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课程介绍

• 教室和时间
– 理论（60）

• 周一6-7节（14:00-15:35）& 周三3-4节（9:45-11:20）

• 3C203

– 实验（40）：待定

• 前期课程要求
– C语言

– 数据结构

• 课件
– 英文为主

– 内容主要来源于WONG Tsz Yeung博士的课件和Operating 
System Concepts 教材
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• 教材
– https://www.os-book.com/OS10/index.html

• 参考书

5

教材和参考书



课程要求

• 课堂
– 按时上课

– 教材+PPT

• 作业
– 每1-2周一次，每次5-10个题目

– 严禁抄袭，按时提交

• 实验
– ~4次

– 5-15周，地点待定

– 严禁抄袭，按时提交
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成绩考核

• 基本遵循往年比例分配

–作业：20%

–实验：30% 

–期末考试（闭卷）：50%
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Objectives

• Overview of OS

– Overview of Computer System: Organization & Architecture

– What is an OS

– OS Operation: Interrupt-driven via system call 

• Major OS Components

– Process Management

– Memory Management

– Storage Management

• Kernel Data Structures

• Misc: Computing Environments & Open-Sourced OS



What is an Operating System?

• According to your experience…

– Networking;

– Storage;

– Multimedia;

– Gaming;

– What else?
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None of the above were about the OS!



Before we talk about OS…

Overview of Computer System
-System Organization
-Storage Structure
-System Architecture
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Computer System Organization

• Computer-system organization

– One or more CPUs, device controllers connect through 
common bus providing access to shared memory

– Concurrent execution of CPUs and devices competing for 
memory cycles



Computer-System Organization

• I/O devices and the CPU can execute concurrently

• Each device controller is in charge of a particular 
device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from 
local buffers

• Device controller informs CPU that it has finished its 
operation by causing an interrupt



Computer Startup

• bootstrap program is loaded at power-up or reboot

– Typically stored in ROM or EPROM, generally known as 
firmware

– Initializes all aspects of system

– Loads operating system kernel into memory and starts 
execution

• System processes or system daemons

– Run the entire time the kernel is running

– On UNIX, the first system process is “init”

• After fully booted, waits for events to occur

– Signaled by interrupt



Interrupt Handling

• Interrupt can be triggered by hardware and 
software

– Hardware sends signal to CPU

– Software executes a special operation: system call

• Interrupt procedure

– CPU stops what is doing

– Execute the service routine for the interrupt

– CPU resumes

• Operating system is interrupt driven



Interrupt Timeline



Common Functions of Interrupts

• Each computer design has its own interrupt mechanism

• Interrupt transfers control to the interrupt service routine

– A table of pointers to interrupt routines, the interrupt vector, can 
be used to provide necessary speed

– The table of pointers is stored in low memory

• Interrupt architecture must save the address of the 
interrupted instruction

– Modern architectures store the return address on system stack



Overview of Computer System
-System Organization
-Storage Structure
-System Architecture
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Storage Structure

• Storage systems organized in hierarchy

– Speed

– Cost

– Volatility



Storage Structure

• Main memory

– CPU can load instructions only from memory (only large 
storage media that the CPU can access directly)

– Random access, typically small size and volatile

– All forms of memory provide an array of bytes

• Each byte has its own address

• Interaction: load & store (memory <-> register)

• Instruction-execution cycle

– Fetch an instruction from memory and store in register

– Decode instruction (fetch operands if necessary)

– Store result back to memory



Storage Structure

• Secondary storage – extension of main memory that 
provides large nonvolatile storage capacity

– Hard disks – rigid metal or glass platters covered with 
magnetic recording material 

• Disk surface is logically divided into tracks, which are subdivided into 
sectors

• The disk controller determines the logical interaction between the 
device and the computer 

– Solid-state disks – faster than hard disks, nonvolatile

• Various technologies

• Becoming more popular



Caching

• Caching – copying information into faster storage 
system; main memory can be viewed as a cache for 
secondary storage

• Faster storage (cache) checked first to determine if 
information is there
– If it is, information used directly from the cache (fast)

– If not, data copied to cache and used there

• Cache smaller than storage being cached
– Cache management important design problem

– Cache size and replacement policy

• Important principle, performed at many levels in a 
computer (in hardware, operating system, software)



I/O Structure
• Storage is only one of many types of I/O devices

• Device controller
– More than one device may be attached

– Local buffer storage & a set of registers

• Device driver: for each device controller to manage I/O, 
provides uniform interface between controller and kernel

• Interrupt-driven I/O
– Device driver loads registers within the controller

– Controller examines the registers to decide what action to take

– Device controller starts data transfer to its local buffer

– Informs driver via an interrupt and returns control to OS



Direct Memory Access Structure

• Used for high-speed I/O devices able to transmit 
information at close to memory speeds

• Device controller transfers blocks of data from 
buffer storage directly to main memory without 
CPU intervention

• Only one interrupt is generated per block, rather 
than the one interrupt per byte



How a Modern Computer Works



Overview of Computer System
-System Organization
-Storage Structure
-System Architecture
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Computer-System Architecture

• Most systems use a single general-purpose 
processor

– One main CPU capable of executing general-purpose 
instruction set

• May have special-purpose processors as well

– Device-specific processors: disk, keyboard, etc…

– Run a limited instruction set

– Do not run user processes

– Managed by OS or built into the hardware



Computer-System Architecture

• Multiprocessors systems grow in use and importance
– Also known as parallel systems, multicore systems

• Advantages include:
– Increased throughput

– Economy of scale: share peripherals, mass storage and 
power supply

– Increased reliability – graceful degradation or fault tolerance

• Two types
– Asymmetric Multiprocessing – each processor is assigned a 

specie task: boss-worker relationship

– Symmetric Multiprocessing (SMP) – each processor 
performs all tasks: all processors are peers



Symmetric Multiprocessing Architecture

• Symmetric Multiprocessing (SMP)

– Result from hardware or software

– Adds CPUs to increase computing power

– Causes non-uniform memory access (NUMA)



Multicore

• Multicore: include multiple cores on a single chip

• More efficient
– On-chip communication is faster than between-chip 

communication

– Less power

• Dual-core design



Clustered Systems

• Like multiprocessor systems, but multiple systems 
working together

– Usually sharing storage via a storage-area network (SAN)

– Provides a high-availability service which survives failures

• Asymmetric clustering has one machine in hot-standby mode

• Symmetric clustering has multiple nodes running applications, 
monitoring each other

– Some clusters are for high-performance computing (HPC)

• Applications must be written to use parallelization

– Some have distributed lock manager (DLM) to avoid 
conflicting operations



Clustered Systems



What is an Operating System?
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Where is the OS?

• Let’s start understanding an OS from this question:
Where is it?
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Where is the OS?

• Four components of a computer system

– Hardware – provides basic computing resources (CPU, 
memory, I/O devices)

– Users: People, machines, other computers

– App. programs – define the ways in which the sys. 
resources are used to solve the computing problems

• Word processors, compilers, web browsers, database systems, 
video games, etc.

– Operating system

• Controls and coordinates use of hardware among various 
applications and users



• It stands between the hardware and the user.

– A program that acts as an intermediary between a user of a 
computer and the computer hardware

• Operating system goals:

– Execute user programs & make solving user problems easier

– Make the computer system convenient to use

– Use the computer hardware in an efficient manner

– Design tradeoff between convenient and efficiency

What is an Operating System?

User Hardware

Operating
System



What is an Operating System?

• How good is this design?

– The user does not have to program the hardware 
directly.

• It hides all the troublesome operations of the hardware.

Example. The OS, on one hand, hides the physical system memory away from 
you. On the other hand, it tells you that there is system memory available 
when you run your applications.

User Hardware

Operating
System

Complex work…Process requests
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What is an Operating System?

• Processes as the starting point!

– Whatever programs you run, you create processes.

• i.e., you need processes to open files, utilize system memory, 
listen to music, etc.

– So, process lifecycle, process management, and other 
related issues are essential topics of this course.

User Hardware
Process

Operating
System
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What is an Operating System?

• Example (step 1)

User Hardware
Process

$ ls

ls

Most commands you type in the shell
are the same as starting a new process.

Operating
System

ls
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What is an Operating System?

• Example (step 2)

User Hardware
Process File System

$ ls

ls

The operating system contains the codes 
that are needed to work with the file 
system.

The codes are called the kernel.

Operating
System
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What is an Operating System?

• Example (step 3)

User Hardware
Process File System

$ ls

ls

The file system module inside the 
operating system knows how to work 
with devices, using device drivers.

Operating
System
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What is an Operating System?

• Example (step 4)

User Hardware
Process

Operating
System

File System

$ ls

ls

Of course, the operating system will 
allocate memory for the results.

Memory
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What is an Operating System?

• Example (final step)

User Hardware
Process

Operating
System

File System

$ ls
.  ..  index.html
$ _

ls

The memory management sub-system 
will copy the result to the memory of the 
process.

At last, the result returns.

Memory

Return
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What Operating Systems Do

• System View

– OS is a control program

• Controls execution of programs to prevent errors and improper 
use of the computer

– OS is a resource allocator

• Manages all resources

• Decides between conflicting requests for efficient and fair 
resource use



What Operating Systems Do

• Depends on the point of view

• User View
– PC users want convenience, ease of use and good 

performance, don’t care about resource utilization

– But shared computer such as mainframe or minicomputer 
must keep all users happy: maximize resource utilization

– Users of dedicate systems such as workstations have 
dedicated resources but frequently use shared resources 
from servers: tradeoff

– Mobile computers are resource poor,  optimized for usability 
and battery life

– Some computers have little or no user interface, such as 
embedded computers in devices and automobiles



Operating System Definition

• No universally accepted definition

• Simple viewpoint
– “Everything a vendor ships when you order an operating 

system” is a good approximation

– But varies wildly

• Common definition
– “The one program running at all times on the computer”

is the kernel.

• Everything else is either
– a system program (ships with the operating system) , or

– an application program.



Operating System Definition (Cont.)

• No universally accepted definition of what is part of 
the operating system

– Operating systems  grew increasingly sophisticated

– Microsoft case

• Current Mobile OS

– Once again the number of features constituting the OS is 
increasing 

– Core kernel + Middleware

• Databases, multimedia, graphics, etc…



Operating System Operations
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Multiprogramming
• Operating system provides the environments within which 

programs are executed
– Single user cannot keep CPU and I/O devices busy at all times

• Multiprogramming needed for efficiency: most important 
aspect of OS
– Multiprogramming organizes jobs (code and data) so CPU always 

has one to execute

– All jobs are initially kept on disk in the job pool, a subset of total 
jobs in system is kept in memory, 

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS switches to another 
job



Memory Layout for Multi-programmed System



Multitasking

• Time sharing (multitasking) is logical extension in which 
CPU switches jobs so frequently that users can interact with 
each job while it is running, creating interactive computing
– Response time should be < 1 second

• Allow many users to share the computer
– Each user has at least one program executing in memory 
process

• Issues
– If several jobs ready to run at the same time  CPU scheduling

– If processes don’t fit in memory, swapping moves them in and 
out to run

– Virtual memory allows execution of processes not completely in 
memory



Interrupt Driven Mechanism

• Interrupt driven (hardware and software)
– Hardware interrupt by one of the devices 

– Software interrupt (exception or trap):
• Software error (e.g., division by zero)

• Request for operating system service

• Other process problems include infinite loop, processes 
modifying each other or the operating system

– An interrupt service routine is provided to deal with the 
interrupt



Dual-mode Operation

• Dual-mode operation allows OS to protect itself and 
other system components
– User mode and kernel mode 

– Mode bit provided by hardware
• Provides ability to distinguish when system is running user 

code or kernel code

• Some instructions designated as privileged, only executable in 
kernel mode

• System call changes mode to kernel, return from call resets it 
to user



Transition from User to Kernel Mode

• At system boot time, the hardware starts in kernel mode

• OS is loaded and starts user application in user mode

• Interrupt occurs, the hardware switches from user mode to 
kernel mode

• Whenever the OS gains control, it is in kernel mode



System Calls

• Informally, a system call is similar to a function call, 
but…

– The function implementation is inside the OS.

– We name it the OS kernel.

int add_function(int a, int b) {
return (a + b);

}

int main(void) {
int result;
result = add_function(a,b);
return 0;

}

// this is a dummy example…

Function
implementation.

This is a 
function call.
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System Calls

• System calls are the programming interface between 
processes and the OS kernel

– System calls provide the means for a user program to ask the 
operating system to perform tasks

• A system call usually takes the form of a trap to a specific 
location in the interrupt vector, treated by the hardware as 
a software interrupt

• The system call service routine is a part of the OS



Interacting with the OS

Process

./program

Process

int main(void) {
time(NULL);
return 0;

}

//somewhere in the kernel.
int time ( time_t * t ) {

......
}

OS Kernel

Invoke & return

Here contains codes that 
access the hardware clock!
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System calls

• The system calls are usually
– primitive,

– important, and

– fundamental.

– e.g., the time() system call.

• Roughly speaking, we can categorize system calls as 
follows:

Process File System Memory

Security Device
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System calls  VS  Library function calls

• If a call is not system calls, then they are library calls
(or function calls)!

• Take fopen() as an example.
– fopen() invokes the system call open().

– So, why people invented fopen()?

– Because open() is too primitive and is not programmer-
friendly!

fopen(“hello.txt”, “w”);

open(“hello.txt”, O_WRONLY | O_CREAT | O_TRUNC, 0666);

Library call

System call
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System calls  VS  Library function calls

• Library functions are usually compiled and packed 
inside an object called the library file.

– In windows: DLL – dynamically linked library.

– In Linux: SO – shared objects.

Application
code invoking 
fopen()

A library file containing 
the implementation of 

fopen().
OS Kernel

int open(......)

Big picture
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OS Standards

• Who defines the system calls? Functionalities? 
Arguments? Return values?

• There are standards!

Standards Full Name Example OS

POSIX Portable Operating
System Interface

Linux

BSD Berkeley Software 
Distribution

Mac OS Darwin

SVR4 System V (five) Release 4 Solaris Unix
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Introduction to Operating System 
Components

Process
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Process  OR  Program?

• A process is not a program!

ls -R /
Recursively print the directory entries,

starting from the directory ‘/’
Command A

ls -R /home
Recursively print the directory entries,

starting from the directory ‘/home’
Command B

Similarity Difference

Both use the program file “/bin/ls”. The program arguments are different.

---
The processes’ internal status are different, 

such as running time.

Let’s consider the following two commands
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Program != Process

• A process is an execution instance of a program.
– More than one process can execute the same program code
– Later, you’ll find that a process is not bounded to execute just 

one program!

• A process is active.
– A process has its local states concerning the execution. E.g.,

• which line of codes it is running;
• which CPU core (if there are many) it is running on.

– The local states change over time.

• Commands about processes (and hopefully you’ve 
tried them before) – e.g., ps & top.
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Process-Related Tools

• The tool “ps” can report a vast amount of 

information about every process in the system
– Try “ps -ef”.

This column shows the unique 
identification number of  a process, 
called Process ID, or PID for short.

Hint: you can treat ps as the short-
form of “process status” 

$ ps
PID  TTY        TIME  CMD
1200  ...    00:00:00  bash
1234  ...    00:00:00  ps
$ _

By the way, this is called shell.
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Shell – a process launching pad

• So, what is going on inside that shell?
– The shell creates a new process, and is called a child 

process of the shell.

• The child process then executes the command “ps”.

$ ps
PID  TTY        TIME  CMD
1200  ...    00:00:00  bash
1234  ...    00:00:00  ps
$ _

Shell – the 
parent process

ps – the child 
process

Parent-child 
relationship

59



Process Hierarchy

• Process relationship:

– A parent process will have its child process.

– Also, a child process will have its child processes.

– This form a tree hierarchy.

Process A

Process B

Process C

Process D

Process E Process F

E.g., “Process E” is the shell and “Process F” is “ps”.
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Process Summary
• A process is an execution instance of a program. It is a unit 

of work within the system. 
– Program is a passive entity, process is an active entity.

• Process needs resources to accomplish its task, process 
termination requires reclaim of any reusable resources
– CPU, memory, I/O, files, Initialization data

• Single-threaded process has one program counter
specifying location of next instruction to execute, multi-
threaded process has one program counter per thread
– Process executes instructions sequentially, one at a time, until 

completion

• Typically, system has many processes, some user, some 
operating system running concurrently



Process Management Activities

• The operating system is responsible for the 
following activities in connection with process 
management:

– Creating and deleting both user and system processes

– Suspending and resuming processes

– Providing mechanisms for process synchronization

– Providing mechanisms for process communication

– Providing mechanisms for deadlock handling



Introduction to Operating System 
Components

Memory
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Process’ Memory

• What are the things that a process has to store?

Process

Global Variables

Local Variables

Dynamically
Allocated Memory

Program Code
and Constants

Every process should has its own 
set of global variables, local 
variables, and allocated memory.
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Process’ Memory

• OMG…C is too low-level…

System memory layoutC program layout

Program code

Global variables

Constants

Local variables

Dynamically
Allocated
Memory

Data segment

Constants

Stack

Heap

Text segment

Execute

Loading
program

BTW, this arrangement is called segmentation!
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Process’ Memory

• “Hey, you’re wrong! Some languages, e.g., Java, do 
not have the above layout…”, you asked.

......
String str = new String(“hello”);
......

This statement creates an object!
C doesn’t have objects!

“hello”

JVM process

The object only exists inside the 
JVM, and this JVM is just a process 
inside the OS!

The “hello” String object is just a piece of 
dynamically-allocated memory in the JVM 
process.

It is created by “malloc()” and will be 
“free()”-ed later.

Reality

Java Virtual Machine

OS Kernel
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Sidetrack: Pros and Cons in using C

• Cons:

– Some people argued that C is a bad beginner’s 
programming language. Now, you can understand why…

Because C requires a programmer to take care of the process-level memory 
management.

Every programmer needs to know about the low-level memory layout in 
order for him/her to understand what segmentation fault means!

Every aspect on memory management can be manipulated using C.

Learning malloc() exposes you to the heap manipulation. This makes a 
high-level programming language becoming low-level. Plus, this exposes 
you to unpredictable dangers!

* Disclaimer: choosing which programming language is really a personal choice.
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Sidetrack: Pros and Cons in using C

• Pros:

– Some people argued that C is an efficient programming 
language. Now, you can understand why…

Because C allows a programmer to manipulate the process-level memory 
management “directly”.

That’s why many user libraries are implemented using C because of 
efficiency consideration.

E.g., the Java Virtual Machine is implemented using C!

Most importantly, C is the only language to interact with the OS directly!
In other words, the system call interface is written in C.

* Disclaimer: choosing which programming language is really a personal choice.
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Memory Hierarchy 

• In case that someone doesn’t know about the 
hierarchy below…

– A program is fetched from hard disk to main memory.

– When executed, instructions in the program are fetched 
from the main memory to CPU.

CPU

Registers

Cache

Main Memory Hard Disk
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Memory Hierarchy 

• However, did you ever need to program those three 
things when you want to run the program “ls”?

– Never! Then, who have the jobs done?

– Of course, OS!

CPU

Registers

Cache

Main Memory Hard Disk
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Memory Hierarchy 

• Typically, there are more than 100 processes running 
“at the same time”.
– There is only a finite number of CPU cores, depending on how 

much money you spent.
– Then, only a finite number of processes can be executed “really 

at the same time”.
– So, other (non-running) processes are stored at different 

devices controlled by the OS before they get a chance to run.

CPU

Registers

Cache

Main Memory Hard DiskProcess A
(running)

Process B

Process C

Process D

Process E

Process F

Process G
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Memory Management Summary

• To execute a program

– All (or part) of the instructions must be in memory

– All  (or part) of the data that is needed by the program must be in 
memory.

• Memory management determines what is in memory

– Optimizing CPU utilization and computer response to users

• Memory management activities

– Keeping track of which parts of memory are currently being used 
and by whom

– Deciding which processes (or parts thereof) and data to move into 
and out of memory

– Allocating and deallocating memory space as needed



Introduction to Operating System 
Components

Storage Management
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What is a File System?

• A file system, FS, means the way that a storage 
device is used.

• Have you heard of…

– FAT16, FAT32, NTFS, Ext3, Ext4, BtrFS?

– They are all file systems.

– It is about how a storage device is utilized.

Files / Data
Index

Metadata
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What is a File System?

• A file system must record the following things:

– directories;

– files;

– allocated space;

– free space.

• Think about the consequences if any one of the 
above is missing…
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Two faces of a file system

• The storage design of the file system.

– A file spends most of its time on the disk.

– So, a file system is about how they are stored.

– Apart from files, many others things are stored in the 
disk.

• The operations of the file system.

– A file can be manipulated by processes.

– So, a file system is also about the operations which 
manipulate the content stored.
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FS  VS  OS

• A FS is independent of an OS!

– If an OS supports a FS, then the OS can do whatever 
operations over that storage device.

– Else, the OS doesn’t know how to read or update the 
device’s content.

Windows XP supports Linux supports

NTFS, FAT32, FAT16, ISO9660, 
Juliet, CIFS

NTFS, FAT32, FAT16, ISO9660, 
Juliet, CIFS, Ext2, Ext3, etc…

Linux supports far more FS-es than any versions of Windows
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File Operations?

• Pop quiz!
– Guess, what are the fundamental file (not dir) operations?

• Well…creating is not...
– It is just a special case of opening a file.

• Sorry…copying is not…
– Do you know how it is implemented through the above 

operations?

• Sorry…moving is the same as renaming…
– Except that a file is moving from one disk to another.

Open Read Write Close Rename Delete
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Storage Management
• OS provides uniform, logical view of information storage

– Abstracts physical properties to logical storage unit  - file

– Various devices (i.e., disk drive, tape drive)
• Varying properties include access speed, capacity, data-transfer rate, access 

method (sequential or random)

• File-System management
– Files usually organized into directories

– Access control to determine who can access what

– OS activities include
• Creating and deleting files and directories

• Primitives to manipulate files and directories

• Mapping files onto secondary storage

• Backup files onto stable (non-volatile) storage media



Mass-Storage Management

• Usually disks used to store data that does not fit in main 
memory or data that must be kept for a long period of time

• Proper management is of central importance

– Entire speed of computer operation hinges on disk subsystem and 
its algorithms

• OS activities

– Free-space management

– Storage allocation

– Disk scheduling

• Some storage need not be fast

– Tertiary storage includes optical storage, magnetic tape

– Still must be managed – by OS or applications



Performance of Various Levels of Storage



Kernel Data Structures
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Kernel Data Structures

Lists, Trees, Hash Map and Bitmaps
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Kernel Data Structures

• Many similar to standard programming data structures

• Lists

– Singly linked list

– Doubly linked list

– Circularly linked list



Kernel Data Structures

• Stack

– Last in first out (LIFO)

– Widely used when invoking function calls

• Queue

– First in first out (FIFO)

– Widely used in job scheduling



Kernel Data Structures

• Trees

– Binary tree

– Binary search tree: left <= right
• Worse-case search performance is O(n)

– Balanced binary search tree 
• Worse-case search performance is O(lg n)



Kernel Data Structures

• Hash function

– Takes data as input, performs numeric operation on 
the data, and returns a numeric value

– Retrieve data: O(1)

– Hash collision

• Hash function can create a hash map



Kernel Data Structures

• Bitmap – string of n binary digits representing 
the status of n items

• Pros:

– Space efficiency 

• Example: used to indicate the availability of disk 
blocks

• Linux data structures defined in include files 
<linux/list.h>, <linux/kfifo.h>,       

<linux/rbtree.h>



MISC

Protection and Security, Computing Environments and 
Open-sourced OS
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Protection and Security
• Protection – any mechanism for controlling access of 

processes or users to resources defined by the OS

• Security – defense of the system against internal and 
external attacks
– Huge range, including denial-of-service, worms, viruses, identity 

theft, theft of service

• Systems generally first distinguish among users, to 
determine who can do what
– User identities (user IDs, security IDs) include name and 

associated number, one per user, determine access control

– Group identifier (group ID) allows set of users to be defined and 
controls managed, then also associated with each process, file

– Privilege escalation allows user to change to effective ID with 
more rights



Computing Environments - Traditional

• Stand-alone general purpose machines

• Blurred as most systems interconnect with others 
(i.e., the Internet)

– Portals provide web access to internal systems

– Network computers (thin clients) are like Web terminals

– Mobile computers interconnect via wireless networks

• Networking becoming ubiquitous – even home 
systems use firewalls to protect home computers 
from Internet attacks



Computing Environments - Mobile

• Handheld smartphones, tablets, etc

• What is the functional difference between them 
and a “traditional” laptop?

