Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Chapter 0
Course Overview

o ZEjKIH

-HEILEER
o ARb: RLR At B OURE
o HRMR TS B i 8%

- AT RS
o XHFFRYE, Key-value Z4E
- WIERS:
o BHE, R/ KBRS

- H1EH:

* Prof. John C.S. Lui, Prof. Patrick P.C. Lee @CUHK, Prof. Richard Ma
@NUS, Prof. Song Jiang @UTA, Prof. Yipeng Zhou @Macquarie U

* Prof. Qun Huang@PKU, Hong Xie@CQU
— F 1. http://staff.ustc.edu.cn/~ykli/

o RFEFT: http://staff.ustc.edu.cn/~ykli/0s2022
QQ#f: 742371585 (HEEEIULE R "F5+E4L")

RAJiS
e
ER1G
BT
FEHE
AL

2 L%

liuzhenm@mail.ustc.edu.cn

Ideng@mail.ustc.edu.cn

wxy1999@mail.ustc.edu.cn

maohaoyu@mail.ustc.edu.cn

wzg666@mail.ustc.edu.cn

yugi_lee@mail.ustc.edu.cn

skeleton _man@mail.ustc.edu.cn

o =]
- i (60)
« Ji—6-717 (14:00-15:35) & J&H =3-47 (9:45-11:20)
« 3C203
— 520 (40) : FE

* HUHIPRAEZOR

—CiEs
— HH S5
o BRAF
- WA TE
— N T ERIE T WONG Tsz Yeungl® - [FlOperating
System Concepts Z{f4

HMAZE 4
2

— https://www.0s-book.com/OS10/index.html

Operating System

« 2%

NUTULLEN Operating e ————
SVSTEM Systems : won_LINUX
CONCEPTS [HEE T Y s

LAk

GC'C (X AN /t;;:‘

— f%Iy EIR
— HH+PPT

(=4
— {12 — Ik, FIR5-101M 8 H
— RGPS FRETRAS

— ~4IR
—5-15J#, HuSfFE
— TEARGLTE, FRIN AL

o HARIBIEEE L 3B
—{EMk: 20%
— 5256 30%
—WRER (HE) . 50%

Operating Systems

Associate Prof. Yongkun Li
HHRER-TH SN BT Bl R

http:staff.ustc.edu.cn/~ykli

Chapter 1
Overview of an Operating System

* Overview of OS
— Overview of Computer System: Organization & Architecture
— Whatis an OS
— OS Operation: Interrupt-driven via system call

* Major OS Components
— Process Management
— Memory Management
— Storage Management

* Kernel Data Structures
* Misc: Computing Environments & Open-Sourced OS

* According to your experience...

— Networking;
— Storage;

— Multimedia;

— Gaming;
— What else?

None of the above were about the OS!

Overview of Computer System

-System Organization
-Storage Structure
-System Architecture

Computer System Organization

* Computer-system organization

— One or more CPUs, device controllers connect through
common bus providing access to shared memory

— Concurrent execution of CPUs and devices competing for
memory cycles

mouse keyboard printer monitor

disk graphics
controller Uisle) cermiilts adapter

| | |
|

memory

CPU

Computer-System Organization

* |/O devices and the CPU can execute concurrently

* Each device controller is in charge of a particular
device type

e Each device controller has a local buffer

* CPU moves data from/to main memory to/from
local buffers

e Device controller informs CPU that it has finished its
operation by causing an interrupt

Computer Startup

* bootstrap program is loaded at power-up or reboot

— Typically stored in ROM or EPROM, generally known as
firmware

— Initializes all aspects of system

— Loads operating system kernel into memory and starts
execution

» System processes or system daemons
— Run the entire time the kernel is running
— On UNIX, the first system process is “init”
 After fully booted, waits for events to occur
— Signaled by interrupt

* Interrupt can be triggered by hardware and
software

— Hardware sends signal to CPU

— Software executes a special operation: system call
* Interrupt procedure

— CPU stops what is doing

— Execute the service routine for the interrupt

— CPU resumes

* Operating system is interrupt driven

CPU user

process
executing

1/0 interrupt
processing

1’0 idle —

device)
transferring

|

L

1/10
request

transfer
done

/0 transfer

request done

Common Functions of Interrupts

* Each computer design has its own interrupt mechanism

* Interrupt transfers control to the interrupt service routine

— Atable of pointers to interrupt routines, the interrupt vector, can
be used to provide necessary speed

— The table of pointers is stored in low memory

* Interrupt architecture must save the address of the
interrupted instruction

— Modern architectures store the return address on system stack

Overview of Computer System

-System Organization
-Storage Structure
-System Architecture

» Storage systems organized in hierarchy

— Speed
_ Cost g)
B S—
. I-‘
— Volatility i

main memory

H |

solid-state disk g
hard disk ﬂ
[
1 A4
optical disk u
magnetic tapes U

Storage Structure

* Main memory

— CPU can load instructions only from memory (only large
storage media that the CPU can access directly)

— Random access, typically small size and volatile
— All forms of memory provide an array of bytes
* Each byte has its own address
* Interaction: load & store (memory <-> register)
* Instruction-execution cycle
— Fetch an instruction from memory and store in register
— Decode instruction (fetch operands if necessary)
— Store result back to memory

* Secondary storage — extension of main memory that
provides large nonvolatile storage capacity

— Hard disks — rigid metal or glass platters covered with

magnetic recording material
* Disk surface is logically divided into tracks, which are subdivided into

sectors
* The disk controller determines the logical interaction between the

device and the computer
— Solid-state disks — faster than hard disks, nonvolatile
* Various technologies
* Becoming more popular

Caching

* Caching — copying information into faster storage
system; main memory can be viewed as a cache for
secondary storage

* Faster storage (cache) checked first to determine if
information is there

— If it is, information used directly from the cache (fast)
— If not, data copied to cache and used there

* Cache smaller than storage being cached
— Cache management important design problem
— Cache size and replacement policy

* Important principle, performed at many levels in a
computer (in hardware, operating system, software)

|/O Structure

» Storage is only one of many types of 1/O devices

* Device controller
— More than one device may be attached
— Local buffer storage & a set of registers

* Device driver: for each device controller to manage 1/0,
provides uniform interface between controller and kernel

* Interrupt-driven 1/O
— Device driver loads registers within the controller
— Controller examines the registers to decide what action to take
— Device controller starts data transfer to its local buffer
— Informs driver via an interrupt and returns control to OS

Direct Memory Access Structure

* Used for high-speed I/O devices able to transmit
information at close to memory speeds

* Device controller transfers blocks of data from
buffer storage directly to main memory without
CPU intervention

* Only one interrupt is generated per block, rather
than the one interrupt per byte

thread of execution

1s8nbal O/

e instruction execution —»

S
- l«— data movement —»

cycle

1dnuisju ——

DMA

instructions
data

‘memory

Overview of Computer System

-System Organization
-Storage Structure
-System Architecture

Computer-System Architecture

* Most systems use a single general-purpose
processor

— One main CPU capable of executing general-purpose
instruction set

* May have special-purpose processors as well
— Device-specific processors: disk, keyboard, etc...
— Run a limited instruction set
— Do not run user processes
— Managed by OS or built into the hardware

* Multiprocessors systems grow in use and importance
— Also known as parallel systems, multicore systems

* Advantages include:
— Increased throughput

— Economy of scale: share peripherals, mass storage and
power supply

— Increased reliability — graceful degradation or fault tolerance
* Two types

— Asymmetric Multiprocessing — each processor is assigned a
specie task: boss-worker relationship

— Symmetric Multiprocessing (SMP) — each processor
performs all tasks: all processors are peers

Symmetric Multiprocessing Architecture

* Symmetric Multiprocessing (SMP)
— Result from hardware or software

— Adds CPUs to increase computing power

— Causes non-uniform memory access (NUMA)

CPU,

registers

CPU;

registers

CPU,

registers

memory

e Multicore: include multiple cores on a single chip

* More efficient

— On-chip communication is faster than between-chip
communication

— Less power
* Dual-core deSIgn CPU core CPU core;
cache cache

* Like multiprocessor systems, but multiple systems
working together
— Usually sharing storage via a storage-area network (SAN)
— Provides a high-availability service which survives failures

* Asymmetric clustering has one machine in hot-standby mode

* Symmetric clustering has multiple nodes running applications,
monitoring each other

— Some clusters are for high-performance computing (HPC)
* Applications must be written to use parallelization

— Some have distributed lock manager (DLM) to avoid
conflicting operations

computer

interconnect

computer

interconnect

storage area
network

computer

What is an Operating System?

* Let’s start understanding an OS from this question:
Where is it?

user user user user
1 2 3 B n
compiler assembler text editor v database
system

system and application programs

operating system

computer hardware

Where is the OS?

* Four components of a computer system
— Hardware — provides basic computing resources (CPU,
memory, 1/0 devices)
— Users: People, machines, other computers
— App. programs — define the ways in which the sys.
resources are used to solve the computing problems

* Word processors, compilers, web browsers, database systems,
video games, etc.

— Operating system

* Controls and coordinates use of hardware among various
applications and users

* |t stands between the hardware and the user.

— A program that acts as an intermediary between a user of a
computer and the computer hardware

Operating

System

Hardware

* Operating system goals:
— Execute user programs & make solving user problems easier
— Make the computer system convenient to use
— Use the computer hardware in an efficient manner
— Design tradeoff between convenient and efficiency

* How good is this design?
— The user does not have to program the hardware
directly.
* |t hides all the troublesome operations of the hardware.

Example. The OS, on one hand, hides the physical system memory away from
you. On the other hand, it tells you that there is system memory available
when you run your applications.

Operating

Complex work...
System

Process requests

Hardware

* Processes as the starting point!
— Whatever programs you run, you create processes.

* i.e., you need processes to open files, utilize system memory,
listen to music, etc.

— So, process lifecycle, process management, and other
related issues are essential topics of this course.

Operating

System

Process

Hardware

* Example (step 1)

Most commands you type in the shell
are the same as starting a new process.

Operating
System

Process
Hardware

* Example (step 2)

The operating system contains the codes
that are needed to work with the file
system.

The codes are called the kernel.

Process File System

* Example (step 3)

The file system module inside the

operating system knows how to work

with devices, using device drivers.

Operating

System
Process

File System

* Example (step 4)

Of course, the operating system will
allocate memory for the results.

Memory
Operating
System
Process File System

* Example (final step)

index.html

The memory management sub-system
will copy the result to the memory of the
process.

At last, the result returns.

Memory

Return

Process File System

* System View

— OS is a control program

* Controls execution of programs to prevent errors and improper
use of the computer

— OS is a resource allocator
* Manages all resources

* Decides between conflicting requests for efficient and fair
resource use

What Operating Systems Do

* Depends on the point of view

* User View
— PC users want convenience, ease of use and good
performance, don’ t care about resource utilization
— But shared computer such as mainframe or minicomputer
must keep all users happy: maximize resource utilization

— Users of dedicate systems such as workstations have
dedicated resources but frequently use shared resources
from servers: tradeoff

— Mobile computers are resource poor, optimized for usability
and battery life

— Some computers have little or no user interface, such as
embedded computers in devices and automobiles

Operating System Definition

* No universally accepted definition
e Simple viewpoint

— “Everything a vendor ships when you order an operating
system” is a good approximation

— But varies wildly
e Common definition

— “The one program running at all times on the computer”
is the kernel.

e Everything else is either
— a system program (ships with the operating system) , or
— an application program.

Operating System Definition (Cont.)

* No universally accepted definition of what is part of
the operating system
— Operating systems grew increasingly sophisticated
— Microsoft case

* Current Mobile OS

— Once again the number of features constituting the OS is
increasing

— Core kernel + Middleware
* Databases, multimedia, graphics, etc...

Operating System Operations

Multiprogramming

* Operating system provides the environments within which
programs are executed

— Single user cannot keep CPU and 1/O devices busy at all times
* Multiprogramming needed for efficiency: most important
aspect of OS

— Multiprogramming organizes jobs (code and data) so CPU always
has one to execute

— All jobs are initially kept on disk in the job pool, a subset of total
jobs in system is kept in memory,

— One job selected and run via job scheduling

— When it has to wait (for I/O for example), OS switches to another
job

’ operating system
job 1
job 2
job 3
job 4
512M

Multitasking

Time sharing (multitasking) is logical extension in which
CPU switches jobs so frequently that users can interact with
each job while it is running, creating interactive computing
— Response time should be < 1 second

Allow many users to share the computer

— Each user has at least one program executing in memory
= process

Issues

— If several jobs ready to run at the same time @ CPU scheduling

— If processes don’ t fit in memory, swapping moves them in and
out to run

— Virtual memory allows execution of processes not completely in
memory

* Interrupt driven (hardware and software)
— Hardware interrupt by one of the devices
— Software interrupt (exception or trap):
* Software error (e.g., division by zero)
* Request for operating system service

* Other process problems include infinite loop, processes
modifying each other or the operating system

— An interrupt service routine is provided to deal with the
interrupt

* Dual-mode operation allows OS to protect itself and
other system components

— User mode and kernel mode

— Mode bit provided by hardware

* Provides ability to distinguish when system is running user
code or kernel code

* Some instructions designated as privileged, only executable in
kernel mode

* System call changes mode to kernel, return from call resets it
to user

Transition from User to Kernel Mode

* At system boot time, the hardware starts in kernel mode
* OSisloaded and starts user application in user mode

* Interrupt occurs, the hardware switches from user mode to
kernel mode

* Whenever the OS gains control, it is in kernel mode

user process

user mode

user process executing H calls system call | ’ return from system call (mode bit = 1)
\ Z
LY 7
LY 74
kernel trap return
i mode bit = 0 mode bit = 1

kernel mode

execute system call (mode bit = 0)

* Informally, a system call is similar to a function call,
but...
— The function implementation is inside the OS.
— We name it the OS kernel.

Function
implementation.

Thisisa
function call.

int main(void) {
int result;
result = add_function(a,b);
return 0;

}

// this is a dummy example..

* System calls are the programming interface between
processes and the OS kernel

— System calls provide the means for a user program to ask the
operating system to perform tasks

* A system call usually takes the form of a trap to a specific
location in the interrupt vector, treated by the hardware as
a software interrupt

* The system call service routine is a part of the OS

int main(void) { //somewhere in the kernel.

time(NULL); Invoke & return int time (time_t * t) {
return 0; \

-/program Here contains codes that
access the hardware clock!

Process OS Kernel

* The system calls are usually
— primitive,
— important, and
— fundamental.
—e.g., the time() system call.

* Roughly speaking, we can categorize system calls as
follows:

Process File System Memory

Security Device

System calls VS Library function calls

 If a call is not system calls, then they are library calls
(or function calls)!

» Take fopen() as an example.

— fopen() invokes the system call open().
— So, why people invented fopen()?

— Because open() is too primitive and is not programmer-
friendly!

’Libr‘ar‘y call H fopen(“hello.txt”, “w”); ‘

‘System call H open(“hello.txt”, O_WRONLY | O_CREAT | O_TRUNC, ©666); ‘

52

System calls VS Library function calls

 Library functions are usually compiled and packed
inside an object called the library file.
— In windows: DLL — dynamically linked library.
— In Linux: SO — shared objects.

Big picture

int open(......
Application A library file containing ‘

code invoking the implementation of

fopen() - fopen().

53

* Who defines the system calls? Functionalities?
Arguments? Return values?

* There are standards!
P o

_ Portable Operating Linux

System Interface
System V (five) Release 4 Solaris Unix

Berkeley Software Mac OS Darwin
Distribution

Introduction to Operating System
Components

Process

Process OR Program?

e A process is not a program!

Let’s consider the following two commands

Recursively print the directory entries,
SRl e A3 starting from the directory ‘/’
Recursively print the directory entries
C B 1s -R /hom !
I s "B starting from the directory ‘/home’

Both use the program file “/bin/1s”. The program arguments are different.

The processes’ internal status are different,
such as running time.

56

Program != Process

* A process is an execution instance of a program.
— More than one process can execute the same program code

— Later, you’ll find that a process is not bounded to execute just
one program!

* A process is active.

— A process has its local states concerning the execution. E.g.,
* which line of codes it is running;
* which CPU core (if there are many) it is running on.

— The local states change over time.

* Commands about processes (and hopefully you’ve
tried them before) — e.g., ps & top.

57

Process-Related Tools

* The tool “ps” can report a vast amount of

information about every process in the system
— Try “ps -ef”.

This column shows the unique
identification number of a process,
called Process ID, or PID for short.

Hint: you can treat ps as the short- !

form of “process status” TIME CMD
— = 00:00:00 bash

00:00:00 ps

By the way, this is called shell. ‘

58

Shell — a process launching pad

* So, what is going on inside that shell?

— The shell creates a new process, and is called a child
process of the shell.

* The child process then executes the command “ps”.

TIME CMD

00:00:00 bash
Parent-child . soc 00:00:00 ps
relationship
/ \

. ps — the child
process

59

* Process relationship:
— A parent process will have its child process.
— Also, a child process will have its child processes.
— This form a tree hierarchy.

Process A
- \
Process B

T —
- T
D D

| E.g., “Process E” is the shell and “Process F” is “ps”. |

Process Summary

* A process is an execution instance of a program. It is a unit
of work within the system.
— Program is a passive entity, process is an active entity.

* Process needs resources to accomplish its task, process
termination requires reclaim of any reusable resources
— CPU, memory, I/0, files, Initialization data

* Single-threaded process has one program counter
specifying location of next instruction to execute, multi-
threaded process has one program counter per thread
— Process executes instructions sequentially, one at a time, until

completion

* Typically, system has many processes, some user, some

operating system running concurrently

Process Management Activities

* The operating system is responsible for the
following activities in connection with process
management:

— Creating and deleting both user and system processes
— Suspending and resuming processes

— Providing mechanisms for process synchronization

— Providing mechanisms for process communication

— Providing mechanisms for deadlock handling

Introduction to Operating System
Components

Memory

* What are the things that a process has to store?

/ Global Variables

\ Eom—
Allocated Memory
Every process should has its own

set of global variables, local _

variables, and allocated memory.

* OMG...Cis too low-level...

’ BTW, this arrangement is called segmentation!

Dynamically
Allocated
Memory

Global variables

—> | Data segment

System memory layout

* “Hey, you’re wrong! Some languages, e.q., Java, do
not have the above layout...”, you asked.

-—

OS Kernel

This statement creates an object!
C doesn’t have objects!

Reality

The object only exists inside the
JVM, and this JVM is just a process
inside the OS!

The “hello” String object is just a piece of
dynamically-allocated memory in the JVM

process.

It is created by “malloc()” and will be
“free()”-ed later.

Sidetrack: Pros and Cons in using C

* Cons:

— Some people argued that Cis a bad beginner’s
programming language. Now, you can understand why...

Because C requires a programmer to take care of the process-level memory
management.

Every programmer needs to know about the low-level memory layout in
order for him/her to understand what segmentation fault means!

Every aspect on memory management can be manipulated using C.

Learning malloc () exposes you to the heap manipulation. This makes a
high-level programming language becoming low-level. Plus, this exposes
you to unpredictable dangers!

* Disclaimer: choosing which programming language is really a personal choice.

67

Sidetrack: Pros and Cons in using C

* Pros:

— Some people argued that C is an efficient programming
language. Now, you can understand why...

Because C allows a programmer to manipulate the process-level memory
management “directly”.

That’s why many user libraries are implemented using C because of
efficiency consideration.

E.g., the Java Virtual Machine is implemented using C!

Most importantly, C is the only language to interact with the OS directly!
In other words, the system call interface is written in C.

* Disclaimer: choosing which programming language is really a personal choice.

68

* |n case that someone doesn’t know about the
hierarchy below...

— A program is fetched from hard disk to main memory.

— When executed, instructions in the program are fetched
from the main memory to CPU.

CPU
- Main Memory -

* However, did you ever need to program those three

things when you want to run the program “Is”?
— Never! Then, who have the jobs done?
— Of course, 0S!

CPU
- Main Memory -

* Typically, there are more than 100 processes running
“at the same time”.

— There is only a finite number of CPU cores, depending on how
much money you spent.

— Then, only a finite number of processes can be executed “really
at the same time”.

— So, other (non-running) processes are stored at different
devices controlled by the OS before they get a chance to run.

Process A Main @ @k
(running) -
Process D @

Memory Management Summary

* To execute a program
— All (or part) of the instructions must be in memory
— All (or part) of the data that is needed by the program must be in
memory.
* Memory management determines what is in memory

— Optimizing CPU utilization and computer response to users

* Memory management activities
— Keeping track of which parts of memory are currently being used
and by whom
— Deciding which processes (or parts thereof) and data to move into
and out of memory
— Allocating and deallocating memory space as needed

Introduction to Operating System
Components

Storage Management

* Afile system, FS, means the way that a storage
device is used.

* Have you heard of...
— FAT16, FAT32, NTFS, Ext3, Ext4, BtrFS?
— They are all file systems.

— It is about how a storage device is utilized.

m Files / Data
Metadata

* Afile system must record the following things:
— directories;
— files;
— allocated space;
— free space.

* Think about the consequences if any one of the
above is missing...

Two faces of a file system

* The storage design of the file system.
— A file spends most of its time on the disk.
— So, a file system is about how they are stored.

— Apart from files, many others things are stored in the
disk.

* The operations of the file system.
— A file can be manipulated by processes.

— So, a file system is also about the operations which
manipulate the content stored.

76

* AFSisindependent of an OS!

— If an OS supports a FS, then the OS can do whatever
operations over that storage device.

— Else, the OS doesn’t know how to read or update the
device’s content.

Windows XP supports Linux supports

NTFS, FAT32, FAT16, ISO9660, NTFS, FAT32, FAT16, ISO9660,
Juliet, CIFS Juliet, CIFS, Ext2, Ext3, etc...

’ Linux supports far more FS-es than any versions of Windows ‘

* Pop quiz!
— Guess, what are the fundamental file (not dir) operations?

Open Read Write Close Rename Delete

* Well...creating is not...
— Itis just a special case of opening a file.

* Sorry...copying is not...

— Do you know how it is implemented through the above
operations?

* Sorry...moving is the same as renaming...
— Except that a file is moving from one disk to another.

Storage Management

* OS provides uniform, logical view of information storage
— Abstracts physical properties to logical storage unit - file
— Various devices (i.e., disk drive, tape drive)
* Varying properties include access speed, capacity, data-transfer rate, access
method (sequential or random)

* File-System management
— Files usually organized into directories
— Access control to determine who can access what

— OS activities include
* Creating and deleting files and directories
* Primitives to manipulate files and directories
* Mapping files onto secondary storage
* Backup files onto stable (non-volatile) storage media

Mass-Storage Management

Usually disks used to store data that does not fit in main

memory or data that must be kept for a long period of time

Proper management is of central importance

— Entire speed of computer operation hinges on disk subsystem and
its algorithms

OS activities

— Free-space management

— Storage allocation

— Disk scheduling

Some storage need not be fast

— Tertiary storage includes optical storage, magnetic tape

— Still must be managed — by OS or applications

Performance of Various Levels of Storage

Level 1 2 3 4 5
Name registers cache main memory solid state disk magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000 - 50,000 5,000,000
Bandwidth (MB/sec) | 20,000 - 100,000 | 5,000- 10,000 | 1,000 -5,000 500 20-150
Managed by compiler hardware operating system | operating system | operating system
Backed by cache main memory | disk disk disk or tape

Kernel Data Structures

Kernel Data Structures

Lists, Trees, Hash Map and Bitmaps

* Many similar to standard programming data structures

e Lists
— Singly linked list
| data | | | data | | | data | | . - . null
I to rooL [t

— Doubly linked list

! [2 e

data null data data data null

 Stack

— Last in first out (LIFO)

— Widely used when invoking function calls
* Queue

— First in first out (FIFO)

— Widely used in job scheduling

* Trees
— Binary tree
— Binary search tree: left <= right
* Worse-case search performance is O(n)
— Balanced binary search tree
* Worse-case search performance is O(lg n)

17

 Hash function

— Takes data as input, performs numeric operation on
the data, and returns a numeric value

— Retrieve data: O(1)
— Hash collision

* Hash function can create a hash map

hash_function(key)

L[T T [[|reshme

Kernel Data Structures

* Bitmap — string of n binary digits representing
the status of n items

* Pros:
— Space efficiency

* Example: used to indicate the availability of disk
blocks

* Linux data structures defined in include files
<linux/list.h>, <linux/kfifo.h>,
<linux/rbtree.h>

MISC

Protection and Security, Computing Environments and
Open-sourced OS

Protection and Security

e Protection — any mechanism for controlling access of
processes or users to resources defined by the OS

* Security — defense of the system against internal and
external attacks
— Huge range, including denial-of-service, worms, viruses, identity
theft, theft of service
» Systems generally first distinguish among users, to
determine who can do what

— User identities (user IDs, security IDs) include name and
associated number, one per user, determine access control

— Group identifier (group ID) allows set of users to be defined and
controls managed, then also associated with each process, file

— Privilege escalation allows user to change to effective ID with
more rights

Computing Environments - Traditional

e Stand-alone general purpose machines

* Blurred as most systems interconnect with others
(i.e., the Internet)
— Portals provide web access to internal systems
— Network computers (thin clients) are like Web terminals
— Mobile computers interconnect via wireless networks

* Networking becoming ubiquitous — even home

systems use firewalls to protect home computers
from Internet attacks

Computing Environments - Mobile

* Handheld smartphones, tablets, etc

* What is the functional difference between them
and a “traditional” laptop?
— Extra feature — more OS features (GPS, gyroscope)
— Allows new types of apps like augmented reality

— Use IEEE 802.11 wireless, or cellular data networks for
connectivity

* Leaders are Apple iOS and Google Android

* Distributed computing

— Collection of separate, possibly heterogeneous, systems
networked together
— Network is a communication path, TCP/IP most common
* Local Area Network (LAN)
* Wide Area Network (WAN)
* Metropolitan Area Network (MAN)
* Personal Area Network (PAN)
— Network Operating System provides features between
systems across network
* Communication scheme allows systems to exchange messages
* Illusion of a single system

Client-Server Computing
Dumb terminals supplanted by smart PCs

Many systems act as servers, responding to requests
generated by clients

» Compute-server system provides an interface to client to
request services (i.e., database)

» File-server system provides interface for clients to store
and retrieve files

Computing Environments - Peer-to-Peer

* Another model of distributed system, does not
distinguish clients and servers
— Instead all nodes are considered peers
— May each act as client, server or both
— Node must join P2P network

* Registers its service with central lookup service on network, or

* Broadcast request for service and respond to requests for
service via discovery protocol

— Examples include BitTorrent

Computing Environments - Virtualization

Allows OSes to run applications within other OSes

Emulation used when source CPU type is different from
target type (i.e. PowerPC to Intel x86)

— Generally slowest method

— Every machine-level instruction must be translated
Virtualization — OS natively compiled for CPU, running
guest OSes also natively compiled

— Running multiple VMs allows many users to run tasks on a system
designed for a single user

— VMM (Virtual Machine Manager) provides virtualization services

processes
processes
processes processes
rogrammin
/pingterface 9 kernel kernel kernel
kernel VM1 VM2 VM3
virtual machine
manager
hardware
hardware
(a) (b)

Computing Environments — Cloud Computing

* Delivers computing, storage, even apps as a service across a network

* Logical extension of virtualization because it uses virtualization as the
base for it functionality.
— Amazon EC2 has thousands of servers, millions of virtual machines, petabytes
of storage available across the Internet, pay based on usage
* Many types
— Public cloud — available via Internet to anyone willing to pay
— Private cloud — run by a company for the company’s own use
— Hybrid cloud — includes both public and private cloud components

— Software as a Service (SaaS) — one or more applications available via the
Internet (i.e., word processor)

— Platform as a Service (PaaS) — software stack ready for application use via the
Internet (i.e., a database server)

— Infrastructure as a Service (IaaS) — servers or storage available over Internet
(i.e., storage available for backup use)

Computing Environments — Cloud Computing

* Cloud computing environments composed of traditional
OSes, plus VMMs, plus cloud management tools

— Internet connectivity requires security like firewalls

— Load balancers spread traffic across multiple applications

Internet

b \, Customer
s requests

cloud
customer
interface

firewall

load balancer cloud
imanagement
+_commands
h

virtual virtual
machine: i

storage
machine:

managment
services

servers servers

Computing Environments — Real-Time Embedded Systems

* Real-time embedded systems: most prevalent form of
computers
— Car engines, robots, DVDs, etc.

* Real-time OS has well-defined fixed time constraints
— Processing must be done within constraint
— Correct operation only if constraints met

* Many other special computing environments as well
— Some have OSes, some perform tasks without an OS

Open-Source Operating Systems

* Operating systems made available in source-code format
rather than just binary closed-source

* Started by Free Software Foundation (FSF), which has
“copyleft” GNU Public License (GPL)

* Examples include GNU/Linux and BSD UNIX (including core
of Mac OS X)

* Can use VMM like VMware Player (Free on Windows),
Virtualbox (open source and free on many platforms -
http://www.virtualbox.com)

— Use to run guest operating systems for exploration

* OS Overview
— OS Concept
— Multiprogramming & Multitasking
— Dual Mode & System Call
* OS Components
— Process Management
— Memory Management
— Storage Management
* Computer System Organization & Architecture
— Interrupt

End of Chapter 1

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Chapter 2
Operating System Structures

* QOperating System Services
— User Operating System Interface
— System Calls

* Operating System Structure
* Operating System Design and Implementation

* MISC: Debugging, Generation & System Boot

Operating System Services

Services Overview, User Interface

* Operating systems provide
— an environment for execution of programs and
— services to programs and users
* Services may differ from one OS to another
* What are the common classes?
— Convenience of the user

— Efficiency of the system

user and other system programs

GUI batch command line

user interfaces

system calls
program 110 file - resource .
execution operations systems communication allocation gegounting
error protaen%tlon
detection A security
services

operating system

hardware

* Program execution
— Load a program into memory
— Run the program
— End execution

* either normally or

* abnormally (indicating error)

OS Services for Helping Users

* 1/0 operations - A running program may require
I/0, which may involve a file or an I/O device
— Common |/Os: read, write, etc.
— Special functions: recording CD/DVD

* Notes: Users usually cannot control I/O devices
directly, so OS provides a mean to do |I/O

— Mainly for efficiency and protection

OS Services for Helping Users

* File-system manipulation - The file system is of
particular interest
— OS provides a variety of file systems

* Major services
— read and write files and directories
— create and delete files and directories
— search for a given file
— list file Information

— permission management: allow/deny access

OS Services for Helping Users

* Communications: information exchange between
processes
— Processes on the same computer
— Processes between computers over a network

* Implementations
— Shared memory
* Two or more processes read/write to a shared section of mem.
— Message passing
* Packets of information are moved between processes by OS

OS Services for Helping Users

* Error detection — OS needs to be constantly aware
of possible errors

* Error types
— CPU
— memory hardware: memory error, power failure, etc.
— 1/0 devices: parity error, connection failure, etc.
— user program: arithmetic overflow, access illegal mem.

* Error handling

— Ensure correct and consistent computing

— Halt the system, terminate an error-causing process etc.

10

OS Services for Ensuring Efficiency

» Systems with multiple users can gain efficiency by
sharing the computer resources

* Resource allocation
— Resources must be allocated to each user/job

— Resource types - CPU cycles, main memory, file storage,
I/O devices

— Special allocation code may be required, e.g., CPU
scheduling routines depend on

* Speed of the CPU, jobs, number of registers, etc.

11

* Accounting - To keep track of

— which users use how much and what kinds of resources
* Usage

— Accounting for billing users

— Accumulating usage statistics, can be used for
* Reconfiguration of the system
* Improvement of the efficiency

OS Services for Ensuring Efficiency

* Protection and security
— Concurrent processes should not interfere w/ each other
— Control the use of computer
* Protection
— Ensure that all access to system resources is controlled
e Security
— User authentication by password to gain access

— Extends to defending external /O devices from invalid
access attempts

13

* User interface - Almost all operating systems have a
user interface (Ul).

— Three forms

* Command-Line (CLI)
— Shell command

* Batch
— Shell script

* Graphics User Interface (GUI)
— Windows system

User Operating System Interface - CLI

« Command line interface or command interpreter
— Allows direct command entry
— Included in the kernel or treated as a special program

* Sometimes multiple flavors implemented — shells
— Linux: multiple shells (C shell, Korn Shell etc.)
— Third-party shell or free user-written shell

— Most shells provide similar functionality (personal
preference)

15

Default

)

Execute

Bookmarks

N

PBG-Mac—Pro:~ pbg$ w

15:24 up 56 mins, 2 users, load averages: 1.51 1.53 1.65

USER TTY FROM LOGING IDLE WHAT

pbg console - 14:34 50 -

pbg seae & 15:05 -w

PBG-Mac-Pro:~ pbg$ iostat 5

diskd diskl diskia cpu

KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s
33.75 343 11.30 64.31 14 0.88 39.67 @ 0.22
5.27 320 1.65 0.00 0 0.00 ©0.00 0 0.00
4.28320 1.37 0.00 © 0.00 ©0.88 8 0.00

AC

PBG-Mac-Pro:~ pbg$ ls

Applications Music

Applications (Parallels) Pando Packages

Desktop Pictures

Documents Public

Downloads Sites

Dropbox Thumbs . db

Library Virtual Machines

Movies Volumes

PBG-Mac-Pro:~ pba$ pwd

JUsers/pbg

PBG-Mac-Pro:~ pbg$ ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: icmp_seq=0 tt1-64 time-2.257 ms
64 bytes from 192.168.1.1: icmp_seq=1 tt1-64 time=1.262 ms
AC

--- 192.168.1.1 ping statistics ——-

2 packets transmitted, 2 packets received, 8.8% packet los:
round-trip minfavg/max/stddev = 1.262/1.760/2.257/0.498 ms
PBG-Mac-Pro:~ pba$ []

load average
us sy id 1m

11 5 84
4 294
5 302

WebEx

config.log
getsmartdata. txt
imp

log

panda-dist
prob.txt

seripts

User Operating System Interface - CLI

* Main function of CLI
— Get and execute the next user-specified command
— Many commands manipulate files

* Two ways of implementing commands

— The command interpreter itself contains the code
* Jump to a section of its code & make appropriate system call
* Number of commands determines the size of CLI
— Implements commands through system program (UNIX)
* CLI does not understand the command
* Use the command to identify a file to be loaded into memory and executed

* Exp: rm file.txt (search for file rm, load into memory and exe w/ file.txt)
* Add new commands easily

17

User Operating System Interface - GUI

» User-friendly graphical user interface
— Mouse-based window-and-menu system (desktop metaphor)
— Icons represent files, programs, actions, etc

— Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open
directory (known as a folder)

— Invented at Xerox PARC in early 1970s

* Many systems now include both CLI and GUI interfaces
— Microsoft Windows is GUI with CLI “command” shell
— Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

— Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

18

Touchscreen Interfaces

* Touchscreen devices
require new interfaces

— Mouse not possible or not desired

— Actions and selection based on
gestures

— Virtual keyboard for text entry
— Voice commands

19

* Personal preference
* CLI: more efficient, easier for repetitive tasks

— System administrator
— Power users who have deep knowledge of a system
— Shell scripts

* GUI: user-friendly

* The design and implementation of user interface is
not a direct function of the OS

System Call

Usage, Implementation, Types

System Calls

* Programming interface to the services provided by
the OS

* Implementation language
— Typically written in a high-level language (C or C++)

— Certain low-level tasks (direct hardware access) are
written using assembly language

* Example of using system call
— Read data from a file and copy to another file
— open()+ read() + write()?

22

» System call sequence to copy the contents of one file to another file

source file | > destination file

4 Example System Call Sequence h

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally)

A

* Simple programs may make heavy use of the OS
— A system executes thousands of system calls per second
— Not user-friendly

* Each OS has its own name for each system call
— This course/textbook uses generic examples

* How to use?

— Mostly accessed by programs via a high-level API rather
than direct system call use

* Why prefer API rather than invoking system call?

— Easy of use
* Simple programs may make heavy use of the OS
— Program portability
* Compile and run on any system that supports the same API

 Application Programming Interface (API)

— A set of functions that are available to application

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is cbtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)
return function parameters
value name

A program that uses the read () function must include the unistd. h header
file, as this file defines the ssize-t and size-t data types (among other
things). The parameters passed to read () are as follows:
® int fd—the file descriptor to be read
® void *buf—a buffer where the data will be read into
size t count—the maximum number of bytes to be read into the
buffer

‘On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

API

* Application Programming Interface (API)

— A set of functions that are available to application
programmers

* Three most common APlIs
— Win32 API for Windows
— POSIX API for POSIX-based systems
* including virtually all versions of UNIX, Linux, and Mac OS X
— Java API for the Java virtual machine (JVM)
* How to use API?
— Via a library of code provided by OS
— Libc: UNIX/LINUX with C language

27

System Call Implementation

* Who invokes system call: System call interface

— Provided by the run-time support system, which is

— a set of functions built into libraries within a compiler
* How?

— intercepts function calls in the API

— invokes necessary system calls
e Implementation

— Typically, a number associated with each system call

— System-call interface maintains a table indexed
according to the numbers

28

user application

open ()
user
mode
kernel (
mode i
. open ()
a Implementation
i » of open ()
E. system call
return

* Cprogram invoking printf() library call, which calls write()

system call

#include <stdio.h>
int main ()

(

— printf (“Greetings");

return O;
}

user
lmd';| standard C library }—

mode
(wrim)
system call

* The caller needs to know nothing about
— how the system call is implemented
— what it does during execution

— Just needs to obey APl and understand what OS will do
as a result call

* Most details of OS interface are hidden from
programmer by API

— Managed by run-time support library

System Call Parameter Passing

* More information is required than simply the identity of
desired system call

— Parameters: file, address and length of buffer

* Three methods to pass parameters to the OS
— Simplest: pass the parameters in registers
* In some cases, may be more parameters than registers

— Table-based

* Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register

* This approach taken by Linux and Solaris
— Stack-based

* Parameters are placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

32

X: parameters
for call

register

load address X
system call 13 —

_/

user program

operating system

code for
system
call 13

* Six major categories
— Process control
— File manipulation
— Device manipulation
— Information maintenance
— Communications

— Protection

* Process control
—end(), abort()

¢ Halt a running program normally or abnormally

* Transfer control to invoking command interpreter

* Memory dump & & error message
— Written to disk and examined by debugger
— Respond to error: alert window (GUI system) or terminate the entire job (batch system)

¢ Error level: normal termination (level 0)

* Process control
—end(), abort()

— load(), execute()

* Where to return?
— Return to existing program: save mem. image
— Both programs continue concurrently: multiprogram

— create_process(), terminate_process()

— get_process_attributes(), set_process_attributes()
¢ Job’s priority, maximum allowable execution time, etc

* Process control

—end(), abort()

— load(), execute()
create_process(), terminate_process()
get_process_attributes(), set_process_attributes()
wait_time()
wait_event(), signal_event()
acquire_lock(), release_lock()

* Single-tasking

* Shell invoked when system booted
free memory

* Simple method to run program
— No process created free memory

* Single memory space process

* Loads program into memory,
overwriting all but the kernel

command 3
. interpreter comman
* Program exit -> shell reloaded 4 interpreter
kernel kernel
(@) (b)
At system startup running a program

* Unix variant
* Multitasking process D

* User login -> invoke user’ s choice of shell

free memory

* Shell executes fork() system call to create

process process C
— Executes exec() toload program into process

— Shell waits for process to terminate or continues with interpreter
user commands

* Process exits with:

rocess B
— code =0-no error P

— code >0 - error code

kernel

* File management
create file, delete file

open, close file

read, write, reposition

get and set file attributes
* Device management: physical/virtual devices
— request device, release device
— read, write, reposition
— get device attributes, set device attributes
— logically attach or detach devices

* Information maintenance
— Get time or date, set time or date
— Get system data, set system data
* Num. of current users, os version, amount of free mem. & disk
— Debugging
* Dump memory
* Single-step execution

* Time profile: timer interrupt
— The amount of time that the program executes at a particular location

e Communications

— Message-passing model
* Host name, IP, process name

* Get_hostid(), get_processid(), open_connection(),
close_connection(), accept_connection(),
read_message(), write_message()

e Useful for exchanging smaller amounts of data

— Shared-memory model
* Remove the normal restriction of preventing one process from accessing
another process’s memory

* Create and gain access to shared mem. region
— shared_memory_create(), shared_memory_attach()

e Threads: memory is shared by default
 Efficient and convenient, having protection and synchronization issues

* Protection
— Control access to resources
— All computer systems must be concerned

— Permission setting
» get_permission(), set_permission()

— Allow/deny access to certain resources
* allow_user(), deny_user()

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe ()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()

SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe(d
shmget ()
mmap ()

chmod ()
umask ()
chown()

https:

www.kernel.or;
http://man7.org/linux/man-pages/

doc/man-pages

Operating System Structures

* General-purpose OS is a very large program

* Various ways to structure ones
— Simple structure — MS-DOS
— Monolithic-- UNIX
— Layered — an abstraction
— Microkernel —Mach
— Modules
— Hybrid system — most OSes

* MS-DOS — written to provide the
most functionality in the least space
— Do not have well-defined structures
— Not divided into modules

— Its interfaces and levels of functionality _'
resident system program
are not well separated

* Application programs can access basic I/0
routines

appllcatlon program

MS-DOS device drivers|
* Vulnerable to errant programs
* Limited by hardware

ROM BIOS device drivers

* UNIX

— The original UNIX operating system had limited structuring, it
consists of two separable parts
» Systems programs

* The kernel
— Consists of everything below the system-call interface and above the physical hardware
— Aseries of interfaces and device drivers

— Monolithic structure: combine all functionality in one level

* File system, CPU scheduling, memory management, and other operating-
system functions

* Difficult to implement and maintain
* Performance advantage

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries
-

system-call interface to the kernel

signals terminal file system CPU scheduling

4 handling swapping block /O page replacement
character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

Kernel

kernel interface to the hardware
terminal controllers
terminals

device controllers | memory controllers
disks and tapes physical memory

Layered Approach

* The operating system is divided into a number of layers (levels),
each built on top of lower layers
— The bottom layer (0), is the hardware; the highest layer (N) is the user
interface
* Implementation
— Each layer is an implementation of an abstract

" layerN T~
g user interface

object made up of data and operations / /,,»'*/ ‘ ‘\\\

+ Advantages /f P . O
— Simple to construct and debug ’;’/ / / N \
— Hides the existence of DS, Ops, hardware ‘ ‘\ [\ narovare ‘ ,]
from upper layers \\ \\ ~

* Challenges NN

— How to define various layers? N

— Efficiency problem T
¢ |/O->memory manage->CPU scheduling->hardware

50

* Moves as much from the kernel into user space as possible
— Provides minimal process, memory management and communication

— Mach: example of microkernel (developed by CMU in mid-1980s)
¢ Mac OS X kernel (Darwin) partly based on Mach

* Main function

— Communication between client program and services (also in user space)

— Provided through message passing

Application
Program

A~

File
System

" "

Device
Driver

‘messages

Interprocess
Communication

messages

memory CPU
managment scheduling

microkernel

user
mode

kernel
mode

hardware

Microkernel System Structure

* Moves as much from the kernel into user space as possible
— Provides minimal process, memory management and communication
— Mach: example of microkernel (developed by CMU in mid-1980s)
¢ Mac OS X kernel (Darwin) partly based on Mach
* Main function
— Communication between client program and services (also in user space)
— Provided through message passing
* Benefits
— Easier to extend a microkernel: add services to user space, no changes to kernel
— Easier to port the operating system to new architectures
— More reliable & more secure(less code is running in kernel mode)

* Detriments
— Performance overhead of user space to kernel space communication

52

* Many modern operating systems implement loadable
kernel modules
— The Kernel has a set of core components
— Links in additional services via modules (boot time or run time)
— Common in most modern OSes

scheduling
device and classes
bus drivers

core Solaris
miscellaneous kernel
modules
STREAMS executable
modules formats

loadable
system calls

* Many modern operating systems implement loadable

kernel modules

— The Kernel has a set of core components

— Links in additional services via modules (boot time or run time)

— Common in most modern OSes
* Similar to layered system

— Any module can call any other model

— More flexible
* Similar to the microkernel

— Primary module has only core functions

— No need to invoke message passing

— More efficient

* Most modern operating systems combine different
structures, resulting in hybrid systems
— Why? Address performance, security, usability needs

* Examples
— Linux kernel

* Monolithic: single address space (for efficient performance)
* Modular: dynamic loading of functionality
— Windows

* Mostly monolithic, plus microkernel for different subsystem personalities
(running in user-mode), also support loadable kernel module

— Apple Mac 0OS X

* Mach microkernel, BSD Unix parts, plus I/O kit and dynamically loadable
modules (called kernel extensions)

Mac OS X Structure

* Layered system: user interface + application environment &
services + kernel (Mach+BSD UNIX)

* Mach Microkernel
— Memory management
— inter-process communication

graphical user interface

— Thread scheduling Aqua
® BSD UNIX application environments and services
- Cu
— POSIX API :
kernel environment
— Networking BSD
— File system Mach

1/0 kit kernel extensions

56

Cocoa Touch

* Apple mobile OS for iPhone, iPad |
— Structured on Mac OS X |

— Added functionality |

|

Media Services

Core Services

— Does not run OS X applications natively
¢ Also runs on different CPU architecture (ARM vs. Intel)

Core OS

* Structure
— Cocoa Touch is Objective-C API for developing apps
— Media services layer for graphics, audio, video
— Core services provides cloud computing, databases
— Core operating system, based on Mac OS X kernel

* Developed by Open Handset Alliance (mostly Google)
— Similar stack to 10S
— Open Source

* Based on Linux kernel
— Provides process, memory, device-driver management

* Optimization | Applications |

— Adds power management ‘ Application Framework ‘

Libraries Android runtime

9 virtual machine

‘ Linux kernel ‘

Operating System Design and
Implementation

Operating System Design and Implementation

* Design and Implementation of OS not “solvable”, but some
approaches have proven successful

* First problem: Design goals and specifications

— Affected by choice of hardware, type of system (batch, time-
sharing, single/multiple users, distributed, real-time, etc)

— User goals
* Convenient to use, easy to learn, reliable, safe, and fast
— System goals

* Easy to design, implement, and maintain, as well as flexible, reliable, error-
free, and efficient

— No unique solution to the problem of defining the requirements

60

Operating System Design and Implementation

* Important principle to separate
— Mechanism: How to do it?
— Policy: What will be done?

* Examples
— Timer mechanism (for CPU protection)
* Policy decision: How long the timer is to be set?

— Priority mechanism (in job scheduling)

* Policy: I/O-intensive programs have higher priority than CPU-
intensive ones or vice versa

* Benefits: maximum flexibility

— Change policy without changing mechanism

61

* Much variation
— Early OSes in assembly language
— Now C, C++
* Actually usually a mix of languages
— Main body in C
— Lowest levels in assembly
— Systems programs in C, C++, scripting languages
* Pros and cons
— Code can be written faster, easier to understand/debug
— More high-level language, easier to port to other hardware
— Slower & increased storage requirement

Implementation

e Performance?

— Major performance improvements: better data
structures and algorithms

— How about developing excellent assembly-language
code in OS implementation?
* Modern compiler is well optimized

* A small amount of the code is critical to performance, easy to
do specialized optimization
— Interrupt handler
— 1/0 manager
— Memory manager
— CPU scheduler

63

MISC

Debugging, Generation, Booting

Operating-System Debugging

* Failure analysis
— log files: written with error information when process fails
— core dump: a capture of the memory of the processes
— crash dump: memory state when OS crashes
* Performance tuning
— Trace listings of system behavior
— Interactive tools: top displays resource usage of processes

 Kernighan’s Law

— “Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

65

Operating System Generation

* Operating systems are designed to run on any of a class of
machines
— The system must be configured or generated for each specific
computer site
* SYSGEN program obtains information concerning the
specific configuration of the hardware system
— Read from file, ask the operator or probe

— Generation methods
* Modify source code and completely recompile
* Select modules from precompiled library and link together

66

System Boot

* System booting on most computer systems

— Bootstrap program (residing in ROM) locates the kernel, loads it
into memory, and starts it
* ROM needs no initialization, cannot be easily infected by virus
* Diagnostics to determine machine state
* Initialization: CPU registers, device controllers, memory

— Some use two-step process: a simple bootstrap loader fetches a
more complex bootstrap program, which loads kernel (large OSes)

— Some store the entire OS in ROM (Mobile OS)

* Common bootstrap loader allows selection of kernel from
multiple disks, versions, kernel options (GRUB)

67

* Operating system services
* System calls
— Relationship between system call and API
* Operating system structures
— Modular is important
— Generally adopt a hybrid approach
* Design principles
— Separate policy from mechanism

* OS Overview * Ch2 OS Structure
— OS Functionality — Operating system services
— Multiprogramming & Multitasking — System calls

— Operating system structures

OS Operations
— Dual Mode & System Call

* 0OS Components

— Design principles
* Process management
— Concept, scheduling,

— Process Management operation, communication,
— Memory Management synchronization
— Storage Management * Memory management

* Computing Environment — Main memory, virtual mem

* Storage management
— Storage, FS, 1/0

End of Chapter 2

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Chapter 3
Process Concepts & Operations

* Process Concept
— Program vs process
— Process in memory & PCB
— Process state

* Processes Operations

— Process creation, program execution, process
termination

— UNIX example: fork(), exec*(), wait()

Informally, a process is a program in execution.

: N
e
Differences?
Program
NN
/ e .
Relationship? /

Execution?

What is a program?

)

Program

—
e

* What is a program?
— A program is a just a piece of code.

* But, which code do you mean?
— High-level language code: C or C++?

— Low-level language code: assembly code?

— Not-yet an executable: object code?

— Executable: machine code?

C code: hello.c Expanded C code: hello.c

IIIl" |“%‘%‘H‘HHH%HH“‘I III|'>

Assembly code: hello.s

#tdefine TXT “hello”

int main(void) {
printf(“%s\n”, TXT);
return 0;

}

Compiler &
Optimizer

* The pre-processor expands:
— #define, #include, #ifdef, #ifndef, #endif, etc.
—Try: “gcc -E hello.c”

#tdefine TXT “hello”
int main(void) { int Tain(\mid) ¢ -
: e\ . Pre-processor printf(*%s\n”, hello’);
printf(e{éS\n > TXT); P return 0;
return 0; }

}

Original code gcc -E hello.c Expanded code

* Another example: the macro!

int main(void) {

SWAP(i, j);

int i = 10, j = 20;
printf("before swap: i = %d, j = %d\n", i, j);

printf("after swap: i = %d, j = %d\n", i, j);

¥

Pre-processor

int main(void) {
int i = 10, j = 20;
printf("before swap: i = %d, j = %d\n", i, j);

pr1|nt!!||a!ter swap: :|.I = !!, j= !d\n", i, 3);

* How about: #include?

int main(void) {
add_fun(1,2);
return 0;

}

| Program: include.c Pre-processor

int main(void) {
add_fun(1,2);
return 90;

Program: header.h

(Still...1 of 2) Compiler and Optimizer

* The compiler performs:

— Syntax checking and analyzing;

— If there is no syntax error, construct intermediate codes,

i.e., assembly codes;

* The optimizer optimizes codes

— It improves stupid codes!

— Check the parameter of gcc

“-0” means to optimize.

The number followed is the

optimization level. Max is level 3,
i.e., “-03”. Default is level is “-01".

“-00”: means no optimization.

10

Assembly code: hello.s Object code: hello.o

Assembler
“as” in Linux.

Linker
“1d” in Linux.

Static/Dynamic
library

Executable: hello

(Still...2 of 2) Assembler and Linker

* The assembler assembles “hello.s” and
generates an object code “hello.o”

— A step closer to machine code
—Try: “as hello.s -o hello.o”

* The linker puts together all object files as well as
the libraries

— There are two kinds of libraries: statically-linked and
dynamically-linked ones

12

* Alibraryfileis...
— just a bunch of function implementations.

— for the linker to look for the function(s) that the target C
program needs.

Shared library
with “. so” file
extension.

A static library
with “.a” file
extension. It is
also called an
archive.

| A bunch of “dot-o” files.

The final
program is the
combination of
the above two
codes.

The linker only
checks whether the
functions used in
“.0"” files exists in
the “.so” files or
not.

A smaller
program!

Linking with static library file.

Linking with dynamic library file.

How to compile multiple files?

* gcc by default hides all the intermediate steps.

— Executable: “gcc -0 hello hello.c” generates
“hello” directly.

— Object code: “gcc -c hello.c” generates “hello.o”
directly.

* How about working with multiple files?

15

How to compile multiple files?

Remember, below shows one of the solution.

Step 2.

$ gcc -c code.c

Prepare all the source files. l
Important: there must be

one and only one file

containing the main function. prog

Compile them into object
codes one by one. Construct the program
together with all the object
codes.

Step 3.

$ gcc -o prog *.o

16

* A program is just an executable file!
— It is static;

— It may be associated with dynamically-linked files;
* “*.50” in Linux and “*.dll” in Windows.

* It may be compiled from more than one file

What is a process?

Process

* A processis a program in execution

— A program (an executable file) becomes process when it
is loaded into memory

— Active
* Process in memory
— Text section
— Stack
— Heap
— Data section
— Program counter
— Contents of registers

Process in Memory

e Text section "
— Program code !
e Data section I

heap

— Global variables

data

Stack tex

0

— Temporary data (function parameters, return addresses,
local variables)

* Heap
— Dynamically allocated memory during process run time

* Program counter and contents of registers

20

Process State

* As a process executes, it changes state, which is
defined in part by the current activity
— new: The process is being created
— running: Instructions are being executed
— waiting: The process is waiting for some event to occur

* |/O completion or reception of a signal

—ready: The process is waiting to be assigned to a
processor

— terminated: The process has finished execution

21

» State diagram

admitted interrupt i terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

* Only one process can be running on any processor
at any instant

* Many processes may be ready or waiting

process P, operating system process P;

interrupt or system call

executing “
T save state into PCB,
.
.

reload state from PCB, :

ridle interrupt or system call executing

X
save state into PCB;

.
D
J reload state from PCB,,
executing I

Example: CPU switch from process to process

idle

idle

How to locate/represent a process?

* Process control block (PCB) or task control block

— Process state (running, waiting, etc)
— Program counter

* location of next instruction to execute

— CPU registers

* contents of all process-centric registers
— CPU scheduling information
 priorities, scheduling queue pointers
— Memory-management information
* memory allocated to the process
— 1/0 status information
* 1/0 devices allocated to process, list of open files

— Accounting information
* CPU used, clock time elapsed since start, time limits

process state

process number

program counter

registers

memory limits

list of open files

24

* Represented by C structure task struct
— <linux/sched.h>

pid t pid; /* process identifier */

long state; /* state of the process */

struct sched entity se; /* scheduling information */
struct task struct *parent; /* this process’ s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

X I Y

struct task_struct
process information

struct task_struct
process information

L

1

current

struct task_struct
process information

SRS

(currently executing proccess)

User space

Global Dynamically-
| variable allocated Code +
memory) constants

‘\—/.
e | variable

N —

SO | Invoking system
calls. E.g., fork(),

exec*(), wait().

Process Access

’?
structure process

internal Kernel code
(PCB) with system

calls

Kernel Space

* A processis a program in execution
— process (active entity) != program (static entity)
— Why active?

* A program counter specifying the next instruction to execute +
a set of associated resources

* Only one process can be running on any processor
at any instant

Conclusion on “what is a process?”

* Two processes maybe associated with the same
program (Two users are running the same program)
— Example

* The same user invokes two copies of the web browser

— Separate execution sequences
* The text section may be equivalent
* The data, heap, and stack sections vary

e A process can be an execution environment for
other code
— Java programming environment
— java Program (java runsJVM as a process)

28

Process Operations

Process

Process Operations

* Process

— It associates with all the files opened by that process.

— It attaches to all the memory that is allocated for it.

— It contains every accounting information,

* running time, current memory usage, who owns the process,
etc.

* You couldn’t operate any things without processes.

30

* System must provide mechanisms for:
— process identification
— process creation
— program execution
— process termination
* Some basic and important system calls
— getpid()
— fork()
—exec*()
—wait()
—exit()

Process Operations
- process identification

Process

Process identification

* How can we identify processes?

— Each process is given an unique ID number, and is called
the process ID, or the PID.

— The system call, getpid(), prints the PID of the calling

process.
#include <stdio.h> // printf() $./getpid
#include <unistd.h> // getpid() My PID is 1234
$./getpid
int main(void) { My PID is 1235
printf("My PID is %d\n”, getpid()); $./getpid

} My PID is 1237

33

Process Operations
- process identification
- process creation

Process

* A process may create several new processes
— Parent process: the creating process
— Children processes: the new processes

* The first process

— The kernel, while it is booting up, creates the first
process —init.
— The “init” process:
* hasPID =1, and
* is running the program code “/sbin/init”.

— Its first task is to create more processes...

* Tree hierarchy

— Each of the new process may in turn create other
processes, and form a tree hierarchy

login
pid = 8415

bash
pid = 8416

sshd
pid = 3028

sshd
pid = 3610

tesch
pid = 4005

ps emacs
pid = 9298 pid = 9204

* You can view the tree with the command:
— “pstree”; or
“pstree -A” for ASCll-character-only display.

4)

e ————> also implies the parent-child relationship.]
fork()

& exec*() $for‘k() \
& exec*() fork()
\ & exec*() /

* However, termination can happen, at any time and in any
place...
— All the resources are deallocated to OS when a process terminates
— A process may become an orphan when its parent terminated
— An orphan turns the hierarchy from a tree into a forest!
— Plus, no one would know the termination of the orphan.

-

Now, this poor
process becomes
an orphan.

* |In Linux...

— We have the re-parent operation.

— The “init” process will become the step-mother of all
orphans.

* Well...Windows maintains a forest-like hierarchy.

A short summary

e Observation 1
— The processes in Linux is always organized as a tree.

— Because of the re-parent operation, there is always only
one process tree.

* Observation 2

— The re-parent operation allows processes running
without the need of a parent terminal.

— Thus, the background jobs survive even though the
hosting terminal is closed.

40

Relationship between Parent and Child

* Resource sharing options
— Parent and children share all resources
— Children share subset of parent’ s resources
— Parent and child share no resources
* Execution options
— Parent and children execute concurrently
— Parent waits until children terminate
* Address space options
— Child is a duplicate of parent

— Child has a new program loaded into it

* We focus on UNIX examples to illustrate

41

Process creation

 To create a process, we use the system call fork()

Original execution flow
of a process

f

The process

invokes fork().

—

—

Flow of original process

Flow of newly-created process

‘ The process splits into two! ‘

Which process will be
executed after fork()?

42

Process creation — fork() system call

* So, how do fork() and the processes behave?

Process 1234 is the original
process, and we call it the
$./fork_example_1 parent process.

Ready (PID=1234)

My PID is 1234

My PID is 1235
$ _

int main(void) { Process 1235 is created by

printf(“Ready (PID = %d)\n”, getpid()); the fork() system call, and
fork();: we call it the child process.
[printf(“My PID is %d\n”, getpid()); |

return 0;
) L

Why is this line of code executed twice?

43

Process creation — fork() system call

* So, how do fork() and the processes behave?

int main(void) {
printf(“Ready (PID = %d)\n”, getpid());
fork();

printf(“My PID is %d\n”, getpid());
return 0;

What do we know so far?

-Both the parent and the child execute the same program before and after fork().
-The child process starts its execution at the location that fork() is returned, not
from the beginning of the program.

44

Process creation — fork() system call

One more example

int main(void) {

1
2 int result;
-3 printf("before fork ...\n");
4 result = fork();

printf("result = %d.\n", result);

5
6
7 if(result
8

== o) {

printf("I'm the child.\n");
9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...

45

Process creation — fork() system call

One more example

1

lDOO\lO\U’I!WN

10

12
13
14

16
17

int main(void) {

int result;

printf("before fork ...\n");
result = fork();

printf("result = %d.\n", result);

if(result == @) {
printf("I'm the child.\n");
printf("My PID is %d\n", getpid());
}
else {
printf("I'm the parent.\n");
printf("My PID is %d\n", getpid());
}

printf("program terminated.\n");

$./fork_example_2
before fork

PID 1234

fork()

———
PID 1235

46

Process creation — fork() system call

Let there be only ONE CPU. Then...

- Only one process is allowed to be executed at one time.

- However, we can’t predict which process will be chosen by the OS.
- By the time, this mechanism is called process scheduling.

In this example, we assume that the parent, PID 1234,
runs first, after the fork() call.

47

Process creation — fork() system call

int main(void) {

int result;

printf("before fork ...\n");
result = fork();

printf("result = %d.\n", result);

if(result == 0) {
printf("I'm the child.\n");
printf("My PID is %d\n", getpid());

else {
printf("I'm the parent.\n");
printf("My PID is %d\n", getpid());
}

printf("program terminated.\n");

$./fork_example_2
before fork ...
result = 1235

Important

For parent, the return
value of fork() is the
PID of the created child.

PID 1234 PID 1235

(running) (waiting)

48

Process creation — fork() system call

int main(void) {

int result;

printf("before fork ...\n");
result = fork();

printf("result = %d.\n", result);

if(result == 0) {
printf("I'm the child.\n");
printf("My PID is %d\n", getpid());

else {
printf("I'm the parent.\n");
printf("My PID is %d\n", getpid());
}

printf("program terminated.\n");

$./fork_example_2
before fork ...
result = 1235

I’m the parent.

My PID is 1234
program terminated.

(dead) (waiting)

PID 1234 Z PID 1235

49

Process creation — fork() system call

int main(void) {
int result;
printf("before fork ...\n");
result = fork();
printf("result = %d.\n", result);

if(result == 0) {
printf("I'm the child.\n");
printf("My PID is %d\n", getpid());

else {
printf("I'm the parent.\n");
printf("My PID is %d\n", getpid());
}

printf("program terminated.\n");

$./fork_example_2
before fork ...
result = 1235

I’m the parent.

My PID is 1234
program terminated.

result = 0

Impo t

For child, the return value
of fork() is 0.

PID 1234 PID 1235

(dead) (running)

50

Process creation — fork() system call

1 int main(void) {

2 int result; $./fork_example_2
3 printf("before fork ...\n"); before fork ...

4 result = fork(); result = 1235

5 printf("result = %d.\n", result); I’m the parent.

6 My PID is 1234

7 if(result == 0) { q

8 printf("I'm the child.\n"); program terminated.
9 printf("My PID is %d\n", getpid()); result = @

10 } I’m the child.

11 else { My PID is 1235

12 printf("I'm the parent.\n"); program terminated.
13 printf("My PID is %d\n", getpid());

14 }

15
‘6 printf("program terminated.\n");
17 }

PID 1234 Z PID 1235

(CEEL)) (dead)

51

» fork() behaves like “cell division”.

— It creates the child process by cloning from the parent
process, including...

Program code They are sharing the same piece of code.
[File & Memory]

Memory Including local variables, global variables, and dynamically
allocated memory.

Opened files If the parent has opened a file “A”, then the child will also have
[Kernel’s internal] file “A” opened automatically.

Program counter That’s why they both execute from the same line of code
[CPU register] after fork() returns.

* However...
— fork () does not clone the following...
— Note: they are all data inside the memory of kernel.

Return value of fork() PID of the child process. 0

PID Unchanged. Different, not necessarily be
“Parent PID + 1”

Parent process Unchanged. Doesn’t have the same parent
as that of the parent process.

Running time Cumulated. Just created, so should be 0.

Process Operations
- process identification
- process creation
- program execution

Process

» fork() is rather boring...

— If a process can only duplicate itself and always runs the
same program, then...

— how can we execute other programs?

* We want CHANGE!
— Meet the exec() system call family.

Program execution

» execl() —a member of the exec system call
family (and the family has 6 members).

int main(void) { $./exec_example

bef I coo
‘ printf("before execl ...\n"); erore exec

execl("/bin/1s", "/bin/1s"™, NULL);

printf("after execl ...\n");
Arguments of the exec1() call
return 0;

}

1stargument: the program name, “/bin/1s” in the
example.

24 argument: 1%t argument to the program.

31 argument: indicate the end of the list of arguments.

56

Program execution

* Example #1: run the command "/bin/1s"

execl("/bin/1s", "/bin/1s", NULL);

Argument Value in above Description
Order example

1

"/bin/1s" The file that the programmer wants to execute.

"/bin/1s" When the process switches to “/bin/1s",
this string is the first program argument.

NULL This states the end of the program argument
list.

57

Program execution

* Example #2: run the command "/bin/1ls -1"

execl("/bin/1s", "/bin/1ls", "-1", NULL);

Argument Value in above Description
Order example

1

"/bin/1s"

"/bin/1s"

n_gn

NULL

The file that the programmer wants to execute.

When the process switches to “/bin/1s",
this string is the first program argument.

When the process switches to “/bin/1s",
this string is the second program argument.

This states the end of the program argument
list.

58

Program execution

» execl() —a member of the exec system call
family (and the family has 6 members).

int main(void) {

$./exec_example
before execl ...

printf("before execl ...\n");
‘ execl("/bin/1s", "/bin/1s"™, NULL);

printf("after execl ...\n");

return 0;
} What is the output?

The same as the output of running
“1s” in the shell.

59

Program execution

» execl() —a member of the exec system call
family (and the family has 6 members).

int main(void) { $./exec_example

before execl ...

printf("before execl ...\n"); exec_example

exec_example.c

‘execl("/bin/ls", "/bin/1s", NULL);
printf("after execl ...\n");

return 0;

}

60

Program execution

» execl() —a member of the exec system call
family (and the family has 6 members).

int main(void) { $./exec_example

before execl ...

printf("before execl ...\n"); exec_example

exec_example.c

‘execl("/bin/ls", "/bin/1s", NULL);
printf("after execl ...\n");

return 0;

}

GUESS:
What happens next?

61

Program execution

» execl() —a member of the exec system call
family (and the family has 6 members).

WHAT?!
The shell prompt appears!

int main(void) { $./exec_example

before execl ..

printf("before execl ...\n"); exec_example

exec_example.c

$

execl("/bin/1s", "/bin/1s", NULL);

printf("after execl ...\n");

return 0; The output says:
} (1) The gray code block is not reached!
(2) The process is terminated!

WHY IS THAT?!

62

* The exec system call family is not simply a function
that “invokes” a command.

int main(void) {

‘ printf("before execl ...\n");
execl("/bin/1s", "/bin/1s", NULL);
printf("after execl ...\n");

return 0;

} -

_ -

* The exec system call family is not simply a function
that “invokes” a command.

int main(void) {
printf("before execl ...\n");
execl("/bin/1s", "/bin/1s", NULL);
printf("after execl ...\n");

return 0;

}

* The exec system call family is not simply a function
that “invokes” a command.

Program execution - observation

* The process is changing the code that is executing and never
returns to the original code.

— The last two lines of codes are therefore not executed.

* The process that calls any one of the member of the exec
system call family will throw away many things, e.g.,

— Memory: local variables, global variables, and dynamically
allocated memory;

— Register value: e.g., the program counter;

* But, the process will preserve something, including:
— PID;
— Process relationship;
— Running time, etc.

66

Process Operations
- process identification
- process creation
- program execution
-fork() + exec*() = ?

Process

* The mix can become:

— Ashell,
— The system() library call, etc...

Execute
command Resume
1 1
1 1
¥ _
E : s Parent
—
? ? e Child
Switch to Terminate
target program

fork() + exec*() = system()?

