs. 

 To support the independent vertex, primitive, and pixel programming model of 
graphics shading languages and the single-thread programming model of CUDA 
C/C+ +, each GPU thread has its own private registers, private per-thread memory, 
program counter, and thread execution state, and can execute an independent code 
path. To effi  ciently execute hundreds of concurrent lightweight threads, the GPU 
multiprocessor is hardware multithreaded—it manages and executes hundreds 
of concurrent threads in hardware without scheduling overhead. Concurrent 
threads within thread blocks can synchronize at a barrier with a single instruction. 
Lightweight thread creation, zero-overhead thread scheduling, and fast barrier 
synchronization effi  ciently support very fi ne-grained parallelism. 

   Multiprocessor Architecture 
 A unifi ed graphics and computing multiprocessor executes vertex, geometry, and 
pixel fragment shader programs, and parallel computing programs. As  Figure B.4.1    
shows, the example multiprocessor consists of eight  scalar processor  (SP) cores each 
with a large multithreaded  register fi le  (RF), two  special function units  (SFUs), a 
multithreaded instruction unit, an instruction cache, a read-only constant cache, 
and a shared memory. 

 Th e 16     KB shared memory holds graphics data buff ers and shared computing 
data. CUDA variables declared as  __shared__  reside in the shared memory. To 
map the logical graphics pipeline workload through the multiprocessor multiple 
times, as shown in  Section B.2 , vertex, geometry, and pixel threads have independent 
input and output buff ers, and workloads arrive and depart independently of thread 
execution. 

 Each SP core contains scalar integer and fl oating-point arithmetic units that 
execute most instructions. Th e SP is hardware multithreaded, supporting up to 
64 threads. Each pipelined SP core executes one scalar instruction per thread per 
clock, which ranges from 1.2     GHz to 1.6     GHz in diff erent GPU products. Each SP 
core has a large RF of 1024 general-purpose 32-bit registers, partitioned among its 
assigned threads. Programs declare their register demand, typically 16 to 64 scalar 
32-bit registers per thread. Th e SP can concurrently run many threads that use 
a few registers or fewer threads that use more registers. Th e compiler optimizes 
register allocation to balance the cost of spilling registers versus the cost of fewer 
threads. Pixel shader programs oft en use 16 or fewer registers, enabling each SP to 
run up to 64 pixel shader threads to cover long-latency texture fetches. Compiled 
CUDA programs oft en need 32 registers per thread, limiting each SP to 32 threads, 
which limits such a kernel program to 256 threads per thread block on this example 
multiprocessor, rather than its maximum of 512 threads. 



 B.4 Multithreaded Multiprocessor Architecture B-27

 Th e pipelined SFUs execute thread instructions that compute special functions 
and interpolate pixel attributes from primitive vertex attributes. Th ese instructions 
can execute concurrently with instructions on the SPs. Th e SFU is described later. 

 Th e multiprocessor executes texture fetch instructions on the texture unit via the 
texture interface, and uses the memory interface for external memory load, store, 
and atomic access instructions. Th ese instructions can execute concurrently with 
instructions on the SPs. Shared memory access uses a low-latency interconnection 
network between the SP processors and the shared memory banks. 

   Single-Instruction Multiple-Thread (SIMT) 
 To manage and execute hundreds of threads running several diff erent programs 
effi  ciently, the multiprocessor employs a   single-instruction multiple-thread 
(SIMT)   architecture. It creates, manages, schedules, and executes concurrent threads 
in groups of parallel threads called  warps . Th e term   warp   originates from weaving, 
the fi rst parallel thread technology. Th e photograph in  Figure B.4.2    shows a warp of 
parallel threads emerging from a loom. Th is example multiprocessor uses a SIMT 
warp size of 32 threads, executing four threads in each of the eight SP cores over four 

Instruction Cache

Multithreaded Instruction Unit

Multithreaded Multiprocessor

Constant Cache

SFU SFU
SP

RF

SP

RF

SP

RF

SP

RF

SP

RF

SP

RF

SP

RF

SP

RF

Shared Memory
Texture
Interface

Memory
Interface

Multiprocessor
Controller

Output
Interface

Interconnection Network

Input
Interface

Work Interface

 FIGURE B.4.1      Multithreaded multiprocessor with eight scalar processor (SP) cores.     Th e 
eight SP cores each have a large multithreaded  register fi le  (RF) and share an instruction cache, multithreaded 
instruction issue unit, constant cache, two  special function units  (SFUs), interconnection network, and a 
multibank shared memory.    

    warp          Th e set of parallel 
threads that execute the 
same instruction together 
in a SIMT architecture.   

    single-instruction 
multiple-thread 
(SIMT)          A processor 
architecture that applies 
one instruction to 
multiple independent 
threads in parallel.   



B-28 Appendix B Graphics and Computing GPUs

clocks. Th e Tesla SM multiprocessor described in  Section B.7  also uses a warp size 
of 32 parallel threads, executing four threads per SP core for effi  ciency on plentiful 
pixel threads and computing threads. Th read blocks consist of one or more warps.     

   Th is example SIMT multiprocessor manages a pool of 16 warps, a total of 512 
threads. Individual parallel threads composing a warp are the same type and start 
together at the same program address, but are otherwise free to branch and execute 
independently. At each instruction issue time, the SIMT multithreaded instruction 
unit selects a warp that is ready to execute its next instruction, and then issues that 
instruction to the active threads of that warp. A SIMT instruction is broadcast 
synchronously to the active parallel threads of a warp; individual threads may be 
inactive due to independent branching or predication. In this multiprocessor, each 
SP scalar processor core executes an instruction for four individual threads of a 
warp using four clocks, refl ecting the 4:1 ratio of warp threads to cores. 

 SIMT processor architecture is akin to  single-instruction multiple data  (SIMD) 
design, which applies one instruction to multiple data lanes, but diff ers in that 
SIMT applies one instruction to multiple independent threads in parallel, not just 

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

time

SIMT multithreaded
instruction scheduler

warp 1 instruction 43

warp 3 instruction 96

P
ho

to
: J

ud
y 

S
ch

oo
nm

ak
er

 FIGURE B.4.2      SIMT multithreaded warp scheduling.     Th e scheduler selects a ready warp and issues 
an instruction synchronously to the parallel threads composing the warp. Because warps are independent, 
the scheduler may select a diff erent warp each time.    



 B.4 Multithreaded Multiprocessor Architecture B-29

to multiple data lanes. An instruction for a SIMD processor controls a vector of 
multiple data lanes together, whereas an instruction for a SIMT processor controls 
an individual thread, and the SIMT instruction unit issues an instruction to a warp 
of independent parallel threads for effi  ciency. Th e SIMT processor fi nds data-level 
parallelism among threads at runtime, analogous to the way a superscalar processor 
fi nds instruction-level parallelism among instructions at runtime. 

 A SIMT processor realizes full effi  ciency and performance when all threads 
of a warp take the same execution path. If threads of a warp diverge via a data-
dependent conditional branch, execution serializes for each branch path taken, and 
when all paths complete, the threads converge to the same execution path. For equal 
length paths, a divergent if-else code block is 50% effi  cient. Th e multiprocessor 
uses a branch synchronization stack to manage independent threads that diverge 
and converge. Diff erent warps execute independently at full speed regardless of 
whether they are executing common or disjoint code paths. As a result, SIMT 
GPUs are dramatically more effi  cient and fl exible on branching code than earlier 
GPUs, as their warps are much narrower than the SIMD width of prior GPUs. 

 In contrast with SIMD vector architectures, SIMT enables programmers 
to write thread-level parallel code for individual independent threads, as well 
as data-parallel code for many coordinated threads. For program correctness, 
the programmer can essentially ignore the SIMT execution attributes of warps; 
however, substantial performance improvements can be realized by taking care that 
the code seldom requires threads in a warp to diverge. In practice, this is analogous 
to the role of cache lines in traditional codes: cache line size can be safely ignored 
when designing for correctness but must be considered in the code structure when 
designing for peak performance. 

   SIMT Warp Execution and Divergence 
 Th e SIMT approach of scheduling independent warps is more fl exible than the 
scheduling of previous GPU architectures. A warp comprises parallel threads of 
the same type: vertex, geometry, pixel, or compute. Th e basic unit of pixel fragment 
shader processing is the 2-by-2 pixel quad implemented as four pixel shader threads. 
Th e multiprocessor controller packs the pixel quads into a warp. It similarly groups 
vertices and primitives into warps, and packs computing threads into a warp. A 
thread block comprises one or more warps. Th e SIMT design shares the instruction 
fetch and issue unit effi  ciently across parallel threads of a warp, but requires a full 
warp of active threads to get full performance effi  ciency. 

 Th is unifi ed multiprocessor schedules and executes multiple warp types 
concurrently, allowing it to concurrently execute vertex and pixel warps. Its warp 
scheduler operates at less than the processor clock rate, because there are four thread 
lanes per processor core. During each scheduling cycle, it selects a warp to execute 
a SIMT warp instruction, as shown in  Figure B.4.2 . An issued warp-instruction 
executes as four sets of eight threads over four processor cycles of throughput.   
Th e processor pipeline uses several clocks of latency to complete each instruction.   
If the number of active warps times the clocks per warp exceeds the pipeline   



B-30 Appendix B Graphics and Computing GPUs

latency, the programmer can ignore the pipeline latency. For this multiprocessor, a 
round-robin schedule of eight warps has a period of 32 cycles between successive 
instructions for the same warp. If the program can keep 256 threads active per 
multiprocessor, instruction latencies up to 32 cycles can be hidden from an 
individual sequential thread. However, with few active warps, the processor pipeline 
depth becomes visible and may cause processors to stall. 

 A challenging design problem is implementing zero-overhead warp scheduling 
for a dynamic mix of diff erent warp programs and program types. Th e instruction 
scheduler must select a warp every four clocks to issue one instruction per clock 
per thread, equivalent to an IPC of 1.0 per processor core. Because warps are 
independent, the only dependences are among sequential instructions from the 
same warp. Th e scheduler uses a register dependency scoreboard to qualify warps 
whose active threads are ready to execute an instruction. It prioritizes all such ready 
warps and selects the highest priority one for issue. Prioritization must consider 
warp type, instruction type, and the desire to be fair to all active warps. 

   Managing Threads and Thread Blocks 
 Th e multiprocessor controller and instruction unit manage threads and thread 
blocks. Th e controller accepts work requests and input data and arbitrates access 
to shared resources, including the texture unit, memory access path, and I/O 
paths. For graphics workloads, it creates and manages three types of graphics 
threads concurrently: vertex, geometry, and pixel. Each of the graphics work 
types has independent input and output paths. It accumulates and packs each of 
these input work types into SIMT warps of parallel threads executing the same 
thread program. It allocates a free warp, allocates registers for the warp threads, 
and starts warp execution in the multiprocessor. Every program declares its per-
thread register demand; the controller starts a warp only when it can allocate the 
requested register count for the warp threads. When all the threads of the warp 
exit, the controller unpacks the results and frees the warp registers and resources. 

 Th e controller creates   cooperative thread arrays (CTAs)   which implement 
CUDA thread blocks as one or more warps of parallel threads. It creates a CTA 
when it can create all CTA warps and allocate all CTA resources. In addition to 
threads and registers, a CTA requires allocating shared memory and barriers. 
Th e program declares the required capacities, and the controller waits until it can 
allocate those amounts before launching the CTA. Th en it creates CTA warps at the 
warp scheduling rate, so that a CTA program starts executing immediately at full 
multiprocessor performance. Th e controller monitors when all threads of a CTA 
have exited, and frees the CTA shared resources and its warp resources. 

     Thread Instructions 
 Th e SP thread processors execute scalar instructions for individual threads, unlike 
earlier GPU vector instruction architectures, which executed four-component 
vector instructions for each vertex or pixel shader program. Vertex programs 

    cooperative thread 
array (CTA)          A set 
of concurrent threads 
that executes the same 
thread program and may 
cooperate to compute 
a result. A GPU CTA 
implements a CUDA 
thread block.   



 B.4 Multithreaded Multiprocessor Architecture B-31

generally compute (x, y, z, w) position vectors, while pixel shader programs compute 
(red, green, blue, alpha) color vectors. However, shader programs are becoming 
longer and more scalar, and it is increasingly diffi  cult to fully occupy even two 
components of a legacy GPU four-component vector architecture. In eff ect, the 
SIMT architecture parallelizes across 32 independent pixel threads, rather than 
parallelizing the four vector components within a pixel. CUDA C/C++ programs 
have predominantly scalar code per thread. Previous GPUs employed vector 
packing (e.g., combining subvectors of work to gain effi  ciency) but that complicated 
the scheduling hardware as well as the compiler. Scalar instructions are simpler 
and compiler-friendly. Texture instructions remain vector-based, taking a source 
coordinate vector and returning a fi ltered color vector. 

 To support multiple GPUs with diff erent binary microinstruction formats, high-
level graphics and computing language compilers generate intermediate assembler-
level instructions (e.g., Direct3D vector instructions or PTX scalar instructions), 
which are then optimized and translated to binary GPU microinstructions. 
Th e NVIDIA PTX (parallel thread execution) instruction set defi nition [2007] 
provides a stable target ISA for compilers, and provides compatibility over several 
generations of GPUs with evolving binary microinstruction-set architectures. Th e 
optimizer readily expands Direct3D vector instructions to multiple scalar binary 
microinstructions. PTX scalar instructions translate nearly one to one with scalar 
binary microinstructions, although some PTX instructions expand to multiple 
binary microinstructions, and multiple PTX instructions may fold into one binary 
microinstruction. Because the intermediate assembler-level instructions use virtual 
registers, the optimizer analyzes data dependencies and allocates real registers. Th e 
optimizer eliminates dead code, folds instructions together when feasible, and 
optimizes SIMT branch diverge and converge points. 

   Instruction Set Architecture (ISA) 
 Th e thread ISA described here is a simplifi ed version of the Tesla architecture 
PTX ISA, a register-based scalar instruction set comprising fl oating-point, integer, 
logical, conversion, special functions, fl ow control, memory access, and texture 
operations.  Figure B.4.3    lists the basic PTX GPU thread instructions; see the 
NVIDIA PTX specifi cation [2007] for details. Th e instruction format is: 

  opcode.type d, a, b, c;  

 where  d  is the destination operand,  a ,  b ,  c  are source operands, and  .type  is   
one of:

  

 .type SpeciferType

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits .u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits .s8, .s16, .s32, .s64

Floating-point 16, 32, and 64 bits .f16, .f32, .f64

     



B-32 Appendix B Graphics and Computing GPUs

Basic PTX GPU Thread Instructions

Group Instruction Example Meaning Comments

Arithmetic

arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64
add.type add.f32 d, a, b d = a + b;
sub.type sub.f32 d, a, b d = a – b;
mul.type mul.f32 d, a, b d = a * b;
mad.type mad.f32 d, a, b, c d = a * b + c; multiply-add

div.type div.f32 d, a, b d = a / b; multiple microinstructions

rem.type rem.u32 d, a, b d = a % b; integer remainder

abs.type abs.f32 d, a d = |a|;
neg.type neg.f32 d, a d = 0 - a;
min.type min.f32 d, a, b d = (a < b)? a:b; floating selects non-NaN

max.type max.f32 d, a, b d = (a > b)? a:b; floating selects non-NaN

setp.cmp.type setp.lt.f32 p, a, b p = (a < b); compare and set predicate

numeric .cmp = eq, ne, lt, le, gt, ge; unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan

mov.type mov.b32 d, a d = a; move

selp.type selp.f32 d, a, b, p d = p? a: b; select with predicate

cvt.dtype.atype cvt.f32.s32 d, a d = convert(a); convert atype to dtype

Special 
Function

special .type = .f32 (some .f64)

rcp.type rcp.f32 d, a d = 1/a; reciprocal

sqrt.type sqrt.f32 d, a d = sqrt(a); square root

rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root

sin.type sin.f32 d, a d = sin(a); sine

cos.type cos.f32 d, a d = cos(a); cosine

lg2.type lg2.f32 d, a d = log(a)/log(2) binary logarithm

ex2.type ex2.f32 d, a d = 2 ** a; binary exponential

Logical

logic. type = .pred, .b32, .b64
and.type and.b32 d, a, b d = a & b;
or.type or.b32 d, a, b d = a | b;
xor.type xor.b32 d, a, b d = a ^ b;
not.type not.b32 d, a, b d = ~a; one’s complement

cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not

shl.type shl.b32 d, a, b d = a << b; shift left

shr.type shr.s32 d, a, b d = a >> b; shift right

Memory
Access

memory .space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .b16, .b32, .b64
ld.space.type ld.global.b32 d, [a+off] d = *(a+off); load from memory space

st.space.type st.shared.b32 [d+off], a *(d+off) = a; store to memory space

tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup

atom.spc.op.type atom.global.add.u32 d,[a], b 
atom.global.cas.b32 d,[a], b, c

atomic { d = *a; 
  *a = op(*a, b); }

atomic read-modify-write  
operation

atom .op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type = .b32

Control
Flow

branch @p bra target if (p) goto 
target;

conditional branch

call call (ret), func, (params) ret = func(params); call function

ret ret return; return from function call

bar.sync bar.sync d wait for threads barrier synchronization

exit exit exit; terminate thread execution

 FIGURE B.4.3      Basic PTX GPU thread instructions.    