– Extra feature – more OS features (GPS, gyroscope)

– Allows new types of apps like augmented reality

– Use IEEE 802.11 wireless, or cellular data networks for 
connectivity

• Leaders are Apple iOS and Google Android



Computing Environments – Distributed

• Distributed computing
– Collection of separate, possibly heterogeneous, systems 

networked together

– Network is a communication path, TCP/IP most common
• Local Area Network (LAN)

• Wide Area Network (WAN)

• Metropolitan Area Network (MAN)

• Personal Area Network (PAN)

– Network Operating System provides features between 
systems across network

• Communication scheme allows systems to exchange messages

• Illusion of a single system



Computing Environments – Client-Server
Client-Server Computing

Dumb terminals supplanted by smart PCs

Many systems act as servers, responding to requests 
generated by clients

Compute-server system provides an interface to client to 
request services (i.e., database)

File-server system provides interface for clients to store 
and retrieve files



Computing Environments - Peer-to-Peer

• Another model of distributed system, does not 
distinguish clients and servers

– Instead all nodes are considered peers

– May each act as client, server or both

– Node must join P2P network

• Registers its service with central lookup service on network, or

• Broadcast request for service and respond to requests for 
service via discovery protocol

– Examples include BitTorrent



Computing Environments - Virtualization

• Allows OSes to run applications within other OSes

• Emulation used when source CPU type is different from 
target type (i.e. PowerPC to Intel x86)

– Generally slowest method

– Every machine-level instruction must be translated

• Virtualization – OS natively compiled for CPU, running 
guest OSes  also natively compiled 

– Running multiple VMs allows many users to run tasks on a system 
designed for a single user

– VMM (Virtual Machine Manager) provides virtualization services



Computing Environments - Virtualization



Computing Environments – Cloud Computing
• Delivers computing, storage, even apps as a service across a network

• Logical extension of virtualization because it uses virtualization as the 
base for it functionality.
– Amazon EC2 has thousands of servers, millions of virtual machines, petabytes 

of storage available across the Internet, pay based on usage

• Many types
– Public cloud – available via Internet to anyone willing to pay

– Private cloud – run by a company for the company’s own use

– Hybrid cloud – includes both public and private cloud components

– Software as a Service (SaaS) – one or more applications available via the 
Internet (i.e., word processor)

– Platform as a Service (PaaS) – software stack ready for application use via the 
Internet (i.e., a database server)

– Infrastructure as a Service (IaaS) – servers or storage available over Internet 
(i.e., storage available for backup use)



Computing Environments – Cloud Computing

• Cloud computing environments composed of traditional 
OSes, plus VMMs, plus cloud management tools

– Internet connectivity requires security like firewalls

– Load balancers spread traffic across multiple applications



Computing Environments – Real-Time Embedded Systems

• Real-time embedded systems: most prevalent form of 
computers

– Car engines, robots, DVDs, etc.

• Real-time OS has well-defined fixed time constraints

– Processing must be done within constraint

– Correct operation only if constraints met

• Many other special computing environments as well

– Some have OSes, some perform tasks without an OS



Open-Source Operating Systems

• Operating systems made available in source-code format 
rather than just binary closed-source

• Started by Free Software Foundation (FSF), which has 
“copyleft” GNU Public License (GPL)

• Examples include GNU/Linux and BSD UNIX (including core 
of Mac OS X)

• Can use VMM like VMware Player (Free on Windows), 
Virtualbox (open source and free on many platforms -
http://www.virtualbox.com) 

– Use to run guest operating systems for exploration



Summary

• OS Overview 

– OS Concept

– Multiprogramming & Multitasking

– Dual Mode & System Call

• OS Components

– Process Management

– Memory Management

– Storage Management

• Computer System Organization & Architecture

– Interrupt



End of Chapter 1
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2

Objectives

• Operating System Services
– User Operating System Interface

– System Calls

• Operating System Structure

• Operating System Design and Implementation

• MISC: Debugging, Generation & System Boot



Operating System Services

Services Overview, User Interface

3
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Operating System Services

• Operating systems provide

– an environment for execution of programs and 

– services to programs and users

• Services may differ from one OS to another

• What are the common classes?

– Convenience of the user

– Efficiency of the system
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Overview of Operating System Services
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OS Services for Helping Users

• Program execution

– Load a program into memory

– Run the program

– End execution

• either normally or 

• abnormally (indicating error)
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OS Services for Helping Users

• I/O operations - A running program may require 
I/O, which may involve a file or an I/O device

– Common I/Os: read, write, etc.

– Special functions: recording CD/DVD

• Notes: Users usually cannot control I/O devices 
directly, so OS provides a mean to do I/O

– Mainly for efficiency and protection
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OS Services for Helping Users

• File-system manipulation - The file system is of 
particular interest

– OS provides a variety of file systems

• Major services

– read and write files and directories

– create and delete files and directories

– search for a given file

– list file Information

– permission management: allow/deny access
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OS Services for Helping Users

• Communications: information exchange between 
processes 

– Processes on the same computer 

– Processes between computers over a network

• Implementations

– Shared memory 

• Two or more processes read/write to a shared section of mem.

– Message passing

• Packets of information are moved between processes by OS
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OS Services for Helping Users

• Error detection – OS needs to be constantly aware 
of possible errors

• Error types
– CPU

– memory hardware: memory error, power failure, etc.

– I/O devices: parity error, connection failure, etc.

– user program: arithmetic overflow, access illegal mem.

• Error handling
– Ensure correct and consistent computing

– Halt the system, terminate an error-causing process etc.
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OS Services for Ensuring Efficiency

• Systems with multiple users can gain efficiency by 
sharing the computer resources

• Resource allocation 
– Resources must be allocated to each user/job 

– Resource types - CPU cycles, main memory, file storage, 
I/O devices

– Special allocation code may be required, e.g., CPU 
scheduling routines depend on 
• Speed of the CPU, jobs, number of registers, etc. 
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OS Services for Ensuring Efficiency

• Accounting - To keep track of
– which users use how much and what kinds of resources

• Usage
– Accounting for billing users

– Accumulating usage statistics, can be used for
• Reconfiguration of the system

• Improvement of the efficiency
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OS Services for Ensuring Efficiency

• Protection and security
– Concurrent processes should not interfere w/ each other

– Control the use of computer

• Protection
– Ensure that all access to system resources is controlled

• Security
– User authentication by password to gain access

– Extends to defending external I/O devices from invalid 
access attempts
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OS Services for Helping Users

• User interface - Almost all operating systems have a 
user interface (UI).

– Three forms

• Command-Line (CLI)
– Shell command

• Batch
– Shell script

• Graphics User Interface (GUI)
– Windows system
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User Operating System Interface - CLI

• Command line interface or command interpreter 

– Allows direct command entry

– Included in the kernel or treated as a special program

• Sometimes multiple flavors implemented – shells

– Linux: multiple shells (C shell, Korn Shell etc.)

– Third-party shell or free user-written shell

– Most shells provide similar functionality (personal 
preference)
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Bourne Shell Command Interpreter
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User Operating System Interface - CLI

• Main function of CLI

– Get and execute the next user-specified command

– Many commands manipulate files

• Two ways of implementing commands

– The command interpreter itself contains the code
• Jump to a section of its code & make appropriate system call

• Number of commands determines the size of CLI

– Implements commands through system program (UNIX)
• CLI does not understand the command

• Use the command to identify a file to be loaded into memory and executed

• Exp: rm file.txt (search for file rm, load into memory and exe w/ file.txt)

• Add new commands easily
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User Operating System Interface - GUI

• User-friendly graphical user interface

– Mouse-based window-and-menu system (desktop metaphor)

– Icons represent files, programs, actions, etc

– Various mouse buttons over objects in the interface cause various 
actions (provide information, options, execute function, open 
directory (known as a folder)

– Invented at Xerox PARC in early 1970s

• Many systems now include both CLI and GUI interfaces

– Microsoft Windows is GUI with CLI “command” shell

– Apple Mac OS X is “Aqua” GUI interface with UNIX kernel 

– Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, 
GNOME)
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Touchscreen Interfaces

• Touchscreen devices 
require new interfaces
– Mouse not possible or not desired

– Actions and selection based on 
gestures

– Virtual keyboard for text entry

– Voice commands



Choices of Interfaces

• Personal preference

• CLI: more efficient, easier for repetitive tasks

– System administrator

– Power users who have deep knowledge of a system

– Shell scripts

• GUI: user-friendly

• The design and implementation of user interface is 
not a direct function of the OS

20



System Call

Usage, Implementation, Types
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System Calls

• Programming interface to the services provided by 
the OS

• Implementation language 
– Typically written in a high-level language (C or C++)

– Certain low-level tasks (direct hardware access) are 
written using assembly language

• Example of using system call
– Read data from a file and copy to another file

– open()+ read() + write()?
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Example of System Calls

• System call sequence to copy the contents of one file to another file



System Call

• Simple programs may make heavy use of the OS
– A system executes thousands of system calls per second

– Not user-friendly

• Each OS has its own name for each system call
– This course/textbook uses generic examples
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System Call

• How to use?
– Mostly accessed by programs via a high-level API rather 

than direct system call use

• Why prefer API rather than invoking system call? 
– Easy of use

• Simple programs may make heavy use of the OS

– Program portability
• Compile and run on any system that supports the same API

25
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API

• Application Programming Interface (API)
– A set of functions that are available to application 

programmers
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API

• Application Programming Interface (API)
– A set of functions that are available to application 

programmers

• Three most common APIs 
– Win32 API for Windows

– POSIX API for POSIX-based systems 
• including virtually all versions of UNIX, Linux, and Mac OS X

– Java API for the Java virtual machine (JVM)

• How to use API?
– Via a library of code provided by OS

– Libc: UNIX/LINUX with C language
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System Call Implementation

• Who invokes system call: System call interface 

– Provided by the run-time support system, which is

– a set of functions built into libraries within a compiler

• How?

– intercepts function calls in the API 

– invokes necessary system calls

• Implementation

– Typically, a number associated with each system call

– System-call interface maintains a table indexed 
according to the numbers
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API – System Call – OS Relationship
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Standard C Library Example

• C program invoking printf() library call, which calls write() 
system call



31

Implementation Benefits

• The caller needs to know nothing about 

– how the system call is implemented

– what it does during execution

– Just needs to obey API and understand what OS will do 
as a result call

• Most details of  OS interface are hidden from 
programmer by API  

– Managed by run-time support library
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System Call Parameter Passing

• More information is required than simply the identity of 
desired system call
– Parameters: file, address and length of buffer

• Three methods to pass parameters to the OS
– Simplest:  pass the parameters in registers

• In some cases, may be more parameters than registers

– Table-based
• Parameters stored in a block, or table, in memory, and address of block 

passed as a parameter in a register 

• This approach taken by Linux and Solaris

– Stack-based 
• Parameters are placed, or pushed, onto the stack by the program and 

popped off the stack by the operating system
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Parameter Passing via Table



Types of System Calls

• Six major categories

– Process control

– File manipulation

– Device manipulation

– Information maintenance

– Communications

– Protection 
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Types of System Calls

• Process control

– end(), abort()
• Halt a running program normally or abnormally

• Transfer control to invoking command interpreter

• Memory dump & & error message
– Written to disk and examined by debugger

– Respond to error: alert window (GUI system) or terminate the entire job (batch system)

• Error level: normal termination (level 0)
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Types of System Calls

• Process control

– end(), abort()

– load(), execute()
• Where to return?

– Return to existing program: save mem. image

– Both programs continue concurrently: multiprogram

– create_process(), terminate_process()

– get_process_attributes(), set_process_attributes()

• Job’s priority, maximum allowable execution time, etc
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Types of System Calls

• Process control

– end(), abort()

– load(), execute()

– create_process(), terminate_process()

– get_process_attributes(), set_process_attributes()

– wait_time()

– wait_event(), signal_event()

– acquire_lock(), release_lock()
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Example of Process Control: MS-DOS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program
– No process created

• Single memory space

• Loads program into memory, 
overwriting all but the kernel

• Program exit -> shell reloaded

At system startup          running a program
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Example of Process Control: FreeBSD

• Unix variant

• Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork() system call to create 
process
– Executes exec() to load program into process

– Shell waits for process to terminate or continues with 
user commands

• Process exits with:
– code = 0 – no error 

– code > 0 – error code
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Types of System Calls

• File management

– create file, delete file

– open, close file

– read, write, reposition

– get and set file attributes

• Device management: physical/virtual devices

– request device, release device

– read, write, reposition

– get device attributes, set device attributes

– logically attach or detach devices
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Types of System Calls

• Information maintenance

– Get time or date, set time or date

– Get system data, set system data

• Num. of current users, os version, amount of free mem. & disk

– Debugging

• Dump memory

• Single-step execution

• Time profile: timer interrupt
– The amount of time that the program executes at a particular location
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Types of System Calls

• Communications

– Message-passing model
• Host name, IP, process name

• Get_hostid(), get_processid(), open_connection(), 
close_connection(), accept_connection(), 
read_message(), write_message()

• Useful for exchanging smaller amounts of data

– Shared-memory model
• Remove the normal restriction of preventing one process from accessing 

another process’s memory

• Create and gain access to shared mem. region
– shared_memory_create(), shared_memory_attach()

• Threads: memory is shared by default

• Efficient and convenient, having protection and synchronization issues
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Types of System Calls

• Protection

– Control access to resources

– All computer systems must be concerned

– Permission setting

• get_permission(), set_permission()

– Allow/deny access to certain resources

• allow_user(), deny_user()
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Examples of Windows and  Unix System Calls

https://www.kernel.org/doc/man-pages/
http://man7.org/linux/man-pages/



Operating System Structures
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Operating System Structure

• General-purpose OS is a very large program

• Various ways to structure ones

– Simple structure – MS-DOS

– Monolithic-- UNIX

– Layered – an abstraction

– Microkernel –Mach

– Modules

– Hybrid system – most OSes
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Simple Structure  -- MS-DOS

• MS-DOS – written to provide the 
most functionality in the least space

– Do not have well-defined structures

– Not divided into modules

– Its interfaces and levels of functionality 
are not well separated
• Application programs can access basic I/O 

routines

• Vulnerable to errant programs

• Limited by hardware



48

Monolithic Structure  -- UNIX

• UNIX 

– The original UNIX operating system had limited structuring, it 
consists of two separable parts
• Systems programs

• The kernel
– Consists of everything below the system-call interface and above the physical hardware

– A series of interfaces and device drivers

– Monolithic structure: combine all functionality in one level
• File system, CPU scheduling, memory management, and other operating-

system functions

• Difficult to implement and maintain

• Performance advantage 
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Traditional UNIX System Structure

• Beyond simple but not fully layered
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Layered Approach

• The operating system is divided into a number of layers (levels), 
each built on top of lower layers
– The bottom layer (0), is the hardware; the highest layer (N) is the user 

interface

• Implementation
– Each layer is an implementation of an abstract 

object made up of data and operations

• Advantages
– Simple to construct and debug

– Hides the existence of DS, Ops, hardware 
from upper layers

• Challenges
– How to define various layers?

– Efficiency problem
• I/O->memory manage->CPU scheduling->hardware
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Microkernel System Structure 

• Moves as much from the kernel into user space as possible
– Provides minimal process, memory management and communication 

– Mach: example of microkernel (developed by CMU in mid-1980s)
• Mac OS X kernel (Darwin) partly based on Mach

• Main function
– Communication between client program and services (also in user space)

– Provided through message passing

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode
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Microkernel System Structure 

• Moves as much from the kernel into user space as possible
– Provides minimal process, memory management and communication 

– Mach: example of microkernel (developed by CMU in mid-1980s)
• Mac OS X kernel (Darwin) partly based on Mach

• Main function
– Communication between client program and services (also in user space)

– Provided through message passing

• Benefits
– Easier to extend a microkernel: add services to user space, no changes to kernel

– Easier to port the operating system to new architectures

– More reliable & more secure(less code is running in kernel mode)

• Detriments
– Performance overhead of user space to kernel space communication
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Modules

• Many modern operating systems implement loadable
kernel modules

– The Kernel has a set of core components

– Links in additional services via modules (boot time or run time)

– Common in most modern OSes
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Modules

• Many modern operating systems implement loadable
kernel modules

– The Kernel has a set of core components

– Links in additional services via modules (boot time or run time)

– Common in most modern OSes

• Similar to layered system

– Any module can call any other model

– More flexible

• Similar to the microkernel

– Primary module has only core functions

– No need to invoke message passing

– More efficient
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Hybrid Systems

• Most modern operating systems combine different 
structures, resulting in hybrid systems

– Why? Address performance, security, usability needs

• Examples

– Linux kernel
• Monolithic: single address space (for efficient performance)

• Modular: dynamic loading of functionality

– Windows 
• Mostly monolithic, plus microkernel for different subsystem personalities 

(running in user-mode), also support loadable kernel module

– Apple Mac OS X
• Mach microkernel, BSD Unix parts, plus I/O kit and dynamically loadable 

modules (called kernel extensions)



• Layered system: user interface + application environment & 
services + kernel (Mach+BSD UNIX)

• Mach Microkernel

– Memory management

– inter-process communication

– Thread scheduling

• BSD UNIX

– CLI

– POSIX API

– Networking 

– File system

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

56

Mac OS X Structure
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iOS

• Apple mobile OS for iPhone, iPad

– Structured on Mac OS X

– Added functionality

– Does not run OS X applications natively
• Also runs on different CPU architecture (ARM vs. Intel)

• Structure

– Cocoa Touch is Objective-C API for developing apps

– Media services layer for graphics, audio, video

– Core services provides cloud computing, databases

– Core operating system, based on Mac OS X kernel
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Android

• Developed by Open Handset Alliance (mostly Google)

– Similar stack to IOS

– Open Source

• Based on Linux kernel

– Provides process, memory, device-driver management

• Optimization

– Adds power management 



Operating System Design and 
Implementation
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Operating System Design and Implementation

• Design and Implementation of OS not “solvable”, but some 
approaches have proven successful

• First problem: Design goals and specifications 

– Affected by choice of hardware, type of system (batch, time-
sharing, single/multiple users, distributed, real-time, etc)

– User goals 
• Convenient to use, easy to learn, reliable, safe, and fast

– System goals
• Easy to design, implement, and maintain, as well as flexible, reliable, error-

free, and efficient

– No unique solution to the problem of defining the requirements
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Operating System Design and Implementation

• Important principle to separate

– Mechanism:  How to do it?

– Policy:   What will be done?

• Examples

– Timer mechanism (for CPU protection)

• Policy decision: How long the timer is to be set?

– Priority mechanism (in job scheduling)

• Policy: I/O-intensive programs have higher priority than CPU-
intensive ones or vice versa

• Benefits: maximum flexibility

– Change policy without changing mechanism
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OS Implementation

• Much variation

– Early OSes in assembly language

– Now C, C++

• Actually usually a mix of languages

– Main body in C

– Lowest levels in assembly

– Systems programs in C, C++, scripting languages 

• Pros and cons

– Code can be written faster, easier to understand/debug

– More high-level language, easier to port to other hardware

– Slower & increased storage requirement
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Implementation

• Performance?

– Major performance improvements: better data 
structures and algorithms

– How about developing excellent assembly-language 
code in OS implementation?

• Modern compiler is well optimized

• A small amount of the code is critical to performance, easy to 
do specialized optimization
– Interrupt handler

– I/O manager

– Memory manager

– CPU scheduler



MISC

Debugging, Generation, Booting
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Operating-System Debugging

• Failure analysis

– log files: written with error information when process fails

– core dump: a capture of the memory of the processes

– crash dump: memory state when OS crashes

• Performance tuning

– Trace listings of system behavior

– Interactive tools: top displays resource usage of processes

• Kernighan’s Law

– “Debugging is twice as hard as writing the code in the first place. 
Therefore, if you write the code as cleverly as possible, you are, by 
definition, not smart enough to debug it.”
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Operating System Generation

• Operating systems are designed to run on any of a class of 
machines

– The system must be configured or generated for each specific 
computer site

• SYSGEN program obtains information concerning the 
specific configuration of the hardware system

– Read from file, ask the operator or probe

– Generation methods
• Modify source code and completely recompile

• Select modules from precompiled library and link together
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System Boot

• System booting on most computer systems

– Bootstrap program (residing in ROM) locates the kernel, loads it 
into memory, and starts it
• ROM needs no initialization, cannot be easily infected by virus

• Diagnostics to determine machine state

• Initialization: CPU registers, device controllers, memory

– Some use two-step process: a simple bootstrap loader fetches a 
more complex bootstrap program, which loads kernel (large OSes)

– Some store the entire OS in ROM (Mobile OS)

• Common bootstrap loader allows selection of kernel from 
multiple disks, versions, kernel options (GRUB)



Summary

• Operating system services

• System calls

– Relationship between system call and API

• Operating system structures

– Modular is important

– Generally adopt a hybrid approach

• Design principles

– Separate policy from mechanism 
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Summary of Part I (Ch1 & Ch2)

• OS Overview 

– OS Functionality

– Multiprogramming & Multitasking

• OS Operations

– Dual Mode & System Call

• OS Components

– Process Management

– Memory Management

– Storage Management

• Computing Environment

• Ch2 OS Structure
– Operating system services

– System calls

– Operating system structures

– Design principles

• Process management
– Concept, scheduling, 

operation, communication, 
synchronization

• Memory management
– Main memory, virtual mem

• Storage management
– Storage, FS, I/O
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End of Chapter 2
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2

Outline

• Process Concept

– Program vs process

– Process in memory & PCB

– Process state

• Processes Operations

– Process creation, program execution, process 
termination

– UNIX example: fork(), exec*(), wait()



What is a process? 

3

Process

Relationship?

Differences?

Execution?

Program

Informally, a process is a program in execution.
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Program

What is a program?



What is a program?

• What is a program?

– A program is a just a piece of code.

• But, which code do you mean?

– High-level language code: C or C++?

– Low-level language code: assembly code?

– Not-yet an executable: object code?

– Executable: machine code?
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Flow of building a program (1 of 2)

6

Pre-processor

Compiler & 
Optimizer

Assembly code: hello.s

C code: hello.c Expanded C code: hello.c

#define TXT “hello”

int main(void) {
printf(“%s\n”, TXT);
return 0;

}



(Still…1 of 2) Pre-processor

• The pre-processor expands:

– #define, #include, #ifdef, #ifndef, #endif, etc.

– Try: “gcc –E hello.c”

7

#define TXT “hello”

int main(void) {
printf(“%s\n”, TXT);
return 0;

}

Pre-processor

int main(void) {
printf(“%s\n”, "hello");
return 0;

}

Original code Expanded codegcc –E hello.c



(Still…1 of 2) Pre-processor

• Another example: the macro!

8

#define SWAP(a,b) { int c; c = a; a = b; b = c; }

int main(void) {
int i = 10, j = 20;
printf("before swap: i = %d, j = %d\n", i, j);
SWAP(i, j);
printf("after swap: i = %d, j = %d\n", i, j);

}

Pre-processor

int main(void) {
int i = 10, j = 20;
printf("before swap: i = %d, j = %d\n", i, j);
{ int c; c = i; i = j; j = c; };
printf("after swap: i = %d, j = %d\n", i, j);

}



(Still…1 of 2) Pre-processor

• How about: #include?

9

#include “header.h”

int main(void) {
add_fun(1,2);
return 0;

}

int add_fun(int a, int b) {
return (a + b);

}

int add_fun(int a, int b) {
return (a + b);

}

int main(void) {
add_fun(1,2);
return 0;

}

Pre-processorProgram: include.c

Program: header.h



(Still…1 of 2) Compiler and Optimizer

• The compiler performs:

– Syntax checking and analyzing;

– If there is no syntax error, construct intermediate codes, 
i.e., assembly codes;

• The optimizer optimizes codes

– It improves stupid codes!

– Check the parameter of gcc

10

“-O” means to optimize.

The number followed is the 
optimization level. Max is level 3, 
i.e., “-O3”. Default is level is “-O1”.

“-O0”: means no optimization.



Flow of building a program (2 of 2)

11

Assembly code: hello.s

Assembler
“as” in Linux.

Linker
“ld” in Linux.

Object code: hello.o

Executable: hello
Static/Dynamic

library



(Still…2 of 2) Assembler and Linker

• The assembler assembles “hello.s” and 
generates an object code “hello.o”

– A step closer to machine code

– Try: “as hello.s –o hello.o”

• The linker puts together all object files as well as 
the libraries

– There are two kinds of libraries: statically-linked and 
dynamically-linked ones

12



Sidetrack: Library files 

• A library file is…

– just a bunch of function implementations.

– for the linker to look for the function(s) that the target C 
program needs. 

13

A bunch of “dot-o” files.

Shared library 
with “.so” file 
extension.

A static library 
with “.a” file 
extension. It is 
also called an 
archive.

.so

.a



Sidetrack: Library files 
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.a .so

Linking with static library file.

.o.o

The final 
program is the 
combination of 
the above two 
codes.

The linker only 
checks whether the 
functions used in 
“.o” files exists in 
the “.so” files or 
not.

A smaller 
program!

Linking with dynamic library file.



How to compile multiple files?

• gcc by default hides all the intermediate steps.

– Executable: “gcc -o hello hello.c” generates 
“hello” directly.

– Object code: “gcc -c hello.c” generates “hello.o” 
directly.

• How about working with multiple files?

15



How to compile multiple files?

16

Step 1.

Prepare all the source files.
Important: there must be 
one and only one file 
containing the main function.

Step 2.

Compile them into object 
codes one by one.

Step 3.

$ gcc –o prog *.o

Construct the program 
together with all the object 
codes.

$ gcc –c code.c
......

Remember, below shows one of the solution.

*.c

*.o

prog



Conclusion on “what is a program?”

• A program is just an executable file!

– It is static;

– It may be associated with dynamically-linked files;

• “*.so” in Linux and “*.dll” in Windows.

• It may be compiled from more than one file

17
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What is a process?