1
2
3
4
5
6

7
8
9
10 }
11

12 int main(void) {

13
14
15
16
17 }

int system_test(const char *cmd_str) {

if(cmd_str == -1)
return -1;
if(fork() == 0) {
execl(cmd_str, cmd_str, NULL);

fprintf(stderr,
"%s: command not found\n", cmd_str);
exit(-1);
}
return 0;

Is this the
only result?

$./system_implement_1

printf("before...\n\n"); before. ..

system_test("/bin/1s");
printf("\nafter...\n");
return 0;

system_implement_1

system_implement_1.c

after...

$

69

fork() + exec*() = system()?!

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17

int system_test(const char *cmd_str) {

if(cmd_str == -1)
return -1;
if(fork() == 0) {
execl(cmd_str, cmd_str‘, NULL); Some Strange cases
fprintf(stderr,
"%s: command not found\n", cmd_str); happenet;l when the
exit(-1); program is executed
} repeatedly!! Why?
return 0;
}
int main(void) { $./system_implement_1
- " ny. before...
printf("before...\n\n");
system_test("/bin/1s"); after. ..
printf("\nafter...\n"); system_implement_1
return 0; system_implement_1.c

}

$

70

fork() + exec*() = system()...

1 int system_test(const char *cmd_str) {

2 if(cmd_str == -1)

3 return -1i

5 execl(cmd_str, cmd_str, NULL);
6 fprintf(stderr,

"%s: command not found\n", cmd_str);

7 exit(-1);

8 }

9 return 9;
10 }
11
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/1s");
15 printf("\nafter...\n");
16 return 0;

17 }

A

Let’s re-color the program!
Parent process

Child process

Both processes

$./system_implement_1
before. ..

after...

system_implement_1
system_implement_1.c

fork() + exec*()

Parent Child

Expected execution
sequence.

system_implement_1

System_implement_1.c

after...

system()...

Parent

Possible execution

$./system_implement_1
before. ..

after...
system_implement_1
System_implement_1.c

A

72

fork() + exec*()

Is it enough?

fork() + exec*() = system()... &8

* Don’t forget that we’re trying to implement a system()-
compatible function...

— It is very weird to allow different execution orders.

* How to let the child to execute first?

— But...we can’t control the process scheduling of the OS to
this extent.

* Then, our problem becomes...
— How to suspend the execution of the parent process?
— How to wake the parent up after the child is terminated?

74

fork()+ exec*() + wait() = system()

1 int system_test(const char *cmd_str) {
2 if(cmd_str == -1)

3 return -1;

4 if(fork() == 0) {

5 execl("/bin/sh", "/bin/sh",

"-c", cmd_str, NULL);

6 fprintf(stderr,

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 wait(NULL);
10 return 0;
1 }
12
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/1s");
16 printf("\nafter...\n");
17 return 0;

18 }

75

fork()+ exec*() + wait()

1
2
3
4
5

=)}

10
11
12
13
14
15
16
17
18

int

int

system_test(const char *cmd_str) {
if(cmd_str == -1)
return -1;
if(fork() == 0) {
execl("/bin/sh", "/bin/sh",
"-c", cmd_str, NULL);
fprintf(stderr,
"%s: command not found\n", cmd_str);
exit(-1);
}
wait(NULL);
return 0;

main(void) {
printf("before...\n\n");
system_test("/bin/1s");
printf("\nafter...\n");
return 0;

= system()

The parent is
suspended until
the child
terminates

$./system_implement_2
before...

system_implement_2

System_implement_2.c

after...

$

76

wait () — properties explained

* The wait () system call suspend the calling parent
process (Case 1).

* When to wake up?

—wait() returns and wakes up the calling process when
the one of its child processes changes from running to
terminated.

wait() wlake up

' '
¥ A/

Parent is
suspended.

H

fork() Terminate ,ﬁ_
ase 1.

77

* What happens if
— There were no running children;

— There were no children;

» wait() does not suspend the calling process
(Case 2)

Case 2.

wa:it()

'
v

4

|
! no suspension
is needed.

—

fork() Terminate

wait() - summary

* Thewait() system call suspend

the calling parent process (Case 1).

* wait() returns and wakes up the
calling process when the one of its
child processes changes from
running to terminated.

* wait() does not suspend the
calling process (Case 2) if

— There were no running children;
— There were no children;

wait() %ake

' '
A/ v

H

up

Parent is
suspended

fork()

]
Terminate
Case 1.

wait()

v

no suspension
is needed.

H

fork()

|
Terminate

79

* Limitation of wait()?
— waits for any one of the children
— Detect child termination only

* How to wait for a particular process?
—waitpid()

Wait for any one of the children. Depending on the parameters,
waitpid() will wait for a particular
child only.

Detect child termination only. Depending on the parameters,
waitpid() can detect child’s status
changing:

-from running to suspended, and
-from suspended to running.

For more details, you must read the man pages of wait() and waitpid().

Summary of Process Operations

* A process is created by cloning
— fork() is the system call that clones processes
— Cloning is copying
* What are inherited?
* What are not?
* Metaphor of father-son relationship

—wait() can be used to suspend the parent process, so as to
guarantee the expected execution sequence

* Program execution is fundamental, but not trivial
— A process is the place that hosts a program and run it

— exec () system call family changes the program that a
process is running.

— A process can run more than one program...

* as long as there is a set of programs that keeps on calling the exec
system call family.

82

* Concepts
— Process data in memory
— PCB

* Operations
—fork(), exec*(), wait()

— Just introduced how they could be used to create
processes and execute programs

— How about the internal working of these system calls?
* How does the kernel behaves when calling these system calls?

End of Chapter 3

Operating Systems

Associate Prof. Yongkun Li
FRER-THENL B Bl #ER
http://staff.ustc.edu.cn/~ykli

Ch3 - Process Operations

-from kernel’s perspective

User space

Code +
constants

\ Dynamically-
variable allocated

memory

Local
variable

D —

SO | Invoking system
calls. E.g., fork(),

exec*(), wait().

Process Access

’
structure process

internal Kernel code
(PCB) with system

calls

Kernel Space

System Memory

User-space
memory

Kernel-space
memory

Storing
what

Accessed
by whom

Kernel-space memory

User-space memory

System Memory

User-space
memory

Kernel-space
memory

Storing
what

Accessed
by whom

Kernel-space memory

Kernel data structure
Kernel code
Device drivers

User-space memory

Process’ memory
Program code of the
process

System Memory

User-space
memory

Kernel-space
memory

Storing
what

Accessed
by whom

Kernel-space memory

Kernel data structure
Kernel code
Device drivers

Kernel code

User-space memory

Process’ memory.
Program code of the
process

User program code +
kernel code

System Memory

User-space
memory

Kernel-space
memory

* A process will switch its execution
from user space to kernel space

System Memory

User-space
memory

* How?
— through invoking system call

Kernel-space
memory

* Example

System Memory

— Say, the CPU is running a program
code of a process User-space
. memory

— Where is the code?
* User-space memory

* Recall the process structure in memory

— Where should the program counter
point to?

Kernel-space
memory

counter

* What happens...
— When the process is calling the system call
‘getpid ()" User-space
* Where to get the PID memory

— PCB (in kernel-space memory)

* The CPU switches from the user-space to
the kernel-space, and reads the PID

System Memory

Kernel-space

memory
Program

counter

* After finished executing getpid()
— What happens?

System Memory

— CPU switches back to the user-space ”f:;ﬁ?;e
memory, and continues running that

program code /@

Kernel-space
memory

counter

* Remember this?

user process
user mode
user process executing I—»| calls system call | | return from system call (mode bit = 1)
\ z
LY Vi
ALY 7
kernel trap return
SIne mode bit = 0 mode bit = 1
kernel mode

Another question: How much time was spent in each part?

* So, not just the memory, but also the execution of a
process is also divided into two parts.

— User time and system time

* So, not just the memory, but also the execution of a
process is also divided into two parts.
— User time and system time

Some system calls may take a long time.

calling systefn call. E.g., accessing a floppy drive.
e.g., getpid() |
|
i ," == User time —
H i Time spent on codes in
|
_: — |' — user-space memory.
1 | 1
. i m— System time —
Yoy 4 Time spent on codes in
0 kernel-space memory.
1
i
i
Read information and
the system call returns Total running time = user time + system time.

User time VS System time —example 1

* Let’s tell the difference...with the tool “time”.

$ time ./time_example

real 0me.003s
user ome.003s
sys 0mo.000s
$

Time elapsed when “. /time_example”
terminates.

The user time of “./time_example” measured
when the process is on CPU.

The system time of “./time_example” measured
when the process is on CPU.

Why comment
this line???

int main(void)

int x = 0;
for(i = 1; i <= 100000; i++) {
X =X +1ij;
// printf(“x = %d\n”, x);
}
return 0 Commented on purpose.

14

User time VS System time —example 1

Let’s tell the difference...with the tool “time”.

$ time ./time_example

real 0me.003s
user omo.003s
sys omo . 000s
$

$ time ./time_example

real ome.677s

user ome.e32s

sys ome.227s
$

int

main(void) {

int x = 0;
for(l = 1; i <= 100000; i++) {
= X + ij

// pr1ntf(“x = %d\n”, x);

return 0; Commented on purpose.
}
int main(void) {
int x = 0;
for(i = 1; i <= 100000; i++) {
X = X + ij
printf(“x = %d\n”, x);
}
return 0; Comment released.
}

See? Accessing hardware costs the process more time.

15

User time VS System time — example 2

* What is the difference of the two programs?

#tdefine MAX 1000000 #define MAX 1000000
int main(void) { int main(void) {
int i; int i;
for(i = @; 1 < MAX; i++) for(i = 0; A < MAX /5 ; i++)
printf(“x\n”); printf (“x\nx\nx\nx\nx\n”’) ;
return 0; return 0;
} }

Lessons learned: When writing a program, you must
consider both the user time and the system time

16

User time VS System time — short summary

* The user time and the system time together define
the performance of an application
— System call plays a major role in performance.

— Blocking system call: some system calls even stop your
process until the data is available.

* Programmers should pay attention to system
performance
— Reading a file byte-by-byte

— Reading a file block-by-block, where the size of a block is
4,096 bytes

17

User space and Kernel space

User time and system time

Working of system calls
- fork();
- exec*();
- wait() + exit();

Working of system calls
- fork();
- exec*();
- wait() + exit();

* From a programmer’s view, fork() behaves like
the following:

fork()

* From a programmer’s view, fork() behaves like
the following:

o fork() is called.
‘ The process splits into two! ‘ ork() is calle

fork() returns.

Original execution flow
of a process

new process

Vot

«
/

/

The process s
invokes fork(). What is doing here?

kernel is fork()-ing
- Flow of original process

i ‘ | ted The kernel is doing something
Ow of newly-created process secret. What are those things?

22

* From the Kernel’s view...

Guess: What will be modified?

Process creation — fork() system call [&eEm

» fork() behaves like “cell division”.

— It creates the child process by cloning from the parent
process, including...

Program counter That’s why they both execute from the same line of code after
[CPU register] fork() returns.
Program code They are sharing the same piece of code.

[File & Memory]

Memory Including local variables, global variables, and dynamically
allocated memory.

Opened files If the parent has opened a file “A”, then the child will also have
[Kernel’s internal] file “A” opened automatically.

* However...
— fork () does not clone the following...
— Note: they are all data inside the memory of kernel.

Return value of fork() PID of the child process. 0

PID Unchanged. Different, not necessarily be
“Parent PID + 1”

Parent process Unchanged. Doesn’t have the same parent
as that of the parent process.

Running time Cumulated. Just created, so should be 0.

le—

N
Process

OS Kernel
N
Process |—*
1234

345

Inside kernel, processes are arranged as a

doubly linked list, called the task list.
Q: What is each node?

This guy invoked OS Kernel
fork().

Inside kernel, processes are

arranged as a doubly linked
Process F—*| Process list, called the task list.
1234 — 345 Q: What is each node?
A
~

PID = 1234

(/' PID = 1234

Running time

Running time

Array of opened files

Ar‘r‘ay of opened files

=
J L

This guy invoked
fork().

—

Process

0S Kernel
1234

Process

PID = 1234

Running time

~

PID =
Array of opened files

1235

updated.
Running time

reset to 0.
Array of opened files

preserved.
\

This guy invoked
fork().

—

Process
1234

Process

PID = 1234

Running time

Array of opened files

List of children

0S Kernel

PID =

N\
1235

updated.
Running time

reset to 0.
Array of opened files P
|

reserved.
.
kPointep to my parent

updated.
/

This guy invoked
fork().

—

Process
1234

Process

A new node is
introduced.

0S Kernel

—

—

Process
1235

PID = 1234

Running time

Array of opened files

List of children

PID =

1235

updated.
Running time

reset to 0.
Array of opened files P
|

reserved.
.
L\\EPOinter to my parent

updated.
/

This guy invoked
fork().

0S Kernel
— ‘ |
Process |—*| Process
1234 i oce

N
Process
1235

What happened
to user space?

This guy invoked
fork().

[e—

A {
Process

0S Kernel
=)
Toaes |
1234

345

N
Process
1235

Local
variable

Global
variable

Code +
constants

What happened

to user space?

This guy invoked
fork().

S

Process

OS Kernel
Process
1234

N\

le—

r

N\

Process
1235

Local Dynamically- Local Dynamically-
variable allocated vErEkle allocated
memory . memory
copying
Global Code + Global
variable constants

Code +
variable constants

Ready to return

from fork()

Ready to return

OS Kernel
from fork()
=N
Process
1234

Process

=

Process
1235

PID = 1234

Running time

PID =

1235

Array of opened files

Running time
List of children

Array of opened files
S
\l‘rReturn value = 1235 ‘E/

N Pointer to my parent

\L‘V Return value

» After fork()

— The child process share a set of opened files

* What are the array of opened files?

* Array of opened files contains:

0 Standard Input Stream; FILE *stdin;

1 Standard Output Stream; FILE *stdout;

2 Standard Error Stream; FILE *stderr;

3 or beyond Storing the files you opened, e.g., fopen(), open(), etc.

— That's why a parent process shares the same terminal
output stream as the child process!

Working of system calls
- fork();
- exec*();

* How about the exec* () call family?
e.g., execl("/bin/1s", "/bin/1s", NULL);

exec*() is called.

The process returns to user-space
but is executing another program.

01d

New
code —

Vo

\

code
\
\

E—_ |
Process 3
The kernel is doing something
secret. What are those things?

This guy invoked
exec*().

B—
Process

1234

Process

OS Kernel

The kernel searches the target
program file.

If it is not found, the process returns

PID = 1234

Running time

Array of opened files

from the system call.

Let’s assume that it can be found.

/

Searching

a
v
a
v
a
!
v
a
|
v

This guy invoked

OS Kernel
exec*().
B—
Process |—* Process
1234 je—— 345

Local

Dynamically-
variable

allocated

memory
Global

variable

Code +
constants

What happens to the
user-space memory

This guy invoked
exec*().

S

Process
1234

Process
345

Cleared! Local
variable

Global
Reset based
on the new

variable
code!

Dynamically-
allocated Cleared!
memory
Code +
constants

Changed to
the new

program code!

OS Kernel

This guy invoked
exec*().

—

OS Kernel
Process
1234

Process
345

Local
variable

Global

variable

The kernel code updates the

Code +
constants

content on the user-space memory:.

Also, registers’ values, such as the

program counter, will also be reset.

Working of system calls
- fork();
- exec*();

- wait() + exit(); %
A

é —

Recall the example

1
2
3
4
5

=)}

O 00 N

10
11

13
14
15
16
17
18

int

int

system_test(const char *cmd_str) {
if(cmd_str == -1)
return -1;
if(fork() == @) {
execl("/bin/sh", "/bin/sh",
"-c", cmd_str, NULL);
fprintf(stderr,
"%s: command not found\n", cmd_str);
exit(-1);
}
wait(NULL);
return 0;

main(void) {
printf("before...\n\n");
system_test("/bin/1s");
printf("\nafter...\n");
return 0;

The parent is
suspended until
the child
terminates

$./system_implement_2
before...

system_implement_2

System_implement_2.c

after...

$

44

wait()

e wait() system call
—Suspend the parent process
—Wake up when one child process terminates
* How to terminate the child process
—Through the exit () system call

* wait() and exit() —they come together!

45

Parent
Process

Child
Process

Parent

Child

wait() wait()
is called. returns.
i wait() i
i blocks the i
| parent. !
: i :_
e 000 e ’1 M

Child is terminated thrlough
the exit () system call.

Of course, the kernel
coordinates the
series of events. But,
what on earth is
going on?

* What is going on inside kernel?
— Child: exit()

* Process data + PCB

—Parent: wait()

* Process data + PCB

Parent

l

Process

1234

Process
1235

0S Kernel

This guy invoked

exit().
Parent

OS Kernel
E—
Process
1234

Process
1235

PID =

1235

Running time

Array of opened files

What changes will be made
for the PCB?

This guy invoked

Parent

E—
Process
1234

exit().

Process
1235

PID =

1235

Running time

Array of opened files

OS Kernel

The kernel frees all the
allocated memory.

E.g., the list of opened files
are all closed.

This guy invoked
exit().

Parent

Process Process
1234 1235

—

OS Kernel

Then, the kernel removes

everything on the user-
]
space memory about the

concerned process,
including program code
and allocated memory.

Remember that kernel is
invincible

This guy invoked OS Kernel
exit().

Parent

Process |—* Process
1234 — 1235
—

> What is next?

How about permanently removing the child?

OS Kernel

Parent

Process
1234

Removed from the process table immediately?
Not really! Why?

This guy invoked

exit().
Parent

OS Kernel

E—
Process |—*

[1234

Process

1235

PID =

1235

Running time

Remain the entry of the

child in the process table
(terminated state)
Array of opened files

Resources?
Deallocate

This guy invoked

exit().
Parent

OS Kernel
E—
Process
[1234

Process
1235

PID =

The child is now called zombie
1235
Running time

Array of opened files

Its storage in the kernel-space

memory is kept to a minimum

The PID (1235 in this example)
and process structure are
owned by the child

This guy invoked
exit().

Parent

Process

Process
1234

1235

SIGCHLD

PID = 1235
Running time

Array of opened files

OS Kernel

How to wake up parent?

The kernel notifies the parent of
the child process about the

termination of its child.

The notification is a signal called
SIGCHLD.

Signal

* What is signal?
— A software interrupt
— It takes steps as in the hardware interrupt

* Two kinds of signals

— Generated from user space
* Ctrl+C, kill() system call, etc.

— Generated from kernel and CPU

* Segmentation fault (SIGSEGV), Floating point exception (SIGFPE), child
process termination (SIGCHLD), etc.

* Signal is very hard to master, will be skipped in this course
— Reference: Advanced Programming Environment in UNIX
— Linux manpage

57

exit()

Although the child is still in the
system, it is no longer running.
There is no program code!!!

It turns into a mindless zombie...

exit() is returns.
called. , i
| e
: :
R
(1) (2) (3)

You cannot kill a zombie process, as it is
already dead. Then how to eliminate it?

wait() and exit() —they come together!

How to proceed
with wait()?

u Parent

Child

Process , @

wait () wait ()

is called. returns.
1 wait() :
blocks the i

: parent.

SIGCHLD

Child is terminated thrlough
the exit () system call.

Now, it is trivial to
see that SIGCHLD
signal is the trick!

But, how to
handle SIGCHLD?

59

This guy invoked
wait().

Parent

How to handle sigcHLD? ~ OS Kernel
<4
l Process

Process
1234 1235

A

PID =

1234

The kernel sets a signal handling routine
Running time

(and it is a function pointer) to the process.
Array of opened files

Signal handlers

That signal handling routine will be executed
when SIGCHLD comes.
<

When SIGCHLD comes, please handle it.

This guy invoked OS Kernel
wait().

Parent Child

—\"
Process |—* Process
1234 — 1235
v

N
\

X By default, every process does not respond

to the SIGCHLD signal (the signal handlers

PID = 1234 are set only when wait() is called).

Running time

What if the parent is executing other tasks

Array of opened files (not call the wait() system call) when child

Signal handlers terminates (see the 2" case of wait() later)?

a
v
a
v
a

!
v
a
|
v

wait() and exit() — parent side

This guy invoked OS Kernel
wait().

Process Process
1234 1235

The kernel set the process to be sleeping.
The formal way to say: the wait () system

Array of opened files call blocks the process until ...

Signal handlers

Guess: when to wake up?

62

wait() and exit() — parent side

This guy invoked
wait().

Process Process
1234 1235 Q;G

PID = 1234 SIGCHLD

K) from
Running time 1235

Array of opened files

Signal handlers @
=%

OS Kernel

This guy invoked
wait().

Parent 4

1234

l Process

OS Kernel

Child

Process |—>
o e o

1235 (o ——

PID = 1234

Running time

Array of opened files

Signal handlers

When SIGCHLD comes, the signal
SHEE) handling routine is invoked!
from

1235 Note: since the parent is still inside
the system call, instead of the
original program code, the parent

~ process is still blocked in some
sense...

This guy invoked

. Now, the child is truly 0OS Kernel
wait(). dead.

CHad
Parent 4

Process |—* Pro:-ss |—> e
1234 1235
'

Default Handling of SIGCHLD
PID = 1234 : ZTGCH

£ m
Running time

/N 1. Accept and remove the
‘ l SIGCHLD;
Array of opened files
@

2. Destroy the child process
Signal handlers

that sends her the signal.

Ready to return
from wait()

Parent

N

Process
1234

PID

1234

Running time

Array of opened files

Sign=- -rers

OS Kernel

The signal handler is then removed, i.e., the

process is ignoring SIGCHLD again.

It returns to the previously-executing code,
going back to the user space.

So, it looks like “wait() is returned from its
invocation”.

This is the reason why wait() system call waits
for any one of the child processes.

Ready to return
from wait()

Parent

N

Process
1234

PID =

1234

Running time

Array of opened files

Return value = 1235

4

OS Kernel

Lastly, the return value of wait () system call is
the PID of the terminated child.

N
!

Parent
Process

Child

Process (5%

Parent

Child

wait()
is called.
wait()
blocks the
parent.
Hlo ecece

wait()
returns.

Child is terminated thrlough
the exit () system call.

So, the child will be
given a clean death
by the wait()
system call.

* How about wait()is called after the child already
terminated?

— Remember the case 2 (which is safe)

wait() wake up wait()
_*. LN] .— v
4 *
Parent is g no suspension
! suspended. 1 is needed.
— —
fork() Terminate fork() Terminate
Case 1. Case 2.

wait() and exit() — parent side

Case 2.

What is going on inside the kernel?

wait()
is called.

Parent
Process &

SIGCHLD

Child * |

—

Parent

‘4_____

Process , ®

Child is terminated through
the exit () system call.

Parent

Process
1234

Process
1235

PID =

1234

Running time

Array of opened files

SIGCHLD
from
1235

OS Kernel
Child

I_>...

Child was already terminated (became a

zombie), SIGCHLD is also sent to parent before

This guy invoked
wait().

Parent
l Process

N

1234

OS Kernel

Crad

—>rPr‘o:ess |—> e

le—

1235 . —

Similar to Case 1, the kernel sets the

signal handling routine...

PID = 1234

ZTGCH
£ Nevertheless, the wait() system call

Running time

1235 finds that the SIGCHLD signal is

Array of opened files

already there.

Signal handlers So, default actions are then taken

immediately.

a
v
a
v
a
!
v
a

Case 2.

Parent
Process

Child
Process

Parent

Child

The parent will experience a

negligible amount of
blocking period.

wait()

wait() iscalled

returns.

&3
N—

-
Child is terminated througﬁ The zombi

A=

e can exist up

the exit() system call. to the moment that the
parent process calls

wait().

* What would happen if a parent did not invoke
wait() andterminated?

— Remember the reparent operation in Linux?

* init is the new parent, and it periodically invokes
wait()

wait() and exit() —short summary

* A process is turned into a zombie when...
— The process calls exit().
— The process returns from main().
— The process terminates abnormally.

* You know, the kernel knows that the process is terminated
abnormally. Hence, the kernel invokes exit () by itself.

* Remember why exec* () does not return to its
calling process in previous example...

75

wait() and exit() —short summary

» wait() is to reap zombie child processes
— You should never leave any zombies in the system.

* Linux will label zombie processes as “<defunct>".

— To look for them: ps aux | grep defunct
* Learn waitpid() by yourself...

76

1 int main(void)

2 {

3 int pid;

4 if((pid = fork())) {

5 printf("Look at the status of the process %d\n", pid);
6 while(getchar() != ‘\n');
7 wait(NULL);

8 printf("Look again!\n");

o while(getchar() 1= "\n');
10 }

11 return 0;

12 } [

What is the purpose of this program?

wait() and exit() — Example

i
{

1
2
3
4
5
6
7
8
9

10

nt main(void)

int pid;
if((pid = fork())) {

while(getchar() != '\n');
wait(NULL);
printf("Look again!\n");
while(getchar() != '\n');
}
return 0;

printf("Look at the status of the process %d\n", pid);

ﬁhis program requires you to type “enter” twice

before the process terminates.

You are expected to see the status of the child
process changes between the 1t and the 2"
“enter”.

78

Working of system calls
- fork();
- exec*();
- wait() + exit();
- importance/fun in knowing
the above things?

* Why calling wait() is important
— It is not about process execution/suspension...
— It is about system resource management.

* Think about it:
— A zombie takes up a PID;

— The total number of PIDs are limited;
* Read the limit: “cat /proc/sys/kernel/pid_max”
— What will happen if we don’t clean up the zombies?

* What is the result of this program?
— Do not try to know the result by running it

int main(void) {
while(fork());
return 0;

}

Think about what will be

happened to both parent
and child processes?

* Don’t try this...

int main(void) { ‘ =i Turn into zombie
while(fork()); @ immediately!
return 0;

An infinite, zombie factory!

Parent: never reach here.

Child: reached immediately,
but no corresponding wait ()
for the parent (ZOMBIE)

* Process concept
— Process vs program
— User-space memory + PCB

* Process operations
— Creation, program execution, termination

— The internal workings of
» fork()
» exec*()
* wait()+exit(): come together

* Callingwait() isimportant

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ch4 Threads

* Thread Concepts
— Why use threads
— Structure in Memory

— Benefits and Challenges
— Thread Models
* Programming
— Basic Programming: Pthreads Library
— Implicit Threading: Thread Pools & OpenMP

Multi-threading
- Motivation

Motivation - Application Side

* Most software applications are multithreaded, each
application is implemented as a process with
several threads of control
— Web browser

* displays images, retrieve data from network

— Word processor

* display graphics, respond to keystrokes, spelling & grammar
checking

* Most software applications are multithreaded
— Web browser
— Word processor

— Similar tasks in a single application (web server)
* Accept client requests, service the requests
* Usually serve thousands of clients

(2) create new
(1) request thread to service
the request

thread

(3) resume listening
for additional
client requests

Motivation — Application Side

* Why not create a process for each task?
— Process creation is
* Heavy-weighted
* Resource intensive
 Still remember what kinds of data are included in a
process...
— Text, data, stack, heap in user-space memory
— PCB in kernel-space memory
* Many of the data can be shared between multiple
tasks within an application

Motivation — System Side

* Modern computers usually contain multicores
— But, each processor can run only one process at a time
— CPU is not fully utilized

* How to improve the efficiency?
— Assign one task to each core

— Real parallelism (not just concurrency with interleaving
on single-core system)

Concurrent execution on single-core system:

single core Ta | Ta | Ty | T2 | T3 | T4

T1’T2

am

time

Parallel execution on a multi-core system:

core 1 T1 T3 T1 T3 T1

core 2 To Ty To Ty To

time

Multi-threading
- Motivation
- Thread Concept

code		data		files		code		data		files
stack		registers		registers		registers				
stack		stack		stack						
thread —> ; <«~— thread
single-threaded process multithreaded process

* User-space memory of Process A

max
stack

Local Global

variable variable

heap

data

text

User-space memory of a
process

- All threads share the same code.

- Athread starts with one specific
function.
- We name it the thread function
- Functions A & B in the diagram

- The thread function can invoke
other functions or system calls

- But, a thread could never return to
the caller of the thread function.

Dynamic

Global variables

Function A -
Function B -

User-space memory of a
process

Dynamically allocated memory

Global variables

- All threads share the same global
variable zone and the same
dynamically allocated memory Dynamic

- All threads can read from and write -)
obal variables

to both areas

User-space memory of a
process

Local variables

- Each thread has its own memory
range for the local variables Dynamic

- So, the stack is the private zone for
each stack

Global variables

Function A -
Function B -

* Responsiveness and multi-tasking

— Multi-threading design allows an application to do
parallel tasks simultaneously

— Example: Although a thread is blocked, the process can
still depend on another thread to do other things!

— Especially important for interactive applications (user

interface)
Status: RUNNING
It’d be nice to
assign one thread
for one blocking
system/library call.
Reading from Doing
keyboard calculation

* Ease in data sharing, can be done using:
— global variables, and
— dynamically allocated memory.
* Processes share resources via shared memory or message

passing, which must be explicitly arranged by the
programmer

Of course, this leads to
the mutual exclusion &
the synchronization
problems (will be talked
in later chapters)

Reading from Doing
keyboard calculation

Benefits of Multi-thread

* Economy

— Allocating memory and resources for process creation is
costly, dozens of times slower than creating threads

— Context-switch between processes is also costly, several
times of slower

* Scalability

— Threads may be running in parallel on different cores

17

* Identifying tasks

— Divide separate and concurrent tasks
* Balance

— Tasks should perform equal work of equal value
* Data splitting

— Data must be divided to run on separate cores
* Data dependency

— Synchronization is needed

* Testing and debugging

Multi-threading
- Motivation
- Thread Concept
- Thread Models

Dynamically-
allocated Code +
memory ‘ constants
—

Local

variable
———

Process

Process
structure
(PCB)

User space

Kernel Space

* Thread should also include
— Data/resources in user-space memory
— Structure in kernel

* How to provide thread support?
— User thread
* Implement in user space
— Kernel thread
¢ Supported and managed by kernel

* Thread models (relationship between user/kernel thread)
— Many-to-one
— One-to-one
— Many-to-many

* Many-to-One Model
— All the threads are mapped to one

process structure in the kernel. @
— Merit 9y

* Easy for the kernel to implement. i space

— DraWbaCk Process

. . Structure
* When a blocking system call is called, Kernel

all the threads will be blocked Space

[Many-to-one model]

— Example. Old UNIX & green thread
in some programming languages.

* One-to-One Model

— Each thread is mapped to a process or
a thread structure

— Merit:
¢ Calling blocking system calls only block
those calling threads
* A high degree of concurrency

Space

— Drawback:
¢ Cannot create too many threads as it is
restricted by the size of the kernel Kernel
memory Space
— Example. Linux and Windows follow [One-to-one model]

this thread model

thread 1ib thread 1lib thread 1ib

* If a scheduler only interests in processes...

thread 1lib
4
[]

[]
)
[]

I only set which process to
run, and | don’t know what

is a thread.

.
.
.
.
.
.
.
.
.

A thread library needs
to implements its only .
L]
]
L3

scheduling policy.

* If a scheduler only interests in threads...

The scheduler doesn’t know what
since kernel
version 2.6!

is a process; it only knows threads

* Many-to-many Model
— Multiple threads are mapped to

multiple structures (group
mapping)

— Merit:

* Create as many threads as
necessary

* Also have a high degree of
concurrency

[Many-to-many model]

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming

G

“%
b

Thread Libraries

* Athread library provides the programmer with an
API for creating and managing threads

— Two ways of implementation: User-level or kernel-level

* Three main thread libraries
— POSIX Pthreads (user-level or kernel-level)
— Windows (kernel-level)
— Java (implemented using Windows APl or Pthreads)

28

* Asynchronous threading
— Parent resumes execution after creating a child
— Parent and child execute concurrently

— Each thread runs independently
* Little data sharing
* Synchronous threading

— Fork-join strategy: Parent waits for children to terminate
* Significant data sharing

* Pthreads: POSIX standard defining an API for
thread creation and synchronization.

— Specification, not implementation
* How to use Pthreads?

T

Creation fork() pthread_create()
1.D. Type PID, an integer “pthread_t”, a structure
Who am I? getpid() pthread_self()
Termination exit() pthread_exit()
V:’:ri;‘fi:;::::‘d wait() or waitpid() pthread_join()
Kill? kill() pthread_kill()

ISSUE 1: Thread Creation

Thread Function

1 void * hello(void *input) {

2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);

4 }

5 int main(void) {

6 pthread_t tid;

7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);

9 return 0;
10 }

Thread Function

void * hello(void *input) {

printf(“%s\n”, (char *) input);
pthread_exit(NULL);

Main Function

6 pthread_t tid;

7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);
9

return 0;
At the beginning,
there is only one -

thread running: the

main thread. Main Thread

Thread Function

2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4

5 int main(void) {

6 pthread_t tid;

8 pthread_join(tid, NULL);
9 return 0;

10

The hello thread is
created! pthread_
create()

Itis running “together” -
with the main thread. Msin Thread

Hello Thread

Thread Function The pthread_create()

function allows one

L void * hello((void *input Jx-
. p Je . argument to be passed to
2 printf(“%s\n”, (char ¥) input); he thread)
3 pthread_exit(NULL); the thread tunction.
4 }

5 int main(void) {

6 pthread_t tid;

7 pthread_create(&tid, NULL, [hello} [“hello world”);
8 pthread_join(tid, NULL);

9 return 0; T

10 }

This sets the thread function of the to-
be-created thread as: hello().

Remember: A thread starts with one specific function (thread function)

Thread Function

2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4

5 int main(void) {
6 pthread_t tid;
pthread_create(&tid, NULL, hello, “hello world”);

return 0,

Remember wait()
and waitpid()?

Hello Thread

Blocked
Main Thread

pthread_join()
performs similarly.

Thread Function

1 void * hello(void *input) {
2 printf(“%s\n”, (char *) input);

Main Function
5 int main(void) {
pthread_t tid;
pthread_create(&tid, NULL, hello, “hello world”);

9 return 0;

Termination of the
target thread causes
pthread_join()
to return.

Blocked

Main Thread

ISSUE 2: Passing parameters

Thread creation — passing parameter

() ¢ Guess: What is
1 void * do_your_job(void *input
2 printf(“child = %d\n”, *((int *) input)); the OlJtlet?
3 *((int *) input) = 20;
4 printf(“child = %d\n”, *((int *) input));
5 pthread_exit(NULL); $./pthread_evil_1
6 } main = 10
child = 10
child = 20
main = 20
7 int main(void) { $
8 pthread_t tid;
9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input); Each thread has a
12 pthread_join(tid, NULL); separated stack.
13 printf(“main = %d\n”, input);
i;’ } return @; Why do we have
such results?

39

Well, we all know that the local variable “input” is in the
stack for the main thread.

1 void * do_your_job(void *input) {

2 printf(“child = %d\n”, *((int *) input));
3 *((int *) input) = 20;

4 printf(“child = %d\n”, *((int *) input));
5 pthread_exit(NULL);

6 }

7 int main(void) {

8 pthread_t tid;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;

14 }

Local
(main thread)

Dynamic

Yet...the stack for the new thread is not on another process, but is on the
same piece of user-space memory as the main thread.

2 printf(“child = %d\n”, *((int *) input)); Local

3 *((int *) input) = 20; (new thread)
4 printf(“child = %d\n”, *((int *) input));

5 pthread_exit(NULL); Local

6 } (main thread)
7 int main(void) { X

8 pthread_t tid; Dynamic
10 printf(“main = %d\n”, input); _
11 pthread_create(&tid, NULL, do_your_job, &input);

12 pthread_join(tid, NULL);

13 printf(“main = %d\n, input);

13 return 0;

14 }

The pthread_create() function only passes an

to the new thread.

Worse, the address is pointing to a variable in the stack of the main thread!

}

printf(“child = %d\n”, *((int *) input));
*((int *) input) = 20;

printf(“child = %d\n”, *((int *) input));
pthread_exit(NULL);

7 int main(void) {

pthread_t tid;

printf(“main = %d\n”, input);
pthread_create(&tid, NULL, do_your_job, &input);
pthread_join(tid, NULL);

printf(“main = %d\n, input);

return @;

Local

E (new thread)

$
‘.

Local
(main thread)

Dynamic

o |
o
oo]

Therefore, the new thread can change the value in the main

thread, and vice versa.

1 void * do_your_job(void *input) {
2 printf(“child = %d\n”, *((int *) input));

4 printf(“child = %d\n”, *((int *) input));

[EIR (e ®) nput) =20 e)

5 pthread_exit(NULL);
6 }
7 int main(void) {
8 pthread_t tid;
9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;

14 }

Local

$
‘.

Local
(main thread)

Dynamic

o |
o
oo]

ISSUE 3: Multiple Threads

Thread Function

1
2
3
4
5

void * do_your_job(void *input) {
int id = *((int *) input);
printf("My ID number = %d\n", id);
pthread_exit(NULL);

Waiting on several
threads: enclose

pthread join()
within a for loop

int main(void) {
int i;
pthread_t tid[5];

for(i = 0; i < 5; i++)
pthread_create(&tid[i], NULL, do_your_job, &i);

return 0;

ISSUE 4: Return Value

Thread Function

1 void * do_your_job(void *input) {

srand(time(NULL));
*output = ((rand() % 10) + 1) * (*((int *) input));
pthread_exit()5~

} void pthread_exit(void *return_value);

o u hw

Together with termination, a pointer to a global

7 int main(void) { variable or a piece of dynamically allocated
8 pthread_t tid; memory is returned to the main thread.
9 int input = 10, *output;
10 pthread_create(&tid, NULL, do_your_ job, &input);
11 pthread_join(tid, [(void **) &output]);
12 return 0;
13 } Using pass-by-reference, a pointer
to the result is received in the main
thread.

N

* For Windows threads and Java threads, you can
refer to the textbook if you are interested in.

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming
- Implicit Threading

e

Implicit Threading

* Applications are containing hundreds or even thousands of
threads
— Program correctness is more difficult with explicit threads

* How to address the programming difficulties?

— Transfer the creation and management of threading from
programmers to compilers and run-time libraries

— Implicit threading

¢ We will introduce two methods
— Thread Pools
— OpenMP

50

Thread Pools

* Problems with multithreaded servers

— Time required to create threads, which will be discarded
once completed their work

— Unlimited threads could exhaust the system resources

* How to solve?
— Thread pool
— ldea
* Create a number of threads in a pool where they wait for work

— Procedure
* Awakens a thread if necessary
* Returns to the pool after completion
* Waits until one becomes free if the pool contains no available thread

51

* Advantages

— Usually slightly faster to service a request with an
existing thread than create a new thread

— Allows the number of threads in the application(s) to be
bound to the size of the pool

* Provides support for parallel
programming in shared-memory
environments

* Set of compiler directives and an API
for C, C++, FORTRAN

* |dentifies parallel regions — blocks of

code that can run in parallel

Parallel for loop

#pragma omp parallel for
for (i=0;i<N;i++) {

c[i] = a[i] + b[il];
}

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv([])
{
/* sequential code */

#pragma omp parallel
{

printf ("I am a parallel region.");

/* sequential code */

return 0;

When OpenMP encounters the
directive, it creates as many threads
as there are processing cores

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming
- Implicit Threading
- Threading Issues _

>

54

Semantics of fork() and exec()

* Two key system calls for processes: fork, exec

 fork ():Some UNIX systems have two versions
— The new process duplicates all threads, or
— Duplicates only the thread that invoked fork ()

* exec (): usually works as normal

— Replace the running process - including all threads

55

Signal Handling

Signals are used in UNIX systems to notify a process that a
particular event has occurred

— Synchronous signal and asynchronous signal

— Default handler or user-defined handler

Where should a signal be delivered in multi-threaded program?
Deliver the signal to the thread to which the signal applies

Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific thread to receive all signals for the process

Deliver a signal to a specified thread with Pthread
— pthread_kill(pthread_t tid, int signal)

56

Thread Cancellation

* Terminating a thread before it has finished
— Why needed?

— Example: Close a browser when multiple threads are loading
images

* Two general approaches
— Asynchronous cancellation terminates the target thread
immediately

* Problem: Troublesome when canceling a thread which is updating
data shared by other threads

— Deferred cancellation allows the target thread to periodically
check if it should be cancelled (can be canceled safely)

57

Thread Cancellation (Cont.) - Pthreads

* Pthreads code example pthreadt tid;
/+ create the thread #/
- pthread_cancel() pthreadf‘cretfte F&l}tid,do, worker, NULL) ;

— Indicates only a request

/% cancel the thread x/
pthread.cancel (tid) ;

* Three cancelation modes

[Mode [State | Type |
Off Disabled -
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

e Default: deferred

— Cancelation occurs only when it reaches a cancelation point, can
be established by pthread_testcancel()

Thread-Local Storage

* Some applications, each thread may need its own copy of
certain data

— Transaction processing system: service each transaction (with a
unique identifier) in a thread

— How about local variables?
* Visible only during a single function invocation

* Thread-local storage (TLS) allows each thread to have its
own copy of data
— TLS is visible across function invocations
— Similar to static data
— TLS data are unique to each thread

59

Summary of Threads

* Virtually all modern OSes support multi-threading
— A thread is a basic unit of CPU utilization

— Each comprises a thread ID, a program counter, a register set,
and a stack

— All threads within a process share code section, data section,
other resources like open files and signals

* You should take great care when writing multi-
threaded programs

* You also have to take care of (will be talked later):
— Mutual exclusion and
— Synchronization

60

End of Chapter 4

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ch5
Process Communication & Synchronization

* Process concept + operations
— Programmer’s perspective + kernel’s perspective

* Thread
— Lightweight process

* We mainly talked about the stuffs related to a single
process/thread, what if multiple processes exist...

* The processes within a system may be

— independent or

* Independent process cannot affect or be affected by other
processes

— cooperating

* Cooperating process can affect or be affected by other
processes

* Note: Any process that shares data with others is a
cooperating process

* Why we need cooperating processes
— Information sharing
* e.g., shared file
— Computation speedup
* executing subtasks in parallel
— Modularity
* dividing system functions into separate processes

— Convenience

Inter-process communication (IPC)
- What and how?

3

Interprocess Communication

* |IPC: used for exchanging data between processes

* Cooperating processes need
— interprocess communication (IPC) for exchanging data

 Paradigm for cooperating processes

— Producer-consumer problem, useful metaphor for many
applications (abstracted problem model)

* producer process produces information that is consumed by a
consumer process

* At least one producer and one consumer

* Two (abstracted) models of IPC
— Shared memory

* Establish a shared memory region, read/write to shared region
* Accesses are treated as routine memory accesses

process A
E shared memory

process B :l

* Faster

kernel

* Two (abstracted) models of IPC
— Message passing
* Exchange message
* Require kernel intervention
* Easier to implement in distributed system

process A —

—] process B

message queue
> mg[mq[my[mg| ... [my e

kernel

process A — E process A
| process B shared memory :l
process B

message queue
] m0|m1 |m2|m3| ‘mn |-—

kernel
kernel

Message passing Shared memory

* Shared memory solution
— A buffer is needed to allow processes to run concurrently

>) i) &

-It is a shared object;
-It is a queue (imagine that it is an array implementation of queue).
LG -1t produces a unit of data, and
process -writes that a piece of data to the tail of the buffer at one time.
AN -It removes a unit of data from the head of the bounded buffer at
process one time.

Producer-Consumer Problem

* Focus on bounded buffer: what are the requirements?

When the producer wants to
(a) put a new item in the buffer, but

Eee (b) the buffer is already full...

consumer Then,
(CEITEIGENITESE (1) The producer should be suspended, and

(2) The consumer should wake the producer up after she has
dequeued an item.

When the consumer wants to
(a) consumes an item from the buffer, but
(b) the buffer is empty...

Producer-

consumer Then,

(LGN & 728 (1) The consumer should be suspended, and
(2) The producer should wake the consumer up after she has
enqueued an item.

11

Producer-consumer solution (shared mem)

#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer[BUFFER_SIZE];
int in = 0Q;

int out = 0;

Shared memory by producer
& consumer processes

EI,.---.I;II:I

out (consumer) in (producer)

item next_produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

:

Only allows BUFFER_SIZE-1
items at the same time. Why?

item next_consumed;
while (true) {
while (in == out)

Consumer

; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

/* consume the item x/

12

Message Passing

 Communicating processes may reside on different
computers connected by a network

* |IPC facility provides two operations:
— send(message) + receive(message)

* If processes P and Q wish to communicate
— Establish a communication link between them
— Exchange messages via send/receive

o Message
passing

13

* Implementation issues (logical):
— Naming: Direct/indirect communication
— Synchronization: Synchronous/asynchronous

— Buffering

Naming
* How to refer to each other?
* Direct communication: explicitly name each other

— Operations (symmetry)
* send (Q, message) — send a message to process Q
* receive(P, message) — receive a message from process P
— Properties of communication link
* Links are established automatically (every pair can establish)
* Alink is associated with exactly one pair of processes

* Between each pair, there exists exactly one link

— Disadvantage: limited modularity (hard-coding)

15

Naming
* How to refer to each other?

* Indirect communication: sent to and received from
mailboxes (ports)
— Operations
* send (A, message) — send a message to mailbox A
* receive(A, message) — receive a message from mailbox A
— Properties of communication link

* Alink is established between a pair of processes only if both
members have a shared mailbox

* Alink may be associated with more than two processes
* Between each pair, a number of different links may exist

16

* ISSUE1: Who receives the message when multiple
processes are associated with one link?
— Who gets the message? -

— Policies
¢ Allow a link to be associated with at most two processes
* Allow only one process at a time to execute a receive operation

* Allow the system to select arbitrarily the receiver (based on an algorithm).
Sender is notified who the receiver was.

* ISSUE2: Who owns the mailbox?
— The process (ownership may be passed)
— The OS (need a method to create, send/receive, delete)

Synchronization

* How to implement send/receive?

— Blocking is considered synchronous

* Blocking send - the sender is blocked until the msg is received
* Blocking receive - the receiver is blocked until a msg is available

— Non-blocking is considered asynchronous

* Non-blocking send - the sender sends the message and resumes
* Non-blocking receive - the receiver receives a valid msg or null

» Different combinations are possible

— When both send and receive are blocking, we have a
rendezvous between the processes.

— Other combinations need buffering.

18

Buffering

* Different combinations are possible

— When both send and receive are blocking, we have a rendezvous
between the processes.

— Other combinations need buffering.

* Messages reside in a temporary queue, which can be
implemented in three ways

— Zero capacity — no messages are queued on a link,
sender must wait for receiver (no buffering)

— Bounded capacity — finite length of n messages,
sender must wait if link is full

— Unbounded capacity — infinite length, sender never waits

19

Inter-process communication (IPC)
- What and how?
- POSIX shared memory

3

* POSIX shared memory is organized using memory-
mapped file

— Associate the region of shared memory with a file

* |llustrate with the producer-consumer problem
— Producer

— Consumer

* Producer

— Create a shared-memory object
* shm_fd = shm_open 1namq, |5_CREAT| || O_RDWR| 0666) ;

| Name of the shared memory object |

Create the object if it does not exist |

| Open for reading & writing |

| Directory permissions |

* Producer

— Create a shared-memory object
* shm fd = shm open(name, O CREAT | O _RDWR, 0666)

— Configure object size
« ftruncate (shm fd| SIZE);

| File descriptor for the shared mem. Obj. |

| Size of the shared-memory object |

POSIX Shared Memory

* Producer

— Create a shared-memory object

* shm fd = shm open(name, O _CREAT | O _RDWR, 0666) ;
— Configure object size

* ftruncate (shm_fd, SIZE);
— Establish a memory-mapped file containing the object

* ptr = mmap (0,SIZE, ,MAP_SHARED,shm_fd,O);

Allows writing to the object
(only writing is necessary for producer)

Changes to the shared-memory object will
be visible to all processes sharing the object

24

* Consumer
— Open the shared-memory object

+ shm_fd = shm_open (name, 0666) ;

| Open for read only |

e Consumer

— Open the shared-memory object
* shm fd = shm open(name, O RDONLY, 0666) ;
— Memory map the object

* ptr = mmap(0,SIZE, | PROT READ MAP SHARED,shm £fd,O0);

Allows reading to the object
(only reading is necessary for consumer)

e Consumer

— Open the shared-memory object
* shm fd = shm open(name, O RDONLY, 0666) ;

— Memory map the object
* ptr = mmap (0,SIZE, PROT READ,MAP SHARED,shm fd,0);

— Remove the shared memory object
* shm _unlink (name) ;

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>

#include <sys/shm.h> PrOd ucer

#include <sys/stat.h>

int main()

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "08";

/* strings written to shared memory */

const char *message 0 = "Hello";

const char *message 1 = "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/% create the shared memory object */
shm fd = shm open(name, O-CREAT | O_RDWR, 0666);

/% configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/+ memory map the shared memory object ¥/
ptr = nmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

/* write to the shared memory object */
sprintf (ptr,"/s" ,message.0) ;
ptr += strlen(message0);

#include <stdio.h>
#include <stdlib.h>
#include <fentl.h>

#include <sys/shm.h> Consu mer

#include <sys/stat.h>

int main()

/* the size (in bytes) of shared memory object */

const int SIZE = 4096;

/* name of the shared memory object */
const char *name = "0S";

/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect %/
void #ptr;

/* open the shared memory object */
shm fd = shm open(name, O-RDONLY, 0666);

/* memory map the shared memory object */

ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shmfd, 0);

/* read from the shared memory object */
printf ("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink(name) ;

sprintf (ptr,"}s" ,message 1) ; return 0;
ptr += strlen(message1); }
return 0; . .
} | Direct access to the shared memory region

Inter-process communication (IPC)
- What and how?
- POSIX shared memory
- Sockets

3

Sockets

* A socket is defined as an endpoint for
communication (over a network)
— A pair of processes employ a pair of sockets

— A socket is identified by an IP address and a port
number
— All ports below 1024 are used for standard services
* telnet server listens to port 23
* FTP server listens to port 21
* HTTP server listens to port 80

30

Sockets

* Socket uses a client-server architecture

host X

» Server waits for incoming client (146.86.5.20)
requests by listening to a specific port

socket
(146.86.5.20:1625)
web server

. . (161.25.19.8)
» Accepts a connection from the client

socket to complete the connection

socket
(161.25.19.8:80)

. . A
* All connections must be unique

— Establishing a new connection on the same host needs another
port (>1024)

* Special IP address 127.0.0.1 (loopback) refers to itself

— Allow a client and server on the same host to communicate using
the TCP/IP protocol

31

* Three types of sockets

— Connection-oriented (TCP), Connectionless (UDP), Multicast —
data can be sent to multiple recipients

import java.net.*;
import java.io.*;

public class DateServer
public static void main(String[] args) {

try
ISexverSocket sock = new ServerSocket(6013); I

/* now listen for connections */
while (true

I Socket client = sock.accept(); I

PrintWriter pout = new

PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */

pout.println(new java.util.Date().toStringQ));

/* close the socket and resume */
/* listening for connections */
client.close();

}

}
catch (IOException ioe) {
System.err.println(ioe);

import java.net.x;
import java.io.*;

public class DateClient

public static void main(String[] args) {
try
/* make connection to server socket */
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new
BufferedReader (new InputStr der(in));

/* read the date from the socket */

String line;

while ((line = bin.readLine()) != null)
System.out.println(line);

/* close the socket connection/
sock.close();

catch (IOException ioe) {
System.err.println(ioe);

Inter-process communication (IPC)
- What and how?
- POSIX shared memory
- Sockets
- Pipes

3

* Pipe is a shared object.
— Using pipe is a way to realize IPC.

— Acts as a conduit allowing two processes to
communicate.

0*@

An IPC Example

Pipes

* Four issues:
— Is the communication unidirectional or bidirectional?

— In the case of two-way communication, is it half or full-
duplex?

— Must there exist a relationship (i.e., parent-child)
between the communicating processes?

— Can the pipes be used over a network?

* Two common pipes

— Ordinary pipes and named pipes

35

Ordinary Pipes

* Ordinary pipes (no name in file system)

— Ordinary pipes are used only for related processes
(parent-child relationship)
* Processes must reside on the same machine

— Ordinary pipes are unidirectional (one-way
communication)

— Ceases to exist after communication has finished

e Ordinary pipes allow communication in standard
producer-consumer style
— Producer writes to one end (write-end)
— Consumer reads from the other end (read-end)

36

* UNIX treats a pipe as a special file (child inherits it
from parent)
— Create: pipe (int £d[]) ;
* £d[0]: read end
* £d[1]: write end
— Access: Ordinary read () and write () system calls

. \
L, 1 \
., 1 N
4 I
, i \
/ ' \

Byte stream amm
Write end pipe
fd[1]

Read end
fd[o]

* Pipes are anonymous (no name in file system), then
how to share?
— fork() duplicates parent’s file descriptors
— Parent and child use each end of the pipe

parent process parent process
filedes[1] filedes[0] filedes[1]
pipe pipe
——X)y T——
filedes[1] filedes[0] filedesf0]

child process child process

Q hild process */ .
pid = fork() Create a child process

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

if (pid > 0) { /* parent process */
/* close the unused end of the pipe */
close(fd [READ END]);

Parent process
/* write to the pipe */ .
write(fd [WRITE_END], writemsg, strlen(uritemsg)+1) Use the write end only

/* close the write end of the pipe */
close(fd [WRITE_END]);
1 unidirectional (one-
else { /* child process */ . .
/* close the unused end of the pipe */ way communication
close(fd [WRITE_END]) ;

/* read from the pipe */ :
read (£d [READ_END], readmsg, BUFFER_SIZE); Child process

printf ("read %s",readmsg); Use the read end only

/* close the read end of the pipe */
close (£d [READ_END]) ;

pipe

-

Programmer’s point of view.

Kernel’s point of view.

The pipe() system call
creates a piece of shared
storage in the kernel
space!

Yet, the pipe is more than
a storage: it is a FIFO
queue with finite space.

Producer

The producer-consumer model
1s

Consumer

enqueue

Named Pipes

* Named pipes (pipe with name in file system)

— No parent-child relationship is necessary (processes must reside
on the same machine)

— Several processes can use the named pipe for communication
(may have several writers)

— Continue to exist until it is explicitly deleted
— Communication is bidirectional (still half-duplex)

* Named pipes are referred to as FIFOs in UNIX

— Treated as typical files
— mkfifo(), open(), read(), write(), close()

43

* Interprocess communication (IPC)
— Necessary for cooperating processes
— Producer-consumer model

* |IPC models
— Shared memory & message passing

* |PC schemes
— Shared memory
— Ordinary pipes (parent-child processes)
— FIFOs (processes on the same machine)
— Sockets (intermachine communication)

* More: Michael Kerrisk, “The Linux Programming Interface”
(http://www.man7.org/tlpi/)

Shared Objects Message Passing
é Shared

é object

Challenge. Coordination can only be Challenge. Coordination relies on the
done by detecting the status of the reliability and the efficiency of the
shared object. communication medium (and protocol).
E.g., is the pipe empty / full?

Message
passing

E.g., pipes, shared memory, and regular E.g., socket programming, message
files. passing interface (MPI) library.

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ch5
Process Communication & Synchronization
-Part 2

Shared Objects Message Passing
é Shared

é object

Challenge. Coordination can only be Challenge. Coordination relies on the
done by detecting the status of the reliability and the efficiency of the
shared object. communication medium (and protocol).
E.g., is the pipe empty / full?

Message
passing

E.g., pipes, shared memory, and regular E.g., socket programming, message
files. passing interface (MPI) library.

IPC problem: Race condition

* Pipe is implemented with the
thought that there may be
more than one process
accessing it “at the same time”

* For shared memory and filesr File structure
concurrent access may yield i the kemnet
unpredictable outcomes

High-level language for Program A

1 attach to the shared memory X;
2 add 10 to X;
3 exit;

High-level language for Program B

1 attach to the shared memory X;
2 minus 10 to X;
3 exit;

The Scenario

Shared memory

Value = 10

Process A Process B

Guess what the final result should be?

It may be 10, 0 or 20, can you believe it?

The Scenario

High-level language for Program A

1 attach to the shared memory X;

Shared memory
3 exit;

Value = 10

High-level language for Program B

1 attach to the shared memori X;

3 exit;

Remember the flow of executing a program and the system hierarchy?

High-level language for Program A

1 attach to the shared memory X;

2 add 10 to X;
3 exit; ’ W[This operation
is not atomic

)

Partial low-level language for Program A
1 attach to the shared memory X;
load memory X to register A;

2.1
2.2 add 10 to register A;
2.3 write register A to memory X;

The Scenario

Shared memory

Value = 10

Process A Process B

Guess what? This code block is evil!

Shared memory - X

Value = 10
Register A Register A State:
Value = 0 Value = 0 Ready

State:
Ready

2.1 load memory X to 2.1 load memory X to
register A; register A;

2.2 add 10 to register A; 2.2 minus 10 from register A;

2.3 write register A to 2.3 write register A to
memory X; memory X;

—— e
Process A Process B

‘ The initial setting ‘

{ Execution Flow #1 j

Shared memory - X

Value = 10
State: Register A Register A State:
Runn Value = 10 Value = 0 Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

Process A Process B

‘ Execution Flow #1, Step 1 ‘

Shared memory - X

Value = 10
State: Register A Register A State:
Runni Value = 20 Value = 0 Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
a 2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

Process A Process B

Execution Flow #1, Step 2

Shared memory - X

Value = 20
State: Register A Register A State:
Runni Value = 20 Value = 0 Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
a 2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

Process A Process B

Execution Flow #1, Step 3

Shared memory - X

Value = 20
Register A Register A State:
Value = 20 Value = 20 Runn

State:
Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
a 2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

e

Process B

Context Switching

Execution Flow #1, Step 4

Shared memory - X

Value = 20
Register A Register A State:
Value = 20 Value = 10 Runni

State:
Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
a 2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

e

Process B

Process A

Execution Flow #1, Step 5

Shared memory - X

Value = 10
Register A Register A State:
Value = 20 Value = 10 Runn

State:
Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
a 2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

e

Process B

Process A

Execution Flow #1, Step 6

{ Execution Flow #2 j

Shared memory - X

Value = 10
State: Register A Register A State:
Runni Value = 10 Value = 0 Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

Process A Process B

[Execution Flow #2, Step 1]

Shared memory - X

Value = 10
Register A Register A State:
Value = 10 Value = 10 Runn

State:
Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

e

Process B

Context Switching

[Execution Flow #2, Step 2]

Shared memory - X

Value = 10
State: Register A Register A State:
Runni Value = 20 Value = 10 Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
e 2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

Process A Context Switching

[Execution Flow #2, Step 3]

Shared memory - X

Value = 10
Register A Register A State:
Value = 20 Value = 0 Runn

State:
Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
e 2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;

e

Process B

Context Switching

[Execution Flow #2, Step 4]

Shared memory - X

Value = 10
Register A Register A State:
Value = 20 Value = 0 Runn

State:
Ready

e 2.1 load memory X to 2.1 load memory X to
register A; register A;
e 2.2 add 10 to register A; 2.2 minus 10 from register A;
2.3 write register A to 2.3 write register A to
memory X; memory X;
HELP!! No matter which process runs next, the result is rocess B

either 0 or 20, but not 10!

The final result depends on the execution sequence!

Race condition — the curse

 The above scenario is called the race condition.

* A race condition means

— the outcome of an execution depends on a particular
order in which the shared resource is accessed.

« Remember: race condition is always a bad thing and
debugging race condition has no fun at all!
— It may end up ...
* 99% of the executions are fine.
* 1% of the executions are problematic.

22

* For shared memory and files,
concurrent access may yield
unpredictable outcomes

— Race condition

Process Process
* Common situation

(read()) (write())
— Resource sharing occurs frequently in OS

* EXP: Kernel DS maintaining a list of opened :
fil intaini llocati File structure
iles, maintaining memory allocation, in the kernel
process lists...

— Multicore brings an increased emphasis
on multithreading

* Multiple threads share global variables and
dynamically allocated memory

* Process synchronization is needed

Topics in Process Synchronization

Idea: How to achieve

Cooperating Processes

Define critical section

concurrent accesses suffer
from race condition

How to implement

@ Solution

Process Sychronization

Guarantee mutual exclusion

@ Application

O Four requirements

O Software-based proposals
Disabling interrupts
strict alternation
peterson’s solution
mutex lock

Semaphore (best choice)

VVVVYVY

Semaphore Usage

Classic problems

Avoid deadlock

O Producer-consumer problem
O Dining philosopher problem
O Reader-writer problem

24

Inter-process communication (IPC)
- Mutual exclusion
- what & how to achieve?

'8

How to have
peace?

Shared memory

Process B

Process A

Two processes playing with the same
shared memory is dangerous.

We will face the curse - race condition.

The solution can be simple:

Shared memory

This is called mutual exclusion.
A set of processes would not have the
problem of race condition if mutual

S e ——

Process A Process B

How to realize mutual exclusion?

* Kernel

— Preemptive kernels and nonpreemptive kernels

* Allows (not allow) a process to be preempted while it is
running in kernel mode

— A nonpreemptive kernel is essentially free from race
conditions on kernel data structures, and also easy to
design (especially for SMP architecture)

— Why would anyone favor a preemptive kernel
* More responsive
* More suitable for real-time programming

27

* More generally, how to realize?

Program code
of process 1

Program code
of process n

Code for Shared Object (manipulated by n
processes)

B Changing common variables
B Updating a table

B Writing a file

...... . o sssses

Code for
manipulating
shared object

manipulating
shared object

critical section

Solution: To guarantee that when one process is executing in its critical
section, no other process is allowed execute in its critical section.

Critical Section — General Structure

To guarantee that when one process is executing in its critical
section, no other process is allowed execute in its critical section.

Declaring the start of the critical section.

Program code
As if telling other processes that:
“I start accessing the shared object.”

Section entry

Critical sections is the code segment
‘/*// that is accessing the shared object.

critical section

------ [i

Declaring the end of the critical section.

Section exit

As if telling other processes that:
Reminder section “I finish accessing the shared object.”

[Ty N

Critical Section

1 I
2.1 load memory X to 2.1
register A;

2.2 add 10 to register A; 2.2
2.3 write register A to 2.3
memory X;

load memory X to
register A;

minus 10 from register A;

write register A to
memory X;

Need a section exit here

eSS
Important concept here.

Need a section exit here

G ————
Process B

Both regions are called critical sections,

yet they can be different.

Summary...for the content so far...

e Race condition is a problem.

— It makes a concurrent program producing unpredictable
results if you are using shared objects as the
communication medium.

— The outcome of the computation totally depends on the
execution sequences of the processes involved.

* Mutual exclusion is a requirement.

— If it could be achieved, then the problem of the race
condition would be gone.

— Mutual exclusion hinders the performance of parallel
computations.

31

Summary...for the content so far...

 Defining critical sections is a solution.

— They are code segments that access shared objects.

— Critical section must be as tight as possible.

* Well, you can declare the entire code of a program to be a big
critical section.

* But, the program will be a very high chance to block other
processes or to be blocked by other processes.

— Note that one critical section can be designed for
accessing more than one shared objects.

32

* Implementing section entry and exit is a challenge.

— The entry and the exit are the core parts that guarantee
mutual exclusion, but not the critical section.

— Unless they are correctly implemented, race condition
would appear.

Inter-process communication (IPC)
- Mutual exclusion:
- how to achieve?
- how to implement?
(section entry and exit)

'8

How to have
peace?

Entry and exit implementation - requirements

* Requirement #1: Mutual Exclusion. No two processes
could be simultaneously inside their critical sections.

Implication: when one process is inside its critical section, any attempts to go
inside the critical sections by other processes are not allowed.

* Requirement #2. Each process is executing at a nonzero
speed, but no assumptions should be made about the
relative speed of the processes and the number of CPUs.

Implication: the solution cannot depend on the time spent inside the critical
section, and the solution cannot assume the number of CPUs in the system.

85

Entry and exit implementation - requirements

* Requirement #3: progress. No process running outside its
critical section should block other processes.

Implication: Only processes that are not executing in their reminder sections can
participate in deciding which will enter its critical section.

* Requirement #4: Bounded waiting. No process would have
to wait forever in order to enter its critical section.

Implication: There exists a bound or limit on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section (no processes should be starved to death).

36

Remember, it is always the entry blocks other

processes, but not the critical section.

A
]
@

Critical section
entry

Process A —-

Inside Critical
section

Critical section

Process B

-—— —p

exit

Shared object
(if any)

HOOmE

-—— —p

e A [We will be using his

coloring scheme
throughout this part.

section but A is in its
critical section.

B tries to enter its critical

A leaves its critical section
and B resumes execution
accordingly.

Mutual Exclusion Implementation

e Challenges of Implementing section entry & exit
— Both operations must be atomic
— Also need to satisfy the above requirements
— Performance consideration

e Hardware solution
— Rely on atomic instructions
—test_and_set()
— compare_and_swap

38

e Definition

boolean test_and_set(boolean *target) {
boolean rv = *target;
*target = true;

return rv;

¥ do {
) while (test_and_set(&lock))
* Mutual exclusion ; /* do nothing */

implementation

/* critical section */
lock = false;

/* remainder section */
} while (true);

e Definition

int compare_and_swap(int *value, int expected, int new_value) {
int temp = *value;

if (xvalue == expected)
*value = new_value;

return temp;

}
do {
e Mutual exclusion while (compare_and_swap(&lock, 0, 1) != 0)
. . ; /* do nothing */
implementation
/* critical section */
How to satisfy lock = 0;
/* remainder section */
} while (true);

do {
waiting[i] = true;
key = true;
while (waiting[il && key)
key = test_and_set(&lock); ™
waiting[i] = false;

/* critical section */

j=(+1)%n;
while ((j != i) && !waiting[jl)
j=G+ 1 %mn;

if (j == 1)
lock = false;
else

waiting[j] = false;

/* remainder section */
} while (true);

lock is initialized as false

Proposal #1 — disabling interrupt.

* Method
— Similar idea as nonpreemptive kernels
— To disable context switching when the process is

inside the critical section.
Program Code

* Effect

Interrupt disabled

— When a process is in its critical section, no other

processes could be able to run. _ :
Critical Section

* Implementation

— A new system call should be provided.

Interrupt enabled

* Correctness?

— Correct, but it is not an attractive solution.
— Not as feasible in a multiprocessor environment
— Performance issue (may sacrifice concurrency)

* Ildea

— A process must acquire the lock before entering a
critical section, and release the lock when it exits the
critical section

— Using a new shared object to detect the status of other
processes, and “lock” the shared object

Shared object: “available” (lock)

Proposal #2: Mutex Locks

* Implementation

— Calls to acquire and release locks
must be performed atomically

Note that: all processes run the
following same code.

— Often use hardware instructions | Srogram code
acquire();
* [ssue
— Busy waiting: Waste CPU resource Critical Section
* Spinlock
* Applications release();

— Multiprocessor system

* When locks are expected to be held
for short times

44

Other software-based solutions

e Aim

— To decide which process could go into its critical section

Program code
of process 1

Critical section o 0 °

* Key Issues

Program code
of process n

Critical section

Section exit

— Detect the status of processes (section entry)

* Need other shared variables
— Atomicity of section entry and exit

45

* Method

— Using a new shared object to detect the status of other

processes

Shared object “turn”

1 while (TRUE
/* busy waiting */
4 critical_section();

5 turn = 1;

6 non_critical_section();

Process 0

Allow to enter when
turn ==

Entry

initial value = @

1 while (TRUE
/* busy waiting */

4 critical_section();

5 turn = 9;

6 non_critical_section();

Process1

Allow to enter when
turn ==

The order of executing

Process 0

Process 1

the critical section is
alternating.