 B.4 Multithreaded Multiprocessor Architecture B-33

 Source operands are scalar 32-bit or 64-bit values in registers, an immediate 
value, or a constant; predicate operands are 1-bit Boolean values. Destinations are 
registers, except for store to memory. Instructions are predicated by prefi xing them 
with  @p  or  @!p , where  p  is a predicate register. Memory and texture instructions 
transfer scalars or vectors of two to four components, up to 128 bits in total. PTX 
instructions specify the behavior of one thread. 

 Th e PTX arithmetic instructions operate on 32-bit and 64-bit fl oating-point, 
signed integer, and unsigned integer types. Recent GPUs support 64-bit double-
precision fl oating-point; see  Section B.6 . On current GPUs, PTX 64-bit integer 
and logical instructions are translated to two or more binary microinstructions 
that perform 32-bit operations. Th e GPU special function instructions are limited 
to 32-bit fl oating-point. Th e thread control fl ow instructions are conditional 
 branch , function  call  and  return , thread  exit , and  bar.sync  (barrier 
synchronization). Th e conditional branch instruction  @p bra target  uses a 
predicate register  p  (or  !p ) previously set by a compare and set predicate  setp  
instruction to determine whether the thread takes the branch or not. Other 
instructions can also be predicated on a predicate register being true or false. 

  Memory Access Instructions 

 Th e  tex  instruction fetches and fi lters texture samples from 1D, 2D, and 3D 
texture arrays in memory via the texture subsystem. Texture fetches generally use 
interpolated fl oating-point coordinates to address a texture. Once a graphics pixel 
shader thread computes its pixel fragment color, the raster operations processor 
blends it with the pixel color at its assigned (x, y) pixel position and writes the fi nal 
color to memory. 

 To support computing and C/C++ language needs, the Tesla PTX ISA 
implements memory load/store instructions. It uses integer byte addressing with 
register plus off set address arithmetic to facilitate conventional compiler code 
optimizations. Memory load/store instructions are common in processors, but are 
a signifi cant new capability in the Tesla architecture GPUs, as prior GPUs provided 
only the texture and pixel accesses required by the graphics APIs. 

 For computing, the load/store instructions access three read/write memory 
spaces that implement the corresponding CUDA memory spaces in  Section B.3 :

   ■     Local memory for per-thread private addressable temporary data 
(implemented in external DRAM)  

  ■     Shared memory for low-latency access to data shared by cooperating threads 
in the same CTA/thread block (implemented in on-chip SRAM)  

  ■     Global memory for large data sets shared by all threads of a computing 
application (implemented in external DRAM)  

   Th e memory load/store instructions  ld.global ,  st.global ,  ld.shared ,  st.
shared ,  ld.local , and  st.local  access the global, shared, and local memory 
spaces. Computing programs use the fast barrier synchronization instruction  bar.
sync  to synchronize threads within a CTA/thread block that communicate with 
each other via shared and global memory. 



B-34 Appendix B Graphics and Computing GPUs

 To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same SIMT 
warp together into a single memory block request when the addresses fall in the 
same block and meet alignment criteria. Coalescing memory requests provides a 
signifi cant performance boost over separate requests from individual threads. Th e 
multiprocessor’s large thread count, together with support for many outstanding 
load requests, helps cover load-to-use latency for local and global memory 
implemented in external DRAM. 

 Th e latest Tesla architecture GPUs also provide effi  cient atomic memory operations 
on memory with the  atom.op.u32  instructions, including integer operations  add, 
min, max, and, or, xor, exchange,  and cas (compare-and-swap) operations, 
facilitating parallel reductions and parallel data structure management. 

   Barrier Synchronization for Thread Communication 

 Fast barrier synchronization permits CUDA programs to communicate frequently 
via shared memory and global memory by simply calling  __syncthreads();  as 
part of each interthread communication step. Th e synchronization intrinsic function 
generates a single  bar.sync  instruction. However, implementing fast barrier 
synchronization among up to 512 threads per CUDA thread block is a challenge. 

 Grouping threads into SIMT warps of 32 threads reduces the synchronization 
diffi  culty by a factor of 32. Th reads wait at a barrier in the SIMT thread scheduler so 
they do not consume any processor cycles while waiting. When a thread executes 
a  bar.sync  instruction, it increments the barrier’s thread arrival counter and the 
scheduler marks the thread as waiting at the barrier. Once all the CTA threads 
arrive, the barrier counter matches the expected terminal count, and the scheduler 
releases all the threads waiting at the barrier and resumes executing threads. 

    Streaming Processor (SP) 
 Th e multithreaded  streaming processor  (SP) core is the primary thread instruction 
processor in the multiprocessor. Its  register fi le  (RF) provides 1024 scalar 32-
bit registers for up to 64 threads. It executes all the fundamental fl oating-point 
operations, including  add.f32 ,  mul.f32 ,  mad.f32  (fl oating multiply-add),  min.
f32 ,  max.f32 , and  setp.f32  (fl oating compare and set predicate). Th e fl oating-
point add and multiply operations are compatible with the IEEE 754 standard 
for single-precision FP numbers, including  not-a-number  (NaN) and infi nity 
values. Th e SP core also implements all of the 32-bit and 64-bit integer arithmetic, 
comparison, conversion, and logical PTX instructions shown in  Figure B.4.3 . 

 Th e fl oating-point  add  and  mul  operations employ IEEE round-to-nearest-even 
as the default rounding mode. Th e  mad.f32  fl oating-point multiply-add operation 
performs a multiplication with truncation, followed by an addition with round-
to-nearest-even. Th e SP fl ushes input denormal operands to sign-preserved-zero. 
Results that underfl ow the target output exponent range are fl ushed to sign-
preserved-zero aft er rounding. 



 B.4 Multithreaded Multiprocessor Architecture B-35

   Special Function Unit (SFU) 
 Certain thread instructions can execute on the SFUs, concurrently with other 
thread instructions executing on the SPs. Th e SFU implements the special function 
instructions of  Figure B.4.3 , which compute 32-bit fl oating-point approximations 
to reciprocal, reciprocal square root, and key transcendental functions. It also 
implements 32-bit fl oating-point planar attribute interpolation for pixel shaders, 
providing accurate interpolation of attributes such as color, depth, and texture 
coordinates. 

 Each pipelined SFU generates one 32-bit fl oating-point special function result 
per cycle; the two SFUs per multiprocessor execute special function instructions 
at a quarter the simple instruction rate of the eight SPs. Th e SFUs also execute the 
 mul.f32  multiply instruction concurrently with the eight SPs, increasing the peak 
computation rate up to 50% for threads with a suitable instruction mixture. 

 For functional evaluation, the Tesla architecture SFU employs quadratic 
interpolation based on enhanced minimax approximations for approximating the 
reciprocal, reciprocal square-root, log 2  x , 2 x , and sin/cos functions. Th e accuracy of 
the function estimates ranges from 22 to 24 mantissa bits. See  Section B.6  for more 
details on SFU arithmetic. 

   Comparing with Other Multiprocessors 
 Compared with SIMD vector architectures such as x86 SSE, the SIMT multiprocessor 
can execute individual threads independently, rather than always executing them 
together in synchronous groups. SIMT hardware fi nds data parallelism among 
independent threads, whereas SIMD hardware requires the soft ware to express 
data parallelism explicitly in each vector instruction. A SIMT machine executes a 
warp of 32 threads synchronously when the threads take the same execution path, 
yet can execute each thread independently when they diverge. Th e advantage is 
signifi cant because SIMT programs and instructions simply describe the behavior 
of a single independent thread, rather than a SIMD data vector of four or more 
data lanes. Yet the SIMT multiprocessor has SIMD-like effi  ciency, spreading the 
area and cost of one instruction unit across the 32 threads of a warp and across the 
eight streaming processor cores. SIMT provides the performance of SIMD together 
with the productivity of multithreading, avoiding the need to explicitly code SIMD 
vectors for edge conditions and partial divergence. 

 Th e SIMT multiprocessor imposes little overhead because it is hardware 
multithreaded with hardware barrier synchronization. Th at allows graphics 
shaders and CUDA threads to express very fi ne-grained parallelism. Graphics and 
CUDA programs use threads to express fi ne-grained data parallelism in a per-
thread program, rather than forcing the programmer to express it as SIMD vector 
instructions. It is simpler and more productive to develop scalar single-thread code 
than vector code, and the SIMT multiprocessor executes the code with SIMD-like 
effi  ciency. 



B-36 Appendix B Graphics and Computing GPUs

 Coupling eight streaming processor cores together closely into a multiprocessor 
and then implementing a scalable number of such multiprocessors makes a two-
level multiprocessor composed of multiprocessors. Th e CUDA programming model 
exploits the two-level hierarchy by providing individual threads for fi ne-grained 
parallel computations, and by providing grids of thread blocks for coarse-grained 
parallel operations. Th e same thread program can provide both fi ne-grained and 
coarse-grained operations. In contrast, CPUs with SIMD vector instructions must 
use two diff erent programming models to provide fi ne-grained and coarse-grained 
operations: coarse-grained parallel threads on diff erent cores, and SIMD vector 
instructions for fi ne-grained data parallelism. 

   Multithreaded Multiprocessor Conclusion 
 Th e example GPU multiprocessor based on the Tesla architecture is highly 
multithreaded, executing a total of up to 512 lightweight threads concurrently to 
support fi ne-grained pixel shaders and CUDA threads. It uses a variation on SIMD 
architecture and multithreading called SIMT ( single-instruction multiple-thread ) 
to effi  ciently broadcast one instruction to a warp of 32 parallel threads, while 
permitting each thread to branch and execute independently. Each thread executes 
its instruction stream on one of the eight  streaming processor  (SP) cores, which are 
multithreaded up to 64 threads. 

 Th e PTX ISA is a register-based load/store scalar ISA that describes the execution 
of a single thread. Because PTX instructions are optimized and translated to binary 
microinstructions for a specifi c GPU, the hardware instructions can evolve rapidly 
without disrupting compilers and soft ware tools that generate PTX instructions. 

       B.5     Parallel Memory System 

 Outside of the GPU itself, the memory subsystem is the most important 
determiner of the performance of a graphics system. Graphics workloads demand 
very high transfer rates to and from memory. Pixel write and blend (read-modify-
write) operations, depth buff er reads and writes, and texture map reads, as well 
as command and object vertex and attribute data reads, comprise the majority of 
memory traffi  c. 

 Modern GPUs are highly parallel, as shown in  Figure B.2.5 . For example, the 
GeForce 8800 can process 32 pixels per clock, at 600     MHz. Each pixel typically 
requires a color read and write and a depth read and write of a 4-byte pixel. Usually 
an average of two or three texels of four bytes each are read to generate the pixel’s 
color. So for a typical case, there is a demand of 28 bytes times 32 pixels =   896 bytes 
per clock. Clearly the bandwidth demand on the memory system is enormous. 



 B.5 Parallel Memory System B-37

 To supply these requirements, GPU memory systems have the following 
characteristics:

   ■     Th ey are wide, meaning there are a large number of pins to convey data 
between the GPU and its memory devices, and the memory array itself 
comprises many DRAM chips to provide the full total data bus width.  

  ■     Th ey are fast, meaning aggressive signaling techniques are used to maximize 
the data rate (bits/second) per pin.  

  ■     GPUs seek to use every available cycle to transfer data to or from the memory 
array. To achieve this, GPUs specifi cally do not aim to minimize latency to the 
memory system. High throughput (utilization effi  ciency) and short latency 
are fundamentally in confl ict.  

  ■     Compression techniques are used, both lossy, of which the programmer must 
be aware, and lossless, which is invisible to the application and opportunistic.  

  ■     Caches and work coalescing structures are used to reduce the amount of off -
chip traffi  c needed and to ensure that cycles spent moving data are used as 
fully as possible.  

    DRAM Considerations 
 GPUs must take into account the unique characteristics of DRAM. DRAM chips 
are internally arranged as multiple (typically four to eight) banks, where each bank 
includes a power-of-2 number of rows (typically around 16,384), and each row 
contains a power-of-2 number of bits (typically 8192). DRAMs impose a variety of 
timing requirements on their controlling processor. For example, dozens of cycles 
are required to activate one row, but once activated, the bits within that row are 
randomly accessible with a new column address every four clocks.  Double-data 
rate  (DDR) synchronous DRAMs transfer data on both rising and falling edges 
of the interface clock (see  Chapter 5 ). So a 1     GHz clocked DDR DRAM transfers 
data at 2 gigabits per second per data pin. Graphics DDR DRAMs usually have 32 
bidirectional data pins, so eight bytes can be read or written from the DRAM per 
clock. 

 GPUs internally have a large number of generators of memory traffi  c. Diff erent 
stages of the logical graphics pipeline each have their own request streams: command 
and vertex attribute fetch, shader texture fetch and load/store, and pixel depth and 
color read-write. At each logical stage, there are oft en multiple independent units 
to deliver the parallel throughput. Th ese are each independent memory requestors. 
When viewed at the memory system, there is an enormous number of uncorrelated 
requests in fl ight. Th is is a natural mismatch to the reference pattern preferred by 
the DRAMs. A solution is for the GPU’s memory controller to maintain separate 
heaps of traffi  c bound for diff erent DRAM banks, and wait until enough traffi  c for 



B-38 Appendix B Graphics and Computing GPUs

a particular DRAM row is pending before activating that row and transferring all 
the traffi  c at once. Note that accumulating pending requests, while good for DRAM 
row locality and thus effi  cient use of the data bus, leads to longer average latency 
as seen by the requestors whose requests spend time waiting for others. Th e design 
must take care that no particular request waits too long, otherwise some processing 
units can starve waiting for data and ultimately cause neighboring processors to 
become idle. 

 GPU memory subsystems are arranged as multiple  memory partitions , each of 
which comprises a fully independent memory controller and one or two DRAM 
devices that are fully and exclusively owned by that partition. To achieve the best 
load balance and therefore approach the theoretical performance of  n  partitions, 
addresses are fi nely interleaved evenly across all memory partitions. Th e partition 
interleaving stride is typically a block of a few hundred bytes. Th e number of 
memory partitions is designed to balance the number of processors and other 
memory requesters. 

   Caches 
 GPU workloads typically have very large working sets—on the order of hundreds 
of megabytes to generate a single graphics frame. Unlike with CPUs, it is not 
practical to construct caches on chips large enough to hold anything close to the 
full working set of a graphics application. Whereas CPUs can assume very high 
cache hit rates (99.9% or more), GPUs experience hit rates closer to 90% and must 
therefore cope with many misses in fl ight. While a CPU can reasonably be designed 
to halt while waiting for a rare cache miss, a GPU needs to proceed with misses and 
hits intermingled. We call this a  streaming cache architecture . 

 GPU caches must deliver very high-bandwidth to their clients. Consider the case 
of a texture cache. A typical texture unit may evaluate two bilinear interpolations for 
each of four pixels per clock cycle, and a GPU may have many such texture units all 
operating independently. Each bilinear interpolation requires four separate texels, 
and each texel might be a 64-bit value. Four 16-bit components are typical. Th us, 
total bandwidth is 2   ×   4   ×   4   ×   64   =   2048 bits per clock. Each separate 64-bit texel 
is independently addressed, so the cache needs to handle 32 unique addresses per 
clock. Th is naturally favors a multibank and/or multiport arrangement of SRAM 
arrays. 

   MMU 
 Modern GPUs are capable of translating virtual addresses to physical addresses. 
On the GeForce 8800, all processing units generate memory addresses in a   
40-bit virtual address space. For computing, load and store thread instructions use 
32-bit byte addresses, which are extended to a 40-bit virtual address by adding a 
40-bit off set. A memory management unit performs virtual to physical address 



 B.5 Parallel Memory System B-39

translation; hardware reads the page tables from local memory to respond to 
misses on behalf of a hierarchy of translation lookaside buff ers spread out among 
the processors and rendering engines. In addition to physical page bits, GPU page 
table entries specify the compression algorithm for each page. Page sizes range 
from 4 to 128 kilobytes. 