Process
Process

Process
Process

Process



Process in Memory

• A process is a program in execution
– A program (an executable file) becomes process when it 

is loaded into memory

– Active

• Process in memory
– Text section

– Stack

– Heap

– Data section

– Program counter

– Contents of registers

19



Process in Memory

• Text section

– Program code

• Data section

– Global variables

• Stack

– Temporary data (function parameters, return addresses, 
local variables)

• Heap

– Dynamically allocated memory during process run time

• Program counter and contents of registers

20
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Process State

• As a process executes, it changes state, which is 
defined in part by the current activity

– new:  The process is being created

– running:  Instructions are being executed

– waiting:  The process is waiting for some event to occur

• I/O completion or reception of a signal

– ready:  The process is waiting to be assigned to a 
processor

– terminated:  The process has finished execution



Diagram of Process State

• State diagram

• Only one process can be running on any processor 
at any instant

• Many processes may be ready or waiting

22
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How to switch processes? 

Example: CPU switch from process to process
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How to locate/represent a process?

• Process control block (PCB) or task control block

– Process state (running, waiting, etc)

– Program counter 
• location of next instruction to execute

– CPU registers 
• contents of all process-centric registers

– CPU scheduling information
• priorities, scheduling queue pointers

– Memory-management information 
• memory allocated to the process

– I/O status information 
• I/O devices allocated to process, list of open files

– Accounting information 
• CPU used, clock time elapsed since start, time limits
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Process Data Structure in Linux

• Represented by C structure task_struct

– <linux/sched.h>

pid t_pid; /* process identifier */ 

long state; /* state of the process */ 

struct sched_entity se; /* scheduling information */ 

struct task_struct *parent; /* this process’s parent */ 
struct list_head children; /* this process’s children */ 
struct files_struct *files; /* list of open files */ 

struct mm_struct *mm; /* address space of this process */



Global
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

Process 
structure

(PCB)
Kernel code 
with system 

calls

26

Relationship between Process Data & PCB

Kernel Space

User space

Process Invoking system 
calls. E.g., fork(), 
exec*(), wait().

Access 
process’ 
internal



Conclusion on “what is a process?”

• A process is a program in execution

– process (active entity) != program (static entity) 

– Why active?

• A program counter specifying the next instruction to execute + 
a set of associated resources

• Only one process can be running on any processor 
at any instant

27



Conclusion on “what is a process?”

• Two processes maybe associated with the same 
program (Two users are running the same program)

– Example

• The same user invokes two copies of the web browser

– Separate execution sequences

• The text section may be equivalent

• The data, heap, and stack sections vary

• A process can be an execution environment for 
other code

– Java programming environment

– java Program (java runs JVM as a process)

28
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Process Operations

Process
Process

Process
Process

Process



Process Operations

• Process 

– It associates with all the files opened by that process.

– It attaches to all the memory that is allocated for it.

– It contains every accounting information,

• running time, current memory usage, who owns the process, 
etc.

• You couldn’t operate any things without processes.

30
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Process Operations

• System must provide mechanisms for:

– process identification

– process creation

– program execution

– process termination

• Some basic and important system calls

– getpid()

– fork()

– exec*()

– wait()

– exit()



32

Process
Process

Process
Process

Process

Process Operations
- process identification



Process identification

• How can we identify processes?

– Each process is given an unique ID number, and is called 
the process ID, or the PID.

– The system call, getpid(), prints the PID of the calling 
process.

33

$ ./getpid
My PID is 1234
$ ./getpid
My PID is 1235
$ ./getpid
My PID is 1237

#include <stdio.h>   // printf()
#include <unistd.h>  // getpid()

int main(void) {
printf("My PID is %d\n”, getpid() );

}
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Process
Process

Process
Process

Process

Process Operations
- process identification
- process creation
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Process Creation

• A process may create several new processes

– Parent process: the creating process

– Children processes: the new processes

• The first process

– The kernel, while it is booting up, creates the first 
process – init.

– The “init” process:

• has PID = 1, and

• is running the program code “/sbin/init”.

– Its first task is to create more processes…
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Process Creation

• Tree hierarchy

– Each of the new process may in turn create other 
processes, and form a tree hierarchy

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298



Process blossoming

• You can view the tree with the command:

– “pstree”; or

– “pstree –A” for ASCII-character-only display.

37

init

SSH 
serverfork()

& exec*()
Shell

top

fork()
& exec*() fork()

& exec*()

also implies the parent-child relationship.



Process blossoming…with orphans?

• However, termination can happen, at any time and in any 
place…
– All the resources are deallocated to OS when a process terminates

– A process may become an orphan when its parent terminated 

– An orphan turns the hierarchy from a tree into a forest!

– Plus, no one would know the termination of the orphan.

38

init

SSH 
server Shell

top

Now, this poor 
process becomes 
an orphan.



Process blossoming…with re-parent!

• In Linux…
– We have the re-parent operation.

– The “init” process will become the step-mother of all 
orphans.

• Well…Windows maintains a forest-like hierarchy.

39

init

SSH 
server Shell

top

re-parent



A short summary

• Observation 1

– The processes in Linux is always organized as a tree.

– Because of the re-parent operation, there is always only 
one process tree.

• Observation 2

– The re-parent operation allows processes running 
without the need of a parent terminal.

– Thus, the background jobs survive even though the 
hosting terminal is closed.

40
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Relationship between Parent and Child

• Resource sharing options

– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution options

– Parent and children execute concurrently

– Parent waits until children terminate

• Address space options

– Child is a duplicate of parent

– Child has a new program loaded into it

• We focus on UNIX examples to illustrate



Process creation

• To create a process, we use the system call fork()

42

Original execution flow
of a process

The process
invokes fork().

The process splits into two!

Flow of original process

Flow of newly-created process

Which process will be 
executed after fork()?



Process creation – fork() system call

• So, how do fork() and the processes behave?

43

int main(void) {
printf(“Ready (PID = %d)\n”, getpid());
fork();
printf(“My PID is %d\n”, getpid() );
return 0;

}

PID 1234

PID 1235

My PID is 1235
$ _

Process 1234 is the original 
process, and we call it the 
parent process.

Process 1235 is created by 
the fork() system call, and 
we call it the child process.

Why is this line of code executed twice?

$ ./fork_example_1

Ready (PID=1234)

My PID is 1234



Process creation – fork() system call

• So, how do fork() and the processes behave?

44

What do we know so far?

-Both the parent and the child execute the same program before and after fork().
-The child process starts its execution at the location that fork() is returned, not 
from the beginning of the program.

int main(void) {
printf(“Ready (PID = %d)\n”, getpid());
fork();
printf(“My PID is %d\n”, getpid() );
return 0;

}



Process creation – fork() system call
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1  int main(void) {
2    int result;
3    printf("before fork ...\n");
4    result = fork();
5    printf("result = %d.\n", result);
6  
7    if(result == 0) {
8      printf("I'm the child.\n");
9      printf("My PID is %d\n", getpid());
10    }
11    else {
12      printf("I'm the parent.\n");
13      printf("My PID is %d\n", getpid());
14    }
15
16    printf("program terminated.\n");
17  }

$ ./fork_example_2
before fork ...

PID 1234

One more example



Process creation – fork() system call
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1  int main(void) {
2    int result;
3    printf("before fork ...\n");
4    result = fork();
5    printf("result = %d.\n", result);
6  
7    if(result == 0) {
8      printf("I'm the child.\n");
9      printf("My PID is %d\n", getpid());
10    }
11    else {
12      printf("I'm the parent.\n");
13      printf("My PID is %d\n", getpid());
14    }
15
16    printf("program terminated.\n");
17  }

$ ./fork_example_2
before fork ...

PID 1234 PID 1235fork()

One more example



Process creation – fork() system call
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$ ./fork_example_2
Before fork …

PID 1234 PID 1235fork()

Let there be only ONE CPU. Then…
- Only one process is allowed to be executed at one time.
- However, we can’t predict which process will be chosen by the OS.
- By the time, this mechanism is called process scheduling. 

In this example, we assume that the parent, PID 1234, 
runs first, after the fork() call.

Assumption



Process creation – fork() system call
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1  int main(void) {
2    int result;
3    printf("before fork ...\n");
4    result = fork();
5    printf("result = %d.\n", result);
6  
7    if(result == 0) {
8      printf("I'm the child.\n");
9      printf("My PID is %d\n", getpid());
10    }
11    else {
12      printf("I'm the parent.\n");
13      printf("My PID is %d\n", getpid());
14    }
15
16    printf("program terminated.\n");
17  }

$ ./fork_example_2
before fork ...

PID 1234
(running)

PID 1235
(waiting)

Important

For parent, the return 
value of fork() is the 
PID of the created child.

result = 1235



Process creation – fork() system call

49

1  int main(void) {
2    int result;
3    printf("before fork ...\n");
4    result = fork();
5    printf("result = %d.\n", result);
6  
7    if(result == 0) {
8      printf("I'm the child.\n");
9      printf("My PID is %d\n", getpid());
10    }
11    else {
12      printf("I'm the parent.\n");
13      printf("My PID is %d\n", getpid());
14    }
15
16    printf("program terminated.\n");
17  }

$ ./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.

PID 1234
(dead)

PID 1235
(waiting)



Process creation – fork() system call
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1  int main(void) {
2    int result;
3    printf("before fork ...\n");
4    result = fork();
5    printf("result = %d.\n", result);
6  
7    if(result == 0) {
8      printf("I'm the child.\n");
9      printf("My PID is %d\n", getpid());
10    }
11    else {
12      printf("I'm the parent.\n");
13      printf("My PID is %d\n", getpid());
14    }
15
16    printf("program terminated.\n");
17  }

$ ./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.
result = 0

PID 1234
(dead)

PID 1235
(running)

Important

For child, the return value 
of fork() is 0.



Process creation – fork() system call
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1  int main(void) {
2    int result;
3    printf("before fork ...\n");
4    result = fork();
5    printf("result = %d.\n", result);
6  
7    if(result == 0) {
8      printf("I'm the child.\n");
9      printf("My PID is %d\n", getpid());
10    }
11    else {
12      printf("I'm the parent.\n");
13      printf("My PID is %d\n", getpid());
14    }
15
16    printf("program terminated.\n");
17  }

$ ./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.
result = 0
I’m the child.
My PID is 1235
program terminated.
$ _

PID 1234
(dead)

PID 1235
(dead)



Process creation – fork() system call

• fork() behaves like “cell division”.

– It creates the child process by cloning from the parent 
process, including…
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Cloned items Descriptions

Program code
[File & Memory]

They are sharing the same piece of code.

Memory Including local variables, global variables, and dynamically 
allocated memory.

Opened files
[Kernel’s internal]

If the parent has opened a file “A”, then the child will also have 
file “A” opened automatically.

Program counter
[CPU register]

That’s why they both execute from the same line of code 
after fork() returns.



Process creation – fork() system call

• However…

– fork() does not clone the following...

– Note: they are all data inside the memory of kernel.

53

Distinct items Parent Child

Return value of fork() PID of the child process. 0

PID Unchanged. Different, not necessarily be 
“Parent PID + 1”

Parent process Unchanged. Doesn’t have the same parent 
as that of the parent process.

Running time Cumulated. Just created, so should be 0.
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Process
Process

Process
Process

Process

Process Operations
- process identification
- process creation
- program execution



fork() can only duplicate…

• fork() is rather boring…

– If a process can only duplicate itself and always runs the 
same program, then…

– how can we execute other programs?

• We want CHANGE!

– Meet the exec() system call family.

55



Program execution

• execl() – a member of the exec system call 
family (and the family has 6 members).

56

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

$ ./exec_example
before execl ...

Arguments of the execl() call

1st argument: the program name, “/bin/ls” in the 
example.
2nd argument: 1st argument to the program.
3rd argument: indicate the end of the list of arguments. 



Program execution

• Example #1: run the command "/bin/ls"
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execl("/bin/ls", "/bin/ls", NULL);

Argument
Order

Value in above
example

Description

1 "/bin/ls" The file that the programmer wants to execute.

2 "/bin/ls" When the process switches to "/bin/ls", 
this string is the first program argument.

3 NULL This states the end of the program argument 
list.



Program execution

• Example #2: run the command "/bin/ls -l"
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execl("/bin/ls", "/bin/ls", "-l", NULL);

Argument
Order

Value in above
example

Description

1 "/bin/ls" The file that the programmer wants to execute.

2 "/bin/ls" When the process switches to "/bin/ls", 
this string is the first program argument.

3 "-l" When the process switches to "/bin/ls", 
this string is the second program argument.

4 NULL This states the end of the program argument 
list.



Program execution

• execl() – a member of the exec system call 
family (and the family has 6 members).
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int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

$ ./exec_example
before execl ...

What is the output?

The same as the output of running 
“ls” in the shell.



Program execution

• execl() – a member of the exec system call 
family (and the family has 6 members).
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int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

$ ./exec_example
before execl ...
exec_example
exec_example.c



Program execution

• execl() – a member of the exec system call 
family (and the family has 6 members).
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int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

$ ./exec_example
before execl ...
exec_example
exec_example.c

GUESS:
What happens next?



Program execution

• execl() – a member of the exec system call 
family (and the family has 6 members).
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$ ./exec_example
before execl ...
exec_example
exec_example.c
$ _

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

WHAT?!
The shell prompt appears!

The output says:
(1) The gray code block is not reached!
(2) The process is terminated!

WHY IS THAT?!



Program execution

• The exec system call family is not simply a function 
that “invokes” a command.
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int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

Process
Originally, the process is executing the 
program “exec_example”.



Program execution

• The exec system call family is not simply a function 
that “invokes” a command.
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int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

Process
The execl() call changes the execution from 
“exec_example” to “/bin/ls”

/* The program “ls” */

int main(int argc, char ** argv)
{

......
exit(0);

}



Program execution

• The exec system call family is not simply a function 
that “invokes” a command.

65

Process

The “return” or the “exit()” 
statement in “/bin/ls” will terminate 
the process…

Therefore, it is certain that the process 
cannot go back to the old program!

/* The program “ls” */

int main(int argc, char ** argv)
{

......
exit(0);

}



Program execution - observation

• The process is changing the code that is executing and never 
returns to the original code.
– The last two lines of codes are therefore not executed.

• The process that calls any one of the member of the exec 
system call family will throw away many things, e.g.,
– Memory: local variables, global variables, and dynamically 

allocated memory;
– Register value: e.g., the program counter;

• But, the process will preserve something, including:
– PID;
– Process relationship;
– Running time, etc.

66
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Process
Process

Process
Process

Process

Process Operations
- process identification
- process creation
- program execution
- fork() + exec*() = ?



When fork() meets exec*()…

• The mix can become:

– A shell,

– The system() library call, etc…

68

Execute
command

Switch to 
target program

Terminate

Resume

Parent

Child



fork() + exec*() = system()?
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1  int system_test(const char *cmd_str) {
2      if(cmd_str == -1)
3          return -1;
4  if(fork() == 0) {
5 execl(cmd_str, cmd_str, NULL);
6 fprintf(stderr, 

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 return 0;
10 }
11 
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

$ ./system_implement_1
before...

system_implement_1
system_implement_1.c

after...
$ _

Is this the 
only result?



fork() + exec*() = system()?!
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1  int system_test(const char *cmd_str) {
2      if(cmd_str == -1)
3          return -1;
4 if(fork() == 0) {
5 execl(cmd_str, cmd_str, NULL);
6 fprintf(stderr, 

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 return 0;
10 }
11 
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

$ ./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _

Some strange cases 
happened when the 
program is executed 
repeatedly!! Why?



fork() + exec*() = system()...
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1  int system_test(const char *cmd_str) {
2      if(cmd_str == -1)
3          return -1;
4 if(fork() == 0) {
5 execl(cmd_str, cmd_str, NULL);
6 fprintf(stderr, 

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 return 0;
10 }
11 
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

Let’s re-color the program!

Parent process

Child process

Both processes

$ ./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _

$ ./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _



fork() + exec*() = system()...
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Parent Childfork()

Parent

then

Expected execution 
sequence.

$ ./system_implement_1
before...

after...
system_implement_1
System_implement_1.c
$ _

$ ./system_implement_1
before...

system_implement_1
System_implement_1.c

after...
$ _

Possible execution 
sequence.

Parent

Child

Parent

then

fork()
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fork() + exec*()

Is it enough?



fork() + exec*() = system()...

• Don’t forget that we’re trying to implement a system()-
compatible function…

– It is very weird to allow different execution orders.

• How to let the child to execute first?

– But…we can’t control the process scheduling of the OS to 
this extent.

• Then, our problem becomes…

– How to suspend the execution of the parent process?

– How to wake the parent up after the child is terminated?
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fork()+ exec*() + wait() = system()

75

1  int system_test(const char *cmd_str) {
2      if(cmd_str == -1)
3          return -1;
4 if(fork() == 0) {
5 execl("/bin/sh", "/bin/sh",

"-c", cmd_str, NULL);
6 fprintf(stderr, 

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9      wait(NULL);
10 return 0;
11 }
12 
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

What is the 
output now?



fork()+ exec*() + wait() = system()

76

1  int system_test(const char *cmd_str) {
2      if(cmd_str == -1)
3          return -1;
4 if(fork() == 0) {
5 execl("/bin/sh", "/bin/sh",

"-c", cmd_str, NULL);
6 fprintf(stderr, 

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9      wait(NULL);
10 return 0;
11 }
12 
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

$ ./system_implement_2
before...

system_implement_2
System_implement_2.c

after...
$ _

The parent is 
suspended until 
the child 
terminates



wait() – properties explained

• The wait() system call suspend the calling parent 
process (Case 1).

• When to wake up?

– wait() returns and wakes up the calling process when 
the one of its child processes changes from running to 
terminated.

77

wait()

fork() Terminate

wake up

Case 1.

Parent is 
suspended.



wait() – properties explained

• What happens if

– There were no running children;

– There were no children;

• wait() does not suspend the calling process 
(Case 2) 

78

wait()

fork() Terminate

Case 2.

no suspension
is needed.



wait() – summary

• The wait() system call suspend
the calling parent process (Case 1).

• wait() returns and wakes up the 
calling process when the one of its 
child processes changes from 
running to terminated.

• wait() does not suspend the 
calling process (Case 2) if
– There were no running children;

– There were no children;
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wait()

fork() Terminate

wake up

Case 1.

Parent is 
suspended.

wait()

fork() Terminate

Case 2.

no suspension
is needed.



More powerful wait()?

• Limitation of wait()?

– waits for any one of the children

– Detect child termination only

• How to wait for a particular process?

– waitpid()
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wait() VS  waitpid()

81

wait() waitpid()

Wait for any one of the children. Depending on the parameters, 
waitpid() will wait for a particular 
child only.

Detect child termination only. Depending on the parameters,
waitpid() can detect child’s status 
changing: 
-from running to suspended, and
-from suspended to running.

For more details, you must read the man pages of wait() and waitpid().



Summary of Process Operations

• A process is created by cloning
– fork() is the system call that clones processes
– Cloning is copying

• What are inherited?
• What are not?
• Metaphor of father-son relationship

– wait() can be used to suspend the parent process, so as to 
guarantee the expected execution sequence

• Program execution is fundamental, but not trivial
– A process is the place that hosts a program and run it
– exec() system call family changes the program that a 

process is running.
– A process can run more than one program…

• as long as there is a set of programs that keeps on calling the exec
system call family.
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Summary of Ch3

• Concepts

– Process data in memory

– PCB

• Operations

– fork(), exec*(), wait()

– Just introduced how they could be used to create 
processes and execute programs

– How about the internal working of these system calls?

• How does the kernel behaves when calling these system calls?
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End of Chapter 3



Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch3 - Process Operations

-from kernel’s perspective



Global
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

Process 
structure

(PCB) Kernel code 
with system 

calls

2

Process in Memory

Kernel Space

User space

Process Invoking system 
calls. E.g., fork(), 
exec*(), wait().

Access 
process’ 
internal



Kernel-space  VS  User-space

3

System Memory

Kernel-space
memory

User-space
memory



Kernel-space  VS  User-space

4

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing 
what

Accessed
by whom



Kernel-space  VS  User-space

5

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing 
what

Kernel data structure
Kernel code

Device drivers

Process’ memory
Program code of the 

process

Accessed
by whom



Kernel-space  VS  User-space

6

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing 
what

Kernel data structure
Kernel code

Device drivers

Process’ memory.
Program code of the 

process

Accessed
by whom Kernel code User program code  + 

kernel code

The kernel is invincible!



Process is going back and forth...

• A process will switch its execution 
from user space to kernel space 

• How?
– through invoking system call

7

System Memory

Kernel-space
memory

User-space
memory



Process is going back and forth...
• Example

– Say, the CPU is running a program 
code of a process

– Where is the code?
• User-space memory
• Recall the process structure in memory

– Where should the program counter 
point to?

8

System Memory

Kernel-space
memory

User-space
memory

Program 
counter



Process is going back and forth...
• What happens…

– When the process is calling the system call 
“getpid()”

• Where to get the PID
– PCB (in kernel-space memory)

• The CPU switches from the user-space to 
the kernel-space, and reads the PID

9

System Memory

Kernel-space
memory

User-space
memory

Program 
counter



Process is going back and forth...

• After finished executing getpid()
– What happens?
– CPU switches back to the user-space 

memory, and continues running that 
program code

10

System Memory

Kernel-space
memory

User-space
memory

Program 
counter



User Mode & Kernel Mode

• Remember this?

11

Another question: How much time was spent in each part?



User time  VS  System time
• So, not just the memory, but also the execution of a 

process is also divided into two parts. 
– User time and system time

12



User time  VS  System time
• So, not just the memory, but also the execution of a 

process is also divided into two parts. 
– User time and system time

13

calling system call.
e.g., getpid()

Read information and 
the system call returns.

Some system calls may take a long time.
E.g., accessing a floppy drive.

Total running time = user time + system time.

User time –
Time spent on codes in
user-space memory.

System time –
Time spent on codes in
kernel-space memory.



• Let’s tell the difference…with the tool “time”.

$ time ./time_example

real     0m0.003s
user     0m0.003s
sys      0m0.000s
$ _

User time  VS  System time – example 1

14

int main(void) {
int x = 0;
for(i = 1; i <= 100000; i++) {

x = x + i;
//  printf(“x = %d\n”, x);
}
return 0;

}

Commented on purpose.

Time elapsed when “./time_example” 
terminates.

The user time of “./time_example” measured 
when the process is on CPU.

The system time of “./time_example” measured 
when the process is on CPU.

Why comment 
this line???



• Let’s tell the difference…with the tool “time”.

$ time ./time_example

real     0m0.003s
user     0m0.003s
sys      0m0.000s
$ _

User time  VS  System time – example 1

15

int main(void) {
int x = 0;
for(i = 1; i <= 100000; i++) {

x = x + i;
printf(“x = %d\n”, x);

}
return 0;

}
Comment released.

$ time ./time_example

real 0m0.677s
user 0m0.032s
sys 0m0.227s
$ _

See? Accessing hardware costs the process more time.

int main(void) {
int x = 0;
for(i = 1; i <= 100000; i++) {

x = x + i;
//  printf(“x = %d\n”, x);
}
return 0;

}
Commented on purpose.



User time  VS  System time – example 2

• What is the difference of the two programs?

16

#define MAX 1000000

int main(void) {
int i;
for(i = 0; i < MAX; i++)

printf(“x\n”);
return 0;

} 

#define MAX 1000000

int main(void) {
int i;
for(i = 0; i < MAX / 5 ; i++)

printf(“x\nx\nx\nx\nx\n”);
return 0;

} 

Lessons learned: When writing a program, you must 
consider both the user time and the system time



User time  VS  System time – short summary

• The user time and the system time together define 
the performance of an application
– System call plays a major role in performance.
– Blocking system call: some system calls even stop your 

process until the data is available.

• Programmers should pay attention to system 
performance
– Reading a file byte-by-byte
– Reading a file block-by-block, where the size of a block is 

4,096 bytes

17
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Story so far…

User space and Kernel space

ProcessProcess

User time and system time
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Next…

Working of system calls
- fork();
- exec*();
- wait() + exit();

ProcessProcess
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Next…

Working of system calls
- fork();
- exec*();
- wait() + exit();

ProcessProcess



fork()

• From a programmer’s view, fork() behaves like 
the following:

21



fork()

• From a programmer’s view, fork() behaves like 
the following:

22

Original execution flow
of a process

The process
invokes fork().

The process splits into two!

Flow of original process

Flow of newly-created process

fork() is called.

fork() returns.

new process

What is doing here?
kernel is fork()-ing

The kernel is doing something
secret. What are those things?



fork()

• From the Kernel’s view…

23

Guess: What will be modified?



Process creation – fork() system call

• fork() behaves like “cell division”.
– It creates the child process by cloning from the parent 

process, including…

24

Cloned items Descriptions

Program counter
[CPU register]

That’s why they both execute from the same line of code after 
fork() returns.

Program code
[File & Memory]

They are sharing the same piece of code.

Memory Including local variables, global variables, and dynamically 
allocated memory.

Opened files
[Kernel’s internal]

If the parent has opened a file “A”, then the child will also have 
file “A” opened automatically.

Recall



Process creation – fork() system call

• However…
– fork() does not clone the following...
– Note: they are all data inside the memory of kernel.

25

Distinct items Parent Child

Return value of fork() PID of the child process. 0

PID Unchanged. Different, not necessarily be 
“Parent PID + 1”

Parent process Unchanged. Doesn’t have the same parent 
as that of the parent process.