Shared object “turn”

1 while (TRUE

4 critical_section();
5 turn = 1;

6 non_critical_section();

7} _

Process 0

initial Value = @

1 while (TRUE

4 critical_section();
5 turn = 0;

6 non_critical_section();

7}

* Strict alternation seems good, yet, it is inefficient.
— Busy waiting wastes CPU resources.

* In addition, the alternating order is too strict.

— What if Process 0 wants to enter the critical section
twice in arow? NO WAY!

— Violate any requirement?

Requirement #3. No process running outside its critical
section should block other processes.

Proposal #4: Peterson’s solution

* How to improve the strict alternation proposal?
— The Peterson’s solution

* Highlights:
— Share two data items
* int turn; //whose turn to enter its critical section
* Boolean interested[2]; //if a process wants to enter

— Processes would act as a gentleman: if you want to
enter, I'll let you first

— No alternation is there

49

Proposal #4: Peterson’s solution

1 int turn; /* who can enter critical section */
2 int interested[2] = {FALSE,FALSE}; /* wants to enter critical section*/
3
4 void enter_region(int process) { /* process is @ or 1 */ EnLey
5 int other; /* number of the other process */
6 other = 1-process; /* other is 1 or @ */
7 interested[process] = TRUE; /* want to enter critical section */
8 turn = other;
9 while (turn == other &&

interested[other] == TRUE)
10 8 /* busy waiting */
1 }
12
13 void leave_region(int process) { /* process: who is leaving */

14 interested[process] = FALSE; /* I just left critical region */

158} Exit

Proposal #4: Peterson’s solution

W 0 NGO VI A WN B

10
11
12
13
14
15

int turn;
int interested[2] = {FALSE,FALSE};

void enter_region(int process) {
int other;
other = 1-process;
interested[process] = TRUE;
turn = other;

while ((turn == other &8

(interested[other] == TRUE

~

Line 8 therefore makes the
other one the turn to run.

Of course, the process is
willing to wait when she
wants to enter the critical
section.

8 /* busy waiting */

void leave_region(int process) {
interested[process] = FALSE;

“I’'m a gentleman!”

The process always let
another process to enter the
critical region first although

Qhe wants to enter too.

51

Proposal #4: Peterson’s solution

W 0 NGO VI A WN B

10
11
12
13
14
15

int turn;
int interested[2] = {FALSE,FALSE};

void enter_region(int process) {

int other;

other = 1-process;

interested[process] = TRUE;

turn = other;

while (turn == other &&

interested[other] == TRUE)

8 /* busy waiting */

void leave_region(int process) {
interested[process] = FALSE;

Context Switching

Context Switching

Context Switching

Context Switching

and the story goes on...

Can you show that the
requirements are satisfied?

52

Proposal #4: Peterson’s solution

W 0 NGO VI A WN B

10
11
12
13
14
15

int turn;
int interested[2] = {FALSE,FALSE};

void enter_region(int process) {

int other;

other = 1-process;

interested[process] = TRUE;

turn = other;

while (turn == other &&

interested[other] == TRUE)

8 /* busy waiting */

void leave_region(int process) {
interested[process] = FALSE;

Context Switching

Context Switching

Can you complete the flow?
(what is the difference?)

Can both processes progress?

53

Proposal #4: Peterson’s solution — issues

e Busy waiting has its own problem...
— An apparent problem: wasting CPU time.

— A hidden, serious problem: priority inversion problem.
* Alow priority process is inside the critical region, but ...
* A high priority process wants to enter the critical region.

* Then, the high priority process will perform busy waiting for a
long time or even forever.

High priority process
created with preemption
/ ‘ Not scheduled for a long time.

Jo——
oY Because it has a higher

¢ priority, it will sit on the CPU
- doing useless things.

Low-priority
process

High-priority
process

54

Critical Section Problem

— 7 T

Disabling Strict Peterson’s Mutex
interrupts alternation solution lock

Violating Priority Atomicity
Efficiency requirement inversion implementation

S
Use other shared variables to detect process status

Final proposal: Semaphore

* In real life, semaphore is a flag signaling system.

— It tells a train driver (or a plane pilot) when to stop and
when to proceed.
[

71

source: wikipedia.

* When it comes to programming...

— A semaphore is a data type.

— You can imagine that it is an integer (but it is certainly
not an integer when it comes to real implementation).

56

Final proposal: Semaphore

* Semaphore is a data type (additional shared object)
— Accessed only through two standard atomic operations

—down(): originally termed P (from Dutch proberen, “to
test”), wait() in textbook

* Decrementing the count
—up(): originally termed V (from verhogen, “to
increment”), signal() in textbook
® Incrementing the count
* Two types
— Binary semaphore: 0 or 1 (similar to mutex lock)
— Counting semaphore: control finite number of resources

57

* |dea

Initialize the semaphore to the number of resource instances

process 1

Critical section

seesse

Section exit

=)

Shared
resource
instances

Semaphore
S=5

=)

process n

Critical section

seeene

Section exit

* |dea

Wish to use a resource, perform down() to decrement the count

Critical section

seesse

Section exit

1 Acquire Shared process n
are
RIOCESS resource resoUrce
u
down()

/\ instances

Critical section

seeene

Section exit

Semaphore

s=4

* |dea

Release a resource, perform up() to increment the count

process 1

Critical section

seesse

Section exit

N

Release
resource

up()

Shared
resource
instances

process n

Critical section

seeene

Section exit

Semaphore
S=5

* |dea

When the count goes to 0, block the processes that wish to use

Acquire
resource
down()

/\ /_\

Critical section

Shared Acquire process n
resource

process 1
resource

Section exit

Section exit

Semaphore
S=0

Data Type definition

typedef int semaphore;

Section Entry: down()

Counting Semaphore: initialized to
be the number of resources available

1 void down(semaphore *s) { Section Exit: up()
5 8
3 while (*s == 0) { 1 void up(semaphore *s) {
4
2
5 ;//busy wait 3
6 4
7 } 5 *s = *g + 1;
8 *¥s = *s - 1; 6
9
7}
10 }

Data Type definition

typedef int semaphore;

Section Entry: down()

1 void down(semaphore *s) {
2

3 while (*s == 0) {

4

5 special_sleep();

6

7 }

8 ¥s = *g - 1;

9

10 }

First issue: Busy waiting
Solution: block the process instead of

busy waiting (place the process into a
waiting queue)

Section Exit: up()

void up(semaphore *s) {

1
2
3 if (*s == 0)

4 special_wakeup();
5 *s = *s + 1;

6

7

}

Data Type definition

typedef int semaphore;

First issue: Busy waiting

Solution: block the process instead of
busy waiting (place the process into a
waiting queue)

typedef struct{

int value;
struct process * list;

}semaphore;

Note

Implementation: The waiting queue
may be associated with the
semaphore, so a semaphore is not
just an integer

Data Type definition

typedef int semaphore;

Section Entry: down()

1 void down(semaphore *s) {
2

3 while (*s == 0) {

4

5 special_sleep();

6

7 }

8 ¥s = *g - 1;

9

10 }

Second issue: Atomicity (both
operations must be atomic)

Solution: Disabling interrupts

Section Exit: up()

void up(semaphore *s) {

1
2
3 if (*s == 0)

4 special_wakeup();
5 *s = *s + 1;

6

7

}

Second issue: Atomicity (both
operations must be atomic)

Data Type definition

typedef int semaphore;
yp - P ’ Solution: Disabling interrupts

Also, only one process can invoke

“disable_interrupt()”. Later
Section Entry: down() processes would be blocked until
“enable_interrupt()” is called.

1 void down(semaphore *s) { : A

2 disable_interrupt(); Section Exit: up()

= while (*s ==0) { 1 void up(semaphore *s) {
& enable_interrupt(); 2 disable_interrupt();
5 special_sleep(); 3 if (*s ==0)

6 disable_interrupt(); 4 special_wakeup();

v } 5 *s = *s + 15

e *s = *s - 15 6 enable_interrupt();

9 enable_interrupt(); 7 }

10 }

Data Type definition

Why need these two statements?
typedef int semaphore;

Disabling interrupts may sacrifice
concurrency, so it is essential to keep the

] critical section as short as possible
Section Entry: down()

1 void down(semaphore *s) { : A

= while (*s ==0) { 1 void up(semaphore *s) {
& enable_interrupt(); 2 disable_interrupt();
5 special_sleep(); 3 if (*s ==0)

6 disable_interrupt(); 4 special_wakeup();

v } 5 *s = *s + 15

e *s = *s - 15 6 enable_interrupt();

9 enable_interrupt(); 7 }
10 }

SRR Suppose that process 1234 is willing to access
Process 1234 the shared resource (enter its critical section),

but no resource is available
down(X)

Section Entry: down()

void down(semaphore *s) { /
disable_interrupt(); Semaphore X
while (*¥s == @) { Value=0
enable_interrupt();
disable_interrupt();
}

¥s = *g - 1; Waiting List
enable_interrupt();

1
2
3
4
5
6
7
8
9
(%)

=

< > < P A=Z> 4 _»

Process 1357 Process 1234 Process 2468

up(X)

Section Exit: up()

void up(semaphore *s) {

disable_interrupt();

if (*s 0
special_wakeup();

*s = *s + 1;
enable_interrupt();

Semaphore X

Waiting List

< [P A=Z> 4 _»

B ————— P —

Process 1234 Process 2468

do\,mOQ down (X)

Note that it is impossible for two
blocked processes to get out of the
down () simultaneously.

Section Entry: down()

void down(semaphore *s) {
disable_interrupt();
L while (*s == @) {

. enable_interrupt();
Only one process can invoke @ special_sleep();

disable_interrupt() disable_interrupt();
}

Or?ly one procgss can manipulate *s = *s - 1;]
this shared variable

enable_interrupt();

S P

Process 1234 Process 2468

Note that it is impossible for two
processes to get out of the down ()
simultaneously.

Why?
Whether which process can get out

of down() is the business of the
scheduler.

do\,mOQ down (X)

=

Section Entry: down()

void down(semaphore *s) {
disable_interrupt();
while (*s == 0) {

enable_interrupt();
special_sleep();
disable_interrupt();

}
*g = *g - 1;
enable_interrupt();

©QUVWoONOGOOUA_WNLER

-

* Add them together...

Either one of the processes can
enter the critical section when
the first process calls “up(s)”.

s=1 /
/

g s=1 /

I

1 while(TRUE) {

2 down(s);

3 critical_section();
4 up(s);
5 1}

* More on semaphore...it demonstrations an
important kind of operations — atomic operations.

Definition of atomic operation

- Either none of the instructions of an atomic operation were completed, or
- All instructions of an atomic operation are completed.

* In other words, the entire up() and down() are
indivisible.

— If it returns, the change must have been made;
— If it is aborted, no change would be made.

* What happened is just the implementation of
mutual exclusion (section entry and section exit).

Comments

Time consuming for multiprocessor systems, sacrifices

terrupts
concurrency.

Strict alternation Not a good one, busy waiting & violating one mutual
exclusion requirement.

Busy waiting & has a potential “priority inversion

Peterson’s solution \
problem”.

Busy waiting, often relies on hardware instructions.

=
©n
Q
=X
=
oq
=

Semaphore BEST CHOICE.

Story so far...

* Cooperating processes
— IPC mechanisms (shared memory, pipes, FIFOs, sockets)
— Race condition

e Synchronization

— Mutual exclusion
* Critical section problem

* Disabling interrupts, strict alternation, Peterson’s solution,
mutex lock, semaphore

* What is next?
— How to use semaphore to solve classic IPC problems
— Deadlock

75

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ch5
Process Communication & Synchronization
-Part 3

* For shared memory and files, ___ B
concurrent access may vyield Process Process
unpredictable outcomes

— Race condition (" read()) (write())

* To avoid race condition, mutual
exclusion must be guaranteed
— Critical section

— Implementations (entry/exit) Shared objects
* Hardware instructions
* Disabling interrupts
* Strict alternation
* Peterson’s solution
* Mutex lock
e Semaphore

Semaphore Usage

* Semaphore can be used for
— Mutual exclusion (binary semaphore)

— Process synchronization (counting semaphore may be
needed)

* How to do process synchronization w/ semaphore?
— Mutual exclusion + coordination (multiple semaphores)

— Careless design may lead to other issues
* Deadlock

Concept

Necessary conditions
Characterization
Solutions

ooon

Producer-consumer problem
Dining philosopher problem
Reader-writer problem

O
O
m]

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem

- Reader-writer problem

Let’s teach them
not to fi ght

« Problems when using semaphore

Process PO Process P1
Critical Critical
Section Section Deadlock
up(X) up(Y)
up(Y) up(X)

Scenario: PO must wait until P1 executes up(Y), P1
must wait until PO executes up (X)

Deadlock Requirements

* Requirement #1: Mutual Exclusion.

— Only one process at a time can use a resource

* Requirement #2. Hold and wait.

— A process must be holding at least one resource and
waiting to acquire additional resources held by other
processes

Deadlock Requirements

* Requirement #3: No preemption.

— A resource can be released only voluntarily by the
process holding it after that process has completed its
task

* Requirement #4. Circular wait.

— There exists a set {P,, P,, ..., P,} of waiting processes such
that P, waits for P, P, waits for P,, ..., P,_, waits for P,
P, waits for P,

* Deadlock characterization: Deadlocks can be
described using resource-allocation graph
— Set V is partitioned into two types:
* P={P,P,, ..., P} processes

* R={R,, R,, ..., R,}: all resource types (each type may have
multiple instances)

—Set E

* request edge —directed edge P,—> R;
R;

* assignment edge — directed edge R, > P,
R

How to Handle Deadlocks

* Detect deadlock and recover
— Case 1: Each resource has one instance

* Resource-allocation graph: detect the existence of a cycle
R, R, _

A A No deadlock
& @ é Contains a cycle
» = Case 1: only one
\V

No cycles

instance per resource
®

= X Case 2: several instances
R, . per resource type:

R, - possible deadlock

11

Deadlock

$ %

No deadlock

How to Handle Deadlocks

* Detect deadlock and recover

— Case 2: Each resource has multiple instances

* Matrix method: four data structures
— Existing (total) resources (m types): (Ey, E, ..., Em)

— Available resources: (44,45, ..., Am)

Ci1 = Cim (Cyj: # of type-j resources
— Allocation matrix: : - : held by process i)

Chr - Cam

(Rij: # of type-j resources

Ry =+ Rip)
. : requested by process i)

— Request matrix:

Ree - R
» Repeatedly check P; s.t. R; < A? (P; can be satisfied)
v Yes: A = A + C; (release resources)
v No: End (remaining processes are deadlocked)

13

How to Handle Deadlocks

* Prevent/avoid deadlocks: Banker’s algorithm
* ldea: check system state defined by (E, 4, C, R)

* Safe state: exist one running sequence to guarantee that all
processes’ demand can be satisfied

Existing resources
l—‘ Maximum demand |

o 3|9 A[3]|9| |A|3]|9 3|/9| |A|3

g 2[4 Blala| [B]o]- 24| [B|2]a

8 2|7 cl27 cl2|7 7|7 clo]|-
Available: 3 Available: 1 Available: 5 Available: 0 Available: 7

* Unsafe state: Not exist any sequence to guarantee the demand
— Itis not deadlock (it can still run for some time/processes may release

some resources)

14

* Prevent/avoid deadlocks: Banker’s algorithm

— For each request: safe (accept), unsafe (reject)

B

r

Existing resources |

| Maximum demand

6

5

S$9SS9204d
O|® >

1
0
2

4

D

4

7

Available: 3

Initial state

B requests one
resource

C|2
D| 4|7

-hl

Available: 2

Safe state

B requests
one resource

Running order: CD B A

c(2(4
D| 4|7

Available: 1

Unsafe state

The algorithm can also be extended to the case of multiple
resources, but it needs to know the demand

How to Handle Deadlocks

* Ignore the problem and pretend that deadlocks
never occur (stop functioning and restart manually)
— BE R (REEHRAED
— Used by most operating systems, including UNIX and
windows

— Deadlocks occur infrequently, avoiding/detecting it is
expensive

¢ A deadlock-free solution does not eliminate starvation

16

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem

- Reader-writer problem

Let’s teach them
not to fi ght

* All the IPC classical problems use semaphores to
fulfill the synchronization requirements.

T

Producer-
Consumer Two classes of processes: producer and consumer; FIFO buffer,
At least one producer and one consumer. such as pipe.
Problem
Dinin .
Philosogh They are all running the same program; Cross-road
phy At least two processes. traffic control.

Problem

Two classes of processes: reader and writer.
No limit on the number of the processes of each Database.
class.

Reader-Writer
Problem

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem

- Reader-writer problem

Let’s teach them
not to fi ght

* Also known as the bounded-buffer problem.

AL GELES -t is a shared object;
buffer -Its size is bounded, say N slots.
-It is a queue (imagine that it is an array implementation of queue).

INOGLITLT A -It produces a unit of data, and
process -writes that a piece of data to the tail of the buffer at one time.

AL -1t removes a unit of data from the head of the bounded buffer at
process one time.

/

Producer-consumer problem — recall

When the producer wants to
(a) put a new item in the buffer, but
(b) the buffer is already full...

Producer-
consumer
requirement #1

Then,

(1) The producer should be suspended, and

(2) The consumer should wake the producer up after she has
dequeued an item.

When the consumer wants to

(a) consumes an item from the buffer, but
(b) the buffer is empty...

Producer-

consumer

i’ Then,
requirement #2

(1) The consumer should be suspended, and
(2) The producer should wake the consumer up after she has
enqueued an item.

21

Producer-consumer problem

* Pipe is working fine. Is it enough?

— What if we cannot use pipes?

* Say, there are 2 producers and 2 consumers without any
parent-child relationships?

— Then, the kernel can’t protect you with a pipe.

* In the following, we revisit the producer-consumer
problem with the use of shared objects and
semaphores, instead of pipe.

22

Design — Semaphores

e ISSUE #1: Mutual Exclusion.

Solution: one binary semaphore (mutex)

» ISSUE #2: Synchronization (coordination).

— Remember the two requirements:
* |Insert an item when it is not FULL
¢ Consume an item when it is not EMPTY

— Can we use a binary semaphore?

Solution: two counting semaphores (full & empty)

23

Note

The functions “insert_item()” and
“remove_item()” are accessing the bounded
buffer (codes in critical section).

The size of the bounded buffer is “N”.

1 void producer(void) { 1 void consumer(void) {

2 int item; 2 int item;

3 3

4 while(TRUE) { 4 while(TRUE) {
_ 7 item = remove_item();

8 insert_item(item); 8

9 9

10 10 consume_item(item);
11 } 11 }

12 } 12 }

Note

Mutual exclusion requirement

Synchronization requirement

Shared object

#tdefine N 100
typedef int semaphore;

Producer function

void producer(void) {
int item;

while(TRUE) {
item = produce_item();

insert_item(item);

b wNER

8
9

10

11 }

12 }

semaphore mutex = 1;
semaphore empty = N;
semaphore full = @;

Consumer Function

1 void consumer(void) {
2 int item;

3

4 while(TRUE) {

7 item = remove_item();
8
9
10 consume_item(item);
11 }
12 }

Why we need three semaphores, “empty”, Shared object
“full”, “mutex”?

#tdefine N 100
typedef int semaphore;

semaphore mutex = 1;
semaphore empty = N;
semaphore full = @;

1 void producer(void) { 1 void consumer(void) {

2 int item; 2 int item;

3 3

4 while(TRUE) { 4 while(TRUE) {
_ 7 item = remove_item();

8 insert_item(item); 8

9 9

10 10 consume_item(item);

11 } 11 }

12 } 12 }

Why we need three semaphores, “empty”, Shared object
“full”, “mutex”?

#tdefine N 100

typedef int semaphore;
mutex: semaphore mutex - 15

What is its purpose? semaphore empty = N;
Why is the initial value of mutex 1? semaphore full = @;

1 void producer(void) { 1 void consumer(void) {

2 int item; 2 int item;

3 3

4 while(TRUE) { 4 while(TRUE) {

5 item = produce_item(); 5

6 6 down (&mutex) ;.

7 _ 7 item = remove_item();
8 insert_item(item); 8 _

5 up(amutex); 5

10 10 consume_item(item);
11 11 }

12 } 12 }

Producer-consumer problem — Understanding

“full”, “mutex”?

mutex:
what is its purpose?

Why we need three semaphores, “empty”,

Why is the initial value of mutex 1? semaphore full

Shared object

#tdefine N 100
typedef int semaphore;

semaphore mutex = 1;
semaphore empty = Nj
= 0;

1 void producer(void) {

2 int item;

3

4 while(TRUE) {

5 item = produce_item();
6

7 down(&mutex);

8 insert_item(item);
9 up(&mutex);
10
11 }
12 }

The “mutex” stands for mutual exclusion.
-down() and up() statements are the
entry and the exit of the critical section,

respectively.

What is the meaning of the initial value 1?

28

Why we need three semaphores, “empty”, Shared object
“full”, “mutex”?

#tdefine N 100

typedef int semaphore;
How about “full” and “empty”? szmapho,.e e o Sy

1 void producer(void) { 1 void consumer(void) {

2 int item; 2 int item;

3 3

4 while(TRUE) { 4 while(TRUE) {

5 item = produce_item(); 5 ‘down(&full);

6 ‘down(&empty); 6 down(&mutex);

7 down(&mutex); 7 item = remove_item();
8 insert_item(item); 8 up(&nutex);

9 up(&mutex) ; 9 ‘up(gempty);

10 ‘up(&Ffull); 10 consume_item(item);
11 11 }

12 } 12 }

Producer-consumer problem — Understanding

* The two variables are not for mutual exclusion, but
for process synchronization.

— “Process synchronization” means to coordinate the set
of processes so as to produce meaningful output.

1 void producer(void) { 1 void consumer(void) {

2 int item; 2 int item;

3 3

4 while(TRUE) { 4 while(TRUE) {

5 item = produce_item(); 5 down (&full);

6 down(&empty); 6 down (&nutex) ;

7 down (&nutex) ; 7 item = remove_item();
8 insert_item(item); 8 up(&nutex);

9 up(&nutex); 9 up(&empty);
10 up(&full); 10 consume_item(item);
11 } 11 }
12 } 12 }

30

Producer-consumer problem — Understanding

For “empty”, #define N 100
typedef int semaphore;

- Its initial value is N; semaphore mutex = 1;

- It decrements by 1 in each iteration. semaphore empty = N;
- When it reaches 0, the producers sleeps. semaphore full = @;
So, does it sound like one of the requirements? The consumer wakes the producer

up when it finds “empty” is 0.

1 void producer(void) { 1 void consumer(void) {

2 int item; 2 int item;

3 3

4 while(TRUE) { 4 while(TRUE) {

5 item = produce_item(); 5 down (&full);

6 down(&empty); <€ 6 down (&nutex);

7 down (&nutex) ; 7 item = remove_item();
8 insert_item(item); 8 up(&nutex);

9 up(&nutex); 9 up(&empty); &

10 up(&full); 10 consume_item(item);
11 } 11 }

12 } 12 }

* Semaphore can be more than mutual exclusion!

It represents the number of empty slots.
It represents the number of occupied slots.

Producer function Consumer Function

1 void producer(void) { 1 void consumer(void) {

2 int item; 2 int item;

3 3

4 while(TRUE) { 4 while(TRUE) {

5 item = produce_item(); 5 ‘down(&full);

6 ‘down(&empty); 6 down(&mutex);

7 down(&mutex); 7 item = remove_item();
8 insert_item(item); 8 up(&nutex);

9 up(&mutex) ; 9 ‘up(gempty);

10 ‘up(&Ffull); 10 consume_item(item);

Question. Shared object
Can we swap Lines 6 & 7 of the producer?

#tdefine N 100
typedef int semaphore;

semaphore mutex = 1;
Let us simulate what will happen with the semaphore empty = N;
modified code! semaphore full = 0;
1 void producer(void) { 1 void consumer(void) {
2 int item; 2 int item;
3 3
4 while(TRUE) { 4 while(TRUE) {
5 item = produce_item(); 5 down (&full);
6 down (&nutex);
7 item = remove_item();
8 insert_item(item); 8 up(&nutex);
9 up(&mnutex); 9 up(&empty);
10 up(&full); 10 consume_item(item);

running until Line
Producer 8 |

10

Consumer

We are showing the value of the
semaphores before the producer is
suspended.

Producer function

void producer(void) {
int item;

while(TRUE) {
item = produce_item();

b wNER

8 insert_item(item);
9 up(&nutex);

10 up(&full);

11 }

12 }

Consumer Function

void consumer(void) {
int item;

while(TRUE) {
down (&full);
down (&nutex);
item = remove_item();
up(&nutex);
up(&empty);

10 consume_item(item);

VWoONGOOUVIAWNER

Producer running igtll Line | Line 4-7* sleep| because of
down (&nutex) ;
Consumer down (&empty) ;

mutex = © empty = @ full = N

1 void producer(void) { 1 void consumer(void) {
2 int item; 2 int item;
3 3
4 while(TRUE) { 4 while(TRUE) {
5 item = produce_item(); 5 down (&full);
m domgewtni ; e
7 item = remove_item();
8 insert_item(item); 8 up(&nutex);
9 up(&mnutex); 9 up(&empty);

10 up(&full); 10 consume_item(item);

running until Line | . . context
Producer 10 Line 4-7* | sleep sl
Consumer
mutex = @ empty = ©

Producer function

void producer(void) {
int item;

while(TRUE) {
item = produce_item();

b wNER

8 insert_item(item);
9 up(&nutex);

10 up(&full);

11 }

12 }

Consumer Function

void consumer(void) {
int item;

while(TRUE) {
down (&full);
down (&nutex);
item = remove_item();
up(&nutex);
up(&empty);

10 consume_item(item);

VWoONGOOUVIAWNER

* Deadlock happens when a circular wait appears

— The producer is waiting for the consumer to “up()” the
“empty” semaphore, and

— the consumer is waiting for the producer to “up()” the
“mutex” semaphore.

I’m waiting for it.|

I’m holding it. | -

Producer

- I’m holding it (because I’ve

I’m waiting for it. | a chance to “up” it)

Producer-consumer problem

e Deadlock happens when a circular wait appears

— The producer is waiting for the consumer to “up()” the
“empty” semaphore, and

— the consumer is waiting for the producer to “up()” the
“mutex” semaphore.

* No progress could be made by all processes + All
processes are blocked.

— Implication: careless implementation of the producer-
consumer solution can be disastrous.

38

* The problem can be divided into two sub-problems.
— Mutual exclusion.
* The buffer is a shared object. Mutual exclusion is needed.

— Synchronization.
* Because the buffer’s size is bounded, coordination is needed.

Mutual Exclusion

Summary on producer-consumer problem

* How to guarantee mutual exclusion?

— A binary semaphore is used as the entry and the exit of
the critical sections.

* How to achieve synchronization?

— Two semaphores are used as counters to monitor the
status of the buffer.

— Two semaphores are needed because the two
suspension conditions are different.

40

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them
not to fi ght

Dining philosopher — introduction

* 5 philosophers, 5 plates of spaghetti, and
5 chopsticks.

* The jobs of each philosopher are L
— to think and #\O

— to eat: They need exactly two chopsticks in—
order to eat the spaghetti.

e Question: how to construct a
synchronization protocol such that

— they will not result in any deadlocking
scenarios, and

— they will not be starved to death

42

Philosophers

/

Chopsticks

Spaghetti

Process

Consider to have
infinite supply.

The chopsticks are arranged in Philosopher i needs
the following manner. I Chopsticks i and ((i+1) % N);

Philosopher 0

Philosopher 3 Philosopher 2

Thinking or

P waiting.

Philosopher 0 Eating.

Philosopher 4

S

Philosopher 3 Philosopher 2

é Thinking or
waiting.
Two guys cannot share >~

the same chopstick. Philosopher 0 ‘ Eating.

Philosopher 4

X

CHopstick 4

X

Philosopher 3 Philosopher 2

Dining philosopher — requirement #1

e Mutual exclusion

— What if there is no mutual exclusion?

* Then: while you’re eating, the two men besides you will and
must steal all your chopsticks!

* Let’s proposal the following solution:

— When you are hungry, you have to check if anyone is
using the chopstick that you need.

— If yes, you have to wait.
— If no, seize both chopsticks.
— After eating, put down all your chopsticks.

47

A quick question: what should be
Shared object initial values?

void philosopher(int i) {

1
. 2 while (TRUE) {
Helper Functions 3 think();

down (&chop[i]);
}

. . Critical
void put(int i) { Section 6 eat();
up(&chop[i]);

} put(i);
put((i+l) % N);

t#tdefine N 5
semaphore chop[N];

7

8

9 }
10 }

Final Destination: Deadlock!

1 void philosopher(int i) {
2 while (TRUE) {
3 think();
6 eat();
7 put(i);
8 put((i+l) % N);
> 9 }
10 }

Dining philosopher — requirement #2

* Synchronization

— Should avoid any potential deadlocking execution
order.

* How about the following suggestions:
— First, a philosopher takes a chopstick.

— If a philosopher finds that he cannot take the second
one, then he should put down the first chopstick.

— Then, the philosopher goes to sleep for a while.

— Again, the philosopher tries to get both chopsticks until
both ones are seized.

50

The code: meeting requirement #2?

1 void philosopher(int i) { 1 void take(int i) {
2 while (TRUE) { 2 while(TRUE) {
3 think(); 3 down(&chop[i]);
4 if (isUsed((i+1)%N)) {
5 eat(); 5 up(&chop[i]);
6 up(&chop[il); 6 sleep(1);
7 up(&chop[(i+1)%N)1); 7
8 } 8 else {
9} 9 down (&chop[(i+1)%N]);
10 break;
11 }
12
13 }

Dining philosopher — meeting requirement #27?

Assume N = 3 (because the
space is limited)

Potential Problem: Philosophers are all busy
but no progress were made!

void take(int i) {
while(TRUE) {
down (&chop[i]);
if (isUsed((i+1)%N)) {
up(&chop[i]);
sleep(1);

else {
down (&chop[(i+1)%N]);
10 break;
11 }
12 }
13 }

VoONOGOUAWNER

1 void philosopher(int i) {
2 while (TRUE) {

3 think();

4 take(i);

5 eat();
6
7

8
9

up(&chop[i]);
up(&chop[(i+1)%N)]);

52

Dining philosopher — before the final solution.

* Before we present the final solution, let’s see what
are the problems that we have.

Model a chopstick as a semaphore is intuitive, but is not working.

The problem is that we are afraid to “down()”, as that may lead to a deadlock.

Using sleep() to avoid deadlock is effective, yet bringing another problem.

We can always create an execution order that keeps all the philosophers busy, but
without useful output.

53

Philosopher 0
EATING

e —

Idea: Philosopher 1
CAN'T EAT

e —

Philosopher 4
CAN’T EAT

- The chopsticks are useless in the model!

- Need to guarantee: when “Philosopher x” is

eating, the left and the right of “Philosoper x”
cannot eat!

Philosopher 3 Philosopher 2
CAN EAT CAN EAT

Dining philosopher — the final solution.

#define N 5 1 void philosopher(int i) {
#define LEFT ((i+N-1) % N) 2 think();
#define RIGHT ((i+1) % N) 3 take(i);
a4 eat();

int state[N]; 5 put(i);

semaphore mutex = 1; 6 }

semaphore s[N];

1 void take(int i) { 1 void put(int i) {

2 down (&mutex); 2 down (&mutex);

3 state[i] = HUNGRY; 3 state[i] = THINKING;
4 test(i); 4 test(LEFT);

5 up(&mutex); 5 test(RIGHT);

6 down(&s[i]); 6 up(&nutex);

7 } 7 }

1 void test(int i) {

2

3 state[i] = EATING;
4 up(&s[i]);

5 }

6 }

Extremely important helper function

| will explain the
code later.

if(state[i] == HUNGRY && state[LEFT] != EATING & state[RIGHT] != EATING) {

55

Shared object

#define N 5

Going “left” and “right” in a

#define LEFT ((i+N-1) % N)<€———| circular manner.

#define RIGHT ((i+1) % N)

int state[N];<

semaphore mutex = 1; €= The states of the philosophers, including
semaphore s[N]; “EATING”, “THINKING”, and “HUNGRY”.

Remember, this is shared array.

To guarantee mutual exclusive access to
the “state[N]” array.

Guess: . o .
To fulfill the synchronization requirement.

What is the meaning

of the semaphore Question. What are the initial values of the
S[N]? “s[N]” array?

Shared object

#define N 5
#define LEFT ((i+N-1) % N)
#define RIGHT ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

[
AN

void take(int i) { Question. What are they doing?

1
2 down (&mutex) ; €

3 state i| = HUNGRY;

5 up(&mutex); <€ - :
A down(&s[i]); € (If both chopsticks are available,
7

} LI eat. Else, | sleep.

ixtremely important helper function

1 void test(int i) {
2 if(state[i] == HUNGRY [8&& (state[LEFT] != EATING)&& state[RIGHT] != EATING) {
3 state[i] = EATING
4 up(&s[il);
5
6

}

[If they are eating, | can’t be eating.]

r

.

Try to let the one on the left of

the caller to eat.

r

.

Try to let the one on the right

of the caller to eat.

1
2
3
4
5
6

void test(int i) {

if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;

Section exit

void put(int i) {
down (&mutex);
state[i] = THINKING;

1
2
3

6
7}

Extremely important helper function

up(&nutex);

up(&s[i]); <_[Wake up the one who can eat!]

}

An illustration: How can
Philosopher 1 start eating?

Philosopher 4
THINKING

Philosopher 0
THINKING

Note: no chopsticks objects
will be shown in this
illustration because we
don’t need them now.

Philosopher 3 Philosopher 2
THINKING THINKING

Philosopher 1

THINKING

Section entry

1 void take(int i) {

2 down (&nutex) ; a

3 state[i] = HUNGRY; [I)8]
4 test(i);

5 up(&mutex); S

6 N down(&s[i]); Philosopher 0

7

HUNGRY

To RIGHT:
are you “EATING”?

To LEFT:
are you “EATING”?

Philosopher 4 Philosopher 1

THINKING

THINKING

Philosopher 3 Philosopher 2
THINKING THINKING

Section entry

1 void take(int i) {

2 down (&nutex) ; a

3 state[i] = HUNGRY; [I)8]
4 test(i);

5 up(&mutex); S

6 N down(&s[i]); Philosopher 0

7

HUNGRY

To RIGHT:
are you “EATING”?

/—_\,,
Philosopher 1

To LEFT:
are you “EATING”?

Philosopher 4
THINKING

THINKING

Calling take().
but, it is blocked.

Why?

Philosopher 3 Philosopher 2
THINKING THINKING

Section entry

1 void take(int i) {

2 down (&nutex) ;

3 state[i] = HUNGRY;
4 test(i);
5
6
7

up(&mutex); .
down(&s[i]); Philosopher 0
EATING

-
To LEFT:
are you “EATING”?

|

/_\
Philosopher 1

Philosopher 4 HUNGRY

Now, it is
THINKING

freed from
blocking.

To RIGHT:
are you
“EATING”?

Philosopher 3 Philosopher 2
THINKING THINKING

Section entry

1 void take(int i) {

2 down (&nutex) ;

3 state[i] = HUNGRY;
4 test(i);

5 up(&mutex); - .

6 down(&s[i]); Philosopher 0
7 EATING

}

/—_\,,
Philosopher 1
HUNGRY

Philosopher 4
THINKING

Blocked;
because of
down(&s[1]);

To LEFT:

To RIGHT: ?,EiT)I’:g,,)
are you)

“EATING”? e
Philosopher 3 Philosopher 2
HUNGRY THINKING

Section entry

void take(int i) {
down (&nutex) ;
state[i] = HUNGRY;
test(i);
up(&mutex);
down(&s[i]);

Philosopher 4
THINKING

Philosopher 3
EATING

Philosopher 0
EATING

D —

Philosopher 1
HUNGRY

Blocked;
because of
down(&s[1]);

Philosopher 2
THINKING

Section exit . .
An illustration: How can

1 void put(int i - .
5 vor ,,EL‘,,,E;,’;ut:,)()f Philosopher 1 start eating?
3 state[i] = THINKING;
4 test(LEFT); - [Call put();]
5 test(RIGHT); 2)
: up(&mutex); Philosopher 0
} THINKING To RIGHT:
are you “HUNGRY”?

To LEFT:
are you “HUNGRY”’?

/—_\,,
Philosopher 1
HUNGRY

Philosopher 4
THINKING

Blocked;
because of
down(&s[1]);

e

Philosopher 3 Philosopher 2
EATING THINKING

1 void test(int i) {
2 if(state[i] == HUNGRY && state[LEFT] != EATING 8&& state[RIGHT] != EATING) {
1 void put(int i) { 3 state[i] = EATING;
2 down (&mutex); i up(&s[il);
3 state[i] = THINKING; || 2 ; ¥
4 test(LEFT);
5 test(RIGHT); sl .
:) up(&mutex); Philosopher 0

THINKING

To LEFT:
are you “EATING”?

[Call put();]
o - Blocked;
Philosopher 4 because of
THINKING down(&s[1]);

To RIGHT:
are you “EATING”?

)

D ——

Philosopher 3 Philosopher 2
EATING THINKING

1 void test(int i) {
2 if(state[i] == HUNGRY && state[LEFT] != EATING 8&& state[RIGHT] != EATING) {
1 void put(int i) { 3 state[i] = EATING;
2 down (&mutex); i up(&s[il);
3 state[i] = THINKING; || 2 ; ¥
4 test(LEFT);
5 test(RIGHT); sl .
:) up(&mutex); Philosopher 0

THINKING

Call put();

— . Blocked;
Philosopher 4 because of
THINKING down(&s[1]);

Remove your
blocked state by
calling up(&s[1]);

D ——

Philosopher 3 Philosopher 2
EATING THINKING

Section entry

1 void take(int i) {

2 down (&nutex) ;

3 state[i] = HUNGRY;
4 test(i);

5 up(&mutex);

6 down(&s[i]); Philosopher 0
7

THINKING

Philosopher 1
EATING

Eventually...

Philosopher 4

THINKING

Philosopher 3 Philosopher 2
EATING THINKING

* What is the shared object in the final solution?
— How to guarantee the mutual exclusion

1
2
3
4
5
6
7

Section entry

void take(int i) {

}

down (&mutex);
state[i] = HUNGRY;
test(i);
up(&mutex);
down(&s[i]);

Section exit

1 void put(int i) {

2 down (&mnutex);

3 state[i] = THINKING;
4 test(LEFT);

5 test(RIGHT);

6 up(&nutex);

7 }

* Think:
— Why the semaphore s[N] is needed
— How to set its initial value

Section entry

1 void take(int i) {

2 down (&mutex);

3 state[i] = HUNGRY;
4 test(i);

5 up(&mutex);

6 down(&s[i]);

7}

Extremely important helper function

1 void test(int i) {

2 if(state[i] == HUNGRY && state[LEFT] != EATING &% state[RIGHT] != EATING) {
3 state[i] = EATING;

4 up(&s[il);
5
6

}
}

* Solution to IPC problem can be difficult to
comprehend.
— Usually, intuitive methods failed.

— Depending on time, e.g., sleep(1), does not guarantee a
useful solution.

* As a matter of fact, dining philosopher is not
restricted to 5 philosophers.

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem

- Reader-writer problem

Let’s teach them
not to fi ght

* |t is a concurrent database problem.

' Reader
Reader
S

Readers are
allowed to read

the content of the
database concurrently.

* |t is a concurrent database problem.

: Reader
Reader
/

A writer needs to lock
the database exclusively
so that the readers would
not retrieve inconsistent
data.

* |t is a concurrent database problem.

S
o

In other words, a writer

is forbidden to write any
data before the readers

have finished reading.

* |t is a concurrent database problem.

Of course, a writer will
also block the access from
other writers.

Reader-writer problem — subproblems

* A mutual exclusion problem.
— The database is a shared object.

* A synchronization problem.

— Rule 1. While a reader is reading, other readers is allowed to
read the database.

— Rule 2. While a reader is reading, no writers is allowed to
write to the database.

— Rule 3. While a writer is writing, no writers and readers are
allowed to access the database.

* A concurrency problem.

— Simultaneous access for multiple readers is allowed and
must be guaranteed.

77

e Mutual exclusion: relate the readers and the
writers to one semaphore.

— This guarantees no readers and writers could proceed to
their critical sections at the same time.

— This also guarantees no two writers could proceed to
their critical sections at the same time.

Reader — Semaphore
database

* Readers’ concurrency

— The first reader coming to the system “down()” the
“database” semaphore.

— The last reader leaving the system “up()” the
“database” semaphore.

Shared object
reader counter

Reader

Shared object Reader Function

semaphore db = 1; 1 void reader(void) {
semaphore mutex = 1; 2 while(TRUE) {

int read_count

Writer function

1 void writer(void) { Critical Section | read_database();

2 while(TRUE) {

down (&mutex);
read_count--;
if(read_count == 0)

Section Exit

write_database(); up(&db) ;
up(&mutex);
Section Exit up(&db); process_data();
7 } 15 }

8 } 16 }

Shared object

Guarantee the mutual exclusion

semaphore db =1; € between the readers and the writers.
semaphore mutex = 1; €
int read_count = 9; €——

Protect the “read_count” variable.

Keep track of the number of readers in
the system.

Shared object

semaphore db = 1;
semaphore mutex = 1;
int read_count = 0;

Writer function

1 void writer(void) {
2 while(TRUE) {

The writer is allowed to enter its
critical section when no other
write_database(); process is in its critical section
(protected by the “db” semaphore)

Critical Section

Section Exit up(&db);

Shared object Reader Function

semaphore db 1 void reader(void) {
semaphore mutex 1; while(TRUE) {

int read_count = 0;

4 N
The first reader “down()” the “db”
semaphore so that no writers would be

allowed to enter their critical sections.

|) read_database();
- ~N 9 down (&mutex);
The last reader “up()” the “db” semaphore Lo [‘ead_count- i
so as to let the writers to enter their critical 1 e
section. 12 e
X) 13 up(&mutex);
14 process_data();
15 }
16 }

Reader-writer problem — summary

* This solution does not limit the number of readers
and the writers admitted to the system.

— A realistic database needs this property.

* This solution gives readers a higher priority over the
writers.

— Whenever there are readers, writers must be blocked,
not the other way round.

 What if a writer should be given a higher priority?

84

Summary on IPC problems

* The problems have the following properties in
common:
— Multiple processes;
— Shared and limited resources;

— Processes have to be synchronized in order to generate
useful output;

* The synchronization algorithms have the following
requirements in common:
— Guarantee mutual exclusion;
— Uphold the correct synchronization among processes;
— Deadlock-free.

85

Cooperating Processes Shared memory, Pipes, Sockets

Define critical section

T [Howtomplement

Mutual Exclusion
O 4 requirements & 5 schemes
O Semaphore

Deadlock O Producer-consumer problem
O Dining philosopher problem
O Reader-writer problem

Processes Communication

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ché6
Process Scheduling

Outline

Process Process

User Space

Process
Kernel Space

Scheduling

s Scheduler
‘_Jv\v

Process
\ e lifecycle

Process Communication &

Synchronization

Process Scheduling < ;

Context-

switching

* Process execution

— Consists of a cycle of CPU execution and 1/0 wait
— CPU burst + 1/0 burst

)
=}

N
o

n
o

CPU burst duration

o
S

frequency

®
o

[
=}

[
_—
/

n
o

0 8 16 24 32 40
burst duration (milliseconds)

Question. How to improve CPU
utilization (CPU is much faster than 1/0)? | Multiprogramming
Question. How to improve system Multitasking

responsiveness (interactive applications)?

- J

-
A system may contain many processes which are at different

L states (ready for running, waiting for 1/0))

(Scheduling is required because the number of computing)

_resource — the CPU —is limited.)

Topics
- Process lifecycle
- Process scheduling
- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

Topics
- Process lifecycle
- Process scheduling
- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

Programmer’s point of view...

* This is how a fresh programmer looks at a process’
life cycle.

int main(void) { —(3-)' =~
int x = 1;
getchar(); Termination
return x; \\
} \ \ (1)
N
\\ \

2 ~

Y
Waiting
for results
Process

States

Kernel’s point of view...

New
(Just fork()-ed)
—
Ready
J—

Waiting
(blocked)

Terminated
(Zombie)

Process
States

Kernel’s point of view...

The birth of a process.

Except the first process “init”,
every process is created using
fork().

Terminated

Ready

\ /

Waiting
(blocked)

Process
States

Kernel’s point of view...

ﬁhe process is ready. \
It means it is ready to run but is not

running.

A process may become “ready” after...
- itis just created by fork();

- it has been running on the CPU

—_ for some time and the OS chooses
- another process to run;

\ - returning from blocked states.

All ready processes are kept on a list
called ready queue
queue header PCB; PCB, -

ready [_head 4 - Process

queve [il registers registers States
c 5
3 o
. .

10

Kernel’s point of view...

The process is running.

The OS chooses this process to be
running on the CPU and changes
its state to “Running”.

Terminated

ﬁ

P R—

\ /
[

Ready

Process
States

11

Kernel’s point of view...

The process is blocked.

While the process is running, it
may be waiting for something
and becomes blocked voluntarily.

Terminated

Ready

m Process

States

12

Kernel’s point of view...

ﬁxample. Reading a file.

Sometimes, the process has to wait for the response from the device and,
therefore, it is blocked.

Nevertheless, this blocking state is interruptible. E.g., “Ctrl + C” can get
the process out of the waiting state (but goes to termination state

Y

W

\instead).
m Process

States

13

Kernel’s point of view...

Sometimes, a process needs to wait for a resource but it doesn’t want to
be disturbed while it is waiting. In other words, the process wants that
resource very much. Then, the process status is set to the uninterruptible
status.

Process
States

14

Kernel’s point of view...

Return back to ready.

When response arrives, the status of the process changes back to Ready.

from any one of the blocked states. _
D~ I

—

Ready

N/
=N

Process
States

15

Kernel’s point of view...

”

The process is going to die.

The process may
- choose to terminate itself; or
- force to be terminated.

Terminated

Process
States

16

What is scheduling?

So, what is process scheduling?

Mainly about how to make all the ready
processes become “Running”

This is the called short-term scheduling
or CPU scheduling.

17

Triggering Events

* When process scheduling happens:

A new process is When “fork()” is invoked and returns successfully.
created.

Then, whether the parent or the child is scheduled is up to the
scheduler’s decision.

is terminated.

AT G5 The CPU is freed. The scheduler should choose another process to run.

W ELCERNEN LR T The CPU is freed. The scheduler should choose another process to run.

1/0.

AVIEERIGIEEI The interrupt handling routine makes a scheduling request, if
waiting for 1/0. necessary.

18

Key Issues

Ready

Running

/4

Question #1: How to make a ready process
become running? (Note that the running
C] C] process may not terminate at that time)

Context switching

(guestion #2: How to decide which process should be running?

| Scheduling criteria & scheduling algorithms

(Question #3: How to design scheduling in a real/specific system?

(_Multiprocessor system, real-time system, algorithm evaluation

19

Topics
- Process lifecycle
- Process scheduling
- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

* Before we can jump into the process scheduling
topic, we have to understand what “context
switching” is.

@ Timer interrupt.

Hardware interrupt.

Running Waiting

Program counter

Other Register
values

System Memory

User-space
memory

Scheduler

sleep()

Kernel-space

Switching from one process to another.

But, before the scheduler can seize the control of the
CPU, a very important step has to be taken:

Backup all registers’ values.

The backup will be stored in the process structure

The context of a process

The union of the user-space
memory and the registers’
values of the process

O

Program counter

Other Register
values

System Memory

User-space
memory

g

| scheduter |
==
©

Kernel-space

23

Say, the scheduler decides to schedule another
process.

Then, the schedule has to load the context of the
new process into the main memory and into the
CPU.

We call the entire
. Other Register

context switching

System Memory

User-space
memory

&
ey

* However, context switching may be expensive...

— Even worse, the target process may be currently stored
in the hard disk.

* So, minimizing the number of context switching
may help boosting system performance.

CPU

Process A
(running)

Main@

Process D

Expensive |/O swap

Topics
- Process lifecycle
- Process scheduling
- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

Scheduling Criteria

* How to choose which algorithm to use in a
particular situation?

/

Preemptive
Nonpreemptive

/
Application

Multiprocessor
Real-time sys
\

Algorithm Properties

CPU utilization Throughput

Turnaround time Waiting time

Response time
\C J

Application requirements and algorithm

properties may vary significantly

27

Classes of process scheduling

* Non-preemptive scheduling.

When a process is chosen by the scheduler, the process would never
leave the scheduler until...
What is it?

-the process voluntarily waits for 1/0, or
-the process voluntarily releases the CPU, e.g., exit().

\LETRERE S If the process is purely CPU-bound, it will seize the CPU from the time it is

catch? chosen until it terminates.

Good for systems that emphasize the time in finishing tasks.
- Because the task is running without others’ interruption.
Cons Bad for nowadays systems in which user experience and multi-tasking
are the primary goals.

'Y canl Nowhere...but it could be found back in the mainframe computers in

find it? 1960s.

28

Classes of process scheduling

* Preemptive scheduling.

What is it?

What is the
catch?

Cons

Where can |

find it?

When a process is chosen by the scheduler, the process would never
leave the scheduler until...

-the process voluntarily waits for 1/0, or
-the process voluntarily releases the CPU, e.g., exit().
-particular kinds of interrupts and events are detected.

If that particular event is the periodic clock interrupt, then you can have
a time-sharing system.

Good for systems that emphasize interactiveness.
- Because every task will receive attentions from the CPU.

Bad for systems that emphasize the time in finishing tasks.

Everywhere! This is the design of nowadays systems.

29

In algorithm design:

What factors/performance measures
should be carefully considered?

/ Turnaround

time

Throughput
Ep Waiting

time

CPU
utilization Response

time /

/CPU utilization. \

We want to keep CPU as busy as possible.

Theoretically, can range from 0-100%, but in
real system, range from 40%-90%

Turnaround
/ time

Throughput

Q’Ie higher the better

Waiting

time

CPU
utilization

Response

time /

a4 N

Throughput.

Number of processes that are completed per
time unit

The higher the better

"l

Turnaround
/ time

Throughput

Waiting
time

CPU
utilization Response

time /

Ajrnaround time. \

Time to execute the process: interval from
the time of submission to the time of
completion (total running time + waiting
time+ doing 1/0)

Turnaround
/ time

Throughput

The lower the better

Waiting

time

CPU

utilization Response

time /

4 N

Waiting time.

The time spent waiting in the ready queue

The lower the better

"l

Turnaround
/ time

Throughput

Waiting
time

CPU
utilization Response

time /

/Response time. \

The time from the submission of a request
until the first response is produced (useful
measure for interactive systems)

The lower the better

"l

Turnaround
/ time

Throughput

Waiting
time

CPU

utilization Response

time /

e

Question:

Common
Can we optimize all the above

measures simultaneously?

\ Usually can not! / \

Policy

Big enforcement Big
conflict conflict

CPU-I/O
Balance

goal

Design
Tradeoff

Fairness

Little conflict

Topics
- Process lifecycle
- Process scheduling
- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

Scheduling algorithms

* Inputs to the algorithms.

4)

A set of
processes

For each
process...

=

It is interesting to note that
"~ this is a non-sense!

How can we know the
requirement of each task?

An offline scheduling algorithm assumes that you know all the
Online processes submitted to the system before hand. But, an online
VS scheduling algorithm does not have such an assumption.

Offline

Yet, every real scheduler has to work in an “online scenario”. So, we
have to think in an “online” way...

38

* Outputs of the algorithms.

. () I
Individual & average
turnaround time

_ Y,
4 N\
Schedulin
J Individual & average
order e .
waiting time
\\ J/
4 N\
Number of context

K switching /
L J

Algorithms Target System

First-come, first-served

or First-in, First-out No. Out-of-date
(FIFO)
Shortest-job-first (SJF) Can be both. Out-of-date
Round-robin (RR) Yes. Modern
Priority scheduling Yes. Modern

Priority scheduling

. . The real implementation!
with multiple queues. &

First-come, first-served scheduling

e Example 1.

Gantt Chart (G|
P1 P2 P3
RERRRRRRRRRRRRRRRRRRRRRE RN
e 2 4 6 8 1 1 1 1 1 2 2 2 2 2 3
@ 2 4 6 8 © 2 4 6 8 o

Waiting time: P1 = @; P2 = 23; P3 = 25; //' ~\
Average waiting time = (0+23+25)/3 = 16; Task | Arrival | CPU
Time Req.

P1 0 24

P2 1 3
Average turnaround time = (24+26+28)/3 = 26; P3 3 3

\ _nout_J)

41

Turnaround time: P1 = 24; P2 = 26; P3 = 28;

First-come, first-served scheduling

e Example 2.

Gantt Chart m

P3 P2 P1

o N —
NN —
BN —

[
1 1
6 8

Fre—

0
Waiting time: P1 = 4; P2 = 2; P3 = 9; / \\
Average waiting time = (4+2+0)/3 = 2; Task | Arrival | CPU
(which is 16 in the previous case) Time | Req.
P3 0 3

Turnaround time: P1 = 28; P2 = 5; P3 = 3; 2 1 S

. P1 2 24
Average turnaround time = (28+5+3)/3 = 12;
(which is 26 in the previous case)

Input order
\ changed

42

First-come, first-served scheduling

* Ashort summary:

— FIFO scheduling is sensitive to the input.

— The average waiting time is often long. Think about the
scenario (convoy effect):
* Someone is standing before you in the queue in KFC, and

* you find that he/she is ordering the bucket chicken meal (P1 in
example 1)!!1!1

* So, two people (P2 and P3) are unhappy while only P1 is happy.

— Can we do something about this?

43

Algorithms Target System

First-come, first-served

or First-in, First-out No. Out-of-date
(FIFO)
Shortest-job-first (SJF) Can be both. Out-of-date
Round-robin (RR) Yes. Modern
Priority scheduling Yes. Modern

Priority scheduling

. . The real implementation!
with multiple queues. &

,
Q0 2 4 6

[Not allow preemption

In this example, we use FIFO to break the tie.

P1 P3| P2

=16

Time

Non-preemptive SJF

P1 P3 P2 P4
0 2 4 6 8 1 1
0 4
Waiting time:
Pl =0; P2 =6; P3 =3; P4 = 7;
Average = (0 + 6 + 3 +7) / 4 = 4. Task | Arrival | CPU
Time Req.
P1 0 7
Turnaround time: P2 2 4
P1L = 7; P2 = 10; P3 = 4; P4 = 11; = 4 1
P4 5 4

Average = (7 + 10 + 4 + 11) / 4 = 8.

50

Preemptive SJF

Rules for preemptive scheduling
(for this example only)

-Preemption happens when a new process arrives at
the system.

-Then, the scheduler steps in and selects the next
task based on their remaining CPU requirements.

| Shortest-remaining-time-first J—

1 1
4 6
Task | Arrival CPU Req.
Time | Initial & Remain

P1 0 7 7
P2 2 4 4
P3 4 1 1
P4 5 4 4

51

P2 is selected!

P3 is selected!

P1 P2 (P3| P2 P4 P1

2

(2]

P1 P2 P3 P4

P1 P2 P3 P2 P4

Waiting time:
Pl =9; P2 =1; P3 = 0; P4 = 2;

Average = (9 +1 + 0 + 2) / 4 = 3.

Turnaround time:
P1 = 16; P2 = 5; P3 = 1; P4 = 6;

Average = (16 + 5+ 1 +6) / 4 = 7.

P1

P2

P3

P4

v b~ | N O

o N

oo |o o

AN

Non-preemptive SJF Preemptive SJF

Average waiting time 4 3 (smallest)

Average turnaround time 8 7 (smallest)

of context switching 3 (smallest) 5

The waiting time and the turnaround time decrease F
at the expense of the increased number of context - 5 4
switching.

P3 4 1

P4 5 4

Non-preemptive SJF Preemptive SJF

Average waiting time 4 3 (smallest)
Average turnaround time 8 7 (smallest)

of context switching 3 (smallest) 5

SJF is provably optimal in that it gives the minimum
average waiting time

Challenge: How to know the length of the next CPU

request?

P1 0 7
P2 2 4
P3 4 1
P4 5 4

Challenge: How to know the length of the next CPU
request?

Solution: Prediction (by expecting that the next CPU
burst will be similar in length to the previous ones)

General approach
exponential average

a1 =y + (1 — o)1y,

12 —
7 10 //

8 //
6 - 4

4

2

time —

CPU burst (t) 6 4 6 4 13 13 13

"guess" (t) 10 8 6 6 5 9 11 12

Predicted
value

Most recent information

Algorithms Target System

First-come, first-served

or First-in, First-out No. Out-of-date
(FIFO)
Shortest-job-first (SJF) Can be both. Out-of-date
Round-robin (RR) Yes. Modern
Priority scheduling Yes. Modern

Priority scheduling

. . The real implementation!
with multiple queues. &

Round-robin

e Round-Robin (RR) scheduling is preemptive.

— Every process is given a quantum, or the amount of time
allowed to execute.

— When the quantum of a process is used up (i.e., 0), the
process releases the CPU and this is the preemption.

— Then, the scheduler steps in and it chooses the next
process which has a non-zero quantum to run.

* Processes are running one-by-one, like a circular
queue.
— Designed specially for time-sharing systems

62

Rules for Round-Robin
(for this example only)

-The quantum of every process is fixed and is 2 units.

-The process queue is sorted according the processes’
arrival time, in an ascending order.
(This rule allows us to break tie.)

P1 0 7 7
P2 2 4 4
P3 4 1 1
P4 5 4 4

P1’s quantum is O;
P2 is selected!

P1’s & P2’s quanta are 0O;
P3 is selected!

P3

P1’s & P2’s quanta are 0O;
P4 is selected!

P1 P2 |P3| P4 |P1

(2] 2 4 6 8 , , 1 1

Now, recharge is needed.
P1is selected.

P3

P4 P1

6 8

P1’s quantum is O;
P2 is selected!

P1 P2 |P3| P4 P1 P2 | P4

(2] 2 4 6 8 , , 1 1

. P1’s quantum is O;
P4 is selected!

P1 P2 |P3| P4 P1 P2 P4 | P1

(2] 2 4 6 8 , , 1 1
2

. Now, recharge is needed.
P1 is selected.

P1 P2 |P3| P4 P1 P2 P4 PL | P1

(2] 2 4 6 8 , 1
2

. Now, recharge is needed.
P1 is selected.

P —
-

Round-robin

Average = (16 + 9 + 1 + 8) / 4 = 8.5

P1 P2 | P3| P4 P1 P2 P4 P1L | P1
0 2 4 6 8 1 1 1
0 2 4
Waiting time:
PlL =9; P2 =5; P3 =0; P4 = 4; /
Average = (9 + 5+ 0 +4) / 4 = 4.5 Task | Arrival | CPU Req.
Time | Initial & Remain
P1 0 7 0
Turnaround time: 2 2 9 ©
P3 4 1 0
P1 =16; P2 = 9; P3 = 1; P4 = 8; P4 5 4 0

)

73

Average waiting time 4 3 4.5 (largest)

Average turnaround

time 8 7 8.5 (largest)

of context switching 3 5 8 (largest)

The responsiveness of the processes is great under the RR algorithm. E.g., you
won’t feel a job is “frozen” because every job is on the CPU from time to time!

So, the RR algorithm gets all the bad! Why do we still need it?

Issue for Round-Robin

-How to set the size of the time quantum?
-Too large: FCFS

-Too small: frequent context switch

-In practice: 10-100ms

-A rule of thumb: 80% CPU burst should be shorter than the
time quantum

Observations on RR

* Modified versions of round-robin are implemented
in (nearly) every modern OS.
— Users run a lot of interactive jobs on modern OS-es.
— Users’ priority list:
* Number one - Responsiveness;
* Number two - Efficiency;

* In other words, “ordinary users” expect a fast GUI response
than an efficient scheduler running behind.

e With the round-robin deployed, the scheduling
looks like random.

— It also looks like “fair to all processes”.

76

Algorithms Target System

First-come, first-served

or First-in, First-out No. Out-of-date
(FIFO)
Shortest-job-first (SJF) Can be both. Out-of-date
Round-robin (RR) Yes. Modern
Priority scheduling Yes. Modern

Priority scheduling

. . The real implementation!
with multiple queues. &

Priority Scheduling

* Some basics:
— A task is given a priority (and is usually an integer).

— A scheduler selects the next process based on the
priority.
* A typical practice: the highest priority is always chosen.
— Special case: SJF, FCFS (equal priority)

* How to define priority

— Internally: time limits, memory requirements, number of
open files, CPU burst and /0 burst...

— Externally: process importance, paid funds...

78

Priority Scheduling

P2 P5 P1 P3 P4
) 2 4 6 8 1 1
0 4

Assumption:
-All arrive at time 0 . o — = Priority
-Low numbers represent high priority Burst

P1 7 3
Problem: Indefinite blocking or starvation P2 1 1

P3 2 4
Solution: Aging (gradually increase the priority of P4 1 5
waiting processes) P5 5 2

79

Algorithms Target System

First-come, first-served

or First-in, First-out No. Out-of-date
(FIFO)
Shortest-job-first (SJF) Can be both. Out-of-date
Round-robin (RR) Yes. Modern
Priority scheduling Yes. Modern

Priority scheduling

. . The real implementation!
with multiple queues. P

Multilevel queue scheduling

 Definitions.
— It is still a priority scheduler.
— But, at each priority class, different schedulers may be

deployed.

— Eg: Foreground processes and background processes
Priority class 5 Non-preemptive, FIFO Just an example.
Priority class 4 Non-preemptive, SJF

The processes are

Priority class 3 RR with quantum = 10 units. permanently assigned to
one queue

Fixed-priority preemptive
scheduling among queues

Priority class 1 RR with quantum = 40 units.

81

* Properties: process is assigned a fix priority when
they are submitted to the system.

Priority 4 AO—Q
oms > > D

e — E.g., using round-robin in each queue.

Multilevel queue scheduling— an example

* The highest priority class will be selected.
— To prevent high-priority tasks from running indefinitely.

— The tasks with a higher priority should be short-lived, but
important;

Priority class 4 @ -

Priority class 2 m

T R——— E.g., using round-robin in each queue.

Priority class 3 4©—© O O

83

Multilevel queue scheduling— an example

* Lower priority classes will be scheduled only when
the upper priority classes has no tasks.

Priority class 4

Priority class 3 @ O O
Priority class 2 —Q—Q—Q

Il e

e — E.g., using round-robin in each queue.

84

Multilevel queue scheduling— an example

* Of course, it is a good design to have a high-priority

task preempting a low-priority task.

(conditioned that the high-priority task is short-lived.)

Priority class 4
Priority class 3 m Q O
Priority class 2 m

Il e

T R——— E.g., using round-robin in each queue.

85

* Any problem?
— Fixed priority
— Indefinite blocking or starvation

Priority class 4 @

Priority class 2 m

Il e

T R——— E.g., using round-robin in each queue.

Multilevel feedback queue scheduling

* How to improve the previous scheme?

— Allows a process to move between queues (dynamic
priority).
— Why needed?

* Eg.: Separate processes according to their CPU bursts.

Priority class 5 Non-preemptive, FIFO Just an example.

Priority class 4 Non-preemptive, SJF

A process drops to a
lower priority class
after it has used up its
quantum and has the
quantum recharged.

Priority class 3 RR with quantum = 10 units. .

Priority class 1 RR with quantum = 40 units.

87

Multilevel feedback queue scheduling

* How to design (factors)?
— Number of queues
— Scheduling algorithm for each queue

— Method for determining when to upgrade/downgrade a
process

— Method for determining which queue a process will
enter

* Most general, but also most complex
— Can be configured to match a specific system

38

* Did we solve the conflict?

Big
conflict

Fairness

Policy
enforcement

Little conflict

Priority scheduler
guarantees this.

Big
conflict

CPU-1/0
Balance

Round-robin scheduler
guarantees this.

“Not to schedule blocked
process” guarantee this.

Multilevel feedback queue scheduling

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

90

- Applications/Scenarios
Multiple processors
Real-time systems
Example: Linux scheduler
Algorithm evaluation

Scheduling Issues with SMP

% memen

\ s ”
fast access & fast access
8sg

\% emen

SMP: Each processor may have its private
queue of ready processes

Scheduling between processors

Process migration: Invalidating the cache
of the first processor and repopulating
the cache of the second processor)

computer
Process migration is costly
|
| 1
Processor Affinity NUMA Load balancing

Attempt to keep a
process running on
the same processor

Soft/hard affinity

CPU scheduler and
memory-placement
algorithms work
together

Push migration: a specific task
periodically check the status & rebalance

Pull migration: an idle processor pulls a
waiting task from busy processor

No absolute rule concerning what policy is best

92

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

Real-time CPU Scheduling

PORR R o (‘) ’ Antilock brake system: Latency requirement: 3-5 ms
System

Hard real-time systems: A task must be served by its
deadline (otherwise, expired as no service at all)

Soft real-time systems: Critical processes will be given
preference over noncritical processes (no guarantee)

A

Responsiveness: Respond
immediately to a real-time
process as soon as it
requires the CPU

Support priority-based alg.
with preemption

Interrupt latency (minimize or bounded):

v’ Determining interrupt type and save the state of the
current process

v' Minimize the time interrupts may be disabled

Dispatch latency:

v Time required by dispatcher (preemption running
process and release resources of low-priority proc).

v Most effective way is to use preemptive kernel

94

Real-time CPU Scheduling Algorithms

Rate monotonic scheduling

Assumption: Processes require CPU at constant periods: processing time t and period
p (rate 1/p)

Each process is assigned a priority proportional to its rate, and schedule processes
with a static priority policy with preemption (fixed priority)

Example deadlines T P11P2
L p1=50' L530 ‘ L Pa I ‘ L Py ‘ I I] I I]
P2: p2=100, t2=35 0 10 20 30 40 50 60 70 80 90 100 110 120
deadlines P, P, P Py Py, Py
} }) }
‘ R P2, | R ‘P2| I I | A | 1 P2 | Rl ‘PQ‘ I L1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

95

Real-time CPU Scheduling Algorithms

Rate monotonic scheduling Any problem?

Processes require CPU at constant periods: processing time t and period p (rate 1/p)

Each process is assigned a priority proportional to its rate, and schedule processes
with a static priority policy with preemption (fixed priority)

Example deadlines Py P> Py Py, P2

} | b
P1: p1=50, t1=25 L P TPy T P [Pl IR R R
P2: p2=80, t2=35 0 10 20 30 40 50 60 70 80 90 WOOWHi0 120 130 140 150 160

Can not guarantee that a set of processes can be scheduled

96

Earliest-deadline-first scheduling (EDF)

higher the priority)

Dynamically assigns priorities according to deadline (the earlier the deadline, the

Example deadlines P, P, P, P, P,

| | | b
P1: p1=50, t1=25 ‘ P ‘ | P2, ‘ P1_ ‘ P2 ‘ P1_ ‘ P2, ‘ I)
P2: p2=80, t2=35 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

EDF does not require the processes to be periodic, nor require a constant

CPU time per burst

EDF requires the announcement of deadlines

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

Linux Scheduler

* A multiple queue, (kind of) static priority scheduler.

Norm 1
al SR .y

Completely Fair Scheduler

Priorities O to 99 are
privileged classes.

N

The processes in those
»queues are called “real-
time processes”.

Real-time processes are
either following RR or
FIFO scheduling
algorithm.

Logical view of the
Linux scheduler

29

Linux Scheduler

* A multiple queue, (kind of) static priority scheduler.