   Memory Spaces 
 As introduced in  Section B.3 , CUDA exposes diff erent memory spaces to allow the 
programmer to store data values in the most performance-optimal way. For the 
following discussion, NVIDIA Tesla architecture GPUs are assumed. 

   Global memory 
 Global memory is stored in external DRAM; it is not local to any one physical 
 streaming multiprocessor  (SM) because it is meant for communication among 
diff erent CTAs (thread blocks) in diff erent grids. In fact, the many CTAs that 
reference a location in global memory may not be executing in the GPU at the 
same time; by design, in CUDA a programmer does not know the relative order 
in which CTAs are executed. Because the address space is evenly distributed 
among all memory partitions, there must be a read/write path from any streaming 
multiprocessor to any DRAM partition. 

 Access to global memory by diff erent threads (and diff erent processors) is not 
guaranteed to have sequential consistency. Th read programs see a relaxed memory 
ordering model. Within a thread, the order of memory reads and writes to the same 
address is preserved, but the order of accesses to diff erent addresses may not be 
preserved. Memory reads and writes requested by diff erent threads are unordered. 
Within a CTA, the barrier synchronization instruction  bar.sync  can be used 
to obtain strict memory ordering among the threads of the CTA. Th e  membar  
thread instruction provides a memory barrier/fence operation that commits prior 
memory accesses and makes them visible to other threads before proceeding. 
Th reads can also use the atomic memory operations described in  Section B.4  to 
coordinate work on memory they share. 

   Shared memory 
 Per-CTA shared memory is only visible to the threads that belong to that CTA, 
and shared memory only occupies storage from the time a CTA is created to the 
time it terminates. Shared memory can therefore reside on-chip. Th is approach has 
many benefi ts. First, shared memory traff c does not need to compete with limited 
off -chip bandwidth needed for global memory references. Second, it is practical to 
build very high-bandwidth memory structures on-chip to support the read/write 
demands of each streaming multiprocessor. In fact, the shared memory is closely 
coupled to the streaming multiprocessor. 



B-40 Appendix B Graphics and Computing GPUs

 Each streaming multiprocessor contains eight physical thread processors. During 
one shared memory clock cycle, each thread processor can process two threads’ 
worth of instructions, so 16 threads’ worth of shared memory requests must be 
handled in each clock. Because each thread can generate its own addresses, and the 
addresses are typically unique, the shared memory is built using 16 independently 
addressable SRAM banks. For common access patterns, 16 banks are suffi  cient 
to maintain throughput, but pathological cases are possible; for example, all 16 
threads might happen to access a diff erent address on one SRAM bank. It must be 
possible to route a request from any thread lane to any bank of SRAM, so a 16-by-
16 interconnection network is required. 

   Local Memory 
 Per-thread local memory is private memory visible only to a single thread. Local 
memory is architecturally larger than the thread’s register fi le, and a program 
can compute addresses into local memory. To support large allocations of local 
memory (recall the total allocation is the per-thread allocation times the number 
of active threads), local memory is allocated in external DRAM. 

 Although global and per-thread local memory reside off -chip, they are well-
suited to being cached on-chip. 

   Constant Memory 
 Constant memory is read-only to a program running on the SM (it can be written 
via commands to the GPU). It is stored in external DRAM and cached in the SM. 
Because commonly most or all threads in a SIMT warp read from the same address 
in constant memory, a single address lookup per clock is suffi  cient. Th e constant 
cache is designed to broadcast scalar values to threads in each warp. 

   Texture Memory 
 Texture memory holds large read-only arrays of data. Textures for computing have 
the same attributes and capabilities as textures used with 3D graphics. Although 
textures are commonly two-dimensional images (2D arrays of pixel values), 1D 
(linear) and 3D (volume) textures are also available. 

 A compute program references a texture using a  tex  instruction. Operands 
include an identifi er to name the texture, and one, two, or three coordinates 
based on the texture dimensionality. Th e fl oating-point coordinates include a 
fractional portion that specifi es a sample location, oft en in-between texel locations. 
Noninteger coordinates invoke a bilinear weighted interpolation of the four closest 
values (for a 2D texture) before the result is returned to the program. 

 Texture fetches are cached in a streaming cache hierarchy designed to optimize 
throughput of texture fetches from thousands of concurrent threads. Some 
programs use texture fetches as a way to cache global memory. 



 B.6 Floating-point Arithmetic B-41

   Surfaces 
  Surface  is a generic term for a one-dimensional, two-dimensional, or three-
dimensional array of pixel values and an associated format. A variety of formats 
are defi ned; for example, a pixel may be defi ned as four 8-bit RGBA integer 
components, or four 16-bit fl oating-point components. A program kernel does 
not need to know the surface type. A  tex  instruction recasts its result values as 
fl oating-point, depending on the surface format. 

   Load/Store Access 
 Load/store instructions with integer byte addressing enable the writing and 
compiling of programs in conventional languages like C and C++. CUDA 
programs use load/store instructions to access memory. 

 To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same warp 
together into a single memory block request when the addresses fall in the same 
block and meet alignment criteria. Coalescing individual small memory requests 
into large block requests provides a signifi cant performance boost over separate 
requests. Th e large thread count, together with support for many outstanding load 
requests, helps cover load-to-use latency for local and global memory implemented 
in external DRAM. 

   ROP 
 As shown in  Figure B.2.5 , NVIDIA Tesla architecture GPUs comprise a scalable 
 streaming processor array  (SPA), which performs all of the GPU’s programmable 
calculations, and a scalable memory system, which comprises external DRAM 
control and fi xed function  Raster Operation Processors  (ROPs) that perform color 
and depth framebuff er operations directly on memory. Each ROP unit is paired 
with a specifi c memory partition. ROP partitions are fed from the SMs via an 
interconnection network. Each ROP is responsible for depth and stencil tests and 
updates, as well as color blending. Th e ROP and memory controllers cooperate 
to implement lossless color and depth compression (up to 8:1) to reduce external 
bandwidth demand. ROP units also perform atomic operations on memory. 

       B.6     Floating-point Arithmetic 

 GPUs today perform most arithmetic operations in the programmable processor 
cores using IEEE 754-compatible single precision 32-bit fl oating-point operations 
(see  Chapter 3 ). Th e fi xed-point arithmetic of early GPUs was succeeded by 16-bit, 
24-bit, and 32-bit fl oating-point, then IEEE 754-compatible 32-bit fl oating-point. 



B-42 Appendix B Graphics and Computing GPUs

Some fi xed-function logic within a GPU, such as texture-fi ltering hardware, 
continues to use proprietary numeric formats. Recent GPUs also provide IEEE 754- 
compatible double-precision 64-bit fl oating-point instructions. 

  Supported Formats 
 Th e IEEE 754 standard for fl oating-point arithmetic specifi es basic and storage 
formats. GPUs use two of the basic formats for computation, 32-bit and 64-bit 
binary fl oating-point, commonly called single precision and double precision. Th e 
standard also specifi es a 16-bit binary storage fl oating-point format,   half precision  . 
GPUs and the Cg shading language employ the narrow 16-bit half data format for 
effi  cient data storage and movement, while maintaining high dynamic range. GPUs 
perform many texture fi ltering and pixel blending computations at half precision 
within the texture fi ltering unit and the raster operations unit. Th e OpenEXR high 
dynamic-range image fi le format developed by  Industrial Light and Magic [2003]  
uses the identical half format for color component values in computer imaging and 
motion picture applications. 

     Basic Arithmetic 
 Common single-precision fl oating-point operations in GPU programmable cores 
include addition, multiplication,   multiply-add  , minimum, maximum, compare, 
set predicate, and conversions between integer and fl oating-point numbers. 
Floating-point instructions oft en provide source operand modifi ers for negation 
and absolute value. 

   Th e fl oating-point addition and multiplication operations of most GPUs today 
are compatible with the IEEE 754 standard for single precision FP numbers, 
including  not-a-number  (NaN) and infi nity values. Th e FP addition and 
multiplication operations use IEEE round-to-nearest-even as the default rounding 
mode. To increase fl oating-point instruction throughput, GPUs oft en use a 
compound multiply-add instruction ( mad ). Th e multiply-add operation performs 
FP multiplication with truncation, followed by FP addition with round-to-nearest-
even. It provides two fl oating-point operations in one issuing cycle, without 
requiring the instruction scheduler to dispatch two separate instructions, but the 
computation is not fused and truncates the product before the addition. Th is makes 
it diff erent from the fused multiply-add instruction discussed in  Chapter  3  and 
later in this section. GPUs typically fl ush denormalized source operands to sign-
preserved zero, and they fl ush results that underfl ow the target output exponent 
range to sign-preserved zero aft er rounding. 

   Specialized Arithmetic 
 GPUs provide hardware to accelerate special function computation, attribute 
interpolation, and texture fi ltering. Special function instructions include cosine, 

    half precision          A 16-bit 
binary fl oating-point 
format, with 1 sign bit, 
5-bit exponent, 10-bit 
fraction, and an implied 
integer bit.   

    multiply-add (MAD)      
      A single fl oating-point 
instruction that performs 
a compound operation: 
multiplication followed by 
addition.   



 B.6 Floating-point Arithmetic B-43

sine, binary exponential, binary logarithm, reciprocal, and reciprocal square root. 
Attribute interpolation instructions provide effi  cient generation of pixel attributes, 
derived from plane equation evaluation. Th e   special function unit (SFU)   
introduced in  Section B.4  computes special functions and interpolates planar 
attributes [ Oberman and Siu, 2005 ]. 

   Several methods exist for evaluating special functions in hardware. It has been 
shown that quadratic interpolation based on Enhanced Minimax Approximations 
is a very effi  cient method for approximating functions in hardware, including 
reciprocal, reciprocal square-root, log 2  x , 2  x  , sin, and cos. 

 We can summarize the method of SFU quadratic interpolation. For a binary 
input operand X with  n -bit signifi cand, the signifi cand is divided into two parts: 
X u  is the upper part containing  m  bits, and X l  is the lower part containing  n-m  bits. 
Th e upper  m  bits X u  are used to consult a set of three lookup tables to return three 
fi nite-word coeffi  cients C 0 , C 1 , and C 2 . Each function to be approximated requires 
a unique set of tables. Th ese coeffi  cients are used to approximate a given function 
f(X) in the range X u    ≤   X   <   X u    +   2 −m  by evaluating the expression:

  f X C C X C X( ) 0 1 1 2 1
2

     

 Th e accuracy of each of the function estimates ranges from 22 to 24 signifi cand 
bits. Example function statistics are shown in  Figure B.6.1   . 

 Th e IEEE 754 standard specifi es exact-rounding requirements for division 
and square root; however, for many GPU applications, exact compliance is not 
required. Rather, for those applications, higher computational throughput is more 
important than last-bit accuracy. For the SFU special functions, the CUDA math 
library provides both a full accuracy function and a fast function with the SFU 
instruction accuracy. 

 Another specialized arithmetic operation in a GPU is attribute interpolation. 
Key  attributes  are usually specifi ed for vertices of primitives that make up a scene 
to be rendered. Example attributes are color, depth, and texture coordinates. Th ese 
attributes must be interpolated in the (x,y) screen space as needed to determine the 

    special function unit 
(SFU)          A hardware unit 
that computes special 
functions and interpolates 
planar attributes.   

Function
Input 

interval
Accuracy

(good bits)
ULP*

error
% exactly 
rounded Monotonic

1/x [1, 2) 24.02 0.98 87 Yes

1/sqrt(x) [1, 4) 23.40 1.52 78 Yes

2x [0, 1) 22.51 1.41 74 Yes

log2x [1, 2) 22.57 N/A** N/A Yes

sin/cos [0, /2) 22.47 N/A N/A No

*ULP: unit in the last place. **N/A: not applicable.

 FIGURE B.6.1      Special function approximation statistics.     For the NVIDIA GeForce 8800  special 
function unit  (SFU).    



B-44 Appendix B Graphics and Computing GPUs

values of the attributes at each pixel location. Th e value of a given attribute  U  in an 
(x, y) plane can be expressed using plane equations of the form: 

  U x,y A x B Y Cu u u( )    

where  A ,  B , and  C  are interpolation parameters associated with each attribute  U . 
Th e interpolation parameters  A ,  B , and  C  are all represented as single-precision 
fl oating-point numbers. 

 Given the need for both a function evaluator and an attribute interpolator in a 
pixel shader processor, a single SFU that performs both functions for effi  ciency can 
be designed. Both functions use a sum of products operation to interpolate results, 
and the number of terms to be summed in both functions is very similar. 

  Texture Operations 

 Texture mapping and fi ltering is another key set of specialized fl oating-point 
arithmetic operations in a GPU. Th e operations used for texture mapping include:

   1.     Receive texture address (s, t) for the current screen pixel (x, y), where s and 
t are single-precision fl oating-point numbers.  

  2.     Compute the level of detail to identify the correct texture   MIP-map   level.  

  3.     Compute the trilinear interpolation fraction.  

  4.     Scale texture address (s, t) for the selected MIP-map level.  

  5.     Access memory and retrieve desired texels (texture elements).  

  6.     Perform fi ltering operation on texels.    

   Texture mapping requires a signifi cant amount of fl oating-point computation 
for full-speed operation, much of which is done at 16-bit half precision. As an 
example, the GeForce 8800 Ultra delivers about 500 GFLOPS of proprietary format 
fl oating-point computation for texture mapping instructions, in addition to its 
conventional IEEE single-precision fl oating-point instructions. For more details 
on texture mapping and fi ltering, see  Foley and van Dam [1995] . 

    Performance 
 Th e fl oating-point addition and multiplication arithmetic hardware is fully 
pipelined, and latency is optimized to balance delay and area. While pipelined, 
the throughput of the special functions is less than the fl oating-point addition   
and multiplication operations. Quarter-speed throughput for the special functions 
is typical performance in modern GPUs, with one SFU shared by four SP cores.   
In contrast, CPUs typically have signifi cantly lower throughput for similar 
functions, such as division and square root, albeit with more accurate results. Th e 
attribute interpolation hardware is typically fully pipelined to enable full-speed 
pixel shaders. 

    MIP-map          A Latin 
phrase  multum in parvo , 
or much in a small space. 
A MIP-map contains 
precalculated images of 
diff erent resolutions, used 
to increase rendering 
speed and reduce 
artifacts.   



 B.6 Floating-point Arithmetic B-45

   Double precision 
 Newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double-precision 
operations in hardware. Standard fl oating-point arithmetic operations in double 
precision include addition, multiplication, and conversions between diff erent 
fl oating-point and integer formats. Th e 2008 IEEE 754 fl oating-point standard 
includes specifi cation for the  fused-multiply-add  (FMA) operation, as discussed 
in  Chapter  3 . Th e FMA operation performs a fl oating-point multiplication 
followed by an addition, with a single rounding. Th e fused multiplication and 
addition operations retain full accuracy in intermediate calculations. Th is behavior 
enables more accurate fl oating-point computations involving the accumulation 
of products, including dot products, matrix multiplication, and polynomial 
evaluation. Th e FMA instruction also enables effi  cient soft ware implementations 
of exactly rounded division and square root, removing the need for a hardware 
division or square root unit. 

 A double-precision hardware FMA unit implements 64-bit addition, 
multiplication, conversions, and the FMA operation itself. Th e architecture of a 

Multiplier Array
53 x 53 Exp

Diff 

B CA

Carry Propagate Adder

64

Alignment
shifter 

Inversion

3-2 CSA  161 bits

Complementer

Normalizer

Rounder

53

Sum Carry Shifted
C

161

64 64

53 53

Sum Carry

 FIGURE B.6.2      Double-precision fused-multiply-add (FMA) unit.     Hardware to implement 
fl oating-point A×   B+   C for double precision.    



B-46 Appendix B Graphics and Computing GPUs

double-precision FMA unit enables full-speed denormalized number support on 
both inputs and outputs.  Figure B.6.2    shows a block diagram of an FMA unit. 

 As shown in  Figure B.6.2 , the signifi cands of A and B are multiplied to form a 106-
bit product, with the results left  in carry-save form. In parallel, the 53-bit addend C is 
conditionally inverted and aligned to the 106-bit product. Th e sum and carry results 
of the 106-bit product are summed with the aligned addend through a 161-bit-
wide  carry-save adder  (CSA). Th e carry-save output is then summed together in 
a carry-propagate adder to produce an unrounded result in nonredundant, two’s 
complement form. Th e result is conditionally recomplemented, so as to return a 
result in sign-magnitude form. Th e complemented result is normalized, and then it 
is rounded to fi t within the target format. 