Running time Cumulated. Just created, so should be 0.

Recall



fork() in action – the start…

26

OS Kernel

Process
1234

Process
345

Inside kernel, processes are arranged as a 
doubly linked list, called the task list.
Q: What is each node?



fork() in action – the start…

27

OS Kernel

Process
1234

Process
345

PID = 1234

Running time

Array of opened files

PID = 1234

Running time

Array of opened filescopying

Inside kernel, processes are 
arranged as a doubly linked 
list, called the task list.
Q: What is each node?

This guy invoked 
fork().



fork() in action – kernel-space update

28

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked 
fork().

Process
345

reset to 0.

updated.

preserved.



fork() in action – kernel-space update
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OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked 
fork().

Process
345

List of children Pointer to my parent

reset to 0.

updated.

preserved.

updated.
Add a new 

child.



fork() in action – kernel-space update

30

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked 
fork().

Process
345

List of children Pointer to my parent

A new node is 
introduced.

reset to 0.

updated.

preserved.

updated.
Add a new 

child.



fork() in action – user-space update

31

OS Kernel

Process
1234

This guy invoked 
fork().

Process
1235

Process
345

What happened 
to user space?



fork() in action – user-space update

32

OS Kernel

Process
1234

This guy invoked 
fork().

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

Process
1235

Process
345

What happened 
to user space?



fork() in action – user-space update

33

OS Kernel

Process
1234

This guy invoked 
fork().

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

copying

Process
1235

Process
345



fork() in action – finish

34

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

Ready to return 
from fork()

List of children Pointer to my parent

Return value = 1235 Return value = 0

Process
1235

Process
345

Ready to return 
from fork()



fork() in action – array of opened files?

• After fork()
– The child process share a set of opened files

• What are the array of opened files?

35



fork() in action – array of opened files?

• Array of opened files contains:

– That's why a parent process shares the same terminal 
output stream as the child process!

36

Array Index Description

0 Standard Input Stream;  FILE *stdin;

1 Standard Output Stream; FILE *stdout;

2 Standard Error Stream; FILE *stderr;

3 or beyond Storing the files you opened, e.g., fopen(), open(), etc.
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Working of system calls
- fork();
- exec*();

Process



exec*()

• How about the exec*() call family?

38

exec*() is called.

The kernel is doing something
secret. What are those things?

The process returns to user-space
but is executing another program.

Process

Old 
code New 

code

e.g., execl("/bin/ls", "/bin/ls", NULL);



exec*() in action – the start…

39

OS Kernel

Process
1234

Process
345

PID = 1234

Running time

Array of opened files

The kernel searches the target 
program file.

If it is not found, the process returns 
from the system call.

Let’s assume that it can be found.

This guy invoked 
exec*().

Searching



exec*() in action – the end

40

OS Kernel

Process
1234

Process
345

This guy invoked 
exec*().

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

What happens to the 
user-space memory



exec*() in action – the end

41

OS Kernel

Process
1234

Process
345

This guy invoked 
exec*().

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

Cleared!
Cleared!

Reset based 
on the new 
code!

Changed to 
the new 
program code!



exec*() in action – the end
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OS Kernel

Process
1234

Process
345

This guy invoked 
exec*().

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

The kernel code updates the 
content on the user-space memory.

Also, registers’ values, such as the 
program counter, will also be reset.



Process

43

Working of system calls
- fork();
- exec*();
- wait() + exit();

Process



Recall the example

44

1  int system_test(const char *cmd_str) {
2      if(cmd_str == -1)
3          return -1;
4 if(fork() == 0) {
5 execl("/bin/sh", "/bin/sh",

"-c", cmd_str, NULL);
6 fprintf(stderr, 

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9      wait(NULL);
10 return 0;
11 }
12 
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

$ ./system_implement_2
before...

system_implement_2
System_implement_2.c

after...
$ _

The parent is 
suspended until 
the child 
terminates



wait()

• wait() system call
– Suspend the parent process
– Wake up when one child process terminates 

• How to terminate the child process
– Through the exit() system call

• wait() and exit() – they come together!

45
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wait() and exit() – Time Analysis

Child 
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the 
parent.

Child is terminated through 
the exit() system call.

wait()
returns.

Of course, the kernel 
coordinates the 
series of events. But, 
what on earth is 
going on?



Guess…
• What is going on inside kernel?

– Child: exit()
• Process data + PCB

– Parent: wait()
• Process data + PCB

47
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wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

ChildParent
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wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

This guy invoked 
exit().

ChildParent

What changes will be made 
for the PCB?
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wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The kernel frees all the 
allocated memory.

E.g., the list of opened files 
are all closed. 

This guy invoked 
exit().

ChildParent

That’s why not calling fclose()
before exit() may be safe…
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wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

This guy invoked 
exit().

ChildParent

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

Then, the kernel removes 
everything on the user-
space memory about the 
concerned process, 
including program code 
and allocated memory.

Remember that kernel is 
invincible 
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wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

This guy invoked 
exit().

ChildParent

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

 What is next?
How about permanently removing the child?
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wait() and exit() – child side

OS Kernel

Process
1234

Parent

Removed from the process table immediately?
Not really! Why?
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wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

This guy invoked 
exit().

ChildParent

Remain the entry of the 
child in the process table

(terminated state)

Resources?
Deallocate
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wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The child is now called zombie.

Its storage in the kernel-space 
memory is kept to a minimum

The PID (1235 in this example) 
and process structure are 
owned by the child

This guy invoked 
exit().

ChildParent
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wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The kernel notifies the parent of 
the child process about the 
termination of its child.

The notification is a signal called 
SIGCHLD.

This guy invoked 
exit().

ChildParent

SIGCHLD How to wake up parent?



Signal
• What is signal?

– A software interrupt
– It takes steps as in the hardware interrupt

• Two kinds of signals
– Generated from user space

• Ctrl+C, kill() system call, etc.

– Generated from kernel and CPU
• Segmentation fault (SIGSEGV), Floating point exception (SIGFPE), child 

process termination (SIGCHLD), etc.

• Signal is very hard to master, will be skipped in this course
– Reference: Advanced Programming Environment in UNIX
– Linux manpage
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A short summary for exit()
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Step (1) Clean up most of the allocated kernel-space memory.

Step (2) Clean up all user-space memory.

Step (3) Notify the parent with SIGCHLD.

exit() is 
called.

(1) (2) (3)

exit()
returns.

Although the child is still in the 
system, it is no longer running. 
There is no program code!!!

It turns into a mindless zombie…

You cannot kill a zombie process, as it is 
already dead. Then how to eliminate it?
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wait() and exit() – they come together!

Child 
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the 
parent.

Child is terminated through 
the exit() system call.

wait()
returns. Now, it is trivial to 

see that SIGCHLD
signal is the trick!

But, how to 
handle SIGCHLD?

SIGCHLD

How to proceed 
with wait()?
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wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

The kernel sets a signal handling routine
(and it is a function pointer) to the process.

That signal handling routine will be executed 
when SIGCHLD comes.

This guy invoked 
wait().

ChildParent

Signal handlers When SIGCHLD comes, please handle it.

How to handle SIGCHLD?



61

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

By default, every process does not respond 
to the SIGCHLD signal (the signal handlers 
are set only when wait() is called). 

What if the parent is executing other tasks 
(not call the wait() system call) when child 
terminates (see the 2nd case of wait() later)?

This guy invoked 
wait().

ChildParent

Signal handlers
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wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

The kernel set the process to be sleeping.

The formal way to say: the wait() system 
call blocks the process until ...

This guy invoked 
wait().

ChildParent

Signal handlers

Guess: when to wake up?
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wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

This guy invoked 
wait().

ChildParent

Signal handlers

Process
1235

SIGCHLD 
from 
1235
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wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

When SIGCHLD comes, the signal 
handling routine is invoked!

Note: since the parent is still inside 
the system call, instead of the 
original program code, the parent 
process is still blocked in some 
sense…

This guy invoked 
wait().

ChildParent

Signal handlers

SIGCHLD 
from 
1235
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wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

This guy invoked 
wait().

ChildParent

Signal handlers

Default Handling of SIGCHLD

1. Accept and remove the 
SIGCHLD;

2. Destroy the child process 
that sends her the signal.

SIGCHLD 
from 
1235

Now, the child is truly 
dead.



66

wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

Ready to return 
from wait().

Parent

Signal handlers

The signal handler is then removed, i.e., the 
process is ignoring SIGCHLD again.

It returns to the previously-executing code, 
going back to the user space.

So, it looks like “wait() is returned from its 
invocation”.

This is the reason why wait() system call waits 
for any one of the child processes.
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wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

Ready to return 
from wait().

Parent

Return value = 1235
Lastly, the return value of wait() system call is 
the PID of the terminated child.
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wait() and exit() – parent side

Child 
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the 
parent.

Child is terminated through 
the exit() system call.

wait()
returns.

So, the child will be 
given a clean death 
by the wait()
system call.

SIGCHLD



Is it done?

• How about wait()is called after the child already 
terminated?
– Remember the case 2 (which is safe)
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wait()

fork() Terminate

wake up

Case 1.

Parent is 
suspended.

wait()

fork() Terminate
Case 2.

no suspension
is needed.
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wait() and exit() – parent side

Child 
Process

Parent
Process

wait()
is called.

Parent

Child

Child is terminated through 
the exit() system call.

What is going on inside the kernel?

SIGCHLD

Case 2.
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wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

Child was already terminated (became a 
zombie), SIGCHLD is also sent to parent before

ChildParent

SIGCHLD 
from 
1235



72

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

Similar to Case 1, the kernel sets the 
signal handling routine...

Nevertheless, the wait() system call 
finds that the SIGCHLD signal is 
already there.

So, default actions are then taken 
immediately.

This guy invoked 
wait().

ChildParent

Signal handlers

SIGCHLD 
from 
1235
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wait() and exit() – parent side

Child 
Process

Parent
Process Parent

Child

Child is terminated through 
the exit() system call.

The parent will experience a 
negligible amount of 
blocking period.

SIGCHLD

Case 2.

wait() returns.

wait() is called.

The zombie can exist up 
to the moment that the 
parent process calls 
wait().



Orphans (zombies)

• What would happen if a parent did not invoke 
wait() and terminated?
– Remember the reparent operation in Linux?

• init is the new parent, and it periodically invokes 
wait()
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wait() and exit() – short summary

• A process is turned into a zombie when…
– The process calls exit().
– The process returns from main().
– The process terminates abnormally.

• You know, the kernel knows that the process is terminated 
abnormally. Hence, the kernel invokes exit() by itself.

• Remember why exec*() does not return to its 
calling process in previous example…
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wait() and exit() – short summary

• wait() is to reap zombie child processes
– You should never leave any zombies in the system.

• Linux will label zombie processes as “<defunct>”.
– To look for them: ps aux | grep defunct

• Learn waitpid() by yourself…
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wait() and exit() – Example

77

int main(void)
{

int pid;
if( (pid = fork()) ) {

printf("Look at the status of the process %d\n", pid);
while( getchar() != '\n' );
wait(NULL);
printf("Look again!\n");
while( getchar() != '\n' );

}
return 0;

}

What is the purpose of this program?

1
2
3
4
5
6
7
8
9
10
11
12



wait() and exit() – Example
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int main(void)
{

int pid;
if( (pid = fork()) ) {

printf("Look at the status of the process %d\n", pid);
while( getchar() != '\n' );
wait(NULL);
printf("Look again!\n");
while( getchar() != '\n' );

}
return 0;

}
This program requires you to type “enter” twice 
before the process terminates.

You are expected to see the status of the child 
process changes between the 1st and the 2nd

“enter”. 

1
2
3
4
5
6
7
8
9
10
11
12
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Working of system calls
- fork();
- exec*();
- wait() + exit();
- importance/fun in knowing

the above things?



The role of wait() in the OS…

• Why calling wait() is important
– It is not about process execution/suspension…
– It is about system resource management.

• Think about it:
– A zombie takes up a PID;
– The total number of PIDs are limited;

• Read the limit: “cat /proc/sys/kernel/pid_max”

– What will happen if we don’t clean up the zombies?
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When wait() is absent…

• What is the result of this program?
– Do not try to know the result by running it 

81

int main(void) {
while( fork() );
return 0;

}

Think about what will be 
happened to both parent 
and child processes?



When wait() is absent…

• Don’t try this…

82

Parent: never reach here.

Child: reached immediately, 
but no corresponding wait()
for the parent (ZOMBIE)

Parent

ChildChildChild

An infinite, zombie factory!

fork()

Turn into zombie 
immediately!

int main(void) {
while( fork() );
return 0;

}



Summary

• Process concept
– Process vs program
– User-space memory + PCB

• Process operations
– Creation, program execution, termination
– The internal workings of

• fork()
• exec*()
• wait()+exit(): come together

• Calling wait() is important
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Chapter 4: Threads

• Thread Concepts

– Why use threads

– Structure in Memory

– Benefits and Challenges

– Thread Models

• Programming

– Basic Programming: Pthreads Library

– Implicit Threading: Thread Pools & OpenMP

2
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Multi-threading
- Motivation



Motivation - Application Side

• Most software applications are multithreaded, each 
application is implemented as a process with 
several threads of control 

– Web browser

• displays images, retrieve data from network

– Word processor

• display graphics, respond to keystrokes, spelling & grammar 
checking

4



Motivation - Application Side

• Most software applications are multithreaded

– Web browser

– Word processor

– Similar tasks in a single application (web server)

• Accept client requests, service the requests

• Usually serve thousands of clients

5



Motivation – Application Side

• Why not create a process for each task?

– Process creation is 

• Heavy-weighted

• Resource intensive

• Still remember what kinds of data are included in a 
process…

– Text, data, stack, heap in user-space memory

– PCB in kernel-space memory

• Many of the data can be shared between multiple 
tasks within an application

6



Motivation – System Side

• Modern computers usually contain multicores

– But, each processor can run only one process at a time

– CPU is not fully utilized

• How to improve the efficiency?

– Assign one task to each core

– Real parallelism (not just concurrency with interleaving 
on single-core system)

7



Concurrency vs. Parallelism

8

Concurrent execution on single-core system:

Parallel execution on a multi-core system:
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Multi-threading
- Motivation
- Thread Concept



High-level Idea

10



Recall: Process in Memory

• User-space memory of Process A

11

Global 
variable

Local 
variable

Dynamically-
allocated 
memory

Code



Multi-thread – internals

12

Page 12

Function A

Function B

Code

Local Local

Global variables

Dynamic

- All threads share the same code.

- A thread starts with one specific 
function. 
- We name it the thread function
- Functions A & B in the diagram

- The thread function can invoke 
other functions or system calls

- But, a thread could never return to 
the caller of the thread function.

Code
User-space memory of a 

process



Multi-thread – internals

13

Page 13

Function A

Function B

Code

Local Local

Global variables

Dynamic

- All threads share the same global 
variable zone and the same 
dynamically allocated memory

- All threads can read from and write 
to both areas

Global variables

User-space memory of a 
process

Dynamically allocated memory



Multi-thread – internals

14

Page 14

Function A

Function B

Code

Local Local

Global variables

Dynamic

- Each thread has its own memory 
range for the local variables

- So, the stack is the private zone for 
each stack

User-space memory of a 
process

Local variables



Benefits of Multi-thread

• Responsiveness and multi-tasking

– Multi-threading design allows an application to do 
parallel tasks simultaneously

– Example: Although a thread is blocked, the process can 
still depend on another thread to do other things!

– Especially important for interactive applications (user 
interface)

15

Reading from 
keyboard

Status: BLOCKED

Doing 
calculation

Status: RUNNING
It’d be nice to 
assign one thread 
for one blocking 
system/library call.



Benefits of Multi-thread

• Ease in data sharing, can be done using:

– global variables, and

– dynamically allocated memory.

• Processes share resources via shared memory or message 
passing, which must be explicitly arranged by the 
programmer

16

Reading from 
keyboard

Doing 
calculation

Of course, this leads to 
the mutual exclusion & 
the synchronization
problems (will be talked 
in later chapters)

keyboard input



Benefits of Multi-thread

17

• Economy

– Allocating memory and resources for process creation is 
costly, dozens of times slower than creating threads

– Context-switch between processes is also costly, several 
times of slower

• Scalability

– Threads may be running in parallel on different cores



Programming Challenges

18

• Identifying tasks

– Divide separate and concurrent tasks

• Balance

– Tasks should perform equal work of equal value

• Data splitting

– Data must be divided to run on separate cores

• Data dependency

– Synchronization is needed

• Testing and debugging
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Multi-threading
- Motivation
- Thread Concept
- Thread Models



Global
variable

Local 
variable

Dynamically-
allocated 
memory

Code + 
constants

Process 
structure

(PCB)

20

Recall Process Structure

Kernel Space

User space

Process



Similarly…

• Thread should also include
– Data/resources in user-space memory
– Structure in kernel

• How to provide thread support?
– User thread

• Implement in user space

– Kernel thread
• Supported and managed by kernel

• Thread models (relationship between user/kernel thread)
– Many-to-one
– One-to-one
– Many-to-many

21



Thread models

• Many-to-One Model
– All the threads are mapped to one 

process structure in the kernel.

– Merit
• Easy for the kernel to implement.

– Drawback
• When a blocking system call is called, 

all the threads will be blocked

– Example. Old UNIX & green thread 
in some programming languages.

22

Kernel
Space

User
Space

Process
Structure

Many-to-one model



Thread models

• One-to-One Model
– Each thread is mapped to a process or 

a thread structure

– Merit: 
• Calling blocking system calls only block 

those calling threads
• A high degree of concurrency

– Drawback:
• Cannot create too many threads as it is 

restricted by the size of the kernel 
memory

– Example. Linux and Windows follow 
this thread model

23

Kernel
Space

User
Space

One-to-one model



Scheduling – why & who cares?

• If a scheduler only interests in processes…

24

Process-based Scheduler

thread lib thread lib thread lib thread lib

A thread library needs 
to implements its only 
scheduling policy. I only set which process to 

run, and I don’t know what 
is a thread.



Scheduling – why & who cares?

• If a scheduler only interests in threads…

25

Thread-based Scheduler

The scheduler doesn’t know what 
is a process; it only knows threads.

Then, a process, without multi-
threading, is actually one thread 
for the scheduler.since kernel 

version 2.6!



Thread models

• Many-to-many Model

– Multiple threads are mapped to 
multiple structures (group 
mapping)

– Merit: 

• Create as many threads as 
necessary

• Also have a high degree of 
concurrency

26

Kernel
Space

User
Space

Many-to-many model
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Multi-threading
- Motivation
- Thread Concept
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- Basic Programming



Thread Libraries

• A thread library provides the programmer with an 
API for creating and managing threads

– Two ways of implementation: User-level or kernel-level

• Three main thread libraries

– POSIX Pthreads (user-level or kernel-level)

– Windows (kernel-level)

– Java (implemented using Windows API or Pthreads)

28



Creating Multiple Threads

• Asynchronous threading

– Parent resumes execution after creating a child

– Parent and child execute concurrently

– Each thread runs independently 

• Little data sharing 

• Synchronous threading

– Fork-join strategy: Parent waits for children to terminate 

• Significant data sharing

29



The Pthreads Library

• Pthreads: POSIX standard defining an API for 
thread creation and synchronization.
– Specification, not implementation

• How to use Pthreads?

30

Process Thread

Creation fork() pthread_create()

I.D. Type PID, an integer “pthread_t”, a structure

Who am I? getpid() pthread_self()

Termination exit() pthread_exit()

Wait for child 
termination

wait() or waitpid() pthread_join()

Kill? kill() pthread_kill()



ISSUE 1: Thread Creation
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Thread creation – pthread_create()

32

Thread Function

Main Function

5  int main(void) {
6      pthread_t tid;
7      pthread_create(&tid, NULL, hello, “hello world”);
8      pthread_join(tid, NULL);
9      return 0;
10  }

1  void * hello( void *input ) {
2      printf(“%s\n”, (char *) input);
3      pthread_exit(NULL);
4  }



Thread creation – pthread_create()
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Thread Function

Main Function

1  void * hello( void *input ) {
2      printf(“%s\n”, (char *) input);
3      pthread_exit(NULL);
4  }

5  int main(void) {
6      pthread_t tid;
7      pthread_create(&tid, NULL, hello, “hello world”);
8      pthread_join(tid, NULL);
9      return 0;
10  }

Main Thread

At the beginning, 
there is only one 
thread running: the 
main thread.



Thread creation – pthread_create()
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Thread Function

Main Function

5  int main(void) {
6      pthread_t tid;
7      pthread_create(&tid, NULL, hello, “hello world”);
8      pthread_join(tid, NULL);
9      return 0;
10  }

Main Thread

1  void * hello( void *input ) {
2      printf(“%s\n”, (char *) input);
3      pthread_exit(NULL);
4  }

pthread_
create()

Hello Thread

The hello thread is 
created!

It is running “together” 
with the main thread.



Thread creation – pthread_create()
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Thread Function

Main Function

5  int main(void) {
6      pthread_t tid;
7      pthread_create(&tid, NULL, hello, “hello world”);
8      pthread_join(tid, NULL);
9      return 0;
10  }

1  void * hello( void *input ) {
2      printf(“%s\n”, (char *) input);
3      pthread_exit(NULL);
4  }

This sets the thread function of the to-
be-created thread as: hello().

The pthread_create()
function allows one 
argument to be passed to 
the thread function.

Remember: A thread starts with one specific function (thread function)



Thread creation – pthread_create()
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Thread Function

Main Function

5  int main(void) {
6      pthread_t tid;
7      pthread_create(&tid, NULL, hello, “hello world”);
8      pthread_join(tid, NULL);
9      return 0;
10  }

Main Thread

1  void * hello( void *input ) {
2      printf(“%s\n”, (char *) input);
3      pthread_exit(NULL);
4  }

Hello Thread

Remember wait()
and waitpid()?

pthread_join()
performs similarly.

Blocked



Thread creation – pthread_create()
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Thread Function

Main Function

5  int main(void) {
6      pthread_t tid;
7      pthread_create(&tid, NULL, hello, “hello world”);
8      pthread_join(tid, NULL);
9      return 0;
10  }

Main Thread

1  void * hello( void *input ) {
2      printf(“%s\n”, (char *) input);
3      pthread_exit(NULL);
4  }

Hello Thread

Termination of the 
target thread causes 
pthread_join()
to return.

Blocked



ISSUE 2: Passing parameters
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Thread creation – passing parameter
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Thread Function

Main Function

7  int main(void) {
8      pthread_t tid;
9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n”, input);
14      return 0;
15  }

1  void * do_your_job( void *input ) {
2      printf(“child = %d\n”, *( (int *) input) );
3      *((int *) input) = 20;
4      printf(“child = %d\n”, *( (int *) input) );
5      pthread_exit(NULL);
6  }

Guess: What is 
the output? 

$ ./pthread_evil_1
main = 10
child = 10
child = 20
main = 20
$

Each thread has a 
separated stack.

Why do we have 
such results?



Thread creation – passing parameter
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Global

Dynamic

Code

Local
(main thread)

7  int main(void) {
8      pthread_t tid;
9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n, input);
13      return 0;
14  }

Well, we all know that the local variable “input” is in the 
stack for the main thread.

1  void * do_your_job( void *input ) {
2      printf(“child = %d\n”, *( (int *) input) );
3      *((int *) input) = 20;
4      printf(“child = %d\n”, *( (int *) input) );
5      pthread_exit(NULL);
6  }



7  int main(void) {
8      pthread_t tid;
9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n, input);
13      return 0;
14  }

Thread creation – passing parameter

41

Global

Dynamic

Code

Local
(main thread)

Yet…the stack for the new thread is not on another process, but is on the 
same piece of user-space memory as the main thread.

Local
(new thread)

1  void * do_your_job( void *input ) {
2      printf(“child = %d\n”, *( (int *) input) );
3      *((int *) input) = 20;
4      printf(“child = %d\n”, *( (int *) input) );
5      pthread_exit(NULL);
6  }



7  int main(void) {
8      pthread_t tid;
9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n, input);
13      return 0;
14  }

Thread creation – passing parameter
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Global

Dynamic

Code

Local
(main thread)

The pthread_create() function only passes an address to the new thread.
Worse, the address is pointing to a variable in the stack of the main thread!

Local
(new thread)

1  void * do_your_job( void *input ) {
2      printf(“child = %d\n”, *( (int *) input) );
3      *((int *) input) = 20;
4      printf(“child = %d\n”, *( (int *) input) );
5      pthread_exit(NULL);
6  }



7  int main(void) {
8      pthread_t tid;
9      int input = 10;
10      printf(“main = %d\n”, input);
11      pthread_create(&tid, NULL, do_your_job, &input);
12      pthread_join(tid, NULL);
13      printf(“main = %d\n, input);
13      return 0;
14  }

Thread creation – passing parameter
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Global

Dynamic

Code

Local
(main thread)

Therefore, the new thread can change the value in the main 
thread, and vice versa.