99

Norm
al

Completely Fair Scheduler

y| CFS

-Each process maintains virtual run
time (vruntime), recording how
long each has run

-CFS selects the process that has

| the smallest vruntime value

-Decay factor: nice value (-20 to
+19): the smaller the value is, the
“higher priority” the process get

100

Linux Scheduler

* A multiple queue, (kind of) static priority scheduler.

o — 4@

Completely Fair Scheduler

| crs

-Use a red-black tree to maintain
runnable tasks
-The leftmost value is cached

T 5 Task with the smallest

Norm i
[i
al e [

value of vruntime

smaller . larger
Value of vruntime 9

101

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

How to select/evaluate a scheduling algorithm?

How to select a scheduling alg? (many algorithms with different parameters and properties)

Step 1: Define a criteria or the importance of various measures (application dependent)

Step 2: Design/Select an algorithm to satisfy the requirements. How to guarantee?

Evaluate Algorithms

|
[|
L Queueing modeling Simulation & Implementation
Deterministic
modeling . . .
Queueing network analysis Trace driven

Sloeleandias: Distribution of CPU and I/O High cost (coding/debugging...)

. burst (Poisson arrival
Demonstration ()

examples Hard to understand the full
P Little’s law:n = A X W design space

103

Summary on scheduling

e So, you may ask:
— “What is the best scheduling algorithm?”
— “What is the standard scheduling algorithm?”

* There is no best or standard algorithm because of,
at least, the following reasons:

— No one could predict how many clock ticks does a
process requires.

— On modern OS-es, processes are submitted online.
— Conflicting criterias

104

P

Process Process Process User Space
Kernel Space
//’\;,
Process Operations . . 5 N
(fork(),exec*(),wait()) Thread 1

Thread 2

\ m
6 — Scheduler
/ m s

Process Scheduling \

Process Communication &
Synchronization

«

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ch7
Memory Management
from a Programmer’s Perspective

Why we need memory management

* The running program code requires memory

— Because the CPU needs to fetch the instructions from
the memory for execution

* We must keep several processes in memory
— Improve both CPU utilization and responsiveness
— Multiprogramming

[It is required to efficiently manage the memory J

Topics in Ch7

From a programmer’s perspective: user-space memory management

What is the address space of a process?

How are the program code and data stored in memory?
How to allocate/free memory (malloc() + free())?
How much memory can be used in a program?
What are segmentation and segmentation fault?

From the kernel’s perspective: How to manage the memory

What is virtual memory?
How to realize address mapping (paging)?
How to support very large programs (demand paging)?
How to do page replacement?
What is TLB?
What is memory-mapped file?

Local variable

Dynamically-allocated
memory

Global variable

Code +
constants

B ———

Process

Do you remember this?

Content of a process (in user-space
memory)

How does each part use the memory?
From a programmer’s perspective
Let’s forget about the kernel for a

moment. We are going to explore the
user-space memory first.

User-space memory management

- Address space;

- Code & constants;

- Data segment;

- Stack;

- Heap;

- Segmentation fault;

/How does a programmer \

look at the memory space?

Stack - Local variables

- An array of bytes?

Heap - Dynamically
allocated memory

- Memory of a process is
divided into segments

- This way of arranging Data Segment & BSS -
. Global and static
memory is called variables

segmentation

Code + Constant

Address space

“int main(void) {
int *malloc_ptr = malloc(4);
char *constant_ptr = “helloe”;

printf(“Local variable = %15p\n”, &malloc_ptr);
printf("malloc() space = ¥15p\n”, malloc_ptr);
printf("Global variable = ¥15p\n", &global_int);

printf(“Code & constant = ¥15p\n”, constant_ptr);

return 8;

$./addr

Local variable
malloc() space
Global variable
Code & constant

$

Oxbfa8938c
0x915c008
0x8042020
0x8048550

Note
The addresses are not necessarily the
same in different processes

[What is the process address space?]

Increasing
address

Heap - Dynamically
allocated memory

Data Segment & BSS -
Global and static

variables

—
a_— Code + Constant

[exf = 1111 | [1 <2’ bit + 16 ‘@* bits

[oxteeerees || = || ox100000000 | - |[1]

Ellz=] []
[=[es] [

[How large is the address space?

Increasing
address

Stack - Local variables

(In a 32-bit system,

- One address maps to one byte.

- The maximum amount of memory
\ in a process is 4GB.

N

Heap - Dynamically
allocated memory

/Note

- Thisis the so called logical address
space

- Each process has its own address
space, and it can reside in any part

_of the physical memory

S
<

J

Data Segment & BSS -
Global and static
variables

Code + Constant

User-space memory management

- Address space;

- Code & constants;

- Data segment;

- Stack;

- Heap;

- Segmentation fault;

* A program is an executable file

* A process is not bounded to one
program code.

— Remember exec* () family?

* The program code requires e
memory space because...

— The CPU needs to fetch the Code +
instructions from the memory for -
execution.

Program code & constants

1 int main(void) {

2 char *string = "hello";

3 printf("\"hello\" = %p\n", "hello");

4 printf("String pointer = %p\n", string);

5 string[4] = '\0';

6 printf("Go to %s\n", string);

7 return 0;

8 } Heap

* Question #1. What are the printouts from Line

3&47 Data Segment

"hello" = 0x8048520 & BSS
String pointer = 0x8048520

* Question #2. What is the printout from Line 6? =

[Segmentation fault]

11

1 int main(void) {
2 char *string = "hello";

* Constants are stored in code segment.

— The memory for constants is decided by the i S
program code & BSS

— Accessing of constants are done using
addresses (or pointers). Code +

Constant

* Codes and constants are both read-only.

User-space memory management

- Address space;

- Code & constants;

- Data segment;

- Stack;

- Heap;

- Segmentation fault;

Data Segment & BSS — properties

int global_int = 10;
int main(void) {

int local_int = 10;

static int static_int = 10;

printf("local_int addr = %p\n", &local_int);
printf("static_int addr = %p\n", &static_int);

printf("global_int addr = %p\n", &global_int);
return 0;

$./global_vs_static
local_int addr = @xbf8bb8ac
static_int addr = 0x8042018

They are stored next
to each other.

global_int addr = 0x804a014 This implies that they

$

are in the same
segment!

Note: A static variable is treated as the

same as a global variable!

Data Segment
& BSS

—
- Code +
— Constant

14

* Data

— Containing initialized global and static
variables.

* BSS (Block Started by Symbol)

— Containing uninitialized global and

static variables. Data& Sgessment

Code +
Constant

Data Segment & BSS — locations

1 int global_bss;
2 int global_data = 10;
3 int main(void) {
4 static int static_bss;

5 static int static_data = 10;
6 printf("global bss

7 printf("static
8 printf(“global data
9 printf("static data

%p\n", &global_bss);
%p\n", &static_bss);
%p\n", &global_data);
%p\n", &static_data);

$./data_vs_bss

global bss
static bss
global data
static data

$

0x8042028
0x804a024
0x804a014
0x804a018

Data Segment
& BSS

—
- Code +
— Constant

16

Data Segment & BSS —sizes

char a[1000000] = {10};

int main(void) {
return 0;

}
Program: data_large.c

char a[100] = {10};

int main(void) {
return 0;

}

Program: data_small.c

No optimization.

$ gcc =00 -o data_large data_large.c
$ gcc =00 -o data_small data_small.c

$ 1s -1 data_small data_large

Guess! Which one is large?

What is the difference between data

and BSS?

17

Data Segment & BSS —sizes

char a[1000000] = {10};

int main(void) {
return 0;

}
Program: data_large.c

char a[1e0] = {10};

int main(void) {
return 0;

}

Program: data_small.c

$ gcc -00 -o data_large data_large.c
$ gcc -00 -o data_small data_small.c

$ 1s -1 data_small data_large
-rwxr-xr-x ... 1004816 ... data_large
-PWXP-XP-X ... 4916 ... data_small

$

Wow

The data segment has the required
space already allocated.

18

Data Segment & BSS —sizes

char a[1000000] ;

int main(void) {
return 0;

Program: bss_large.c

|v

char a[100];

int main(void) {
return 0;

}

Program: bss_small.c

$ gcc -00 -o bss_large bss_large.c
$ gcc -00 -o bss_small bss_small.c

$ 1s -1 bss_small bss_large
-rwxr-xr-x ... 4775... bss_large
-PwWXr-xr-x ... 4775... bss_small

$

Same size!

To the program, BSS is just a bunch of symbols.
The space is not yet allocated.

The space will be allocated to the process once
it starts executing.

This is why BSS is called “Block Started by
Symbol”.

19

Data Segment & BSS — limits

How large is the data segment?

$ ulimit -a
core file size (blocks, -c) ©
data seg size (kbytes, -d) unlimited

In Linux, “ulimit” is a built-in
command in “/bin/bash”.

It sets or gets the system
limitations in the current shell.

Does the “unlimited” mean that you can define a global array
with large enough size?

20

Data Segment & BSS — limits

#define ONE_MEG (1024 * 1024)
char a[1024 * ONE_MEG];
int main(void) {

memset(a, O, sizeof(a));
printf(“1GB OK\n");

#define ONE_MEG (1024 * 1024)
char a[2048 * ONE_MEG];
int main(void) {

memset(a, O, sizeof(a));
printf(“2GB OK\n");

$ gcc -Wall -0@ global_2gb.c

-0 global_2gb

global_2gb.c:6: warning: integer overflow in expression

global_2gb.c:6: error: size of array ‘a’ is negative

$

Therefore...

T
The size of an array is a 32-bit signed integer, no matter 32-bit or 64-bit systems.

21

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG]; Segmentation fault
char b[1024 * ONE_MEG]; why?

char c[1024 * ONE_MEG];

char d[1024 * ONE_MEG];

int main(void) { / \

memset(a, O, sizeof(a));
printf(“1GB OK\n"); On a 32-bit Linux system, the
memset(b, 6, sizeof(b)); user-space addressing space
printf(“2GB OK\n"); is around 3GB
memset(c, O, sizeof(c)); .
printf(“3GB OK\n");
memset(d, @, sizeof(d)); The kernel reserves 1GB
printf(“4GB OK\n"); addressing space.

}

Program: global 4gb.c _/

Data Segment & BSS — summary

* Remember, “global variable == static variables”.

— Only the compiler cares about the difference!

e Everything in a computer has a limit!
— Different systems have different limits: 32-bit VS 64-bit.
— Your job is to adapt to such limits.

— On a 32-bit Linux system, the user-space addressing
space is around 3GB.

23

User-space memory management

- Address space;

- Code & constants;

- Data segment;

- Stack;

- Heap;

- Segmentation fault;

* The stack contains:
— all the local variables,
— all function parameters,
— program arguments, and
— environment variables.

How are the data stored and what is the
‘ size limit?

Data Segment
& BSS

Code +
Constant

* Stack: FILO

* When a function is called, the local
variables are allocated in the stack.

* When a function returns, the local

variables are deallocated from the stack. Data Segment
& BSS

Code +
Constant

Stack — push & pop mechanisms

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

int funl(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a =1, b = 2;
b = funl(a, b);
return 0;

b = 2 <«f—variable ‘b’ in main().

a =1 <«f—variable ‘a’ in main().

main() starts

27

Stack — push & pop mechanisms

int fun2(int x, int
Calling function “fun1()” starts. " 1:: 21: 1;’. S
It is the beginning of the call, and the CPU has not return (x + y + c);
switched to fun1() yet. ¥

int funl(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a =1, b = 2;
b = funi(a, b);

r'et?‘n 9;
return addr 1 }
2 <4 Will become v in funl(). —
1 <1 Will become u in funl().
=2
=1

main() starts

28

Stack — push & pop mechanisms

int fun2(int x, int y) {
Calling function “funl()” takes place. The CPU has :Zzu:‘:(iei -
switched to funl() .) y H

int funi(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a =1, b = 2;
b = funl(a, b);
return 0;

return addr 1 }
v =2

u 1
a 1

main() starts

29

Stack — push & pop mechanisms

int fun2(int x, int
Calling function “fun2()” starts. " 1:: 21: 1;’. S
It is the beginning of the call, and the CPU has not return (x + y + c);
switched to fun2() yet. ¥

int funl(int u, int v) {

return fun2(v, u);
} i§
return addr 2 int main(void) {
<1 Will become y in fun2(). int a =1, b =2;
b = funl(a, b);
2 <1 Will become x in fun2(). return @;
return addr 1 }
v =2
u=1
b =2 funl() starts
a=1
main() starts

30

Stack — push & pop mechanisms

int fun2(int x, int y) {
Calling function “fun2()” takes place. The CPU has :Zzu:‘:()l(ei . o
switched to fun2() .) y H

int funl(int u, int v) {
return fun2(v, u);

€ = 10 <« Local variables are allocated }
return addr 2 once the function starts. int main(void) {
y=1 int a=1, b =2;
_, b = funl(a, b);
X = return 0;
return addr 1 fun2() starts }
v =2

u 1
b =2 funl() starts
a=1

main() starts

31

Stack — push & pop mechanisms

“ ” int fun2(int x, int y) {
Return” takes place. int c = 10;

(1) Return value is written to the EAX register. return (x +y + c);
(2) Stack shrinks. }
(3) CPU jumps back to fun1(). int funi(int u, int v) {

returp n2(v, u);
c =10 }

return addr 2 int main(void) {

y =1 int a=1, b =2;
X = 2 ?e:u::ngga) 03
return addr 1 }
v =2
u=1
b =2 funi() starts
a=1

main() starts

32

Stack — push & pop mechanisms

“ ” int fun2(int x, int y) {
Return” takes place. int c = 10;

(1) Return value is written to the EAX register. return (x +y + c);
(2) Stack shrinks. }
(3) CPU jumps back to main().

int funi(int u, int v) {
return fun2(v, u);

c =10 }
return addr 2

int main(void) {
y =1 int a =1, b = 2;
X = 2 b = funi(a, b);

re 9;
return addr 1 }

v =2

u=1
a=1
— AL

33

c =10

return addr 3

y=1

X =2

return addr 2

v =2

u=1

Those memory is NOT
returned to the OS!!

Those memory will be re-
used when you call
functions again.

e

main() starts

int fun2(int x, int y) {
int ¢ = 10;
return (x +y + c);

int funl(int u, int v) {
return fun2(v, u);
}

int main(void) {
int a =1, b = 2;
b = funi(a, b);

/ return 0;
}

int fun2(int x, int y) {
int ¢ = 10;
///'7 4‘\\\ return (x + y + c);
}

int funi(int u, int v) {

Eventually, the main return fun2(v, u);
c = 10 function reaches }
return addr 3 return @". int main(void) {
y =1 int a =1, b = 2;
— This takes the CPU b = funi(a, b);
- pointing to the C library. return @;
return addr 2 }
v=2 Inside the C library, we
u=1 will eventually reach the
b =13 system call exit().
a=1

- J

Stack — limits

$ ulimit -a

core file size (blocks, -c) ©
data seg size (kbytes, -d) unlimited

(kbytes, -s) 8192 So, the limit is:
8192 x 1024 = 8MB.

. . Segmentation
Can you define a local array larger that the limit? 2 fault
ulimit -a
core file size (blocks, -c) @
data seg size (kbytes, -d) unlimited
(kbytes, -s) 8192 Now, the limit is:

81920 x 1024 = 80MB.

ulimit -s 81920

36

Mot Pl ? * What if it is a chain of endless
ol I'm rtull!
recursive function calls?

* What will happen?

— Exception caught by the CPU!
* Stack overflow exception!

— Program terminated!

* “I'really need to play with recursions.” Any

workaround?
Not Fm full! — Minimize the number of arguments
— Minimize the number of local variables

— Minimize the number of calls
— Use global variables

* Note: A function can ask the CPU to read
and to write anywhere in the stack, not
just the “zone” belonging to the running
function!

— Isn’t it horrible (profitable and fun)?

User-space memory management

- Address space;

- Code & constants;

- Data segment;

- Stack;

- Heap;

- Segmentation fault;

* |Its name tells you its nature:

— The dynamically allocated memory is
called the heap.
* Don’t mix it up with the binary heap;

* It has nothing to do with the binary heap.

— Dynamic: not defined at compile time. Data Segment
& BSS

— Allocation: only when you ask for —
memory, you would be allocated the comstant

memory.

Dynamically allocated memory — properties

* Lecturers of a programming course would
tell you the following:

— “malloc()” is a function that allocates
memory for you.

— “free()” is a function that gives up a piece of
memory that is produced by previous
“malloc()” call.

* The lecturer of the OS course is to define
and to defy what you know about the
malloc() and free() library functions.

Heap

Data Segment

& BSS

—
- Code +
Constant

41

When a program just starts running, the entire
heap space is unallocated, or empty.

An empty heap.

When “malloc()” is called, the “brk()” system call is invoked
accordingly.

“brk()” allocates the space required by “malloc()”. But, it
doesn’t care how “malloc()” uses the space.

An empty heap.

T grow

allocated space

The allocated space growing or shrinking depends on the
further actions of the process. That means the “brk()” system
call can grow or shrink the allocated area.

Inmalloc (), the library call just invoke brk() for growing the
heap space.

The free() call may shrink the heap space.

An empty heap.

T grow

¢shrink allocated space

int main(void) {
char *ptri, *ptr2;
ptrl = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptrl an
ptr2 - ptril);
return 0;

The return value of malloc() is of type
“void *”, which means it is just a memory
address only, and can be of any data types.

Such a memory address is the starting
address of a piece of memory of 16 bytes
(“16” is the request of malloc() call).

)

Heap

int main(void) {
char *ptri, *ptr2;

ptr2 = (char *)malloc(16);

printf("Distance between ptrl and ptr2: %d bytes\n",
ptr2 - ptri);
return 0;

}

Address returned by 1tmalloc () call.

Data structure maintained by malloc().

Heap

int main(void) {
char *ptrl, *ptr2;
ptrl = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptrl and ptr2: %d bytes\n",
ptr2 - ptril);
return 0;

Address returned by 1tmalloc () call.

Address returned by 2" malloc() call.

Data structure maintained by malloc().

Heap

int main(void) {
char *ptrl, *ptr2;
ptrl = malloc(16);
ptr2 = malloc(16);

return 0;

}

ptr2 - ptri

The result should be > 16. Let’s try the real program!

16 16

bytes bytes Heap

“free()” seems to be the opposite to “malloc()”:
— It de-allocates any allocated memory.

— When a program calls “free(ptr)”, then the address “ptr”
must be the start of a piece of memory obtained by a
previous “malloc()” call.

I bytes I bytes I bytes bytes

* Case #1: de-allocating the last block.

| This is accomplished by calling brk () system call. This heap has become smaller.

T

1 New
bytes bytes bytes | Heap

|

The last block is not needed.

Old
bytes bytes bytes bytes Heap

* Case #2: de-allocating an intermediate block.

| Calling brk () system call without using your brain is not acceptable! |

T
|

bytes bytes | Heap
|

We don’t want an intermediate block.

Old
bytes bytes bytes bytes Heap

* Case #2: de-allocating an intermediate block.

| Here comes the role of the data structure created by malloc()! |

This pointer is used for creating a linked list of de-allocated block. |

This size record the size of de-allocated block. |
o ‘ 32-bit system: 4+4 = 8 bytes
\J._ 64-bit system: 8+8 = 16 bytes

< address

bytes bytes I bytes bytes Heap

AN

* Case #2: de-allocating an intermediate block.

The “Head” variable is a pointer
acting as the start of the list of the
free blocks.

We have to keep the de-allocated blocks
because they cannot be returned to the
system.

As the number of de-allocated blocks
cannot be known in prior, we need a
linked list.

| NULL | | “NULL” defines the end of the free list.

A global variable

16
bytes

16 16
bytes bytes

16
bytes

Heap

* Case #2: another example.

16
bytes

(0][¢]
bytes bytes bytes bytes bytes bytes bytes Heap

* The calling program is assumed to be carefully written.

— Aftermalloc() has been invoked, the program should read
and write inside the requested area only.

— Now, you know why you’d have troubles when you write
data outside the allocated space.

You can only play within this zone. Please behave!
Note: be careful of the consequences of misbehaves...

16 16 16 16 Hea
bytes bytes bytes bytes P

* The calling program is assumed to be carefully written.

— When free() is called, the program should provide free()
with the correct address...
* i.e., the address previously returned by amalloc() call.

incorrect address
passed to free()
16 16
bytes bytes

A mis-calculated header based on the
LemmmmTTTTS incorrect address.

16
bytes

* Problem: whether to use the free blocks or not?

— Is there any free block that is large enough to satisfy the
need of themal loc () call?

* Case #1: if there is no suitable free block...

—then, the malloc () function should call brk () system
call...in order to claim more heap space.

Call invoked: New malloc()
malloc(32); re?uest

New

NULL header E

16
bytes' 32 bytes

Original heap size I New space
by brk()

e Case #2: if there is a suitable free block

Call invoked:
malloc(16);

Original heap size

* Case #2: if there is a suitable free block
—the malloc () function should reuse that free block.

Call invoked:
malloc(16);

16
bytes

16
bytes

Original heap size

* There can be other cases:
— Amalloc() request that takes a partial block;

— Amalloc() request that takes a partial block, but leaving
no space in the previously free block.

-

* We will skip those subtle cases...
— It boils to implementation only...

— You already have the big picture about malloc() and
free().

* Now, let us look at some implementations...

* Needs two information for each block
—size & is_allocated

Start of heap
size | a %
IR I O Wl [
payload E
|:| free l:’ allocated . Allocated & unused
optional
padding

How about memory allocation and free?

* Allocation: May need linear time search

Start of heap

0] Jan] [[W[so0

e[T T Jou]

First fit: allocate the first hole that is big enough (fast)

Next fit: similar to first fit, but start where previous search finishes
Best fit: allocate the smallest hole that is big enough (helps
fragmentation, larger search time)

Worst fit: allocate the largest hole

— Allocate the whole block or splitting

* Free: Coalescing
— Coalescing with next block: easy

o] [| [al" 1 Tal [[[2] [207] | ©
1 logically
free (p) P gone
ol [1 [all T Tel [[[2] [2]]
Header — size a

— How about coalescing Format of
with previous block? allocated and e

free blocks padding
* [Knuth 73] Add a
boundary tag in the footer

Boundary tag —— size ‘ a
(footer)

Implicit free list

» Constant time coalescing w/ boundary tag (4 cases)

mi |1 ml |1
m1l 1 ml 1
n 1 n 0
n 1 n 0
m2 1 m2 1
m2 |1 m2__ |1
miL |o ntml |0
m1l 0

n 1

n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

mi |1 mi |1
ml 1 ml 1
n 1 n+m2 0
n 1
m2 0
m2__o n#m2__ | 0
ml ‘ 0 n+ml+m2 ‘ 0
ml 0
n 1
n 1
m2 0
m2 0 n+ml+m2 | 0

66

* May not be used in practical malloc() and free()
implementations

— High memory allocation cost

* Some ideas are still useful and important
— Splitting available blocks

— Boundary tag

Explicit free list

Allocated (as before) Free
size a size a
next
payload and [z
padding
size ‘ a size ‘ a

* Track only free blocks (LIFO or address-ordered)
* Block splitting is useful in allocation
* Boundary tag is still useful in coalescing

* Segregated free list (4 & 25 N5 2%)

— Different free lists for different size classes
[[THTHT-
s[(ITTHITTHITHITITHITH

s [ITTTHITTHITITH
ss (I T ITTHITTITTH
st (LT TTITTTTTTTITITF~
— Allocation

* Search appropriate list (larger size)

* Found and split Approximates best -fit

* Not found: search next

* Special example
— Buddy system (power-of-two block size)

physically contiguous pages

‘ 256 KB ‘
128 KB 128 KB
AL AR
64 KB 64 KB
B Br
32kB| [32 kB
CL || G

* The kernel knows how much memory should be
given to the heap.

— When you call brk (), the kernel tries to find the
memory for you.

* Then...one natural question...
— Is it possible to run out of memory (OOM)?

* Try this!

#tdefine ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)
break;
counter++;

}

return 0;

printf("Allocated %d MB\n", counter);

Is it safe to run this
program on a 32-bit
machine?

What is the output?

Lllocated 3052 MB
Lllocated 3053 MB
Lllocated 3054 MB
Lllocated 3055 MB
linux2: /fuac/rshr/ykli> l

Out of memory?

e On 32-bit Linux, why does the OOM generator stop

at around 3055MB?

 Still remember what we said when we are talking
about data segment?

— Every 32-bit Linux system has an addressable memory
space of 4G-1 bytes.

— The kernel reserves 1GB addressing space.

73

#tdefine ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {

ptr = malloc(ONE_MEG);

if(!ptr)

break;

counter++;

printf("Allocated %d MB\n", counter);
}
return 0;

* Try this! Yet another OOM Generator!

Yet, what is the output?

Bllocated 3044 MB
Rllocated 3045 MB
Bllocated 3046 MB
Bllocated 3047 MB
linux2:/uac/rshr/yklix> |

Real OOM! [Explanation is in Part 2.]

-

#define ONE MEG 1024 * 1024 Warning #1. Don’t run this program on
any department’s machines.

int main(void) {

void *ptr; Warning #2. Don’t run this program
int counter = @; when you have important tasks running
X at the same time.

while(1) {

ptr = malloc(ONE_MEG);

if(lptr)

break;

memset(ptr, @, ONE_MEG);

counter++;

printf("Allocated %d MB\n", counter);

}
Lazy allocation
return 0; That is why previous programs
} run very fast.

T

75

Other Issues

* External fragmentation
— The heap memory looks like a map with many holes

— It is the source of inefficiency because of the
unavoidable search for suitable space

— The memory wasted because external fragmentation is
inevitable

* Internal fragmentation

— Payload is smaller than allocated block size

— Padding for alignment ~ b .
— Placement policy | | e

* Allocate a big block for small request

76

User-space memory management

- Address space;

- Code & constants;

- Data segment;

- Stack;

- Heap;

- Segmentation fault;

What is segmentation fault?

* Someone must have told you:

— When you are accessing a piece of memory that is
not allowed to be accessed, then the OS returns you
an error called — segmentation fault.

* As a matter of fact, how many ways are there to
generate a segmentation fault?

78

Allocated
Stack

Unallocated
Heap
Allocated
Heap

Data Segment
& BSS

Code +
Constant

From illustration to reality...

Forget about the illustration,
the memory in a process is
separated into segments.

So, when you visit a segment

in an illegal way,
then...segmentation fault.

oxffffffff

Unallocated
Zone

BSS

Data

Code + Constant

0x00000000

Read
YES

NO

YES

NO

NO

NO

NO

YES

BSS

DELL]

Code + Constant

Write

YES

NO

YES

NO

NO

NO

YES

YES

YES

YES

YES

YES

BSS

DELE]

Now, we can understand:

char *ptr = NULL;
char c = *ptr;

will generates

Segmentation fault

Code + Constant

NULL = 9x00000000

*ptr is reading

* When you have a so-called address (maybe it is just
a random sequence of 4 bytes), one of the following

cases happens:

See if you have luck...

Reading

Writing

Read-only
segments

No problem

Allocated
segments

No problem

Unused or
unallocated
segments

Segmentation
fault

Segmentation
fault

No problem

Segmentation
fault

Summary of segmentation fault

* Now, you know what is a segmentation fault, and
the cause is always carelessness!

— Now, you know why “free()” sometimes give you
segmentation fault...

* because you corrupt the list of free blocks!

— Now, you know why “malloc()”-ing a space that is
smaller than required is ok...
* because you are overwriting the neighboring blocks!

83

* Memory of a process is divided into
segments (segmentation):
— codes and constants;
— global and static variables;

— allocated memory (or heap);
— local variables (or stack);

* When you access a memory that is not Data Segment
allowed, then the OS returns you & BSS
segmentation fault

Code +
Constant

* Every process’ segments are independent
and distinct.

Summary of part 1

* The dynamically allocated memory is not as simple
as you learned before.

— Allocating large memory blocks is not efficient; instead,
allocating small memory blocks can make use of the
holes in the heap memory efficiently.

— Keep calling malloc() without calling free() is
dangerous...
* because there is no garbage collector in C or the OS...
* OOM error awaits you!

85

End of part 1

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ch7, part 2
Memory Management from the Kernel’s Perspective:
Virtual Memory Support

Local variable

Dynamically-allocated
memory

Global variable

Code +
constants

—

Process

How to use the addresses to access
the memory device?

How do multiple process share the
same physical memory device?

How to support large process?

How does the CPU read what it wants
from the memory device?

The kernel and the
hardware are doing
lots of managements...

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

Let’s review the “fetch-decode-execute” cycle!

memory bus

This instruction says:
“Move the memory
value in 0x12345678 to
the register EAX".

4 oo,

y
PC OxXABCDEF00
EAX ©x00000000

instruction mov @x12345678 %EAX

0x12345678

The integer value:
0x0000000A

an integer

Let’s review the “fetch-decode-execute” cycle!

CPU decodes
_ memory bus

This instruction says:
“Move the memory
value in 0x12345678 to
the register EAX".

4 oo,

PC OxABCDEF@0
EAX ©x0000000A

OxABCDEF00

instruction mov @x12345678 %EAX

0x12345678
How to use the addresses?

an integer The integer value:

0x0000000A

“You’ve been living in a dream world, Neo”

int main(void) {

int pid; $./same_addr
pid = fork(); PID 1234: Oxbfe85e0c.
printf("PID %d: %p.\n", getpid(), &pid); PID 1235: @xbfe85eoc.
if(pid) $ _

wait(NULL);
return 0;

}

* Canyou guess the result?

— Two different processes, the same variable name,
carry different values

— Use the same address! (What? How COME?!)

* Well, what is the meaning of a memory address?!
— Logical address: virtual memory
— Address translation needed (logical/virtual->physical)
— Why we use virtual memory??

* Each process is contained in a single section of mem

Process C

Hole

Process B

Hole

Process A

* Problem #1...

Process C We also know that a process’” memory
can grow.

Hole

So, does a process always have a

Process B chance to grow to reach its need?

Hole memory growth

e.g., because of brk() calls
Process A

CPU working ... contiguous allocation?

* Problem #2... We are not talking about the

program’s size, but the process’ size!

What if we have a process What the CPU (or OS) can do is to

that is larger that the give up running ...

physical memory?

So, we need to have the CPU design
that can understand processes so that:

(1) the address space is no longer
required to be contiguous.

(2) it allows a process to have a size
beyond the physical memory.

Virtual memory support in modern CPUs

* The new design of the CPU includes a new module:
the memory management unit (MMU).

— MMU is designed to perform address translation.

— The MMVU is an on-CPU device.

«
;

A New CPU

A process’ memory is no longer contiguous. 1

Physical
Memory

Program Memory

Program Code

10

* Step 1. When CPU wants to fetch an instruction, the
virtual address is sent to MMU and is translated
into a physical address.

OxAAAAAAQQ

PC OxABCDEF@0

OxABCDEFQ0 mov 0x12345678 %EAX
EAX ©x00000000

0x0000000A

* Step 2. The memory returns the instruction
addressed in physical address.

Physical
Address

PC OxABCDEF@0

EAX ©x00000000

mov 0x12345678 %EAX

OxABCDEF00

0x0000000A

* Step 3. The CPU decodes the instruction.

— An instruction always stores virtual addresses, but not
physical addresses.

0x13579A00

Physical
Address

PC OxABCDEF@0
EAX ©x00000000

mov 0x12345678 %EAX

0x12345678

‘f

mov ©0x12345678 %EAX

0x0000000A

* Step 4. With the help of the MMU, the target
memory is retrieved.

Physical
Address

PC OxABCDEF@0
T ——

EAX ©x0000000A

0X0000000A 0x13579A00

mov ©x12345678 %E

* Merit 1. Different processes use the same virtual addresses,
they may be translated to different physical addresses.
— Recall the “pid” variable in the example using fork().

— The address translation helps the CPU to retrieve data in a non-
contiguous layout (the process address space is contiguous).

Virtual Address Physical Address

Process X

| ex12345678 0x2468CD00 —

Proc X: ©x00000000A

Proc Y: 0x00000000B

Process Y

0x13579A00 |

| ex12345678

* Merit 2. Memory sharing can be implemented!

— This is how threads share memory!
— This is how different processes share codes! (HOW?)

PC OxABCDEF@0

Virtual Address Physical Address

mov 0x12345678 %EAX

| exaBcDEFo0 OXAAAAAAGD —

Process X
| ex12345678 | | | ex2468cpoe | SR X OXo0000000

Proc Y: 0x00000000B

| exaBcpEFeo *OXAAAAAAOG |/

| ex12345678 | | | ex13s79n0e |

Process Y

* Merit 3. Memory growth can be implemented!

— When the memory of a process grows, the newly-
allocated memory is not required to be contiguous

=
— new memory zone

The growth of the .. | Program Memory
process' memoryis O |
not bounded by the
availability of the
holes any more.

Memory Management

Virtual memory;

MMU implementation & paging;
Demand paging;

Page replacement algorithms;
Allocation of frames;

* How to implement the MMU?

— How to efficiently translate from virtual address to physical
address?

— Translation is needed for every process

Virtual Address Physical Address

| exaBcoEFeo OXAAAAAAGD |

Process X

| ex12345678 0x2468CDOO |

| exaBcoEFoR OXAAAAAAGD |

Process Y

| ex12345678 0x13579A00 |

MMU implementation — a translation table

* So, can translation be done by a lookup table?

— Remember, every process needs its own lookup table.

(Do you remember the reason?)

Virtual address Physical Address

{/ o
B

0x00000000 0x01234567
0x00000001 0x452796AB
OXFFFFFFFF Ox6714EFD8

What is the problem
with this method?

Lookup Table internals

MMU implementation — a translation table

* Then, how large is the lookup table?

How many addresses are there? ﬂ

How large is an address? 4 bytes

Size of the lookup table =

Number of addresses
X Size of an address

232 x 4 bytes = 16 Gbytes

Only this column is stored.

Virtual address Physical Address

0x01234567

0x452796AB

Ox6714EFD8

Lookup Table internals

21

* Then, how large is the lookup table?

How many addresses are there? m How large is an address?
Size of the lookup table = Can we reduce the table size?

Number of addresses
X Size of an address

232 x 4 bytes = 16 Gbytes

Note. Every address in a CPU is
always of 4 bytes.

The only choice is to reduce
the number of addresses

Size of the lookup table =

Virtual
Number of addresses address
X Size of an address

A 4
220 x 4 bytes = 4 Mbytes Lookup

20 bits

table
Note. Every address in a CPU is Tt v
20 bi
always of 4 bytes although you address 0 bits

only use 20 bits.

* This technique is called

. Virtual Page Page
paging. Address g offset

— This partitions the memory
into fixed blocks called pages.

Page
table | unchanged |

— The lookup table inside the l

MMU is now called the page : ‘
table. 20 bits

Physical Page
Address

Paging - properties

Selected
address

Selected
page

= ——

Size = 4096 bytes (or 4KB)

Virtual Page Page
. address offset .
) "1 g
20 bits 12 bits
A\ 4
e | |_unchanged |
table unchanged
\ 4 \ 4
20 bits 12 bits

Physical Page
address

26

Paging - properties

* Adjacent virtual pages are not guaranteed to be
mapped to adjacent physical pages.

Virtual Address Physical Pages

0x12345|000
0x12345|001

Contiguous virtual
addresses map to
non-contiguous
physical address.

0x54321
0x54321|001

0x12345|FFF

0x54321

0x12346|000
0x12346|001

Virtual addresses
0x09394 within the same page
0x09394|001 are always mapped
to the same physical

0x12346|FFF

Continuous addresses

0x09394|FFF page.

* How to do memory allocation with paging

1 char *prev_ptr = NULL;

2 char *ptr = NULL;

3

4 void handler(int sig) {

5 printf("Page size = %d bytes\n",
6 (int) (ptr - prev_ptr));
7 exit(0);

8 }

9 int main(int argc, char **argv) {
10 char c;

11 signal (SIGSEGV, handler);

12 prev_ptr = ptr = sbrk(@); // find the heap’s start.
14 while(1)

15 c = *(++ptr);

16 }

* A page is the basic unit of memory allocation.

Heap Allocation
48968

36864 -
32768
The allocation isin a

page-by-page manner.

28672

24576

26480 -

The same case for the
growth of the stack.

16384

Real allocation (bytes}

12288 -

8192 [

4896

a 4896 8192 12288 16384 20488 24576 28672 32768 36864 40968
Request size {bytes)

* Problem???
— The minimum allocation unit is 4,096 bytes.
— But, the process cannot use that much.
— So, the rest of the page is unused.

Internal fragmentation
means space is avoidably
wasted when allocation is
done in a page-by-page
manner. BSS

Data

Code + Constant

How about letting another process to use the “unused space”?

The MMU has to memorize that none
of the processes could occupy the
whole page. The growth of the usage
has to be limited and monitored!

BSS BSS

Data Data

Code + Constant

!
v
a
|
v

Memory pages are
then distributed on the
physical memory or the
swap area, i.e., the
hard disk.

Paging — putting it together

Physical Devices

Allocated Pages

e
|
—

]
[« 1]
[1
[1

Allocated memory are
broken into pages.

Unallocated zone does
not occupy any pages.

Memory Space

Allocated Stack

Allocated Heap

BSS
Data

89,

* So, next waves of questions are:

— Who can tell which virtual page is
allocated?

— Who can tell which page is on which
device?

* Those questions can be answered
e e e || by the design of the page table.

physical memory or the
swap area, i.e., the
hard disk.

* How to design the page table?

— First of all, which information need to be maintained?
* Mapping from virtual pages to physical pages (called frames)
* Permission information
* Where is the page (in memory or not)

— Second...
* Each process needs one page table

Paging — page table design

Page Table of Process A

Virtual Page # | Permission | Valid-invalid bit || Frame #
A rwx- 1 0 <—
B NIL (%] NIL
C r--s 1 2
D NIL (2] NIL\

For the sake of convenience, we don’t use
addresses here. Also, this column is not
stored in the page table.

The physical memory is

just an array of frames.
The size of a frame is 4KB.

This row means the
virtual page “A” is
mapped to the physical
frame “0”.

This row, with NIL, means
the virtual page “D” is not
allocated.

Remember, the entire 4G
memory zone is usually not
fully utilized.

35

Page Table of Process A

Gﬂs bit is to tell the CPU \

Virtual Page # | Permission | Valid-invalid bit || Frame # whether this row is valid or

not.

A rwx- 1 7] -

B NIL 0 NIL If the row is invalid, it
means that the virtual page

£ i L z is not in the memory.

D NIL) NIL
Note. This is not the same

Qan unallocated page. /

1 - valid, in memory.

@ - invalid, not in memory.

Page Table of Process A

Virtual Page # | Permission || Valid-invalid bit
A rwx- 1
B NIL (2]
C r--s 1
D NIL (2]

-

s - means sharable.

How does the CPU check if you can
write to a memory zone?

When a virtual address is translated
to an unallocated frame...

When you write to read-only pages...

When you try to execute a non-
executable pages...

|

* Other design issues

How to store the page table if it is large (structure
of page table)?

How to improve memory access performance
(page table look incurs large overhead)?
Caching: Translation lookaside buffer (TLB)

* The page table may be large...multiple MBs

— We would not want to allocate the page table
contiguously in memory, how?

— Divide the page table into pieces

Two-level page table

logical address

page number page offset
P1 Ian |
|~ P2 d
P { 10 10 12
p2 {
outer page
table d {
page of
page table

Paging — page table structure

* The page table may be large...multiple MBs

— We would not want to allocate the page table
contiguously in memory, how?

— Divide the page table into pieces

Besides hierarchical paging, we
can also use

Hashed page tables

Inverted page tables

0
]
7 B
b 100
500
.
\ .
™~
100 500
78— |
. 708
outer page > 929 200
table .
900 /><
page of 929‘
page table

page table

memory

40

Paging — Performance Boost

* Memory access requires to look up page table
— This overhead is even larger with multi-level page tables
— Any Solution? (linear address)

__Page directory) page table | offset)

31 22 21 I 21 ' 0

— (1) large pages
* Reduce the page table entries

age 4-KB

° Cons? ?ahﬁe gl page

— Internal fragmentation

page

. . directory
— Deduplication
CR3 —» 4-MB
register page
page directory) offset

L
31 22 21 0

41

Paging — Performance Boost

* Memory access requires to look up page table

— This overhead is even larger with multi-level page tables

— Any solution?

— (2) Caching

CPU

Translation lookaside buffer (TLB)

The search in TLB is fast: Part
of the instruction pipeline

The size of TLB is small:
e.g., 32-1024 entries

logical

address
P

page frame
number number

TLB hit

f

physical
address

d f—s

TLB

TLB miss

~

Pt
L

f

page table

physical
memory

42

* Memory access requires to look up page table
— This overhead is even larger with multi-level page tables

— Any solution? logical

address

—(2) Caching U~

page frame
number number

TLB hit

physical
address

f [d F—s

Effective memory-access time

Example: B
* Hit ratio: 80%

* Mem access time: 100 ns p{
* One mem access for page table lookup TLB miss

f
Effective mem-access time is -
0.8%100+0.2*(100+100)=120ns

physical
memory

page table

* Virtual memory (VM) is just a table-lookup
implementation. The specials about VM are:

— The table-lookup is implemented inside the CPU, i.e., a
hardware solution.

— Each process should have its own page table.

* How about the OS?

— The OS stores and manages the page tables of all
processes.

Page table
Page table of Process B Page tab.
of Process A of Process C

Loading during context switching

(o1 CIHEREGEL

i
N

We will see how the OS kernel
updates the page tables very
soon.

* We talked about segmentation in part 1...

— Address mapping can also be done in segments

* Also permits physical address space of a process to be non-
contiguous

* But usually incurs severe fragmentation in both memory and
backing store

* Paging is used in most operating systems
— Hybrid scheme is also possible

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

* The stack and the heap will grow:
— (1) calling brk(), i.e., the heap grows;

— (2) calling nested function calls, i.e., the
stack grows;

* The question is...

— Will the memory be immediately
allocated for you when you call Data
malloc()?

BSS

Code + Constant

#tdefine ONE_MEG 1024 * 1024 Allocated 3052 MB
Allocated 3053 MB

. q q Allocated 3054 MB
int main(void) { Lllocated 3055 MB
void *ptr; linux2:/uac/rshe/ykli> |

int counter = 0;

This program runs very fast,

why?
if(!ptr)
break;
counter++;
printf("Allocated %d MB\n", counter);
}
return 0;

Memory / allocation — demand paging

* The reality is: allocation is done in a lazy way!

— The system only says that the memory is allocated.

— Yet, it is not really allocated until you access it.

1 #define BUF_SIZE 512 * 1024
2 void re() {

3 char buf[BUF_SIZE];

4 while(getchar() != '\n');
5 memset(buf, @, sizeof(buf));
6 while(getchar() !'= '\n');
7 re();

8 }

9

10 int main(void) {

11 re();

12 return 0;

13 }

<

‘i\\\\

This statement does not involve any
memory access.

So, the virtual address space is
allocated, but the page is not
allocated yet.

This statement really accesses the
“allocated” memory.

So, this statement really asks the
system to allocate memory.

50

Memory / allocation — demand paging

* How about the heap?

VWONGOULA WNR

#define ONE_MEG (1024 * 1024)
#define COUNT 1024

int main(void) {

int i;

char *ptr[COUNT];

for(i = @; i < COUNT; i++) /
ptr[i] = malloc(ONE_MEG);

for(i = @; i < COUNT; i++) {
while(getchar() != '\n');
memset(ptr[i], @, ONE_MEG); €—

As a matter of fact, malloc() does
not involve any memory allocation,
only involving the allocation of the
virtual address page.

So, this loop is only for enlarging
the virtual page allocation.

This statement really accesses the
“allocated” memory.

So, this statement really asks the
system to allocate memory.

This lazy way is called demand paging, but how does it work?

51

Assumption: 1 process only.

* Let’s consider the “grow_heap.c” example.
— Suppose that a process initially has 4 page frames.
— We are now in the memset () for-loop in Lines 10 - 13.

Virtual

Bit Frame #

page # 7
A 1 0 6
IS e 5
D 1 3 &
3

£ 2] NIL 2
1

o

&7
o
I

Assumption: 1 process only.

* When memset() runs,
— the MMU finds that a virtual page involved is invalid,
— the CPU then generates an interrupt called page fault.

Page fault Os kernel

Virtual

page # 7
A 1 0 6
e 5

D 1 3 &

3

E (2] NIL 2

1

o

@;
o
I

Assumption: 1 process only.

* The page fault handling routine is running:
— The kernel knows the page allocation for all processes.
— It allocates a memory page for that request.

— Last, the page table entry for Page E is updated.

Page fault Handling 0S kernel
routine

allocation

Virtual
page #

I@I—‘Nwﬂmm\l

Assumption: 1 process only.

* The routine finishes...and

* the memset () statement is restarted.

— Then, no page fault will be generated until the next
unallocated page is encountered.

Virtual
page #

Frame #

®|RINW A UVO|IN

Assumption: 1 process only.

* So, how about the case when the routine finds that
all frames are allocated?

— Then, we need the help of the swap area.

Page fault Handling 0S kernel
routine

Virtual "B
page # Bit Frame # 7
A 1 (2] 6
e 5
H 1 7 4
3
I 2] NIL 2

coo 1 @

g
[

Assumption: 1 process only.

* Using the swap area:

— Step (1) Select a victim virtual page and copy the victim
to the swap area.
* Now, Frame O is a free frame and the bit for Page A is 0.

Page fault :> Handling The question is to select
foutine which page to swap out?

Virtual

Bit Frame #

page #

oy | Virtual page: A |

A7

7" | e

@ RINW A UVOIN

@;
o
I

Assumption: 1 process only.

* Using the swap area:

— Step (2) Allocate the free frame to the new frame
allocation request.

* Now, Page | takes Frame 0.

Page fault Handling 0S kernel
routine

Virtual
page #

| Virtual page: A |
YR e

=) @

w(h|iuio|N

(9
H
]

Assumption: 1 process only.

* How about virtual page A is accessed again?
— Of course, a page fault is generated, and

— steps similar to the previous case takes place.

Swapping out which
page really matters
Page fault :> Handling OS kernel
routine

Virtual
page #

Bit Frame #

0 0

Virtual page: A
1 7
1 0

@ RINW A UVOIN

== QP

* Now, you should understand why this OOM
generator run very fast.

t#tdefine ONE_MEG 1024 * 1024
The memory page frames are not
int main(void) { really allocated (demand paging).
void *ptr;
int counter = 0; It is only for enlarging the virtual
page allocation.

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)
break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 9;

S

#tdefine ONE MEG 1024 * 1024 Warning #1. Don’t run this program on
- any department’s machines.
int main(void) {
void *ptr; Warning #2. Don’t run this program
int counter = @; when you have important tasks running

at the same time.
while(1) {

ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, @, ONE_MEG);
counter++;

printf(“Allocated %d MB\n”, counter);
} How does this program “eat”
your memory?

return 0;

What is the consequence after
running this program?

* So, what will happen when the real OOM program
is running?

— Suppose the OOM program has just started with only
one page allocated. (For illustration only!)

7

Different colors define
different processes in the
system.

Let the OOM process take
the green color.

=) @

* OOM is running...1% stage.

— The free memory frames are the first zone that the
process has conquered.

— All other processes could hardly allocate pages.

l E== A |

* OOM is running...2" stage.

— Occupied memory frames are the next zone that the
process conquers (no unused frames).

— Disk activity flies high!

Page replacement operations
will be carried out by the OS.
OOM says: “All your H - H
frames belong to us.” |
Swap area
LI

* OOM is running...3" stage.

— The previously-conquered frames are swapping to the
swap area.

— Disk activity flies high!

Page replacement operations

will be carried out by the OS.

OOM says: “All your
frames belong to us.”

OOM says: “Resistance is
futile. All the swap space
will belong to us.”

I XXX EE

* OOM is running...Final stage.
— The page fault handling routine finds that:
* No free space left in the swap area!
* Decided to kill the OOM process!

OS kernel

Handling
SIGKILL routine

OOM says: “All your
frames belong to us.”

OOM says: “Resistan~ -
futile. All the swar »* X
will belong to us.”

Real oom: killed

* OOM has died, but... Painful aftermath.
— Lots of page faults! Why?

* It is because other processes need to take back the frames!

* Disk activity flies high again, but will go down eventually.

EE

[HEE

®|RINW A UVOIN

¢

Swap area

* Swap area
— Where is it?

— How large is it?

* Can we run a really large process (e.g., bigger than
physical memory)?

— How large is it at most?

* How about fork() and exec*()?
— Can they be clever?

Swap area — location

* The swap area is usually a space reserved in a
permanent storage device.

Linux needs a separate
partition and it is called the
swap partition.

$ sudo fdisk /dev/sda

/dev/sdal
/dev/sda2 Linux swap / Solaris
Command (m for help): _

27 MzpInst.log
==| TextDocument
SKE

ntldr

533 | System file
=22l z45¢B

| NTDETECT.COM Windows hides a file
M5-DOS Application
47 KE

pagefile sys

Sa3| | System File

1,572,060 KB

“pagefile.sys”, which is

the swap area, in one of the
< P

drives.

69

Swap area - size

* How large should the swap space be?
— It should be at least the same as the size of the physical
memory, so that ...
* when a really large process wants to take all the memory...
* all the pages on the physical memory can find a place to hide.

— An old rule said that “swap should be twice the size of
the physical memory”.

* But, | can’t find the reasons anymore, and this rule does not
hold nowadays because we now have too much RAM!

70

How about running large programs

* When a process is larger than the physical memory,
is it able to run?

— No need to load all data in memory...Demand paging
* Generates page fault to allocate physical page frames
* Trigger page replacement if there is no unused frames

* How large is a process that a system can support

Max. process size =

Available space in the swap partition (file) D

Kernel memory size

71

* What we have learned about the fork() system
call is...duplication!

— The parent process and the child process are identical
from the userspace memory point of view.

—

<

* What does duplication mean? Allocate new pages for
the child process?
— If yes...then consider exec*() system call as well...
— Isn’t it stupid?

OE EmE 2

e

How about fork() & exec()

e Can we have a clever design with demand paging?

— A technique called copy-on-write is implemented

Copy-on-write technique allows the parent and the child
processes to share pages after the fork() system call is invoked.

A new, separated page will be copied and modified only when
one of the processes wants to write on a shared page.

74

» Before fork() ...

Physical
Memory

. PageA

+ Page B

., PageC

* Right after fork() in invoked ...

realized by the sharable
bit in the page table.

/

Page A
Parent Child
Process + Page B +| Process
Page C _

‘ All pages are shared. ‘

* When both processes read the pages...

| PageA _|

Parent
Process

Child
Process

* When one of the processes write to a shared page...

Parent
Process

Child
v Process

Copy by kernel

Demand paging - performance

* Demand paging can significantly affect performance
— Service the page fault interrupt
— Read in the page
— Restart the instruction/process
* How to characterize?
— Effective access time
—(1—p)xma + pXpage fault time
* ma: memory access time (10-200ns)

* p: prob. of a page fault
* page fault time: ms

79

* ma: 200ns, page fault time: 8ms

* 1/1000 page fault probability
— Effective access time: (1 — p)200ns + p X 8ms = 8.2us

* To allow 10% performance degradation only
— (1 —-p)200ns + p X 8ms < 220ns
—p < 0.0000025

* Thus, page fault rate must be low

* Demand paging enables over-commitment
— Large process can be supported

— Concurrent running of multiple processes is also
supported

* One key issue is...
— How to select victim pages to swap out?

— Page-replacement algorithm

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

* Remember the page replacement operation?

— It is the job of the kernel to find a victim page in the
physical memory, and...

— write the victim page to the swap space.

Page fault :> Handling
routine
Page replacement

oy | Virtual page: © |

@:

R INW A UV ON

g
[
:

Page replacement — introduction

* Replacing a page involves disk accesses, therefore a
page fault is slow and expensive!
— Key issue: which page should be swapped out?

— Page replacement algorithms should minimize further
page faults.

* In the following, we introduce four algorithms:
— Optimal;
— First-in first-out (FIFO);
— Least recently used (LRU);
— Second-chance algorithm

34

* Imagine that you are the kernel...
— you have a process just started to run;
— the process’ memory is larger than the physical memory;
— assume that all the pages are in the swap space.

These blocks are the page frames. The
numbers mean the virtual page numbers that
are on the memory frames.

These numbers are the order of the
virtual page numbers that the

process will access to. 5
\
\ 2
21 1; 9; 3; 5; 6; 4; 8
page reference string 4
7 Memory
frames

| Note: this is not the scenario that the process is just started. |

Page replacement — algorithm

* Imagine that you are the kernel...
— you have a process just started to run;

— the process’ memory is larger than the physical memory;

— assume that all the pages are in the swap space.

The memory pages that are
not in the memory.

Virtual page
access order.

IHIH .

A (N

lst 2nd 3rd - i 4

’ Note: this is not the scenario that the process is just started. ‘

Memory

frames

86

* Initial condition
— Let all the frames be empty.

| Number of page faults | 0 |

* What is the best algorithm?
— Do not worry about the implementation at this moment.

| Number of page faults | 0 |

* |f | know the future, then | know how to do better.

— That means | can optimize the result if the page
reference string is given in advance.

I”
.

— That’s why the algorithm is called “optima

— T

| Number of page faults | 0 |

* |f | know the future, then | know how to do better.

— The first page request will cause a page fault.
* Because there are free frames, no replacement is needed.

!I — T

| Number of page faults | 3 |

* Replace strategy:

— To replace the page that will not be used for the longest
period of time.

eeeee = infinity hl We should replace this frame.
reuse = 2 access later
reuse = 11 access later

| Number of page faults | 3 |

* The story goes on...
— But, do you think that this is a non-sense?

— Of course, this is to give you a sense that how close an

|

algorithm is from the optimal.

LT

| Number of page faults | 8 |

Page replacement — Problem of the optimal algorithm

* Unfortunately, you never know the future...
— It is not practical to implement such an algorithm
— Is there any easy-to-implement algorithm?

* You have already learnt process scheduling

* FIFO: the first page being swapped into the frames
will be the first page being swapped out.

— The victim page will always be the oldest page.

— The age of a page is counted by the time period that it is
stored in the memory.

93

* When there is no free frames,

— The FIFO page replacement algorithm will choose the
oldest page to be the victim.

oldest

| Number of page faults | 3 |

* When there is no free frames,

— The FIFO page replacement algorithm will choose the
oldest page to be the victim.

— Of course, the oldest page changes.

oldest

| Number of page faults | 4 |

* When a memory reference can be found in the
memory, will the age of that frame be changed?

— NO! The frame storing “page 0” is still the oldest frame.
B EEEEEEEEE

oldest

| Remember, no page fault in this time. |

| Number of page faults | 4 |

* The story goes on...
— Seems that there is no intelligence in this method...

— Pages which will be accessed again are swapped out
! Number of page faults in the optimal algorithm | 8 I_

| Number of page faults | 11 |

* Can we do better?

— Still remember the locality rule?
* Recently accessed pages may be accessed again in near future

— Why not swap out the pages which are not accessed
recently
* This is the least-recently-used (LRU) page replacement.

* Strategy:
— Attach every frame with an age, which is an integer.

— When a page is just accessed,
* no matter that page is originally on a frame or not, set its age to be 0.
* Other frames’ ages are incremented by 1.

M| We should replace this frame. |
age = 1
| To replace the page that is least-recently used |
age = 0
look back | Number of page faults | 3 |

————————

* Strategy:
— Attach every frame with an age, which is an integer.

— When a page is just accessed,
* no matter that page is originally on a frame or not, set its age to be 0.
* Other frames’ ages are incremented by 1.

age = 0

age = 2

age = 1

| Number of page faults | 4 |

* Strategy:
— Attach every frame with an age, which is an integer.

— When a page is just accessed,
* no matter that page is originally on a frame or not, set its age to be 0.
* Other frames’ ages are incremented by 1.

iilz—

age = 0 .l The age of this frame becomes 0. |

age = 2

| Number of page faults | 4 |

* Strategy:
— Attach every frame with an age, which is an integer.

— When a page is just accessed,
* no matter that page is originally on a frame or not, set its age to be 0.
* Other frames’ ages are incremented by 1.

g

Number of page faults in the FIFO algorithm | 11 |

| Number of page faults | 10 |

| Number of page faults in the optimal algorithm | 8 |

Page replacement — LRU algorithm

* The performance of LRU is considered to be good,
but how to implement the LRU algorithm efficiently

— Counters: requires to update counter and search the
table to find the page to evict

— Stack: implement with doubly linked list (pointer update)

* Common case in many systems
— A reference bit for each page (set by hardware)
— LRU approximation: Second-chance algorithm

103

* Second-chance algorithm
— Basic: FIFO
— Give the page a second chance if its reference bit is on

R:0 R:0 R:1 R:0
w If a page is heavily used, its
reference bit will be very
likely to be .
R:1 R:0 R:0 R:1

* Clock is the efficient implementation of the 2"
chance algorithm (circular queue).

w ol * B
H B
e 1 o
G C
o o
F D
E

* Clock is the efficient implementation of the 2"
chance algorithm (circular queue).

l l
What if all reference
. bits are set?

Degenerates to FIFO

Page replacement — performance

* Number of page frames VS Performance.

— Increasing the number of page frames implies increasing
the amount of the physical memory.

* So, it is natural to think that:
— | have more memory...and more frames...
— Then, my system must be faster than before!

— Therefore, the number of page faults must be fewer
than before, given the same page reference string.

107

* Your expectation:

16 \
o 14
§12 \
E \
(o))
310 \
S 8 AN
3 & I
i ~
€ 4

2

1 2 3 4 5 6

number of frames

* The reality may be:

This is called Belady’s anomaly

16
© 14
E 12 010!
%10 T (@f‘/)
° 8 ‘
X N
2 4

2

1 2 3 4
number of frames

al
@
1

* Try the following:
— all page frames are initially empty;
— use FIFO page replacement algorithm;
— use the number of frames: 3, 4, and 5.

— The page reference string is:

Page replacement — performance

» Belady’s anomaly exists for some algorithms
— Both optimal and LRU do not suffer from it

 Stack algorithms: never exhibit Belady’s anomaly

— Feature: The set of pages in memory for n frames is
always a subset of the set of pages in memory forn + 1
frames

— Example: LRU

* The n most recently referenced pages will still be the most
recently referenced pages when the number of frames
increases

111

Memory Management

Virtual memory;

MMU implementation & paging;
Demand paging;

Page replacement algorithms;
Allocation of frames;

Allocation for user processes

* Free-frame list

— Demand paging and page replacement

* Constrains

— Limit on number of frames
* Upper bound: total available frames

* Lower bound: has a minimum number
— Performance consideration (limit page-fault rate)
— Defined by computer architecture (instructions)

— Process will be suspended if the number of allocated frames falls
below the minimum requirement

— Global / local allocation (replacement)

113

* Equal allocation
—m frames among n processes
m
< frames for each process
— Memory waste
* Proportional allocation
— Size of process p; is s;, then allocate

Si
—a; —t

TS
* Priority-based scheme
— Ratio depends on both process size and priority

Xm

* If a process does not have enough frames — number
of frames required to support pages in active use

— Frequent page fault
* Replace a page that will be needed again right away

— This is called thrashing

* Spend more time paging than executing

Issues - Thrashing

* Example: Multiprogramming + global page replacement
— Increase CPU utilization (increase degree of multiprogramming)

— Frequent page fault (queue up for paging, reduce CPU utilization,
increase degree of multiprogramming)

thrashing

CPU utilization

degree of multiprogramming

116

* How to address?

— Local replacement/priority replacement
* Will not cause other processes to thrash

* Still not fully solve this problem
— Increase average time for a page fault
— longer queue for the paging device

— longer effective access time even for non-thrashing processes

* How to address?

— Provide as many frames as needed
* Use working-set strategy to estimate needed frames

— Working set: the set of pages in the recent A page references

page reference table
...2615777751623412344434344413234443444...

s} s
| |

t, t

WS(t,) = {1,2,5,6,7) WS(t,) = (3.4}

YWSS; > m: thrashing may occur

* How to address?

— Provide as many frames as needed

* Use working-set strategy to estimate needed frames
— Working set: the set of pages in the recent A page references
* Use page-fault frequency

increase number
of frames
\ pper bound

lower bound

page-fault rate

decrease number
of frames

number of frames

* Kernel memory allocation requirement
— Features

* Varying (small) size requirement: different data structures

* Contiguous requirement (certain hardware devices interact
with physical memory)

— Paging: Internal fragmentation

* Buddy system + Slab allocation

* Allocate memory from a fixed-size segment
— Power-of-2 allocator (11 orders)
— Advantage: coalescing

physically contiguous pages

‘ 256 KB ‘

128 KB 128 KB
G AR
64 KB 64 KB
B B
32 KB| |32 KB
CL || %R

* Allocate memory for small objects (limit fragmentation)
— Slab: one/more contiguous pages

— Cache: one/more slabs
* A separate cache for each unique kernel data structure

kernel objects caches slabs
3-KB il T
oblects D/ 1 Reduce fragmentation
) S~ physically
_ o < contiguous .
[pages Fast allocation
_ (caching benefit)
ob?e'étg D\> ’/ = . =]
| H—] .
D/ —————— y Further reading: SLOB/SLUB

Memory mapped file

* Ordinary file access
— open(), read(), write()
— System call + disk access

* Memory mapped file
— Memory mapping a file: associate a part of the virtual
address space with the file

— File access
* Initial access to file: demand paging
* Subsequent reads/writes: routine memory accesses
* Improves performance

— Refer to mmap(2) system call

123

g
Pl
o O
— ||| |w]|o mm
o®
53
T T T T T T p.m
[T S S R .
1 T 1
1 1 [Lo
1
1 1 L]
== 1 1
¥ A 4 vV

physical memory
disk file

1
2
3
4
5
6
process A
virtual memory

* Also allow multiple processes to map the same file

Summary

* We have introduced...
— Segmentation
— Paging + page table
— Demand paging + COW + page replacement algorithms

— Allocation of frames
* User process
* Thrashing
* Kernel memory (buddy + slab)

— Memory-mapped file

* More...
—malloc() is not that simple: refer to “glibc malloc”
— Other page-replacement algorithms

125

Hope you enjoyed the 0S course!

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Chapter 8
Mass Storage

User Space

Processes

File system
Implementation

FAT32, EXT2/3
KV, Distributed FS,
Graph System...

File System Operations

e
[egmen |
_ Y
e

-‘

optical disk

t 1
A Vv
magnetic tapes

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID
- Erasure coding

Hard Disk Structure — Physical view

(o

hysical address (cylinder, track, sector)

~

Track:

The surface of a platter is divided into tracks
Sector:

Track is divided into sectors (512B data + ECC)

Cylinder:
Set of tracks that are at one arm position /

{— arm assembly

Access: Seek + Rotate

Seek time:
move disk arm to desired cylinder

Rotational latency:
Q:)in at 5400/7200/10K/15K RPM /

Hard Disk Structure — Physical view

Cnstant liner velocity (CLV) \

» Uniform density of bits per track,
outer track hold more sectors

> Variable rotation speed to keep the
same rate of data moving

» CD-ROM/DVD-ROM

Constant angular velocity (CAV)
» Constant rotation speed
> Higher density of bits in inner tracks

Card disks /

Hard Disk Structure — Logical view

How to use?
Large 1-D arrays of logical blocks (usually 512 bytes)

/Address mapping \

Logical block number -> (cylinder #, track #, sector #)

Disk management is required

> Disks are prone to failures: defective sectors are

common (bad blocks)
v" Need to handle defective sectors: bad block
management

> Disk formatting

_ _

Disk Management

track t | spindle
@ || Bad Block Management
read-wiite \

cylinder ¢ —

-

platter

v/ Maintain a list of bad blocks (initialized during low-level formatting) and
preserve an amount of spare sectors

v’ Sector sparing/forwarding: replace a bad sector logically with one spare
sector
* Problem: invalidate disk scheduling algorithm
* Solution: spare sectors in each cylinder + spare cylinder

KSector slipping: remap to the next sector (data movement is needed) /

Disk Management

Disk Formatting

@ 1: Low-level formatting/physical formatting \(

v Divide into sectors so disk controller can read/write

v" Fills the disk with a special data structure for each sector (data area(512B),
header and trailer (sector number & ECC))

* The controller automatically does the ECC processing whenever a sector
is read/written

v Done at factory, used for testing and initializing (e.g., the mapping). It is also
possible to set the sector size (256B, 512B, 1K, 4K)

_ _

Disk Management

Ve B
Disk Formatting ‘

Kepz: How to use disks to hold files after shipment? \(

> Choice 1: File system

v’ Partition into one or more groups of cylinders (each as a separate disk)

v’ Logical formatting: creating a FS by storing the initial FS data structures

v' 1/0 optimization: Disk I/O (via blocks) & file system 1/0 (via clusters), why?
* More sequential access, fewer random access

> Choice 2: Raw disk
v’ Use disk partition as a large sequential array of logical blocks, without FS
v Raw |/O: bypass all FS services (buffer cache, prefetching...), be able to

vontrol exact disk location /

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure codes
- Problems with EC

* Requests are placed in the queue of pending
requests for that drive if the drive/controller is busy

N

Read/write, disk address, memory address,
number of sectors to be transferred

Request ordering significantly affects the access
performance (seek + rotate), so scheduling is needed

/ = 1/0 access procedure

— Seek: move the head to the desired
cylinder

— Rotate: spin to the target sector on
the track

+—arm assembl

Track/ * Disk scheduling

Cylinder .

— Choose the next request in the
pending queue to service so as to
minimize the seek time

% weass | * Scheduling algorithms

* First-come, first-served (FCFS)
— Intrinsically fair, but does not provide the fastest service

* First-come, first-served (FCFS)

122

<14 37 536567 98 122124 183 .-~ 14
0 “~o L--7 199

\\ ’,’
N .-

~

* Scheduling diagram

Total head movement

queue = 98, 183, 37, 122, 14, 124, 65, 67 (640 cylinders)
head starts at 53

0 14 37 536567 98 122124 183199
[I LU | 1l [
f |

Wild swing is very common
E.g.: 122 to 14, then to 124

How to reduce the head
movement?

uandle nearby requests firsy

* Shortest seek time first (SSTF)
— Choose the request with the least seek time

— Choose the request closest to the current head position

* Shortest seek time first (SSTF)

/\
@ 122

l I |
B 14 37 536567 98 122 124 183 _ .-~ 14

\\ ’,’
N .-

~

* Scheduling diagram

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124
[| |l | i
I

T/otal head movement: 236\

cylinders (it is 640 for FCFS)

Essentially a form of SJF
scheduling

It is not optimal

The sequence of 53-37-14-65...
could reduce the head
movement to 208

Q\a cause starvation /

e Scan back and forth

— Starts at one end, moves toward the other end
— Service the requests as it reaches each cylinder
— Reverse the direction

— Elevator algorithm

* Scan back and forth

Suppose the head is moving from 53 to 0

122

1 l 1 l

0 S \1\4 37 536567 98 122124 183 -7 14

~ -

\\ ’,’
N .-

~

e
11

* Scheduling diagram \

Any problem?