       B.7     Real Stuff: The NVIDIA GeForce 8800 

 Th e NVIDIA GeForce 8800 GPU, introduced in November 2006, is a unifi ed vertex 
and pixel processor design that also supports parallel computing applications written 
in C using the CUDA parallel programming model. It is the fi rst implementation 
of the Tesla unifi ed graphics and computing architecture described in  Section B.4  
and in  Lindholm et al. [2008] . A family of Tesla architecture GPUs addresses the 
diff erent needs of laptops, desktops, workstations, and servers. 

  Streaming Processor Array (SPA) 
 Th e GeForce 8800 GPU shown in  Figure B.7.1    contains 128  streaming processor  (SP) 
cores organized as 16  streaming multiprocessors  (SMs). Two SMs share a texture 
unit in each  texture/processor cluster  (TPC). An array of eight TPCs makes up the 
 streaming processor array  (SPA), which executes all graphics shader programs and 
computing programs. 

 Th e host interface unit communicates with the host CPU via the PCI-Express 
bus, checks command consistency, and performs context switching. Th e input 
assembler collects geometric primitives (points, lines, triangles). Th e work 
distribution blocks dispatch vertices, pixels, and compute thread arrays to the 
TPCs in the SPA. Th e TPCs execute vertex and geometry shader programs and 
computing programs. Output geometric data are sent to the viewport/clip/setup/
raster/zcull block to be rasterized into pixel fragments that are then redistributed 
back into the SPA to execute pixel shader programs. Shaded pixels are sent across 
the interconnection network for processing by the ROP units. Th e network also 
routes texture memory read requests from the SPA to DRAM and reads data from 
DRAM through a level-2 cache back to the SPA. 



 B.7 Real Stuff: The NVIDIA GeForce 8800 B-47

   Texture/Processor Cluster (TPC) 
 Each TPC contains a geometry controller, an SMC, two SMs, and a texture unit as 
shown in  Figure B.7.2   . 

 Th e geometry controller maps the logical graphics vertex pipeline into recir-
culation on the physical SMs by directing all primitive and vertex attribute and 
topology fl ow in the TPC. 

 Th e SMC controls multiple SMs, arbitrating the shared texture unit, load/store 
path, and I/O path. Th e SMC serves three graphics workloads simultaneously: 
vertex, geometry, and pixel. 

 Th e texture unit processes a texture instruction for one vertex, geometry, or pixel 
quad, or four compute threads per cycle. Texture instruction sources are texture 
coordinates, and the outputs are weighted samples, typically a four-component 
(RGBA) fl oating-point color. Th e texture unit is deeply pipelined. Although it 
contains a streaming cache to capture fi ltering locality, it streams hits mixed with 
misses without stalling. 

GPU

Host CPU System Memory

DRAM DRAM DRAM DRAM DRAM DRAM

ROP L2 ROP L2 ROP L2 ROP L2 ROP L2 ROP L2

TPC

SPA

TPC TPC TPC TPC TPC TPC TPC

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

Vertex Work
Distribution 

Input Assembler

Host Interface

Bridge

Pixel Work
Distribution 

Viewport/Clip/
Setup/Raster/ 

ZCull

Compute Work
Distribution

Interconnection Network

Interface

Display

High-Definition
Video Processors

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

 FIGURE B.7.1      NVIDIA Tesla unifi ed graphics and computing GPU architecture.     Th is GeForce 8800 has 128  streaming processor  
(SP) cores in 16  streaming multiprocessors  (SMs), arranged in eight  texture/processor clusters  (TPCs). Th e processors connect with six 64-bit-
wide DRAM partitions via an interconnection network. Other GPUs implementing the Tesla architecture vary the number of SP cores, SMs, 
DRAM partitions, and other units.    



B-48 Appendix B Graphics and Computing GPUs

   Streaming Multiprocessor (SM) 
 Th e SM is a unifi ed graphics and computing multiprocessor that executes vertex, 
geometry, and pixel-fragment shader programs and parallel computing programs. 
Th e SM consists of eight SP thread processor cores, two SFUs, a multithreaded 
instruction fetch and issue unit (MT issue), an instruction cache, a read-only 
constant cache, and a 16     KB read/write shared memory. It executes scalar 
instructions for individual threads. 

 Th e GeForce 8800 Ultra clocks the SP cores and SFUs at 1.5     GHz, for a peak of 
36 GFLOPS per SM. To optimize power and area effi  ciency, some SM nondatapath 
units operate at half the SP clock rate. 

SMC

Geometry Controller

TPC

Texture Unit

Tex L1

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

I-Cache

MT Issue

C-Cache

SFU SFU

SM

SM SM

SP

SP

SP

SP SP

SP

SP

SP

 FIGURE B.7.2      Texture/processor cluster (TPC) and a streaming multiprocessor (SM).     Each SM has eight  streaming processo r 
(SP) cores, two SFUs, and a shared memory.    



 B.7 Real Stuff: The NVIDIA GeForce 8800 B-49

 To effi  ciently execute hundreds of parallel threads while running several diff erent 
programs, the SM is hardware multithreaded. It manages and executes up to 768 
concurrent threads in hardware with zero scheduling overhead. Each thread has its 
own thread execution state and can execute an independent code path. 

 A warp consists of up to 32 threads of the same type—vertex, geometry, pixel, 
or compute. Th e SIMT design, previously described in  Section B.4 , shares the SM 
instruction fetch and issue unit effi  ciently across 32 threads but requires a full warp 
of active threads for full performance effi  ciency. 

 Th e SM schedules and executes multiple warp types concurrently. Each issue 
cycle, the scheduler selects one of the 24 warps to execute a SIMT warp instruction. 
An issued warp instruction executes as four sets of eight threads over four processor 
cycles. Th e SP and SFU units execute instructions independently, and by issuing 
instructions between them on alternate cycles, the scheduler can keep both fully 
occupied. A scoreboard qualifi es each warp for issue each cycle. Th e instruction 
scheduler prioritizes all ready warps and selects the one with highest priority for 
issue. Prioritization considers warp type, instruction type, and “fairness” to all 
warps executing in the SM. 

 Th e SM executes  cooperative thread arrays  (CTAs) as multiple concurrent warps 
which access a shared memory region allocated dynamically for the CTA. 

   Instruction Set 
 Th reads execute scalar instructions, unlike previous GPU vector instruction 
architectures. Scalar instructions are simpler and compiler-friendly. Texture 
instructions remain vector-based, taking a source coordinate vector and returning 
a fi ltered color vector. 

 Th e register-based instruction set includes all the fl oating-point and integer 
arithmetic, transcendental, logical, fl ow control, memory load/store, and texture 
instructions listed in the PTX instruction table of  Figure B.4.3 . Memory load/store 
instructions use integer byte addressing with register-plus-off set address arithmetic. 
For computing, the load/store instructions access three read-write memory spaces: 
local memory for per-thread, private, temporary data; shared memory for low-
latency per-CTA data shared by the threads of the CTA; and global memory for data 
shared by all threads. Computing programs use the fast barrier synchronization 
 bar.sync  instruction to synchronize threads within a CTA that communicate 
with each other via shared and global memory. Th e latest Tesla architecture GPUs 
implement PTX atomic memory operations, which facilitate parallel reductions 
and parallel data structure management. 

   Streaming Processor (SP) 
 Th e multithreaded SP core is the primary thread processor, as introduced in 
 Section B.4 . Its register fi le provides 1024 scalar 32-bit registers for up to 96 threads 
(more threads than in the example SP of  Section B.4 ). Its fl oating-point add and 



B-50 Appendix B Graphics and Computing GPUs

multiply operations are compatible with the IEEE 754 standard for single-precision 
FP numbers, including  not-a-number  (NaN) and infi nity. Th e add and multiply 
operations use IEEE round-to-nearest-even as the default rounding mode. Th e SP 
core also implements all of the 32-bit and 64-bit integer arithmetic, comparison, 
conversion, and logical PTX instructions in  Figure B.4.3 . Th e processor is fully 
pipelined, and latency is optimized to balance delay and area. 

   Special Function Unit (SFU) 
 Th e SFU supports computation of both transcendental functions and planar 
attribute interpolation. As described in  Section B.6 , it uses quadratic interpolation 
based on enhanced minimax approximations to approximate the reciprocal, 
reciprocal square root, log 2  x , 2  x  , and sin/cos functions at one result per cycle. Th e 
SFU also supports pixel attribute interpolation such as color, depth, and texture 
coordinates at four samples per cycle. 

   Rasterization 
 Geometry primitives from the SMs go in their original round-robin input order 
to the viewport/clip/setup/raster/zcull block. Th e viewport and clip units clip 
the primitives to the view frustum and to any enabled user clip planes, and then 
transform the vertices into screen (pixel) space. 

 Surviving primitives then go to the setup unit, which generates edge equations 
for the rasterizer. A coarse-rasterization stage generates all pixel tiles that are at 
least partially inside the primitive. Th e zcull unit maintains a hierarchical  z  surface, 
rejecting pixel tiles if they are conservatively known to be occluded by previously 
drawn pixels. Th e rejection rate is up to 256 pixels per clock. Pixels that survive zcull 
then go to a fi ne-rasterization stage that generates detailed coverage information 
and depth values. 

 Th e depth test and update can be performed ahead of the fragment shader, or 
aft er, depending on current state. Th e SMC assembles surviving pixels into warps 
to be processed by an SM running the current pixel shader. Th e SMC then sends 
surviving pixel and associated data to the ROP. 

   Raster Operations Processor (ROP) and Memory System 
 Each ROP is paired with a specifi c memory partition. For each pixel fragment 
emitted by a pixel shader program, ROPs perform depth and stencil testing and 
updates, and in parallel, color blending and updates. Lossless color compression 
(up to 8:1) and depth compression (up to 8:1) are used to reduce DRAM bandwidth. 
Each ROP has a peak rate of four pixels per clock and supports 16-bit fl oating-
point and 32-bit fl oating-point HDR formats. ROPs support double-rate-depth 
processing when color writes are disabled. 



 B.7 Real Stuff: The NVIDIA GeForce 8800 B-51

 Antialiasing support includes up to 16×   multisampling and supersampling. Th e 
 coverage-sampling antialiasing  (CSAA) algorithm computes and stores Boolean 
coverage at up to 16 samples and compresses redundant color, depth, and stencil 
information into the memory footprint and a bandwidth of four or eight samples 
for improved performance. 

 Th e DRAM memory data bus width is 384 pins, arranged in six independent 
partitions of 64 pins each. Each partition supports double-data-rate DDR2 and 
graphics-oriented GDDR3 protocols at up to 1.0     GHz, yielding a bandwidth of 
about 16     GB/s per partition, or 96     GB/s. 

 Th e memory controllers support a wide range of DRAM clock rates, protocols, 
device densities, and data bus widths. Texture and load/store requests can occur 
between any TPC and any memory partition, so an interconnection network routes 
requests and responses. 

   Scalability 
 Th e Tesla unifi ed architecture is designed for scalability. Varying the number of 
SMs, TPCs, ROPs, caches, and memory partitions provides the right balance for 
diff erent performance and cost targets in GPU market segments.  Scalable link 
interconnect  (SLI) connects multiple GPUs, providing further scalability. 

   Performance 
 Th e GeForce 8800 Ultra clocks the SP thread processor cores and SFUs at 1.5     GHz, 
for a theoretical operation peak of 576 GFLOPS. Th e GeForce 8800 GTX has a 1.35     GHz 
processor clock and a corresponding peak of 518 GFLOPS. 

 Th e following three sections compare the performance of a GeForce 8800 GPU 
with a multicore CPU on three diff erent applications—dense linear algebra, fast 
Fourier transforms, and sorting. Th e GPU programs and libraries are compiled 
CUDA C code. Th e CPU code uses the single-precision multithreaded Intel MKL 
10.0 library to leverage SSE instructions and multiple cores. 

   Dense Linear Algebra Performance 
 Dense linear algebra computations are fundamental in many applications.  Volkov 
and Demmel [2008]  present GPU and CPU performance results for single-
precision dense matrix-matrix multiplication (the SGEMM routine) and LU, 
QR, and Cholesky matrix factorizations.  Figure B.7.3    compares GFLOPS rates on 
SGEMM dense matrix-matrix multiplication for a GeForce 8800 GTX GPU with a 
quad-core CPU.  Figure B.7.4    compares GFLOPS rates on matrix factorization for a 
GPU with a quad-core CPU. 

 Because SGEMM matrix-matrix multiply and similar BLAS3 routines are the 
bulk of the work in matrix factorization, their performance sets an upper bound on 
factorization rate. As the matrix order increases beyond 200 to 400, the factorization 



B-52 Appendix B Graphics and Computing GPUs

210

180

150

120

90

60

30

0

G
F

LO
P

S

N
64 128 256 512 1024 2048 4096 8192

A:N�N, B:N�N A:N�64, B:64�N

GeForce 8800 GTX

Core2 Quad

 FIGURE B.7.3      SGEMM dense matrix-matrix multiplication performance rates.     Th e graph 
shows single-precision GFLOPS rates achieved in multiplying square N×N matrices (solid lines) and thin   
N ×64 and 64×N matrices (dashed lines). Adapted from Figure 6 of  Volkov and Demmel [2008] . Th e black 
lines are a 1.35     GHz GeForce 8800 GTX using Volkov’s SGEMM code (now in NVIDIA CUBLAS 2.0) on 
matrices in GPU memory. Th e blue lines are a quad-core 2.4     GHz Intel Core2 Quad Q6600, 64-bit Linux, 
Intel MKL 10.0 on matrices in CPU memory.    

LU Cholesky QR

Core2 Quad

210

180

150

120

90

60

30

0

Order of Matrix

G
F

LO
P

S

G
eF

or
ce

 8
80

0 
G

TX
 +

 C
or

e2
 D

uo

64 128 256 512 1024 2048 4096 8192 16,384

 FIGURE B.7.4      Dense matrix factorization performance rates.     Th e graph shows GFLOPS rates 
achieved in matrix factorizations using the GPU and using the CPU alone. Adapted from Figure 7 of  Volkov 
and Demmel [2008] . Th e black lines are for a 1.35     GHz NVIDIA GeForce 8800 GTX, CUDA 1.1, Windows 
XP attached to a 2.67     GHz Intel Core2 Duo E6700 Windows XP, including all CPU–GPU data transfer times. 
Th e blue lines are for a quad-core 2.4     GHz Intel Core2 Quad Q6600, 64-bit Linux, Intel MKL 10.0.    



 B.7 Real Stuff: The NVIDIA GeForce 8800 B-53

problem becomes large enough that SGEMM can leverage the GPU parallelism and 
overcome the CPU–GPU system and copy overhead. Volkov’s SGEMM matrix-
matrix multiply achieves 206 GFLOPS, about 60% of the GeForce 8800 GTX peak 
multiply-add rate, while the QR factorization reached 192 GFLOPS, about 4.3 
times the quad-core CPU. 

   FFT Performance 
 Fast Fourier Transforms (FFTs) are used in many applications. Large transforms 
and multidimensional transforms are partitioned into batches of smaller 1D 
transforms. 

  Figure B.7.5    compares the in-place 1D complex single-precision FFT   
performance of a 1.35     GHz GeForce 8800 GTX (dating from late 2006) with a 
2.8     GHz quad-Core Intel Xeon E5462 series (code named “Harpertown,” dating 
from late 2007). CPU performance was measured using the Intel  Math Kernel 
Library  (MKL) 10.0 FFT with four threads. GPU performance was measured using 
the NVIDIA CUFFT 2.1 library and batched 1D radix-16 decimation-in-frequency 
FFTs. Both CPU and GPU throughput performance was measured using batched 
FFTs; batch size was 2 24 / n , where  n  is the transform size. Th us, the workload for 
every transform size was 128     MB. To determine GFLOPS rate, the number of 
operations per transform was taken as 5 n  log 2   n . 

80

GeForce 8800GTX Xeon 5462

70

G
F

LO
P

S

60

50

40

30

20

10

Number of Elements in One Transform

0

128
256 512

1024
2048

4096
8192

16,384
32,768

65,536

131,072

262,144

524, 288

1,048,576

2,097,152

4,194,304

 FIGURE B.7.5      Fast Fourier transform throughput performance.     Th e graph compares the 
performance of batched one-dimensional in-place complex FFTs on a 1.35     GHz GeForce 8800 GTX with a 
quad-core 2.8     GHz Intel Xeon E5462 series (code named “Harpertown”), 6MB L2 Cache, 4GB Memory, 1600 
FSB, Red Hat Linux, Intel MKL 10.0.    