Local
(new thread)

1  void * do_your_job( void *input ) {
2      printf(“child = %d\n”, *( (int *) input) );
3      *((int *) input) = 20;
4      printf(“child = %d\n”, *( (int *) input) );
5      pthread_exit(NULL);
6  }



ISSUE 3: Multiple Threads
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Thread creation – multiple threads
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Thread Function

Main Function

6  int main(void) {
7      int i;
8      pthread_t tid[5];
9  
10      for(i = 0; i < 5; i++)
11          pthread_create(&tid[i], NULL, do_your_job, &i);
12      for(i = 0; i < 5; i++)
13          pthread_join(tid[i], NULL);
14      return 0;
15  }

1  void * do_your_job(void *input) {
2      int id = *((int *) input);
3      printf("My ID number = %d\n", id);
4      pthread_exit(NULL);
5  }

Waiting on several 
threads: enclose 
pthread_join() 
within a for loop



ISSUE 4: Return Value
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Thread termination – passing return value

47

Thread Function

Main Function

7  int main(void) {
8 pthread_t tid;
9 int input = 10, *output;
10 pthread_create(&tid, NULL, do_your_job, &input);
11 pthread_join(tid,  (void **) &output );
12 return 0;
13  }

1  void * do_your_job(void *input) {
2 int *output = (int *) malloc(sizeof(int));
3 srand(time(NULL));
4 *output = ((rand() % 10) + 1) * (*((int *) input));
5 pthread_exit( output );
6  } void pthread_exit(void *return_value);

Together with termination,  a pointer to a global 
variable or a piece of dynamically allocated 
memory is returned to the main thread.

Using pass-by-reference, a pointer 
to the result is received in the main 
thread.



Other Libraries

• For Windows threads and Java threads, you can 
refer to the textbook if you are interested in.

48
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Implicit Threading

50

• Applications are containing hundreds or even thousands of 
threads

– Program correctness is more difficult with explicit threads

• How to address the programming difficulties?

– Transfer the creation and management of threading from 
programmers to compilers and run-time libraries 

– Implicit threading

• We will introduce two methods

– Thread Pools

– OpenMP



Thread Pools

• Problems with multithreaded servers

– Time required to create threads, which will be discarded 
once completed their work

– Unlimited threads could exhaust the system resources

• How to solve?

– Thread pool

– Idea

• Create a number of threads in a pool where they wait for work

– Procedure

• Awakens a thread if necessary

• Returns to the pool after completion

• Waits until one becomes free if the pool contains no available thread

51



Thread Pools

52

• Advantages

– Usually slightly faster to service a request with an 
existing thread than create a new thread

– Allows the number of threads in the application(s) to be 
bound to the size of the pool



OpenMP

53

• Provides support for parallel 
programming in shared-memory 
environments

• Set of compiler directives and an API 
for C, C++, FORTRAN 

• Identifies parallel regions – blocks of 
code that can run in parallel

When OpenMP encounters the 
directive, it creates as many threads 
as there are processing cores

#pragma omp parallel for 

for(i=0;i<N;i++) { 

c[i] = a[i] + b[i]; 

} 

Parallel for loop
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Semantics of fork() and exec()

55

• Two key system calls for processes: fork,exec

• fork(): Some UNIX systems have two versions 

– The new process duplicates all threads, or

– Duplicates only the thread that invoked fork()

• exec(): usually works as normal 

– Replace the running process - including all threads



Signal Handling

• Signals are used in UNIX systems to notify a process that a 
particular event has occurred

– Synchronous signal and asynchronous signal

– Default handler or user-defined handler

• Where should a signal be delivered in multi-threaded program?

– Deliver the signal to the thread to which the signal applies

– Deliver the signal to every thread in the process

– Deliver the signal to certain threads in the process

– Assign a specific thread to receive all signals for the process

• Deliver a signal to a specified thread with Pthread

– pthread_kill(pthread_t tid, int signal)

56



Thread Cancellation

57

• Terminating a thread before it has finished

– Why needed? 

– Example: Close a browser when multiple threads are loading 
images

• Two general approaches

– Asynchronous cancellation terminates the target thread 
immediately

• Problem: Troublesome when canceling a thread which is updating 
data shared by other threads

– Deferred cancellation allows the target thread to periodically 
check if it should be cancelled (can be canceled safely)



Thread Cancellation (Cont.) - Pthreads

58

• Pthreads code example

– pthread_cancel()

– Indicates only a request

• Three cancelation modes

• Default: deferred

– Cancelation occurs only when it reaches a cancelation point, can 
be established by  pthread_testcancel()



Thread-Local Storage

59

• Some applications, each thread may need its own copy of 
certain data

– Transaction processing system: service each transaction (with a 
unique identifier) in a thread 

– How about local variables? 

• Visible only during a single function invocation

• Thread-local storage (TLS) allows each thread to have its 
own copy of data

– TLS is visible across function invocations

– Similar to static data

– TLS data are unique to each thread



Summary of Threads

• Virtually all modern OSes support multi-threading
– A thread is a basic unit of CPU utilization
– Each comprises a thread ID, a program counter, a register set, 

and a stack
– All threads within a process share code section, data section, 

other resources like open files and signals

• You should take great care when writing multi-
threaded programs

• You also have to take care of (will be talked later):
– Mutual exclusion and 
– Synchronization
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End of Chapter 4
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Story so far…

• Process concept + operations

– Programmer’s perspective + kernel’s perspective

• Thread

– Lightweight process

• We mainly talked about the stuffs related to a single 
process/thread, what if multiple processes exist…

2
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Processes 

• The processes within a system may be 

– independent or

• Independent process cannot affect or be affected by other 
processes

– cooperating

• Cooperating process can affect or be affected by other 
processes

• Note: Any process that shares data with others is a 
cooperating process 
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Cooperating Processes 

• Why we need cooperating processes

– Information sharing 

• e.g., shared file

– Computation speedup

• executing subtasks in parallel

– Modularity

• dividing system functions into separate processes

– Convenience
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P

P

P

Inter-process communication (IPC)
- What and how?
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Interprocess Communication

• IPC: used for exchanging data between processes

• Cooperating processes need 

– interprocess communication (IPC) for exchanging data

• Paradigm for cooperating processes

– Producer-consumer problem, useful metaphor for many 
applications (abstracted problem model)

• producer process produces information that is consumed by a 
consumer process

• At least one producer and one consumer



7

Two models

• Two (abstracted) models of IPC

– Shared memory

• Establish a shared memory region, read/write to shared region

• Accesses are treated as routine memory accesses

• Faster 
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Two models

• Two (abstracted) models of IPC

– Message passing

• Exchange message 

• Require kernel intervention

• Easier to implement in distributed system
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Communications Models 

Message passing Shared memory



Producer-Consumer Problem

• Shared memory solution

– A buffer is needed to allow processes to run concurrently

10

A buffer
-It is a shared object;
-It is a queue (imagine that it is an array implementation of queue).

A producer 
process

-It produces a unit of data, and
-writes that a piece of data to the tail of the buffer at one time.

A consumer
process

-It removes a unit of data from the head of the bounded buffer at 
one time.

bounded/unbounded buffer

Producer Consumerenqueue dequeue



Producer-Consumer Problem
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Producer-
consumer

requirement #1

When the producer wants to 
(a) put a new item in the buffer, but
(b) the buffer is already full…

Producer-
consumer

requirement #2

When the consumer wants to
(a) consumes an item from the buffer, but
(b) the buffer is empty…

Then,
(1) The producer should be suspended, and
(2) The consumer should wake the producer up after she has 

dequeued an item.

Then,
(1) The consumer should be suspended, and
(2) The producer should wake the consumer up after she has 

enqueued an item.

• Focus on bounded buffer: what are the requirements?
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Producer-consumer solution (shared mem)

item next_produced; 

while (true) { 

/* produce an item in next produced */ 

while (((in + 1) % BUFFER_SIZE) == out) 

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

} 

item next_consumed; 

while (true) {
while (in == out) 

; /* do nothing */
next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE;

/* consume the item */ 

} 

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Shared memory by producer 
& consumer processes

Producer

Consumer

in (producer)out (consumer)

…

Only allows BUFFER_SIZE-1 
items at the same time. Why?
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Message Passing

• Communicating processes may reside on different 
computers connected by a network

• IPC facility provides two operations:
– send(message) + receive(message)

• If processes P and Q wish to communicate
– Establish a communication link between them

– Exchange messages via send/receive

P

Q

Message
passing
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Message Passing (Cont.)

• Implementation issues (logical):

– Naming: Direct/indirect communication

– Synchronization: Synchronous/asynchronous

– Buffering
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Naming 

• How to refer to each other?

• Direct communication: explicitly name each other

– Operations (symmetry)
• send (Q, message) – send a message to process Q

• receive(P, message) – receive a message from process P

– Properties of communication link

• Links are established automatically (every pair can establish)

• A link is associated with exactly one pair of processes

• Between each pair, there exists exactly one link

– Disadvantage: limited modularity (hard-coding)
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Naming 

• How to refer to each other?

• Indirect communication: sent to and received from 
mailboxes (ports)

– Operations 
• send (A, message) – send a message to mailbox A

• receive(A, message) – receive a message from mailbox A

– Properties of communication link

• A link is established between a pair of processes only if both 
members have a shared mailbox

• A link may be associated with more than two processes

• Between each pair, a number of different links may exist
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Issues of Indirect Communication

• ISSUE1: Who receives the message when multiple 
processes are associated with one link?

– Who gets the message?

– Policies 
• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver (based on an algorithm).  
Sender is notified who the receiver was.

• ISSUE2: Who owns the mailbox?

– The process (ownership may be passed)

– The OS (need a method to create, send/receive, delete)

P1 Mailbox
P2

P3
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Synchronization

• How to implement send/receive?

– Blocking is considered synchronous
• Blocking send - the sender is blocked until the msg is received

• Blocking receive - the receiver is blocked until a msg is available

– Non-blocking is considered asynchronous
• Non-blocking send - the sender sends the message and resumes

• Non-blocking receive - the receiver receives a valid msg or null

• Different combinations are possible

– When both send and receive are blocking, we have a 
rendezvous between the processes. 

– Other combinations need buffering.
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Buffering

• Different combinations are possible

– When both send and receive are blocking, we have a rendezvous
between the processes. 

– Other combinations need buffering.

• Messages reside in a temporary queue, which can be 
implemented in three ways

– Zero capacity – no messages are queued on a link,
sender must wait for receiver (no buffering)

– Bounded capacity – finite length of n messages, 
sender must wait if link is full

– Unbounded capacity – infinite length, sender never waits
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P

P

P

Inter-process communication (IPC)
- What and how?
- POSIX shared memory



POSIX Shared Memory

• POSIX shared memory is organized using memory-
mapped file

– Associate the region of shared memory with a file

• Illustrate with the producer-consumer problem

– Producer

– Consumer 

21



POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

22

Name of the shared memory object

Create the object if it does not exist

Open for reading & writing

Directory permissions



POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

– Configure object size
• ftruncate(shm_fd, SIZE);

23

File descriptor for the shared mem. Obj.

Size of the shared-memory object



POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

– Configure object size
• ftruncate(shm_fd, SIZE);

– Establish a memory-mapped file containing the object
• ptr = mmap(0,SIZE, PROT_WRITE,MAP_SHARED,shm_fd,0);

24

Allows writing to the object 
(only writing is necessary for producer)

Changes to the shared-memory object will 
be visible to all processes sharing the object



POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

25

Open for read only



POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

– Memory map the object
• ptr = mmap(0,SIZE, PROT_READ,MAP_SHARED,shm_fd,0);

26

Allows reading to the object 
(only reading is necessary for consumer)



POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

– Memory map the object
• ptr = mmap(0,SIZE, PROT_READ,MAP_SHARED,shm_fd,0);

– Remove the shared memory object
• shm_unlink(name);

27



POSIX Shared Memory – Complete Solution

28

Producer Consumer

Direct access to the shared memory region
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P

P

P

Inter-process communication (IPC)
- What and how?
- POSIX shared memory
- Sockets
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Sockets

• A socket is defined as an endpoint for 
communication (over a network)

– A pair of processes employ a pair of sockets

– A socket is identified by an IP address and a port
number

– All ports below 1024 are used for standard services

• telnet server listens to port 23

• FTP server listens to port 21

• HTTP server listens to port 80
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Sockets

• Socket uses a client-server architecture

• All connections must be unique

– Establishing a new connection on the same host needs another 
port (>1024)

• Special IP address 127.0.0.1 (loopback) refers to itself

– Allow a client and server on the same host to communicate using 
the TCP/IP protocol

➢ Server waits for incoming client 
requests by listening to a specific port

➢ Accepts a connection from the client 
socket to complete the connection
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Example in Java

• Three types of sockets

– Connection-oriented (TCP), Connectionless (UDP), Multicast –
data can be sent to multiple recipients
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P

P

P

Inter-process communication (IPC)
- What and how?
- POSIX shared memory
- Sockets
- Pipes



What is pipe?

• Pipe is a shared object.

– Using pipe is a way to realize IPC.

– Acts as a conduit allowing two processes to 
communicate.

34

ls lessdata

An IPC Example

ls  |  less

pipe



35

Pipes

• Four issues:

– Is the communication unidirectional or bidirectional?

– In the case of two-way communication, is it half or full-
duplex?

– Must there exist a relationship (i.e., parent-child) 
between the communicating processes?

– Can the pipes be used over a network?

• Two common pipes

– Ordinary pipes and named pipes



Ordinary Pipes

• Ordinary pipes (no name in file system) 
– Ordinary pipes are used only for related processes 

(parent-child relationship)
• Processes must reside on the same machine

– Ordinary pipes are unidirectional (one-way 
communication)

– Ceases to exist after communication has finished

• Ordinary pipes allow communication in standard 
producer-consumer style
– Producer writes to one end (write-end)

– Consumer reads from the other end (read-end)

36



UNIX Pipe

• UNIX treats a pipe as a special file (child inherits it 
from parent)

– Create: pipe(int fd[]);

• fd[0]: read end

• fd[1]: write end

– Access: Ordinary read() and write() system calls

37

ls lessByte stream
Unidirectional

ls  |  less

pipe
Write end 

fd[1]

Read end 
fd[0]



UNIX Pipe

• Pipes are anonymous (no name in file system), then 
how to share?

– fork() duplicates parent’s file descriptors

– Parent and child use each end of the pipe

38

Sharing



UNIX Pipe

39

Create a child process

Parent process
Use the write end only

Child process
Use the read end only

unidirectional (one-
way communication



Pipe - Shell Example
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Programmer’s point of view.

Shell

pipe

pipe();

ls

fork(); 

write(); less

fork(); 

read();

ls  |  less



Pipe – Shell Example
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Kernel’s point of view.

Shell

ls less

pipe(); read();write();

enqueue dequeue

The pipe() system call 
creates a piece of shared 
storage in the kernel 
space!

The pipe() system call 
creates a piece of shared 
storage in the kernel 
space!

Yet, the pipe is more than 
a storage: it is a FIFO 
queue with finite space.

ls  |  less



Pipe – Shell Example
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The producer-consumer model

ls less

read();write();

enqueue dequeue

Producer Consumer

More, this kind of application 
demonstrates the producer-consumer 
communication model.

Remember the two requirements of 
the bounded buffer? 
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Named Pipes

• Named pipes (pipe with name in file system)
– No parent-child relationship is necessary (processes must reside 

on the same machine)

– Several processes can use the named pipe for communication 
(may have several writers)

– Continue to exist until it is explicitly deleted

– Communication is bidirectional (still half-duplex)

• Named pipes are referred to as FIFOs in UNIX

– Treated as typical files

– mkfifo(), open(), read(), write(), close()



Story so far…

• Interprocess communication (IPC)
– Necessary for cooperating processes
– Producer-consumer model

• IPC models
– Shared memory & message passing

• IPC schemes
– Shared memory
– Ordinary pipes (parent-child processes)
– FIFOs (processes on the same machine)
– Sockets (intermachine communication)

• More: Michael Kerrisk, “The Linux Programming Interface” 
(http://www.man7.org/tlpi/)
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IPC models – another point of view

45

Shared Objects Message Passing

Challenge. Coordination can only be 
done by detecting the status of the 

shared object.
E.g., is the pipe empty / full?

Challenge. Coordination relies on the 
reliability and the efficiency of the 

communication medium (and protocol).

E.g., pipes, shared memory, and regular 
files.

E.g., socket programming, message
passing interface (MPI) library.

P1

P2

Shared 
object

read & 
write

P1

P2

Message
passing
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Summary on IPC models – another point of view

2

Shared Objects Message Passing

Challenge. Coordination can only be 
done by detecting the status of the 

shared object.
E.g., is the pipe empty / full?

Challenge. Coordination relies on the 
reliability and the efficiency of the 

communication medium (and protocol).

E.g., pipes, shared memory, and regular 
files.

E.g., socket programming, message
passing interface (MPI) library.

P1

P2

Shared 
object

read & 
write

P1

P2

Message
passing
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P

P

P

IPC problem: Race condition



Evil source: the shared objects

• Pipe is implemented with the 
thought that there may be 
more than one process 
accessing it “at the same time”

• For shared memory and files, 
concurrent access may yield 
unpredictable outcomes

4

Process Process

read() write()

File structure 
in the kernel

data

Hard Disk



Understanding the problem…
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Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1  attach to the shared memory X;
2  add 10 to X;
3  exit;

Guess what the final result should be?

High-level language for Program B

1  attach to the shared memory X;
2  minus 10 to X;
3  exit;

It may be 10, 0 or 20, can you believe it?



Understanding the problem…

6

Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1  attach to the shared memory X;
2  add 10 to X;
3  exit;

High-level language for Program B

1  attach to the shared memory X;
2  minus 10 to X;
3  exit;

Remember the flow of executing a program and the system hierarchy?



Understanding the problem…
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Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1  attach to the shared memory X;
2  add 10 to X;
3  exit;

Partial low-level language for Program A

1    attach to the shared memory X;
......
2.1  load memory X to register A;
2.2  add 10 to register A;
2.3  write register A to memory X;
......
3    exit;

Guess what?  This code block is evil!

This operation 
is not atomic



Understanding the problem…
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Process B

Shared memory - X

Value = 10

State:
Ready

Register A
Value = 0

Process A

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

The initial setting
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Execution Flow #1



Problem not yet arise…
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Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 10

Process A

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 1

1



Problem not yet arise…
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Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 20

Process A

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 2

1

2



Problem not yet arise…
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Process B

Shared memory - X

Value = 20

State:
Running

Register A
Value = 20

Process A

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 3

1

2

3



Problem not yet arise…
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Process B

Shared memory - X

Value = 20

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 20

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Context Switching

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 4

2

1

3

4



Problem not yet arise…
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Process B

Shared memory - X

Value = 20

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 10

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 5

1

2

3

4

5



Problem not yet arise…
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Process B

Shared memory - X

Value = 10

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 10

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Execution Flow #1, Step 6

1

2

3

4

5

6
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Execution Flow #2



Problem arise…
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Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 10

Process A

State:
Ready

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Execution Flow #2, Step 1

1



Problem arise…
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Process B

Shared memory - X

Value = 10

Register A
Value = 10

Process A

Register A
Value = 10

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #2, Step 2

Context Switching

State:
Ready

State:
Running

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

1 2



Problem arise…
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Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 10

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #2, Step 3

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Context Switching

State:
Running

State:
Ready

1 2

3



Problem arise…
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Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

Execution Flow #2, Step 4

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Context Switching

State:
Ready

State:
Running

1 2

3 4



Problem arise…
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Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 0

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

State:
Ready

State:
Running

1 2

3 4

HELP!!  No matter which process runs next, the result is 
either 0 or 20, but not 10!

The final result depends on the execution sequence!



Race condition – the curse

• The above scenario is called the race condition.

• A race condition means
– the outcome of an execution depends on a particular 

order in which the shared resource is accessed.

• Remember: race condition is always a bad thing and 
debugging race condition has no fun at all!
– It may end up …

• 99% of the executions are fine.

• 1% of the executions are problematic.

22



Race condition – the curse

• For shared memory and files, 
concurrent access may yield 
unpredictable outcomes
– Race condition

• Common situation
– Resource sharing occurs frequently in OS

• EXP: Kernel DS maintaining a list of opened 
files, maintaining memory allocation, 
process lists…

– Multicore brings an increased emphasis 
on multithreading
• Multiple threads share global variables and 

dynamically allocated memory

• Process synchronization is needed

23

Process Process

read() write()

File structure 
in the kernel

data

Hard Disk



Topics in Process Synchronization
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Process Sychronization

concurrent accesses suffer 
from race condition

Guarantee mutual exclusion

Idea: How to achieve

Define critical section

How to implement

 Four requirements
 Software-based proposals

➢ Disabling interrupts
➢ strict alternation
➢ peterson’s solution
➢ mutex lock
➢ Semaphore (best choice)

Classic problems

 Producer-consumer problem
 Dining philosopher problem
 Reader-writer problem

Cooperating Processes

Semaphore Usage

Avoid deadlock

Solution

Application
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P

P

P

Inter-process communication (IPC)
- Mutual exclusion

- what & how to achieve?

How to have 
peace?



Mutual Exclusion
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Process BProcess A

Shared memory

add 10; minus 10;

Process BProcess A

Shared memory

add 10; minus 10;

Two processes playing with the same 
shared memory is dangerous.

We will face the curse - race condition.

The solution can be simple:

When I’m playing with the shared   
memory, no one could touch it.

This is called mutual exclusion.
A set of processes would not have the 
problem of race condition if mutual 
exclusion is guaranteed.



How to realize mutual exclusion?

• Kernel
– Preemptive kernels and nonpreemptive kernels

• Allows (not allow) a process to be preempted while it is 
running in kernel mode

– A nonpreemptive kernel is essentially free from race 
conditions on kernel data structures, and also easy to 
design (especially for SMP architecture)

– Why would anyone favor a preemptive kernel 
• More responsive

• More suitable for real-time programming

27



Mutual Exclusion

• More generally, how to realize?

28

Program code
of process 1

......

critical section

......

Program code
of process n

Shared Object (manipulated by n 
processes)
◼ Changing common variables
◼ Updating a table
◼ Writing a file
◼ …

Solution: To guarantee that when one process is executing in its critical 
section, no other process is allowed execute in its critical section.

Code for 
manipulating 
shared object

Code for 
manipulating 
shared object



Critical Section – General Structure
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critical section

Section entry

Section exit

Program code

Critical sections is the code segment 
that is accessing the shared object.

Declaring the start of the critical section.

Declaring the end of the critical section.

As if telling other processes that:
“I start accessing the shared object.”

As if telling other processes that:
“I finish accessing the shared object.”

......

......

Reading

Writing

Shared Object

To guarantee that when one process is executing in its critical 
section, no other process is allowed execute in its critical section.

Reminder section



Critical Section – Example
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Process BProcess A

2.1  load memory X to 
register A;

2.2  add 10 to register A;

2.3  write register A to 
memory X;

2.1  load memory X to 
register A;

2.2  minus 10 from register A;

2.3  write register A to 
memory X;

Need a section entry here

Need a section exit here

Need a section entry here

Need a section exit here

Important concept here.

Both regions are called critical sections, 
yet they can be different.

Critical Section



Summary…for the content so far…

• Race condition is a problem.
– It makes a concurrent program producing unpredictable

results if you are using shared objects as the 
communication medium.

– The outcome of the computation totally depends on the 
execution sequences of the processes involved.

• Mutual exclusion is a requirement.
– If it could be achieved, then the problem of the race 

condition would be gone.

– Mutual exclusion hinders the performance of parallel 
computations.
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Summary…for the content so far…

• Defining critical sections is a solution.

– They are code segments that access shared objects.

– Critical section must be as tight as possible.

• Well, you can declare the entire code of a program to be a big 
critical section.

• But, the program will be a very high chance to block other 
processes or to be blocked by other processes.

– Note that one critical section can be designed for 
accessing more than one shared objects.
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Summary…for the content so far…

• Implementing section entry and exit is a challenge.

– The entry and the exit are the core parts that guarantee 
mutual exclusion, but not the critical section.

– Unless they are correctly implemented, race condition 
would appear.

33
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P

P

P

Inter-process communication (IPC)
- Mutual exclusion:

- how to achieve?
- how to implement?

(section entry and exit)

How to have 
peace?



Entry and exit implementation - requirements

• Requirement #1: Mutual Exclusion. No two processes 
could be simultaneously inside their critical sections.

• Requirement #2. Each process is executing at a nonzero 
speed, but no assumptions should be made about the 
relative speed of the processes and the number of CPUs.

35

Implication: when one process is inside its critical section, any attempts to go 
inside the critical sections by other processes are not allowed.

Implication: the solution cannot depend on the time spent inside the critical 
section, and the solution cannot assume the number of CPUs in the system.



Entry and exit implementation - requirements

• Requirement #3: progress. No process running outside its 
critical section should block other processes.

• Requirement #4: Bounded waiting. No process would have 
to wait forever in order to enter its critical section.

36

Implication: Only processes that are not executing in their reminder sections can 
participate in deciding which will enter its critical section.

Implication: There exists a bound or limit on the number of times that other 
processes are allowed to enter their critical sections after a process has made a 
request to enter its critical section (no processes should be starved to death).



A typical mutual exclusion scenario
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Process A

Process B
BLOCKED

B tries to enter its critical 
section but A is in its 
critical section.

A leaves its critical section 
and B resumes execution 
accordingly.

Keys

Critical section 
entry

Inside Critical 
section

Critical section 
exit

We will be using this 
coloring scheme 
throughout this part.

Remember, it is always the entry blocks other 
processes, but not the critical section.