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53 Assume a uniform request
0 14 37 536567 98 122124 183199
| | 1l | |
I

I | [T} | distribution

The heaviest density of requests
is at the other end of the disk

They need to wait for a long
time

Q\ we do something about t@

 Circular Scan back and forth
— A variant of SCAN: immediately return when reaches the end
— Aim for providing a more uniform wait time

e Circular scan

o o~ AT NN /\ 122
|I 1 11 l .
J S8 37 536567 98 122 124 183 __-- 14

\\ ’f’
N .-

~

* Scheduling diagram

queue =98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
| | 1l
I

Unnecessary

No need to move across the full width of the disk, but only need to reach the
final request

Improved SCAN and C-SCAN: LOOK and C-LOOK

* Goes only as far as the final request

— Look for a request before moving 98 |
ﬁm 122
|I 1 L1 | L1 | |

~Jd4 37 536567 98 122124 183 _ .-~ 14
0o ~ --7 199

~ -

\\ a”
N "

~

* Scheduling diagram

queue =98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
[I— | [T | 11 [
I |

Look for a request before continuing to move in a given direction

Fewer head movements than SCAN/C-SCAN

Summary of scheduling algorithms

queue = 98, 183, 37, 122, 14, 124, 65, 67 queue = 98, 183, 37, 122, 14, 124, 65, 67 queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53 head starts at 53 head starts at 53
0 14 37 536567 98 122124 183199 0 14 37 536567 98 122124 183199 0 14 37 536567 98 122124 183199
| T il e i | | l i } |
f { f {
T b s
. B3
— -
“« >
— =0 L
' = et T,
— 1
- FCFS SSTF L SCAN
Queue = 98, 183, 37, 122, 14, 124, 65, 67 queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53 head starts at 53
0 14 37 536567 98 122124 183199 0 14 37 536567 98 122124 183199
| P il |
\ LN
B C-SCAN N C-LOOK
‘ e e
>y ~,
1 1
e R
- e
A .
e \\

SSTF outperforms FCFS, but may suffer from starvation

SCAN and C-SCAN perform better for heavy load systems,
and they are less likely to cause starvation

29

Selection of a scheduling algorithm

Disk Performance

File allocation method 5 .)
Number and Location of directories and

tvbes of requests Large sequential I/0O or index block d
yp q small random IO index blocks (metadata 1/0)

Implementing scheduling in OS is necessary to satisfy other constraints
(e.g., priority defined by OS)

Write disk scheduling as a separate module of the OS
Can be easily replaced with different alg. (default: SSTF/LOOK).

30

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID
- Erasure coding

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

SSDs are widely used

Advantages of flash-based SSDs: non-volatility, shock resistance,
high speed and low energy consumption;

33

* SSD components
— Multiple flash packages, controller, RAM

Multiple
Parallel

Host Elements
Interconnect

Flash Translation Layer
(Log-structured with
cleaning & wear-
leveling)

Controller
and Memory

SSD Controlier ++NAND Flash

SSD Controlier +-» DRAM
Host Computer ++SSD Controller

* Package > die/chip > plane > block > page

g
' I Serial Connection I

1

'

' pneo piae pne2 pises paneo pinet Pz pines
|| (Boao ot Bhook s Bhock s) ot Do s Bhookaton

1

P e N | [N | [Crmsen | || |[re] [N |
e R e | || | Trer e | || [e | || | T
' : B B s : s B s

' pagess e oy Crwes oy Fageas T [rwn
1

'

!

'

'

'

v || (o Frwm =T =Ty o Fwern = =Ty

| = | | e TR T | ||| e || e | || [[ome]
T L S L S) [e A N = |
i e el) | [reas | || | [raess 1| | | | | || |[pasess]
1

' TR Register
1

1

1 Die 0 Flash Package (4 GB) Die 1

Samsung K9XXGO8UXM (SLC) (2 dies, 4 planes, 2048 blocks, 64 pages)

floating gate (FG) control gate (CG)

Drain (D) Source ()

D
s

electrons
(a) (b)

(a) Floating gate memory cell and (b) its schematic symbol

* Each cell stores one bit (or multiple bits)
* Program operation can only change the value from 1 to O (erase
operation changes the value from 0 to 1)
— No overwritten
* The floating gate becomes thinner as the cell undergoes more
program-erase cycles
— Decreasing reliability

Flash Types

* NAND flash and NOR flash

— NAND flash: denser capacity, only allow access in
units of pages, faster erase operation

— Most SSD products are based on NAND flash

e NAND flash: SLC and MLC
— SLC: each cell stores one bit

* Longer life time, lower access latency, higher cost
— MLC: each cell stores two (or three) bits
* Higher capacity

37

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

* Read: in unit of pages (4KB)

dataread: 25 us

I Serial Connection I 1
1

'

Plane 0 Plane 1 Plane 2 Plane 3 Plane 0. Plane 1 Plane 2 Plane 3 L}
o ot Bhook s Bhock s) ot Do s Bhookaton '
1

[Ceweo e | [N | [Crmsen | || |[re] [N | '
[raeer [a1 | o | T | [N 1 B = [| [e 1
H 4 s H M H 4 H 1

[rwes | s]| || | rwe] [Cowes ||| Tows] s]| || |[Toea !
'

. . N . . . N . !

'

Fwm Frrym =T =Ty o Fwern = =Ty \
[eaeeo [e | [eaeo] [raeo | [ramo] [0 | [peeo | [ramo] '
[e [e | [raer] [raser | [raer | [e | [] [| H
¢ H : ¢ ¢ H : ¢ \

[s [ragees || || mee | || | e] [rwess | || | [pmess || | [T msem T[] | pagess | I
1

'

1

L}

Die 0 Flash Package (4 GB) Die 1 '

serial bus: 100 ps
>

* Write: in unit of pages (4KB)

program: 200 us
<

I Serial Connection I 1
1

'

Plane 0 Plane 1 Plane 2 Plane 3 Plane 0. Plane 1 Plane 2 Plane 3 L}
o ot Bhook s Bhock s) ot Do s Bhookaton '
1

[Ceweo ||| e] [N | [Crmsen | || |[re] [N | H
TN N | o | T | [N 1 B = [| [e 1
H 4 s H H H 4 H 1
oo ||| [Fwa] s]| || | rwe] oo ||| [wa] v]| || | rws] !
'

. . N . . . N . !

'

Fw— Fwyrn =T =Ty o Fwern = =Ty \
[eeeo] [[eeeo | [ramo] [ramo] [0 | [peeo | [ramo] '
[raer | [e | [raer] [raser | [raer | [e | [] [| H
¢ H : ¢ ¢ H : ¢ \

[ewes | [rwea | [reess] [e | [s | [rmwea | [Crmess] [raeas | '
1

'

1

L}

Die 0 Flash Package (4 GB) Die 1 '

serial bus: 100 ps

* Erase
— In unit of blocks (64/128 pages)
— Change all bitsto 1
— Much slower than read/write: 1.5ms

* Each block can only tolerate limited number of P/E cycles
— SLC: 100K, MLC: 10K, TLC (several K to several hundred)

* The number of maximum P/E cycles decreases when

— More bits are stored in one cell
— The feature size of flash cell decreases (72nm, 34nm, 25nm)

* Delete
— Simply mark the page as invalid

* Overwrite/update
— Does not support in-place overwrite

— Data can only be programmed to clean pages

* How about read-modify-write?

RMW may require a lot of read and write operations, so it is very slow

* Improve write performance degraded by RMW
— The OS also sends a TRIM command to SSD after delete pages

— Requires both OS and SSD to support

EEEEE——

TRIM e —

cache

‘\write back

cache

XM =]

TRIM avoids slow RMW operation during write, so it increases write performance

* How to further improve write performance?
— Address mapping is needed

* Page states
— Garbage collection is also necessary

free/clean

. it
* Flash translation layer e““V' \VA"E

invalid ‘ eupdate ‘ valid

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

* Three functionalities
— Address mapping
— Garbage collection

. | Applications |
— Wear-leveling T T T an
~
| File System |
l l 1 /0 withlogical sector number
| FTL (Flash Translation Layer) |
l 1 l /0 with physical sector number

| Flash Memory

Sector mapping

Block mapping

Hybrid mapping

Log-structured mapping

sector area spare area

o pon psn 0
o 12 pon 1 Block 0
Toon psn2
2 10 2
“write(9, A)” 3 o
l— 4 8 s } Block |
5 7
6 6
7 5 }
8 4 Block 2
——* 9 3
10 2
1" 1
) ® } Block 3
mapping table psn 15

flash memory

Mapping table is large: requires a large amount of RAM

The logical sector offset is the same with the physical
sector offset

sector area spare area
Ibn: logical block number
pbn : physical block number psn0
psn 1 Block 0
psn2
“write(9, A)” o — A Block 1
l o 3
1 2
L R I
offset: 1 bn: 1
3 o pbm Block 2
— offset: 1
mapping table T
} Block 3
psn 15

flash memory

Smaller mapping table

If the FS issues writes with identical Isn, many erases

* First use block mapping, then use sector mapping in

psn 0
psn | Block 0
psn2
— R
“write(9, AY" Ibn pbn 9
[3 Block 1
T2
Ibn:9/4 =2 ——> 2 1
Isn: 9 3 o pbn: 1
Isn: 9
mapping table Block 2
} Block 3
psn 15

flash memory

Small mapping table
Avoid a lot of erase operations

Longer time to identify the location of a page

<3
=)

Data blocks:

block mapping

o
5 Log blocks: sector mapping
o
pbn :
; (Isn, (pbn, off))
(Ibn, pbn)
o i (0,0)
® (1,2)
g | (2,1)
z (3,5)
obn T 3 BMT SMT
In Flash In RAM

<3
=)

Data blocks:

sy20|q e1eQ

(Ibn, pbn) (0, (4,0))

block mapping

Log blocks: sector mapping

(Isn, (pbn, off))

Multiol (0,0)
(1’2)
variants (2.1)

(3,5)

BMT

SMT

In Flash

In RAM

Short summary

* The performance of address mapping is
workload dependent
— Block mapping is suitable for sequential workloads
— Sector mapping is suitable for random workloads

— Log-structured mapping is suitable for workloads
with large sequential and small random requests

* Tradeoff exists

54

* Due to the existence of invalid pages, GC must
be called to reclaim storage
— Choose a candidate block
— Write valid pages to another free block
— Erase the original block

0 —> K
|
- /

3

e Tradeoff in GC design
— Efficiency: minimize writes
— Wear-leveling: erase every block as even as possible
— Tradeoff
— GCis considered together with wear-leveling

e Algorithms
— Greedy, random, and their variants
— Hot/cold identification

Other Technologies

« 3D NAND flash e

Memory Holes = "N Source Plate
Memory Cell

* Non-volatile memory (NVRAM)
— PCM, STTRAM, ReRAM, etc...
— Byte-addressable and non-volatile
— 3D XPoint

57

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure codes
- Problems with EC

~

_

Disks are slow

Performance

~

Reliability Aund o

One disk failure
incurs data loss

Fast and
reliable disks

are expensive

RAID Introduction

RAID: Redundant Array of Inexpensive (independent) Disks
// In the past \

» Combine small and cheap disks as a cost-effective
alternative to large and expensive disks

v’ Nowadays
» Higher performance
» Higher reliability via redundant data
» Larger storage capacity

v’ Many different levels of RAID systems
» Different levels of redundancy, capacity, cost... /

60

~

_

Sequential and random
read/write

Performance

Reliability Aund o

Tolerance of
disk failures

Data capacity/all
capacity

~

RAID O

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

K Block-level striping, no redundancy \

* Provides higher data-transfer rate

* Does not improve reliability. Once a disk fails, data loss
L may happen (MTTF: mean time to failure) J

62

RAID 1

g) e
ﬂ-low to improve reliability? \ RAID 1

* Data mirroring (RAID1)

v Two copies of the data are held
on two physical disks, and the
data is always identical.

v’ Replication

* High storage cost
v" Twice as many disks are required
to store the same data when
compared to RAID 0.

v" Even worse storage efficiency
with more copies

Disk 1 Disk 2

63

Combinations

RAID 0+1
RAID 1

r— 1
RAID O RAID O
* RAID 0 provides reliability and Ty Dy
RAID 1 provides reliability % % % %
] (G (T (e
« RAID 0+1 (RAIDO1) . - ' '

v First data striping
v’ Then data mirroring

9 4

Disk 0 Disk 1 Disk 2 Disk 3

Same storage
cost as RAID 1

64

Combinations

* RAID 0 provides reliability and
RAID 1 provides reliability

* RAID 0+1 (RAIDO1)
v First data striping
v Then data mirroring

* RAID 1+0 (RAID10)
v’ First data mirroring
v’ Then data striping

- D/

RAID 1+0
RAID 0

RAID 1 RAID 1

bkl
[kl

Disk 0 Disk 1 Disk 2 Disk 3

Same storage cost

(bl
(el

a

5

RAID 0+1 RAID 1+0
RAID 0O RAID 0 RAID 1 RAID 1
O BHiE 8 &&=
e s B e
JO 08 00 OC

Both suffer from high storage cost

RAID 4

* Balance the tradeoff between
reliability and storage cost?
* Redundancy with parities

* Parity generation: Each parity
block is the XOR value of the
corresponding data disks

* Block-level data striping
* Data and parity blocks are
distributed across disks
* Dedicated parity disk

\Qny problem? /

RAID 4
'Y Ay D A
T
o000

Ap = AIQA2®A3

67

How

to update data

v

-

=

* Suppose Al will be updated
to A1’

* Both Al and Ap need to
be updated
* Read-modify-write (RMW)

>

RAID 4

'Y Ay D A
T
o000

Disk 0 Disk 1 Disk 2 Disk 3

RMW: 4, = A,®A1®A1’

A, = A1QA2QA3QA1RQA1
= A2QA3RA1’

68

How to update data

KSuppose Al will be updated)

Al’
* Both Al and Ap need to
be updated
* Read-modify-write (RMW)

* How about updating both Al
and A2 simultaneously?
* RMW?
* Read-reconstruct-write
(RRW)

\:election of RMW/RRW /

RAID 4

'Y Ay D A
T
o000

Disk 0 Disk 1 Disk 2 Disk 3

RRW: A}, = A3®@A1'®A2'

Both RMW and RRW incur
extra reads and writes

69

Problems of RAID 4

=

* Disk bandwidth are not fully
utilized
* Parity disk will not be
accessed under normal
mode

¢ Problems of RAID 4

* Parity disk may become the
bottleneck

* E.g., updating A1, B2, C3

RAID 4

'Y Ay D A
T
o000

Disk 0 Disk 1 Disk 2 Disk 3

Read: Al, B2, C3, Ap, Bp, Cp
Write: A1’ B2, C3’, Ap’, Bp’, Cp’

70

RAID 5

v

¢ Similar to RAID 4

* One parity per stripe

* Key difference

e RAID 5 is an ideal combination of

* Uniform parity distribution

* good performance
* good fault tolerance

* high capacity
* storage efficiency

=

4

RAID 5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

AP = A1®A2®A3®A4

Ep = E1$E2$E3®E4

Parity update overhead still
exist

71

RAID 6

a pp—

CYy D DY Yy 'y
T T
* How to tolerate more disk Lo | Lo Lo oy o
s CHESE

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

* RAID-6 protects against two disk
failures by maintaining two Ap = A, @A, DA DA,
parities

Ay = A1 ®ct A, BCc? A3 DA,

* Encoding/decoding operations:

» Based on Galois field

Parity update overhead
k J becomes larger

72

RDPCode
e)
p A4 4 -

> ggl4 do,5

—d43— di,5
3 —der—d& d2,5
e d3:2 : : P EX:]

/

)

> Erasure codes

+ Different redundancy levels
+ 2-fault tolerant: RDP, EVENODD, X-Code
+ 3-fault tolerant: STAR
* General-fault tolerant: Cauchy Reed-Solomon (CRS)

» Generate m code blocks from k data blocks, so
as to tolerate any m disk failures

P
N ——————

C 3 O >
o

» The motivation to introduce erasure codes in
large-scale storage systems

L The need to reduce the tremendous cost of storage J

> In practice, erasure codes have seen widely
deployment
* Google File System [Ford, OSDI'10]
* Windows Azure Storage [Huang, ATC'12]
» Facebook [Borthakur, Hadoop User Group Meeting 2010]

Topics

- Problems with RAID/EC
Optimizing parity updates
Recovery
Asynchronous coding

SSD RAID

* RAID provides device-level fault tolerance

— Each stripe contains data and parity

)) 3 /3
* Limitation: Parity updates D, 2 2 [E
Dy || LA (L2

* Update D, to D’

2.]
— Update data -> update parity D]
L]
]

« RMW: P} = Py@®D,®D,’

* RRW: Py = Do®D, ®D, sspo| |sspi| |ssp 4 [ssD 3
— Extra l/Os and GC — T T ——
Parity chunks:
Py = Dy@®D;®D,
* SSD RAID oo

— Parity update influences both performance and endurance

77

* Design trade-off in SSD RAID arrays
— RAID improves reliability

— Parity updates incur extra I/Os and GC operations
* Degrade performance and endurance

How to address the parity update overhead?

* Original Parity logging
— Incoming reqs: {4, By, Co },{A1, B1, C1 }, {By', Co', A1'}

swipeo [20] [B] [60] [ro] | [Boveoscnron

..

svon 1 [1] o] [o] | [

..

SSD RAID-5 Log Device

* Drawbacks
— Pre-read: Extra reads
— Per-stripe basis: Extra log chunks; Partial parallelism

Our solution:

mwmﬁﬁm

mmﬁmn@

BO'+CO’+AT’

No pre-read
Full parallelism
(Elastic)

S$SD RAID-5

Log Device

EPLOG

—— No pre-read
> Full parallelism <
Stripe 1 (Elastic)
A1

88D RAID-5 Log Device

* Benefits of EPLOG
— General RAID
High endurance: Reduce parity writes to SSDs
— High performance: Reduce extra I/Os
— Low-cost deployment: Commodity hardware

v Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu. "Elastic Parity Logging for SSD RAID
Arrays." |EEE/IFIP DSN (Regular paper), Toulouse, France, June 2016.

v" Helen H. W. Chan,Yongkun Li, Patrick P. C. Lee, and Yinlong Xu."Elastic Parity Logging for SSD RAID
Arrays: Design, Analysis, and Implementation.” IEEE TPDS, volume: 29, issue: 10, Oct. 2018.

81

Topics

- Problems with RAID/EC
Optimizing parity updates
Recovery
Asynchronous coding

»Recovering disk failures is necessary
*Preserve the required redundancy level

» Single-disk failure recovery

*Single-disk failure occurs more frequently than a concurrent multi-
disk failure

S > doa4

T —dﬂ——:@:#
= —Q@— : (D
/

Suppose Disk 1 fails. How do we recover Disk 1 efficiently?

 Traditional method: only use row blocks for repair.

Disk Free

9
(%]
~
9
w
~
g
[
=
g
w
~

oPP|gl-
RIRR| |-
opp|o-t
opPo-
opPRo-¢
DD D D

©Example: do,1= doo®do®do 3®do,4
®Need read (p-1)?=16 blocks

Optimize Recovery Performance

* Recovery choices: row blocks or diagonal blocks

Disk | Disk | Disk | Disk | Disk | Disk Disk | Disk | Disk | Disk | Disk | Disk
0 1 2 3 4 5 0 1 2 3 4 5
OPs | 0|00 e

S I

U5 U5 |

B A

Repair d, ; from row blocks Repair d, ; from diagonal blocks

* Recover Disk 1.

Failure blocks ~ Recover choices D(')Sk D'ZS" D';k ka DE"
do1 diagonal
d;, diagonal

d, row ()
ds, row Q

QoD
QOO

Duplicate data block

o (FF] 2

*

% The four blocks are repeated twice.
+» Result: Need read 16-4=12<16 block for recovery.

Xiang, L., Xu, Y., Lui, J., Chang, Q. “Optimal recovery of single disk failure in RDP code storage
systems”. ACM SIGMETRICS 2010.

Hybrid Recovery

Previous approach leverages the code property,

\\‘7

but not change the code

~

S

Alternative approach

Can we design new codes which benefit the
recovery performance?

Yes! Our solution: OI-RAID

~

J

87

OI-RAID: An Example

Group G, Group G, Group G, Group G, Group G, Group G Group Gg
—r — —r —r — — —
DO D1 DZ D3 DA DS DS D7 DB DQ DlO Dll D12 D13 DlA D15 DlG D17 DIE D19 DZU

—————— 1

Region

» Divide 21 disks into 7 groups
» Divide each disk into 9 storage units

» Form aregion with every 3x3 storage unit array in a group

38

Group Gn Group G1 Group G, Group Gy Group G,

A A

Dy Dy Dy D, D3 Dy

Group Gg

——
Dis Dy Dy

D, D, D, D, D, D Dg D; Dy

Group Gg
—r
Dlﬂ DlS DZO

» Group regions into region sets based on BIBD
» (7,7,3,3,1)-BIBD:
Tuple TO: O, 2, 6 TupleT1l: O, 1, 3 TupleT2: 1, 2, 4 TupleT3: 2, 3, 5
Tuple T4: 3, 4, 6 TupleT5: 0, 4, 5 TupleT6: 1, 5, 6

OI-RAID: An Example

Group G, Group G; Group G, Group G; Group G, Group Gg Group Gg
— — — — — — —
DD D1 DZ Dﬁ D4 D5 Da D7 DB DQ DlD Dll D12 D13 D14 D15 DlE D17 DIB D19 DZD
0 1 2 6 7 8 0 1 2 6 7 8 12| 13| 14 181191 20 0 1 2
B 4 5 111 9|10 5 5] 4 01119 16| 17| 15 222321 4 5 3
6 7 8 121 13| 14 1213|114 18] 19| 20 241 25| 26 30]31]32 241 25| 26
9 10|11 1516 | 17 17115 16 23|21 22 29| 27| 28 3413133 28| 29| 27
30|31]32 36|37] 38 18] 19] 20 241 25| 26 3031132 36|37]38 36|37] 38
33134135 39401 41 21122123 27| 28| 29 35]33] 34 41] 39 | 40 40 | 41] 39

» Inner layer code: NAENEN > Outer layer code
. . . 3\ 21\ \& N Y 1 1 1
« RAID5 within a region ™ RAIDS5 within a region set
. . N N 1]
along the diagonal line t=— i

The two layer code makes OI-RAID tolerate three arbitrary disk failures

Single Failure Recovery

Group G, Group G, Group G, Group G, Group G, Group Gg Group Gg¢
— — — — — —
D, D, D D; D, Ds D D; D Dy Dy D;; Dz Dy D5 Dig Dy Dy D1y Dy
0 1] 2 6 7 8 0 1] 2 6 7 8 12113 |14 18119] 20 0 1 2
3141]5 1] 9|10 53] 4 1011] 9 16 | 17 | 15 2|123|21 415 3

6171]8 12113)14 12|13] 14 18 | 19| 20 24125 26 30|31 32 241251 26
9110|111 15|16 | 17 171 15] 16 23| 21|22 29 | 27 | 28 34]13]33 28 |29 27
30 |31 32 36 | 37 | 38 18119] 20 24 |1 25] 26 30 | 31] 32 36| 37| 38 36 | 37 | 38
33]134|35 39 |40 | 41 21| 22| 23 27 | 28 | 29 35|33 |34 41139 | 40 40 | 41| 39

91

Single Failure Recovery

Group Gy Group G, Group G, Group G, Group G, Group Gy Group Gg
—r — —r — — —
DO D1 DZ DC! DA DS DS D7 DE DlO Dll D12 D13 DlA D15 DIG D17 DlE D19 DZU
0 1 2 6 7 8 0 1 2 7 8 1213|114 18 | 19 | 20 0 1 2
314]5 119 |10 513]|4 1] 9 16 | 17 | 15 22 (23|21 415]3

6 7 8 12]113] 14 12113] 14 19120 24 | 25 | 26 30|31]32 24 | 25 | 26
9 f10 | 11 15| 16 | 17 17| 15 | 16 21| 22 29 | 27 | 28 34135133 28|29 | 27
30| 31|32 36 | 37 | 38 18] 19| 20 25 | 26 30| 3132 36 |37]38 36 | 37 | 38
3334135 39|40 | 41 21|22 | 28 28 | 29 35|33 34 41139 | 40 40 | 41| 39

> To rebuild the 6 failed data units in disk Dg
* OI-RAID reads only one unit from each surviving disk
v" Neng Wang, Yinlong Xu, Yongkun Li, and Si Wu. "OI-RAID: A Two-layer RAID Architecture Towards Fast
Recovery and High Reliability." IEEE/IFIP DSN, Toulouse, France, June 2016.

v Yongkun Li, Neng Wang, Chengjin Tian, Si Wu, Yueming Zhang, Yinlong Xu.“A Hierarchical RAID
Architecture Towards Fast Recovery and High Reliability.” IEEE TPDS, 29(4) , pp. 734 - 747, April 2018.

92

Topics
- Problems with RAID/EC
- Optimizing parity updates
- Recovery
- Asynchronous coding

P
N ——————

D

(2
. P
(2 =] -->g

* Replication has better read throughput while erasure
coding has smaller storage overhead

* In practice:

— Data will be frequently accessed in a short time
— Replication to erasure coding

Clustered File System

Core Switch

Cross rack traffic

Cross-rack access typically takes longer time

95

Dynamic Stripe Construction

How to reduce/eliminate cross-rack traffic?

Rack1 Rackz2 Racks Racka
] @ I m
= =

» Encoding speed increases by up to 81%
» Improve frontend map-reduce tasks by 16.4%

Shuzhan Wei, Yongkun Li¥*, Yinlong Xu, and Si Wu. "DSC: Dynamic Stripe Construction for Asynchronous
Encoding in Clustered File System." IEEE INFOCOM, Atlanta, USA, May 2017.

96

* Recovery in heterogeneous systems
* Storage system scaling

Hybrid system design
— HDD+SSD
— NVRAM

Leveraging SSDs in various systems

Data consistency

[RiskStiuctuze] v’ Cylinder, Track, Sector: CLV, CAV
v' Access time
{ Disk Scheduling] v' FCFS, SSTF, SCAN/C-SCAN, LOOK/C-LOOK

SSD Structure v’ Structure and features
v’ Operations (read/write/erase/GC)

SSD Features/Issues

RAID

. v RAID structures (RAIDO, 1, 4, 5, 6)
Erasure Coding R it lpdate

Research Problems

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Chapter 9, part 1
File Systems — Programmer Perspective

User Space

Processes

File system
Implementation

FAT32, EXT2/3
KV, Distributed FS,
Graph System...

File System Operations

* File system introduction

* What are stored inside a storage device?
— File
— Directory
— Interfaces/Operations

* How are the data stored?

— File system layout

File system introduction

Introduction

fopen() fread() fwrite() fclose()
open() read() write() close()

NTES- Exté.‘r-. FAT3.2.- 1S09660- Kernel
specific specific specific specific Functions
functions functions s functions

Operating System Kernel FS Operations

e To understand what a file system (FS) is, we follow
two different, but related directions:

Devices

- Layout & Operations.

User space

Operating System Kernel FS Operations
The layout.

Devices

Process A

Every FS has an unique layout on the
storage device. The layout defines:

- What are the things stored in the device.
- Where the stored things are.

Operating System Kernel FS Operations

The layout.

Devices \ -

The set of FS operations defines how the OS
should work with the FS layout.

In other words, OS knows the FS layout
and works with that layout.

Operating System Kernel FS Operations

The layout.

Devices \ -

The process uses system calls, which
then invoke the FS operations, to access
the storage device.

* Ask yourself:
- 0SS =FS?
— Correct answer: OS #FS
—An OS supports a FS

* An OS can support more than one FS.
* AFS can be read by more than one OS.

Introduction

» Ask yourself:
— Storage Device = FS?

— Correct answer: Storage Device # FS.

* AFS must be stored on a device.
— But, a device may or may not contain any FS.

— Some storage devices can host more than one FS.

» A storage device is only a dummy container.

— It doesn’t know and doesn’t need to know what
FS-es are stored inside it.

— The OS instructs the storage device how the data
should be stored.

11

Outline of topics

» There are two basic things that are
stored inside a storage device, and are
common to all existing file systems.

What are they?

— They are Files and Directories.

— We will learn what they are and some
basic operations of them.

12

Outline of topics

» There are two basic things that are
stored inside a storage device, and are
common to all existing file systems.

How does a FS store data into the disk?
— That is, the layout of file systems.

— The layout affects many things:
* The speed in operating on the file systems;
» The reliability in using the file systems;

* The allocation and de-allocation of disk spaces.

13

Outline of topics

» Other topics

— We will look into the details of FAT32 and
Ext2/3 file systems.

— Case studies: key-value systems, distributed
file systems, graph storage systems

14

Partl: FS - Programmer Perspective
- File
- Operations
- Directory

File

* Why do we need files?

— Storing information in memory is good because
memory is fast.

— However, memory vanishes after process termination.

— File provides a long-term information storage.
* Itis persistent and survives after process termination.

— File is also a shared object for processes to access
concurrently.

16

File

* What is a file?

— A uniform logical view of stored information
provided by OS.

— OS perspective: Afile is a logical storage unit (a
sequence of logical records), it is an abstract data type

— User perspective: the smallest allotment of logical
secondary storage

— File type (executable, object, source code, text,
multimedia, archive...)

— File attributes

— File operations

17

* E.g., atextfile.

hello_world'\n'

test.txt

What can we find out in this example?

Content? Content of the file
Filename? Content of its parent directory
File size? Attribute of the file

When a file is named, it becomes independent of the
process, the user, and even the system

« Typical file attributes

Name Human-readable form

Identifier Unique tag (a number which identifies the file within the FS)
Type Text file, source file, executable file...

Location Pointer to a device and to the location of the file on the device
Size Number of bytes, words, or blocks

Time, date Creation, last modification, last use...

Protection Access control information (read/write/execute)

You can try the command “Is -|”

« Typical file attributes

Name Human-readable form

Identifier Unique tag (a number which identifies the file within the FS)
Type Text file, source file, executable file...

Location Pointer to a device and to the location of the file on the device
Size Number of bytes, words, or blocks

Time, date Creation, last modification, last use...

Protection Access control information (read/write/execute)

Some new systems also support extended file
attributes (e.g., checksum)

+ File attributes are FS dependent.
— Not OSdependent.

Common Attributes FAT32 | NTFS Ext2/3/4

Name

Size v v v
The design of FAT32 Permission v v
does .not. |ncIuc!e any Owner v v
security ingredients.

Access, creation, v v v

modification time

File Permissions

* E.g., in Unix system

-rW-FW-I-- 1 pbg staff 31200 Sep 308:30 intro.ps

drwx------ 5 pbg staff 512 Jul809.33 private/
drwxrwxr-x | 2 pbg staff 512 Jul809:35 doc/
drwxrwx--- | 2 jwg student 512 Aug 3 14:13 student-proj/
-rW-r--r-- 1 pbg staff 9423 Feb 24 2012 program.c

-PWXF-Xr-X 1 pbg staff 20471 Feb 24 2012 program
drwx--x--x | 4tag faculty 512 Jul3110:31 lib/
drwx------ 3 pbyg staff 1024 Aug 29 06:52 mail/
drwxrwxrwx | 3pbg staff 512 Jul809:35 test/

First field: File/director

2nd /3rd /4t fields (3 bits each): controls read/write/execute
for the file owner/file’s group/others (e.g., 111:7,110:6)

What is the meaning of the permission 775/664?

22

* Can you change those attributes directly?

Common Way to change them?

Name mv rename()

Size Too many tools to write(), truncate(),
update files’ contents etc.

Permission chmod chmod ()

Owner chown chown ()

Access, creation, touch utime()

modification time

 Afile can be referred to by its name,
then how to achieve this?

The directory that The filename
“test.txt” resides in

X s
/home/os/test.txt «——| The pathname

The pathname is unique within the entire file system.

The filename is not unique within the entire file system.

The filename is only unique within the directory that it resides.

* Why do we need to consider uniqueness?

The OS kernel translates the pathname
| into a set of data addresses on the device.

That means the pathname is the key!
If the pathname is not unique, how come

the OS can successfully find the data
needed?

Partl: FS - Programmer Perspective
- File
- Operations
- Directory

fclose() Library Calls
close() System Calls

fopen() fread() fwrite()

read() write()

open()

NTES. Ext4- FAT32- 1S09660- Kernel

specific spec-ific spec_ific specific Functions
EEmnE functions | functions SUmE e

* What is fopen()?
— First thing first, fopen () calls open().
— FILE *fopen(const char

*filename, const char *mode) Return 3
* What is the type “FILE”? open()
— “FILE”: a structure defined in “stdio.h”. —
— fopen() creates memory for the “FILE”
structure. ﬂ

* Fact: occupying space in the area of i
dynamically allocated memory, i.e., malloc()

What is inside the “FILE” structure?
* There is a lot of helpful data in FILE:

— Two important things: the file descriptor and a buffer!

int main(void) {
printf("fd of stdin %d\n", fileno(stdin));
printf("fd of stdout = %d\n", fileno(stdout));
printf("fd of stderr = %d\n", fileno(stderr));
: i\

$./fileno
fd of stdin
fd of stdout

fileno() returns the file descriptor of the FILE structure.

The type of stdin, stdout, and stderris “FILE *”

fd of stderr
$

29

File operations

* The operating system should provide...

Create . .
Allocate space, add an entry in the directory

Write]]]]
Filename, file content (write pointer)

Read . . .
Filename, mem location (read pointer)

Reposition |] .
File seek (not involve actual 1/0), required for random accesses

Delete .
Release space, and erase directory entry

Truncate
Keeps attributes only

ittt

30

File operations

* Many operations involve searching the directory for
locating the file (read/write/reposition...)

— Can we avoid this content searching???

‘ Open-file table i

An open() system call is provided, and it is called before a file is
first used

OS keeps a table containing information about all open files (per-
process and system-wide table)

The file will be closed when it is no longer being actively used,
using close() system call

31

Step (4) The OS then
associates the attributes to
a number and the number is

Step (5) The OS returns called the file descriptor.

the file descriptor to the

process. Kernel

Step (3) The disk returns
the file attributes.

Process

Step (1) The process Step (2) The OS looks
supplies a pathname to for the file attributes of
the OS. the target file in the disk.

| Note: these steps are OS-independent as well as FS-independent. |

Step (4) The OS then

[3

Step (5) The OS returns
the file descriptor to the
process.

:
i Note:

Opening a file only involves the
pathname and the attributes of
the file, instead of the file content!

FS vUperations

Step (1) The process Step (2) The OS looks
supplies a pathname to for the file attributes of
the OS. the target file in the disk.

| Note: these steps are OS-independent as well as FS-independent. |

Step (2) The OS reads the file attributes and
uses the stored attributes to locate the

Step (1) The process
supplies a file descriptor to
the OS.

required data.

Step (3) The disk returns the

«| data required data.
——
- File data is stored in a fixed
FS Operations

size cache in the kernel.
nel
he

Step (4) The OS fills the buffer provided
by the process with the data. Write data to
the userspace buffer.

What is a file descriptor?
T N

Process B

e N

Process A

.... - tlersr::’iptor file descriptor
45

array

See? A file descriptor is

just an array index for
each process to locate
its opened files.

Jeeees Open-file
Table

Although a file is opened by two different processes,
the kernel uses one structure to maintain it!

35

How about read and write (read()
and write() system calls)?

Library calls that eventually invoke the

read() system call

scanf(), fscanf()

getchar(), fgetc()

gets(), fgets()

fread()

Library calls that eventually invoke the
write() system call

printf(), fprintf()

putchar(), fputc()

puts(), fputs()
fwrite()

* You know, I/O-related calls will invoke system calls.

int | read (|int fd, | void *bgffer, int bytes_to_read)
int | write ((int fd, | void *buffer, |int bytes_to_write)

From buffer to file.

| Note: | modified the function prototypes.

FS-specific

functions

Step 1.

- Check whether the end of the file is reached or not.
[Comparing size and file seek.]

File Runtime
attributes attributes

Step 2. Reading data

Step 3.
Step 4.

Write data to the

- File data is stored in a fixed size cache in the kernel.
userspace buffer.

FS-specific

Kernel cache

File
functions = attributes

Runtime
attributes

write() 3 pIEpE

The call returns.

Step 1.
Write data to the
kernel buffer.

2 Kernelcache 5

—

v y
File Runtim
| attributes attributes

Step 2.

According to the data length,

(1) change in file size, if any, and
(2) change in the file seek.

_

Step 4.
1

The buffered data will be flushed to

the disk from time to time.

2 Kernelcache 5
— y
o 4 File Runtim
FS-specific . .
£ . attributes attributes
unctions \

The kernel buffer cache implies...

* Performance
— Increase reading performance?
— Increase writing performance?

e Problem

— Can you answer me why you cannot press the reset
button?

— Can you answer me why you need to press the “eject”
button before removing USB drives?

42

* Every file has its unique pathname.

— Its pathname leads you to its attributes and the file
content.

' File Content

Afile has two important components! Plus,
there are usually stored separately.

» We only introduce the read/write flow:
— File writing involves disk space allocation; but...

— The allocation of disk space is highly related to the
design of the |layout of the FS.

— Also, the same case for the de-allocation of the disk
space...

Partl: FS - Programmer Perspective
- File
- Operations
- Directory

* Adirectory is a file.

— Then, does it imply that it has file attributes and
file content? I

;

| Answer: Sure |

| Answer: FS dependent

* How does a directory file look like?

An directory entry |

A directory file is an

array of directory
entries.

Program files

pagefile.sys
¥

Directory Name of
entry the stored
structuzre file

« How to locate a file using pathname?

Step (1) Suppose that the process
wants to open the file “/bin/1s”.

Step (2) The OS retrieves
the directory file of the
root directory /’. L

The process then supplies the OS the
unique pathname “/bin/1s”.

Process Step (3) The disk returns
the directory file.

FS Operations
P
[|

file:/

« How to locate a file using pathname?

Step (4) The OS looks for the
name “bin” in the directory file.

Step (5) If found, the in the OS
retrieves the directory file of
“/bin” using the information of
the file attributes of “bin”.

Process

]
|__bin__|
]
[
FS Operations

file: /bin

« How to locate a file using pathname?

Step (6) The OS looks for the name “1s” in

the directory file “bin”.

If found, then the OS knows that the file “/bin/1s”
is found, and it starts the previously-discussed —
procedures to open the file “/bin/Is

Process

» Adirectory file records all the files including
directories that are belonging to it.
— So, do you understand “/bin/1s” now?
— Locate the directory file of the target directory and to print
contents out.

* Locating a file requires the directory traversal
process:
— open afile;
— listing the content of a directory.

» According to your experience, what is the
file creation?
— E.g., creating a file named “test. txt’?
* “touch test.txt’?
* “vim test.txt’, then type “:wq’?
* “cp [some filename] test.txt’?

* The truth is:
File creation == Update of the directory file

File Creation and Directory

e If | type “touch text.txt” and “text.txt” does not exist,
what will happen to the Directory file?

Note: “touch text.txt” will only create the directory entry,
and there is no allocation for the file content.

Directory file: “/home/os” I

score_sheet.xls

score_sheet.xls midterm_marks.xls
midterm_marks.xls final_exam_paper.pdf

final_exam_paper.pdf

text.txt

—| A new directory entry is created. i

52

File Deletion and Directory

* Removing a file is the reverse of the creation process.

— Note that we are not ready to talk about de-allocation of
the file content yet.

| Directory file: “/home/os”

score_sheet.xls score_sheet.xls
midterm_marks.xls midterm_marks.xls
final_exam_paper.pdf final_exam_paper.pdf

text.txt

53

Updating directory file

« When/how to update a directory file?

syscall - mkdir ();

C i] il
reating a directory file Example program - mkdir.

Add an entry to the syscall - open (), creat ();

directory file Example program - cp, mv, etc.

RN VR RV Syscall - unlink ();
directory file Example program - rm.

syscall - rmdir ();
Example program - rmdir.

Remove a directory file

54

Summary of part 1

* In this part, we have an introduction to FS
— File and directory
— The truth about the calls that we usually use,

— We learned: The content of a file is not the only entity,
but also the file attributes.

* In the next part, we will go into the disk:
— How and where to store the file attributes?
— How and where to store the data?
— How to manage a disk?

55

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Chapter 9, part2
File System Layout

. Questions.
operations * Can | read back what I've written?
* Can | get back free space when | remove a file?

* How much space is consumed when | create a 1GB file?

You’re given a disk of 1TB space. How to utilize it?

Allocated
Space

File content &

attributes

Space
Things need to be stored.

* We briefly introduce the evolution of the file system
layout:
— From a dummy way to advanced ways.
— The pros and cons are covered.

* We begin to look at some details of the FAT file
system and EXT file system

How to store data?

« Consider the following case:
— You are going to design the layout of a FS.

— You are given the freedom to choose the locations
to store files, including directory files.

— How will you organize the data?

0 100GB

How to store data?

» Some (basic) rules are required:

— Every data written to the device must be able to be retrieved.
* Would you use the FS that will lose data randomly?

— Every FS operation should be done as efficient as possible.

» Would you use the FS if it takes a minute to retrieve several bytes of
data?

— When a file is removed, the FS should free the
corresponding space.

* Would you use the FS if it cannot free any occupied space?

0 100GB

File System Layout

Trial 1.0
The Contiguous Allocation

» Just like a book!

Table of content

Chapter 1
Chapter 2
Chapter 3

Book VS Trial #1

Book Trial #1
Chapter Filename
Starting Page Starting Address
NIL Ending Address

» Just like a book!

Suppose we have 3 files to store

rock.mp3
sweet.jpg
same.exe

We do not consider the directory
structure at this moment

Book VS Trial #1

Book Trial #1
Chapter Filename
Starting Page Starting Address
NIL Ending Address

Like a book, we need to some space to
store the table of content, which records
the filename and the (starting and ending)
addresses of the file content.

» Just like a book!

| The table of content! |

Book V. al #1
Book Trial #1
Chapter Filename
Starting Page Starting Address
NIL Ending Address
Filename Starting Ending
Address Address
rock.mp3 0 2000
sweetipg | 2001 456 File attributes
game.exe | 5000 5678 | —

» Just like a book!

Contiguous allocation is very similar to the
way we write a book. It starts with the table of

| The table of content! | content, which we call the root directory.

Filename Starting Ending

Address Address

rock.mp3 0 2000
sweetipg | 2001 456 File attributes
game.exe | 5000 5678 | —

You can locate files easily (with a directory sturcture).

But, can you locate the allocated space and the free
space in a short period of time?

Filename Starting Ending F ish
Address Address EIESIS P A EElISIENER
rock.mp3 0 2000
sweol .p Sl | e | But, it needs an O(n) search, where n
= e is the total number of files.
game.exe 5000 5678

What if the disk is large and
the files are small?

sweet.jpg game.exe

File deletion is easy! Space de-allocation is the same as
updating the root directory!

Yet, how about file creation?

Filename Starting Ending

Filename Starting Ending

Address Address
Address Address

rock.mp3 0 2000

— — — rock.mp3 0 2000
= — — game.exe | 5000 5678
game.exe 5000 5678

game.exe

» Suppose we need to write a new, but large file?

Really BAD! We have enough space, but there is no
holes that | can satisfy the request. The name of the
problem is called:

External Fragmentation

Any solution?

Can’t be written!

game.exe

* The defragmentation process may help.

Filename Starting = Ending Filename Starting Ending

Address Address Address Address

rock.mp3 0 2000 rock.mp3 0 2000
game.exe | 5000 5678 game.exe | 2001 2679
ubuntu.iso 2680 6000

Very expensive (think
about the disk structure)

« Comment:
— Also, the growth problem...there is no space

for files to grow.

Growth problem!

Can you suggest any method?

e

Too crowded! | need
to be relocated in
order to grow.

* This kind of file systems has a name called the
contiguous allocation.

 This kind of file system is not totally useless...
— The suitable storage device is something that is...
— read-only (just like a book)

« Can you think of any real life example?

— Hint #1: better not grow any files.
— Hint #2: OK to delete files.

— Hint #3: better not add any files; or just add to the
tail.

— 1S09660.

File System Layout

Trial 2.0
The Linked List Allocation

* Lessons learned from Trial 1.0:

— File Size Growth:

— Can we let every file to grow without paying an
experience overhead?

— External fragmentation:
— Can we reduce its damage?

* One goal
— To avoid allocating space in a contiguous manner!

e How?
— The first undesirable case in trial 1.0 is to write a
large file (as it may fail or need defragmentation)

— So, can we write small files/units only?
* For large files, let us break them into small pieces...

H Root
- Directory]

e How?
— The second undesirable case in trial 1.0 is when
file grows (as it needs reallocation)

— So, how can we support dynamic growth?
* Let’s borrow the idea from the linked list...

Too crowded! | need
to be relocated in
order to grow.

* Linked list allocation...

— Step (1): Chop the storage device into equal-
sized blocks.

Root
Directory

-

1 11 21 30

* Linked list allocation...

— Step (2): Fill the new file into the empty space in a
block-by-block manner.

ubuntu.iso

* Linked list allocation...

— Step (3): The root directory...
* becomes strange/complicated.

Since a directory file is an
array, itis difficult to pretend
to be a linked list....

Filename Sequence Sequence
of Block # of Block #

Can we have a better

rock.mp3 1-6 NULL
game.exe 19-25 NULL solution to optimize
ubuntu.iso 7-18 26-27 the directory?

» Let’s borrow 4 bytes from each block.

— To write the block # of the next block into the first
4 bytes of each block.

— Real linked list EREE

How does the root

directory look like?

......

¥ vy ¥

Root
Directory
*

1 11 21 30

» Let’s borrow 4 bytes from each block.

— To write the block # of the next block into the first
4 bytes of each block.

— Real linked list EREE
Filename First
Block #
rock.mp3 1 y
a N i
game.exe 19 T T -
ubuntu.iso 7 _f /\F‘ (’\:Jt”a;_

Root
Directory
*

1 11 21 30

* Note that we need the file size stored in the
root directory because...

— The last block of a file may not be fully filled.

Filename First File Size
Block #

rock.mp3 1 600M

game.exe 19 2000M

ubuntu.iso 7 700M

H Root
— Directory
*

1 21 21 30

« One more thing: free space management.
— Extra data is needed to maintain a free list.

We can also maintain
the free blocks as a
linked list, too.

..............
.........

.......

Y iviy

e - 0
Root
Directory
*

1 21 30

* Pros:

External . Free block
fragmentation Files can grow management is
. and shrink freely. .
problem is solved. easy to implement.

« Cons:

— Random access performance problem.
* The random access mode is to access a file at random locations.

— The OS needs to access a series of blocks before it can
access an arbitrary block.

* Worst case: O(n) number of 1/0 accesses, where n is the number of
blocks of thefile.

Accessed blocks Target block

f"____'A_____—\ l

Root
Directory]

» Cons (recall why we record file size?):

— Internal Fragmentation.
» Afile is not always a multiple of the block size
* The last block of a file may not be fill

completely. Last block
of afile

— This empty space will be wasted since
no other files can be allowed to fill such

space.

2 Root
irectory
*

NEGEGEE

1 21 30

« Can we further improve?

— We know that the internal fragmentation problem
Is here to stay.

— How about the random access problem?

* We are very wrong at the very beginning...decentralized
next block location

The information about the next block should be centralized

* The only difference between 2.1 and 2.2...

Trial 2.1

Root
irect

All the information about the next
block #s are centralized, and it is

Trial 2.2

called FAT.
File
Allocation L
Directory|
Table (FAT)

[Task: read “ubuntu.iso” sequentially.]

Filename First
Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7

Block # 1({... 6| 7 |..| 18| 19 |...|25| 26 | 27 | 28 | 29 | 30
—
NodeEeies 2| ...l O 8 (... 26| 20 |...| O | 27 0 29 | 30 0

Root
Directory

File
Allocation
Table (FAT)

11 21 30

[Task: read “ubuntu.iso” sequentially.]

Filename First Step (1). Look for the first block # of the file.
Block #

Step || rock.mp3 1
(1) game.exe 19

ubuntu.iso 7

Block # 1] ... 6| 7 [..[18| 19 |...| 25| 26 | 27 | 28 | 29 | 30
Nodi=lemed 2| ..l O 8 (... 26|20 |...{] 0|27 | O [29| 30| O

File
Allocation
Table (FAT)

Root
Directory

| 11 21 30

[Task: read “ubuntu.iso” sequentially.]

Filename First Step (2). Read the file allocation table to
Block # determine the location of the next block.

step | rock.mp3 1
(1) game.exe 19
ubuntu.iso 7 The next block of 7 is 8.
Block # 1({... 6| 7 |..| 18| 19 |...|25| 26 | 27 | 28 | 29 | 30
[NodrEeies 2| ...l O 8 (... 26| 20 |..| 0| 27 0 29 | 30 0
Step
(2)
!
File e
Allocation Directory
Table (FAT)
1
| 11 21 30

[Task: read “ubuntu.iso” sequentially.]

Filename First Step (2). Read the file allocation table to
Block # determine the location of the next block.
Step |_,| rock.mp3 1
(1) game.exe 19 i
buntu 7 Note that the next block is not
Lbuntu.1so necessarily the adjacent one.
Block # 1 6| 7 18 | 19 |...| 25| 26| 27 | 28 | 29 | 30
[NodeElee s 2| ..l 0| 8(...] 26 (20 (...| O | 27 0 29 | 30 0
Step
@) —
:
File
Allocation Di:ec::oti
Table (FAT) =
1
| t
1 11 21 30

Filename First

Block #
Step |_,| rock.mp3 1
(1) game.exe 19
ubuntu.iso 7

[Task: read “ubuntu.iso” sequentially.]

Step (3). The process stops until the block
with the “next block # = 0.

1 6| 7 18 | 19 25| 26 | 27 | 28 | 29 | 30
— Next Block # 3 0| 8 26 | 20 [...| 0| 27 ||O0|| 29 | 30 | O
Step
(2) I—f
!

File e
Allocation Directory
Table (FAT)

i T f
11 21 30

The entire

Filename First
Block # layout...
rock.mp3 1
game.exe 19
ubuntu.iso
A 4 y A

Block # 11...]| 67]...] 18 [J19 |...|25)| 26 | 27 |28 | 29 | 30
—

Next Block # PARSIEE | E:] 26 || 20 off 27| 0 29|30 | O

File

F
Allocation = .ROOt

1 Directory
Table (FAT) |7

| 1 11 21 30

Trial 2.2 — the lookup

« A point to look into:

— Centralizing the data does not mean that the random
access problem will be gone automatically, unless...

— the file allocation table is presented as an array.

’ File Allocation Table ‘

EICIEI 1| ...| 6| 7 18 | 19 | ...|25| 26 | 27 | 28 | 29 | 30
Next Block # 2 I IO K] 26 |20 |..| 0| 27| 0 |29|30]| 0
T — So, going to an arbitrary location
Is::::-:;e I know is as simple as doing a pointer
+ the width. it i
R, e wi addition operation.

The random access problem can be eased by keeping a cached
version of FAT inside the kernel.

40

Trial 2.2 — the lookup

FAT12/16/32
specific Caf:hed
operations (partial) FAT

If this table is partially kept on the cache,
then extra 1/0 requests will be generated
in locating the next block #.

Block # (...l 6| 7 (..| 18| 19 |...|25(26 | 27 | 28 | 29 | 30
NogiEloeed 2| ..l O 8(...[26|20 |...{] 0|27 | O [29| 30| O

[File Allocation Table (FAT)]

41

Trial 2.2 and the reality @

« Every file system supported by MSDOS and
the Windows family is implementing the linked
list allocation.

* The file systems are:
— The FAT family: FAT12, FAT16, and FAT32,;
— The New Technology File System: NTFS.

42

FATs Brief Introduction

* What is the meaning of the numbers (12/16/32)?

— A block is named a cluster.

— The main difference among all the versions of FAT
FS-es is the cluster address size.

1.l 6| 7|..| 18| 19 |..|25| 26 | 27 | 28 | 29 | 30
2|..lo0|8|..|26|20|..|]0|27| 0 |29|30]| 0
File Allocation Table | , .
e Allocation Table Cluster Such a size defines the number of

address size | clusters...

cluster address size

43

* Cluster address sizes

File System FAT12 FAT16 FAT32
CIUSIEr address | puyp s 16 bits | 32 bits (28?)
length
Al 4K 64K 256M

clusters

— The larger the cluster address size is, the larger
the size of the file allocation table.

— The larger the cluster size is, the larger the size of
the disk partition is.

[We will look into more details of FAT32 in later lectures]

Summary of Trial 2.2

* |Is FAT a perfect solution...

— Tradeoff: trade space for performance
* The entire FAT has to be stored in memory so that...

* the performance of looking up of an arbitrary block is
satisfactory.

 Can we have a solution that stands in middle?
— Not store the entire set of block locations in mem...

— | don’t need an extremely high performance in
block lookups.

45

File System Layout

Trial 3.0
The Index-Node Allocation

* File system layout: how to store file and directory
— 1.0: Contiguous allocation (just like a book)

[Two key problems: External fragmentation + file growth]

Filename Starting Ending

Address Address

rock.mp3 0 2000
sweetipg | 2001 456 File attributes
game.exe | 5000 5678 | —

/

H Root

— Directory

* File system layout: how to store file and directory
— 2.0: Linked-list allocation: blocking

[Key problem: complicated root directory]
Filename Sequence Sequence
of Block # of Block #
rock.mp3 1-6 NULL
game.exe 19-25 NULL
ubuntu.iso 7-18 26-27

* File system layout: how to store file and directory
— 2.1: Linked-list allocation: blocking + linked list

[Key problem: random access problem]
RN
Filename First
Block #
rock.mp3 1) -
game.exe 19 Vi (\ ;
ubuntu.iso 7 _ (or 0)

Root
Directory

1 11 21 30

* File system layout: how to store file and directory
— 2.2: Linked-list allocation: centralized next-block # (FAT)

[Requirement: FAT Caching]

Filename First
Block #

rock.-mp3 1 et

game.exe 19

ubuntu.iso
Block # 1)...| 67 |...| 18 {119 |...|25| 26 [27 |28 | 29 | 30
COEgEE s 2 () 08 [...| 26§20 [...]Of 27 0 29 | 30 o]

File T
Allocation o
Dlrectory
Table (FAT)

* FAT provides a good performance in all aspects
— File creation, file growth/shrink, file deletion ...

— Random access performance...but requires to
* cache the FAT

* Balance the tradeoff between Performance and
memory space
— Partial caching
— How?

We are going to break the FAT into pieces...Trial 3.0

Filename t
Block #

rock.mp3

1

game.exe

19

ubuntu.iso

ext Block # [

A 4

26

27

30

Block # 1]...] 6
—
N ..l o

25
0

27

File
Allocation
Table (FAT)

Root
Directory

1 11 21 30

0T | fef 7] |19 [2s]] 26 | 27 [[28 | 29 | 3o
o2 folfs] [26f o] Joffor{of[2e][3] of

Any problem with
LA 1| | o B this design?
Filename Index Next Block # ln
Node

oo | — | cocr EIEED
= Next Block # [y}

Index node #3

sicek# A EDEIED
Next Block # n-“

F
Index R Root
Nodes > [Directory
E

< > < P A=Z> 4 _»

Filename

rock.mp3

Index
Node

The index nodes are
variable-sized.

Block # !n

Next Block # ln How to manage them?

Index node #2

Block # !
Next Block # -n

Index node #3

Block #

game.exe
ubuntu.iso —
Index Root
Nodes Directory
1

Next Block # [

1 11 21 30

* Problems with variable-sized index nodes
— How to locate an index node?

— How to support file growth...size of index nodes depends
on file size

[Fix-sized index nodes are preferable, how to achieve?]

Index'Node 1 Index Node 2 Index Node 3

Index Root
Nodes Directory

An innovative design 2nd layer of
of the index node, L= layer of indirect

called extent. g‘lgglfg‘ blocks

Index node structure
Direct Block #0
Direct Block #1

Direct Block #11
Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block Data Block storing
storing data. block address.

| Detailed structure of the index nodes will be talked later |

Indirect block

Data block

Stores an array of block addresses.

another indirect block.

An address may point to either a data block or

However, in a block, all the addresses are either
pointing to indirect blocks or data blocks.

Stores file data.

Keys
E—

|

Indirect blocks that
point to indirect blocks

Indirect blocks that
point to data blocks

| The consequence !

L

._*.__7
4 3

- Data blocks

3rd layer
indirect

2nd layer
indirect

1st layer
Indirect

Where are the (indirect))

blocks stored?

Trial 3.0 — the file size

[How large files can be supported?]

File size = number of data blocks * block size

Number of direct

blocks 2] e
Number of indirect | T 12 x 2%+
blocks i B

Tt X-2 ¥9)xX="2x-2
Number of double 1 *|2 2=2 +
indirect bIocks | RREEEEE > | 2X2 % Jx-2 *Px=D3x-4 +
Number of triple I ‘
indirect blocks | A >[24x:6

The dominating factor. ‘

Block size 2xpytes

Address length 4 bytes
Block size File size

1024 bytes = 210 | approx. 16 Gbytes
4096 bytes = 212 | approx. 4 Tbytes

“2x [4=2x2
addresses

Filename

Index

Index node #2

Node
rock.mp3
game.exe
ubuntu.iso
Index Root
Nodes Directory
1
|

1

11

Now, every index
node is of a fixed
size.

21 30

Layout & read

Now, this column stores

process .
the index node #. Inside the index node table ...
Filename Index
Node # Index Index Index
rock.mp3 1 node #1 node #2 node #n-1
game.exe 2 u u .
ubuntu.iso 3 n u .
Searching the index Itis arranged as an array. So,
nodes using the — looking up an index node will be fast.
index node #.
Index Node Root
Table Directory
1
| 1 11 21 30

* How about the tradeoff between performance and
memory usage?
— Partial caching is easy

* Any overhead of Trial 3.0?

— The index-node allocation uses more storage:

* to trade for a larger file size (with fixed-size index
nodes).

— The indirect blocks are the extrathings.

* The indirect blocks are the extrathings.

File Size

of Indirect
Blocks

File Size

of Indirect
Blocks

12 x 2% +

22:8—2

(~am (x=12) |

v

@

12 x 2% 4

22$—2

+ 23.16—4

[~46 (x=12) |

o

=+)

* The indirect blocks are the extrathings.

File Size

of Indirect
Blocks

12 x 2% 4-p2z—2

+

23:.!:—4

+

242,'—6

v

Gl

+

(2.1;—2)0 + (2:1;—2)1 .

v

(2.7:—2)0 + (2:1:—2)1 + (2:.:—2)2

~1M blocks

Trial 3.0 — Storage Overhead

» The indirect blocks are the extrathings.
— Max. number of indirect blocks depends on

» Block size
* File size

Block size

(2:;:—2)0 + (29:—2)1 + (23:—2)2

Max. # of indirect Max. Extra Size

1024 bytes = 210

blocks involved
approx. 216 approx. 256 Mbytes

4096 bytes = 212

approx. 220 approx. 4 Gbytes

\ /

Remember, they are not static and
they grow/shrink with the file size.

* FSes in UNIX and Linux use the index-node
allocation method.

—The Ext2/3/4 file systems.

» The index node is called inode in those systems.
» Ext4 uses extent, not indirect blocks

— We will discuss the details of Ext file system later.

From Trial 1.0 to Trial 3.0...

« We studied what are the possible ways to store
data in the storage device.
— The things stored are usually:

Root directory
Hey, where are the sub-directories?

Still remember the directory traversal

File attributes

Except the file size and the
locations of the data blocks,
where and what are the other
attributes?

Free space management
Actually, we didn’t cover that

Data block management
The FAT, the extents, the table of

much... content.
Index Node Root
Table Directory
or FAT

66

File System Layout

Root Directory and
Sub-directories

« We know that the root directory is vital.
— However, we have sub-directories...
— Where are they?

Filename Index Filename First
Node # Block #
rock.mp3 1 rock.mp3 1
game.exe 2 game.exe 19
ubuntu.iso 3 ubuntu.iso 7
Leempair [2] Leempair [2]
Are the sub-directories " — Linked list

stored here? Ixﬂgég%dne Allocation

» Let’s take the index-node allocation as an example...

| Root directory is a directory file. |

e

Directory File

Filename inode # Index node

rock.mp3 1 Direct Block #0

game.exe 19 Direct Block #0
ubuntu.iso

File content ... of
the directory file

Direct Block #11
Indirect Block

Double Indirect Block

Triple Indirect Block

[Directory is also a file, so it has an inode too]

» Let’s take the index-node allocation as an example...
/ | Root directory is a directory file. |

Index node /.

rock.mp3 1 Direct Block #0
game.exe 19 Dir¢

Directory File

Filename inode #

ubuntu.iso

Directory File
_—> T it another
Inc i i
| fea | 12 W Girectory file.

Double

See, each directory entry keeps the address of the file attributes,
not the attributes themselves (how about FAT file systems?)

Traversing directory structure...

+ Let’s take index-node allocation as an example...

Index node
Direct Block #0

Direct Block #11
Indirect Block

Root Directory File Double Indirect
Block

Triple Indirect
F”e Block

Dir

Filename inode #

Index node
Direct Block #0

Direct Block #11

Direct Block #11

Indirect Block

Sub-Directory File Double Indirect

Block

Block

Index node
Direct Block #0

Triple Indirect

Indirect Block

\

The tree ends at the
non-directory files.

Double Indirect
Block
Triple Indirect
Block

Content of a directory file is still

a directory file

71

» Work together with the layout
— Let’s still take index-node allocation as an example...
- E.g.:“/file”

Root Directory File

Filename inode #

Index node structure
Direct Block #0
Direct Block #0

Direct Block #11
Indirect Block
Double Indirect Block

Triple Indirect Block

» Work together with the layout
— Let’s still take index-node allocation as an example...
— E.g.: “/os/file”

Sub-directory File | ¢g———
inode #

Filename
file 456

Root Directory File

Filename inode #

Index node structure
Direct Block #0
Direct Block #0

Direct Block #11
Indirect Block
Double Indirect Block

Triple Indirect Block

» Work together with the layout
— Let’s still take index-node allocation as an example...
— E.g.: “/os/file”

—
File contents

Sub-directory File

Filename inode #

file 456 =

Index node structure
Direct Block #0
Direct Block #0

Direct Block #11
Indirect Block
Double Indirect Block

Triple Indirect Block

File System Layout

File system information
and partitioning

 What are stored on disk?

—Root directory, index nodes/FAT, data blocks, free
space information...

—Others?
* E.g., How do we know where the root directory is?
* Where is the first inode?

— File system information

Index Root
Nodes Directory

* Itis a set of important, FS-specific data...

Examples of FS-Specific Data

How large is a block?

How many allocated blocks are there?

How many free blocks are there?

Where is the root directory?

Where is the allocation information, e.g., FAT & inode table?

How large is the allocation information?

File System Information

* Itis a set of important, FS-specific data...

— Can we hardcode those information in the
kernel code...

— No!!l Because different storage devices have
different needs.

E.g., different disk
sizes result in | — FAT
different FAT sizes.

Root
Directory|

N

Root

Koy Directory]

* Itis a set of important, FS-specific data...

— Solution: The workaround is to save those information
on the device.

Each device should has its own
copy of information.

L\

FS-Specific
P FAT Root

Information Enirectory

FS-Specific
Information

Root

B2 Directory]

* Itis a set of important, FS-specific data...

— Solution: The workaround is to save those information
on the device.

In FAT* & NTFS Boot Sector

In Ext* Superblock

Boot Sector FAT E e
Directory|

Superblock Index Node E) Root
Directory

Story so far...

* We talked about the file system layout
— FAT and index node

Boot Sector FAT E | Roei3
Directory|

BEECE 2 3 Index Node E .R°°t
Directory

Only one file system can be stored in a disk?
What is the problem with a very large file system? | Large FAT

81

 Partitioning is needed to
— limit the file system size
— support multiple file systems on a single disk

partition 1 partition 2

s

Disk partitions

* What is a disk partition?

— A disk partition is a logical space...
+ A file system must be stored in a partition.
» An operating system must be hosted in a partition.

A partition table stores the
Boot Code: - first sector,
the code specifies - the length, and
which partition to boot. - the type of a partition.

partition 1 : partition 2

83

Master boot record (MBR)...

|
&

i 512 bytes
Table Table Table Table
[446 bytes —| —| 16 bytes [— —{ 2 bytes|—
Partition Table Entry
The range of a partition is Bytes Description
described by the: (offset, 0-0 Bootable flag; 0x80 means bootable.
length) tuple.
1-3 Starting CHS address
4-4 Partition type
http://www.datarecovery.com/hexcodes.asp
5-7 Ending CHS address
> [8-11 Starting LBA address (measured in # of sectors)
3| 12-15 Sizes in sectors

84

* Benefits of partitioning:

— Performance

* A smaller file system is more efficient!
— Think about FAT32.

— Multi-booting

* You can have a Windows XP + Linux + Mac installed on a single
hard disk (not using VMware).

— Data management

* You can have one logical drive to store movies, one logical
drive to store the OS-related files, etc.

 Final view of disk layout

, partition 1 : partition 2
Boot Super [linE
E i I‘ bIOCK Table I

* Now, do you know what is meant by “formatting” a
disk?

— Create and initialize a file system!
— In Windows, we have “format.exe”.

— In Linux, we have “‘mkfs.ext2”, ‘mkfs.ext3’, etc.

Summary of part2

+ We have looked into many details about different
file system layouts:

— Contiguous allocation;
— Linked list allocation; and
— Index-node allocation.

» We also show the complete view of disk space
— File system specific information & disk partition

 Linked list allocation and index-node allocation are the
main streams but not the only way to implement
modern file systems.

87

So far, we have learnt:

What are stored on disk How to access them?

File: content + attributes File operations: open(), read(), write()
Directory: Directory file Directory lookup: Directory traversal

/ How are the files stored on disk? \

File system layout: Contiguous/linked-list (FAT)/index-node allocation

Topics not covered:
Only the attributes of file name and locations are covered, how about other
attributes? Free space management?

we'll look into some real implementations (FAT32 + EXT2/3/4) /

38

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ch10, part 1
Details of FAT32

What are stored on disk How to access them?

File: content + attributes File operations: open(), read(), write()
Directory: Directory file Directory lookup: Directory traversal

4)

How are the files stored on disk?

File system layout

Contiguous allocation
linked-list allocation (FAT*)
\ index-node allocation (EXT*) /

* Case study

File attributes and directory entries, file operations

Detailed layout, detailed inode structure (file attributes), FS operations...

* Introduction
* Directory and File Attributes

* File Operations
— Read files
— Write files
— Delete files
— Recover deleted files

Microsoft Extensible Firmware Initiative FAT32 File System
Specification (FAT: General Overview of On-Disk Format),
Version 1.03, December 6, 2000, hardware white papers @
Microsoft Corporation.

* The layout Ablock is named a cluster.

File System FAT12 FAT16 FAT32
Cluster addr length

12 bits 16 bits | 32 bits (28?)

Number of

Filename First

Block # clusters 4K 64K 256M
rock.mp3 1 et
game.exe 19
ubuntu.iso 7
A A 4 A 4
Block # 1 67 |..| 18119 |...|25) 26 | 27 [28 | 29 | 30
Next Block # o8 |..|26fl20|..| 027 | 0 (|29 (30| O
File I
Allocation . o0
Directory]
Table (FAT) \
| 1 11 21 30

| When a sector is > 5128 ... |

e Cluster Size:
|\

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB | 128KB | 256KB

— Try typing “help format” in the command prompt in
Windows.

* Calculating the maximum partition size
— with the cluster size = 32KB...

(32 x 210) x 228 = 243 (8TB)

Boot sector

FSINFO

Reserved
sectors

FAT (2 pieces)

Root directory

Propose

Store FS-specific parameters

1 sector, 512 bytes

Free-space management

1 sector, 512 bytes

Don’t ask me, ask Micro$oft!

Variable, can be changed during format.

A robust design: if “FAT 1” is
corrupted or containing bad sectors,
then “FAT 2” can act as a backup.

Variable, depends on disk size and
cluster size.

Start of the directory tree.