B-54 Appendix B Graphics and Computing GPUs

   Sorting Performance 
 In contrast to the applications just discussed, sort requires far more substantial 
coordination among parallel threads, and parallel scaling is correspondingly 
harder to obtain. Nevertheless, a variety of well-known sorting algorithms can 
be effi  ciently parallelized to run well on the GPU.  Satish et  al. [2008]  detail the 
design of sorting algorithms in CUDA, and the results they report for radix sort 
are summarized below. 

  Figure B.7.6    compares the parallel sorting performance of a GeForce 8800 Ultra 
with an 8-core Intel Clovertown system, both of which date to early 2007. Th e 
CPU cores are distributed between two physical sockets. Each socket contains a 
multichip module with twin Core2 chips, and each chip has a 4MB L2 cache. All 
sorting routines were designed to sort key-value pairs where both keys and values 
are 32-bit integers. Th e primary algorithm being studied is radix sort, although 
the quicksort-based  parallel_sort()  procedure provided by Intel’s Th reading 
Building Blocks is also included for comparison. Of the two CPU-based radix sort 
codes, one was implemented using only the scalar instruction set and the other 
utilizes carefully hand-tuned assembly language routines that take advantage of the 
SSE2 SIMD vector instructions. 

 Th e graph itself shows the achieved sorting rate—defi ned as the number of 
elements sorted divided by the time to sort—for a range of sequence sizes. It is 

0

10

20

30

40

50

60

70

80

1000 10,000 100,000 1,000,000 10,000,000 100,000,000

M
ill

io
ns

Sequence Size

S
or

tin
g 

R
at

e 
(p

ai
rs

/s
ec

)

CPU quick sort CPU radix sort (scalar)
GPU radix sort CPU radix sort (SIMD)

 FIGURE B.7.6      Parallel sorting performance.     Th is graph compares sorting rates for parallel radix sort 
implementations on a 1.5     GHz GeForce 8800 Ultra and an 8-core 2.33     GHz Intel Core2 Xeon E5345 system.    



 B.8 Real Stuff: Mapping Applications to GPUs B-55

apparent from this graph that the GPU radix sort achieved the highest sorting 
rate for all sequences of 8K-elements and larger. In this range, it is on average 2.6 
times faster than the quicksort-based routine and roughly two times faster than the 
radix sort routines, all of which were using the eight available CPU cores. Th e CPU 
radix sort performance varies widely, likely due to poor cache locality of its global 
permutations. 

       B.8     Real Stuff: Mapping Applications to GPUs 

 Th e advent of multicore CPUs and manycore GPUs means that mainstream 
processor chips are now parallel systems. Furthermore, their parallelism continues 
to scale with Moore’s law. Th e challenge is to develop mainstream visual computing 
and high-performance computing applications that transparently scale their 
parallelism to leverage the increasing number of processor cores, much as 3D 
graphics applications transparently scale their parallelism to GPUs with widely 
varying numbers of cores. 

 Th is section presents examples of mapping scalable parallel computing 
applications to the GPU using CUDA. 

  Sparse Matrices 
 A wide variety of parallel algorithms can be written in CUDA in a fairly 
straightforward manner, even when the data structures involved are not simple 
regular grids.  Sparse matrix-vector multiplication  (SpMV) is a good example of an 
important numerical building block that can be parallelized quite directly using the 
abstractions provided by CUDA. Th e kernels we discuss below, when combined 
with the provided CUBLAS vector routines, make writing iterative solvers such as 
the conjugate gradient method straightforward. 

 A sparse  n    ×    n  matrix is one in which the number of nonzero entries  m  is only 
a small fraction of the total. Sparse matrix representations seek to store only the 
nonzero elements of a matrix. Since it is fairly typical that a sparse  n    ×    n  matrix 
will contain only  m=    O( n ) nonzero elements, this represents a substantial saving   
in storage space and processing time. 

 One of the most common representations for general unstructured sparse 
matrices is the  compressed sparse row  (CSR) representation. Th e  m  nonzero 
elements of the matrix  A  are stored in row-major order in an array  Av . A second 
array  Aj  records the corresponding column index for each entry of  Av . Finally, an 
array  Ap  of  n+    1 elements records the extent of each row in the previous arrays; the 
entries for row  i  in  Aj  and  Av  extend from index  Ap[i]  up to, but not including, 
index  Ap[i + 1] . Th is implies that  Ap[0]  will always be 0 and  Ap[n]  will always 
be the number of nonzero elements in the matrix.  Figure B.8.1    shows an example 
of the CSR representation of a simple matrix. 



B-56 Appendix B Graphics and Computing GPUs

 Given a matrix  A  in CSR form and a vector  x , we can compute a single row of 
the product  y    =    Ax  using the  multiply_row()  procedure shown in  Figure B.8.2   . 
Computing the full product is then simply a matter of looping over all rows and 
computing the result for that row using  multiply_row() , as in the serial C code 
shown in  Figure B.8.3   . 

 Th is algorithm can be translated into a parallel CUDA kernel quite easily. We 
simply spread the loop in  csrmul_serial()  over many parallel threads. Each 
thread will compute exactly one row of the output vector  y . Th e code for this kernel 
is shown in  Figure B.8.4   . Note that it looks extremely similar to the serial loop 
used in the  csrmul_serial()  procedure. Th ere are really only two points of 
diff erence. First, the row index for each thread is computed from the block and 
thread indices assigned to each thread, eliminating the for-loop. Second, we have a 
conditional that only evaluates a row product if the row index is within the bounds 
of the matrix (this is necessary since the number of rows  n  need not be a multiple 
of the block size used in launching the kernel). 

3
0
0
1

A

a. Sample matrix A

0
0
2
0 0

4 1
1

0 0
1 0

=

Row 0

b. CSR representation of matrix

Row 2 Row 3
Av[7] =

=

=

Aj[7]

{ }

}

}

{

{Ap[5] 0

3

0 2 1 2 3 0 3

1 2 4 1 1 1

2 2 5 7

 FIGURE B.8.1      Compressed sparse row (CSR) matrix.    

float multiply_row(unsigned int rowsize,
                   unsigned int *Aj, // column indices for row
                   float *Av,        // nonzero entries for row
                   float *x)         // the RHS vector
{
    float sum = 0;

    for(unsigned int column=0; column<rowsize; ++column)
        sum += Av[column] * x[Aj[column]];

    return sum;
}

 FIGURE B.8.2      Serial C code for a single row of sparse matrix-vector multiply.    



 B.8 Real Stuff: Mapping Applications to GPUs B-57

 Assuming that the matrix data structures have already been copied to the GPU 
device memory, launching this kernel will look like: 

  unsigned int blocksize = 128;     // or any size up to 512  
  unsigned int nblocks = (num_rows + blocksize - 1) / blocksize;  
  csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, num_rows, x, y);  

void csrmul_serial(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   float *x, float *y)
{
    for(unsigned int row=0; row<num_rows; ++row)
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];

        y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
                              Av+row_begin, x);
    }
}

 FIGURE B.8.3      Serial code for sparse matrix-vector multiply.    

__global__
void csrmul_kernel(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   float *x, float *y)
{
    unsigned int row = blockIdx.x*blockDim.x + threadIdx.x;

    if( row<num_rows )
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];

        y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
                              Av+row_begin, x);
    }
}

 FIGURE B.8.4      CUDA version of sparse matrix-vector multiply.    



B-58 Appendix B Graphics and Computing GPUs

 Th e pattern that we see here is a very common one. Th e original serial 
algorithm is a loop whose iterations are independent of each other. Such loops 
can be parallelized quite easily by simply assigning one or more iterations of the 
loop to each parallel thread. Th e programming model provided by CUDA makes 
expressing this type of parallelism particularly straightforward. 

 Th is general strategy of decomposing computations into blocks of independent 
work, and more specifi cally breaking up independent loop iterations, is not unique 
to CUDA. Th is is a common approach used in one form or another by various 
parallel programming systems, including OpenMP and Intel’s Th reading Building 
Blocks. 

   Caching in Shared Memory 
 Th e SpMV algorithms outlined above are fairly simplistic. Th ere are a number of 
optimizations that can be made in both the CPU and GPU codes that can improve 
performance, including loop unrolling, matrix reordering, and register blocking. 
Th e parallel kernels can also be reimplemented in terms of data parallel  scan  
operations presented by Sengupta et al. [2007]. 

 One of the important architectural features exposed by CUDA is the presence of 
the per-block shared memory, a small on-chip memory with very low latency. Taking 
advantage of this memory can deliver substantial performance improvements. One 
common way of doing this is to use shared memory as a soft ware-managed cache 
to hold frequently reused data. Modifcations using shared memory are shown in 
 Figure B.8.5   . 

 In the context of sparse matrix multiplication, we observe that several rows of  A  
may use a particular array element  x[i] . In many common cases, and particularly 
when the matrix has been reordered, the rows using  x[i]  will be rows near row  i . 
We can therefore implement a simple caching scheme and expect to achieve some 
performance benefi t. Th e block of threads processing rows  i  through  j  will load 
 x[i]  through  x[j]  into its shared memory. We will unroll the  multiply_row()  
loop and fetch elements of  x  from the cache whenever possible. Th e resulting 
code is shown in  Figure B.8.5 . Shared memory can also be used to make other 
optimizations, such as fetching  Ap[row+1]  from an adjacent thread rather than 
refetching it from memory. 

 Because the Tesla architecture provides an explicitly managed on-chip shared 
memory, rather than an implicitly active hardware cache, it is fairly common to add 
this sort of optimization. Although this can impose some additional development 
burden on the programmer, it is relatively minor, and the potential performance 
benefi ts can be substantial. In the example shown above, even this fairly simple 
use of shared memory returns a roughly 20% performance improvement on 
representative matrices derived from 3D surface meshes. Th e availability of an 
explicitly managed memory in lieu of an implicit cache also has the advantage 
that caching and prefetching policies can be specifi cally tailored to the application 
needs. 



 B.8 Real Stuff: Mapping Applications to GPUs B-59

__global__ 
void csrmul_cached(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   const float *x, float *y)
{
    // Cache the rows of x[] corresponding to this block.
    __shared__ float cache[blocksize];

    unsigned int block_begin = blockIdx.x * blockDim.x;
    unsigned int block_end   = block_begin + blockDim.x;
    unsigned int row         = block_begin + threadIdx.x;

    // Fetch and cache our window of x[].
    if( row<num_rows)  cache[threadIdx.x] = x[row];
    __syncthreads();

    if( row<num_rows )
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];
        float sum = 0, x_j;

        for(unsigned int col=row_begin; col<row_end; ++col)
        {
            unsigned int j = Aj[col];
            
            // Fetch x_j from our cache when possible
            if( j>=block_begin && j<block_end )
                x_j = cache[j-block_begin];
            else
                x_j = x[j];

            sum += Av[col] * x_j;
        }

        y[row] = sum;
    }
}

 FIGURE B.8.5      Shared memory version of sparse matrix-vector multiply.    



B-60 Appendix B Graphics and Computing GPUs

 Th ese are fairly simple kernels whose purpose is to illustrate basic techniques 
in writing CUDA programs, rather than how to achieve maximal performance. 
Numerous possible avenues for optimization are available, several of which are 
explored by Williams et al. [2007] on a handful of diff erent multicore architectures. 
Nevertheless, it is still instructive to examine the comparative performance of even 
these simplistic kernels. On a 2     GHz Intel Core2 Xeon E5335 processor, the  csrmul_
serial()  kernel runs at roughly 202 million nonzeros processed per second, for 
a collection of Laplacian matrices derived from 3D triangulated surface meshes. 
Parallelizing this kernel with the  parallel_for  construct provided by Intel’s 
Th reading Building Blocks produces parallel speed-ups of 2.0, 2.1, and 2.3 running 
on two, four, and eight cores of the machine, respectively. On a GeForce 8800 Ultra, 
the  csrmul_kernel()  and  csrmul_cached()  kernels achieve processing rates 
of roughly 772 and 920 million nonzeros per second, corresponding to parallel 
speed-ups of 3.8 and 4.6 times over the serial performance of a single CPU core. 

   Scan and Reduction 
 Parallel  scan , also known as parallel  prefi x sum , is one of the most important 
building blocks for data-parallel algorithms [Blelloch, 1990]. Given a sequence  a  
of  n  elements:

  [ , , , ]a a an0 1 1… �    

and a binary associative operator  ⊕ , the  scan  function computes the sequence:

  scan( , ) [ ,( ), ,( )]a a a a a a an⊕ ⊕ … ⊕ ⊕…⊕0 0 1 0 1 1     

 As an example, if we take  ⊕  to be the usual addition operator, then applying scan 
to the input array

  a � [ ]317 0 416 3    

will produce the sequence of partial sums:

  scan( , ) [ ]a 3 411111516 22 25     

 Th is scan operator is an  inclusive  scan, in the sense that element  i  of the output 
sequence incorporates element  a  i  of the input. Incorporating only previous elements 
would yield an  exclusive  scan operator, also known as a  prefi x-sum  operation. 

 Th e serial implementation of this operation is extremely simple. It is simply a 
loop that iterates once over the entire sequence, as shown in  Figure B.8.6   . 

 At fi rst glance, it might appear that this operation is inherently serial. However, 
it can actually be implemented in parallel effi  ciently. Th e key observation is that 



 B.8 Real Stuff: Mapping Applications to GPUs B-61

because addition is associative, we are free to change the order in which elements 
are added together. For instance, we can imagine adding pairs of consecutive 
elements in parallel, and then adding these partial sums, and so on. 

 One simple scheme for doing this is from Hillis and Steele [1989]. An 
implementation of their algorithm in CUDA is shown in  Figure B.8.7   . It assumes 
that the input array  x[ ]  contains exactly one element per thread of the thread 
block. It performs log 2   n  iterations of a loop collecting partial sums together. 

 To understand the action of this loop, consider  Figure B.8.8   , which illustrates 
the simple case for  n =8 threads and elements. Each level of the diagram represents 
one step of the loop. Th e lines indicate the location from which the data are being 
fetched. For each element of the output (i.e., the fi nal row of the diagram) we are 
building a summation tree over the input elements. Th e edges highlighted in blue 
show the form of this summation tree for the fi nal element. Th e leaves of this tree 
are all the initial elements. Tracing back from any output element shows that it 
incorporates all input values up to and including itself. 

template<class T>
__host__ T plus_scan(T *x, unsigned int n)
{
    for(unsigned int i=1; i<n; ++i)
        x[i] = x[i-1] + x[i];
}

 FIGURE B.8.6      Template for serial plus-scan.    

template<class T>
__device__ T plus_scan(T *x)
{
    unsigned int i = threadIdx.x;
    unsigned int n = blockDim.x;

    for(unsigned int offset=1; offset<n; offset *= 2)
    {
        T t;

        if(i>=offset)  t = x[i-offset];
        __syncthreads();

        if(i>=offset)  x[i] = t + x[i];
        __syncthreads();
    }
    return x[i];
}

 FIGURE B.8.7      CUDA template for parallel plus-scan.    



B-62 Appendix B Graphics and Computing GPUs

 While simple, this algorithm is not as effi  cient as we would like. Examining 
the serial implementation, we see that it performs  O(n)  additions. Th e parallel 
implementation, in contrast, performs  O(n  log  n)  additions. For this reason, it 
is not  work effi  cient , since it does more work than the serial implementation to 
compute the same result. Fortunately, there are other techniques for implementing 
scan that are work-effi  cient. Details on more effi  cient implementation techniques 
and the extension of this per-block procedure to multiblock arrays are provided by 
Sengupta et al. [2007]. 

 In some instances, we may only be interested in computing the sum of all 
elements in an array, rather than the sequence of all prefi x sums returned by  scan . 
Th is is the  parallel reduction  problem. We could simply use a scan algorithm to 
perform this computation, but reduction can generally be implemented more 
effi  ciently than scan. 

  Figure B.8.9    shows the code for computing a reduction using addition. In this 
example, each thread simply loads one element of the input sequence (i.e., it initially 
sums a subsequence of length 1). At the end of the reduction, we want thread 0 to 
hold the sum of all elements initially loaded by the threads of its block. Th e loop in 
this kernel implicitly builds a summation tree over the input elements, much like 
the scan algorithm above. 