Shared object 
(if any)



Mutual Exclusion Implementation

• Challenges of Implementing section entry & exit

– Both operations must be atomic

– Also need to satisfy the above requirements

– Performance consideration

• Hardware solution

– Rely on atomic instructions

– test_and_set()

– compare_and_swap

38



Example: test_and_set()

• Definition

• Mutual exclusion 
implementation

39



Example: compare_and_swap()

• Definition

• Mutual exclusion 
implementation

40

How to satisfy 
bounded waiting?



Enhanced version

41

lock is initialized as false



Proposal #1 – disabling interrupt.
• Method

– Similar idea as nonpreemptive kernels
– To disable context switching when the process is 

inside the critical section.

• Effect
– When a process is in its critical section, no other 

processes could be able to run.

• Implementation
– A new system call should be provided.

• Correctness?
– Correct, but it is not an attractive solution.
– Not as feasible in a multiprocessor environment
– Performance issue (may sacrifice concurrency)

42

Critical Section

Interrupt disabled

Interrupt enabled

Program Code



Proposal #2: Mutex Locks

• Idea

– A process must acquire the lock before entering a 
critical section, and release the lock when it exits the 
critical section

– Using a new shared object to detect the status of other 
processes, and “lock” the shared object

43

1  acquire(){
2     while(!available)
3           ; /* busy waiting */
4     available = false;
5   }

1  release(){
2     available = true;
3   }

Shared object: “available” (lock)



Proposal #2: Mutex Locks

• Implementation
– Calls to acquire and release locks 

must be performed atomically

– Often use hardware instructions

• Issue
– Busy waiting: Waste CPU resource

• Spinlock

• Applications
– Multiprocessor system 

• When locks are expected to be held 
for short times

44

Critical Section

acquire();

release();

Program Code

Note that: all processes run the 
following same code.



Other software-based solutions

• Aim

– To decide which process could go into its critical section

45

Program code
of process 1

......

Critical section

• Key Issues
– Detect the status of processes (section entry)

• Need other shared variables

– Atomicity of section entry and exit

Section entry

Section exit

Program code
of process n

......

Critical section

Section entry

Section exit



Proposal #3: Strict alternation

• Method
– Using a new shared object to detect the status of other 

processes
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Process 0 Process1

1  while (TRUE) {
2    while( turn != 0 )
3      ; 

4    critical_section();

5    turn = 1;

6    non_critical_section();
7  }

1  while (TRUE) {
2    while( turn != 1 )
3      ; 

4    critical_section();

5    turn = 0;

6    non_critical_section();
7  }

Shared object “turn” initial Value = 0

Allow to enter when 
turn == 0 

Allow to enter when 
turn == 1 

/* busy waiting */ /* busy waiting */
Entry

Exit



Proposal #3: Strict alternation

47

Process 0 Process1

1  while (TRUE) {
2    while( turn != 0 )
3      ; /* busy waiting */

4    critical_section();

5    turn = 1;

6    non_critical_section();
7  }

1  while (TRUE) {
2    while( turn != 1 )
3      ; /* busy waiting */

4    critical_section();

5    turn = 0;

6    non_critical_section();
7  }

Shared object “turn” initial Value = 0

Process 0

Process 1

turn = 0

turn = 1

turn = 0

The order of executing 
the critical section is 
alternating.



Proposal #3: Strict alternation - Cons

• Strict alternation seems good, yet, it is inefficient.

– Busy waiting wastes CPU resources.

• In addition, the alternating order is too strict.

– What if Process 0 wants to enter the critical section 
twice in a row?  NO WAY!

– Violate any requirement? 
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Requirement #3. No process running outside its critical 
section should block other processes.



Proposal #4: Peterson’s solution

• How to improve the strict alternation proposal?

– The Peterson’s solution

• Highlights:

– Share two data items

• int turn; //whose turn to enter its critical section

• Boolean interested[2]; //if a process wants to enter

– Processes would act as a gentleman: if you want to 
enter, I’ll let you first

– No alternation is there

49



Proposal #4: Peterson’s solution
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13  void leave_region( int process ) {    /* process: who is leaving */

14    interested[process] = FALSE;    /* I just left critical region */

15 }

Shared object: “turn” & 
“interested[2]”

1  int turn;                           /* who can enter critical section */

2  int interested[2] = {FALSE,FALSE};  /* wants to enter critical section*/

3

4  void enter_region( int process ) {  /* process is 0 or 1 */

5    int other;                        /* number of the other process */ 

6 other = 1-process;                /* other is 1 or 0 */

7    interested[process] = TRUE;       /* want to enter critical section */

8 turn = other;

9 while ( turn == other &&

interested[other] == TRUE )

10 ;    /* busy waiting */

11  }

12

Entry

Exit



Proposal #4: Peterson’s solution
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1  int turn;

2  int interested[2] = {FALSE,FALSE};

3    

4  void enter_region( int process ) {

5    int other; 

6 other = 1-process;

7    interested[process] = TRUE;

8 turn = other;

9 while ( turn == other &&

interested[other] == TRUE )

10 ;    /* busy waiting */

11  }

12

13  void leave_region( int process ) {

14    interested[process] = FALSE;

15 }

Line 8 therefore makes the 
other one the turn to run.

Of course, the process is 
willing to wait when she 
wants to enter the critical 
section.

“I’m a gentleman!”

The process always let 
another process to enter the 
critical region first although 
she wants to enter too.



Proposal #4: Peterson’s solution
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1  int turn;

2  int interested[2] = {FALSE,FALSE};

3    

4  void enter_region( int process ) {

5    int other; 

6 other = 1-process;

7    interested[process] = TRUE;

8 turn = other;

9 while ( turn == other &&

interested[other] == TRUE )

10 ;    /* busy waiting */

11  }

12

13  void leave_region( int process ) {

14    interested[process] = FALSE;

15 }

Process 0 Process 1

enter_region(): 4-8

Context Switching

Context Switching

enter_region(): 9

Critical Section

Context Switching

Busy waiting

enter_region(): 4-8

Context Switching

leave_region()

Context Switching

Critical Section

turn = 1;

turn = 0;

turn = 0;
interested[1] = T;

interested[0] = F;

and the story goes on…

Can you show that the 
requirements are satisfied?



Proposal #4: Peterson’s solution
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1  int turn;

2  int interested[2] = {FALSE,FALSE};

3    

4  void enter_region( int process ) {

5    int other; 

6 other = 1-process;

7    interested[process] = TRUE;

8 turn = other;

9 while ( turn == other &&

interested[other] == TRUE )

10 ;    /* busy waiting */

11  }

12

13  void leave_region( int process ) {

14    interested[process] = FALSE;

15 }

Process 0 Process 1

enter_region(): 4-7

Context Switching

Context Switching

enter_region(): 8-9

Context Switching

enter_region(): 4-7

Can you complete the flow?
(what is the difference?)

Can both processes progress?



Proposal #4: Peterson’s solution – issues

• Busy waiting has its own problem…

– An apparent problem: wasting CPU time.

– A hidden, serious problem: priority inversion problem.

• A low priority process is inside the critical region, but …

• A high priority process wants to enter the critical region.

• Then, the high priority process will perform busy waiting for a 
long time or even forever.
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Low-priority
process

Not scheduled for a long time.

High-priority
process

High priority process 
created with preemption

Because it has a higher 
priority, it will sit on the CPU 
doing useless things.



Story so far…
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Critical Section Problem

Disabling 
interrupts

Strict 
alternation

Peterson’s 
solution

Mutex
lock

Efficiency 
Concurrency

Violating 
requirement

Busy Waiting

Priority
inversion

Atomicity
implementation

Use other shared variables to detect process status



Final proposal: Semaphore

• In real life, semaphore is a flag signaling system.

– It tells a train driver (or a plane pilot) when to stop and 
when to proceed.

• When it comes to programming…

– A semaphore is a data type.

– You can imagine that it is an integer (but it is certainly 
not an integer when it comes to real implementation).

56

source: wikipedia.



Final proposal: Semaphore

• Semaphore is a data type (additional shared object)

– Accessed only through two standard atomic operations

– down(): originally termed P (from Dutch proberen, “to 
test”), wait() in textbook

• Decrementing the count

– up(): originally termed V (from verhogen, “to 
increment”), signal() in textbook

• Incrementing the count

• Two types

– Binary semaphore: 0 or 1 (similar to mutex lock)

– Counting semaphore: control finite number of resources

57



Final proposal: Semaphore

• Idea 
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Shared 
resource 
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Semaphore  
S = 5

Initialize the semaphore to the number of resource instances



Final proposal: Semaphore

• Idea 

59

Shared 
resource 
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Acquire 
resource 
down()

Semaphore  
S = 4

Wish to use a resource, perform down() to decrement the count



Final proposal: Semaphore

• Idea 
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Shared 
resource 
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Release
resource 
up()

Semaphore  
S = 5

Release a resource, perform up() to increment the count



Final proposal: Semaphore

• Idea 
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Shared 
resource 
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Acquire 
resource 
down()

Acquire 
resource 
down()

Semaphore  
S = 0

When the count goes to 0, block the processes that wish to use 



typedef int semaphore;

Semaphore – Simple Implementation
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1  void down(semaphore *s) {
2
3     while ( *s == 0 ) {
4          
5 ;//busy wait
6
7      }
8     *s = *s – 1;
9
10  } 

1  void up(semaphore *s) {
2 
3
4
5    *s = *s + 1;
6
7  }

Section Entry: down()

Section Exit: up()

Data Type definition

Counting Semaphore: initialized to 
be the number of resources available



typedef int semaphore;

Semaphore – Address busy waiting

63

1  void down(semaphore *s) {
2    
3     while ( *s == 0 ) {
4        
5        special_sleep();
6        
7      }
8     *s = *s – 1;
9     
10  }

1  void up(semaphore *s) {
2   
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    
7  }

Section Entry: down()

Section Exit: up()

Data Type definition First issue: Busy waiting

Solution: block the process instead of 
busy waiting (place the process into a 
waiting queue)



typedef int semaphore;

Semaphore – Address busy waiting
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Data Type definition First issue: Busy waiting

Solution: block the process instead of 
busy waiting (place the process into a 
waiting queue)

typedef struct{

int value;
struct process * list;

}semaphore;

Note 

Implementation: The waiting queue 
may be associated with the 
semaphore, so a semaphore is not 
just an integer



typedef int semaphore;

Semaphore – Atomicity
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1  void down(semaphore *s) {
2    
3     while ( *s == 0 ) {
4        
5        special_sleep();
6        
7      }
8     *s = *s – 1;
9     
10  }

1  void up(semaphore *s) {
2   
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    
7  }

Section Entry: down()

Section Exit: up()

Data Type definition

Second issue:  Atomicity (both 
operations must be atomic)

Solution: Disabling interrupts



typedef int semaphore;

Semaphore – Atomicity
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Section Entry: down()

Section Exit: up()

Data Type definition
Second issue:  Atomicity (both 
operations must be atomic)

Solution: Disabling interrupts

Also, only one process can invoke 
“disable_interrupt()”. Later 
processes would be blocked until 
“enable_interrupt()” is called.

1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }

1  void up(semaphore *s) {
2    disable_interrupt();
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    enable_interrupt();
7  }



typedef int semaphore;

Semaphore – The code
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1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }

1  void up(semaphore *s) {
2    disable_interrupt();
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    enable_interrupt();
7  }

Section Entry: down()

Section Exit: up()

Data Type definition
Why need these two statements?

Disabling interrupts may sacrifice 
concurrency, so it is essential to keep the 
critical section as short as possible



Semaphore – details
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Process 1234

Semaphore  X
Value = 0

1234

Waiting List

Suppose that process 1234 is willing to access 
the shared resource (enter its critical section), 
but no resource is available

Section Entry: down()

down(X)

1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }



Semaphore – details 
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1234

Waiting List

2468

Process 1234 Process 2468

Semaphore  X
Value = 0

wakeupwakeup

Process 1357

Section Exit: up()

up(X)

1  void up(semaphore *s) {
2    disable_interrupt();
3    if ( *s == 0 )
4      special_wakeup();
5    *s = *s + 1;
6    enable_interrupt();
7  }

Semaphore  X
Value = 1



Semaphore – details
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Process 1234 Process 2468

Section Entry: down()

1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }

down(X)

Note that it is impossible for two 
blocked processes to get out of the 
down() simultaneously.

Why? 

Only one process can invoke 
disable_interrupt()

Only one process can manipulate 
this shared variable

here



Semaphore – details
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Process 1234 Process 2468

Section Entry: down()

1  void down(semaphore *s) {
2     disable_interrupt();
3     while ( *s == 0 ) {
4        enable_interrupt();
5        special_sleep();
6        disable_interrupt();
7      }
8     *s = *s – 1;
9     enable_interrupt();
10  }

down(X)

Note that it is impossible for two 
processes to get out of the down()
simultaneously.

Why? 

Whether which process can get out 
of down() is the business of the 
scheduler. 

here



Semaphore – in action

• Add them together…
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semaphore *s; 
*s = 1;      /* initial value */

1  while(TRUE) {

2     down(s);

3     critical_section();

4     up(s);

5  }

entry

exit

s=0 s=0

s=1

s=1

s=0

s=1

Either one of the processes can 
enter the critical section when 
the first process calls “up(s)”.

s=1



Summary…on semaphore

• More on semaphore…it demonstrations an 
important kind of operations – atomic operations.

• In other words, the entire up() and down() are 
indivisible.

– If it returns, the change must have been made;

– If it is aborted, no change would be made.
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Definition of atomic operation 

- Either none of the instructions of an atomic operation were completed, or
- All instructions of an atomic operation are completed.



Summary…on critical section problem

• What happened is just the implementation of 
mutual exclusion (section entry and section exit).
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Comments

Disabling interrupts
Time consuming for multiprocessor systems, sacrifices 

concurrency.

Strict alternation Not a good one, busy waiting & violating one mutual 
exclusion requirement.

Peterson’s solution
Busy waiting & has a potential “priority inversion 

problem”.

Mutex lock Busy waiting, often relies on hardware instructions.

Semaphore BEST CHOICE.



Story so far…

• Cooperating processes

– IPC mechanisms (shared memory, pipes, FIFOs, sockets)

– Race condition

• Synchronization

– Mutual exclusion

• Critical section problem

• Disabling interrupts, strict alternation, Peterson’s solution, 
mutex lock, semaphore

• What is next?

– How to use semaphore to solve classic IPC problems

– Deadlock
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Story so far…

• For shared memory and files, 
concurrent access may yield 
unpredictable outcomes
– Race condition

• To avoid race condition, mutual 
exclusion must be guaranteed
– Critical section

– Implementations (entry/exit)
• Hardware instructions 

• Disabling interrupts

• Strict alternation

• Peterson’s solution

• Mutex lock

• Semaphore

2

Process Process

read() write()

data

Shared objects



Semaphore Usage

• Semaphore can be used for

– Mutual exclusion (binary semaphore)

– Process synchronization (counting semaphore may be 
needed)

• How to do process synchronization w/ semaphore?

– Mutual exclusion + coordination (multiple semaphores)

– Careless design may lead to other issues

• Deadlock 

3



Topics

4

Deadlock

 Concept
 Necessary conditions
 Characterization
 Solutions

Classic problems

 Producer-consumer problem
 Dining philosopher problem
 Reader-writer problem
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P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them 
not to fight.
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Deadlock Example

• Problems when using semaphore
Process P0

......

Critical 
Section

down(X)
down(Y)

up(X)
up(Y)

Process P1

......

Critical 
Section

down(Y)
down(X)

up(Y)
up(X)

Scenario: P0 must wait until P1 executes up(Y), P1 
must wait until P0 executes up(X)

Deadlock



Deadlock Requirements

• Requirement #1: Mutual Exclusion. 

– Only one process at a time can use a resource

• Requirement #2. Hold and wait.

– A process must be holding at least one resource and 
waiting to acquire additional resources held by other 
processes

7



Deadlock Requirements

• Requirement #3: No preemption.

– A resource can be released only voluntarily by the 
process holding it after that process has completed its 
task

• Requirement #4. Circular wait.

– There exists a set {P0, P1, …, Pn} of waiting processes such 
that P0 waits for P1, P1 waits for P2, …, Pn–1 waits for Pn , 
Pn waits for P0

8



How to Handle Deadlocks

• Deadlock characterization: Deadlocks can be 
described using resource-allocation graph

– Set V is partitioned into two types:

• P = {P1, P2, …, Pn}:  processes 

• R = {R1, R2, …, Rm}: all resource types (each type may have 
multiple instances)

– Set E

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj→ Pi

9

Pi

Rj

Pi

Rj
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Examples



How to Handle Deadlocks

• Detect deadlock and recover

– Case 1: Each resource has one instance

• Resource-allocation graph: detect the existence of a cycle

11

No deadlock

No cycles

Case 1: only one 
instance per resource 

type: deadlock

Contains a cycle

Case 2: several instances 
per resource type: 
possible deadlock
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Examples

Deadlock No deadlock



How to Handle Deadlocks

• Detect deadlock and recover

– Case 2: Each resource has multiple instances

• Matrix method: four data structures
– Existing (total) resources (𝑚 types): (𝐸1, 𝐸2, … , 𝐸𝑚)

– Available resources: (𝐴1, 𝐴2, … , 𝐴𝑚)

– Allocation matrix：
𝐶11 ⋯ 𝐶1𝑚
⋮ ⋱ ⋮
𝐶𝑛1 ⋯ 𝐶𝑛𝑚

– Request matrix: 
𝑅11 ⋯ 𝑅1𝑚
⋮ ⋱ ⋮

𝑅𝑛1 ⋯ 𝑅𝑛𝑚

13

(𝐶𝑖𝑗: # of type-j resources 

held by process i )

(𝑅𝑖𝑗: # of type-j resources 

requested by process i )

➢ Repeatedly check 𝑃𝑖 s.t. 𝑅𝑖 ≤ 𝐴? (𝑃𝑖 can be satisfied)
✓ Yes: 𝐴 = 𝐴 + 𝐶𝑖 (release resources)
✓ No: End (remaining processes are deadlocked)



How to Handle Deadlocks

• Prevent/avoid deadlocks: Banker’s algorithm

• Idea: check system state defined by (E, 𝐴, 𝐶, 𝑅)

• Safe state: exist one running sequence to guarantee that all 
processes’ demand can be satisfied

• Unsafe state: Not exist any sequence to guarantee the demand
– It is not deadlock (it can still run for some time/processes may release 

some resources)
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A 3 9

B 2 4

C 2 7

Existing resources

Maximum  demand

P
ro

cesses

A 3 9

B 4 4

C 2 7

A 3 9

B 0 -

C 2 7

A 3 9

B 2 4

C 7 7

A 3 9

B 2 4

C 0 -

Available: 3 Available: 1 Available: 5 Available: 0 Available: 7



How to Handle Deadlocks

• Prevent/avoid deadlocks: Banker’s algorithm

– For each request: safe (accept), unsafe (reject)
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A 1 6

B 0 5

C 2 4

D 4 7

Existing resources

Maximum  demand

P
ro

cesse
s

Available: 3
Available: 2 Available: 1

A 1 6

B 1 5

C 2 4

D 4 7

A 1 6

B 2 5

C 2 4

D 4 7

Safe state Unsafe state

B requests 
one resource

reject

Running order: C D B A

The algorithm can also be extended to the case of multiple 
resources, but it needs to know the demand

B requests one 
resource

Accept

Initial state
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How to Handle Deadlocks

• Ignore the problem and pretend that deadlocks 
never occur (stop functioning and restart manually)

–鸵鸟算法（假装没发生）

– Used by most operating systems, including UNIX and 
windows

– Deadlocks occur infrequently, avoiding/detecting it is 
expensive

• A deadlock-free solution does not eliminate starvation
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The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them 
not to fight.



What are the problems?

• All the IPC classical problems use semaphores to 
fulfill the synchronization requirements.

18

Properties Examples

Producer-
Consumer 
Problem

Two classes of processes: producer and consumer;
At least one producer and one consumer.

FIFO buffer, 
such as pipe.

Dining 
Philosophy

Problem

They are all running the same program;
At least two processes.

Cross-road
traffic control.

Reader-Writer
Problem

Two classes of processes: reader and writer.
No limit on the number of the processes of each 

class.
Database.
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P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them 
not to fight.



Producer-consumer problem – recall

• Also known as the bounded-buffer problem.

20

A bounded 
buffer

-It is a shared object;
-Its size is bounded, say N slots.
-It is a queue (imagine that it is an array implementation of queue).

A producer 
process

-It produces a unit of data, and
-writes that a piece of data to the tail of the buffer at one time.

A consumer
process

-It removes a unit of data from the head of the bounded buffer at 
one time.

pipe – bounded

ls lessenqueue dequeue

Producer Consumer

ls  |  less



Producer-consumer problem – recall
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Producer-
consumer

requirement #1

When the producer wants to 
(a) put a new item in the buffer, but
(b) the buffer is already full…

Producer-
consumer

requirement #2

When the consumer wants to
(a) consumes an item from the buffer, but
(b) the buffer is empty…

Then,
(1) The producer should be suspended, and
(2) The consumer should wake the producer up after she has 

dequeued an item.

Then,
(1) The consumer should be suspended, and
(2) The producer should wake the consumer up after she has 

enqueued an item.



Producer-consumer problem

• Pipe is working fine. Is it enough?

– What if we cannot use pipes?  

• Say, there are 2 producers and 2 consumers without any 
parent-child relationships?

– Then, the kernel can’t protect you with a pipe.

• In the following, we revisit the producer-consumer 
problem with the use of shared objects and 
semaphores, instead of pipe.
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Design – Semaphores

• ISSUE #1: Mutual Exclusion. 

• ISSUE #2: Synchronization (coordination). 

– Remember the two requirements: 

• Insert an item  when it is not FULL

• Consume an item when it is not EMPTY

– Can we use a binary semaphore?

23

Solution: one binary semaphore (mutex)

Solution: two counting semaphores (full & empty)
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Producer-consumer problem – solution

Note

The functions “insert_item()” and 
“remove_item()” are accessing the bounded 
buffer (codes in critical section).

The size of the bounded buffer is “N”.

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          
8          insert_item(item);
9          
10          
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          
6          
7          item = remove_item();
8          
9          
10          consume_item(item);
11      }
12  }
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Producer-consumer problem – solution

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

Note

Mutual exclusion requirement

Synchronization requirement

Shared object

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          
8          insert_item(item);
9          
10          
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          
6          
7          item = remove_item();
8          
9          
10          consume_item(item);
11      }
12  }
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Producer-consumer problem – Understanding

Why we need three semaphores, “empty”, 
“full”, “mutex”?

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

Shared object

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          
8          insert_item(item);
9          
10          
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          
6          
7          item = remove_item();
8          
9          
10          consume_item(item);
11      }
12  }
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Producer-consumer problem – Understanding

Why we need three semaphores, “empty”, 
“full”, “mutex”?

mutex: 
What is its purpose?
Why is the initial value of mutex 1?

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          
10          consume_item(item);
11      }
12  }
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Producer-consumer problem – Understanding

The “mutex” stands for mutual exclusion.

- down() and up() statements are the 
entry and the exit of the critical section, 
respectively.

What is the meaning of the initial value 1?

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

Producer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          
11      }
12  }

Why we need three semaphores, “empty”, 
“full”, “mutex”?

mutex: 
what is its purpose?
Why is the initial value of mutex 1?
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Producer-consumer problem – Understanding

Why we need three semaphores, “empty”, 
“full”, “mutex”?

How about “full” and “empty”?

Shared object

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          down(&empty);
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;



Producer-consumer problem – Understanding

• The two variables are not for mutual exclusion, but 
for process synchronization.

– “Process synchronization” means to coordinate the set 
of processes so as to produce meaningful output.
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Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          down(&empty);
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }



Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          down(&empty);
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

Producer-consumer problem – Understanding
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For “empty”,
- Its initial value is N;
- It decrements by 1 in each iteration.
- When it reaches 0, the producers sleeps.

So, does it sound like one of the requirements? The consumer wakes the producer 
up when it finds “empty” is 0.

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;



Producer-consumer problem – Understanding

• Semaphore can be more than mutual exclusion!
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empty It represents the number of empty slots.

full It represents the number of occupied slots.

Consumer FunctionProducer function

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6          down(&empty);
7          down(&mutex);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }



Consumer FunctionProducer function

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }
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Producer-consumer problem – question

Question.
Can we swap Lines 6 & 7 of the producer?

Let us simulate what will happen with the 
modified code!

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full  = 0;

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6*         down(&mutex);
7*         down(&empty);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }



Producer

Consumer
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Producer-consumer problem – question

mutex = 1 empty = 0 full = N

running until Line 
10

We are showing the value of the 
semaphores before the producer is 
suspended.

Consumer FunctionProducer function

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6*         down(&mutex);
7*         down(&empty);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }



Producer

Consumer
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Producer-consumer problem – question

mutex = 0 empty = 0 full = N

because of
down(&mutex);
down(&empty);

Line 4–7* sleep

Consumer FunctionProducer function

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6*         down(&mutex);
7*         down(&empty);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

running until Line 
10



Producer

Consumer
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Producer-consumer problem – question

mutex = 0 empty = 0 full = N-1

context 
switching

Line 4–7* sleep

Line 4–6 sleep

Endless
Sleep

Consumer FunctionProducer function

1  void consumer(void) {
2      int item;
3  
4      while(TRUE) {
5          down(&full);
6          down(&mutex);
7          item = remove_item();
8          up(&mutex);
9          up(&empty);
10          consume_item(item);
11      }
12  }

1  void producer(void) {
2      int item;
3  
4      while(TRUE) {
5          item = produce_item();
6*         down(&mutex);
7*         down(&empty);
8          insert_item(item);
9          up(&mutex);
10          up(&full);
11      }
12  }

running until Line 
10



Producer-consumer problem

• Deadlock happens when a circular wait appears

– The producer is waiting for the consumer to “up()” the 
“empty” semaphore, and

– the consumer is waiting for the producer to “up()” the 
“mutex” semaphore.