At least one cluster, depend on the
number of director entries.

FAT1 FAT2

Directory

Root

Typical layout of a FAT32 partition

$ sudo mkfs.vfat -F32 /dev/rame Format the disk, “-F32” means FAT32.
mkfs.fat 3.0.28 (2015-05-16)

$ sudo dosfsck -v /dev/ran@ Read the information stored in the boot sector.

Running “dosfsck”, DOS
file system check, on a
FAT32 FS.

This program reads
details from the Boot
Sector.

Boot Root
FSINFO
Sector FAT1 FAT2 Directory

Typical layout of a FAT32 partition

$ sudo mkfs.vfat -F32 /dev/rame@

mkfs.fat 3.0.28 (2015-05-16) | Details of the Boot Sector

$ sudo dosfsck -v /dev/rame@
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkfs.fat"
Media byte ©xf8 (hard disk)

512 bytes per logical sector

512 bytes per cluster The boot sector says

32 reserved sectors A cluster is made of 1 sector.
First FAT starts at byte 16384 (sector 32)

2 FATs, 32 bit entries
516608 bytes per FAT (= 1009 sectors)

Root directory start at cluster 2 (arbitrary size)

Data area starts at byte 1049600 (sector 2050)
129022 data clusters (66059264 bytes)

One cluster size: 512
bytes in this case

Boot Loiwro fat1 | rar2 | Root
Directory

32 sectors

Typical layout of a FAT32 partition

$ sudo mkfs.vfat -F32 /dev/rame@
mkfs.fat 3.0.28 (2015-05-16)

$ sudo dosfsck -v /dev/ram@
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkdosfs"
Media byte oxf8 (hard disk)
512 bytes per logical sector The boot sector says:
512 bytes per cluster 2 FATs and each of them is of
32 reserved sectors size 516,608 bytes.
First FAT starts at byte 16384 (sector 32)
2 FATs, 32 bit entries

516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size) Number of FATs aer the
Data area starts at byte 1049600 (sector 2050) length of each entry in a FAT.

129022 data clusters (66059264 bytes)

Good! No slack space between
reserved sectors of the first FAT.

Boot Loinko fat1 | rar2 | Root
r Directory

32 sectors | 1009 ' 1009
10

Typical layout of a FAT32 partition

The first data cluster is
Cluster #2 and it is usually,
not always, the root
directory.

Cluster #0 & #1 are
reserved.

32 + 1009 x 2 = 2050

Boot Root
Sector SIS FAT1 FAT2 Directory
! 32 sectors 1009 ' 1009 ' 2050 and beyond...

11

* Introduction
* Directory and File Attributes
* File Operations

— Read files

— Write files

— Delete files
— Recover deleted files

I}

ﬁ

Directory Traversal

Step (1) Read the directory file of the root €:\> dir c:\windows

directory starting from Cluster #2. 06/13/2012 2,033,216 explorer.exe

08/04/2015 169,120 notepad.exe

“C:\windows” starts from Cluster #123.

How does this work?
Filename | Attributes | Cluster #
S Check this out by yourself.
i A B ? Whether those two
Adirectory | [... directory entries exist or
ARy windows | 123 not.
Soot FAT1 | FAT2 Root
Sector

Directory

13

Directory Traversal

Step (2) Read the directory file of the
“C:\windows” starting from Cluster #123.

Filename

Attributes | Cluster #

notepad.exe

c:\> dir c:\windows

06/13/2012 2,033,216 explorer.exe

08/04/2015 169,120 notepad.exe

I How does this work? I

But, where are the
information, e.g., file size,
modification time, etc?

FAT1

Root

FAT2 Directory

14

Directory entry

* Directory entry is just a structure.

0-0

1-10
11-11
12-12

13-19
20-21

22-25
26-27

28-31

Description

1" character of the filename
(0x00 or Oxe5 means unallocated)

7+3 characters of filename + extension.

File attributes (e.g., read only, hidden)
Reserved.
Creation and access time information.

High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

Written time information.
Low 2 bytes of first cluster address.

File size.

16
24

Filename

Attributes

Cluster #

explorer.exe

32

e | x| p | of|r|e|r |7
e | x| e 15
00 | 00 23
20 | 00 | 00 | C4 | OF | 00 | 31

Note. This is the 8+3 naming convention.

8 characters for name +

3 characters for file extension

Directory entry

* Directory entry is just a structure.

Filename Attributes | Cluster #

Description

explorer.exe | 32

0-0 1% character of the filename
(0x00 or Oxe5 means unallocated)

1-10 743 characters of filename + extension.
e|lx|p|l|o|r|e|r |7
11-11 File attributes (e.g., read only, hidden) 8|le|x|e 15
1212 Reserved. 16| o | w | |~ |@O]OO] .. [.. |23
24 | |20 |00 |00 |C4|0OF |00 |31

13-19 Creation and access time information.

High 2 bytes of the first cluster address

20-21 (0 for FAT16 and FAT12).

How to calculate the first
22-25 Written time information. cluster address?

26-27 Low 2 bytes of first cluster address.

28-31 File size.

16

Directory entry

* Directory entry is just a structure.

20-21

22-25

26-27

28-31

Description

1% character of the filename
(0x00 or Oxe5 means unallocated)

7+3 characters of filename + extension.

File attributes (e.g., read only, hidden)
Reserved.
Creation and access time information.

High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

Written time information.
Low 2 bytes of first cluster address.

File size.

Filename Attributes | Cluster #

explorer.exe | 32

o|le|x|p|l|o|r|e|r]|7
8le|x|e 15
16| o | v | | =~ |@OO]| OO .. | .. |23
24 | |20 |00 |00 |C4|0OF |00 |31
Higher 2 Lower 2 Cluster
bytes bytes address
|00|00| |20|00| |8192|

[It is not 32, why?]

17

Big Endian vs Little Endian

* Endian-ness is about byte ordering.

— It means the way that a machine (we mean the entire
computer architecture) orders the bytes.

4-byte integer value:

Ox89ABCDEF
Ending (small) value Ending (small) value
in small address in large address
EF CD || AB 89 89 AB cD EF -
Little Big
endian endian

Big Endian vs Little Endian

* Directory entry is just a structure.

Filename Attributes | Cluster #

Description

explorer.exe | 32

0-0 1% character of the filename
(0x00 or Oxe5 means unallocated)

1-10 743 characters of filename + extension.
O|e|x|p | o r e r |7
11-11 File attributes (e.g., read only, hidden) 8le | x|e | /|]| | .]..|15
1212 Reserved. 6| | | | |00f0O] . |. |23
24 | |20 [00|00 |C4|OF|O0O0]|31
13-19 Creation and access time information.
Big
; 00 | 00 || 20 | OO 8192
2021 High 2 bytes of the first cluster address endian | | | | | | E' | |
(0 for FAT16 and FAT12).
Little
22-25 Written time information. endian ’ 00 l o0 H 00 l 0 ‘EH 22 ‘
26-27 Low 2 bytes of first cluster address. The FAT is defined to use little-endian byte
o ordering, as its original implementation was
28-31 File size. on the Intel x86 platform

19

0-0

1-10

11-11

12-12

13-19

20-21

22-25

26-27

28-31

Description

1% character of the filename
(0x00 or 0xe5 means unallocated)

7+3 characters of filename + extension.
File attributes (e.g., read only, hidden)
Reserved.

Creation and access time information.

High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

Written time information.
Low 2 bytes of first cluster address.

File size.

8
16
24

explorer.exe

ceceee

32

e | x ol rjeflr
e | x| e
00 | 00
20 | 00 | 0O | C4 | OF | 00

So, what is the largest size of a file?

4G - 1 bytes

Directory entry

e Any problem with this design?

Coms | oot

0-0

1-10

11-11

12-12

13-19

20-21

22-25

26-27

28-31

1" character of the filename
(0x00 or Oxe5 means unallocated)

7+3 characters of filename + extension.

File attributes (e.g., read only, hidden)
Reserved.
Creation and access time information.

High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

Written time information.
Low 2 bytes of first cluster address.

File size.

Note. This is the 8+3 naming convention.

8 characters for name +
3 characters for file extension

Example:

How to store the file:
“I_love_the_operating_syste
m_course. txt”

How to store long
filename?

21

* LFN: Long File Name.
— In FAT32, the 8+3 naming convention is removed by...
— Adding more entries to represent the filename

Dire 0
Each LFN entry represents 13 characters in
LFN #3 Unicode, i.e., 2 bytes per character.
LFN #2 Yet, the sequence is upside-down!
LFN #1
Normal Entry < The normal directory entry is still there.

FAT series — LFN directory entry

Cows [oo

0-0

20-21

22-25

26-27

28-31

Normal entry |

1% character of the filename
(0x00 or Oxe5 means unallocated)

7+3 characters of filename + extension.

File attributes (e.g., read only, hidden)
Reserved.
Creation and access time information.

High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

Written time information.
Low 2 bytes of first cluster address.

File size.

LFN entry |

1-10

11-11
12-12

13-13

14-25

26-27

28-31

Sequence Number

File name characters
(5 characters in Unicode)

File attributes - always OxOF
Reserved.
Checksum

File name characters
(6 characters in Unicode)

Reserved

File name characters
(2 characters in Unicode)

23

FAT series — LFN directory entry

* Filename:
“I_love_the_operating_system_course.txt”

Byte 11 is always OxOF to indicate that is a LFN.

0075 0cof 0040 7200 Cm._.c.o.u...@r.
7800 0000 7400 0000 s.e...t.x...t...

0069 00Of 0040 6c00 .e.r.a.t.i...@n.
7300 0000 7400 6500 g. .s.y.s...t.e.

0076 0cOf 0040 6500 .I. .l1.0.v...@e.
5f00 0000 6f00 7000 _.t.h.e. ...0.p.
5458 5420 0064 b99e [T LOVE~AITXT .d..

Nermal 773d 0000 0000 0000 W=W=....W=......

FAT series — LFN directory entry

Directory file
LFN #3: “m_cou” “rse.tx” “t”
LFN #2: “erati” “ng_sys” “te”

The terminating directory entry has the LFN #1: “I_lov” “e_the_” “op”

sequence number OR-ed with 0x40. Normal Entry

This is the sequence number, and they are
arranged in descending order.

ooof Cm._.c.o.u...@r.
0000 86@0 000200000 c

ooof .e.r.a.t.i...@n.
0000 g._.s.y.s...t.e.

ooof .I._.l.0.v...@e.
0000 _.t.h.e._...0.p.
5420 I_LOVE~1TXT .d..
0000 W=W=....W=eouoon

Normal

FAT series — directory entry: a short summary

* Adirectory is an extremely important part of a FAT-
like file system.

— It stores the start of the content, i.e., the start cluster
number.

— It stores the end of the content, i.e., the file size;
without the file size, how can you know when you
should stop reading a cluster?

— It stores all file attributes.

26

* Introduction
* Directory and File Attributes
* File Operations

—Read files

— Write files

— Delete files

— Recover deleted files

Task: read “C:\windows\explorer.exe” sequentially.]

Suppose we already read out the

directory entry...

You know the process of
directory traversal, right?

explorer.exe [......

Step 1. Read the content from Cluster #32.

Note. The file size may also help determine if
the last cluster is reached (remember where it
is stored?)

[Task: read “C:\windows\explorer.exe” sequentially.]

0
1
e I
32 33
33 EOF
Step 1. Read the content from Cluster #32.
34 0 Note. The file size may also help determining
35 0 if the last cluster is reached.

Step 2. Look for the next cluster and it is
Cluster #33 (from the FAT table)

FAT1

FAT2

[Task: read “C:\windows\explorer.exe” sequentially.]

0
1
32 33
33 EOF
34 0
35 0

explorer.exe [...... 32

FAT entry structure??
Remember: 28bits are used to
represent cluster number for FAT32

Step 3. Since the FAT has marked “EOF”, we
have reached the last cluster.

Note. The file size help determine how many
bytes to read from the last cluster.

FAT1

FAT2

[Task: read “C:\windows\explorer.exe” sequentially.]

0

1

32 33
33 EOF
34 0

35 0

Damaged = OxOffffff7

EOF >= OxOffffff8

Unallocated = 0x0

explorer.exe [...... 32

Step 3. Since the FAT has marked “EOF”, we
have reached the last cluster.

Note. The file size help determine how many
bytes to read from the last cluster.

FAT1

FAT2

* Introduction
* Directory and File Attributes
* File Operations

— Read files

— Write files

— Delete files
— Recover deleted files

[Task: append data to “C:\windows\explorer.exe”.]

0
1
32 33
33 EOF
34 0
35 0

explorer.exe [...... 32

Step 1. Locate the last cluster.

Step 2. Start writing to the non-full cluster.

FAT1

FAT2

[Task: append data to “C:\windows\explorer.exe”.]

0

1 explorer.exe [...... 32

32 33

33 EOF Step 3. Allocate the next cluster through FSINFO.
34 0

35 0

What is stored in FSINFO?
How to allocate?

FAT1 FAT2

Task: append data to “C:\windows\explorer.exe”.]

0

1

32 33
33 EOF
34 0

35 0

of free clusters n

Next free cluster # m —

FSINFO

explorer.exe [...... 32

Step 3. Allocate the next cluster through FSINFO.

FAT1

FAT2

Task: append data to “C:\windows\explorer.exe”.]

0

1

32 33
33 34
34 EOF
35 0

FSINFO

of free clusters n

Next free cluster # E

explorer.exe [...... 32

Step 3. Allocate the next cluster through FSINFO.
Step 4. Update the FATs and FSINFO.

Step 5. When write finishes, update the file size.

FAT1

FAT2

Task: append data to “C:\windows\explorer.exe”.]

0

1

32 33
33 34
34 EOF
35 0

FSINFO

of free clusters n

Next free cluster # m

explorer.exe [...... 32

Q: How to obtain the next free cluster?

FAT1

FAT2

[Task: append data to “C:\windows\explorer.exe”.]

*
.
-

uEEENy
“-l ",

*
R4
L4

explorer.exe

0
'-I..."....
*
cco 2
n
32 33 5
33 3aV
34 EOF
35 I
T T

FSINFO

of free clusters n

Next free cluster # E

The search for the next free cluster is a circular,

next-available search.

Why implementing next-available?

Principle of locality

Why circular?
To find out every free block

FAT1 FAT2

* Introduction
* Directory and File Attributes
* File Operations

— Read files

— Write files

— Delete files
— Recover deleted files

Task: delete “ indows\explorer.exe”.

1 1 explorer.exe [...... 32

32 33 32 0

33 34 33 0 Step 1. De-allocate all the blocks
34 EOF 34 0 involved. Update FSINFO and FATs.
35 0 35 0

FSINFO FSINFO

of free clusters # of free clusters

Next free cluster # Next free cluster #

Task: delete windows\explorer.exe”.

Cluster #123

How about the directory entry

explorer.exe

notepad.exe

Boot
Sector

Task: delete indows\explorer.exe”.

1% character of the filename
(0x00 or Oxe5 means unallocated)

How about the directory entry

00 Step 2. Change the first byte of

the directory entry to OxE5.

Cluster #123

LFN entries also receive the

The first character same treatment.

becomes “OxE5”. I

That’s the end of deletion!

Really delete a file?

e Can you see that: the file is not really removed
from the FS layout?

— Perform a search in all the free space. Then, you will find
all deleted file contents.

» “Deleted data” persists until the de-allocated
clusters are reused.

— This is an issue between performance (during deletion)
and security.

* Any way(s) to delete a file securely?

43

Mac OS X Secure Disk Erase

Secure Erase Options

These options specify how to erase the selected disk or volume to prevent disk
recovery applications from recovering it.

Note: Secure Eras: rites data,
e

c OS X. Certain types of media

)

Most Secure

(DOD) 5220-22
It erases the

@ o]
Brute Force?

http://www.ohgizmo.com/2009/06/01/manual-hard-drive-destroyer-looks-1like-fun/

What will the research community tell you?

http://cdn.computersciencel.net/2006/fall/lectures/8/articles8.pdf

* Introduction
* Directory and File Attributes
* File Operations

— Read files

— Write files

— Delete files
— Recover deleted files

* If you're really care about the deleted file, then...
— PULL THE POWER PLUG AT ONCE!

— Pulling the power plug stops the target clusters from
being over-written.

All the things are still here!
Cluster #123

potepad.exe |...... |45 |

The first character
becomes “OxE5”.

Boot
Sector

FSINFO

How to “rescue” a deleted file?

 If you're really care about the deleted file, then...
— PULL THE POWER PLUG AT ONCE!

— Pulling the power plug stops the target clusters from
being over-written.

Principle of “rescue” deleted file

Data persists unless the sectors are reallocated and overwritten.

Because the first cluster address is still readable, the recovery is having a
HSHPEEEE S very high successful rate.

cluster

Note that filenames with the same postfix may also be found.

47

How to “rescue” a deleted file?

 If you're really care about the deleted file, then...
— PULL THE POWER PLUG AT ONCE!

— Pulling the power plug stops the target clusters from
being over-written.

Principle of “rescue” deleted file

Data persists unless the sectors are reallocated and overwritten.

It is still possible as the clusters of a file are likely to be contiguously
allocated.

TS The next-available search provides a hint in looking for deleted blocks.

cluster

If not, you’d better have the checksum and the exact file size beforehand,
so that you can use a brute-force method to recover the file.

48

* What if the value of the 32nd cluster is not 0?

It is hard to find them

out without some hints. 0 _xplorer.exe 32

1 ~
The use of checksum The first cluster is the one
may be a good hint... 2 0o <«+—— | that we can be sure of...

33 0

34 0

35 0

FAT1 FAT2

* Itisa “nice” file system:

— Space efficient: 4 bytes overhead (FAT entry) per data
cluster.

* Deletion problem:
— This is a lazy yet fast implementation.
— Need extra protection for deleted data.

* Deployment:
— It is everywhere: SD cards, USB drives, disks...

Operating Systems

Associate Prof. Yongkun Li
HRER-THENL 2B Bl
http://staff.ustc.edu.cn/~ykli

Ch10, part?
Details of Ext2/3 File System

+ Extended File System (Ext2/3/4)
— Follow index-node allocation

— Primary FS for Linux distribution

— Ext4 was merged in the Linux 2.6.28 and released in 2008
— Backward-compatible
— For simplicity, we focus on Ext2/3

— Features of Ext2/3/4
— https://ext4.wiki.kernel.org/index.php/Main_Page

— http://le2fsprogs.sourceforge.net/ext2.html

Details of Ext2/3
- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling
- VFS

Details of Ext2/3
- Layout

* Ext2/3 file systems follow the index-node allocation

Index Index Index
node #1 node #2 node #n-1

Itis arranged as an array. So,

Filename Index
Node #

rock.mp3 1

game.exe 2
ubuntu.iso 3

Index Node Root
Table Directory
1

looking up an index node will be fast.

1 11 21 30

» The file system is not that simple...
— it is divided into groups, and ...
— every group has the same structure.

Superblock

S Block
L Bitma
T p

Inode
Bitmap

L >

‘u

\
Group 0 Group 1

» The file system is not that simple...
— it is divided into groups, and ...
— every group has the same structure.

Group 0

Block
Bitmap

Inode
Bitmap

Inode
Table

They are
the same.

They are different.

Group 1 G
Superblock ' D
T

Block
Bitmap

Inode
Bitmap

Inode
Table

* Why doing so?
—This is for reliability and performance.

Group 0 oerblo 5 Block Inode Inode
Bitmap | Bitmap Table

They are | They are different. |
the same. |

Group 1 . © Block Inode Inode
Superblock ' D . .
T Bitmap Bitmap Table

* Why doing so?
— For reliability...

Group 0
Superblock
|
They are
the same.
|
Group 1

Superblock

G

Block

2 Bitmap

Inode
Bitmap

Inode
Table

There are many copies of the superblock So, this

increases the reliability of the FS.

The superblock in Group 0 is called the primary superblock.
Other superblocks are called the backup superblock.

Block
Bitmap

Inode
Bitmap

Inode
Table

* Why doing so?
—For performance...

Group 0

Superblock

E.g.

- Inode table in Group 0 stores inodes from #1 to #100;

- Inode table in Group 1 stores inodes from #101 to #200;
- etc...

They are
the same.
|

The good about this is to keep the inodes and the file
contents close together!

Bitmap | Bitmap | lapie - |

Group 1
Superblock

* Why doing so?
— For performance...

The inodes in a particular group will usually refer to the
data blocks in the same group.

So, this keeps them close together in a physical sense.
The storage device may be able to locate the data in a
faster manner. (Remember the principle of locality?)

€ Block Inode Inode

Bitmap | Bitmap Table

Superblock ' D
T

Superblock Stores FS specific data.

U

Total number of inodes in the system.

Total number of blocks in the system.

Number of reserved blocks
Total number of free blocks.
Total number of free inodes.

Location of the first block.

The size of a block.

G

Block Inode Inode
SUPETEEE .I? Bitmap | Bitmap Table
Superblock Stores FS specific data. E.g., the total number of blocks, etc.
It stores:

-The starting block numbers of the block bitmap, the inode
bitmap, and the inode table.

- Free block count, free inode count, etc...

GDT - Group Descriptor Table

Inode Table An array of inodes ordered by the inode #.

Data Blocks An array of blocks that stored files.

Block Bitmap Abit string that represents if a block is allocated or not.
Inode Bitmap Abit string that represents if an inode is allocated or not.

 What is a block bitmap?

— A sequence of bits indicates the allocation of
the blocks.

It says “blocks 0-2 are allocated ”,
then “block 3 is unallocated ”...

¥ Unallocated
Allocated
Superblock (S Block Inode Inode
p T Bitmap | Bitmap Table

* Then, what is an inode bitmap?

— A sequence of bits indicates the allocation of
the inodes.

— This implies that...

The number of files in the file sxstem is fixed!
Unallocated
Allocated
Inode

Details of Ext2/3

- Inode and directory structure

 We know that...
— The locations of the data blocks of a file are stored in

2ndJayer of

the |n0de 1=tlayer of indirect

indirect
/- blocks blocks

Index node structure
Direct Block #0
Direct Block #1

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block Data Block storing
storing data. block address.

Inode Structure (128 bytes long)

Bytes Value What are stored in inode
01 File type and permission besides block addresses?
2-3 User ID
4-7 Lower 32 bits of file sizes in bytes
8-23 Time information
24-25 | Group ID An inode is the structure that
26-27 L[k G stores every information about

a file.

The locations of the data
blocks

108-111 | Upper 32 bits of file sizes in bytes

More details: https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#inode_Table

Inode Structure

Inode Structure (128 bytes long)

What is the maximum file

Bytes Value size supported?

0-1 File type and permission

2-3 User ID 264 — 1

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information =16 x 2% Gbytes -1 byte
24-25 Group ID .

YR TS — Is this really the case?
40-87 12 direct data block pointers Remember the dominating
88-91 Single indirect block pointer factor: 246

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

108-111 | Upper 32 bits of file sizes in bytes e 2 ~16 Gbytes

4096B

212 ~4 Tbytes

Inode Structure

Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID
4-7 Lower 32 bits of file sizes in bytes
8-23 Time information

24-25 Group ID

26-27 Link count
40-87 12 direct data block pointers
88-91 Single indirect block pointer
92-95 Double indirect block pointer
96-99 Triple Indirect block pointer
108-111 | Upper 32 bits of file sizes in bytes

What is link count?

We will talk about it later

Where is the file name?

Let us take a look at the
directory structure

PP The directory entry stores the file

Ghans || 4 name and the inode #.
game.exe 2

ubuntu.iso 3

1 int main(void) {

2 DIR * dir;

3 struct dirent *entry;

4

5 di

6 \ :

7 wh struct dirent {

8 // inode number
9 off t d_off; // offset to the next dirent
10 } unsigned short d reclen; // record length
11 unsigned char d type; // file type
12 el // file name

13 re t

14 }

inode number

p
Entry size A Linux directory with
Type three files
File name length \
/
10 Fi4} rock |18 Fi 4} game |50 F 1 5} ubuntu | unused
N
struct dirent {

lino .t dino; // inode number

off t d _off; // offset to the next dirent
unsigned short d reclen; // record length
unsigned char d type; // file type

jéhaE SaNenS] // file name
}

inode number

-
Entry size A Linux directory with
Type three files
File name length \
/
10 Fi4} rock |18 Fi 4} game |50 F 1 5} ubuntu | unused
AN

l After game has been removed

10 Fi4 rock unused 50 F i 51 ubuntu | unused

/_/

» How to access directory file?

Note: opendir (), readdir(),

L int main(void) (and <_:losed:|.r() are library
2 DIR * dir; function calls.
3 struct dirent *entry;
4
5 dir = opendir (“/”); <+—— Open the directory file.
6
7 while ((entry = readdir(dir)) != NULL) { <« —— Read the directory
8 // print the directory name entries one by one until
9 printf (“$s\n”, entry->d name) ; there is not further
10 } entries.
11
12 closedir (dir) ; <—— Close the directory file.
13 return 0;
14 }

Details of Ext2/3

- Link file

Link File

e Can we allow a file to have multiple names and
be accessed by several paths?

* How to create shortcuts?

Example use in Linux

1s /dirl/12.jpg
12.3pg

1s /dirl/12.jpg
12.jpg

1n /dirl/12.jpg /my_link
#

1In —-s /dirl/12.jpg /my_link
#

[These are called hard link and symbolic link]

Link File —what is a hard link?

 Ahard link is a directory entry pointing
to an existing file.
— No new file content is created!

1s /dirl/12.jpg A new directory entry
12.3jpg is created.
1n /dirl/12.jpg /my_link
_
Directory: /dirl Directory: /
Inode # ... Filename Inode # ... Filename
123 . 2 .
2 . 2 .
5,086 12.jpg 5,086 ... | my_link

» Conceptually speaking, this creates a file
with two pathnames.

How to maintain this info.]

-
—l

Directory: /dirl Directory: /
Inode # ... Filename Inode # ... Filename
123 . 2 .

2 " 2 .
5,086 12.jpg 5,086 | | ... | my_link
I

» There is a field called link count in an inode.
— It stores the number of directory entries pointing to

the inode.
Link Count
|
Directory: /dirl Directory: /
123 . 2 .
2 . 2 .
5,086 12.jpg 5,086 | | ... | my_link
I

Link File — showing the link counts

» Special hard links
is a hard link to itself.
is a hard link to the parent directory.

‘"

— The directory “.

1 ”

— The directory “..

1/

1s -
total 124

drwxr-xr-x root
drwxr-xr-x root
drwxr-xr-x root

drwxr-xr-x root
drwxr-xr-x - root

What does this large

number imply?

2015-11-15
2015-11-11

2015-11-23
2015-11-23
2015-06-21

:07 bin
:25 boot
:58 dev
:58 etc
:23 home

This implies “/etc” has a lot of sub-directories.

Link File — showing the link counts

» Special hard links
— The directory “.” is a hard link to itself.

“

— The directory “..” is a hard link to the parent directory.

 What is the value of the link count, if
— Afile is created
— Adirectory is created

Link File — showing the link counts

* When a regular file is created, the link count is always 1

stat Makefile
File: ‘Makefile'
Size: 4552

Blocks: 16

IO Block: 4096
Inode: 30669

Links: 1

regular file
Device: 801h/2049d

« When a directory is created, the initial link count is
always 2

mkdir temp

stat temp
File: “temp'
Size: 4096

Blocks: 8
Device: 804h/2052d

IO Block: 4096
Inode: 10994310

Links: 2

directory

Why it is 2

Link File — showing the link counts

Parent of “temp”

- The new directory “temp”
link #2

Inode #: 10,994,310 ,_____
T 10,994,310
123 | .| . | . |- >3
1
2 . : -l
10,994,310 | ... temp |

« When a directory is created, the initial link count is

always 2. Why?

mkdir temp
stat temp
File: “temp'
Size: 4096
Device: 804h/2052d

Blocks: 8 IO Block: 4096 directory
Inode: 10994310 Links: 2

Parent of “temp” The new directory “temp”
ETERETTE ETIEETT
123 . 10,994,310 ...
10,994,310 ... temp -

* The hosting directory of the newly creating directory
will have its link count increased by 1.

« How about removing a file?

Removing
the file...

Directory: /dirl

Inode # ... Filename

123

2 B
B2 508 | .| 12jpg

Link Count

Directory: /dirl

Inode # ... Filename

123

2

5.086. 1200
7 e

« How about removing a file?

— The system call that removing a file is, therefore,
called unlink ().

* The unlink () system call is to decrement the link count by
exactly one.

* When the link count == 0, the data blocks and the inode
will all be de-allocated by the kernel.

123

Directory: /dirl

Inode # ... Filename

2

[~ aYer~

De-allocated

Link File — decrementing the link count?

« Back to the previous hard link example...

Directory: /dirl # 1s /dirl/12.3pg
12.jpg
1ln /dirl/12.jpg /my_link
123
2 .
5,086 12.jpg
Directory: /
——| Inode # 5086
2 2/ .
2 . L
5,086 ... | my_link Tl

Link File — decrementing the link count?

« Back to the previous hard link example...

Directory: /dirl # 1s /dirl/12.3pg
12.jpg
1ln /dirl/12.jpg /my_link
rm /dir/12.jpg
123 # rm /my link
2
5,086 T27pg
. —4 De-allocated
Directory: /
Inode #: 5086
0
2 I
2 . L
5 086 mylink \\».

Link File — what is a symbolic link?

« A symbolic link is a file.

— Unlike the hard link, a new inode is created
for each symbolic link.
— It stores the pathname (shortcut)

1s /dirl/12.3jpg A new directory
12.3pg) . . entry is created.
1In —-s /dirl/12.jpg /my_link
1s -1 /mylink
/mylink -> /dirl/12.jpg
#
Directory: /dirl Directory: /
123 . 2
2 . Another 2 .
- inode X
5,086 12.jpg 6,120 my_link

« How to store the target path?
— If the pathname is less than 60 characters
—Itis stored in the 12 direct block and the 3
indirect block pointers.
— Else, one extra data block is allocated

| @2l + 3) x 4 = 60|

. 1 :
Link Count Directory: /

Direct #0 Inode # ... Filename

2

Single Indirect
Double Indirect 2 .
Triple indirect <+ 6,120 ... | my_link

« Hard link
— A directory entry pointing to an existing file
— They point to the same inode (no new file content)
— Afile with two pathname
— Remove file == unlink (link count - 1)
— Examples: dot/dot dot

« Symboilic link
— A file with a new inode
— Stores the target pathname
— Shortcuts

Details of Ext2/3

- Buffer cache

* Recall the read/write process
— Directory traversal
— Reading inode
— Data blocks

F
Index Node [Root
Table 15 [Directory
E

How to improve file system performance?

* Kernel Buffer Cache

— The kernel will keep a set of copies of the read/written
data blocks.

— The space that stores those blocks are called the buffer
cache.

— It is used for reducing the time in accessing those blocks
in the near future

* Why effective?
— Principle of locality

* What need to be cached?
— Data blocks, directory file, inode?

— All of them can benefit from caching

Index Node
Table

Root
Directory

Kernel Buffer Cache

* Three types of buffer caches!

Page Cache It buffers the data blocks of an opened file.

Directory entry Directory entry is stored in the kernel.

(dcache) cache

Inode cache The content of an inode is stored in the kernel temporary.

Remember, those cached data is stored in the kernel even
though the corresponding file is closed!

By the way, the cache is managed under the LRU algorithm.

46

Kernel Buffer Cache

{ Read/write mode with kernel buffer cache]

T

Reading mode When a process reads a file, the data will be cached automatically.

E.g., Readahead system call

System call ssize_t readahead(int fd, off64_t offset, size_t count);

A blocking system call that stores requested range of data into the kernel
page caches

Later read() calls over the range will not block.

47

Readahead

e How does it work?

— When a file reading operation is requesting for Block x, there is a
chance that Block x+1 will also be needed.

— Such a chance depends on:
* The file reading mode: sequential access or random access.

* The file reading history: whether the process prefers reading sequentially
or not.

— If such a chance is high, then reading a series of continuous
blocks will reduce the number of disk accesses. Why?
* Because the disk head is not always stopped at your desired locations.
* Because a mechanical disk is good at reading sequential data.
* How about SSD?

48

Kernel Buffer Cache

{ Read/write mode with kernel buffer cache]

[How about write?]

ose—Jomrgion

Write-through Both the on-disk and the cached copies update together.
mode

E.g., The write() system call will not return until the on-disk copy is written.

Write-back When a piece of data is going to be written to a file, the cached copy is
mode updated first. The update of the on-disk copy is delayed.

On-demand writing dirty blocks back.

Command: sync
System calls: sync (), fsync()

49

Details of Ext2/3

- Journaling

File System Consistency

* Think about caching...tradeoff?
— System inconsistency exists

* Power failure, pressing reset button accidentally; etc.
e Disk only provides
— atomic write of one sector at a time
* A write may require modifying several sectors

— How to atomically update file system from one
consistent state to another?

The file system journal is the current, state-
of-the-art practice.

You write down all the tasks
assigned to you into a log book.

1)
2)
3)
4)

Task list:

Buy boss a DC.

Pick up boss’ friend.

Drive his friend back to his home.
Buy boss a coffee when I return.

Your boss orders
you to do a set of tasks!

Task list:

1) —Buy bossa DC.

2) Pick up boss’ friend.

3) Drive his friend back to his home.
4) Buy boss a coffee when | return.

You cross out a
task when
it is completed.

Example: Journaling File System

| g

Unfortunately, a car accident happens!

7y
pE

You lost all your memory!! ‘3\

Your boss sends your
colleague to finish your job.
N But, he doesn’t know about

L your progress.
S 2
<Y, Worse, your boss has
ULUSLE) o 121 @ forgotten what are the tasks

i |
comes in handy! given to you!

54

Example: Journaling File System

User Program FS operations invoked by the user program

Task list:

1) BuybossaDC.
_— 2) Pick up boss’ friend.

3) Drive his friend back to his home.
4) Buy boss a coffee when | return.

%
‘“ System crash!
All memory lost!
_—

.
File system \ /
recovery tool

_ The journal!

55

What is journal?

/

/

 Ajournal is the log book for the file system. V

— It is kept inside the file system, i.e., inside the disk.

FS Data Journal Data blocks

a new item

* In database: Write-ahead logging

* In file systems: Journaling
— Applications: Linux ext3 and ext4, Windows NTFS

Basic idea: when updating the disk, before overwriting the structures in
place, first write down a little note describing what you are about to do

56

* In order to make use of the journal:
— A set of file system operations becomes an atomic
transaction.
* Either all operations are completed successfully, or
* no operation is completed.

— A transaction marks all the changes that will be done
to the FS.

— Every transaction is written to the journal.

Journaling in Linux ext3

* How does Linux ext3 incorporate the journaling?
— Most of on-disk structures are identical to Linux ext2
— The new key structure is the journal itself

— It occupies some small amount of space within the
partition or on another device

Ext2 Super Group 0 Group 1 . Group N

Ext3 Super |Journal Group 0 Group 1 o Group N

58

Data Journaling

* How to do journaling?

* Task: update inode (I[v2]), bitmap (B[v2]), and
data block (Db) to disk

— Metadata + data

 Strategy: Data journaling

— Write all data (metadata+data) to journal

* Before writing them to their final disk locations, we first write
them to log (a.k.a. journal)

— An available mode with the Linux ext3 file system

59

Data Journaling

* Journal layout:

Journal

TxB| I[v2] | B[v2] Db [TxE

— TxB: Transaction begin block

* It contains some kind of transaction identifier (TID)
— TxE: Transaction end block

* Marker of the end of this transaction

* |t also contain the TID

Checkpoint

— Overwrite the old structures in the file system after the

transaction being safely on disk

60

Data Journaling

* Operation sequence:
— Journal write

* Write the transaction to log and wait for these
writes to complete

* TxB, all pending data, metadata updates, TxE
— Checkpoint

* Write the pending metadata and data updates to
their final locations

* Any problem with this flow?

— What if crash occurs during the writes to journal

61

* We need to write the set of blocks (TxB, I[v2],
B[v2], Db, TxE)
— Issue one block at a time
* Itis slow because of waiting for each to complete
— Issue all blocks at once

* Five writes -> a single sequential write: Faster way
¢ However, it is unsafe...

* The disk internally may perform scheduling and complete small
pieces of the big write in any order

Data Journaling

e |Issue all blocks at once
— Suppose: disk internally

* (1) writes TxB, I[v2], B[v2], TXE and later
* (2) writes Db

— When crash occurs during the writes to journal
* If the disk loses power between (1) and (2)

Journal

TxB| Ilv2] | Bv2] | {72) [TxE
id=1 ~=-=* lid=1

Problem: Transaction looks like a valid transaction, but
the file system can’t look at the fourth block and know it is wrong

63

* How to solve this problem?
— Issue transactional write in two steps

* First step: writes all blocks except the TxE block to journal

Journal
TxB| Iv2] | Bv2] | Db | ——» .
id=1 write

* Second step: file system issues the write of the TxE

TxB| Iv2] | Bv2] | Db — > Journa_l
id=1 commit

Make sure the write of TxE is atomic

Journal

Journal

* Operation sequence:
— Journal write

* Write the contents of the transaction (including TxB,
metadata, and data)

— Journal commit
* metadata, and data (including TxE)
— Checkpoint

» Write the contents of the update to their on-disk
locations

The write order must be guaranteed

Data Journaling

* How to do recovery?

— Case 1: crash happens before journal commit

Easy! Skip the pending update

— Case 2: crash happens after journal commit, but
before checkpoint

Replay transactions in order. Called redo logging

66

* The log is of finite size

— What problems may arise if it is full?
* Long time to replay
* Unable to append new transactions

* Manage as a circular log

— Free space after checkpointing

3
i

doumall o | T | Txa
Super

Journal

Tx5

* Write sequence

Journal Journal Checkpoint Free
=) e = S

* Data Journaling Timeline

Journal File System
TxB Contents TxE |Metadata Data
(metadata) (data)
issue issue issue
complete
complete
complete
________________ issue [T T T 7
complete

issue issue
complete
complete

Metadata Journaling

* Any problem with data journaling?
— Write every Db to disk twice

* Commit to log (journal file)
* Checkpoint to on-disk location

* How to avoid writing twice?

— Metadata journaling: Logging metadata only

-

TxB| I[v2] | Bv2] | Db
id=1 s

Journal

s’

N

v

This data is not written to journal

69

* Write-back mode: no order restriction (data/journal)

— How about data is written to disk after journal commit?
* File system is consistent (from the perspective of metadata)
* Metadata points to garbage data

* Ordered mode
— Data is written to file system before journal commit

— Rule:
* Write the pointed-to object before the object that points to it
* Core of crash consistency

— Widely deployed by Ext3, NTFS, etc.

* Write sequence

Data Journal
write - metadata

Journal Checkpoint -

commit metadata

Journal File System
TxB Contents TxE Metadata Data

The two writes can be (metadata)
issued in parallel issue issue issue

complete

complete
complete

complete

* Working principle:
— All the changes to the FS are written to the journal
first, including:

* the changes in the metadata, i.e., information other than the
file content. E.g., the inodes, the directory entries, etc.

* the file data (depends on data journaling/metadata
journaling)

— Then, the system call returns to the user process.

— Meanwhile, the entries in the journal are replayed and
the changes are reflected to the actual file system.

Details of Ext2/3

- VFS

Virtual File System (VFS)

e Old days: “the” file system | |

local file system
type 2

* Nowadays: many fs types | =
and instances co-exist \

VFES: an FS abstraction layer
— Transparently and uniformly supports multiple FSes
— A VFS specifies an interface
— A specific FS implements this interface

* Let’s look into the implementation of open().

struct file_operations {
loff (*llseek)...
ssize_t (*read)...

~int (*open) ...
}
I

710 if (f->f_op && f->f_op->open) {
711 error = f->f_op->open(inode,f);
712 if (error)
713 goto cleanup_all;
714 }

’ http://Ixr.linux.no/linux-old+v2.4.31/fs/open.c ‘

* For each file system, they have their own set of file
operations.

FAT32 Methods.

fat_file_operations

Parent Methods http://Ixr.linux.no/linux-
VFS layer old+v2.4.31/fs/fat/file.c#L26
open read
write 1lseek

ext3_file_operations

http://Ixr.linux.no/linux-
old+v2.4.31/fs/ext3/file.c#L113

* So, the beauty in such design is that:

— The caller, i.e. the VFS layer, doesn’t need to care
about nor hard-coding which FS you are working on.

’ error = f->f_op->open(inode,f); ‘

The only things that require hard-coding are:
- The definition of the file operations.
- The assignment of file operation structures for each FS.

* A follow-up question is:

— What if a FS does not support a particular subset of
operations?

— E.g., FAT32 does not need to implement chmod()!

— Solution?
* Simple! Using NULL pointers!

* When a NULL pointer to a file is detected, returning an error
or proceed without any changes.

» Ext* file systems are the primary FS for Linux
— They follow the index-node allocation

— We talked about...
* Detailed layout (grouping, bitmaps)
* Inode structure
* Directory structure
Link file (hard link and symbolic link)
* Kernel buffer cache and readahead

* Journaling (data journaling, metadata journaling)
* VFS

/O Systems

Operating System Concepts Essentials — 2"d Edition o = Silberschatz, Galvin and Gagne ©2013-.

Overview

I/O management is a major component of operating system design
Important aspect of computer operation

1/0 devices vary greatly
Various methods to control them

Performance management

Ports, busses, device controllers connect to various devices

Device drivers encapsulate device details
Present uniform device-access interface to I1/0 subsystem

=3

?x'(

Operating System Concepts Essentials — 2" Edition 12.2 Silberschatz, Galvin and Gagne ©2013

/O Hardware

Incredible variety of 1/O devices
Storage
Transmission
Human-interface

Common concepts

Port — connection point for device

Bus - daisy chain or shared direct access
» PCI bus common in PCs and servers, PCI Express (PCle)
» expansion bus connects relatively slow devices

Controller (host adapter) — electronics that operate port, bus, device
» Sometimes integrated
» Sometimes separate circuit board (host adapter)

f‘ﬁt
W
Al 2950

Operating System Concepts Essentials — 2" Edition 12.3 Silberschatz, Galvin and Gagne ©2013

=

@;‘i A Typical PC Bus Structure

monitor processor

‘] ocache |

SCSI bus

@
@
@
@

graphics bridge/memory _-
controller controller

SCSiI controller

0 L . L__PCI bus

IDE disk controller

expansion bus
interface

@ @
@ e

Operating System Concepts Essentials - 2" Edition 12.4

[
0 ‘—‘r—expansion b

us—lr—J)

parallel
port

||

sy

A ﬁ\

Silberschatz, Galvin and Gagne ©2013

/O Hardware

How to control devices?

Devices usually have registers where device driver places
commands, addresses, and data to write, or read data from
registers after command execution

Data-in register, data-out register, status register,
control register

How to communicate with controller?
Devices have addresses, used by

» Direct I/O instructions

» Memory-mapped I/O

Device data and command registers mapped to
processor address space

=N
7 WS
LG

Operating System Concepts Essentials — 2" Edition 12,5 Silberschatz, Galvin and Gagne ©2013

Device I/0O Port Locations on PCs (partial)

1/0 address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

Operating System Concepts Essentials - 2" Edition 12.6

A

»

Silberschatz, Galvin and Gagne ©2013

&;;“ﬁ Polling (¥818)

For each byte of /1O
1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out
register

3. Host sets command-ready bit
4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when
transfer done

Step 1 is busy-wait cycle to wait for I1/0O from device
Reasonable if device is fast
But inefficient if device is slow

Operating System Concepts Essentials — 2" Edition 12.7 Silberschatz, Galvin and Gagne ©2013

Interrupts ()

CPU Interrupt-request line triggered by I/O device
Two lines:
» Maskable (RIF#&) and nonmaskable (JEF#) interrupt
Checked by processor after each instruction

Interrupt handler receives interrupts

Interrupt vector (FREFFRE) to dispatch interrupt to correct handler
Context switch at start and end

Based on priority, some are nonmaskable

Interrupt chaining if more than one device at same interrupt
number

“’;S;\;

Operating System Concepts Essentials — 2" Edition 12.8 Silberschatz, Galvin and Gagne ©2013

Intel Pentium Processor Event-Vector Table

vector number description

o

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow

bound range exception

invalid opcode

device not available

double fault

coprocessor segment overrun (reserved)

© 0N OB WN =

JEFFRR i

10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17/ alignment check
18 machine check
19-31 (Intel reserved, do not use)
32-255 maskable interrupts

Operating System Concepts Essentials — 2" Edition 12.9 Silberschatz, Galvin and Gagne ©2013

Interrupts (Cont.)

Interrupt mechanism also used for exceptions (F%&)
Terminate process, crash system due to hardware error
Page fault
executes when memory access error

System call

executes via software interrupt or trap to trigger kernel
to execute request

Operating System Concepts Essentials - 2" Edition

12.10

7,

-ﬁ; ,3

A
Silberschatz, Galvin and Gagne ©2

013

Direct Memory Access

Used to avoid programmed I/O (one byte at a time) (F2 FF4224%1/0) for
large data movement

Requires DMA controller
Bypasses CPU to transfer data directly between device & memory

How to work?

OS writes DMA command block into memory
» Source and destination addresses
» Read or write mode
» Count of bytes

Writes location of command block to DMA controller, then CPU can
continue to execute other tasks

DMA controller masters bus and does the transmission without CPU

» DMA-request and DMA acknowledge between DMA controller and
device controller

Operating System Concepts Essentials — 2" Edition 12.11 Silberschatz, Galvin and Gagne ©2013

S5 Application 1/O Interface

Devices vary in many dimensions 2tpen i ikl
character terminal
data-transfer mode Bk disk
Character-stream or block -
access method :::;::‘"a‘ rggiiﬂegM
Sequential or random-access
q transfer schedule :Z;fw:{::g:gi 5 ki’;i i
Synchronous or asynchronous " e o
. snanng sharable keyboard
Sharable or dedicated e — latency
seek time
Speed of operation ooy o
read-write, read only, write only | voatecion o e
read-write disk

How to provide a standard and uniform I/O interface?
Abstraction, encapsulation, layering (%, i, 9B)

A

Operating System Concepts Essentials — 2" Edition 12.12 Silberschatz, Galvin and Gagne ©2013

A Kernel I/O Structure

kernel
o
o
é kernel I/O subsystem
3
Scsi keyboard | mouse PCI bus floppy ATAPI
device device device (XX device device device
driver driver driver driver driver driver
Scsi keyboard | mouse PCI bus floppy ATAPI
device device device oo device device device
& controller | controller | controller controller | controller | controller
- T S T T A
B
2 ATAPI
SCsl floppy- | | devices
i keyboard| | mouse see PCI bus disk (disks
levices -)
drives tapes,
drives)
Operating System Concepts Essentials - 2" Edition 12.13 Silberschatz,

A

Galvin and Gagne ©2013

I/O Devices

Block devices include disk drives
Commands include read, write, seek
Raw I/O, direct I/O, or file-system access
Memory-mapped file access possible

» File mapped to virtual memory and clusters brought via
demand paging

DMA

Character devices include keyboards, mice, serial ports
Commands include get () , put()

Network devices
socket interface

Operating System Concepts Essentials — 2" Edition 12.14 Silberschatz, Galvin and Gagne ©2013

g5 Clocks and Timers

Functionalities of hardware clock and timer
Get current time
Get elapsed time
Timer

Programmable interval timer (Al 4Ri&[E)EE AT2%) used for
timings, periodic interrupts

Process scheduler: interrupt when time quantum is zero
I/O subsystem: periodic flush

S
=R

3)
r}‘—"\./
d

“ P

Operating System Concepts Essentials — 2" Edition 12.15 Silberschatz, Galvin and Gagne ©2013

Two I/O Methods

kernel user { requesting process requesting process } user
——Wwaiting—— 4
£ N
device driver device driver
. ' ‘ .
< [t interrupt handler i tinterrupt handler » kernel
1 v/
hardware hardware
L— data transfer — L --data transfer —
b
time ———» time ——»
(a) (b)
Synchronous Asynchronous

Operating System Concepts Essentials — 2" Edition 12.16 Silberschatz, Galvin and Gagne ©2013

Kernel I/O Subsystem

Kernel I/O subsystem provides many services

I/0 scheduling
Maintain a per-device queue
Re-ordering the requests
Average waiting time, fairness, etc.

Buffering - store data in memory while transferring between devices
To cope with device speed mismatch
To cope with device transfer size mismatch

To maintain “copy semantics” (e.g., copy from application’s buffer
to kernel buffer)

il

A

Operating System Concepts Essentials — 2" Edition 12.17 Silberschatz, Galvin and Gagne ©2013

Kernel 1/0 Subsystem

Caching - faster device holding copy of data

Always just a copy

Key to performance

Sometimes combined with buffering
Spooling - hold output for a device

If device can serve only one request at a time, e.g., Printing
Error handling and 1/0 protection

OS can recover from disk read error, device unavailable, transient
write failures

All /O instructions defined to be privileged
Power management, etc.

il

A

Operating System Concepts Essentials — 2" Edition 12.18 Silberschatz, Galvin and Gagne ©2013

Summary

I/0 hardware
Port, bus, controller
Polling, interrupt, DMA

Application 1/O interface

block devices, character devices, network devices, clock and
timer

Kernel I/0 subsystem
Services

il

A

Operating System Concepts Essentials — 2" Edition 12.19 Silberschatz, Galvin and Gagne ©2013

o]
Hardware White Paper

Designing Hardware for Microsoft® Operating Systems

Microsoft Extensible Firmware Initiative
FAT32 File System Specification

FAT: General Overview of On-Disk Format

Version 1.03, December 6, 2000
Microsoft Corporation

The FAT (File Allocation Table) file system has its origins in the late 1970s and early1980s
and was the file system supported by the Microsoft® MS-DOS® operating system. it was
originally developed as a simple file System suitable for floppy disk drives less than 500K in
size. Over time it has been enhanced to support larger and larger media. Currently there are
three FAT file system types: FAT12, FAT16 and FAT32. The basic difference in these FAT
sub types, and the reason for the names, is the size, in bits, of the entries in the actual FAT
structure on the disk. There are 12 bits in a FAT12 FAT entry, 16 bits in a FAT16 FAT entry
and 32 bits in a FAT32 FAT entry.

Contents

Notational Conventions in this Document 7
General Comments (Applicable 0 FAT File System All TYPES) ... T
Boot Sector and BPB. 7
FAT Data Structure 1
FAT Type Dx 14
FAT Volume 19
FAT32 FSinfo Sector Structure and Backup Boot Sector. 1
FAT Directory Structure

FAT Long Directory Entries 5
Name Limits and Character Sets 9
Name Matching In Short & Long Name: 30
Naming Conventions and Long Names 0
Effect of Long Directory Entries on DOWN Level Versions of FAT w...............coeeererssreresn 32
Validating The Contents of a Directory 3

Other Notes Relating to FAT Directori

Microsof, MS_DOS, Windows, and Windaws NT

©2000 Microsoft Corporaton. Al ighis reserved.

FAT: General Overview of On-Disk Format—Page 2

Microsoft Extensible Firmware Initiative FAT32 File System Specification

IMPORTANT-READ CAREFULLY: This Microsoft Agreement (“Agreement’) is a legal agreement
between you (either an individual or a single enity) and Microsoft Corporation (*Microsoft’) for the
version of the Microsoft specification identified above which you are about to download
(‘Specification’). BY DOWNLOADING, COPYING OR OTHERWISE USING THE
SPECIFICATION, YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT DOWNLOAD, COPY,
OR USE THE SPECIFICATION.

The Specification is owned by Microsoft or its suppliers and is protected by copyright laws and
international copyright treaties, as well as other intellectual property laws and treaties.

1 LIMITED LICENSE AND COVENANT NOT TO SUE.

(a) Provided that you comply with all terms and conditions of this Agreement and subject to
the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following non-exclusive,
worldwide, royalty-free, non-transferable, non-sublicenseable license under any copyrights owned
or licensable by Microsoft without payment of consideration to unaffiiated third parties, to
reproduce the Specification solely for the purposes of creating portions of products which comply
with the Specification in unmodfied form.

(b) Provided that you comply with all terms and conditions of this Agreement and subject to
the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following non-exclusive,
worldwide, royalty-free, non-transferable, non-sublicenseable, reciprocal imited covenant not to
sue under its Necessary Claims solely to make, have made, use, import, and directly and
indirectly, offer to sell, sell and otherwise distribute and dispose of portions of products which
comply with the Specification in unmodified form.

For purposes of sections (a) and (b) above, the Specification is “unmodified" f there are no
changes, additions or extensions to the Specification, and “Necessary Claims" means claims of a
patent or patent application which are (1) owned or licenseable by Microsoft without payment of
consideration to an unaffiiated third party; and (2) have an effective filing date on or before
December 31, 2010, that must e nfinged in ordr to make a portns)of & praducttht
complies with the Specification. Necessary Claims does not include claims relatin

ircuits or claims not requwed tobe
Inftinged in complying with the Specification (even f n the same patent as Necessary Claims),

(c) The foregoing covenant not to sue shall not extend to any part or function of a product
which (i) is not required to comply with the Specification in unmodified form, o (ii) to which there
was a commercially reasonable alternative to infringing a Necessary Claim
(d) Each of the license and the covenant not to sue described above shal\ be unavailable to
you and shall terminate mmeciatelyfyo o any of your Afiates (colctvely Covenantee
Party”) “Initiates” any action for patent infringement against: (x) Microsoft or any of its Affiliates
(collectively “Granting Pany) () any customers o distrbutors of he Grantng Pary. o amer
recipients of la covenant not to sue with respect to the Specification from the Granting
(“Covenantees); or (2) any customers or distributors of Covenantees (all parties deniti
and (2) ccl\ecwe\y referred to as “Customers”), which action is based on a conformant
implementation of the Specification. As used herein, “Affiiate” means any entity which directly or
|nd|rec(ly controls, is controlled by, or is under common control with a party; and control sl

e power, whether direct or indirect, to direct or cause the direction of the management or
pnllcles of any entity whether through the ownership of voting securities, by contract or otherwise.
“Initiates” means that a Covenantee Party is the first (as between the Granting Party and the
Covenantee Party) to file o institute any legal or administrative claim or action for patent
infringement against the Granting Party or any of the Customers. “Initiates” includes any situation
inwhich a Covenantee Party files or initiates a legal or administrative claim or action for patent

i o)

© 2000 MicrosoftCorporation. Al rights esrved 2

FAT: General Overview of On-Disk Format—Page 3

infringement solely as a counterclaim or equivalent in response to a Granting Party first filing or
instituting a legal or administrative patent infringement claim against such Covenantee Party.

(e) Each of the license and the covenant not to sue described above shall not extend to your
use of any portion of the Specification for any purpose other than (a) to create portions of an
operating system (i) only as necessary o adapt such operating system so that t can directly
interact with a firmware implementation of the Extensible Firmware Initiative Specification v. 1.0
(‘EFI Specification"); i) only as necessary to emulate an implementation of the EFI Specification;
and (b) to create firmware, applications, utiities andlor drivers that will be used and/or licensed
for only the following purposes: (i) to install, repair and maintain hardware, firmware and portions
of operating system software which are utilized in the boot process; (i) to provide to an operating
system runtime services that are specified in the EFI Specification; (i) to diagnose and correct
failures in the hardware, firmware or operating system software; (i) to query for identification of a
computer system (whether by serial numbers, asset tags, user o otherwise); (v) to perform
inventory of a computer system; and (vi) to manufacture, install and setup any hardware,
firmware or operating system software.

() Microsoft reserves all other rights it may have in the Specification and any intellectual
property therein. The furnishing of this document does not give you any license or covenant not
10 sue vith respect to any other Microsoft patents, trademarks, copyrights or other intellectual
property rights.

2. ADDITIONAL LIMITATIONS AND OBLIGATIONS.
(@)The foregoing license and covenant not to sue is applicable only o the version of the
Specification which you are about to download. It does not apply to any addtional versions of or
extensions to the Specification.

(b)Without prejudice to any other rights, Microsoft may terminate this Agreement if you fail to
comply with the terms and conditions of this Agreement. In such event you must destroy all
copies of the Specification

INTELLECTUAL PROPERTY RIGHTS. All ownership, title and intellectual property rights
in and to the Specification are owned by Microsoft or its suppliers.

4.U.S. GOVERNMENT RIGHTS. Any Specification provided to the U.S. Government pursuant
o solicitations issued on or after December 1, 1995 is provided with the commercial rights and
restrictions described elsewhere herein. Any Specification provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 is provided with RESTRICTED
RIGHTS as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFAR, 48 CFR 252.227-
7013 (OCT 1988), as applicable.

5. EXPORT RESTRICTIONS. Export of the Specification, any part thereof, or any process
or service tha s the diectproduct of the Specifcaton e foregaing collecivel refered to as
the "Restricted Components’) from the United States is regulated by the Export Administration
Regulations (EAR, 15 CFR 730-744) of the U.S. Commerce Department, Bureau of Export
Administration (‘BXA"). You agree to comply with the EAR in the export of re-export of the
Restricted Components () to any country to which the U.S. has embargoed or restricted the
export of goods or services, which currently include, but are not necessarily limited to Cuba, Iran,
irag, Libya, North Korea, Sudan, Syria and he Federal Repubic of Yugosiavia (nclucing Serbia,
but not Montenegro), or to any national of any such country, wherever located, who in
transmit or transport the Restricted Components back to such country; (i) to any person or enmy
w or have reason to know will utilize the Restricted Components in the design,
development or production of nuclear, chemical or biological weapons; or (ii) to any person or
entity who has been prohibited from participating in U.S. export transactions by any federal
agency of the U.S. government. You warrant and represent that neither the BXA nor any other
U.S. federal agency has suspended, revoked or denied your export privileges. For additional
information see hitp:/Junw. microsoft.com/exporting.

© 2000 MicrosoftCorporation. Al rights esrved 3

FAT: General Overview of On-Disk Format—Page 4

6. DISCLAIMER OF WARRANTIES. To the maximum extent permitted by applicable law,
Microsoft and its suppliers provide the Specification (and all intellectual property therein) and any
(if any) support services related to the Specification (“Support Services”) AS IS AND WITH ALL.
FAULTS, and hereby disclaim all warranties and conditions, either express, implied or statutory,
including, but not limited to, any (if any) implied warranties or conditions of merchantability, of
fitness for a particular purpose, of lack of viruses, of accuracy or completeness of responses, of
results, and of lack of negligence or lack of workmanlike effort, all with regard to the Specmcaucm,
any intellectual property therein and the provision of or failure to provide Support Services.

ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOVMENT QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT, WITH
REGARD TO THE SPECIFICATION AND ANY INTELLECTUAL PROPERTY THEREIN. THE
ENTIRE RISK AS TO THE QUALITY OF OR ARISING OUT OF USE OR PERFORMANCE OF
THE SPECIFICATION, ANY INTELLECTUAL PROPERTY THEREIN, AND SUPPORT
SERVICES, IF ANY, REMAINS WITH YOU.

7. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES.
To the maximum extent permitted by applicable law, in no event shall Microsoft or its suppliers be
liable for any special, incidental, indirect, or consequential damages whatsoever (including, but
not limited to, damages for loss of profits or confidential or other information, for business.
interruption, for personal injury, for loss of privacy, for failure to meet any duty including of good
faith or of reasonable care, for negligence, and for any other pecuniary or other loss whatsoever)
arising out of or in any way related o the use of or inability to use the SPECIFICATION, ANY
INTELLECTUAL PROPERTY THEREIN, the provision of or failure to provide Support Services,
or otherwise under or in connection with any provision of this AGREEMENT, even in the event of
the fault, tort (including negligence), strct liability, breach of contract or breach of warranty of
Microsoft or any supplier, and even f Microsoft or any supplier has been advised of the possibility
of such damages.

8. LIMITATION OF LIABILITY AND REMEDIES. Notwithstanding any damages that you
might incur for any reason whatsoever (including, without limitation, all damages referenced
above and all direct or general damages), the entire liability of Microsoft and any of its suppliers
under any provision of this Agreement and your exclusive remedy for all of the foregoing shall be
limited t0 the greater of the amount acmaHy paid by you for the Specification or U.S.5.00. The
foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails its essential purpose.

APPLICABLE LAW. fyou acquired iis Specication i he United States tis
Agveemen(is governed by the iaws of the State of Washington. If you acquired this Specification
in Canads, uless expressly prohiited by local law, this Agreemem is governed by the laws in
force in the Province of Ontario, Canada; and, in respect of any dispute which may arise
ereunder, you consent to he 1unsdlcnun of the federal and provincial courts sitting in Toronto,
Ontario. If this Specification was acquired outside the United States, then local law may apply.

10.QUESTIONS. Should you have any questions concerning this Agreement, or if you desire to
contact Microsoft for any reason, please contact the Microsoft subsidiary serving your country, or
write: Microsoft Sales Information Center/One Microsoft Way/Redmond, WA 98052-6399.

11.ENTIRE AGREEMENT. This Agreement is the entire agreement between you and Microsoft
reating o the Specication and i Suppor Sewwces (w any) and hey supersede al prior o

ral o with respect to
the Specification or any am men matter covered i7y veemem To the extent the terms
of any Wicrasoft polcie ot program for Support Services confic wih the terme of s
Agreement, the terms of this Agreement shall control

© 2000 MicrosoftCorporation. Al rights esrved 4

FAT: General Overview of On-Disk Format—Page 5

Si vous avez acquis votre produit Microsoft au CANADA, Ia garantie limitée suivante vous
concerne

RENONCIATION AUX GARANTIES Dans toute Ia mesure permise par I égilation en vigueu.
Microsoft et s fournissent la (et toute propriéte dan:
Collo-c) ot tous (selon I cag) Ios Senices d'sssstance I8 Ia Spacifiation (-Serices
dassistance’) TELS QUELS ET AVEC TOUS LEURS DEFAUTS, et par les présentes excluent
toute garantie ou condition, expresse ou implicite, Iégale ou conventionnelle, écrite ou verbale, y
compris, mais sans limitation, toute (selon le cas) garantie ou condition implicite ou légale de
qualité marchande, de conformité a un usage particulier, d'absence de virus, d'exactitude et
dintégralité des réponses, de résultats, d'efforts techniques et professionnels et d'absence de.
négligence, le tout ala a toute propriété dans celle-ci eta
Ia prestation ou a la non-prestation des Services d'assistance. DE PLUS, IL N'Y A AUCUNE
GARANTIE ET CONDITION DE TITRE, DE JOUISSANCE PAISIBLE, DE POSSESSION
PAISIBLE, DE SIMILARITE A LA DESCRIPTION ET D'ABSENCE DE CONTREFAGON
RELATIVEMENT A LA SPECIFICATION ET A TOUTE PROPRIETE INTELLECTUELLE DANS
CELLE-C. VOUS SUPPORTEZ TOUS LES RISQUES DECOULANT DE L'UTILISATION ET DE
LA PERFORMANCE DE LA SPECIFICATION ET DE TOUTE PROPRIETE INTELLECTUELLE
DANS CELLE-CI ET CEUX DECOULANT DES SERVICES D'ASSISTANCE (S'IL Y A LIEU).

EXCLUSION DES DOMMAGES INDIRECTS, ACCESSOIRES ET AUTRES. Dans toute la
mesure permise par la Iégislation en vigueur, Microsoft et ses fournisseurs ne sont en aucun cas
responsables de tout dommage spécial, indirect, accessoire, moral ou exemplaire quel quii soit
(y compris, mais sans limitation, les dommages entrainés par la perte de bénéfices ou la perte
dinformation confidentielle ou autre, Finterruption des affaires, les préjudices corporels, la perte
de confidentialit, le défaut de rempiir toute obligation y compris les obligations de bonne foi et de
diligence raisonnable, la négligence et toute autre perte pécuniaire ou autre perte de quelque
nature que ce soit) découlant de, ou de toute autre maniére lié a, Iutiisation ou Fimpossibilité
dutiliser la Spécification, toute propriété intellectuelle dans celle-ci, la prestation ou la non-
prestation des Services dassistance ou autrement en vertu de ou relativement a toute disposition
de cette convention, que ce soit en cas de faute, de délit (y compris la négligence), de
responsabilité stricte, de manquement a un contrat ou de manquement & une garantie de
Microsoft ou de fun de ses fournisseurs, et ce, méme si Microsoft ou I'un de ses fournisseurs a
été avisé de la possibilité de tels dommages.

LIMITATION DE RESPONSABILITE ET RECOURS. Malgré tout dommage que vous pourriez
encourir pour quelque raison que ce sait (y compris, mais sans limitation, tous les dnmmag
mentionnés ci-dessus et tous les dommages directs et généraux), la seule responsabilité
Microsoft et de ses fournisseurs en vertu de toute disposition de cette convention et votre unlque
recours en regard de tout ce qui précéde sont limités au plus élevé des montants suivants: soit
(a) le montant que vous avez payé pour la Spécification, soit (b) un montant équivalant a cing
dollars U.S. (5,00 $ U.S.). Les limitations, exclusions et renonciations ci-dessus s‘appliquent
dans toute la mesure permise par la législation en vigueur, et ce méme si leur application a pour
effet de priver un recours de son essence.

DROITS LIMITES DU GOUVERNEMENT AMERICAIN

Tout Produit Logiciel fourni au gouvernement américain conformément a des demandes émises.
e ou aprés le ler décembre 1995 est offert avec les restrictions et droits commerciaux décrits
ailleurs dans la présente convention. Tout Produit Logiciel fourni au gouvernement américain
conformément a des demandes émises avant le Ler décembre 1995 est offert avec des DROITS
LIMITES tels que prévus dans le FAR, 48CFR 52.227-14 (juin 1987) ou dans le FAR, 48CFR
252.227-7013 (octobre 1988), tels qu'applicables.

Sauf lorsquexpressément prohibé par la \ég\s\almn locale, Ia présente convention est régie par
s ok e vigueur dans i province JOntro, Canaa. Pou outdiféerd qu pourralt décotler
des présentes, vous acceptez la compétence des tribunaux fédéraux et provinciaux siégeant a
Toronto, Ontario,

© 2000 MicrosoftCorporation. Al rights esrved 5

FAT: General Overview of On-Disk Format—Page 6

Si vous avez des questions concernant cette convention ou si vous désirez communiquer avec
Microsoft pour quelque raison que ce soft, veuillez contacter la succursale Microsoft desservant
votre pays, ou écrire & Microsoft Sales Information Center, One Microsoft Way, Redmond,
‘Washington 98052-6399.

© 2000 Mictsoft Corporation. Al rigs eserved 6

FAT: General Overview of On-Disk Format—Page 7

Notational Conventions in this Document

Numbers that have the characters “0x” at the beginning of them are hexadecimal (base 16) numbers.

Any numbers that do not have the characters “0x” at the beginning are decimal (base 10) numbers.

The code fragments in this document are written in the ‘C* programming language. Strict typing and
syntax are not adhered to

There are several code fragments in this document that freely mix 32-bit and 16-bit data elements. It is
assumed that you are a programmer who understands how to properly type such operations so that
data is not lost due to truncation of 32-bit values to 16-bit values. Also take note that all data types are
UNSIGNED. Do ot do FAT computations with signed integer types, because the computations will
be wrong on some FAT volumes.

General Comments (Applicable to FAT File System All Types)

All of the FAT file systems were originally developed for the IBM PC machine architecture. The
importance of this is that FAT file system on disk data structure is all “little endian.” If we look at one
32-bit FAT entry stored on disk as a series of four 8-bit bytes—the first being byte[0] and the last
being byte[4]—here is where the 32 bits numbered 00 through 31 are (00 being the least significant
bit):

byte[3] 33222222
10087654
byte[2] 22221111
32109876
byte[1] 11111100
54321008
byte[0] 00000000
76543210

This is important if your machine is a “big endian” machine, because you will have to translate
between big and little endian as you move data to and from the disk.