 At the end of this loop, thread 0 holds the sum of all the values loaded by this block. 
If we want the fi nal value of the location pointed to by  total  to contain the total of all 
elements in the array, we must combine the partial sums of all the blocks in the grid. 
One strategy to do this would be to have each block write its partial sum into a second 
array and then launch the reduction kernel again, repeating the process until we had 
reduced the sequence to a single value. A more attractive alternative supported by 
the Tesla GPU architecture is to use the  atomicAdd()  primitive, an effi  cient atomic 

x[0]

x[0]

x[0]

x[0]

x[1]

x[1]

x[1]

x[1]

x[2]

x[2]

x[2]

x[2]

x[3]

x[3]

x[3]

x[3]

x[4]

x[4]

x[4]

x[4]

x[5]

x[5]

x[5]

x[6]

x[6]

x[6]

x[5] x[6] x[7]

x[7] x [ i ]  + = x [ i – 1 ] ;

x [ i ]  + = x [ i – 2 ] ;

x [ i ]  + = x [ i – 4 ] ;

x[7]

x[7]

 FIGURE B.8.8      Tree-based parallel scan data references.    



 B.8 Real Stuff: Mapping Applications to GPUs B-63

read-modify-write primitive supported by the memory subsystem. Th is eliminates 
the need for additional temporary arrays and repeated kernel launches. 

 Parallel reduction is an essential primitive for parallel programming and 
highlights the importance of per-block shared memory and low-cost barriers in 
making cooperation among threads effi  cient. Th is degree of data shuffl  ing among 
threads would be prohibitively expensive if done in off -chip global memory. 

   Radix Sort 
 One important application of scan primitives is in the implementation of sorting 
routines. Th e code in  Figure B.8.10    implements a radix sort of integers across a 
single thread block. It accepts as input an array  values  containing one 32-bit 
integer for each thread of the block. For effi  ciency, this array should be stored in 
per-block shared memory, but this is not required for the sort to behave correctly. 

 Th is is a fairly simple implementation of radix sort. It assumes the availability of 
a procedure  partition_by_bit()  that will partition the given array such that 

__global__
void plus_reduce(int *input, unsigned int N, int *total)
{
    unsigned int tid = threadIdx.x;
    unsigned int i   = blockIdx.x*blockDim.x + threadIdx.x;

    // Each block loads its elements into shared memory, padding
    // with 0 if N is not a multiple of blocksize
    __shared__ int x[blocksize];
    x[tid] = (i<N) ? input[i] : 0;
    __syncthreads();

    // Every thread now holds 1 input value in x[]
    //
    // Build summation tree over elements.
    for(int s=blockDim.x/2; s>0; s=s/2)
    {
        if(tid < s)  x[tid] += x[tid + s];
        __syncthreads();
    }

    // Thread 0 now holds the sum of all input values
    // to this block. Have it add that sum to the running total
    if( tid == 0 )  atomicAdd(total, x[tid]);
}

 FIGURE B.8.9      CUDA implementation of plus-reduction.    



B-64 Appendix B Graphics and Computing GPUs

all values with a 0 in the designated bit will come before all values with a 1 in that 
bit. To produce the correct output, this partitioning must be stable. 

 Implementing the partitioning procedure is a simple application of scan. Th read 
 i  holds the value  x  i  and must calculate the correct output index at which to write 
this value. To do so, it needs to calculate (1) the number of threads  j <   i  for which 
the designated bit is 1 and (2) the total number of bits for which the designated bit 
is 0. Th e CUDA code for  partition_by_bit()  is shown in  Figure B.8.11   . 

__device__ void partition_by_bit(unsigned int *values,
                                 unsigned int bit)
{
    unsigned int i    = threadIdx.x;    
    unsigned int size = blockDim.x;
    unsigned int x_i  = values[i];
    unsigned int p_i  = (x_i >> bit) & 1;

    values[i] = p_i;
    __syncthreads();

    // Compute number of T bits up to and including p_i.
    // Record the total number of F bits as well.
    unsigned int T_before = plus_scan(values);    
    unsigned int T_total  = values[size-1];
    unsigned int F_total  = size - T_total;
    __syncthreads();

    // Write every x_i to its proper place
    if( p_i )
        values[T_before-1 + F_total] = x_i;
    else
        values[i - T_before] = x_i;
}

 FIGURE B.8.11      CUDA code to partition data on a bit-by-bit basis, as part of radix sort.    

__device__ void radix_sort(unsigned int *values)
{
    for(int bit=0; bit<32; ++bit)
    {
        partition_by_bit(values, bit);
        __syncthreads();
    }
}

 FIGURE B.8.10      CUDA code for radix sort.    



 B.8 Real Stuff: Mapping Applications to GPUs B-65

 A similar strategy can be applied for implementing a radix sort kernel that sorts 
an array of large length, rather than just a one-block array. Th e fundamental step 
remains the scan procedure, although when the computation is partitioned across 
multiple kernels, we must double-buff er the array of values rather than doing the 
partitioning in place. Details on performing radix sorts on large arrays effi  ciently 
are provided by  Satish et al. [2008] . 

   N-Body Applications on a GPU  1    
  Nyland et al. [2007]  describe a simple yet useful computational kernel with excellent 
GPU performance—the  all-pairs N-body  algorithm. It is a time-consuming 
component of many scientifi c applications. N-body simulations calculate the 
evolution of a system of bodies in which each body continuously interacts with 
every other body. One example is an astrophysical simulation in which each body 
represents an individual star, and the bodies gravitationally attract each other. 
Other examples are protein folding, where N-body simulation is used to calculate 
electrostatic and van der Waals forces; turbulent fl uid fl ow simulation; and global 
illumination in computer graphics. 

 Th e all-pairs N-body algorithm calculates the total force on each body in the 
system by computing each pair-wise force in the system, summing for each body. 
Many scientists consider this method to be the most accurate, with the only loss of 
precision coming from the fl oating-point hardware operations. Th e drawback is its 
O( n  2 ) computational complexity, which is far too large for systems with more than 
10 bodies. To overcome this high cost, several simplifi cations have been proposed 
to yield O( n  log  n ) and O( n ) algorithms; examples are the Barnes-Hut algorithm, 
the Fast Multipole Method and Particle-Mesh-Ewald summation. All of the  fast  
methods still rely on the all-pairs method as a kernel for accurate computation of 
short-range forces; thus it continues to be important. 

  N-Body Mathematics 

 For gravitational simulation, calculate the body-body force using elementary 
physics. Between two bodies indexed by  i  and  j , the 3D force vector is:

  
f

r
r
rij

i j

ij

ij

ij
G

mm
|| || || ||2

     

 Th e force magnitude is calculated in the left  term, while the direction is computed 
in the right (unit vector pointing from one body to the other). 

 Given a list of interacting bodies (an entire system or a subset), the calculation is 
simple: for all pairs of interactions, compute the force and sum for each body. Once 
the total forces are calculated, they are used to update each body’s position and 
velocity, based on the previous position and velocity. Th e calculation of the forces 
has complexity O( n  2 ), while the update is O( n ). 

 1      Adapted from  Nyland et al. [2007] , “Fast N-Body Simulation with CUDA,”  Chapter 31  of 
 GPU Gems 3 . 



B-66 Appendix B Graphics and Computing GPUs

 Th e serial force-calculation code uses two nested for-loops iterating over pairs of 
bodies. Th e outer loop selects the body for which the total force is being calculated, 
and the inner loop iterates over all the bodies. Th e inner loop calls a function that 
computes the pair-wise force, then adds the force into a running sum. 

 To compute the forces in parallel, we assign one thread to each body, since the 
calculation of force on each body is independent of the calculation on all other 
bodies. Once all of the forces are computed, the positions and velocities of the 
bodies can be updated. 

 Th e code for the serial and parallel versions is shown in  Figure B.8.12    and  Figure 
B.8.13   . Th e serial version has two nested for-loops. Th e conversion to CUDA,   
like many other examples, converts the serial outer loop to a per-thread kernel 
where each thread computes the total force on a single body. Th e CUDA kernel 
computes a global thread ID for each thread, replacing the iterator variable of the 
serial outer loop. Both kernels fi nish by storing the total acceleration in a global 
array used to compute the new position and velocity values in a subsequent step. 
Th e outer loop is replaced by a CUDA kernel grid that launches  N  threads, one   
for each body. 

void accel_on_all_bodies()
{
 int i, j;
 float3 acc(0.0f, 0.0f, 0.0f);

 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 acc = body_body_interaction(acc, body[i], body[j]);
 }
 accel[i] = acc;
 }
}

 FIGURE B.8.12      Serial code to compute all pair-wise forces on N bodies.    

__global__ void accel_on_one_body()
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int j;
 float3 acc(0.0f, 0.0f, 0.0f);

 for (j = 0; j < N; j++) {
  acc = body_body_interaction(acc, body[i], body[j]);
 }
 accel[i] = acc;
}

 FIGURE B.8.13      CUDA thread code to compute the total force on a single body.    



 B.8 Real Stuff: Mapping Applications to GPUs B-67

   Optimization for GPU Execution 

 Th e CUDA code shown is functionally correct, but is not effi  cient, as it ignores 
key architectural features. Better performance can be achieved with three main 
optimizations. First, shared memory can be used to avoid identical memory reads 
between threads. Second, using multiple threads per body improves performance 
for small values of  N . Th ird, loop unrolling reduces loop overhead. 

   Using Shared Memory 

 Shared memory can hold a subset of body positions, much like a cache, eliminating 
redundant global memory requests between threads. We optimize the code shown 
above to have each of  p  threads in a thread-block load  one  position into shared 
memory (for a total of  p  positions). Once all the threads have loaded a value into 
shared memory, ensured by  __syncthreads() , each thread can then perform 
 p  interactions (using the data in shared memory). Th is is repeated  N / p  times to 
complete the force calculation for each body, which reduces the number of requests 
to memory by a factor of  p  (typically in the range 32–128). 

 Th e function called  accel_on_one_body()  requires a few changes to support 
this optimization. Th e modifi ed code is shown in  Figure B.8.14   . 

__shared__ float4 shPosition[256];
…
__global__ void accel_on_one_body()
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int j, k;
 int p = blockDim.x;
 float3 acc(0.0f, 0.0f, 0.0f);
 float4 myBody = body[i];

 for (j = 0; j < N; j += p) {  // Outer loops jumps by p each time
  shPosition[threadIdx.x] = body[j+threadIdx.x];
  __syncthreads();
  for (k = 0; k < p; k++) { // Inner loop accesses p positions
   acc = body_body_interaction(acc, myBody, shPosition[k]);
  }
  __syncthreads();
 }
 accel[i] = acc;
}

 FIGURE B.8.14      CUDA code to compute the total force on each body, using shared memory to improve performance.    



B-68 Appendix B Graphics and Computing GPUs

 Th e loop that formerly iterated over all bodies now jumps by the block dimension 
 p . Each iteration of the outer loop loads  p  successive positions into shared memory 
(one position per thread). Th e threads synchronize, and then  p  force calculations 
are computed by each thread. A second synchronization is required to ensure that 
new values are not loaded into shared memory prior to all threads completing the 
force calculations with the current data. 

 Using shared memory reduces the memory bandwidth required to less than 
10% of the total bandwidth that the GPU can sustain (using less than 5     GB/s). 
Th is optimization keeps the application busy performing computation rather than 
waiting on memory accesses, as it would have done without the use of shared 
memory. Th e performance for varying values of N is shown in  Figure B.8.15   . 

    Using Multiple Threads per Body 
  Figure B.8.15  shows performance degradation for problems with small values of  N  
( N<    4096) on the GeForce 8800 GTX. Many research eff orts that rely on N-body 
calculations focus on small  N  (for long simulation times), making it a target of 
our optimization eff orts. Our presumption to explain the lower performance was 
that there was simply not enough work to keep the GPU busy when  N  is small. 
Th e solution is to allocate more threads per body. We change the thread-block 
dimensions from ( p , 1, 1) to ( p ,  q , 1), where  q  threads divide the work of a single body 
into equal parts. By allocating the additional threads within the same thread block, 
partial results can be stored in shared memory. When all the force calculations are 

250
N-Body Performance on GPUs

200

150

100

50

G
F

LO
P

S

Number of Bodies

0

51
2

76
8

10
24

15
36

20
48

30
72

40
96

61
44

81
92

12
,2

88

16
,3

84

24
,5

76

32
,7

68

1 thread, 8800

2 threads, 8800

4 threads, 8800

1 thread, 9600

2 threads, 9600

4 threads, 9600

 FIGURE B.8.15      Performance measurements of the N-body application on a GeForce 8800 
GTX and a GeForce 9600.     Th e 8800 has 128 stream processors at 1.35     GHz, while the 9600 has 64 at 
0.80     GHz (about 30% of the 8800). Th e peak performance is 242 GFLOPS. For a GPU with more processors, 
the problem needs to be bigger to achieve full performance (the 9600 peak is around 2048 bodies, while the 
8800 doesn’t reach its peak until 16,384 bodies). For small N, more than one thread per body can signifi cantly 
improve performance, but eventually incurs a performance penalty as N grows.    



 B.8 Real Stuff: Mapping Applications to GPUs B-69

done, the  q  partial results can be collected and summed to compute the fi nal result. 
Using two or four threads per body leads to large improvements for small  N . 

 As an example, the performance on the 8800 GTX jumps by 110% when   
 N    =   1024 (one thread achieves 90 GFLOPS, where four achieve 190 GFLOPS). 
Performance degrades slightly on large  N , so we only use this optimization for  N  
smaller than 4096. Th e performance increases are shown in  Figure B.8.15  for a 
GPU with 128 processors and a smaller GPU with 64 processors clocked at two-
thirds the speed. 

  Performance Comparison 

 Th e performance of the N-body code is shown in  Figure B.8.15  and  Figure B.8.16   . 
In  Figure B.8.15 , performance of high- and medium-performance GPUs is shown, 
along with the performance improvements achieved by using multiple threads per 
body. Th e performance on the faster GPU ranges from 90 to just under 250 GFLOPS. 

  Figure B.8.16  shows nearly identical code (C++ versus CUDA) running on   
Intel Core2 CPUs. Th e CPU performance is about 1% of the GPU, in the range of 
0.2 to 2 GFLOPS, remaining nearly constant over the wide range of problem sizes. 

Number of Bodies

N-Body Performance on Intel CPUs
2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

51
2

G
F

LO
P

S

76
8

10
24

15
36

20
48

30
72

40
96

61
44

81
92

12
,2

88

16
,3

84

24
,5

76

32
,7

68

T2400

E8200

X9775

X9775-Cuda

 FIGURE B.8.16      Performance measurements on the N-body code on a CPU.     Th e graph shows 
single precision N-body performance using Intel Core2 CPUs, denoted by their CPU model number. Note 
the dramatic reduction in GFLOPS performance (shown in GFLOPS on the  y -axis), demonstrating how 
much faster the GPU is compared to the CPU. Th e performance on the CPU is generally independent of 
problem size, except for an anomalously low performance when N   =   16,384 on the X9775 CPU. Th e graph 
also shows the results of running the CUDA version of the code (using the CUDA-for-CPU compiler) 
on a single CPU core, where it outperforms the C++ code by 24%. As a programming language, CUDA 
exposes parallelism and locality that a compiler can exploit. Th e Intel CPUs are a 3.2     GHz Extreme X9775 
(code named “Penryn”), a 2.66     GHz E8200 (code named “Wolfdale”), a desktop, pre-Penryn CPU, and a 
1.83     GHz T2400 (code named “Yonah”), a 2007 laptop CPU. Th e Penryn version of the Core 2 architecture 
is particularly interesting for N-body calculations with its 4-bit divider, allowing division and square root 
operations to execute four times faster than previous Intel CPUs.    



B-70 Appendix B Graphics and Computing GPUs

 Th e graph also shows the results of compiling the CUDA version of the code 
for a CPU, where the performance improves by 24%. CUDA, as a programming 
language, exposes parallelism, allowing the compiler to make better use of the SSE 
vector unit on a single core. Th e CUDA version of the N-body code naturally maps 
to multicore CPUs as well (with grids of blocks), where it achieves nearly perfect 
scaling on an eight-core system with N   =   4096 (ratios of 2.0, 3.97, and 7.94 on two, 
four, and eight cores, respectively). 

   Results 

 With a modest eff ort, we developed a computational kernel that improves GPU 
performance over multicore CPUs by a factor of up to 157. Execution time for 
the N-body code running on a recent CPU from Intel (Penryn X9775 at 3.2     GHz, 
single core) took more than 3 seconds per frame to run the same code that runs at a 
44     Hz frame rate on a GeForce 8800     GPU. On pre-Penryn CPUs, the code requires 
6–16 seconds, and on older Core2 processors and Pentium IV processor, the time 
is about 25 seconds. We must divide the apparent increase in performance in half, 
as the CPU requires only half as many calculations to compute the same result 
(using the optimization that the forces on a pair of bodies are equal in strength and 
opposite in direction). 