37

Producer Consumer

mutex

empty

I’m holding it. I’m waiting for it.

I’m holding it (because I’ve 
a chance to “up” it)I’m waiting for it.



Producer-consumer problem

• Deadlock happens when a circular wait appears

– The producer is waiting for the consumer to “up()” the 
“empty” semaphore, and

– the consumer is waiting for the producer to “up()” the 
“mutex” semaphore.

• No progress could be made by all processes + All 
processes are blocked.

– Implication: careless implementation of the producer-
consumer solution can be disastrous.
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Summary on producer-consumer problem

• The problem can be divided into two sub-problems.

– Mutual exclusion.

• The buffer is a shared object. Mutual exclusion is needed. 

– Synchronization.

• Because the buffer’s size is bounded, coordination is needed.

39

Producer Consumer

Synchronization

Mutual Exclusion



Summary on producer-consumer problem

• How to guarantee mutual exclusion?

– A binary semaphore is used as the entry and the exit of 
the critical sections.

• How to achieve synchronization?

– Two semaphores are used as counters to monitor the 
status of the buffer.

– Two semaphores are needed because the two 
suspension conditions are different.

40
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P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them 
not to fight.



Dining philosopher – introduction

• 5 philosophers, 5 plates of spaghetti, and 
5 chopsticks.

• The jobs of each philosopher are 
– to think and 
– to eat: They need exactly two chopsticks in 

order to eat the spaghetti.

• Question: how to construct a 
synchronization protocol such that
– they will not result in any deadlocking 

scenarios, and
– they will not be starved to death

42
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Dining philosopher – introduction

Philosophers

Chopsticks

Spaghetti

Consider to have
infinite supply.

Process
Process

Process
Process

Process

Shared 
Object

Shared 
Object

Shared 
Object

Shared 
Object

Shared 
Object
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Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

Chopstick 4 Chopstick 2

Chopstick 3

The chopsticks are arranged in 
the following manner.

Philosopher i needs 
Chopsticks i and ((i+1) % N);
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Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

Chopstick 4 Chopstick 2

Chopstick 3

Thinking or
waiting.

Eating.
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Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

CHopstick 4 Chopstick 2

Chopstick 3

Thinking or
waiting.

Eating.

Two guys cannot share 
the same chopstick.



Dining philosopher – requirement #1

• Mutual exclusion

– What if there is no mutual exclusion?

• Then: while you’re eating, the two men besides you will and 
must steal all your chopsticks!

• Let’s proposal the following solution:

– When you are hungry, you have to check if anyone is 
using the chopstick that you need.

– If yes, you have to wait.

– If no, seize both chopsticks.

– After eating, put down all your chopsticks.

47
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Dining philosopher – meeting requirement #1?

void take(int i) {
down(&chop[i]);

}

void put(int i) { 
up(&chop[i]);

}

#define N 5
semaphore chop[N];

1 void philosopher(int i) {
2     while (TRUE) {
3         think();

4         take(i);
5         take((i+1) % N);

6         eat();

7         put(i);
8         put((i+1) % N);
9     }
10 }

A quick question: what should be 
initial values?

Section 
Entry

Section 
Exit

Critical 
Section 

Shared object

Main Function

Helper Functions
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Dining philosopher – meeting requirement #1?

1 void philosopher(int i) {
2     while (TRUE) {
3         think();

4         take(i);
5         take((i+1) % N);

6         eat();

7         put(i);
8         put((i+1) % N);
9     }
10 }

Main Function

Phil 1

Phil 2

Phil 3

Phil 4

Phil 5

Line 
1-4

Line 
1-4

Line 
1-4

Line 
1-4

Line 
1-4

Final Destination: Deadlock!



Dining philosopher – requirement #2

• Synchronization

– Should avoid any potential deadlocking execution 
order.

• How about the following suggestions:

– First, a philosopher takes a chopstick.

– If a philosopher finds that he cannot take the second 
one, then he should put down the first chopstick.

– Then, the philosopher goes to sleep for a while.

– Again, the philosopher tries to get both chopsticks until 
both ones are seized.

50
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Dining philosopher – meeting requirement #2?

1 void take(int i) {
2   while(TRUE) {
3 down(&chop[i]);
4     if (isUsed((i+1)%N)) {
5 up(&chop[i]);
6       sleep(1);
7     }
8 else {
9       down(&chop[(i+1)%N]);
10       break;
11     }
12   }
13 }

1 void philosopher(int i) {
2     while (TRUE) {
3       think();
4       take(i);
5       eat();
6       up(&chop[i]);
7       up(&chop[(i+1)%N)]);
8     }
9 }

The code: meeting requirement #2? 



1-3

1-4
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Dining philosopher – meeting requirement #2?

1 void take(int i) {
2   while(TRUE) {
3 down(&chop[i]);
4     if (isUsed((i+1)%N)) {
5 up(&chop[i]);
6       sleep(1);
7     }
8 else {
9       down(&chop[(i+1)%N]);
10       break;
11     }
12   }
13 }

1 void philosopher(int i) {
2     while (TRUE) {
3       think();
4       take(i);
5       eat();
6       up(&chop[i]);
7       up(&chop[(i+1)%N)]);
8     }
9 }

1

2

3
1-4

1-4

1-3

1-4

Zzz

4-6

Zzz

4-6

Zzz

5-6

2-3

2-3

2-3

Potential Problem: Philosophers are all busy 
but no progress were made!

Assume N = 3 (because the 
space is limited)



Dining philosopher – before the final solution.

• Before we present the final solution, let’s see what 
are the problems that we have.
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Problems

Model a chopstick as a semaphore is intuitive, but is not working.

The problem is that we are afraid to “down()”, as that may lead to a deadlock.

Using sleep() to avoid deadlock is effective, yet bringing another problem.

We can always create an execution order that keeps all the philosophers busy, but 
without useful output.



Idea:

- The chopsticks are useless in the model!

- Need to guarantee: when “Philosopher x” is 
eating, the left and the right of “Philosoper x” 
cannot eat!
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Dining philosopher – before the final solution.

Philosopher 1
CAN’T EATPhilosopher 4

CAN’T EAT

Philosopher 2
CAN EAT

Philosopher 3
CAN EAT

Philosopher 0
EATING



Dining philosopher – the final solution.
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1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

1  void philosopher(int i) {
2      think();
3      take(i);
4      eat();
5      put(i);
6  }

#define N 5
#define LEFT  ((i+N-1) % N)
#define RIGHT  ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object Main function

Section entry Section exit

Extremely important helper function

I will explain the 
code later.



Dining philosopher – the final solution.
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#define N 5
#define LEFT  ((i+N-1) % N)
#define RIGHT  ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object

Going “left” and “right” in a 
circular manner.

The states of the philosophers, including 
“EATING”, “THINKING”, and “HUNGRY”.

Remember, this is shared array.

To guarantee mutual exclusive access to 
the “state[N]” array.

To fulfill the synchronization requirement.

Question. What are the initial values of the 
“s[N]” array?

Guess:

What is the meaning 
of the semaphore 
s[N]?
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Dining philosopher – the final solution.

Section entry

Extremely important helper function

If both chopsticks are available, 
I eat. Else, I sleep.

1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Question. What are they doing?

If they are eating, I can’t be eating.

#define N 5
#define LEFT  ((i+N-1) % N)
#define RIGHT  ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object
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Dining philosopher – the final solution.

Section exit

Extremely important helper function

1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

Wake up the one who can eat!

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Try to let the one on the left of 
the caller to eat.

Try to let the one on the right 
of the caller to eat.
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Dining philosopher – the final solution.

Philosopher 1
THINKINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
THINKING

Note: no chopsticks objects 
will be shown in this 

illustration because we 
don’t need them now.

An illustration: How can 
Philosopher 1 start eating?
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Dining philosopher – the final solution.

Philosopher 4
THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
HUNGRY

Call take();

To LEFT:
are you “EATING”?

To RIGHT:
are you “EATING”?

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry

Philosopher 1
THINKING
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Dining philosopher – the final solution.

Philosopher 1
THINKINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
HUNGRY

Call take();

To LEFT:
are you “EATING”?

To RIGHT:
are you “EATING”?

Calling take().
but, it is blocked.

Why?

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry
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Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
EATING To LEFT:

are you “EATING”?

To RIGHT:
are you 
“EATING”?

Now, it is 
freed from 
blocking.

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry
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Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
HUNGRY

Philosopher 0
EATING

Blocked;
because of 

down(&s[1]);

To LEFT:
are you 
“EATING”?

To RIGHT:
are you 
“EATING”?

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry
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Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
EATING

Blocked;
because of 

down(&s[1]);

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry
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Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Call put();

To LEFT:
are you “HUNGRY”?

To RIGHT:
are you “HUNGRY”?

Blocked;
because of 

down(&s[1]);

An illustration: How can 
Philosopher 1 start eating?

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Section exit
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Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

To RIGHT:
are you “EATING”?

To LEFT:
are you “EATING”?

Blocked;
because of 

down(&s[1]);

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Section exit
1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

Call put();
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Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Call put();

Remove your 
blocked state by 
calling up(&s[1]);

Blocked;
because of 

down(&s[1]);

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Section exit
1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }
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Dining philosopher – the final solution.

Philosopher 1
EATINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Eventually...

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

Section entry



Dining philosopher - summary

• What is the shared object in the final solution?

– How to guarantee the mutual exclusion
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1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

1  void put(int i) {
2      down(&mutex);
3      state[i] = THINKING;
4      test(LEFT);
5      test(RIGHT);
6      up(&mutex);
7  }

Section entry Section exit



Dining philosopher - summary

• Think:

– Why the semaphore s[N] is needed

– How to set its initial value

70

1  void take(int i) {
2      down(&mutex);
3      state[i] = HUNGRY;
4      test(i);
5      up(&mutex);
6      down(&s[i]);
7  }

1 void test(int i) {
2     if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3         state[i] = EATING;
4         up(&s[i]);
5     }
6 }

Section entry

Extremely important helper function



Dining philosopher - summary

• Solution to IPC problem can be difficult to 
comprehend.

– Usually, intuitive methods failed.

– Depending on time, e.g., sleep(1), does not guarantee a 
useful solution.

• As a matter of fact, dining philosopher is not 
restricted to 5 philosophers.
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P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them 
not to fight.



Reader-writer problem – introduction 

• It is a concurrent database problem.
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Reader

Reader

Reader

Readers are
allowed to read
the content of the
database concurrently.



Reader-writer problem – introduction 

• It is a concurrent database problem.
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A writer needs to lock
the database exclusively
so that the readers would
not retrieve inconsistent
data.

Writer

Reader

Reader

Reader



Reader-writer problem – introduction 

• It is a concurrent database problem.

75

In other words, a writer
is forbidden to write any
data before the readers
have finished reading.

Writer

Reader
Reader

Reader



Writer

Reader-writer problem – introduction 

• It is a concurrent database problem.
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Reader

Writer

Reader

Of course, a writer will
also block the access from
other writers.



Reader-writer problem – subproblems

• A mutual exclusion problem.
– The database is a shared object.

• A synchronization problem.
– Rule 1. While a reader is reading, other readers is allowed to 

read the database.
– Rule 2. While a reader is reading, no writers is allowed to 

write to the database.
– Rule 3. While a writer is writing, no writers and readers are 

allowed to access the database.

• A concurrency problem.
– Simultaneous access for multiple readers is allowed and 

must be guaranteed.
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Reader-writer problem – solution outline

• Mutual exclusion: relate the readers and the 
writers to one semaphore.

– This guarantees no readers and writers could proceed to 
their critical sections at the same time.

– This also guarantees no two writers could proceed to 
their critical sections at the same time.
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Semaphore
database

Reader Writer



Reader-writer problem – solution outline

• Readers’ concurrency

– The first reader coming to the system “down()” the 
“database” semaphore.

– The last reader leaving the system “up()” the 
“database” semaphore.
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Reader
Reader

Reader
Reader

Reader

Shared object
reader counter



Reader-writer problem – final solution
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semaphore db    = 1;
semaphore mutex = 1;
int read_count = 0;

Reader FunctionShared object

Writer function

1  void writer(void) {
2      while(TRUE) {
3          prepare_write();
4          down(&db);

5          write_database();

6          up(&db);
7      }
8  }

Section Entry

Section Exit

Critical Section 

1  void reader(void) {
2      while(TRUE) {
3          down(&mutex);
4          read_count++;
5          if(read_count == 1)
6              down(&db);
7          up(&mutex);

8          read_database();

9          down(&mutex);
10          read_count--;
11          if(read_count == 0)
12              up(&db);
13          up(&mutex);
14          process_data();
15      }
16  }

Section Entry

Section Exit

Critical Section 



Reader-writer problem – final solution
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semaphore db    = 1;
semaphore mutex = 1;
int read_count = 0;

Shared object
Guarantee the mutual exclusion 
between the readers and the writers.

Protect the “read_count” variable.

Keep track of the number of readers in 
the system.



Reader-writer problem – final solution
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semaphore db    = 1;
semaphore mutex = 1;
int read_count = 0;

Shared object

Writer function

1  void writer(void) {
2      while(TRUE) {
3          prepare_write();
4          down(&db);

5          write_database();

6          up(&db);
7      }
8  }

Section Entry

Section Exit

Critical Section 

The writer is allowed to enter its 
critical section when no other 
process is in its critical section 
(protected by the “db” semaphore)



Reader-writer problem – final solution
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semaphore db    = 1;
semaphore mutex = 1;
int read_count = 0;

Reader FunctionShared object

1  void reader(void) {
2      while(TRUE) {
3          down(&mutex);
4          read_count++;
5          if(read_count == 1)
6              down(&db);
7          up(&mutex);

8          read_database();

9          down(&mutex);
10          read_count--;
11          if(read_count == 0)
12              up(&db);
13          up(&mutex);
14          process_data();
15      }
16  }

The first reader “down()” the “db” 
semaphore so that no writers would be 
allowed to enter their critical sections.

The last reader “up()” the “db” semaphore 
so as to let the writers to enter their critical 
section.



Reader-writer problem – summary

• This solution does not limit the number of readers 
and the writers admitted to the system.

– A realistic database needs this property.

• This solution gives readers a higher priority over the 
writers.

– Whenever there are readers, writers must be blocked,  
not the other way round.

• What if a writer should be given a higher priority?
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Summary on IPC problems

• The problems have the following properties in 
common:
– Multiple processes;

– Shared and limited resources;

– Processes have to be synchronized in order to generate 
useful output;

• The synchronization algorithms have the following 
requirements in common:
– Guarantee mutual exclusion;

– Uphold the correct synchronization among processes; 

– Deadlock-free.
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Summary on Ch5

86

Race Condition

Processes Communication

Mutual Exclusion

How to realize

Define critical section

How to implement

 4 requirements & 5 schemes
 Semaphore

Classic problems

 Producer-consumer problem
 Dining philosopher problem
 Reader-writer problem

Cooperating Processes

Process Synchronization

Deadlock

IPC methods

Shared memory, Pipes, Sockets
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Outline

2

Process Communication & 
Synchronization

Process Scheduling

Scheduler

Context-
switching

Process Process Process

Kernel Space

User Space

P

P

P

Scheduling 
Alg

Process 
lifecycle



Why scheduling is needed

• Process execution

– Consists of a cycle of CPU execution and I/O wait

– CPU burst + I/O burst

3

CPU burst duration



Why scheduling is needed

4

A system may contain many processes which are at different 
states (ready for running, waiting for I/O)

Multiprogramming
Question. How to improve CPU 
utilization (CPU is much faster than I/O)?

Question. How to improve system 
responsiveness (interactive applications)?

Multitasking

Scheduling is required because the number of  computing 
resource – the CPU – is limited.
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Topics
- Process lifecycle 
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios
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- Process lifecycle 
- Process scheduling
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- Scheduling criteria
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- Applications/Scenarios



Programmer’s point of view…

• This is how a fresh programmer looks at a process’ 
life cycle.

7

Running

Waiting
for results

Termination

Process
States

int main(void) {
int x = 1;
getchar();
return x;

} (1)

(2)

(3)



Kernel’s point of view…

8

New
(Just fork()-ed)

Waiting
(blocked)

Terminated 
(Zombie)

Process
States

Ready Running

Big Picture



Kernel’s point of view…

9

Process
States

Ready Running

The birth of a process.

Except the first process “init”, 
every process is created using 
fork().

New

Waiting
(blocked)

Terminated 



Kernel’s point of view…
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Process
States

Ready Running

New

Waiting
(blocked)

Terminated 

The process is ready.
It means it is ready to run but is not 
running.

A process may become “ready” after...
- it is just created by fork();
- it has been running on the CPU 

for some time and the OS chooses 
another process to run;

- returning from blocked states.

All ready processes are kept on a list 
called ready queue



Kernel’s point of view…
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New

Waiting

Terminated 

Process
States

Ready Running

Big PictureThe process is running.

The OS chooses this process to be 
running on the CPU and changes 
its state to “Running”.



Kernel’s point of view…
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New

Waiting

Terminated 

Process
States

Ready Running

Big PictureThe process is blocked.

While the process is running, it 
may be waiting for something
and becomes blocked voluntarily.



Kernel’s point of view…

13

New

Waiting 
(interruptible)

Terminated 

Process
States

Ready Running

Big PictureExample.  Reading a file.

Sometimes, the process has to wait for the response from the device and, 
therefore, it is blocked.

Nevertheless, this blocking state is interruptible. E.g., “Ctrl + C” can get 
the process out of the waiting state (but goes to termination state 
instead).



Kernel’s point of view…

14

New

Waiting
(uninterruptible)

Terminated 

Process
States

Ready Running

Big PictureSometimes, a process needs to wait for a resource but it doesn’t want to 
be disturbed while it is waiting. In other words, the process wants that 
resource very much. Then, the process status is set to the uninterruptible
status.



Kernel’s point of view…
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New

Waiting

Terminated 

Process
States

Ready Running

Big Picture
Return back to ready.

When response arrives, the status of the process changes back to Ready. 
from any one of the blocked states.

Process data



Kernel’s point of view…
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New

Waiting

Terminated 

Process
States

Ready Running

Big Picture

The process is going to die.

The process may
- choose to terminate itself; or
- force to be terminated.



What is scheduling?

17

Running

So, what is process scheduling?

Mainly about how to make all the ready 
processes become “Running” 

This is the called short-term scheduling 
or CPU scheduling.

Ready



Triggering Events

• When process scheduling happens:

18

A new process is 
created.

When “fork()” is invoked and returns successfully.

Then, whether the parent or the child is scheduled is up to the 
scheduler’s decision.

An existing process 
is terminated.

The CPU is freed. The scheduler should choose another process to run.

A process waits for 
I/O.

The CPU is freed. The scheduler should choose another process to run.

A process finishes 
waiting for I/O.

The interrupt handling routine makes a scheduling request, if 
necessary.



Key Issues
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Running

Question #1: How to make a ready process 
become running? (Note that the running 
process may not terminate at that time)

Context switching

Ready

Question #2: How to decide which process should be running? 

Scheduling criteria & scheduling algorithms

Question #3: How to design scheduling in a real/specific system? 

Multiprocessor system, real-time system, algorithm evaluation
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What is context switching?

• Before we can jump into the process scheduling 
topic, we have to understand what “context 
switching” is.

21

P1 P2 P3 P2

Scheduling is the procedure that decides which 
process to run next.

Context switching is the actual switching procedure, 
from one process to another.

Timer interrupt.

Hardware interrupt.
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Switching from one process to another.

System Memory

Kernel-space

User-space
memory

Program counter

Other Register 
values

Scheduler

Suppose this process gives up running on the CPU, 
e.g., calling sleep(). Then:

Now, it is time for the scheduler to choose the next 
process to run.

Running Waiting

sleep()

(1)

(2)

(3)
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Switching from one process to another.

System Memory

Kernel-space

User-space
memory

Program counter

Other Register 
values

Scheduler

sleep()

(1)

(2)

backup

(3)

But, before the scheduler can seize the control of the 
CPU, a very important step has to be taken:

Backup all registers’ values.

The backup will be stored in the process structure

The context of a process

The union of the user-space 
memory and the registers’ 

values of the process
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Switching from one process to another.

System Memory

User-space
memory

Program counter

Other Register 
values

load

Say, the scheduler decides to schedule another 
process. 

Then, the schedule has to load the context of the 
new process into the main memory and into the 
CPU.

(4)

We call the entire 
operation: 

context switching



Context switching has a price to pay…

• However, context switching may be expensive…
– Even worse, the target process may be currently stored 

in the hard disk.

• So, minimizing the number of context switching
may help boosting system performance.

25

CPU

Registers

Cache

Main Memory Hard DiskProcess A
(running)

Process B

Process C

Process D

Process E

Process F

Process G

Expensive I/O swap

My turn!
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Scheduling Criteria

• How to choose which algorithm to use in a 
particular situation?

27

Algorithm Properties

CPU utilization

Response time

Throughput 

Turnaround time Waiting time

Types

Preemptive

Nonpreemptive

Application

Multiprocessor
Real-time sys Application requirements and algorithm 

properties may vary significantly



Classes of process scheduling

• Non-preemptive scheduling.
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Cons
Bad for nowadays systems in which user experience and multi-tasking

are the primary goals.

Pros
Good for systems that emphasize the time in finishing tasks.

- Because the task is running without others’ interruption.

What is it?

When a process is chosen by the scheduler, the process would never 
leave the scheduler until…

-the process voluntarily waits for I/O, or
-the process voluntarily releases the CPU, e.g., exit().

Where can I 
find it?

Nowhere…but it could be found back in the mainframe computers in 
1960s.

What is the 
catch?

If the process is purely CPU-bound, it will seize the CPU from the time it is 
chosen until it terminates.



Classes of process scheduling

• Preemptive scheduling.
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Cons Bad for systems that emphasize the time in finishing tasks.

Where can I 
find it?

Everywhere! This is the design of nowadays systems.

What is the 
catch?

If that particular event is the periodic clock interrupt, then you can have 
a time-sharing system.

What is it?

When a process is chosen by the scheduler, the process would never 
leave the scheduler until…

-the process voluntarily waits for I/O, or
-the process voluntarily releases the CPU, e.g., exit().
-particular kinds of interrupts and events are detected.

Pros
Good for systems that emphasize interactiveness.

- Because every task will receive attentions from the CPU.
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Performance measures

CPU 
utilization

Throughput

Turnaround 
time

In algorithm design:

What factors/performance measures 
should be carefully considered?

Waiting 
time

Response 
time
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Performance measures

CPU 
utilization

Throughput

Turnaround 
time

CPU utilization.

We want to keep CPU as busy as possible.

Theoretically, can range from 0-100%, but in 
real system, range from 40%-90%

The higher the better

Waiting 
time

Response 
time
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Performance measures

CPU 
utilization

Throughput

Turnaround 
time

Throughput.

Number of processes that are completed per 
time unit

The higher the better

Waiting 
time

Response 
time
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Performance measures

CPU 
utilization

Throughput

Turnaround 
time

Turnaround time.

Time to execute the process: interval from 
the time of submission to the time of 
completion (total running time + waiting 
time+ doing I/O)

The lower the better

Waiting 
time

Response 
time
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Performance measures

CPU 
utilization

Throughput

Turnaround 
time

Waiting time.

The time spent waiting in the ready queue

The lower the better

Waiting 
time

Response 
time
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Performance measures

CPU 
utilization

Throughput

Turnaround 
time

Response time.

The time from the submission of a request 
until the first response is produced (useful 
measure for interactive systems)

The lower the better

Waiting 
time

Response 
time
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Challenge

Question: 

Can we optimize all the above 
measures simultaneously?

Usually can not!

Fairness

Policy 
enforcement

CPU-I/O 
Balance

Little conflict

Big 
conflict

Big 
conflict

Design 
Tradeoff

Common 
goal
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• Inputs to the algorithms.

Scheduling algorithms

38

P1 P2 P3 P4
A set of 

processes

For each 
process…

Arrival 
Time

CPU 
requirement

It is interesting to note that 
this is a non-sense!

How can we know the 
requirement of each task?

Online
VS

Offline

An offline scheduling algorithm assumes that you know all the 
processes submitted to the system before hand. But, an online 
scheduling algorithm does not have such an assumption.

Yet, every real scheduler has to work in an “online scenario”. So, we 
have to think in an “online” way…



• Outputs of the algorithms.

Scheduling algorithms

39

Scheduling 
order

Individual & average 
turnaround time

Individual & average 
waiting time

Number of context 
switching
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Different algorithms

Algorithms Preemptive? Target System

First-come, first-served 
or First-in, First-out 

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!



P1

First-come, first-served scheduling

• Example 1.
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Task Arrival 
Time

CPU 
Req.