AFAT file system volume is composed of four basic regions, which are laid out in this order on the
volume:

0~ Reserved Region

1-FAT Region

2~ Root Directory Region (doesn't exist on FAT32 volumes)

3~ File and Directory Data Region

Boot Sector and BPB

“The first important data structure on a FAT volume s called the BPB (BIOS Parameter Block), which
is located in the first sector of the volume in the Reserved Region. This sector is sometimes called the
“boot sector” o the “reserved sector” or the “0" sector,” but the important fact is simply that it is the
first sector of the volume.

This is the first thing about the FAT file system that sometimes causes confusion. In MS-DOS version

1., there was not a BPB in the boot sector. In this first version of the FAT file system, there were
only two different formats, the one for single-sided and the one for double-sided 360K 5.25-inch

© 2000 MicrosoftCorporation. Al rights esrved 7

FAT: General Overview of On-Disk Format—Page 8

floppy disks. The determination of which type was on the disk was done by looking at the first byte of
the FAT (the low 8 bits of FAT[0]).

“This type of media determination was superseded in MS-DOS version 2.x by putting a BPB in the
boot sector, and the old style of media determination (done by looking at the first byte of the FAT)
‘was no longer supported. All FAT volumes must have a BPB in the boot sector.

“This brings us to the second point of confusion relating to FAT volume determination: What exactly
does a BPB look like? The BPB in the boot sector defined for MS-DOS 2.x only allowed for a FAT
volume with strictly less than 65,536 sectors (32 MB worth of 512-byte sectors). This limitation was
due to the fact that the “total sectors” field was only a 16-bit ield. This limitation was addressed by

MS-DOS 3., where the BPB was modified to include a new 32-bit field for the total sectors vale.

The next BPB change occurred with the Microsoft Windows 95 operating system, specifically OEM
Service Release 2 (OSR2), where the FAT32 type was introduced. FAT16 was limited by the
maximum size of the FAT and the maximum valid cluster size to no more than a 2 GB volume if the
disk had 512-byte sectors. FAT32 addressed this limitation on the amount of disk space that one FAT
volume could occupy so that disks larger than 2 GB only had to have one partition defined.

The FAT32 BPB exactly matches the FAT12/FAT16 BPB up to and including the BPB_TotSec32
fiild. They differ starting at offset 36, depending on whether the media type is FAT12/FAT16 or
FAT32 (see discussion below for determining FAT type). The relevant point here is that the BPB in
the boot sector of a FAT volume should always be one that has all of the new BPB fields for either the
FAT12/FAT16 or FAT32 BPB type. Doing it this way ensures the maximum compatibility of the FAT
volume and ensures that all FAT file system drivers will understand and support the volume properly,
because it always contains all of the currently defined fields

NOTE: In the following description, al the fields whose names start with BPB_are part of the BPB.
All the fields whose names start with BS _are part of the boot sector and not really part of the BPB.
“The following shows the start of sector 0 of a FAT volume, which contains the BPB:

© 2000 MicrosoftCorporation. Al rights esrved 8

Boot Sector and BPB Structure
me ‘ Offset | Size
o) | oy

85 jmpBoot
85 OEMName 3 8
BPB Bywperse 11 2
BPB_SecPerClus 13 1
BPB_RsvdSecCnt 14 2

© 2000 Mictsoft Corporation. Al rigs eserved

FAT: General Overview of On-Disk Format—Page 9

Description

Jump instruction to boot code. This field has two allowed forms:
mpBoot{0] = 0XEB, jmpBoot{1] = 0x77, jmpBoot[2] = 0x90

mpBoot[0] = OxES, jmpBoat(1] = 077, jmpBoot(2] = 0x??

0x2? indicates that any 8-bit value is allowed in that byte, What this
formsis a three-byte Intel xB6 unconditional branch (jumy
instruction that jumps to the tartof the operating syster bootstrap
code. This code typically occupies the et of sector 0 of the volume
following the BPB and possibly other sectors. Either of these forms
s acceptable. JmpBoot[0] = OXEB is the more frequently used

i

“MSWIN1" There are many misconceptions about this field. It s
only a name string. Microsoft operating systems don't pay any
atention to this field. Some FAT drivers do. This s the reason that
the indicated string, “MSWINA.1", i the recommended settin,
because itis the setting least likely to cause compalibility problems.
1y vant to putsomating s fn e, U I your ption, bt

FAT e
volue. Typlcally his 15 some ndication of what system formated
the volum
Gount f byesper ector This vlue mey ks on rlyne
following values: 512, 1024, 2048 or 4096, If m
comptinity with old implemertations i deiec, oy the value
512 hould b e Ther s ot o FAT code n e vorld at s
asically “hard wi bytes per sector and doesn't bother to
Chace i 10 1o ke St U 515, MicToaf opraing ysems
will properly support 1024, 2048, and 4096.

Note: Do not misinterpret these statements about maximum

compatibility. If the media being recorded has a physical sector size

N, you must use N and this must still be less than or equal to 4096.
achieved 9

specific sector sizes
Number of sectors per allocation unt. This value must be a power
of 2 that i greater than 0. The legal values are 1. 2, 4, 8, 16, 32, 64,
and 128. Note however, that a value should never be used that
resultsin a “bytes per cluster” value (BPB_BytsPerSec *
BPB_SecPerClus) greater than 32K (32 * 1024). There is a
misconception that values greater than this are OK. Values that
e clustrsiz et than 32K bytes donot work propey. do
ot try to define one. Some versions of some systems allow 64K
Py por it .My pplcton s prograns wil ot
‘work correctly on such a FAT vol

Mo of ekt scors i e v region of the volume
slaning t he st et ofh volue, Ths feld st ot b 0.
For FAT12 and FATI6 volumes, this value should n

anyhing e than 1. For FATS2 volumes, i vale -s Iyﬂlcally
32, There i a ot of FAT code in the world “hard wire

eenv et To FATLS and FATAE voames and o st
Botrr o check s ek 0 ke sure s 1. Mlcosat operaiog
systems will properly support any non-zero valu in thi

BPB_NUTFATs 16 1
BPB_RootENtCnt 17 2
BPB Totsects 19 2
BPB_Media 2 1
BPB FATSZIS 22 2
BPB SecPerTik 24 2
BPB_NumHeads 26 2
BPB_HiddSec % 4
BPB Totseci2 32 4

© 2000 Mictsoft Corporation. Al rigs eserved

FAT: General Overview of On-Disk Format—Page 10

“The count of FAT data structures on the volume. This fild should
always contain the value 2 for any FAT volume of any type.
Although any value greater than or equal to 1 is perfectly valid,
many software programs and a few operating systems’ FAT file
system drivers may not function properly if the value is something
other than 2. Al Microsoft file system drivers will support a value
other than 2, but it s till highly recommended that no value other
than 2 be used in his ield

“The reason the standard value for this field i 2 s to provide redun-
dancy for the FAT data structure 5o that if sector goes bad in one
of the FATS, that data i notlost because it s duplicated in the other
FAT. On non-disk-based media, such as FLASH memory cards,
‘where such redundancy is a useless feature, a value of 1 may be
used to save the space that a second copy of the FAT uses, but
some FAT file system drivers might not recognize such a volume
properly.

For FATL2 and FAT6 volumes, this fild contains the count of 32-
byte directory entries in the root directory. For FAT32 volumes,
thisfield must be s to 0. For FATL2 and FATI16 volumes, this
resultsin an even muliple of BPB_BytsPerSec. For maximum
compatibility, FAT16 volumes should use the value 512.

“This field s the old 16-bit total count o sectors on the volume.

“This count includes the count of all sectors i all four regions of the
volume, This fisk can e 0 ten P To
non-zero. For FAT32 s, thi
FAT16 volumes, s feld o thesector
5 Toteess b 0119 o s cout e 10 him
0x10000).

0xF8 isthe standard value for “fixed” (non-removable) media. For
removable media, 0XFO is frequently used. The legal values for this
field are 0xF0, OxF8, 0XFO, OXFA, 0XFB, OXFC, OXFD, OXFE, and
XFF. The onlly other important point i that whatever value is put
in here must also be put in the low byt of the FAT[O] entry. This
dates back to the old MS-DOS 1.x media determination noted
earlier and is no longer usually used for anything
“This field is the FAT12/FATL 16-bit count of sectors occupied by
ONE FAT. On FAT32 volumes thi stbe 0, and
BPB_FATSZ32 contains the FAT size count.
Sectors per track for interrupt OXL3. This field s only relevant for
media that have a geometry (volume is broken down into tracks by
multple heads and cylinders) and are visible on interrupt OX13.
“This field contains the “sectors per rack” geometry value
Number of heads for nterrupt 013. This field is relevan as
discussed earler for BPB_SecPerTrk. This field contains the one
based “count of heads”. For example, on a 1.44 MB 3.5-inch floppy
drive this value is 2
Count o hidden sectors preceding the partition that contains ths
FAT volume. Thisfield is generally only relevant for media visible
on interrupt 0x13, This ield should always be zero on media that
are not partitioned. Excctly what value is appropriate is operating
system specific.
“This field s the new 32-bit total count of sectors o the volume
“This count includes the count of allsectors in all fou regions of the
volume, This field can be 0;if it is , then BPB_TotSecls must be
non-zero. For FAT32 volumes, this field must be non-zero. For
FATI2IFATI6 volumes, ths fild contains the sector count if
BPB_TotSecl6 is 0 (count s greater than or equal to 0x10000)

FAT: General Overview of On-Disk Format—Page 11

Atthis point, the BPB/boot sector for FAT12 and FATA16 differs from the BPB/boot sector for FAT32.
The first table shows the structure for FAT12 and FATA16 starting at offset 36 of the boot sector.

Fat12 and Fat16 Structure Starting at Offset 36
Name [ot bweripdon
(yte) | (bytes)
® 1

85_Drvum Int 0x13 drive number (e.9. 0x80). This field supports MS-DOS

bootstrap and is st o the INT 0x13 drive number of the media

(0x00 for floppy disks, 0x0 for hard disks).

NOTE: This feld is actally operating system specific.

BS_Reservedl a7 1 Reserved (used by Windows NT). Code that formats FAT volumes.
should always set this byte to 0.

85_Bootsig £ 1

This is
indicates that the following three fields in the boot sector are

85_VollD 39 4 Volume serial number. This field, together with BS_VolLab,

ppo
FAT file system crivers to detect that the wrong disk is inserted in &
“This 1D is usually i

g P
the current date and time into a 32-bit value.

85 VolLab 3 u ‘Volume label. This field matches the 11-byte volume label
recorded in the root
NOTE: FAT file system drivers should make sure that they update
this fiel filein y has s

9e ted. The seting for thi isno
volume label s the sring "NO NAVE ™

BS FilsysType 54 8 One of the stings “FAT12 *,“FATIG “,or"FAT "
NOTE: Many people think that the string i this field has
something to do with the determination of what type of FAT—
FAT12, FATL6, or FAT32—that the volume has This is not tue.
‘You will note from its name that this feld is not actually part of the
BPB. Thisstring i informational only and is not used by Microsoft
file system drivers to determine FAT typ,e because i s frequently
ot set correctly or is not present. See the FAT Type Determination
section of this document. This sring should be set based on the
FAT type though, because some non-Microsoft FAT file syster
drivers do look at .

© 2000 Mictsoft Corporation. Al rigs eserved 1

FAT: General Overview of On-Disk Format—Page 12

Here is the structure for FAT32 starting at offset 36 of the boot sector.

FAT32 Structure Starting at Offset 36
Offset

‘ Khylu)

Size

| osarion

BPB_FATSZ32

BPB_ExtFlags

BPB_FSVer

B8PB_RootClus

8PB_FSinfo

BPB_BKBootSec

8PB_Reserved

BS_DrvNum

BS_Reservedl

50

(bytes)
4

© 2000 Mictsoft Corporation. Al rigs eserved

“This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media. This field is the FAT32 32-bit count of
sectors nccupled by ONE FAT. BPB_FATSZL6 must be 0.

Thi ITorFATaZ

FATL2 and FATIS e

Bis 03 Zoro-besed umber of ctive FAT. Only vald it mirtring

Bits 4-6 X
Bit 7 - 0 means the FAT is mirored at runtime into all FATS,
L means only one FAT is active: it i the one referenced
inbits 03,
Bits 8-15 -- Reserved
“This field s only defined for FAT32 media and does not exist on
FAT12 and FAT16 media. High byt is major revision number.
Low byt is minor revision number. This is the version number of
the FAT32 volume. This supports the ablity o extend the FAT32
media type in the future without worrying about old FAT32 drivers
mounting the volume. This documen defines the version to 0:0. If
this feld is non-zero, back-level Windows versions will not mount
the volum
NOTE: Disk utilities should respect this field and not operate on
vlumes vitha igher meor o minor vrsion e i tht or
FAT32 t check
s el ot ot s voume a0 ot ot verin
number that was defined t the time the driver was written
“This field s only defined for FAT32 media and does not exist on
EAT12 and FAT16 media. This i Set o the cluster number of the
firstcluster of the root directory, usually 2 but not required to be 2.
NOTE: Disk utilities that change the location of th root directory
should make every effort o place th firs cluste of the root
directory in the first non-bad cluster on the drive (i in cluster 2,
unless it's marked ba). This i specified so that disk repai utiites
can easily find the root directory if this field accidentally gets
zeroed
“This field s only defined for FAT32 media and does not exist on
FATL2 and FAT16 media. Sector number of FSINFO structure in the
reserved area of the FAT32 volume. Usual
NOTE: There will be a copy of the FSINFO structure in BackupBoot,
but only the copy pointed to by this field will be kept up to date (ic..
bt the prmer n bckup o record il plnt o e same
FSINFO sect
T s unly defined for FAT32 media and does not exist on
media. If non-zero, indicate the sector number
v e of e vl of o opy of the boot record.
Usually 6. No value other than 6 s recommended
“This field i only defined for FAT32 media and does not exist on
FAT12 and FATL6 media. Reserved for future expansion. Code
that formats FAT32 volumes should always setall of the bytes of
his ield to 0.
“This field has the same definition as it does for FATL2 and FAT16
media. The only difference for FAT32 media is that th field is at a
different offse in the boot sector.
“This field has the same definition as it does for FATL2 and FAT16
media. The only difference for FAT32 media isthat th field s at a
different offst n the boot sector

FAT: General Overview of On-Disk Format—Page 13

85_Bootsig 3 1 “This field has the same definition as it does for FAT12 and FAT16
media. The only difference for FAT32 media is that the field is 2t a
different offset in the boot sector.

85_VollD 67 4 “This field has the same definition as it does for FAT12 and FAT16
media. The only difference for FAT32 media is that th field is at a
different offse in the boot sector.

BS_VolLab n u “This field has the same definition as it does for FAT12 and FAT16
media. The only difference for FAT32 media is that th field is at a
different offst in the boot sector.

BS FilsysType 82 8 Always setto the string "FAT32 *. Please see the note for this
field in the FAT12/FAT16 section earlier. This field has nothing to
do with FAT type determination.

There is one other important note about Sector 0 of a FAT volume. If we consider the contents of the
sector as a byte array, it must be true that sector[510] equals 0x55, and sector[511] equals OXAA.

NOTE: Many FAT documents mistakenly say that this 0XAASS signature occupies the “last 2 bytes
of the boot sector". This statement is correct if —and only if — BPB_BytsPerSec is 512. If
BPB_BytsPerSec is greater than 512, the offsets of these signature bytes do not change (although itis
perfectly OK for the fast two bytes at the end of the boot sector to also contain this signature).

Check your assumptions about the value in the BPB_TotSec16/32 field. Assume we have a disk or
partition of size in sectors DskSz. If the BPB TotSec field (sither BPB_TotSec16 or BPB_TotSec32
— whichever is non-zero) is less than or equal to DskSz, there i nothing whatsoever wrong with the
FAT volume. In fact, it is not at all unusual to have a BPB_TotSec16/32 value that is slightly smaller
than DskSz. It is also perfectly OK for the BPB_TotSec16/32 value to be considerably smaller than
Dsksz

Al this means is that disk space is being wasted. It does not by itself mean that the FAT volume is
damaged in some way. However, if BPB_TotSec16/32 is larger than DskSz, the volume is seriously
damaged or malformed because it extends past the end of the media or overlaps data that follows it on
the disk. Treating a volume for which the BPB_TotSec16/32 value is “t00 large” for the media or
parition as valid can lead to catastrophic data loss.

FAT Data Structure

The next data structure that is important is the FAT itself. What this data structure does is define a
singly linked list o the “extents” (clusters) of a file. Note at this point that a FAT directory or file
container is nothing but a regular file that has a special attribute indicating it is a directory. The only
other special thing about a directory is that the data or contents of the “file” is a series of 32=byte FAT
directory entries (see discussion below). In all other respects, a directory s just like a file. The FAT
maps the data region of the volume by cluster number. The first data cluster i cluster 2.

“The first sector of cluster 2 (the data region of the disk) is computed using the BPB fields for the
volume as follows. First, we determine the count of sectors occupied by the root directory:

Root DirSectors = ((BPB_Root EntCnt * 32) + (BPB_BytsPerSec - 1)) / BPB_BytsPer Sec:
Note that on a FAT32 volume the BPB_RootEntCnt value is always 0, 50 on a FAT32 volume
RootDirSectors is always 0. The 32 in the above is the size of one FAT directory entry in bytes.
Note also that this computation rounds up.

‘The start of the data region, the first sector of cluster 2, is computed s follows:

© 2000 MicrosoftCorporation. Al rights esrved 13

FAT: General Overview of On-Disk Format—Page 14

17(oPR PATSLLS 1= 0)
ATSz = BPB_FATSZ16;
ase
FATSz = BPB_FATSZ32

FirstDatasector = BPB_ResvdSecCnt + (BPB_NUNFATs * FATSz) + Root Di rSectors

NOTE: This sector number is relative to the first sector of the volume that contains the BPB (the
sector that contains the BPB is sector number 0). This does not necessarily map directly onto the
drive, because sector 0 of the volume is not necessarily sector 0 of the drive due to partitioning

Given any valid data cluster number N, the sector number of the first sector of that cluster (again
relative to sector 0 of the FAT volume) is computed as follows:

FirstSectorol Gluster = ((N - 2) * BPB_SecPerCius) + FirstDatasector

NOTE: Because BPB_SecPerClus is restricted to powers of 2 (1,2,4,8,16,32....), this means that
division and multiplication by BPB_SecPerClus can actually be performed via SHIFT operations on
25 complement architectures that are usually faster instructions than MULT and DIV instructions. On
current Intel X86 processors, this s largely irrelevant though because the MULT and DIV machine
instructions are heavily optimized for multiplication and division by powers of 2.

FAT Type Determination

There s considerable confusion over exactly how this works, which leads to many “off by 1, “off by
2”, off by 10”, and *massively off" errors. It is really quite simple how this works. The FAT type—
one of FAT12, FAT16, or FAT32—is determined by the count of clusters on the volume and nothing
else

Please read everything in this section carefully, all of the words are important. For example, note that
the statement was “count of clusters.” This is not the same thing as “maximum valid cluster number,”
because the first data cluster is 2 and not 0 or 1.

To begin, let's discuss exactly how the “count of clusters” value is determined. This is all done using
the BPB fields for the volume. First, we determine the count of sectors occupied by the root directory
as noted earlier

Root DI rSector's = ((BPB_Rool Ent Ont * 32) + (BPB_Byt sPerSec — 1)) / BPB_BytsPer Sec;

Note that on a FAT32 volume, the BPB_RootEntCnt value is always 0; 50 on a FAT32 volume,
RootDirSectors is always 0.

Next, we determine the count of sectors in the data region of the volume:

11(oPR PATSILG 1= 0)
= BPB_FATSZ16;
Ese
FATSz = BPB_FATSZ32:
1(BPB_Tot Sec16 1= 0)
‘Sec = BPB_Tol Sec16;
Ese
TotSec = BPB_Tot Sec32:

Datasec = TotSec — (BPB_ResvdSecOnt + (BPB_NNFATs * FATSz) + Rool Di rSectors):

© 2000 MicrosoftCorporation. Al rights esrved 14

FAT: General Overview of On-Disk Format—Page 15

Now we determine the count of clusters:

Countof G usters = DataSec | BPB_SecPerlus:

Please note that this computation rounds down.

Now we can determine the FAT type. Please note carefully or you will commit an off-by-one error!

In the following example, when it says <, it does not mean <=. Note also that the numbers are correct.
“The first number for FAT12 is 4085; the second number for FAT16 is 65525. These numbers and the
*<” signs are not wrong.

1{(Gountora usters < 4085) ¢
1+ Volume i's FAT
} else wv(wunlold us!evs < 65525) (
e is
}else {
1% Volune i's FATS2 1

“This is the one and only way that FAT type is determined. There is no such thing as a FAT12 volume
that has more than 4084 clusters. There is no such thing as a FAT16 volume that has less than 4085
clusters or more than 65,524 clusters. There s no such thing as a FAT32 volume that has less than
65,525 clusters. If you try to make a FAT volume that violates this rule, Microsoft operating systems
will not handle them correctly because they will think the volume has a different type of FAT than
what you think it does.

NOTE: As i noted numerous times earlier, the world is full of FAT code that is wrong. There is a lot
of FAT type code that is off by 1 or 2 or 8 or 10 or 16. For this reason, it is highly recommended that
if you are formatting a FAT volume which has maximum compatibility with il existing FAT code,
then you should you avoid making volumes of any type that have close to 4,085 or 65,525 clusters.
Stay at least 16 clusters on each side away from these cut-over cluster counts,

Note also that the CountofClusters value is exactly that—th of data at cluster
2. The maximum valid cluster number for the volume is Cuur\mfclusters + 1, and the “count of
clusters including the two reserved clusters” is CountofClusters + 2.

There is one more important computation related to the FAT. Given any valid cluster number N,
‘where in the FAT() is the entry for that cluster number? The only FAT type for which this is complex
is FAT12. For FAT16 and FAT32, the computation is simple:

V(@ FATSZIG 1< 0)
ATSz = BPB_FATSZ16,
ase
FATSz = BPB_FATSZ32

Tl SEATSecIMM = BPB_ ResvaSscOnt - (FATCITset | GPB. Byt sPerSec)
Thi SFATEN(Of fset = REM FATCIfset | BPB_ Byt sPer Sec)

REM(...) is the remainder operator. That means the remainder after division of FATOffset by
BPB_BytsPerSec. ThisFATSecNum is the sector number of the FAT sector that contains the entry for
cluster N in the first FAT. If you want the sector number in the second FAT, you add FATSZ to
ThisFATSecNum; for the third FAT, you add 2*FATSz, and so on.

© 2000 MicrosoftCorporation. Al rights esrved 15

FAT: General Overview of On-Disk Format—Page 16

‘You now read sector number ThisFATSecNum (remember this s a sector number relative to sector 0
of the FAT volume). Assume this is read into an 8-bit byte array named SecBuff. Also assume that the
type WORD is a 16-bit unsigned and that the type DWORD is a 32-bit unsigned.

11(FATType == FAT:
FATIE wsEnt1 VAL = *((WERD) GSecBul{{Thi sFATERL 1 fset])

Bse
FAT32C1 usEntryVal = (*((DADRD *) &SecBuf [Thi SFATENt Ol fset])) & OXOFFFFFFF;

Fetches the contents of that cluster. To set the contents of this same cluster you do the following:

1f(FATType == FAT16)
(VD =) ASeckul [Th SFATERtCI fset]) = FATIG usEntryVal
Ese

FATIZ usEnt Vel = FAT320USENL (yVel & OXOFFFFFF:
“((DAORD =) &Secu {[Thi SFATEN: OF f Set |

(+((DNERD) GSecBu [Th SFATER: I fset])) & 0xFo000000;
*((DWCRD *) @Secuf [Thi SFATEN Of fset]

(“((DMERD *) &SecBuf { [Thi SFATENt Gi fset])) | FAT32Q1 usEntryVal ;

Note how the FAT32 code above works. A FAT32 FAT entry is actually only a 26-bit entry. The high
4 bits of a FAT32 FAT entry are reserved. The only time that the high 4 bits of FAT32 FAT entries
should ever be changed is when the volume is formatted, at which time the whole 32-bit FAT entry
should be zeroed, including the high 4 bits.

A bit more explanation is in order here, because this point about FAT32 FAT entries seems to cause a
great deal of confusion. Basically 32-bit FAT entries are not really 32-bit values; they are only 28-bit
values. For example, all of these 32-bit cluster entry values: 0x10000000, 0xF0000000, and
0x00000000 all indicate that the cluster is FREE, because you ignore the high bits when you read
the cluster entry value. If the 32-bit free cluster value is currently 0x30000000 and you want to mark
this cluster as bad by storing the value OxOFFFFFF? in it. Then the 32-bit entry will contain the value
OXGFFFFFFT when you are done, because you must preserve the high 4 bits when you write in the
OXOFFFFFFT bad cluster mark.

Take note that because the BPB_BytsPerSec value is always divisible by 2 and 4, you never have to
worry abouta FAT16 or FAT3Z FAT entry spanning over a sector boundary (this s not true of
FATI2)

The code for FAT12 is more complicated because there are 1.5 bytes (12-bits) per FAT entry.
i (FATTYp

FATI2)
FATGl et = N+ (N
1 MLy by 15 W thout using floating pol i, the divide by 2 rounds DO */

T sEATSechum = 268 FasvdSeccn + (EATC{set | BP0, BytaPur Sc);
Thi SFATENt i fset = REM FATCI fset | BPB_Byt sPer Sec)

We now have to check for the sector boundary case:

© 2000 MicrosoftCorporation. Al rights esrved 16

FAT: General Overview of On-Disk Format—Page 17

11T SEATE G et tspersec - 1)) {
S cluster access spans a sector boundary in the FAT .
1+ Thoreare s norber ol atsatogh et 1o nandi g Lhi 5. The .
I+ easiest is o always |oad FAT sectors into memor .
J* inpairs if the volume is FATI2 (if you vant Lo Ioad .
7+ FAT sector N you also |oad FAT sector Nei i mediately .
“ followng it in memory unless sector Nis the last FAT .

1
sector). It is assumed that this is the strategy used here */
“ which makes this if test for a sector boundary span .
* unnecessary. o

)

We now access the FAT entry as a WORD just as we do for FATL6, but if the cluster number is
EVEN, we only want the low 12-bits of the 16-bits we fetch; and if the cluster number is ODD, we
only want the high 12-bits of the 16-bits we fetch.
FATIZQ USERLryVal = *((WGRD) aSeceul [Th sFATEnt Ol fset])
11(N & 0x000:
IS SEnLryVal = FATIZO usEntryval >» 4 1* Gluster nurber is OO+l
Ese
FATI2Cl usEntryVal = FATI20 usENtryVal & OXOFFF; /* Cluster nunber is EVEN */

Fetches the contents of that cluster. To set the contents of this same cluster you do the following:

i" (N & 0x0001)

TL20 sEnt 1Vl = FATIZQUSEL YVl << 4 I+ Gluster nunber is COD */
e helSecBu T sEATEn G 26t])
*() iSechul | [Th SFATERC Gl fset])) & OX0GOF:

} Bse
FATIZ usEn ryVal = FATIZO UsENLryVal & OXOFFF. [* Gluster number i's EVEN */
“((VoRD %) aSectur 1 Th sFATENC I f

T VerD) asocau [i SFATER: O Fset])) & 0xF00;

}

*((WORD *)_&SecBuf f [Thi sFATENt Offset]) =
(VR) &SecBuf [Th SFATERC O et 1)) | FAT12Gl usEn ryval

NOTE: It is assumed that the >> operator shifts a bit value of 0 into the high 4 bits and that the <<
operator shifts a bit value of 0 into the low 4 bits.

The way the data of a file is associated with the file is as follows. In the directory entry, the cluster
number of the first cluster of the file is recorded. The first cluster (extent) of the file is the data
assoclated with this first cluster number, and the location of that data on the volume is computed from
the cluster number as described of luster).

Note that a zero-length file—a file that has no data allocated to it—has a first cluster number of 0
placed in its directory entry. This cluster location in the FAT (see earlier computation of
ThisFATSecNum and ThisFATENIOffset) contains either an EOC mark (End Of Cluslerchaln) orthe
cluster number of the next cluster of the file. The EOC value is FAT type dependant (assum
FATContent is the contents of the cluster entry in the FAT being checked to see whether it is an EOC
mark):

ISECF = FALS!
1f(FATType 12) (
11 (FATCont ent_>= OxOFFS)

I SECF = TRUE

} else i f(FATType
11 (FATCont ent >
| SECF = TRUE

FATIE) {
OxFFFB)

FAT32) {
OXOFFFFFFS)

) else if (FATTyp
11 (FATCOnt ent >
I SECF = TRUE

© 2000 Mictsoft Corporation. Al rigs eserved 17

FAT: General Overview of On-Disk Format—Page 18

Note that the cluster number whose cluster entry in the FAT contains the EOC mark is allocated to the
file and is also the last cluster allocated to the file. Microsoft operating system FAT drivers use the
EOC value OXOFFF for FAT12, OxFFFF for FAT16, and OxOFFFFFFF for FAT32 when they set the
contents of a cluster to the EOC mark. There are various disk utilties for Microsoft operating systems
that use a different value, however.

There is also a special “BAD CLUSTER" mark. Any cluster that contains the “BAD CLUSTER"
value in its FAT entry is a cluster that should not be placed on the free list because it is prone to disk
errors. The “BAD CLUSTER" value is OXOFF7 for FAT12, 0XFFF7 for FAT16, and OXOFFFFFF7 for
FAT32. The other relevant note here is that these bad clusters are lso lost clusters—clusters that
appear to be allocated because they contain a non-zero value but which are not part of any fi
allocation chain. Disk repair utiities must recognize lost clusters that contain this special value as bad
clusters and not change the content of the cluster entry.

NOTE: It is not possible for the bad cluster mark to be an allocatable cluster number on FAT12 and
FAT16 volumes, but it is feasible for 0XOFFFFFF7 to be an allocatable cluster number on FAT32
volumes. To avoid possible confusion by disk utilities, no FAT32 volume should ever be configured
such that 0XOFFFFFF7 is an allocatable cluster number.

The list of free clusters in the FAT is nothing more than the list of all clusters that contain the value 0
in theiir FAT cluster entry. Note that this value must be fetched as described earlier as for any other
FAT entry that is not free. This st of free clusters is not stored anywhere on the volume; it must be
computed when the volume is mounted by scanning the FAT for entries that contain the value 0. On
FAT32 volumes, the BPB_FSInfo sector may contain a valid count of free clusters on the volume. See
the documentation of the FAT32 FSlnfo sector.

What are the two reserved clusters at the start of the FAT for? The first reserved cluster, FAT[0],
contains the BPB_Media byte value in its low 8 bits, and all other bits are set to 1. For example, i the
BPB_Media value is OxF8, for FAT12 FAT[0] = 0XOFF8, for FAT16 FAT(0] = OxFFF8, and for
FAT32 FATI0] = 0xOFFFFFFB. The second reserved cluster, FAT[L],is set by FORMAT to the EOC
mark. On FAT12 volumes, it is not used and is simply always contains an EOC mark. For FAT16 and
FAT32, the fill system driver may use the high two bits of the FAT[1] entry for dirty volume flags (all
other bits, are always left set to 1. Note that the bit location is different for FAT16 and FAT32,
because they are the high 2 bits of the entry.

For FAT16:
Shut Bi t Misk = 0x8000;
HdErTBI(Misk = 0x4000;

For FAT32:
O nshut Bi t Mask
FdEr Bt Misk

0x08000000:
0x04000000;

Bit CinShutBitMask — If bitis 1, volume is “clean”.
If bitis 0, volume is “dirty”. This indicates that the file system driver dm ot
Dismount the volume properly the last time it had the volume mounted.
would be a good idea to run a ChkdskiScandisk disk repair utility on n‘
because it may be damaged.

Bit HrdErBitMask ~ I this bt is 1, no disk readiwrite errors were encountered.
If this bit is 0, the file system driver encountered a disk I/O error on the
Volume the last time it was mounted, which is an indicator that some sectors
may have gone bad on the volume. It would be a good idea to run a
Chikdsk/Scandisk disk repair utility that does surface analysis on it to look
for new bad sectors.

© 2000 MicrosoftCorporation. Al rights esrved 18

FAT: General Overview of On-Disk Format—Page 19

Here are two more important notes about the FAT region of a FAT volume

“The last sector of the FAT is not necessarily all part of the FAT. The FAT stops at the cluster
number in the last FAT sector that corresponds to the entry for cluster number
CountofClusters + 1 (see the CountofClusters computation earlier), and this entry is not
necessarily at the end of the last FAT sector. FAT code should not make any assumptions
about what the contents of the last FAT sector are after the CountofClusters + 1 entry. FAT
format code should zero the bytes after this entry though.

The BPB_FATS216 (BPB_FATS232 for FAT32 volumes) value may be bigger than it needs
to be. In other words, there may be totally unused FAT sectors at the end of each FAT in the
FAT region of the volume. For this reason, the last sector of the FAT is always computed
using the CountofClusters + 1 value, never from the BPB_FATSZ16/32 value. FAT code
should not make any assumptions about what the contents of these “extra” FAT sectors are.
FAT format code should zero the contents of these extra FAT sectors though.

FAT Volume Initialization

At this point, the careful reader should have one very interesting question. Given that the FAT type
(FATI2, FATI6, or FAT32) is dependant on the number of clusters—and that the sectors available in
the data area of a FAT volume is dependant on the size of the FAT—when handed an unformatted
volume that does not yet have a BPB, how do you determine all this and compute the proper values to
putin BPB_SecPerClus and either BPB_FATSZ16 or BPB_FATS232? The way Microsoft operating
systems do this is with a fixed value, several tables, and a clever piece of arithmetic.

Microsoft operating systems only do FAT12 on floppy disks. Because there is a limited number of
floppy formats that all have a fixed size, this is done with a simple table:

“If it is afloppy of this type, then the BPB Iooks like this

There is no dynamic computation for FAT12. For the FAT12 formats, all the computation for
BPB_SecPerClus and BPB_FATSz16 was worked out by hand on a piece of paper and recorded in the
table (being careful of course that the resultant cluster count was always less than 4085). If your media
is larger than 4 MB, do not bother with FAT12. Use smaller BPB_SecPerClus values so that the
volume will be FAT16.

“The rest of this section is totally specific to drives that have 512 bytes per sector. You cannot use these
tables, or the clever arithmetic, with drives that have a different sector size. The “fixed value” is
simply a volume size that is the “FAT16 to FAT32 cutover value”. Any volume size smaller than this
is FAT16 and any volume of this size or larger is FAT32. For Windows, this value is 512 MB. Any
FAT volume smaller than 512 MB is FAT16, and any FAT volume of 512 MB o larger is FAT32.

Please don’t draw an incorrect conclusion here.

There are many FAT16 volumes out there that are larger than 512 MB. There are various ways to
force the format to be FATL6 rather than the default of FAT32, and there is a great deal of code that
implements different limits. All we are talking about here is the default cutover value for MS-DOS
and Windows on volumes that have not yet been formatted. There are two tables—one is for FAT16
and the other is for FAT32. An entry in these tables is selected based on the size of the volume in 512
byte sectors (the value that will go in BPB_TotSec16 or BPB_TotSec32), and the value that this table
sets is the BPB_SecPerClus value.

© 2000 MicrosoftCorporation. Al rights esrved 19

FAT: General Overview of On-Disk Format—Page 20

Struct DSKSZTOSECPERCLUS {
DWCRD D1 SKSi ze;
BYTE SecPerQ usval ;
»
N
“This i's the table for FATIG drives. NOTE that this table includes
entries for disk sizes larger than 512 18 even though typically

e iy b a1 615 accessed. s Lo Took for lhe it entry
in the table for which the disk size is less than or equal

et be . ana"BhB Root EnLC must o 512, Ay of these val ues
being different my require the first tabie entries D skSize value
t2,be changed ot her se the cluster count my be to Iow for FATIG

nskszrcsEcPEluLs OskTabl ¢FATIO [] = {
{ o) Sks up to 4.1 MB, the O value for SecPerClusval trips an error */
{ a0 2 [+ dieke vp 1o 16 0B Mk clueter o7
(262148, 4} [* disks up to 128 M8 2k cluster */
{ 524288, 8. /* disks up to 256 MB 4k cluster */
{10875, 10 J* disks up to 512 MB, 8k cluster */

he entrics after this point are noi used unless FATLS [forced *I

{aoomss ' 5 ks up to 1 GB 16k cluster

{ 4194304, 1) e e 3G sk dister o

{ OXFFFFFFFF, 0} /* any disk greater than 2GB, 0 value for SecPerClusVal trips an error */

This is the table for FAT32 drives. NOTE that this table includes
entries for disk sizes smaller than 512 NB even though typically
only the entries for disks >= 512 VB in size are used.
The way this table is accessed is to look for the first entry
the disk size is less than or equal
toihe Disksize field in that table entry. For ihis table to
vork properly BPB RevSecont must be 32,
ol baas val s bal ng, 81 arent niy reuire the flrst
tuble emr\es 0 skSi 20 val ue Lo be changed otherw se the ¢l uster count
o low for FATS2

OSZTOSECPERCLUS DOkTab eFATS2 (] = (
(SEe00, o). 7 disks up 10 32,5 1B (he O value for SecParGlustal 1rips an error */
{ 20 1) 1- 63k up Lo 200 08 S clu
{sorrzin o)) e disks up o o 5 s ester o
{ sgsas 10 [*disks wto 168G 8k cluster o/
{
{ CXFrrPreee, 6411+ oSk reater than 3568, a2k ¢l uster +1
i

So given a disk size and a FAT type of FATL6 or FAT32, we now have a BPB_SecPerClus value. The
only thing we have left is do is to compute how many sectors the FAT takes up so that we can set
BPB_FATSz16 or BPB_FATSz32. Note that at this point we assume that BPB_RootEntCnt,
BPB_RsvdSecCnt, and BPB_NUmFATS are appropriately set. We also assume that DskSize is the size
of the volume that we are either going to put in BPB_TotSec32 or BPB_TotSec16.

© 2000 Mictsoft Corporation. Al rigs eserved 2

FAT: General Overview of On-Disk Format—Page 21

oL Soctors = (809 oot e+ 52) + (8B Byt Sac — 1) 98By spor s
TopVal 1 < DS 7e (P8, ResvdSacCnt + Aol Dir Sectors);
THDVAl 2 = (256 BPB_SecPer Gl us) + BPBNNFATS:
iTEATTpe == Parst)
a2 = TVl 2 | 2

Farss TPVl s mmvm ~) 1 ez
11 (FATType

o8 PATSa 16 -

ere sz = Barsz:

e [
BP8 FATS?16 = LOWRO(FATS?) ¢
e here 12 no 6Po Parerss in a FaTI BPB <1

)el

)

Do not spend too much time trying to figure out why this math works. The basis for the computation
is complicated; the important point is that this is how Microsoft operating systems do it, and it works.
Note, however, that this math does not work perfectly. It will occasionally set a FATSZ that is up to
2sectors o larg for ATLE, and ocasionally up 10 8 sctos (00 lrge fo FATS2 L will ever
compute a FATSz value that is too small, however. Because if K to have a FATSZ that is too
large, at the expense of wasting a few sectors, the fact that this compuvanon is surprisingly simple
more than makes up for it being off in a safe way in some cases.

FAT32 FSinfo Sector Structure and Backup Boot Sector

On a FAT32 volume, the FAT can be a large data structure, unlike on FATL6 where it is limited to a
maximum of 128K worth of sectors and FAT12 where it i limited to a maximum of 6K worth of
sectors. For this reason, a provision is mad to store the “last known” free cluster count on the FAT32
volume so that it does not have to be computed as soon as an AP call is made to ask how much free
space there is on the volume (like at the end of a directory listing). The FSinfo sector number is the
value in the BPB_FSInfo field; for Microsoft operating systems it is always setto 1. Here s the
structure of the FSInfo sector:

FAT32 FSinfo Sector Slruc(ure and Backup Boot Sector
Name Description
Khylu) (h lesi

FSI_LeadSig Value IG15257 This s signaure s ued o alidt at s
is in fact an FSIn
FSI_Reservedl 4 480 “This field is currentl \yrm ed for future expansion. FAT2 format

code should always initialze all bytes of this ield to 0. Bytes in
this field must curtently never be used.

FSI_Strucsig a8 4 Value GGLALT2TZ. Anater Signturs S mors ocelzed 1 e
sector 1o the location of the fields that
FSI_Free Count 488 4 o et ko fe s ot o he volume, o

Value is OXEFFFEEFF., then the free count is unknown and must be
computed. Any other value can be used, but is not necessarily
correct. It should be range checked at least to make sure it is <=
volume cluster count.

FSINxtFree 492 4 “This i a hint for the FAT driver. It indicates the cluster number at

r should sart looking for free clusters. Because a

FAT32 FAT is large, it an be rather time consuming if there are a
Totof allocated clustrs at the start of the FAT and the driver sarts
Tooking for & free cluste Starting a cluster 2 Typicaly this value is
Setto the last cluster number tht the driver allocated. If the value is
OXFFFFFFFF, then thee is o hint and the driver should start
Tooking at cluster 2. Any other value can be used, bt should be
checked first to make sure itis a valid cluster number for the
volume,

FSI Reserved2 496 12 “This field s currently reserved for future expansion. FAT32 format
code should always iniialze all bytes of ths feld 10 0. Bytes in
his field must currently never b used

© 2000 Mictsoft Corporation. Al rigs eserved 21

FAT: General Overview of On-Disk Format—Page 22

FSI_Trailsig 508 4 Value OXAAS50000. This trai signature is used to validate that this
s in fact an FSInfo sector. Note that the high 2 bytes of this
value—which go into the bytes at offsets 510 and 511—match the
signature bytes used at the same offsets in sector 0.

Another feature on FAT32 volumes that is not present on FATL6/FAT12 is the BPB_BKBootSec field.
FATI6/FAT12 volumes can be totally lost if the contents of sector 0 of the volume are overwritten or
sector 0 goes bad and cannot be read. This is a “single point of failure” for FAT16 and FAT12
volumes. The BPB_BKBootSec field reduces the severity of this problem for FAT32 volumes, because
starting at that sector number on the volume—6—there is a backup copy of the boot sector
information including the volume’s BPB.

I the case where the sector 0 information has been accidentally overwritten, all a disk repair utility
hes to do is restore the boot sector(s) from the backup copy. In the case where sector 0 goes bad, this
allows the volume to be mounted so that the user can access data before replacing the disk.

This second case—sector 0 gae b te rezson why o alue afer han shoul ver b placed
in the BPB_BKBootSec field. If sector O is unreadable, various operating systems are “hard wired” to
check for backup boot sector(s) starting at sector 6 of the FAT32 volume. Note that starting a(the
BPB_BKBOotSec sector is a complete boot record. The Microsoft FAT32 “boot sector” is actually
three 512-byte sectors long. There is a copy of all three of these sectors starting at the

BPB_BKBootSec sector. A copy of the FSinfo sector is also there, even though the BPB_FSnfo field
inthis backup boot sector is set to the same value as is stored i the sector 0 BPB.

NOTE: All 3 of these sectors have the 0xAASS5 signature in sector offsets 510 and 511, just like the
first boot sector does (see the earlier discussion at the end of the BPB structure description).

FAT Directory Structure

We will first talk about short directory entries and ignore long directory entries for the moment.

AFAT directory is nothing but a “file” composed of a linear list of 32-byte structures. The only
special directory, which must always be present, is the root directory. For FAT12 and FAT16 media,
the root directory is located in a fixed location on the disk immediately following the last FAT and is
of a fixed size in sectors computed from the BPB_RootEntCt value (see computations for
RootDirSectors earlier in this document). For FAT12 and FAT16 media, the first sector of the root
directory s sector number relative to the first sector of the FAT volume:

FirStRo0t DI r Sechum = BPB_ResvdSecCnt + (BPB_NUnFATs * BPB_FATS216):

For FAT32, the root directory can be of variable size and is a cluster chain, just like any other
directory is. The first cluster of the root directory on a FAT32 volume i stored in BPB_RootClus.
Unlike other directories, the root directory itself on any FAT type does not have any date or time
stamps, does not have a file name (other than the implied file name **), and does not contain *.” and
. files as the first two directory entries in the directory. The only other special aspect of the root
directory s that it is the only directory on the FAT volume for which it is valid to have a fle that has
only the ATTR_VOLUME_ID attribute bit set (see below)

© 2000 MicrosoftCorporation. Al rights esrved 2

FAT: General Overview of On-Disk Format—Page 23

FAT 32 Byte Directory Entry Structure
Narme ffset

‘ Size Description

(byte) | (oytes)

DIR_Name 0 1 Short name.

DIR_Attr 1 1 File atrbutes:

EAD_ONLY 001
ATTR_HIDDEN 0x02
ATTR SYSTEM 0104
ATTR_VOLUME_ID 0108
ATTR DIRECTORY 0x10
ATTR_ARCHIVE 020
ATTR_LONG_NAME ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTRLSYSTEM |
ATTI E_ID
he upper wo bis f e it byt v esrved and el
always be setto 0 when a file is created and never modified or
Tooked at after that

DIR_NTRes 12 1 Reserved for use by Windows NT. Set vlle to 0 when a fle is
created and never modify or look at it after that.

DIR_CriTimeTenth 13 1 Millisecond stamp at file creation time. This feld actually
contains a count of tenths of a second. The granularity of the
seconds part of DIR_CrtTime s 2 seconds so this field is &
count of tenths of a second and is vali value range is 0-199
inclusive.

DIR_CrtTime 14 2 “Time file was created.

DIR_CriDate 16 2 Date fie was created.

DIR_LstAccDate 18 2 access date. Note thal there s 1o ast 2ccess Gime, only a
. Ths s the dls of st e vt n e s o a e
this should be WitDate

DIR_FSICIusHI £ Z i W of i s 1 it rumber (s 007 T
FATI2 or FATI6 volume)

DIR WrtTime 2z Z “Time of last write. Note that file creation 1 considered a writ.

DIR WriDate 2 2 Dte of fast write. Note tha file creation is considered a wite

DIR_FS(CIusLO % 7 Low word of this entry's firstcluster number.

DIR_FileSize % 4 32-bit DWORD holding this file’s sze in bytes

DIR_Name[0]
Special notes about the first byte (DIR_Name[0]) of a FAT directory entry

1f DIR_Name[0] == OXES, then the directory entry is free (there is no file or directory name i this
entry).

If DIR_Name[0] == 0x00, then the directory entry is free (same s for OXES), and there are no
allocated directory entries after this one (al of the DIR_Name{0] bytes in all of the entries after
this one are also set t0 0)

The special O value, rather than the OXES value, indicates to FAT file system driver code that the
rest of the entries in this directory do not need to be examined because they are all free.

1f DIR_Name[0] == 0x05, then the actual file name character for ths byte is OXES. OXES is
actually a valid KANJI lead byte value for the character set used in Japan. The special 0x05 value
is used so that this special file name case for Japan can be handled properly and not cause FAT file
system code to think that the entry is free.

© 2000 Mictsoft Corporation. Al rigs eserved 2

FAT: General Overview of On-Disk Format—Page 24

The DIR_Name field is actually broken into two parts+ the 8-character main part of the name, and the
3-character extension. These two parts are “trailing space padded” with bytes of 0x20.

DIR_Name[0] may not equal 0x20. There is an implied " character between the main part of the
name and the extension part of the name that is not present in DIR_Name. Lower case characters are
not allowed in DIR_Name (what these characters are is country specific).

“The following characters are not legal in any bytes of DIR_Name:

+ Values less than 0x20 except for the special case of 0x05 in DIR_Name[0] described above.

« 0x22, 0x2A, 0x2B, 0x2C, Ox2E, Ox2F, Ox3A, 0x3B, 0x3C, 0x3D, OX3E, Ox3F, 0x5B, OX5C, 05D,
and 0x7C

Here are some examples of how a user-entered name maps into DIR_Name:

00, bar >R BAR
*Fo0 BAR SR BAR
0. Bar >R BAR
“foo" > "FOO -
s .

prettybg. bi g 3 - preTTveGHI
bi g’ ->illegal, DIR_Name[0] cannot be 0x20

In FAT directories all names are unique. Look at the first three examples earlier. Those different

names all refer to the same file, and there can only be one file with DIR_Name setto “FOO BAR"

in any directory.

DIR_Attr specifies attributes of the file

ATTR_READ_ONLY Indicates that writes to the file should fail
ATTR_HIDDEN Indicates that normal directory listings should not show this file.
ATTR_SYSTEM Indicates that this is an operating system file.

ATTR_VOLUME_ID There should only be one “file” on the volume that has this attribute
set, and that file must be in the root directory. This name of this file is
actually the label for the volume. DIR_FStClusHl and
DIR_FStClusLO must always be 0 for the volume label (no data
clusters are allocated to the volume label file).

ATTR_DIRECTORY Indicates that this file is actually a container for other files.

ATTR_ARCHIVE “This attribute supports backup utilties. This bit s set by the FAT file
system driver when a file is created, renamed, or written to. Backup
utilities may use this attribute to indicate which files on the volume
have been modified since the last time that a backup was performed

Note that the ATTR_LONG_NAME attribute bit combination indicates that the “file" is actually part
of the long name entry for some other file. See the next section for more information on this attribute
combination.

When a directory is created, a file with the ATTR_DIRECTORY bit set in its DIR_Attr field, you set
its DIR_FileSize to 0. DIR_FileSize is not used and is always 0 on a file with the
ATTR_DIRECTORY attribute (directories are sized by simply following their cluster chains to the
EOC mark). One cluster i allocated to the directory (unless it is the root directory on a FAT16/FAT12
volume), and you set DIR_FStClusLO and DIR_FstClusHI to that cluster number and place an EOC
mark in that clusters entry in the FAT. Next, you initialize ll bytes of that cluster to 0. If the directory
is the root directory, you are done (there are no dot or dotdot entries in the root directory). I the
directory is not the root directory, you need to create two special entries in the first two 32-byte

© 2000 MicrosoftCorporation. Al rights esrved 2

FAT: General Overview of On-Disk Format—Page 25

directory entries of the directory (the first two 32 byte entries in the data region of the cluster you just
allocated).

The first directory entry has DIR_Name setto:
The second has DIR_Name st to:

These are called the dot and dotdot entries. The DIR_FileSize field on both entries is set to 0, and all
of the date and time fields in both of these entries are set to the same values as they were in the
directory entry for the directory that you just created. You now set DIR_FstClusLO and
DIR_FStClusHI for the dot entry (the first entry) to the same values you put in those fields for the
directories directory entry (the cluster number of the cluster that contains the dot and dotdot entries).

Finally, you set DIR_FSClusLO and DIR_FstClusHI for the dotdot entry (the second entry) to the
first cluster number of the directory in which you just created the directory (value is 0 if this directory
is the root directory even for FAT32 volumes).

Here is the summary for the dot and dotdot entries:

« The dot entry is a directory that points to tself.

+ The dotdot entry points to the starting cluster of the parent of this directory (which is O if this
directories parent i the root directory).

Date and Time Formats

Many FAT file systems do not support Date/Time other than DIR_WrtTime and DIR_WrtDate. For
this reason, DIR_CrtTimeMil, DIR_CrtTime, DIR_CrtDate, and DIR_LstAccDate are actually
optional fields. DIR_WrtTime and DIR_WrtDate must be supported, however. If the other date and
time fields are not supported, they should be set to 0 on file create and ignored on other file
operations.

Date Format. A FAT directory entry date stamp s a 16-bit field that is basically a date relative to the
MS-DOS epoch of 01/01/1980. Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the
MSB of the 16-bit word)

Bits 0-4: Day of month, valid value range 1-31 inclusive.
Bits 5-8: Month of year, 1= January, valid value range 1-12 inclusive.
Bits 9-15: Count of years from 1980, valid value range 0-127 inclusive (1980-2107).

Time Format. A FAT directory entry time stamp is a 16-bit field that has a granularity of 2 seconds.
Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the 16-bit word).

Bits 0-4: 2-second count, valid value range 0-29 inclusive (0 — 58 seconds).

Bits 5-10: Minutes, valid value range 0-59 inclusive.

Bits 11-15: Hours, valid value range 0-23 inclusive.

The valid time range is from Midnight 00:00:00 to 23:59:58.
FAT Long Directory Entries

In adding long directory entries to the FAT fill system it was crucial that their addition to the FAT file
system's existing design:

© 2000 MicrosoftCorporation. Al rights esrved 25

FAT: General Overview of On-Disk Format—Page 26

Be essentially transparent on earlier versions of MS-DOS. The primary goal being that existing
MS-DOS APIs on previous versions of MS-DOSMindows do not easily "find” long directory
entries. The only MS-DOS APIs that can "find" long directory entries are the FCB-based-find
APIs when used with a full meta-character matching pattern (i.e. *.*) and full atribute matching
bits (i.e. matching attributes are FFh). On post-Windows 95 versions of MS-DOS/Windows, no
Ms-DOS API can acidentally “find" a single long directory entry.

Be located in close physical proximity, on the media, to the short directory entries they are
associated with. As will be evident, long directory entries are immediately contiguous to the short
directory entry they are associated with and their existence imposes an unnoticeable performance
impact on the file system.

If detected by disk maintenance utilites, they do not jeopardize the integrity of existing file data.
Disk maintenance utilties typically do not use MS-DOS APIs to access on-media file-system-
specific data structures. Rather they read physical or logical sector information from the disk and
judge for themselves what the directory entries contain. Based on the heuristics employed in the
utilities, the utility may take various steps to "repair” what it perceives to be "damaged"” file-
system-specific data structures. Long directory entries were added to the FAT file system in such
away as to not cause the loss of file data if a disk containing long directory entries was “repaired”
by a pre-Windows 95-compatible disk utility on a previous version of MS-DOS/Windows.

In order to meet the goals of locality-of-access and transparency, the long directory entry is defined as
ashort directory entry with a special attribute. As described previously, a long directory entry is just a
regular directory entry in which the attribute field has a value of:

ATTR_LONG_NAME ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID

A mask for determining whether an entry is a long-name sub-component should also be defined:

ATTR_LONG_NAME_MASK ~ ATTR_READ_ONLY |

ATTR_DIRECTORY |
ATTR_ARCHIVE

‘When such a directory entry is encountered it is given special treatment by the fill system. Itis
treated as part of a set of directory entries that are associated with a single short directory entry. Each
fong directory entry has the following structure:

FAT Long Directory Entry Structure
Name Offse

Size Description
(byte) | (bytes)
LDIR_Ord 0 T “The order o this entry in the sequence of fong dir entries

LDIR Namel y 0 o TS o Jong: e S component i 0 1 ety
LDIR_Altr i 1 Altributes - must be ATTR_LONG_NAM:

‘associated with the short dir entry at the end of the long dir set

U masked with k0 LAST_LONG, ENTRY), s indicates e
entry s the last long dir entry in a set of long dir entries. Al val
s of g s begin with an entry having this

© 2000 MicrosoftCorporation. Al rights esrved 2%

FAT: General Overview of On-Disk Format—Page 27

LDIR_Type 12 1 1f zero, indicates a directory entry that is a sub-component of a
fong name. NOTE: Other values reserved for future extensions.

Non-zero implies other dirent types.

LDIR_Chiksum 5 1 ‘Checksum of name i the short di entry a the end of the long dir
set.

IR Namez w i Characters 6-11 of the fong-name sub-component m s dir
entry.

LDIR_FS(CIusLO % 2 Must be ZERO This is an artfect o the FAT first cluster” and

must be zero for compatibiliy with existing disk utilites. 1ts

meaningless in the context of a long dir entry.

LDIR_Name3 = 7 Characters 12-13 of the long-name sub-component in this dir
entry.

Organization and Asso

tion of Short & Long Directory Entries

A set of long entries is always associated with a short entry that they always immediately precede.
Long entries are paired with short entries for one reason: only short directory entries are visible to
previous versions of MS-DOS/Windows. Without a short entry to accompany it, a long directory
entry would be completely invisible on previous versions of MS-DOS/Mindows. A long entry never
legally exists all by itself. If long entries are found without being paired with a valid short entry, they

termed orphans. The following figure depicts a set of n long directory entries associated with its
single short entry.

Long entries always immediately precede and are physically contiguous with, the short entry they are
associated with. The file system makes a few other checks to ensure that a set of long entries is
actually associated with a short entry.

Sequence Of Long Directory Entries

n rdinal
Nth Long entry LAST_LONG_ENTRY (0x40) [N

‘Additional Long Entries

1 Long entry

1
hort Entry Associated With Preceding Long Entries (Dot applicabe)

First, every member of a set of long entries is uniquely numbered and the last member of the set is ord
with a flag indicating that it is, in fact, the last member of the set. The LDIR_Ord field is used to
make this determination. The first member of a set has an LDIR_Ord value of one. The nth long
member of the set has a value of (n OR LAST_LONG_ENTRY). Note that the LDIR_Ord field
cannot have values of OXES o 0x00. These values have always been used by the file system to
indicate a “free" directory entry, or the “last" directory entry in a cluster. Values for LDIR_Ord do not
take on these two values over their range. Values for LDIR_Ord must run from 1 to (n OR
LAST_LONG_ENTRY). If they do not, the long entries are "damaged" and are treated as orphans by
the file system.

Second, an 8-bit checksum is computed on the name contained in the short directory entry at the time
the short and long directory entries are created. All 11 characters of the name in the short entry are
used in the checksum calculation. The check sum is placed in every long entry. If any of the check
sums in the set of long entries do not agree with the computed checksum of the name contained in the
short entry, then the long entries are treated as orphans. This can occur if a disk containing long and
short entries is taken to a previous version of MS-DOSMindows and only the short name of a file or
directory with a long entries is renamed.

“The algorithrm, implemented in C, for computing the checksum is:

© 2000 Mictsoft Corporation. Al rigs eserved 27

FAT: General Overview of On-Disk Format—Page 26

1 anksun()

I Returns an unsi gned byte checksum computed on an unsi gned byte

1 array. " The aredy mat be 11 bytes 1ong and | assured to contain

1 a nane stored inthe formi of a NG DCB diectory entr

1 Passed: " pFebtare - pointer o an i ged byte array assured to be
1 bytes | on

I Returns: Sum An 8-bit uns gned checksum of the array poi nted

i to by pFobiar

oo e
unsi gned char Chksum (unsi gned char *pFebare)
(

short FebhaneLen;

unsi gned char Sum

sum= 0,
for (Febplnelen-1t, FobtareLen 0; Fobhareten)
NOTE: The operation is an unsigned char rotate right
ST (sum ey > 0v0 | 5 o sum e 1)+ “prebnanere;

}
return (Sun);
)

‘As a consequence of this pairing, the short directory entry serves as the structure that contains fields
like: last access date, creation time, creation date, first cluster, and size. It also holds a name that is
visible on previous versions of MS-DOS/Windows. The long directory entries are free to contain new
information and need not replicate information already available in the short entry. Principally, the
long entries contain the long name of a file. The name contained in a short entry which is associated
with a set of long entries is termed the alias name, or simply alias, of the file.

Storage of a Long-Name Within Long Directory Entries

Along name can consist of more characters than can fit in a single long directory entry. When this
occurs the name s stored in more than one long entry. In any event, the name fields themselves
within the long entries are disjoint. The following example is provided to illustrate how a long name
is stored across several long directory entries. Names are also NUL terminated and padded with
OXFFFF characters in order to detect corruption of long name fields by errant disk utilities. A name
that fits exactly in a n long directory entries (i.e. is an integer multiple of 13) is not NUL terminated
and not padded with OXFFFFs.

Suppose a file is created with the name: "The quick brown.fox". The following example illustrates
how the name is packed into long and short directory entries. Most fields in the directory entries are
also filled in as well

T T T T
andiongentry > [aan] w n t o][]
(and last) —————— +
0000h FFFFh FFFFh FFFFh FFFFh | ooooh | FFFFh FFFFR
n n n n n
T T T T £
istlongentry Dlhl T e ! |°F" oo |5""\| :
T T T T T
i 3 k | 0000h r o
— t
Shortentry | T W E QU X |20h w1 o] e
cvea!eﬂ
| Eg\sess | oooon [".%.Eeu Mmfa | it File Size

© 2000 MicrosoftCorporation. Al rights esrved 28

FAT: General Overview of On-Disk Format—Page 29

“The heuristics used to “auto-generate" a short name from a long name are explained in a later section,
Name Limits and Character Sets

Short Directory Entries

Short names are limited to 8 characters followed by an optional period (.) and extension of up to 3
characters. The total path length of a short name cannot exceed 80 characters (64 char path + 3 drive
letter + 12 for 8.3 name + NUL) including the trailing NUL. The characters may be any combination
of letters, digits, or characters with code point values greater than 127. The following special

characters are also allowed:

$% ' -_@~ "1 (){rr#&

Names are stored in a short directory entry in the OEM code page that the system is configured for at
the time the directory entry is created. Short directory entries remain in OEM for compatibility with
previous versions of MS-DOS/Windows. OEM characters are single 8-bit characters or can be DBCS
character pairs for certain code pages:

Short names passed to the file system are always converted to upper case and their originl case value
is lost. One problem that is generally true of most OEM code pages is that they map lower to upper
case extended characters in a non-unique fashion. That s, they map multiple extended characters to a
single upper case character. This creates problems because it does not preserve the information that
the extended character provides. This mapping also prevents the creation of some file names that
‘would normally differ, but because of the mapping to upper case they become the same file name.

Long Directory Entries

Long names are limited to 255 characters, not including the trailing NUL. The total path length of a
Tong name cannot exceed 260 characters, including the trailing NUL. The characters may be any
combination of those defined for short names with the adition of the period (.) character used
multiple times within the fong name. A space is also a valid character in a long name as it always has
been for a short name. However, in short names it typically is not used. The following six special
characters are now allowed in a long name. They are not legal in a short name.

+.0=101
Embedded spaces within a long name are allowed. Leading and trailing spaces in a long name are
d

ignore

Leading and embedded periods are allowed in a name and are stored in the long name. Trailing
periods are ignored.

Long names are stored in long directory entries in UNICODE. UNICODE characters are 16-bit
characters. Itis not be possible to store UNICODE in short directory entries since the names stored
there are 8-bit characters or DBCS characters.

Long names passed to the file system are not converted to upper case and their original case value s
preserved. UNICODE solves the case mapping problem prevlent n some OEM oot pages by
iding a translation for lower 1o asingle, nique upper case character.

© 2000 MicrosoftCorporation. Al rights esrved 2

FAT: General Overview of On-Disk Format—Page 30

Name Matching In Short & Long Names

“The names contained in the set of all short directory entries are termed the "short name space”. The
names contained in the set of all long directory entries are termed the "long name space". Together,
they form a single unified name space in which no duplicate names can exist. That is: any name
within a specific directory, whether it is a short name or a long name, can occur only once in the name
space. Furthermore, although the case of a name is preserved in long name, no two names can have
the same name although the names on the media actually differ by case. That is names like "foobar"
cannot be created if there is already a short entry with a name of “FOOBAR" or a long name with a
name of "FooBar".

Al types of search operations within the file system (ie.find, open, create, delete, rename) are case-
insensitive. An open of “FOOBAR" will open either “FooBar" or “foobar" if one or the other exists.
Afind using "FOOBAR" as a pattern wil find the same files mentioned. The same rules are also true
for extended characters that are accented.

A short name search operation checks only the names of the short directory entries for a match, A
fong name search operation checks both the long and short directory entries. As the file system
traverses a directory, it caches the long-name sub-components contained in long directory entries. As
soon as a short directory entry is encountered that is associated with the cached long name, the long
name search operation will check the cached long name first and then the short name for a match.

When a character on the media, whether it is stored in the OEM character set or in UNICODE, cannot
be translated into the appropriate character in the OEM or ANSI code page, it s always "translated" to
the *_* (underscore) character as it is returned to the user it is NOT modified on the disk. This
character is the same in all OEM code pages and ANSI.

Naming Conventions and Long Names

An API allows the caller to specify the long name to be assigned to a file or directory. They do not
allow the caller to independently specify the short name. The reason for this prohibition is that the
short and long names are considered to be single unified name space. As should be obvious the file
system's name space does not support duplicate names. In other words, a long name for a file may not
contain the same name, ignoring case, as the short name in a different ile. This restriction is intended
1o prevent confusion among users, and applications, regarding the proper name of a ile or directory.
To make this restriction transparent, whenever a long name is created and the no matching long name
exists, the short name is automatically generated from the long name in such a way that it does not
collide with an existing short name.

“The technique chosen to auto-generate short names from fong names is modeled after Windows NT.
Auto-generated short names are composed of the basis-name and an optional numeric-tail

The Basis-Name Generation Algorithm
The basis-name generation algorithm is outlined below. This is a sample algorithm and serves to
h

illustrate how short names can be auto-generated from long names. An uld follow
this basic sequence of steps.

1 The UNICODE name passed to the file system is converted to upper case.
2. The upper cased UNICODE name is converted to OEM.

if (the uppercased UNICODE glyph does not exist as an OEM glyph in the OEM code page)
or (the OEM glyph is invalid in an 8.3 name)

© 2000 MicrosoftCorporation. Al rights esrved 20

FAT: General Overview of On-Disk Format—Page 31

Replace the glyph to an OEM " * (underscore) character.
Seta "lossy conversion” flag.
3. Strip all leading and embedded spaces from the long name.
4. Strip all leading periods from the long name.
5. While (notatend of the long name)
and (char is not a period)
and (total chars copied < 8)

Copy characters into primary portion of the basis name

6. Inserta dot at the end of the primary of the basi iff the basi has an

P
extension after the last period in the name.

7. Scan for the last embedded period in the long name.
If (the last embedded period was found)

While (not at end of the long name)
and (total chars copied < 3)

‘Copy characters into extension portion of the basis name
}
Proceed to numeric-tail generation.
The Numeric-Tail Generation Algorithm
it (2 "lossy conversion" was not flagged)
and (the long name fits within the 8.3 naming conventions)
and (the basis-name does not collide with any existing short name)
“The short name is only the basis-name without the numeric tail.
else
Insert a numeric-tail
chosen so that the

name thus formed does not collide with any existing short name and that the primary name does
not exceed eight characters in length.
}

" 10 the end of the primary name such that the value of the "~ is

The *~n" string can range from "~1" to *~999999". The number “n" is chosen so that it is the next
number in a sequence of files with similar basis-names. For example, assume the following short
names existed: LETTER~1.DOC and LETTER~2.DOC. As expected, the next auto-generated name
of name of this type would be LETTER~3.D0C. Assume the following short names existed:
LETTER~1.DOC, LETTER~3.DOC. Again, the next auto-generated name of name of this type
would be LETTER~2.DOC. However, one absolutely cannot count on this behavior. In a directory
with a very large mix of names of this type, the selection algorithm is optimized for speed and ma
select another “n" based on the characteristics of short names that end in “~n" and have similar leading
name patterns.

© 2000 MicrosoftCorporation. Al rights esrved a1

FAT: General Overview of On-Disk Format—Page 32

Effect of Long Directory Entries on Down Level Versions of FAT

“The support of long names is most important on the hard disk, however it will be supported on
removable media as well. The implementation provides support for long names without breaking
compatibility with the existing FAT format. A disk can be read by a down level system without any
compatibility problems. An existing disk does not go through a conversion process before it can start
using long names. Al of the current files remain unmodiified. The long name directory entries are
added when a long name is created. The addition of a long name to an existing file may require the
8.3 directory entry to be moved if the required adjacent directory entries are not available.