 How can the GPU speed up the code by such a large amount? Th e answer 
requires inspecting architectural details. Th e pair-wise force calculation requires 
20 fl oating-point operations, comprised mostly of addition and multiplication 
instructions (some of which can be combined using a multiply-add instruction), 
but there are also division and square root instructions for vector normalization. 
Intel CPUs take many cycles for single-precision division and square root 
instructions,  2    although this has improved in the latest Penryn CPU family with its 
faster 4-bit divider  .  3    Additionally, the limitations in register capacity lead to many 
MOV instructions in the x86 code (presumably to/from L1 cache). In contrast, the 
GeForce 8800 executes a reciprocal square-root thread instruction in four clocks; 
see  Section B.6  for special function accuracy. It has a larger register fi le (per thread) 
and shared memory that can be accessed as an instruction operand. Finally, the 
CUDA compiler emits 15 instructions for one iteration of the loop, compared 
with more than 40 instructions from a variety of x86 CPU compilers. Greater 
parallelism, faster execution of complex instructions, more register space, and an 
effi  cient compiler all combine to explain the dramatic performance improvement 
of the N-body code between the CPU and the GPU. 

 2      Th e x86 SSE instructions reciprocal-square-root (RSQRT*) and reciprocal (RCP*) were 
not considered, as their accuracy is too low to be comparable. 
 3      Intel Corporation,  Intel 64 and IA-32 Architectures Optimization Reference Manual . 
November 2007. Order Number: 248966-016. Also available at  www.intel.com/design/
processor/manuals/248966.pdf . 



 B.8 Real Stuff: Mapping Applications to GPUs B-71

 On a GeForce 8800, the all-pairs N-body algorithm delivers more than 240 
GFLOPS of performance, compared to less than 2 GFLOPS on recent sequential 
processors. Compiling and executing the CUDA version of the code on a CPU 
demonstrates that the problem scales well to multicore CPUs, but is still signifi cantly 
slower than a single GPU. 

 We coupled the GPU N-body simulation with a graphical display of the motion, 
and can interactively display 16K bodies interacting at 44 frames per second. 
Th is allows astrophysical and biophysical events to be displayed and navigated at 
interactive rates. Additionally, we can parameterize many settings, such as noise 
reduction, damping, and integration techniques, immediately displaying their 
eff ects on the dynamics of the system. Th is provides scientists with stunning visual 
imagery, boosting their insights on otherwise invisible systems (too large or small, 
too fast or too slow), allowing them to create better models of physical phenomena. 

  Figure B.8.17    shows a time-series display of an astrophysical simulation of 16K 
bodies, with each body acting as a galaxy. Th e initial confi guration is a spherical shell 

 FIGURE B.8.17      Twelve images captured during the evolution of an N-body system with 16,384 bodies.    



B-72 Appendix B Graphics and Computing GPUs

of bodies rotating about the  z -axis. One phenomenon of interest to astrophysicists 
is the clustering that occurs, along with the merging of galaxies over time. For the 
interested reader, the CUDA code for this application is available in the CUDA 
SDK from  www.nvidia.com/CUDA . 

        B.9     Fallacies and Pitfalls 

 GPUs have evolved and changed so rapidly that many fallacies and pitfalls have 
arisen. We cover a few here.

    Fallacy         GPUs are just SIMD vector multiprocessors . 
      It is easy to draw the false conclusion that GPUs are simply SIMD vector 
multiprocessors. GPUs do have a SPMD-style programming model, in that 
a programmer can write a single program that is executed in multiple thread 
instances with multiple data. Th e execution of these threads is not purely SIMD 
or vector, however; it is  single-instruction multiple-thread  (SIMT), described in 
 Section B.4 . Each GPU thread has its own scalar registers, thread private memory, 
thread execution state, thread ID, independent execution and branch path, and 
eff ective program counter, and can address memory independently. Although a 
group of threads (e.g., a warp of 32 threads) executes more effi  ciently when the PCs 
for the threads are the same, this is not necessary. So, the multiprocessors are not 
purely SIMD. Th e thread execution model is MIMD with barrier synchronization 
and SIMT optimizations. Execution is more effi  cient if individual thread load/
store memory accesses can be coalesced into block accesses, as well. However, this 
is not strictly necessary. In a purely SIMD vector architecture, memory/register 
accesses for diff erent threads must be aligned in a regular vector pattern. A GPU 
has no such restriction for register or memory accesses; however, execution is more 
effi  cient if warps of threads access local blocks of data. 

 In a further departure from a pure SIMD model, an SIMT GPU can execute 
more than one warp of threads concurrently. In graphics applications, there may 
be multiple groups of vertex programs, pixel programs, and geometry programs 
running in the multiprocessor array concurrently. Computing programs may also 
execute diff erent programs concurrently in diff erent warps.

    Fallacy         GPU performance cannot grow faster than Moore’s law . 
      Moore’s law is simply a rate. It is not a “speed of light” limit for any other rate. 
Moore’s law describes an expectation that, over time, as semiconductor technology 
advances and transistors become smaller, the manufacturing cost per transistor will 
decline exponentially. Put another way, given a constant manufacturing cost, the 



 B.9 Fallacies and Pitfalls B-73

number of transistors will increase exponentially.  Gordon Moore [1965]  predicted 
that this progression would provide roughly two times the number of transistors 
for the same manufacturing cost every year, and later revised it to doubling every 
2 years. Although Moore made the initial prediction in 1965 when there were just 
50 components per integrated circuit, it has proved remarkably consistent. Th e 
reduction of transistor size has historically had other benefi ts, such as lower power 
per transistor and faster clock speeds at constant power. 

 Th is increasing bounty of transistors is used by chip architects to build processors, 
memory, and other components. For some time, CPU designers have used the 
extra transistors to increase processor performance at a rate similar to Moore’s law, 
so much so that many people think that processor performance growth of two 
times every 18–24 months is Moore’s law. In fact, it is not. 

 Microprocessor designers spend some of the new transistors on processor cores, 
improving the architecture and design, and pipelining for more clock speed. Th e 
rest of the new transistors are used for providing more cache, to make memory 
access faster. In contrast, GPU designers use almost none of the new transistors to 
provide more cache; most of the transistors are used for improving the processor 
cores and adding more processor cores. 

 GPUs get faster by four mechanisms. First, GPU designers reap the Moore’s law 
bounty directly by applying exponentially more transistors to building more parallel, 
and thus faster, processors. Second, GPU designers can improve on the architecture 
over time, increasing the effi  ciency of the processing. Th ird, Moore’s law assumes 
constant cost, so the Moore’s law rate can clearly be exceeded by spending more for 
larger chips with more transistors. Fourth, GPU memory systems have increased their 
eff ective bandwidth at a pace nearly comparable to the processing rate, by using faster 
memories, wider memories, data compression, and better caches. Th e combination of 
these four approaches has historically allowed GPU performance to double regularly, 
roughly every 12 to 18 months. Th is rate, exceeding the rate of Moore’s law, has been 
demonstrated on graphics applications for approximately 10 years and shows no sign 
of signifi cant slowdown. Th e most challenging rate limiter appears to be the memory 
system, but competitive innovation is advancing that rapidly too.

    Fallacy         GPUs only render 3D graphics; they can’t do general computation . 
      GPUs are built to render 3D graphics as well as 2D graphics and video. To meet 
the demands of graphics soft ware developers as expressed in the interfaces and 
performance/feature requirements of the graphics APIs, GPUs have become 
massively parallel programmable fl oating-point processors. In the graphics 
domain, these processors are programmed through the graphics APIs and with 
arcane graphics programming languages (GLSL, Cg, and HLSL, in OpenGL and 
Direct3D). However, there is nothing preventing GPU architects from exposing 



B-74 Appendix B Graphics and Computing GPUs

the parallel processor cores to programmers without the graphics API or the arcane 
graphics languages. 

 In fact, the Tesla architecture family of GPUs exposes the processors through 
a soft ware environment known as CUDA, which allows programmers to develop 
general application programs using the C language and soon C++. GPUs are 
Turing-complete processors, so they can run any program that a CPU can run, 
although perhaps less well. And perhaps faster.

    Fallacy         GPUs cannot run double-precision fl oating-point programs fast . 
      In the past, GPUs could not run double-precision fl oating-point programs at all, 
except through soft ware emulation. And that’s not very fast at all. GPUs have made 
the progression from indexed arithmetic representation (lookup tables for colors) 
to 8-bit integers per color component, to fi xed-point arithmetic, to single-precision 
fl oating-point, and recently added double precision. Modern GPUs perform 
virtually all calculations in single-precision IEEE fl oating-point arithmetic, and are 
beginning to use double precision in addition. 

 For a small additional cost, a GPU can support double-precision fl oating-point 
as well as single-precision fl oating-point. Today, double-precision runs more slowly 
than the single-precision speed, about fi ve to ten times slower. For incremental 
additional cost, double-precision performance can be increased relative to single 
precision in stages, as more applications demand it.

    Fallacy         GPUs don’t do fl oating-point correctly . 
      GPUs, at least in the Tesla architecture family of processors, perform single-
precision fl oating-point processing at a level prescribed by the IEEE 754 fl oating-
point standard. So, in terms of accuracy, GPUs are the equal of any other IEEE 
754-compliant processors. 

 Today, GPUs do not implement some of the specifi c features described in the 
standard, such as handling denormalized numbers and providing precise fl oating-
point exceptions. However, the recently introduced Tesla T10P GPU provides full 
IEEE rounding, fused-multiply-add, and denormalized number support for double 
precision.

    Pitfall         Just use more threads to cover longer memory latencies . 
      CPU cores are typically designed to run a single thread at full speed. To run at full 
speed, every instruction and its data need to be available when it is time for that 
instruction to run. If the next instruction is not ready or the data required for that 
instruction is not available, the instruction cannot run and the processor stalls. 
External memory is distant from the processor, so it takes many cycles of wasted 
execution to fetch data from memory. Consequently, CPUs require large local 



 B.9 Fallacies and Pitfalls B-75

caches to keep running without stalling. Memory latency is long, so it is avoided 
by striving to run in the cache. At some point, program working set demands may 
be larger than any cache. Some CPUs have used multithreading to tolerate latency, 
but the number of threads per core has generally been limited to a small number. 

 Th e GPU strategy is diff erent. GPU cores are designed to run many threads 
concurrently, but only one instruction from any thread at a time. Another way to 
say this is that a GPU runs each thread slowly, but in aggregate runs the threads 
effi  ciently. Each thread can tolerate some amount of memory latency, because 
other threads can run. 

 Th e downside of this is that multiple—many multiple threads—are required to 
cover the memory latency. In addition, if memory accesses are scattered or not 
correlated among threads, the memory system will get progressively slower in 
responding to each individual request. Eventually, even the multiple threads will 
not be able to cover the latency. So, the pitfall is that for the “just use more threads” 
strategy to work for covering latency, you have to have enough threads, and the 
threads have to be well-behaved in terms of locality of memory access.

    Fallacy         O(n) algorithms are diffi  cult to speed up . 
      No matter how fast the GPU is at processing data, the steps of transferring data to 
and from the device may limit the performance of algorithms with O( n ) complexity 
(with a small amount of work per datum). Th e highest transfer rate over the PCIe 
bus is approximately 48     GB/second when DMA transfers are used, and slightly less 
for nonDMA transfers. Th e CPU, in contrast, has typical access speeds of 8–12     GB/
second to system memory. Example problems, such as vector addition, will be 
limited by the transfer of the inputs to the GPU and the returning output from the 
computation. 

 Th ere are three ways to overcome the cost of transferring data. First, try to leave 
the data on the GPU for as long as possible, instead of moving the data back and 
forth for diff erent steps of a complicated algorithm. CUDA deliberately leaves data 
alone in the GPU between launches to support this. 

 Second, the GPU supports the concurrent operations of copy-in, copy-out and 
computation, so data can be streamed in and out of the device while it is computing. 
Th is model is useful for any data stream that can be processed as it arrives. Examples 
are video processing, network routing, data compression/decompression, and even 
simpler computations such as large vector mathematics. 

 Th e third suggestion is to use the CPU and GPU together, improving performance 
by assigning a subset of the work to each, treating the system as a heterogeneous 
computing platform. Th e CUDA programming model supports allocation of work 
to one or more GPUs along with continued use of the CPU without the use of 
threads (via asynchronous GPU functions), so it is relatively simple to keep all 
GPUs and a CPU working concurrently to solve problems even faster. 



B-76 Appendix B Graphics and Computing GPUs

      B.10     Concluding Remarks 

 GPUs are massively parallel processors and have become widely used, not only 
for 3D graphics, but also for many other applications. Th is wide application was 
made possible by the evolution of graphics devices into programmable processors. 
Th e graphics application programming model for GPUs is usually an API such 
as DirectX™ or OpenGL™. For more general-purpose computing, the CUDA 
programming model uses an SPMD ( single-program multiple data ) style, executing 
a program with many parallel threads. 

 GPU parallelism will continue to scale with Moore’s law, mainly by increasing 
the number of processors. Only the parallel programming models that can readily 
scale to hundreds of processor cores and thousands of threads will be successful 
in supporting manycore GPUs and CPUs. Also, only those applications that have 
many largely independent parallel tasks will be accelerated by massively parallel 
manycore architectures. 

 Parallel programming models for GPUs are becoming more fl exible, for both 
graphics and parallel computing. For example, CUDA is evolving rapidly in the 
direction of full C/C++ functionality. Graphics APIs and programming models 
will likely adapt parallel computing capabilities and models from CUDA. Its 
SPMD-style threading model is scalable, and is a convenient, succinct, and easily 
learned model for expressing large amounts of parallelism. 

 Driven by these changes in the programming models, GPU architecture is in 
turn becoming more fl exible and more programmable. GPU fi xed-function units 
are becoming accessible from general programs, along the lines of how CUDA 
programs already use texture intrinsic functions to perform texture lookups using 
the GPU texture instruction and texture unit. 

 GPU architecture will continue to adapt to the usage patterns of both graphics 
and other application programmers. GPUs will continue to expand to include 
more processing power through additional processor cores, as well as increasing 
the thread and memory bandwidth available for programs. In addition, the 
programming models must evolve to include programming heterogeneous 
manycore systems including both GPUs and CPUs. 

  Acknowledgments 
 Th is appendix is the work of several authors at NVIDIA. We gratefully acknowledge 
the signifi cant contributions of Michael Garland, John Montrym, Doug Voorhies, 
Lars Nyland, Erik Lindholm, Paulius Micikevicius, Massimiliano Fatica, Stuart 
Oberman, and Vasily Volkov. 



 B.11 Historical Perspective and Further Reading B-77

       B.11     Historical Perspective and Further 
Reading 

  Graphics Pipeline Evolution 
 3D graphics pipeline hardware evolved from the large expensive systems of the 
early 1980s to small workstations and then to PC accelerators in the mid- to late-
1990s. During this period, three major transitions occurred:

   ■     Performance-leading graphics subsystems declined in price from $50,000 to 
$200.  

  ■     Performance increased from 50 million pixels per second to 1 billion pixels per 
second and from 100,000 vertices per second to 10 million vertices per second.  

  ■     Native hardware capabilities evolved from wireframe (polygon outlines) to 
fl at shaded (constant color) fi lled polygons, to smooth shaded (interpolated 
color) fi lled polygons, to full-scene anti-aliasing with texture mapping and 
rudimentary multitexturing.  

     Fixed-Function Graphics Pipelines 
 Th roughout this period, graphics hardware was confi gurable, but not programmable 
by the application developer. With each generation, incremental improvements 
were off ered. But developers were growing more sophisticated and asking for 
more new features than could be reasonably off ered as built-in fi xed functions. Th e 
NVIDIA GeForce 3, described by  Lindholm et al. [2001] , took the fi rst step toward 
true general shader programmability. It exposed to the application developer what 
had been the private internal instruction set of the fl oating-point vertex engine. 
Th is coincided with the release of Microsoft ’s DirectX 8 and OpenGL’s vertex shader 
extensions. Later GPUs, at the time of DirectX 9, extended general programmability 
and fl oating point capability to the pixel fragment stage, and made texture 
available at the vertex stage. Th e ATI Radeon 9700, introduced in 2002, featured 
a programmable 24-bit fl oating-point pixel fragment processor programmed 
with DirectX 9 and OpenGL. Th e GeForce FX added 32-bit fl oating-point pixel 
processors. Th is was part of a general trend toward unifying the functionality of 
the diff erent stages, at least as far as the application programmer was concerned. 
NVIDIA’s GeForce 6800 and 7800 series were built with separate processor designs 
and separate hardware dedicated to the vertex and to the fragment processing. Th e 
XBox 360 introduced an early unifi ed processor GPU in 2005, allowing vertex and 
pixel shaders to execute on the same processor. 



B-78 Appendix B Graphics and Computing GPUs

   Evolution of Programmable Real-Time Graphics 
 During the last 30 years, graphics architecture has evolved from a simple pipeline for 
drawing wireframe diagrams to a highly parallel design consisting of several deep 
parallel pipelines capable of rendering complex interactive imagery that appears 
three-dimensional. Concurrently, many of the calculations involved became far 
more sophisticated and user-programmable. 

 In these graphics pipelines, certain stages do a great deal of fl oating-point 
arithmetic on completely independent data, such as transforming the position 
of triangle vertexes or generating pixel colors. Th is data independence is a key 
diff erence between GPUs and CPUs. A single frame, rendered in 1/60th of a 
second, might have 1 million triangles and 6 million pixels. Th e opportunity to use 
hardware parallelism to exploit this data independence is tremendous. 

 Th e specifi c functions executed at a few graphics pipeline stages vary with 
rendering algorithms and have evolved to be programmable. Vertex programs 
map the position of triangle vertices on to the screen, altering their position, color, 
or orientation. Typically a vertex shader thread inputs a fl oating-point (x, y, z, w) 
vertex position and computes a fl oating-point (x, y, z) screen position. Geometry 
programs operate on primitives defi ned by multiple vertices, changing them or 
generating additional primitives. Pixel fragment shaders each “shade” one pixel, 
computing a fl oating-point  red, green, blue, alpha  (RGBA) color contribution to 
the rendered image at its pixel sample (x, y) image position. For all three types of 
graphics shaders, program instances can be run in parallel, because each works on 
independent data, produces independent results, and has no side eff ects. 

 Between these programmable graphics pipeline stages are dozens of fi xed-function 
stages which perform well-defi ned tasks far more effi  ciently than a programmable 
processor could and which would benefi t far less from programmability. For 
example, between the geometry processing stage and the pixel processing stage is 
a “rasterizer,” a complex state machine that determines exactly which pixels (and 
portions thereof) lie within each geometric primitive’s boundaries. Together, the 
mix of programmable and fi xed-function stages is engineered to balance extreme 
performance with user control over the rendering algorithms. 

 Common rendering algorithms perform a single pass over input primitives and 
access other memory resources in a highly coherent manner; these algorithms 
provide excellent bandwidth utilization and are largely insensitive to memory 
latency. Combined with a pixel shader workload that is usually compute-limited, 
these characteristics have guided GPUs along a diff erent evolutionary path than 
CPUs. Whereas CPU die area is dominated by cache memory, GPUs are dominated 
by fl oating-point datapath and fi xed-function logic. GPU memory interfaces 
emphasize bandwidth over latency (since latency can be readily hidden by a high 
thread count); indeed, bandwidth is typically many times higher than a CPU, 
exceeding 100     GB/second in some cases. Th e far-higher number of fi ne-grained 
lightweight threads eff ectively exploits the rich parallelism available. 



 B.11 Historical Perspective and Further Reading B-79

 Beginning with NVIDIA’s GeForce 8800     GPU in 2006, the three programmable 
graphics stages are mapped to an array of unifi ed processors; the logical graphics 
pipeline is physically a recirculating path that visits these processors three times, 
with much fi xed-function graphics logic between visits. Since diff erent rendering 
algorithms present wildly diff erent loads among the three programmable stages, 
this unifi cation provides processor load balancing. 

   Unifi ed Graphics and Computing Processors 
 By the DirectX 10 generation, the functionality of vertex and pixel fragment 
shaders was to be made identical to the programmer, and in fact a new logical 
stage was introduced, the geometry shader, to process all the vertices of a primitive 
rather than vertices in isolation. Th e GeForce 8800 was designed with DirectX 10 
in mind. Developers were coming up with more sophisticated shading algorithms, 
and this motivated a sharp increase in the available shader operation rate, 
particularly fl oating-point operations. NVIDIA chose to pursue a processor design 
with higher operating frequency than standard-cell methodologies had allowed, 
to deliver the desired operation throughput as area-effi  ciently as possible. High-
clock-speed design requires substantially more engineering eff ort, and this favored 
designing one processor, rather than two (or three, given the new geometry stage). 
It became worthwhile to take on the engineering challenges of a unifi ed processor 
(load balancing and recirculation of a logical pipeline onto threads of the processor 
array) to get the benefi ts of one processor design. 

   GPGPU: an Intermediate Step 
 As DirectX 9-capable GPUs became available, some researchers took notice of the 
raw performance growth path of GPUs and began to explore the use of GPUs to 
solve complex parallel problems. DirectX 9 GPUs had been designed only to match 
the features required by the graphics API. To access the computational resources, a 
programmer had to cast their problem into native graphics operations. For example, 
to run many simultaneous instances of a pixel shader, a triangle had to be issued to 
the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did 
not have the means to perform arbitrary scatter operations to memory. Th e only 
way to write a result to memory was to emit it as a pixel color value, and confi gure 
the framebuff er operation stage to write (or blend, if desired) the result to a two-
dimensional framebuff er. Furthermore, the only way to get a result from one pass 
of computation to the next was to write all parallel results to a pixel framebuff er, 
then use that framebuff er as a texture map as input to the pixel fragment shader of 
the next stage of the computation. Mapping general computations to a GPU in this 
era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful 
of useful applications with painstaking eff orts. Th is fi eld was called “GPGPU” for 
general purpose computing on GPUs. 



B-80 Appendix B Graphics and Computing GPUs

   GPU Computing 
 While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its 
potential usefulness would be much greater if programmers could think of the GPU 
as a processor. NVIDIA selected a programming approach in which programmers 
would explicitly declare the data-parallel aspects of their workload. 

 For the DirectX 10 generation, NVIDIA had already begun work on a high-
effi  ciency fl oating-point and integer processor that could run a variety of 
simultaneous workloads to support the logical graphics pipeline. Th is processor 
was designed to take advantage of the common case of groups of threads executing 
the same code path. NVIDIA added memory load and store instructions with 
integer byte addressing to support the requirements of compiled C programs. It 
introduced the thread block (cooperative thread array), grid of thread blocks, and 
barrier synchronization to dispatch and manage highly parallel computing work. 
Atomic memory operations were added. NVIDIA developed the CUDA C/C++ 
compiler, libraries, and runtime soft ware to enable programmers to readily access 
the new data-parallel computation model and develop applications. 

   Scalable GPUs 
 Scalability has been an attractive feature of graphics systems from the beginning. 
Workstation graphics systems gave customers a choice in pixel horsepower by 
varying the number of pixel processor circuit boards installed. Prior to the mid-
1990s PC graphics scaling was almost nonexistent. Th ere was one option—the 
VGA controller. As 3D-capable accelerators appeared, the market had room for a 
range of off erings. 3dfx introduced multiboard scaling with the original SLI ( Scan 
Line Interleave ) on their Voodoo2, which held the performance crown for its time 
(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single 
architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), fi rst 
by speed binning and packaging, then with separate chip designs (GeForce 2 GTS & 
GeForce 2 MX). At present, for a given architecture generation, four or fi ve separate 
GPU chip designs are needed to cover the range of desktop PC performance and 
price points. In addition, there are separate segments in notebook and workstation 
systems. Aft er acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in 
2004, starting with GeForce 6800—providing multi-GPU scalability transparently 
to the programmer and to the user. Functional behavior is identical across the 
scaling range; one application will run unchanged on any implementation of an 
architectural family. 

 CPUs are scaling to higher transistor counts by increasing the number of 
constant-performance cores on a die, rather than increasing the performance of 
a single core. At this writing the industry is transitioning from dual-core to quad-
core, with eight-core not far behind. Programmers are forced to fi nd fourfold to 
eightfold task parallelism to fully utilize these processors, and applications using 
task parallelism must be rewritten frequently to target each successive doubling of 



 B.11 Historical Perspective and Further Reading B-81

core count. In contrast, the highly multithreaded GPU encourages the use of many-
fold data parallelism and thread parallelism, which readily scales to thousands of 
parallel threads on many processors. Th e GPU scalable parallel programming 
model for graphics and parallel computing is designed for transparent and 
portable scalability. A graphics program or CUDA program is written once and 
runs on a GPU with any number of processors. As shown in  Section B.1 , a CUDA 
programmer explicitly states both fi ne-grained and coarse-grained parallelism in 
a thread program by decomposing the problem into grids of thread blocks—the 
same program will run effi  ciently on GPUs or CPUs of any size in current and 
future generations as well. 

   Recent Developments 
 Academic and industrial work on applications using CUDA has produced 
hundreds of examples of successful CUDA programs. Many of these programs run 
the application tens or hundreds of times faster than multicore CPUs are capable 
of running them. Examples include n-body simulation, molecular modeling, 
computational fi nance, and oil and gas exploration data processing. Although many 
of these use single-precision fl oating-point arithmetic, some problems require 
double precision. Th e recent arrival of double-precision fl oating-point in GPUs 
enables an even broader range of applications to benefi t from GPU acceleration. 

 For a comprehensive list and examples of current developments in applications 
that are accelerated by GPUs, visit CUDAZone:  www.nvidia.com/CUDA . 

   Future Trends 
 Naturally, the number of processor cores will continue to increase in proportion to 
increases in available transistors as silicon processes improve. In addition, GPUs 
will continue to enjoy vigorous architectural evolution. Despite their demonstrated 
high performance on data-parallel applications, GPU core processors are still of 
relatively simple design. More aggressive techniques will be introduced with each 
successive architecture to increase the actual utilization of the calculating units. 
Because scalable parallel computing on GPUs is a new fi eld, novel applications 
are rapidly being created. By studying them, GPU designers will discover and 
implement new machine optimizations. 

    Further Reading 

       Akeley, K. and T. Jermoluk [1988]. “High-Performance Polygon Rendering,”  Proc. SIGGRAPH 1988  (August), 
239–46.   

      Akeley, K. [1993]. “RealityEngine Graphics.”  Proc. SIGGRAPH 1993  (August), 109–16.   

         Blelloch ,    G. B.  [  1990  ].        “ Prefi x Sums and Th eir Applications ”          . In  John H.     Reif  (Ed.),         Synthesis of Parallel 
Algorithms        ,  Morgan Kaufmann Publishers ,    San Francisco .       

         Blythe ,    D.  [  2006  ].        “ Th e Direct3D 10 System ”          ,  ACM Trans. Graphics      Vol. 25    ,  no. 3     (July) ,           724 –   34 .      



B-82 Appendix B Graphics and Computing GPUs

      Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahlian, M. Houston, and P. Hanrahan [2004]. “Brook for 
GPUs: Stream Computing on Graphics Hardware.”  Proc. SIGGRAPH 2004 , 777–86, August.  http://doi.acm.
org/10.1145/1186562.1015800 .   

      Elder, G. [2002] “Radeon 9700.” Eurographics/SIGGRAPH Workshop on Graphics Hardware, Hot3D 
Session,  www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt .   

         Fernando ,    R.      and  M. J.     Kilgard    [  2003  ].            Th e Cg Tutorial: Th e Defi nitive Guide to Programmable Real-Time 
Graphics        ,  Addison-Wesley ,    Reading, MA .       

          Fernando ,    R.  (Ed.),   [  2004  ].         GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics        , 
 Addison-Wesley ,    Reading, MA .          https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html  .    

         Foley ,    J.     ,  A.     van Dam     ,  S.     Feiner     , and  J.     Hughes    [  1995  ].            Computer Graphics: Principles and Practice, second 
edition in C        ,  Addison-Wesley ,    Reading, MA .       

         Hillis ,    W. D.      and  G. L.     Steele    [  1986  ].        “ Data parallel algorithms. ”            Commun. ACM      29 , 12 (Dec.)          ,  1170 –   83 .         http://
doi.acm.org/10.1145/7902.7903  .    

      IEEE Std 754-2008 [2008].  IEEE Standard for Floating-Point Arithmetic . ISBN 978-0-7381-5752-8, STD95802, 
 http://ieeexplore.ieee.org/servlet/opac?punumber=4610933  (Aug. 29).   

      Industrial Light and Magic [2003].  OpenEXR ,  www.openexr.com .   

      Intel Corporation [2007].  Intel 64 and IA-32 Architectures Optimization Reference Manual.  November. Order 
Number: 248966-016.  http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-optimization-manual.pdf .   

      Kessenich, J. [2006].  Th e OpenGL Shading Language, Language Version 1.20, Sept .  2006 .  www.opengl.org/
documentation/specs/ .   

      Kirk, D. and D. Voorhies [1990]. “Th e Rendering Architecture of the DN10000VS.”  Proc. SIGGRAPH 1990  
(August), 299–307.   

      Lindholm E., M.J. Kilgard, and H. Moreton [2001]. “A User- Programmable Vertex Engine.”  Proc. SIGGRAPH 
2001  (August), 149–58.   

         Lindholm ,    E.     ,  J.     Nickolls     ,  S.     Oberman     , and  J.     Montrym    [  2008  ].        “ NVIDIA Tesla: A Unifi ed Graphics and 
Computing Architecture ”          ,  IEEE Micro      Vol. 28    ,  no. 2     (March–April)          ,  39 –   55 .      

      Microsoft  Corporation. Microsoft  DirectX Specifi cation,  https://msdn.microsoft .com/en-us/library/
windows/apps/hh452744.aspx .   

         Microsoft  Corporation    [  2003  ].            Microsoft  DirectX 9 Programmable Graphics Pipeline        ,  Microsoft  Press , 
   Redmond, WA .       

      Montrym, J., D. Baum, D. Dignam, and C. Migdal [1997]. “Infi niteReality: A Real-Time Graphics System.” 
 Proc. SIGGRAPH 1997  (August), 293–301.   

         Montrym ,    J.      and  H.     Moreton    [  2005  ].        “ Th e GeForce 6800 ”          ,  IEEE Micro    ,  Vol. 25    ,  no. 2     (March–April)          ,  41 –   51 .      

         Moore ,    G. E.  [  1965  ].        “ Cramming more components onto integrated circuits ”          ,  Electronics    ,  Vol. 38    ,  no. 8             
 (April 19) .    



 B.11 Historical Perspective and Further Reading B-83

          Nguyen ,    H.  (Ed.),   [  2008  ].         GPU Gems 3        ,  Addison-Wesley ,    Reading, MA .       

         Nickolls ,    J.     ,  I.     Buck     ,  M.     Garland     , and  K.     Skadron    [  2008  ].        “ Scalable Parallel Programming with CUDA ”          ,  ACM 
Queue      Vol. 6    ,  no. 2   (March–April)          40 –   53 .      

      NVIDIA [2007]. CUDA Zone.  http://www.nvidia.com/object/cuda_home_new.html .   

      NVIDIA [2007].  CUDA Programming Guide 1.1 .  https://developer.nvidia.com/nvidia-gpu-programming-
guide .   

      NVIDIA [2007].  PTX: Parallel Th read Execution ISA version 1.1 .  www.nvidia.com/object/io_1195170102263.
html .   

         Nyland ,    L.     ,  M.     Harris     , and  J.     Prins    [  2007  ].        “ Fast N-Body Simulation with CUDA. ”           In  H.     Nguyen  (Ed.),   
        GPU Gems 3 ,           Addison-Wesley ,    Reading, MA .       

      Oberman, S. F. and M. Y. Siu [2005]. “A High-Performance Area- Effi  cient Multifunction Interpolator,”  Proc. 
Seventeenth IEEE Symp. Computer Arithmetic , 272–79.   

         Patterson ,    D. A.      and  J. L.     Hennessy    [  2004  ].            Computer Organization and Design: Th e Hardware/Soft ware Inter 
face    ,  third edition       ,  Morgan Kaufmann Publishers ,    San Francisco .       

          Pharr ,    M.  ed.   [  2005  ].          GPU Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation         ,  Addison-Wesley ,    Reading, MA .       

      Satish, N., M. Harris, and M. Garland [2008]. “Designing Effi  cient Sorting Algorithms for Manycore GPUs,” 
NVIDIA Technical Report NVR-2008-001.   

      Segal, M. and K. Akeley [2006].  Th e OpenGL Graphics System: A Specifi cation, Version 2.1, Dec. 1, 2006 .  www.
opengl.org/documentation/specs/ .   

      Sengupta, S., M. Harris, Y. Zhang, and J. D. Owens [2007]. “Scan Primitives for GPU Computing.” In  Proc. of 
Graphics Hardware 2007  (August), 97–106.   

      Volkov, V. and J. Demmel [2008]. “LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs,” 
Technical Report No. UCB/EECS-2008-49, 1–11.  http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-
2008-49.pdf .   

      Williams, S., L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel [2007]. “Optimization of sparse matrix-
vector multiplication on emerging multicore platforms,” In  Proc. Supercomputing  2007, November.     