The long name entries are as hidden s hidden or system files are on a down level system. This is
enough to keep the casual user from causing problems. The user can copy the files off using the 8.3
name, and put new files on without any side effects

The interesting part of this is what happens when the disk is taken to a down level FAT system and the
directory is changed. This can affect the long name entries since the down level system ignores these
long names and will not ensure they are properly associated with the 8.3 names.

A down level system will only see the long name entries when searching for a label. On a down level
system, the volume label will be incorrectly reported if the true volume label does not come before all
of the long name entries in the root directory. This is because the long name entries also have the
volume label bit set. This is unfortunate, but is not a critical problem.

If an attempt is made to remove the volume label, one of the long name directory entries may be
deleted. This would be a rare occurrence. Itis easily detected on an aware system. The long name

entry will no longer be a valid file entry, since one or more of the long entries is marked as deleted. If
the deleted entry is reused, then the attribute byte will not have the proper value for a long name entry.

If a file is renamed on a down level system, then only the short name will be renamed. The long name
will not be affected. Since the long and short names must be kept consistent across the name space, it
is desirable to have the long name become invalid as a result of this rename. The checksum of the 8.3
name that is kept in the long name directory provides the ability to detect this type of change. This
checksum will be checked to validate the long name before it is used. Rename will cause problems
only if the renamed 8.3 file name happens to have the same checksum. The checksum algorithm
chosen has a relatively flat distribution across the short name space.

“This rename of the 8.3 name must also not conflict with any of the long names. Otherwise a down
level system could create a short name in one file that matches a long name, when case is ignored, in a
different file. To prevent this, the automatic creation of an 8.3 name from a long name, that has an 8.3
format, will directly map the long name to the 8.3 name by converting the characters to upper case.

If the fill is deleted, then the long name is simply orphaned. If a new file s created, the long name
may be incorrectly associated with the new file name. As in the case of a rename the checksum of the
8.3 name will help prevent this incorrect association.

Validating The Contents of a Directory

These guidelines are provided so that disk maintenance utilites can verify individual directory entries
for ‘correctness' while maintaining ith future to the di

1. DO NOT look at the content of directory entry fields marked 'reserved' and assume that, if they
are any value other than zero, that they are ‘bad.
2. DO NOT reset the content of directory entry fields marked reserved to zero when they contain

non-zero values (under the assumption that they are "bad"). Directory entry fields are designated

© 2000 MicrosoftCorporation. Al rights esrved 2

FAT: General Overview of On-Disk Format—Page 33

reserved, rather than must-be-zero. They should be ignored by your application.. These fields are
intended for future extensions of the file system. By ignoring them an utility can continue to run
on future versions of the operating system.

DO use the A_LONG attribute first when determining whether a directory entry is a long
directory entry or a short directory entry. The following algorithm s the correct algorithm for
making this determination:

if (((LDIR_attr & ATTR_LONG_NAME_MASK)

TTR_LONG_NAME) && (LDIR_Ord 1= 0xES))

1* Found an active long name sub-component. */

IS

DO use bits 4 and 3 of a short entry together when determining what type of short directory entry
is being inspected. ~ The following algorithm is the correct algorithm for making this
determination:

if ((LDIR_attr & ATTR_LONG_NAME_MASK) 1= ATTR_LONG_NAME) && (LDIR_Ord I= 0xES))
€

if ((DIR,AIH & (ATTR,DIRECYORY | ATTR_VOLUME_ID))

#00)
e 7 (OIR_Aar & (ATTR. DIRECTORY | ATTR VOLUME 10)
1+ “Found a directo
e\s:l'“DlR Atr & (ATTR_DIRECTORY | ATTR_VOLUME_ID))
Found a volume label.

\TTR_DIRECTORY)

ATTR_VOLUME_ID)

else
1+ Found an invalid directory entry. */
}

DO NOT assume that a non-zero value in the "type" field indicates a bad directory entry. Do not
force the "type" field to zero.

Use the "checksum"” field as a value to validate the directory entry. The "first cluster” field is
currently being set to zero, though this might change in future.

Other Notes Relating to FAT Directories
« Long File Name directory entries are identical on all FAT types. See the preceeding sections for

DIR_FileSize is a 32-bit field. For FAT32 volumes, your FAT file system driver must not allow a
cluster chain to be created that is longer than 0x100000000 bytes, and the last byte of the last
cluster in a chain that long cannot be allocated to the file. This must be done so that no file has a
file size > OxFFFFFFFF bytes. This is a fundamental limit of all FAT file systems. The maximum
allowed file size on a FAT volume is OXFFFFFFFF (4,294,967,295) bytes.

« Similarly, a FAT file system driver must not allow a directory (file that is actually a container for
other files) to be larger than 65,536 * 32 (2,097,152) bytes.

NOTE: This limit does not apply to the number of files i the directory. This limit is on the size of
the directory itself and has nothing to do with the content of the directory. There are two reasons
for this limit

1. Because FAT directories are not sorted or indexed, it is a bad idea to create huge directories;

otherwise, operations like creating a new entry (which requires every allocated directory entry
10 be checked to verify that the name doesn't already exist in the directory) become very slow

© 2000 MicrosoftCorporation. Al rights esrved 33

FAT: General Overview of On-Disk Format—Page 34

2. There are many FAT fill system drivers and disk uilities, including Microsoft’s, that expect to
be able to count the entries in a directory using a 16-bit WORD variable. For this reason,
directories cannot have more than 16-bits worth of entries.

© 2000 MicrosoftCorporation. Al rights esrved au

42

Crash Consistency: FSCK and Journaling

As we've seen thus far, the file system manages a set of data structures to
implement the expected abstractions: files, directories, and all of the other
metadata needed to support the basic abstraction that we expect from a
file system. Unlike most data structures (for example, those found in
memory of a running program), file system data structures must persist,
i.e,, they must survive over the long haul, stored on devices that retain
data despite power loss (such as hard disks or flash-based SSDs).

One major challenge faced by a file system is how to update pers
tent data structures despite the presence of a power loss or system crash.
Specifically, what happens if, right in the middle of updating on-disk
structures, someone trips over the power cord and the machine loses
power? Or the operating system encounters a bug and crashes? Because
of power losses and crashes, updating a persistent data structure can be
quite tricky, and leads to a new and interesting problem in file system

ion, known as the crash-consi problem.

“This problem is quite simple to understand. Imagine you have to up-
date two on-disk structures, A and B, in order to complete a particular
operation. Because the disk only services a single request at a time, one
of these requests will reach the disk first (either A or B). If the system
crashes or loses power after one write completes, the on-disk structure
will be left in an inconsistent state. And thus, we have a problem that all
file systems need to solve:

THE CRUX: HOW TO UPDATE THE DISK DESPITE CRASHES

The system may crash or lose power befween any two writes, and
thus the on-disk state may only partially get updated. After the crash,
the system boots and wishes to mount the file system again (in order to
access files and such). Given that crashes can occur at arbitrary points
in time, how do we ensure the file system keeps the on-disk image in a
reasonable state?

CRASH CONSISTENCY: FSCK AND JOURNALING

'
»

OPERATING
SYSTEMS
[VERSION 0.92]

In this chapter, we'll describe this problem in more detail, and look
at some methods file systems have used to overcome it. We'll begin by
examining the approach taken by older file systems, known as fsck or the
file system checker. We'll then turn our atfention to another approach,
known as journaling (also known as write-ahead logging), a technique
which adds a little bit of overhead to each write but recovers more quickly
from crashes or power losses. We will discuss the basic machinery of
journaling, including a few different flavors of journaling that Linux ext3
[198,PAACS] (a relatively modern journaling file system) implements.

A Detailed Example

To kick off our investigation of journaling, let's look at an example.
We'll need to use a workload that updates on-disk structures in some
way. Assume here that the workload is simple: the append of a single
data block to an existing file. The append is accomplished by opening the
file, calling 1seek () to move the file offset to the end of the file, and then
issuing a single 4KB write to the file before closing it.

Let’s also assume we are using standard simple file system structures
on the disk, similar to file systems we have seen before. This tiny example
includes an inode bitmap (with just 8 bits, one per inode), a data bitmap
(also 8 bits, one per data block), inodes (8 total, numbered 0 to 7, and
spread across four blocks), and data blocks (8 total, numbered 0 to 7).
Here is a diagram of this file system:

inode | Data Inodes Data Blocks

emap | emap
AR [T 1 8 T[]
[T
If you look at the structures in the picture, you can see that a single inode
is allocated (inode number 2), which is marked in the inode bitmap, and a
single allocated data block (data block 4), also marked in the data bitmap.
The inode is denoted I[v1], as it is the first version of this inade; it will
soon be updated (due to the workload described above).

Let's peck inside this simplified inode too. Inside of I[v1], we see:

read-urite

pointer + null
In this simplified inode, the size of the file is 1 (it has one block al-

located), the first direct pointer points to block 4 (the first data block of
the file, Da), and all three other direct pointers are set to nu11 (indicating

WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING

that they are not used). Of course, real inodes have many more fields; see
previous chapters for more information.

When we append to the file, we are adding a new data block to it, and
thus must update three on-disk structures: the inode (which must point
to the new block as well as have a bigger size due to the append), the
new data block Db, and a new version of the data bitmap (call it B[v2]) to
indicate that the new data block has been allocated.

us, in the memory of the system, we have three blocks which we
must write to disk. The updated inode (inode version 2, or I[v2] for short)
now looks like this:

pernissions

The updated data bitmap (B[v2]) now looks like this: 00001100. Finally,
there is the data block (Db), \\'hxch s just filed with whatever it is users
putinto files. Stolen music perhaps?

What we would like is for (he final on-disk image of the file system to
look like this:

Inodes Data Blocks

To achieve this transition, the file system must perform three sepa-
rate writes to the disk, one each for the inade (I[v2]), bitmap (B[v2]), and
data block (Db). Note that these writes usually don't happen immedi-
ately when the user issues a write () system call; rather, the dirty in-
ode, bitmap, and new data will sit in main memory (in the page cache
or buffer cache) for some time first; then, when the file system finally
decides to write them to disk (after say 5 seconds or 30 seconds), the file
system will issue the requisite write requests to the disk. Unfortunately,
a crash may occur and thus interfere with these updates to the disk. In
particular, if a crash happens after one or two of these writes have taken
place, but not all three, the file system could be left in a funny state.

Inode | Data
map | Bmap

Crash Scenarios
To understand the problem better, let’s look at some example crash sce-

narios. Imagine only a single write succeeds; there are thus three possible
outcomes, which we list here:

© 2014, ARPACI-DUSSEAU

THREE

4 CRASH CONSISTENCY: FSCK AND JOURNALING

« Just the data block (Db) is written to disk. In this case, the data is
on disk, but there is no inode that points to it and no bitmap that
even says the block is allocated. Thus, it is as if the write never
occurred. This case is not a problem at all, from the perspective of
file-system crash consistency’.

* Just the updated inode (I[v2]) is written to disk. In this case, the
inode points to the disk address (5) where Db was about to be writ-
ten, but Db has not yet been written there. Thus, if we trust that

ointer, we will read garbage data from the disk (the old contents
of disk address 5).

Further, we have a new problem, which we call a file-system in-
consistency. The on-disk bitmap is telling us that data block 5 has
not been allocated, but the inode is saying that it has. The disagree-
ment between the bitmap and the inode is an inconsistency in the
data structures of the file system; to use the file system, we must
somehow resolve this problem (more on that below).

« Just the updated bitmap (B[v2]) is written to disk. In this case, the
bnmap indicates that block 5 s alocated, but there i no inode that
oints Thus the file system is inconsistent again; if left unre-
£0ived, this write would result in a space leak, a0 block 5 would
never be used by the file system.

There are also three more crash scenarios in this attempt to write three
blocks to disk. In these cases, two writes succeed and the last one fails:

« The inode (I[v2]) and bitmap (B[v2]) are written to disk, but not
data (Db). In this case, the file system metadata is completely con-
sistent: the inode has a pointer to block 5, the bitmap indicates that
5 is in use, and thus everything looks OK from the perspective of
the file system’s metadata. But there is one problem: 5 has garbage
in it again.

« The inode (I[v2]) and the data block (Db) are written, but not the
bitmap (B[v2)). In this case, we have the inode pointing to the cor-
rect data on disk, but again have an inconsistency between the in-
ode and the old version of the bitmap (B1). Thus, we once again
need to resolve the problem before using the file system.

« The bitmap (BIv2) and data block (Db) are written, but not the
inode (I[v2]). In this case, we again have an inconsistency between
the inode and the data bitmap. However, even though the block
was written and the bitmap indicates its usage, we have no idea
which file it belongs to, as no inode points to the file.

" However, it might be a problem for the user, who just lost some data!

OPERATING
SYSTEMS
[VERSION 0.92] WWW.OSTEP.ORG

422

CRASH CONSISTENCY: FSCK AND JOURNALING

The Crash Consistency Problem

Hopefully, from these crash scenarios, you can see the many problems
that can occur to our on-disk file system image because of crashes: we can
have inconsistency in file system data structures; we can have space leaks;
we can return garbage data to a user; and so forth. What we'd like to do
ideally is move the file system from one consistent state (e.g., before the
file got appended to) to another atomically (e.g., after the inode, bitmap,
and new data block have been written to disk). Unfortunately, we can’t
do this easily because the disk only commits one write at a time, and
crashes or power loss may occur between these updates. We call this
general problem the crash-consistency problem (we could also call it the
consistent-update problem).

Solution #1: The File System Checker

Early file systems took a simple approach to crash consistency. Basi-
cally, they decided to let inconsistencies happen and then fix them later
(when rebooting). A classic example of this lazy approach is found in a
tool that does this: fsck”. £sck isa UNIX tool for finding such inconsis-
tencies and repairing them [M86]; similar tools to check and repair a disk
partition exist on different systems. Note that such an approach can't fix
all problems; consider, for example, the case above where the file system
looks consistent but the inode points to garbage data. The only real goal
is to make sure the file system metadata is internally consistent.

The tool £sck operates in a number of phases, as summarized in
McKusick and Kowalski’s paper [MK96]. It is run before the file system
is mounted and made available (fsck assumes that no other fllesyslem
activit; -going while it runs); once finished, the on-disk file
should be consistent and thus can be made accessible to users.

Here is a basic summary of what £sck does:

* Superblock: fsck first checks if the superblock looks reasonable,
‘mostly doing sanity checks such as making sure the file system size
is greater than the number of blocks that have been allocated. Usu-
ally the goal of these sanity checks is to find a suspect (corrupt)
superblock; in this case, the system (or administrator) may decide
to use an alternate copy of the superbloc
Free blocks: Next, fsck scans the inodes, indirect blocks, double
indirect blocks, etc., to build an understanding of which blocks are
currently allocated within the file system. It uses this knowledge
to produce a correct version of the allocation bitmaps; thus, if there
is any inconsistency between bitmaps and inodes, it is resolved by
trusting the information within the inodes. The same type of check
is performed for all the inodes, making sure that all inodes that look
like they are in use are marked as such in the inode bitmaps.

ZPronounced either “eff-ess-see-kay”, “eff-ess-check”, or, if you don'tlike the tool, “eff-
Suck”. Yes, serious professional people use this term.

© 2014, ARPACI-DUSSEAU

THREE
EASY
PIECES

CRASH CONSISTENCY: FSCK AND JOURNALING

OPERATING
SYSTEMS
[VERSION 0.92]

« Inode state: Each inode is checked for corruption or other prob-
lems. For example, £sck makes sure that each allocated inode has
a valid type field (¢.g,, regular file, directory, symbolic link, etc.). 1f
there are problems with the inode fields that are not easily fixed, the
inode is considered suspect and cleared by £sck; the inode bitmap
is correspondingly updated.
* Inode links: fsck also verifies the link count of each allocated in-
ode. As you may recall, the link count indicates the number of dif-
ferent directories that contain a reference (.., a link) to this par-
ticular file. To verify the link count, £sck scans through the en-
tire directory tree, starting at the root directory, and builds its own
link counts for every file and directory in the file system. If there
is a mismatch between the newly- calculated count and that found
within an inode, corrective action must be taken, usually by fixing
the count within the inode. If an allocated inode is discovered but
no directory refers to it, it is moved to the 1ost + £ound directory.
Duplicates: £sck also checks for duplicate pointers, i.e., cases where
two different inodes refer to the same block. If one inode is obvi-
ously bad, it may be cleared. Alternately, the pointed-to block could
be copied, thus giving each inode its own copy as desired.
Bad blocks: A check for bad block pointers is also performed while
scanning through the list of all pointers. A pointer is considered
”b.ad” if it obviously points to something outside its valid range,
., it has an address that refers to a block greater than the parti-
tiom size. I this case, £sck can't do anything too intelligent; it just
removes (clears) the pointer from the inode or indirect block.
Directory checks: £5ck does not understand the contents of user
files; however, directories hold specifically formatted information
created by the file system itself. Thus, £sck performs additional
mtegmy checks on the contents of each directory, making sure that
. “." are the first entries, that each inode referred to in a
dxmctory entry is allocated, and ensuring that no directory s linked
to more than once in the entire hierarchy.

As you can see, building a working £sck requires intricate knowledge
of the file system; making sure such a piece of code works correctly in all
cases can be challenging [G+08]. However, fsck (and similar approaches)
have a bigger and perhaps more fundamental problem: they are foo slow.
With a very large disk volume, scanning the entire disk to find all the
allocated blocks and read the entire directory tree may take many minutes
or hours. Performance of £sck, as disks grew in capacity and RAIDs
grew in popularity, became prohibitive (despite recent advances [M+13]).

At a higher level, the basic premise of £sck seems just a tad irra-
tional. Consider our example above, where just three blocks are written
to the disk; it is incredibly expensive to scan the entire disk to fix prob-
lems that occurred during an update of just three blocks. This situation is
akin to dropping your keys on the floor in your bedroom, and then com-

WWW.OSTEP.ORG

423

CRASH CONSISTENCY: FSCK AND JOURNALING

mencing a search-the-entire-house-for-keys recovery algorithm, starting in
the basement and working your way through every room. It works but is
wasteful. Thus, as disks (and RAIDS) grew, researchers and practitioners
started to look for other solutions.

Solution #2: Journaling (or Write-Ahead Logging)

Probably the most popular solution to the consistent update problem
is to steal an idea from the world of database management systems. That
idea, known as write-ahead logging, was invented to address exactly this
type of problem. In file systems, we usually call write-ahead logging jour-
naling for historical reasons. The first file system to do this was Cedar
[H87], though many modern file systems use the idea, including Linux
ext3 and extd, reiserfs, IBM's JES, SGI's XFS, and Windows NTFS.

The basic idea is as follows. When updating the disk, before over-
writing the structures in place, first write down a little note (somewhere
else on the disk, in a well-known location) describing what you are about
to do. Writing "this note is the “write ahead” part, and we write it to a
structure that we organize as a “log”; hence, write-ahead logging.

By writing the note to disk, you are guaranteeing that if a crash takes
places during the update (overwrite) of the structures you are updating,
you can go back and look at the note you made and try again; thus, you
will know exactly what to fix (and how to fix it) after a crash, instead
of having to scan the entire disk. By design, journaling thus adds a bit
of work during updates to greatly reduce the amount of work required
during recovery.

Wel now describe how Linux exts, a popular journaling file system,
mcurp()mles journaling into the file system. Most of the on-disk struc-
tures are identical to Linux ext2, e.g., the disk is divided into block groups,
and each block group has an inode and data bitmap as well as inodes and
data blocks. The new key structure is the journal itself, which occupies
some small amount of space within the partition or on another device.
Thus, an ext2 file system (without journaling) looks like this:

Super

Group 0 ‘ Group 1 ‘ Group N ‘

Assuming the journal is placed within the same file system image
(though sometimes it is placed on a separate device, or as a file within
the file system), an ext3 file system with a journal looks like this:

oot

The real difference is just the presence of the journal, and of course,
how it is use

Group 1

Group N ‘

© 2014, ARPACI-DUSSEAU

THREE
EASY
PIECES

CRASH CONSISTENCY: FSCK AND JOURNALING

OPERATING
SYSTEMS
[VERSION 0.92]

Data Journaling

Let's look at a simple example to understand how data journaling works.
Data journaling is available as a mode with the Linux ext3 file system,
fxom which much of this discussion is based.

Say we have our canonical update again, where we wish to write the
inode (I[v2]), bitmap (B[v2]), and data block (Db) to disk again. Before
writing them to their final disk locations, we are now first going to write
them to the log (a.k.a. journal). This is what this will look like in the log:

8 1v2) | Byva) | Db fTxE| ———

Journal

You can see we have written five blocks here. The transaction begin
(TxB) tells us about this update, including information about the pend-
ing update to the file system (e.g, the final addresses of the blocks I[v2],
B[v2], and Db), as well as some kind of transaction identifier (TID). The
middle three blocks just contain the exact contents of the blocks them-
selves; this is known as physical logging as we are putting the exact
physical contents of the update in the journal (an alternate idea, logi
cal logging, puts a more compact logical representation of the update in
the journal, e.g., “this update wishes to append data block Db to file X",
which is a little more complex but can save space in the log and perhaps
improve performance). The final block (TxE) is a marker of the end of this
transaction, and will also contain the TID.

Once this transaction is safely on disk, we are ready to overwrite the
old structures in the file system; this process is called checkpointing,
Thus, to checkpoint the file system (i.e., bring it up to date with the pend-
ing update in the journal), we issue the writes I[v2], B[v2], and Db to
their disk locations as seen above; if these writes complete successfully,
we have successfully checkpointed the file system and are basically done.
‘Thus, our initial sequence of operations:

1. Journal write: Write the transaction, including a transaction-begin
block, all pending data and metadata updates, and a transaction-
end block, to the log; wait for these writes to complete.

2. Checkpoint: Write the pending metadata and data updates to their
final locations in the file system.

In our example, we would write TxB, I[v2], B[v2], Db, and TxE to the
journal first. When these writes complete, we would complete the update
by checkpointing I[v2], B[v2], and Db, to their final locations on disk.
Things get a little trickier when a crash occurs during the writes to
the journal. Here, we are trying to write the set of blocks in the transac-
tion (e.g., TxB, I[v2], B[v2], Db, TxE) to disk. One simple way to do this
would be to issue each one at a time, waiting for each to complete, and
then issuing the next. However, this is slow. Ideally, we'd like to issue

WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING

ASIDE: FORCING WRITES TO DIsk
To enforce ordering between two disk writes, modern file systems have
to take a few extra precautions. In olden times, forcing ordering between
two writes, A and B, was easy: just issue the write of A to the disk, wait
for the disk to interrupt the OS when the write is complete, and then isste
the write of B.
Things got slightly more complex due to the increased use of write caches
within disks. With write buffering enabled (sometimes called immediate
reporting), a disk will inform the OS the write is complete when it simply
has been placed in the disk’s memory cache, and has not yet reached
disk. If the OS then issues a subsequent write, it is not guaranteed to
reach the disk after previous writes; thus ordering between writes is not
preserved. One solution is to disable write buffering, However, more
modern systems take extra precautions and issue explicit write barriers;
such a barrier, when it completes, guarantees that all writes issued before
the barrier will reach disk before any writes issued after the barrier.
All of this machinery requires a great deal of trust in the correct oper-
ation of the disk. Unfortunately, recent research shows that some disk
manufacturers, in an effort to deliver “higher performing” disks, explic-
itly ignore write-barrier requests, thus making the disks seemingly run
faster but at the risk of incorrect operation [C+13, R+11]. As Kahan said,
the fast almost always beats out the slow, even if the fast is wrong.

all five block writes at once, as this would turn five writes into a single
sequential write and thus be faster. However, this is unsafe, for the fol-
lowing reason: given such a big write, the disk internally may perform
scheduling and complete small picces of the big write in any order. Thus,
the disk internally may (1) write TxB, I[v2], B[v2], and TxE and only later
(2) write Db. Unfortunately, if the disk loses power between (1) and (2),
this is what ends up on disk:

[xB| vz Emm—

Journal

[TxE|
g=1

B2 ‘ k4

Why is this a problem? Well, the transaction looks like a valid trans-
action (it has a begin and an end with matching sequence numbers). Fur-
ther, the file system can't look at that fourth block and know it is wrong;
after all, it is arbitrary user data. Thus, if the system now reboots and
runs recovery, it will replay this transaction, and ignorantly copy the con-
tents of the garbage block 22" to the location where Db is supposed to
live. This is bad for arbitrary user data in a file; it is much worse if it hap-
pens toa eritical piece of file system, such as the superblock, which could
render the file system unmountable.

© 2014, ARPACI-DUSSEAU

THREE
EASY
PIECES

CRASH CONSISTENCY: FSCK AND JOURNALING

OPERATING
SYSTEMS
[VERSION 0.92]

ASIDE: OPTIMIZING LOG WRITES
You may have noticed a particular inefficiency of writing to the log.
Namely, the file system first has to write out the transaction-begin block
and contents of the transacnon, only after these writes complete can the
file system send the transaction-end block to disk. The performance im-
pact is clear, if you it i s usually an extra rota-
tion is incurred (think about why).
One of our former graduate students, Vijayan Prabhakaran, had a simple
idea to fix this problem [P+05]. When writing a transaction to the journal,
include a checksum of the contents of the journal in the begin and end
blocks. Doing so enables the file system to write the entire transaction at
once, without incurring a wait; if, during recovery, the file system sces
a mismatch in the computed checksum versus the stored checksum in
the transaction, it can conclude that a crash occurred during the write
of the transaction and thus discard the file-system update. Thus, wit
small tweak in the write protocol and recovery system, a file system can
achieve faster common-case performance; on top of that, the system is
slightly more reliable, as any reads from the journal are now protected by
a checksum.
“This simple fix was attractive enough to gain the notice of Linux file sys-
tem developers, who then incorporated it into the next generation Linux
file system, called (you guessed it!) Linux extd. It now ships on mil-
lions of machines worldwide, including the Android handheld platform.
Thus, every time you write to disk on many Linux-based systems, a little
A O i o g i L i e
reliable.

To avoid this problem, the file system issues the transactional write in
two steps. First, it writes all blocks except the TxE black to the journal,
issuing these writes all at once. When these writes complete, the journal
will look something like this (assuming our append workload again):

8 1) | Bpva) | Ob
=1

Journal

When those writes complete, the file system issues the write of the TxE
block, thus leaving the journal in this final, safe state:

I
An important aspect of this process is the atomicity guarantee pro-
vided by the disk. It turns out that the disk guarantees that any 512-byte

2] | Ba)

Journal

x|
o=t

WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING

write will either happen or not (and never be half-written); thus, to make
sure the write of TxE is atomic, one should make it a single 512-byte block.
Thus, our current protocol to update the file system, with each of its three
phases labeled:

1. Journal write: Write the contents of the transaction (including TxB,
metadata, and data) to the log; wait for these writes to complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for write to complete; transaction is said to be
committe

3. Checkpoint: Write the contents of the update (metadata and data)
to their final on-disk locations.

Recovery

Let’s now understand how a file system can use the contents of the jour-
nal to recover from a crash. A crash may happen at any time during this
sequence of updates. I the crash happens before the transaction is writ-
ten safely to the log (i.e., before Step 2 above completes), then our job
is easy: the pending update is simply skipped. If the crash happens af-
ter the transaction has committed to the log, but before the checkpoint is
complete, the file system can recover the update as follows. When the
system boots, the file system recovery process will scan the log and look
for transactions that have committed to the disk; these transactions are
thus replayed (in order), with the file system again attempting to write
out the blocks in the transaction to their final on-disk locations. This form
of logging is one of the simplest forms there is, and is called redo logging,
By recovering the committed transactions in the journal, the file system
ensures that the on-disk structures are consistent, and thus can proceed
by mounting the file system and readying itself for new requests.

Note that it is fine for a crash to happen at any point during check-
pointing, even after some of the updates to the final locations of the blocks
have completed. In the worst case, some of these updates are simply per-
formed again during recovery. Because recovery is a rare operation (only
taking place after an unexpected system crash), a few redundant writes
are nothing to worry about’.

Batching Log Updates

You might have noticed that the basic protocol could add a lot of extra
disk traffic. For example, imagine we create two files in a row, called
filel and £ile2, in the same directory. To create one file, one has to
update a number of on-disk structures, minimally including: the inode
bitmap (to allocate a new inode), the newly-created inode of the file, the

nlessyou worry about everything,in which case e can'thelp you. Stop worrying so
much,itis ut now you're p

© 2014, ARPACI-DUSSEAU

THREE
EASY
PIECES

CRASH CONSISTENCY: FSCK AND JOURNALING

OPERATING
SYSTEMS
[VERSION 0.92]

data block of the parent directory containing the new directory entry, as
well as the parent directory inode (which now has a new modification
time). With journaling, we logically commit all of this information to the
journal for ach of our two file creations; because the files are in the same
directory, and assuming they even have inodes within the same inode

lock, this means that if we're not careful, we'll end up writing these
same blocks over and over.

To remedy this problem, some file systems do not commit each update
to disk one at a time (e.g., Linux ext3); rather, one can buffer all updates
into a global transaction. In our example above, when the two files are
created,the fle systen st marks the ir-memory inode bitmap, nodes

the files, directory data, and directory inode as dirty, and adds them to
The it of locks thatform he current sansaction. When t s finally time
to write these blocks to disk (say, after a timeout of 5 seconds) this single
global transaction is committed containing all of the updates described
above. Thus, by buffering updates, a file system can avoid excessive write
traffic to disk in many cases.

Making The Log Finite

We thus have arrived at a basic protocol for updating file-system on-disk
structures. The file system buffers updates in memory for some time;
when itis finally time to write to disk, the file system first carefully writes
out the details of the transaction to the journal (a.k.a. write-ahead log);
after the transaction is complete, the file system checkpoints those blocks
to their final locations on disk.

However, the log is of a finite size. If we keep adding transactions to
it (as in this figure), it will soon fill. What do you think happens then?

Journal

o problems arise when the log becomes full. The first is sim
bt ess e e larger the log, the longer recovery will take, as i
recovery process must replay all the transactions within the log (in order)
to recover. The second is more of an issue: when the log is full (or nearly
full), no further transactions can be committed to the disk, thus ma

the file system “less than useful” (i.e., useless).

To address these problems, journaling file systems treat the log as a
circular data structure, re-using it over and over; this is why the journal
is sometimes referred to as a cireular log. To do so, the file system must
take action some time after a checkpoint. Specifically, once a transaction
has been checkpointed, the file system should free the space it was occu-
pying within the journal, allowing the log space to be reused. There are
many ways to achieve this end; for example, you could simply mark the

WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING

oldest and newest non-checkpointed transactions in the log in a journal
superblock; all other space s free. Here is a graphical depiction:

H 3
Journal

™| Te | e | Ta | T

Journal

In the journal superblock (not to be confused with the main file system
superblock), the journaling system records enough information to know
which transactions have not yet been checkpointed, and thus reduces re-
covery time as well as enables re-use of the log in a circular fashion. And
thus we add another step to our basic protocol

1. Journal write: Write the contents of the transaction (containing TxB
and the contents of the update) to the log; wait for these writes to
complete.

. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction is
now committed.

Checkpoint: Write the contents of the update to their final locations
within the file system.

| Free: Some time later, mark the transaction free in the journal by
updating the journal superblock.

N

S

-

Thus we have our final data journaling protocol. But there is still a
problem: we are writing each data block to the disk fwice, which is a
heavy cost to pay, especially for something as rare as a system crash. Can
you figure out a way to retain consistency without writing data twice?

Metadata Journaling

Although recovery is now fast (scanning the journal and replaying a few
transactions as opposed to scanning the entire disk), normal operation
of the file system is slower than we might desire. In particular, for each
write to disk, we are now also writing to the journal first, thus doubling
write traffic; this doubling is especially painful during sequential write
workloads, which now will proceed at half the peak write bandwidth of
the drive. Further, between writes to the journal and writes to the main
file system, there is a costly seek, which adds noticeable overhead for
some workloads.

Because of the high cost of writing every data block to disk twice, peo-
ple have tried a few different things in order to speed up performance.
For example, the mode of journaling we described above is often called
data journaling (as in Linux ext3), as it journals all user data (in addition
to the metadata of the file system). A simpler (and more common) form
of journaling is sometimes called ordered journaling (or just metadata

© 2014, ARPACI-DUSSEAU

THREE
EASY
PIECES

CRASH CONSISTENCY: FSCK AND JOURNALING

OPERATING
SYSTEMS
[VERSION 0.92]

journaling), and it is nearly the same, except that user data is nof writ-
ten to the journal. Thus, when performing the same update as above, the
following information would be written to the journal:

g

The data block Db, previously written to the log, would instead be
written to the file system proper, avoiding the extra write; given that most
1/0 traffic to the disk is data, not writing data twice substantially reduces
the 1/0 load of journaling. The modification does raise an interesting
question, though: when should we write data blocks to disk?

Let's again consider our example append of a file to understand the
problem better. The update consists of three blocks: 1[v2], B[v2], and
Db. The first two are both metadata and will be logged and then check-
pointed; the latter will only be written once to the file system. When
should we write Db to disk? Does it matter?

Asit turns out, the ordering of the data write does matter for metadata-
only journaling. For example, what if we write Db to disk after the trans-
action (containing I[v2] and B[v2]) completes? Unfortunately, this ap-
proach has a problem: the file system is consistent but I[v2] may end up
pointing to garbage data. Specifically, consider the case where I[v2] and
B[v2] are written but Db did not make it to disk. The file system will then
try to recover. Because Db is nof in the log, the file system will replay
wites to I[v2] and B[v2], and produce a consistent file system (from the
perspective of file-system metadata). However, I[v2] will be pointing to
garbage data, i.e., af whatever was in the slot where Db was headed.

To ensure this situation does ot arise, some file systems (e.g., Linux
ext3) write data blocks (of regular files) to the disk first, before related
metadata is written to disk. Specifically, the protocol is as follows:

el 1va)

Journal

1. Data write: Write data to final location; wait for completion
(the wait is optional; see below for details).
2. Journal metadata write: Write the begin block and metadata to the
log; wait for writes to complete.
Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction (in”
cluding data) is now committed.
Checkpoint metadata: Write the contents of the metadata update
to their final locations within the file system.
5. Free: Later, mark the transaction free in journal superblock.

»

s

By forcing the data write first, a file system can guarantee that a pointer
will never point to garbage. Indeed, this rule of “write the pointed-to
object before the object that points to it” is at the core of crash consis-
tency, and is exploited even further by other crash consistency schemes
[GP94] (see below for details).

WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING

In most systems, metadata journaling (akin to ordered journaling of
ext) is more popular than full data journaling. For example, Windows
NTFS and SGIs XFS both use some form of metadata journaling. Linux
ext3 gives you the option of choosing either data, ordered, or unordered
modes (in unordered mode, data can be written at any time). Al of these
mades keep metadata consistent; they vary in their semantics for data.

Finally, note that forcing the data write to complete (Step 1) before
issuing writes to the journal (Step 2) is not required for correctness, as
indicated in the protocol above. Specifically, it would be fine to issue data
writes as well as the transaction-begin block and metadata to the journal;
the only real requirement is that Steps 1 and 2 complete before the issuing
of the journal commit block (Step 3).

Tricky Case: Block Reuse

There are some interesting corner cases that make journaling more tricky,
and thus are worth discussing. A number of them revolve around block
reuse; as Stephen Tweedie (one of the main forces behind ext3) said:
“What's the hideous part of the entire system? .. It's deleting files.
Everything to do with delete is hairy. Everything to do with delete.
you have nightmares around what happens if blocks get deleted and
then reallocated.” [T00]

The particular example Tweedie gives is as follows. Suppose you are
using some form of metadata journaling (and thus data blocks for files
are 1ot journaled). Let's say you have a directory called foo. The user
adds an entry to foo (say by creating a file), and thus the contents of
£00 (because directories are considered metadata) are written to the log;
assume the location of the £oo directory data is block 1000. The log thus
contains something like this:

[TxE|
d=1

—_

Iffoo] ‘ Difoo]
pI1000 | final adar:1000]

Journal

8|
J-1

At this point, the user deletes everything in the directory as well as the
directory itself, freeing up block 1000 for reuse. Finally, the user creates a
new file (say £oobar), which ends up reusing the same block (1000) that
used to belong to £oo. The inode of foobar is committed to disk, as is
its data; note, however, because metadata journaling is in use, only the
inode of £oobar is committed to the journal; the newly-written data in
block 1000 in the file oobar is not journaled.

T (T8
d-1|d-2|

8| g ———

Journal

Difoo] tooba]
{fnal adir:1000] 1000

Iffoo] ‘
pIr1000

© 2014, ARPACI-DUSSEAU

THREE
EASY
PIECES

CRASH CONSISTENCY: FSCK AND JOURNALING

OPERATING
SYSTEMS
[VERSION 0.92]

Journal File System

T*B Contents TXE |Metadata Data
(metadata) _(data)

Tosue issue issue

complete

issue
complete

Tssue

=
complete

complete
Figure 42.1: Data Journaling Timeline

Now assume a crash occurs and all of this information is still in the
log. During replay, the recovery process simply replays everything in
the log, including the write of directory data in block 1000; the replay
thus overwrites the user data of current file foobar with old directory
content! Clarly this s not corect recovery action, and certaily it will
be a surprise to the user when reading the file £ooba

& are a number of salutions fo this problem. One could, for ex-
ample, never reuse blocks until the delete of said blocks is checkpointed
out of the journal. What Linux ext3 does instead is to add a new type
of record to the journal, known as a revoke record. In the case above,
deleting the directory would cause a revoke record to be written to the
journal.” When replaying the journal, the system first scans for such re-
voke records; any such revoked data s never replayed, thus avoiding the
problem mentioned above.

Wrapping Up Journaling: A Timeline

Before ending our discussion of journaling, we summarize the protocols
we ussed with timelines depicting each of them. Figure
shows the protocol when journaling data as well as metadata, whereas
Figure 42.2 shows the protocol when journaling only metadata.

In each figure, time increases in the downward direction, and each row
in the figure shows the logical time that a write can be issued or might
complete. For example, in the data journaling protocol (Figure 42.1), the
writes of the transaction begin block (TxB) and the contents of the trans-
action can logically be issued at the same time, and thus can be completed
in any order; however, the write to the transaction end block (TxE) must
not be issued until said previous writes complete. Similarly, the check-
pointing writes to data and metadata blocks cannot begin until the trans-
action end block has committed. Horizontal dashed lines show where
write-ordering requirements must be obeyed.

Asimilar timeline is shown for the mefadata journaling protocol. Note
that the data write can logically be issued at the same time as the writes

WWW.OSTEP.ORG

=

CRASH CONSISTENCY: FSCK AND JOURNALING

Journal File System
TxB Contents TxE |Metadata Data
(metadata)
Tosue issue Tssue
complete
complete
c

complete
Figure 42.2: Metadata Journaling Timeline

to the transaction begin and the contents of the journal; however, it must
be issued and complete before the transaction end has been issued.

Finally, note that the time of completion marked for each write in the
timelines is arbitrary. In a real system, completion time is determined by
the 1/0 subsystem, which may reorder writes to improve performance.
The only guarantees about ordering that we have are those that must
be enforced for protocol correctness (and are shown via the horizontal
dashed lines in the figures).

Solution #3: Other Approaches

We've thus far described two options in keeping file system metadata
consistent: a lazy approach based on £sck, and a more active approach
known as journaling. However, these are not the only two approaches.
One such approach, known as Soft Updates [GP94], was introduced by
Ganger and Patt. This approach carefully orders all writes to the file sys-
tem to ensure that the on-disk structures are never left in an inconsis-
tent state. For example, by writing a pointed-to data block to disk before
the inode that points to it, we can ensure that the inode never points to
garbage; similar rules can be derived for all the structures of the file sys-
tem. Implementing Soft Updates can be a challenge, however; whereas
the journaling layer described above can be implemented with relatively
little knowledge of the exact file system structures, Soft Updates requires
intricate knowledge of each file system data structure and thus adds a fair
amount of complexity to the system.

Another approach is known as copy-on-write (yes, COW), and is used
in a number of popular file systems, including Sun’s ZFS [B07]. This tech-
nique never overwrites files or directories in place; rather, it places new
updates to previously unused locations on disk. After a number of up-
dates are completed, COW file systems flip the root structure of the file
system to include pointers to the newly updated structures. Doing so
makes keeping the file system consistent straightforward. We'll be learn-
ing more about this technique when we discuss the log-structured file
system (LFS) in a future chapter; LFS is an early example of a COW.

© 2014, ARPACI-DUSSEAU

THREE
EASY
PIECES

CRASH CONSISTENCY: FSCK AND JOURNALING

OPERATING
SYSTEMS
[VERSION 0.92]

Another approach is one we just developed here at Wisconsin. In this
It (or BBC), no orderin;
is enfomed between writes. To achleve consistency, an additional back
pointer is added to every block in the system; for example, each data
block has a reference to the inode to which it belongs. When accessing
a file, the file system can determine if the file is consistent by checking if
the forward pointer (e.g., the address in the inode or direct block) points
toablock that refers back to it. If so, everything must have safely reached
disk and thus the file is consistent; if not, the file is inconsistent, and an
error is returned. By adding back pointers to the file system, a new form
of lazy crash consistency can be attained [C+12]

Finally, we also have explored techniques to reduce the number of
times a journal protocol has to wait for disk writes to complete. Entitled
optimistic crash consistency [C+13], this new approach issues as many
writes to disk as possible and uses a generalized form of the transaction
checksum [P+05], as well as a few other techniques, to detect inconsisten-
cies should they arise. For some workloads, these optimistic techniques
can improve performance by an order of magnitude. However, to truly
function well, a slightly different disk interface is required [C+13]

Summary

We have introduced the problem of crash consistency, and discussed
various approaches to attacking this problem. The older approach of
building a file system checker works but is likely too slow to recover on
madern systems. Thus, many file systems now use journaling. Journaling
reduces recovery time from O(size-of-the-disk-volume) to O(size-of-the-
log), thus speeding recovery substantially after a crash and restart. For
this reason, many modern file systems use journaling. We have also seen
that journaling can come in many different forms; the most commonly
used is ordered metadata journaling, which reduces the amount of traffic
to the journal while still preserving reasonable consistency guarantees for
both file system metadata as well as user data

WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 19
References
150775 Th Lt Word nFleSystens”
e Bonwick and Bill Moo
Avalabies i/ ewososep.org/ itations/ s Jas .
ZES s cappan-rit ad o,y s n soe e gging res o dis i psform
lcqzl “Consisency Wihout Ondering’”
Vijay Chidambaram, < A Remzi H. Arp
FAST "12, San Jose, California
A recent paper of otrs about a new form of crash consistency based on back pointers. Read it for the
exciting detais!
[C+13] “Optimistic Crash Consistency’
Viey Chidambaram, Thanu 8. il Anciren C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
P13, Nemacolin Woodlands Resort, PA, November 2013
O ko mre pimisic a g psfornance orlin o, For oo it call
Fayne () alot, performance can be gratly mprov
[GP94] “Metadata Update Performance in File Systems”
Gregory R Ganerand Yle . Pt
OsDi
e paper bt wing o adeivg o s s the i v o ki osstney. e
nented It in BSD-hased sy
[G+08] “SQCK: A Declarative File System Checker”
Haryad dreaC. Arp Remai H. Arpaci-Dusseau
‘SDI 08, San Diega, California
Ourauon paper on ew and beter way to buid fle system chicker using SQL queries, We lsashar
e prablems with the xistng checer, finding mumerovs bugs and odd behaotors, direct result of
hecomplexiy o £5c
1H87] edar File System Using L Group Commit”
Rt Hogmann
The ot ork ot o b o it appiedwrteacad Lgsing 0k furnling) o e sstn.
M1 ke Th Fast File Syt Cher”
H
ERT 15 S o o February 2013
o Some of e s e
iy b meorporatd nt e BSD fle st chcke [MKOG)and ar plogd o
[MK96] “Fsck - The UNIx File System Check Program”
sl ik Mckusic and T Koval
Revised in
Do he et camprlensic e system checking o], e cponpros . Wik by some of
thesame people wiho browght you
[MJLFS4) “A Fast ile System for UNIX”
Marshall K- McKusick, William N. Joy, Sam J. Leffler Robert . Fabry
ACHI Transactons on Computing Syt
Augus
sy o o sbout FFS, ight? Bt s i 5 OK o ernce papers e s more hin
once i a oo
THREE
© 2014, ARPACI-DUSSEAU EASY
PIECES

=

20 CRASH CONSISTENCY: FSCK AND JOURNALING

[P+05] “IRON File Systems”
iy Pabaaran, Lkt N, Brvasundar, i Agrawsl Hayad S Gunav,An-
sca, paci-Dusse
S350, Beghion England, Oeber 3305
4 aper oty s ansuding i e syt et to s, Toards e en, et
 logging, into Limu exts.

[PAADS] “Analysis and Evolution of ournalin File Systems”
Vijayan Prabhakaran, Andrea C. Arpaci- Dusseau, Remzi H. Arpaci-Dusseau
GSENIX05, A, Clfeni il 205

[Re11] ”Cncrcnd Cache Evicton and Discreet Mode Journaling”
Abhishek Ryjimuale, Viay Cidambatam, Degpak Kamamrthi,

Andrea aci-Dusseau, Remzi H. Arpaci-Dusseau
DSN ‘11, Hong Knng,Chmﬂ e 2011

Our oun paper on the problem of disks that buffe writes in @ memory cache instead of forcing them fo
disk, even when expl(mlylo!dnwt o that! Our solution to overcome his probiem: if you want A

it to sk bfore 15, s rife 4 e send o ot of Ay e 0 sk hopelycaving
A 10 be forcd o disk to make room for then i the cache. A nea if mpractical souion.

[198] “Journaling the Linux ext2is File System”

Sephen . Tweedie

The Fourt May 19

el o e oy i e addn st e Linu ext2 e st the sl
ot surprisingly, is called ext3. Some nice design decisions include the strong focus on backaards
compaiilty, e, yo can st fournlingFie b extingext2 e ssem and the ot
asan ext3 il systo

[T00] “EXT3, Journaling Fiesystem”

Stephen Tweedie
Talk at the Ottawa Linux Symposium, July 2000
OLS2000-ext3/O
A transcript ofa talk gizen by Tuwcedic o ext3.
ITO1] “The Linix ext2 Bl System”
re Ty June, 201

A\vmlam http:/ /edfsprogs.sourceforge.net/ext2 htm

e Linut il ysto basd on e son found n . For e it s quite heavily used; now
L vl e e eme o e o Sl le o

OPERATING
SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

Key-Value and Graph Storage

ki
it Bl

PRI RN
http://staff.ustc.edu.cn/~ykli/

Key-Value (KV) Storage

Why key-value stores?

» The amount of data is growing exponentially

Facebook adds billions of new content every day

Hundreds of billions of e-mail messages are sent
worldwide every day

It is estimated that the total volume of global data will

reach 40ZB in 2020

BLNKET

MY

EMLLENGES i
|]||:|:||3U|.Ta =
Emunﬂii', 2=

<-:

‘S8
wPF[lEESS =

& COLLErTon

TO0LS s AMWLS

DATA SHAHING EAPTUHE
UAMEEMENT WUEESSWE

BATER

HOH s IOB OGS TYPES o

VISUALIZATION

S TREALMN

e JSSETS

L TRIGEER
EARINEED ”‘E“fzﬂ‘”ﬂ el |

b
2 BUSINESS SUFIWARE SO s ™ s

S pACESSING =

GENDNICS E:SPEE 2 W = e CURATE
TN = e = S S
£ PETYTES JOUNT = JAHIETY
= = RELATIONAL weressouesr o STATSIICS '=‘= UUMMN
Lt ‘-‘—muns

SYSTEMSSE

Why key-value stores?

» Data format and storage requirement

e Unstructured data is very common

e In web application, unstructured data requires efficient
write, query and scan service support

Structured Data Unstructured Data

Why key-value stores?

» The RDBMS is facing challenges

e RDBMS can’t meet demand:
« Management of massive unstructured data
¢ High concurrent access to data
« High scalability and high availability

/’ K/Iassive unstructured data
@

9 ¥ ¢ dng High scalability
wid o8 =7

flickr

N e e i — ————— ——————————

Why key-value stores?

» The file system is facing challenges

o Both file system scalability and directory tree management
face new challenges

High overhead & Bad scalability

Massive unstructured The management mode
small data of the directory tree

Unstructured data types

B B o @&

What are key-value stores
» KV stores

e A new storage architecture
o A flexible type of NoSQL database

e A data storage paradigm

VALUE

AAA, BBB, CCC
AAA, BBB
AAA, DDD

AAA,2,01/01/2015
3,ZZZ,5623

What are key-value stores

» Applications of key-value stores

e web indexing, e-commerce, social networks

Social network E-commerce Online game Recommendation system

What are key-value stores

» LSM-tree based KV stores are most common

e oOptimize for write intensive workloads
o widely deployed
e BigTable and LevelDB at Google
¢ HBase, Cassandra and RocksDB at FaceBook

Y l
@ SEE Qrv
levelps cassandra .

. Google Facebook Apache PingCAP /

R

LSM-tree

» LSM-tree structure

memory
disk
ClI <Key, Value> 7
merge sort
C2 <Key, Value> g
Ck
<Key, Value>

vIt buffers and sorts data in CO, then writes into C1 on disk sequentially
v'When Ci is full, it merges with Ci+1, then writes into Ci+1

10

Read/Write Process

IZ> -I\ Memory
Level 0] [] d Disk
Level 1][][]

Level 2

Level 6

Bloom Filter

» How to quickly determine the existence of a kv
pair in each SSTable?
» Key comparison is slow
» Bloom filter

{x, ¥ z}

T N

|[I|I|{I|I|I|I ojojofO[0O[1 ﬂ|||ﬂ|[l|||[l|

o

A

¥
w

k k
Bloom filters have false positive with rate (1 - e_E) ,
minimized to be 0.6185” when k = In2 x b

12

With the Help of Bloom Filter

W " Bloom filter | Bloom filter
— ——> - % " Bloom filter 5*

Memory

Disk

Levell [2...500][501-750) [762...1000)
Leverz [1..300 | (305.500] (502..752] - -

Level 6 [1.-100] (100...200] (201300] (301.400 | **[001...1000)

False positive incurs extra I/O requests
13

I/O Amplification in LSM-tree
» RA/ WA

10001 W Write 7/ Read

1001

94
1GB 100 GB

(database sizes 1 GB and 100 GB. Key size 16 B and value size 1 KB)
(From Wisckey @ FAST ’16)

14

Key-Value Separation

» Wisckey (FAST’16)
* Separates values from keys

* Values are stored in a separate log file
+ Keys are stored in an LSM-tree with a addr pointer

key fvalue

LSM-tree Value Log

15

Throughput (MB/s)

Evaluation

» Compared with LeveDB

Random Load Random Lookup
5007 X LevelDB O WiscKey 3007 X LevelDB O WiscKey
450
400 - 250 1
(2]
350 4 @
200 1
300 2
250 1 2 1501
<
200 =)
3 100
150 £ 100
100 50
50 1 M
0 W T T T T T T 0-_% @ a T T T T
64B 256B 1KB 4KB 16KB 64KB 256KB 64B 2568 1KB 4KB 16KB 64KB 256KB

Key: 16B, Value: 64B to 256KB Key: 16B, Value: 64B to 256KB

It improves a lot, especially when values are large.

16

Other Related Works

> Related works

[ITVLDB ’10 FlashStore [2]SIGMOD 1| SkimpyStash
[4]MSST ’12 BloomStore(Bloom-Filter based memory-efficient)
[6]EuroSys ’14 LOCS(on open-channel SSD)

[8]MSST’15 Atlas(Baidu’s kv store)

[9]FAST ’16 WiscKey

[I0]JATC 17 TRIAD

[I'1]SOSP ’17 PebblesDB(Fragmented LSM Trees)

[12]ATC 17 HiKV (hybrid index on DRAM-NVM)

[I3]CIDR ’17 Optimize Space Amplification in RocksDB
[14]SIGMOD ’18 Dostoevesky (blanced performance)
[I5]FAST ’I9 GearDB (on hard drive)

[I6]FAST ’19 SLM-DB (B+tree index on single level LSM Tree)
[17]SOSP ’19 KVell (on NVMe SSD)

[18]ATC "20 MatrixKV

[I9]FAST 20 HotRing (hash table in memory)

[20]FAST ’21 SpanDB (on NVMe SSD)

[21]FAST 21 REMIX (range index)

[22]VLDB 21 Viper (hash table for persistent memory)
[23]ATC 21 DiffkKV

[24]FAST 22 DEPART

[3]SOSP ’I 1 SILT

[5]SIGMOD ‘12 bLSM

[7JATC’15 LSM-trie

17

HashKV

» Limitations of circular log in key-value separation

tail head and tail are stored in LSM-tree head

l l

ksize, vsize, key,value | - =--==-=-=-----

Value Log

» Large GC overhead
+ Data movements: need to write back valid KV

» Valid KV identification: need to access LSM-tree
18

HashKV

» Core idea

» Hash-based data grouping
* Dynamic reserved space allocation

| Write cache ‘ Group l|[rnd pos, segments)

- Group 2|(end pos, segments)
(meta, key) KY separation -

MemTable (meta, key, value) Segment table Vemory
Mai Persistent
dain
AN segment| Storage
=N _
. R Npr N _
) g;earcvee segment | ‘ | Wite
— S e journal
Segment Segment
LSM-tree i group | Foup
GCj 1
‘ Cold data log ‘ Jjournal
Value store

Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, Yinlong Xu. “HashKV: Enabling
Efficient Updates in KV Storage via Hashing”. USENIX ATC 2018.

19

HashKV

» HashKV achieves 3.1-4.7x throughput of vLog
and reduces the write size by 30.1-57.3%

150 - vLog 4 HashKV © 5 . VLog /A HashKV ©
& 125)
& 100 <
% 75 i
g 50 @
= 25 =
10 30 50 70 90 10 30 50 70 90
Reserved space size (%) Reserved space size (%)
(a) Throughput (b) Total write size

20

ElasticBF

» False positive of BF
e 0.6185" (b: bits-per-key)

Bits-per-key 2bits 3bits 4bits Sbits 6bits

False positive rate 40% 23.7% 14.7% 9.2% 5.6%

» Reducing False Positive Rate
* Increase the bits-per-key used by all Bloom filters
» Large memory space overhead

Size Database size Bits-per-key Memory cost

100B 10TB(Level7) 8 100GB

With limited memory space, how to reduce extra I/O requests
caused by false positive of Bloom filter so as to improve read performanzcle?

File Access Frequencies

ElasticBF: Access Locality

Key-value pair size Size of database Benchmark Number of read requests

1KB 100GB YCSB[1] 1 million
1x10° T T T .
zipfian -
100000 $ | uniform
10000 A o : , . :
1000 1t
) 1l
100 v
10
1 i
1 10 100 1000 10000
File ID

» Access frequency of SSTables in low levels are higher

» Unevenness of access frequency is very common in the same level

22

ElasticBF

> Main idea

* Hot SSTables

+ Allocate more bits per key to reduce false positive rate
» Cold SSTables

+ Allocate fewer bits per key to save memory space

Hash_1,— "key" Hash_k
Data Blocks
-
F——— L1]ofofofoJo].Jofo[t] Non-exist as long as one filter
Fier s | ekl “key" -\/:/as/LZk unit gives negative return
,,,,,, [o[1]o]o]o]o].[1]0]0] S bil
Filter Unit n eparabl Ity
Index Block ~ |0|0|1|0|0|0|"'|‘1 |0|0| (0_6185}’/’1)n = 0.6185?
Footer /—/ash_(n-7)/<:7\ "key" / Hash_nk
SSTable

Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, Yinlong Xu. "ElasticBF: Elastic Bloom Filter with
Hotness Awareness for Boosting Read Performance in Large Key-Value Stores". USENIX ATC 2019.23

ElasticBF

» Key issues/challenges

» How to design an adjusting rule to determine the most
appropriate number of filter units for each SSTable?

Minimize extra I/Os with hotness awareness

* How to realize a dynamic adjustment with small
overhead?

Maintain a MQ in memory

24

Dynamic Adjustment

» Multiple LRU lists in memory

Data Block 1
Data Block 2

Filter Unit 1

Filter Unit n
Index Block

Footer

SSTable on the disk

= = Twounits YA ™Y fAA Y [
Filter Unit 2 areenabled: m — [[l i—: m

=

Multi-Queue !

in the memory

AN- - -0HD -
0rl= - =0=0-0
r II_ ‘I I{ r (7Y o r

—_ E_i —

| 1_.5 SSTable metadata [lBIoom filterl

25

Experiment Results

> Different workloads

8000 IievelDB [—
7000 ElasticBF 7
6000 % 7 7
000 [1 .84X-2.24X]

Read Throughput(op/s)
D W B W
S
S
S

uniform zipf 0.99zipf 1.10zipf 1.20
Workloads

uniform | zipf 0.99 | zipf 1.10 | zipf 1.20
LevelDB | 1525595 | 1585605 | 1634752 | 1667947
ElasticBF | 628225 | 578553 550658 | 545345

Table 1: Number of 1/Os for data access

[The number of I/O requests for data access is greatly reduced |

DiffKV: Basics

» Store keys and values together
+ Keys and values are fully sorted in each level
« Compaction across levels - high I/O amplifications

Immutable
[MemTable]<_ [MemTable]

i Memory

27
D SSTable 0 _} Sorted Group

Relaxing Fully-Sorted
Ordering

» Each level is not necessarily fully sorted by keys

* e.g., PebblesDB [SOSP’17], Dostoevsky
[SIGMOD’18], etc.

« Support efficient writes, but sacrifice reads and scans

Immutable
MemTable

) — (remren)

Memory
L fmmm=——) (r==3-- N Disk
U S Y) - }
Fragmented .
LSM-tree in I i | O

PebblesDB

—————————————————————

D SSTable [______} Sorted Group ﬂ Guard

KV Separation

» Store keys and values separately
* e.g., WiscKey, HashKV, Titan, Bourbon, etc.
» Support efficient writes and reads, but have poor
scan performance

[Immutable] [MemTable]

MemTable Memory
WiscKey — - . RS - - - - - -

l <key,v_loc> values 1 Disk
M 0

Lo 3. - O
P =)

e e Y
o S Append-

L OO0 only log

E SSTable [______} Sorted Group 29

Trade-off Analysis

» Are the optimizations suitable for all conditions?

* Relax fully-sorted ordering
 Efficient in small-to-medium values

+ KV separation

Thpt (MB/s)

)
=1
S

» Suitable for large values

—@-RocksDB -#-Titan

-A-PebblesDB n

128B 512B 1KB 4KB 16KB

Value size

—@-RocksDB --#-Titan [Tterate IR Seek] Other

e . 3
300/ A PebblesDB /.
2
= e 2
2200 «
£ e
= 100+ P
1288 512B IKB 4KB 16KB RPT RPT RPT RPT RPT

128B 512B 1KB 4KB 16KB

Value size .
Value size

Trade-offs between reads/writes and scans

30

DiffKV

» Decouple keys and values

* vTree: a multiple-level tree; each level has multiple
sorted groups

* Values in a level are not fully sorted and have
overlapped key ranges

B _

I MemTable II Manage the order of values! I ﬂ Partial Iy

_________________________ Memory _||L__ sortedin
Disk each level 3;

__

Normalized Thpt
o o

Microbenchmarks of DiffKV

[0 RocksDB [PebblesDB SN Titan (No-GC) 2% Titan (BG-GC) [Titan (FG-GC) EEl DiffKV

5 a2
R = 4
EAIN EINS 2 P 2 @ 400
EIN: g N g e S il z z g &
I R = N& 2 N < 54 g £ £ a 7]
RN 2 N 2 N 2 S g 2 bS] e 2,200 Z
CENGS EERSNG BN 27 8 b p s %
% i % g s
% % g g
5 RN 8 £ 2
N INE) 1NNl B~ Z0 N @ o
Insert Update Read Scan Tnsert Update Read Scan Load Update
Throughput Average latency Space usage

» Compared to RocksDB and PebblesDB
* 2.7-3.8xinserts; 2.3-3.7x updates; 2.6-3.4x reads
« Comparable scan performance

» Compared to Titan
» 3.2x scans; up to 1.7x updates; 43.2% lower scan latency

» DIiffKV has acceptable space usage

32

Summary on KV

» Key-value stores are common
» LSM-tree is the basic structure
» Large read and write amplifications

» Research efforts

* New architectures to reduce read/write amplification
I/0 scheduling and optimizations
» Leverage new hardware: NVRAM/SSD
Application-specific design/optimization
Distributed KV stores

33

Graph Systems

34

Graphs are common

“w@® T

Web Graph Online Social Network

© B

Music / Movie Online shops

=

35

Graphs are common

Protein Molecular Network

SEEHE

City Traffic Network

Router Network

36

Graph Stucture

» Graph
* A set of vertices and edges

G
Undirected Graph Directed Graph Weighted Undirected Graph

37

Large scale of graph data

» Space requirement

Dataset Type #Nodes |#Edges| Size
Twitter Social Network 53M 2B 15G
Friendster | Social Network 68M 2.6B 20G

The whole graph can t f|t in the memory of a single-PC

Web Grapt 488 2706

Clueweb Web Graph 978M 42.6B 336G
EU Web Graph 1071M 92B 683G

Kron31 Graph500 2B 1T 8T

Hang Liu et al. Graphene: Fine-Grained 10 Management for Graph Computing. Fast, 2017
38

Characteristics for graph data

» Real life graphs

» Imbalanced degree distribution
* Power law distribution

» Complicated structure N
A o mpu:r o chawbac‘a. Z . “
+ Poor locality e ‘on.
L (3 vm. '.':tl‘ ‘zv " :
QUI-GMQ 3 ‘.. ‘‘‘‘‘‘ 0: 1 Leis

39

Graph Processing System

How to develop efficient computation systems for
large-scale graphs?

) — JJ
< Applications

~ e
[72]
a Storage structure
40

Graphs in General File System

(0,3)

BFS\ (0,1)

(0,4)

1 (1.2)

(2,0)

| (2,6)

(3.2)
\ (3.6)

(4,5)

(5.6)
((6,4)

Need a lot of
random disk
accesses

Performace
bottleneck

Edge list is stored in a file 41

Graph Processing System

» GraphChi
» The first single-PC graph process system

Compute on graphs with billions of edges,
in a reasonable time, on a single PC.

Aapo Kyrola, Guy Blelloch, Carlos Guestrin. GraphChi: Large-Scale Graph

Computation on Just a PC. USENIX OSDI 2012. 2

GraphChi

» Computation model
» Vertex-centric programming
* “Think like a vertex”
» Each edge and vertex is associated with a value
* |teration-based computation

Gather Scatter

Update

43

GraphChi

» PSW : intervals and shards
» Vertices are numbered from O to n-1
* P intervals
» sub-graph = interval of vertices

edge :
source e————>| des tion

0 100 700 //<<parliti0n—by\>> 9999

interval(1) | interval(2)

\ interval(P)

In shards, edges

sorted by
source node.

shard(1) shard(2) shard(P)

a4

GraphChi

» Layout
» Shard: in-edges for interval of vertices; sorted by source-id

Vertices Vertices Vertices Vertices
0..99 100..699 700..999 1000..9999

11T

Shards are small enough to fit in memory; balanced size of shargs

[m] [= = = o>

sorted by source_id

in-edges for vertices 0..99

> Layout

GraphChi

» Shard: in-edges for interval of vertices; sorted by source-id

Example Graph

sorted by source_id

’ Shard 1 ‘ ’ Shard 2 ‘ ’ Shard 3
<0, 1> <0, 4> <4, 6>
<1, 2> <3, 4> <5, 8>
<2, 0> <4, 5> <6, 7>
<3, 0> <6, 3> <7, 9>
<6, 2> <6, 4> <8, 6>
<7,2> <6, 5> <8, 7>

<9, 8>

46

GraphChi

» Parallel Sliding Windows

Interval 1

Shard 1

Shard 2 Shard 3
Interval 3

Shard 1

Shard 2 Shard 3

Interval 2
i []
Shard 4 Shard 1 Shard2 Shard3 Shard4
Interval 4
I 1)
| i H i
Shard4 Shard1 Shard2 Shard 3 Shard 4

a7

GraphChi

» Other design details/implementations
» Refer to the paper and source code

+ C++ implementation: 8,000 lines of code
+ Java-implementation also available

Source code and examples:

http://github.com/graphchi

48

CSR Format

» Highly efficient data structure to store graph
 Index array: store the offset in CSR array
* CSR array: store the out-neighbors of vertices

1|4]2|o]0|4|5|6|8|2]3|4]5]7]2]9]6]|7]8]
CSR array

Example Graph

CSR Format

» Highly efficient data structure to store graph
+ High efficiency to access out-neighbors (BFS, RW)
» E.g., access the neighbors of vertex 6

Index array

lo|2]3|4a|6]8]|9]14]16|18]19]

1|4]2|o]0|4|5|6|8|2]3|4]5]7]2]9]6]|7]8]
CSR array —

Sequentially read the out
Example Graph neighbors of vertex 6

50

Limitations

» How to support dynamic graphs?
Index array

lo|2]3|4]6]8]|09]14]16|18]19]

1|4]2]0|o|4|5|6|8|2]3]4|5]7|2]9]6]|7]8]
CSR array e

Sequentially read the out
neighbors of vertex 6

» How to store attributes?

51

Example

’ Add a new edge (0, 7) to CSR ‘

’ Rewrite most part of CSR ‘

’ Hard to support dynamic graphs ‘

How to support fast query on dynamic graph?

o 1 2 3 4 5 6 7 8 9 10

Index file [0]4[5][8[10]12][14]16][17]19]20] Offsets in CSR file

/

CsRfile [1[3[4]7]2[o]e]7[4]s]5]e]s]8[4]7]o]c]7]s]

Out-neighbors

Related Works

» Single machine graph processing systems

FlashGraph Graphene DepGraph
FAST FAST HPCA
GraphQ OoDS Mosaic ThunderRW
ATC ATC Eurosys VLDB
. . Graph
GraphChi || Xstream || GridGraph || Quegel CLIP || CGraph || V-Part Walk FlashMob
osDI SOsP ATC VLDB || ATC | ATC || FAST :Tcer SOSP

2012 2013 2015 2016 2017 2018 2019 2020 2021

53

Related Works

» Distributed graph processing systems

Giraph Lfgraph ShenTu
Hadoop SIGOPS SC
GraphLab Distributed Trinit P L G-Mi GraphS
raphLa GraphLab rinity owerlLyra -Miner raphScope
UAI SIGMOD EuroSys Eurosys VLDB
VLDB
Pregel ||PowerGraph|| Mizan ||GraphX||chaos|| Gemini||gRouting|| KnightKing||GraphABCD
SIGMOD OSDI EuroSys|| OSDI ||SOSP|| OSDI ATC SOsP ISCA
2010 2012 2013 2014 2015 2016 2018 2019 2020 2021

54

Summary on graph systems

» Graphs become extremely large
» Data must be kept on disk or in clusters

» Graph systems have specific features
* Random access
« Computation models
» Application requirements

» A large body of works...

55

Thanks!

56

	0
	1
	2
	3.1
	3.2
	4
	5.1
	5.2
	5.3
	6
	7.1
	7.2
	8
	9.1
	9.2
	10.1
	10.2
	11
	补充-FAT
	补充-Journal
	补充-KV图