P1 0 24

P2 1 3

P3 2 3

Gantt Chart

P2 P3

Input

0 2 4 6 8 1
0

1
2

1
4

1
6

1
8

2
2

2
4

2
6

2
8

3
0

2
0

Output

Waiting time: P1 = 0; P2 = 23; P3 = 25;

Average waiting time = (0+23+25)/3 = 16;

Turnaround time: P1 = 24; P2 = 26; P3 = 28;

Average turnaround time = (24+26+28)/3 = 26;

No preemption



P3

First-come, first-served scheduling

• Example 2.
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Task Arrival 
Time

CPU 
Req.

P3 0 3

P2 1 3

P1 2 24

Gantt Chart

P2 P1

Input order 
changed

0 2 4 6 8 1
0

1
2

1
4

1
6

1
8

2
2

2
4

2
6

2
8

3
0

2
0

Output

Waiting time: P1 = 4; P2 = 2; P3 = 0;

Average waiting time = (4+2+0)/3 = 2;
(which is 16 in the previous case)

Turnaround time: P1 = 28; P2 = 5; P3 = 3;

Average turnaround time = (28+5+3)/3 = 12;
(which is 26 in the previous case)



First-come, first-served scheduling

• A short summary:

– FIFO scheduling is sensitive to the input.

– The average waiting time is often long. Think about the 
scenario (convoy effect):

• Someone is standing before you in the queue in KFC, and

• you find that he/she is ordering the bucket chicken meal (P1 in 
example 1)!!!!

• So, two people (P2 and P3) are unhappy while only P1 is happy.

– Can we do something about this?

43
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Different algorithms

Algorithms Preemptive? Target System

First-come, first-served 
or First-in, First-out 

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!



Non-preemptive SJF
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Task Arrival 
Time

CPU 
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1P1 P1P1

P1

Set of processes

P2 P3 P4

Time = 0Time = 2Time = 4Time = 5

0 2 4 6 8 1
0

1
2

1
4

1
6

Not allow  preemption



Non-preemptive SJF
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Task Arrival 
Time

CPU 
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 7

P1

Set of processes

0 2 4 6 8 1
0

1
2

1
4

1
6



Non-preemptive SJF
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Task Arrival 
Time

CPU 
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 7

P1 P3

Set of processes

0 2 4 6 8 1
0

1
2

1
4

1
6



Non-preemptive SJF
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Task Arrival 
Time

CPU 
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 8

P1 P2P3

Set of processes

In this example, we use FIFO to break the tie.

0 2 4 6 8 1
0

1
2

1
4

1
6



Non-preemptive SJF
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Task Arrival 
Time

CPU 
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 12

P1 P4P3

Set of processes

P2

0 2 4 6 8 1
0

1
2

1
4

1
6

Time = 16

P4



Non-preemptive SJF
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Task Arrival 
Time

CPU 
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P4P3 P2

0 2 4 6 8 1
0

1
2

1
4

1
6

P4

Waiting time:

Average = (0 + 6 + 3 + 7) / 4 = 4.

P1 = 0; P2 = 6; P3 = 3; P4 = 7;

Turnaround time:

Average = (7 + 10 + 4 + 11) / 4 = 8.

P1 = 7; P2 = 10; P3 = 4; P4 = 11;



Preemptive SJF
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0 2 4 6 8 1
0

1
2

1
4

1
6

Rules for preemptive scheduling
(for this example only)

-Preemption happens when a new process arrives at 
the system.

-Then, the scheduler steps in and selects the next 
task based on their remaining CPU requirements.

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

Shortest-remaining-time-first



Preemptive SJF
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

P1

Set of processes

Time = 0

P1



Preemptive SJF
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

P2

Time = 2

P2

Preempted!

P1

P2 is selected!

P1 P2



Preemptive SJF
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 1

P4 5 4 4

Set of processes

P2 P3

Time = 4

P3

Preempted!

P1

P3 is selected!

P1 P3

P2



Preemptive SJF

55

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 4

Set of processes

P2 P3

Time = 5

P2

Preempted!

P1

P2 is selected!

P1

P2 P3

P4P2



Preemptive SJF
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 4

Set of processes

P2 P3

Time = 7

P4P1

P1

P2 P3

P4P4

P2

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 0

Time = 11

P1P4

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1

Time = 16

P4P1P1



Preemptive SJF
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 4

P4P1 P2 P3 P2

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1P4

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1

Waiting time:

Average = (9 + 1 + 0 + 2) / 4 = 3.

P1 = 9; P2 = 1; P3 = 0; P4 = 2;

Turnaround time:

Average = (16 + 5 + 1 + 6) / 4 = 7.

P1 = 16; P2 = 5; P3 = 1; P4 = 6;



SJF: Short summary

Non-preemptive SJF Preemptive SJF

Average waiting time 4 3 (smallest)

Average turnaround time 8 7 (smallest)

# of context switching 3 (smallest) 5

Task Arrival 
Time

CPU 
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

The waiting time and the turnaround time decrease 
at the expense of the increased number of context 
switching.



SJF: Short summary

Non-preemptive SJF Preemptive SJF

Average waiting time 4 3 (smallest)

Average turnaround time 8 7 (smallest)

# of context switching 3 (smallest) 5

Task Arrival 
Time

CPU 
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

SJF is provably optimal in that it gives the minimum 
average waiting time

Challenge: How to know the length of the next CPU 
request?



SJF: Short summary

Challenge: How to know the length of the next CPU 
request? 

Solution: Prediction (by expecting that the next CPU 
burst will be similar in length to the previous ones)

General approach
exponential average

Most recent information

Predicted
value
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Different algorithms

Algorithms Preemptive? Target System

First-come, first-served 
or First-in, First-out 

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!



Round-robin

• Round-Robin (RR) scheduling is preemptive.

– Every process is given a quantum, or the amount of time 
allowed to execute.

– When the quantum of a process is used up (i.e., 0), the 
process releases the CPU and this is the preemption.

– Then, the scheduler steps in and it chooses the next 
process which has a non-zero quantum to run.

• Processes are running one-by-one, like a circular 
queue.

– Designed specially for time-sharing systems
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Round-robin
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Rules for Round-Robin
(for this example only)

-The quantum of every process is fixed and is 2 units.

-The process queue is sorted according the processes’ 
arrival time, in an ascending order.
(This rule allows us to break tie.)

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

P1
Q:2

Time = 0

P1



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

Time = 2

P2P1

P1
Q:0

P2
Q:2

P1’s quantum is 0;
P2 is selected!



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 1

P4 5 4 4

Set of processes

Time = 4

P3P1

P1
Q:0

P2
Q:0

P1’s & P2’s quanta are 0;
P3 is selected!

P2

P3
Q:2



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 5

P4P1

P1
Q:0

P2
Q:0

P1’s & P2’s quanta are 0;
P4 is selected!

P2

P3
Q:2

P3

P4
Q:2



Round-robin

68

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 7

P1P1

P1
Q:0

P2
Q:0

Now, recharge is needed.

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:2

P2
Q:2

P4
Q:2

Now, recharge is needed.
P1 is selected.



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 9

P2P1

P1
Q:0

P2
Q:0

P1’s quantum is 0;
P2 is selected!

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 0

P3 4 1 0

P4 5 4 2

Set of processes

Time = 11

P4P1

P1
Q:0

P2
Q:0

P1’s quantum is 0;
P4 is selected!

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 0

P3 4 1 0

P4 5 4 0

Set of processes

Time = 13

P1P1

P1
Q:0

P2
Q:0

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2 P4

P1
Q:2

Now, recharge is needed.Now, recharge is needed.
P1 is selected.



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 1

P2 2 4 0

P3 4 1 0

P4 5 4 0

Set of processes

Time = 15

P1P1

P1
Q:0

P2
Q:0

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2 P4

P1
Q:2

Now, recharge is needed.Now, recharge is needed.
P1 is selected.

P1



Round-robin
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival 
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1 P2 P3 P4 P1 P2 P4 P1 P1

Waiting time:

Average = (9 + 5 + 0 + 4) / 4 = 4.5

P1 = 9; P2 = 5; P3 = 0; P4 = 4;

Turnaround time:

Average = (16 + 9 + 1 + 8) / 4 = 8.5

P1 = 16; P2 = 9; P3 = 1; P4 = 8;



RR  VS  SJF
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Non-preemptive 
SJF

Preemptive SJF RR

Average waiting time 4 3 4.5 (largest)

Average turnaround
time

8 7 8.5 (largest)

# of context switching 3 5 8 (largest)

So, the RR algorithm gets all the bad!  Why do we still need it?

The responsiveness of the processes is great under the RR algorithm. E.g., you 
won’t feel a job is “frozen” because every job is on the CPU from time to time!



Round-robin
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Issue for Round-Robin

-How to set the size of the time quantum?

-Too large: FCFS

-Too small: frequent context switch

-In practice: 10-100ms

-A rule of thumb: 80% CPU burst should be shorter than the 
time quantum



Observations on RR

• Modified versions of round-robin are implemented 
in (nearly) every modern OS.
– Users run a lot of interactive jobs on modern OS-es.

– Users’ priority list:
• Number one - Responsiveness;

• Number two - Efficiency;

• In other words, “ordinary users” expect a fast GUI response 
than an efficient scheduler running behind.

• With the round-robin deployed, the scheduling 
looks like random.
– It also looks like “fair to all processes”.
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Different algorithms

Algorithms Preemptive? Target System

First-come, first-served 
or First-in, First-out 

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!



Priority Scheduling

• Some basics:
– A task is given a priority (and is usually an integer).

– A scheduler selects the next process based on the 
priority.
• A typical practice: the highest priority is always chosen.

– Special case: SJF, FCFS (equal priority)

• How to define priority
– Internally: time limits, memory requirements, number of 

open files, CPU burst and I/O burst…

– Externally: process importance, paid funds…
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Priority Scheduling
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0 2 4 6 8 1
0

1
2

1
4

1
6

Task CPU 
Burst

Priority

P1 7 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2 P5

Assumption:

-All arrive at time 0
-Low numbers represent high priority

P1 P3 P4

Problem:

Solution: Aging (gradually increase the priority of 
waiting processes)

Indefinite blocking or starvation
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Different algorithms

Algorithms Preemptive? Target System

First-come, first-served 
or First-in, First-out 

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!



The processes are 
permanently assigned to 
one queue

Multilevel queue scheduling

• Definitions.

– It is still a priority scheduler.

– But, at each priority class, different schedulers may be 
deployed.

– Eg: Foreground processes and background processes

81

Priority class 2

Priority class 3

Priority class 4

Priority class 5

RR with quantum = 20 units.

RR with quantum = 10 units.

Non-preemptive, SJF

Non-preemptive, FIFO

Priority class 1 RR with quantum = 40 units.

Just an example.

Fixed-priority preemptive 
scheduling among queues



Multilevel queue scheduling– an example

• Properties: process is assigned a fix priority when 
they are submitted to the system.
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Priority 1

Priority 2

Priority 3

Priority 4

Increasing priority E.g., using round-robin in each queue.



Multilevel queue scheduling– an example

• The highest priority class will be selected.
– To prevent high-priority tasks from running indefinitely.
– The tasks with a higher priority should be short-lived, but 

important;
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Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority



Multilevel queue scheduling– an example

• Lower priority classes will be scheduled only when 
the upper priority classes has no tasks.
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Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority



Multilevel queue scheduling– an example

• Of course, it is a good design to have a high-priority 
task preempting a low-priority task.

(conditioned that the high-priority task is short-lived.)
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Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority



Multilevel queue scheduling– an example

86

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

• Any problem?
– Fixed priority

– Indefinite blocking or starvation



A process drops to a 
lower priority class 
after it has used up its 
quantum and has the 
quantum recharged.

Multilevel feedback queue scheduling

• How to improve the previous scheme?

– Allows a process to move between queues (dynamic 
priority).

– Why needed? 

• Eg.: Separate processes according to their CPU bursts.
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Priority class 2

Priority class 3

Priority class 4

Priority class 5

RR with quantum = 20 units.

RR with quantum = 10 units.

Non-preemptive, SJF

Non-preemptive, FIFO

Priority class 1 RR with quantum = 40 units.

Just an example.



Multilevel feedback queue scheduling

• How to design (factors)?

– Number of queues

– Scheduling algorithm for each queue

– Method for determining when to upgrade/downgrade a 
process

– Method for determining which queue a process will 
enter

• Most general, but also most complex

– Can be configured to match a specific system
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Summary

• Did we solve the conflict?

89

Fairness

Policy 
enforcement

CPU-I/O 
Balance

Little conflict

Big 
conflict

Big 
conflict

Priority scheduler 
guarantees this.

“Not to schedule blocked 
process” guarantee this.

Round-robin scheduler 
guarantees this.

Multilevel feedback queue scheduling
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- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation
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- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation
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Scheduling Issues with SMP

Processor Affinity
Attempt to keep a 

process running on 
the same processor

Soft/hard affinity

Scheduling between processors

Process migration: Invalidating the cache 
of the first processor and repopulating 
the cache of the second processor)

Process migration is costly

NUMA
CPU scheduler and 
memory-placement 

algorithms work 
together

SMP: Each processor may have its private 
queue of ready processes

Load balancing
Push migration: a specific task 
periodically check the status & rebalance

Pull migration: an idle processor pulls a 
waiting task from busy processor

No absolute rule concerning what policy is best
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- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation



Real-time CPU Scheduling
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Antilock brake system: Latency requirement: 3-5 ms

Interrupt latency (minimize or bounded): 
✓ Determining interrupt type and save the state of the 

current process 
✓ Minimize the time interrupts may be disabled

Dispatch latency: 
✓ Time required by dispatcher (preemption running 

process and release resources of low-priority proc). 
✓ Most effective way is to use preemptive kernel

Responsiveness: Respond 
immediately to a real-time 
process as soon as it 
requires the CPU

Support priority-based alg. 
with preemption

Hard real-time systems: A task must be served by its 
deadline (otherwise, expired as no service at all)

Soft real-time systems: Critical processes will be given 
preference over noncritical processes (no guarantee)



Real-time CPU Scheduling Algorithms
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Rate monotonic scheduling

Assumption: Processes require CPU at constant periods: processing time t and period 
p (rate 1/p)

Each process is assigned a priority proportional to its rate, and schedule processes 
with a static priority policy with preemption (fixed priority)

Example

P1: p1=50, t1=20
P2: p2=100, t2=35



Real-time CPU Scheduling Algorithms
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Rate monotonic scheduling

Processes require CPU at constant periods: processing time t and period p (rate 1/p)

Each process is assigned a priority proportional to its rate, and schedule processes 
with a static priority policy with preemption (fixed priority)

Example

P1: p1=50, t1=25
P2: p2=80, t2=35

Can not guarantee that a set of processes can be scheduled

Any problem?



Real-time CPU Scheduling Algorithms
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Earliest-deadline-first scheduling (EDF)

Dynamically assigns priorities according to deadline (the earlier the deadline, the 
higher the priority)

Example

P1: p1=50, t1=25
P2: p2=80, t2=35

EDF does not require the processes to be periodic, nor require a constant 
CPU time per burst

EDF requires the announcement of deadlines



98

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation



Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

99

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

Priorities 0 to 99 are 
privileged classes.

The processes in those 
queues are called “real-
time processes”.

Real-time processes are 
either following RR or  
FIFO scheduling 
algorithm.

Completely Fair Scheduler

Logical view of the 
Linux scheduler



Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

100

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

CFS

-Each process maintains virtual run 
time (vruntime), recording how 
long each has run

-CFS selects the process that has 
the smallest vruntime value

-Decay factor: nice value (-20 to 
+19): the smaller the value is, the 
“higher priority” the process get

Completely Fair Scheduler



Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

101

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

CFS

-Use a red-black tree to maintain 
runnable tasks
-The leftmost value is cached

Completely Fair Scheduler
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- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation



How to select/evaluate a scheduling algorithm?

103

How to select a scheduling alg? (many algorithms with different parameters and properties)

Step 1: Define a criteria or the importance of various measures (application dependent)

Step 2: Design/Select an algorithm to satisfy the requirements. How to guarantee?

Evaluate Algorithms

Deterministic 
modeling

Simple and fast

Demonstration 
examples

Queueing modeling 

Queueing network analysis

Distribution of CPU and I/O 
burst (Poisson arrival)

Little’s law: 𝑛 = 𝜆 ×𝑊

Simulation & Implementation

Trace driven

High cost (coding/debugging…)

Hard to understand the full 
design space



Summary on scheduling

• So, you may ask:
– “What is the best scheduling algorithm?”

– “What is the standard scheduling algorithm?”

• There is no best or standard algorithm because of, 
at least, the following reasons:
– No one could predict how many clock ticks does a 

process requires.

– On modern OS-es, processes are submitted online.

– Conflicting criterias
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Summary on part 2
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Process Communication & 
Synchronization

Process Scheduling

Scheduler

Process Process Process

Kernel Space

User Space

P

P

P

Process Operations
(fork(),exec*(),wait()) Thread 1 Thread 2

Process
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from a Programmer’s Perspective

1



Why we need memory management

• The running program code requires memory 

– Because the CPU needs to fetch the instructions from 
the memory for execution

• We must keep several processes in memory

– Improve both CPU utilization and responsiveness

– Multiprogramming

2

It is required to efficiently manage the memory



Topics in Ch7
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What is the address space of a process?
How are the program code and data stored in memory?

How to allocate/free memory (malloc() + free())?
How much memory can be used in a program?

What are segmentation and segmentation fault?

From a programmer’s perspective: user-space memory management

What is virtual memory?
How to realize address mapping (paging)?

How to support very large programs (demand paging)?
How to do page replacement?

What is TLB?
What is memory-mapped file?

From the kernel’s perspective: How to manage the memory
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Part 1: User-space memory

Global variable

Local variable

Dynamically-allocated 
memory

Code + 
constants

Process

Do you remember this? 
- Content of a process (in user-space   

memory)

How does each part use the memory?
- From a programmer’s perspective

Let’s forget about the kernel for a 
moment. We are going to explore the 
user-space memory first.
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Address space
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Data Segment & BSS –
Global and static 

variables

Heap – Dynamically 
allocated memory

Code + Constant

Stack - Local variables

How does a programmer 
look at the memory space?

- An array of bytes?

- Memory of a process is 
divided into segments 

- This way of arranging 
memory is called 
segmentation



Address space
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Data Segment & BSS –
Global and static 

variables

Heap – Dynamically 
allocated memory

Code + Constant

Stack - Local variables

Increasing 
address

$ ./addr
Local variable  = 0xbfa8938c
malloc() space  =  0x915c008
Global variable =  0x804a020
Code & constant =  0x8048550
$ _

Note
The addresses are not necessarily the 
same in different processes

What is the process address space?
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Address space

Data Segment & BSS –
Global and static 

variables

Heap – Dynamically 
allocated memory

Code + Constant

Stack - Local variables
0xffffffff = 0x100000000 - 1

1 ‘1’ bit + 16 ‘0’ bits

= 2^32 - 1

= 4G - 1

0xf = 1111

In a 32-bit system,
- One address maps to one byte.
- The maximum amount of memory 

in a process is 4GB.

Increasing 
address

Note
- This is the so called logical address 

space
- Each process has its own address 

space, and it can reside in any part 
of the physical memory

How large is the address space?
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Program code & constants

• A program is an executable file

• A process is not bounded to one 
program code.
– Remember exec*() family?

• The program code requires 
memory space because…
– The CPU needs to fetch the 

instructions from the memory for 
execution.

10

Data Segment 
& BSS

Heap

Code +
Constant

Stack

instruction



Program code & constants

• Question #1. What are the printouts from Line 
3 & 4?

• Question #2. What is the printout from Line 6?

11

1  int main(void) {
2      char *string = "hello";
3      printf("\"hello\"      = %p\n", "hello");
4      printf("String pointer = %p\n", string);
5      string[4] = '\0';
6      printf("Go to %s\n", string);
7      return 0;
8  }

Data Segment 
& BSS

Heap

Code +
Constant

Stack

Segmentation fault

"hello"    = 0x8048520
String pointer = 0x8048520



Program code & constants
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• Constants are stored in code segment.

– The memory for constants is decided by the 
program code

– Accessing of constants are done using 
addresses (or pointers).

• Codes and constants are both read-only.

Data Segment 
& BSS

Heap

Code +
Constant

Stack

1  int main(void) {
2      char *string = "hello";
3      printf("\"hello\"      = %p\n", "hello");
4      printf("String pointer = %p\n", string);
5      string[4] = '\0';
6      printf("Go to %s\n", string);
7      return 0;
8  }
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Data Segment & BSS – properties
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int global_int = 10;
int main(void) {

int local_int = 10;
static int static_int = 10;
printf("local_int addr = %p\n", &local_int );
printf("static_int addr = %p\n", &static_int );
printf("global_int addr = %p\n", &global_int );
return 0;

}

$ ./global_vs_static
local_int addr = 0xbf8bb8ac
static_int addr = 0x804a018
global_int addr = 0x804a014
$_

They are stored next 
to each other.

This implies that they 
are in the same 
segment!

Data Segment 
& BSS

Heap

Code +
Constant

Stack

Note: A static variable is treated as the 
same as a global variable!



Data Segment & BSS – properties
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• Data

– Containing initialized global and static 
variables.

• BSS (Block Started by Symbol)

– Containing uninitialized global and 
static variables. Data Segment 

& BSS

Heap

Code +
Constant

Stack



Data Segment & BSS – locations
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$ ./data_vs_bss
global  bss = 0x804a028
static  bss = 0x804a024
global data = 0x804a014
static data = 0x804a018
$_

1  int global_bss;
2  int global_data = 10;
3  int main(void) {
4      static int static_bss;
5      static int static_data = 10;
6      printf("global  bss = %p\n", &global_bss );
7      printf("static  bss = %p\n", &static_bss );
8      printf("global data = %p\n", &global_data );
9      printf("static data = %p\n", &static_data );
10 }

BSS

Data

Data Segment 
& BSS

Heap

Code +
Constant

Stack



Data Segment & BSS – sizes

17

Guess!  Which one is large?

$ gcc -O0 -o data_large data_large.c
$ gcc –O0 –o data_small data_small.c

$ ls –l data_small data_large

No optimization.

Program: data_large.c

char a[1000000] = {10};

int main(void) {
return 0;

}

Program: data_small.c

char a[100] = {10};

int main(void) {
return 0;

} What is the difference between data 
and BSS?



Program: data_large.c

Data Segment & BSS – sizes
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char a[1000000] = {10};

int main(void) {
return 0;

}

Program: data_small.c

char a[100] = {10};

int main(void) {
return 0;

}

$ gcc -O0 -o data_large data_large.c
$ gcc –O0 -o data_small data_small.c

$ ls –l data_small data_large
-rwxr-xr-x ... 1004816 ... data_large
-rwxr-xr-x ...    4916 ... data_small
$_

Wow!

The data segment has the required 
space already allocated.



Program: bss_large.c

Data Segment & BSS – sizes

19

char a[1000000];

int main(void) {
return 0;

}

Program: bss_small.c

char a[100];

int main(void) {
return 0;

}

$ gcc -O0 -o bss_large bss_large.c
$ gcc –O0 -o bss_small bss_small.c

$ ls –l bss_small bss_large
-rwxr-xr-x ... 4775... bss_large
-rwxr-xr-x ... 4775... bss_small
$_

Same size!

To the program, BSS is just a bunch of symbols. 
The space is not yet allocated.

The space will be allocated to the process once 
it starts executing.

This is why BSS is called “Block Started by 
Symbol”.



Data Segment & BSS – limits 
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$ ulimit -a
core file size   (blocks, -c) 0
data seg size    (kbytes, -d) unlimited
......

$ _

In  Linux, “ulimit”  is a built-in 
command in “/bin/bash”.

It sets or gets the system 
limitations in the current shell.

How large is the data segment?

Does the “unlimited” mean that you can define a global array 
with large enough size?



Data Segment & BSS – limits 
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$ gcc -Wall -O0    global_2gb.c   -o global_2gb
global_2gb.c:6: warning: integer overflow in expression
global_2gb.c:6: error: size of array ‘a’ is negative
$ _

#define ONE_MEG (1024 * 1024)

char a[2048 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“2GB OK\n");

}

The size of an array is a 32-bit signed integer, no matter 32-bit or 64-bit systems. 
Therefore…

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“1GB OK\n");

}



Data Segment & BSS – limits 

22

Segmentation fault
why?

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG];
char b[1024 * ONE_MEG];
char c[1024 * ONE_MEG];
char d[1024 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“1GB OK\n");
memset(b, 0, sizeof(b));
printf(“2GB OK\n");
memset(c, 0, sizeof(c));
printf(“3GB OK\n");
memset(d, 0, sizeof(d));
printf(“4GB OK\n");

}

Program: global_4gb.c

On a 32-bit Linux system, the 
user-space addressing space 
is around 3GB.

The kernel reserves 1GB 
addressing space.



Data Segment & BSS – summary

• Remember, “global variable == static variables”.

– Only the compiler cares about the difference!

• Everything in a computer has a limit!

– Different systems have different limits: 32-bit VS 64-bit.

– Your job is to adapt to such limits.

– On a 32-bit Linux system, the user-space addressing 
space is around 3GB.

23



24

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Stack – properties 

• The stack contains:

– all the local variables,

– all function parameters,

– program arguments, and

– environment variables.

25

Data Segment 
& BSS

Heap

Code +
Constant

Stack

How are the data stored and what is the 
size limit?



Stack – properties 

• Stack: FILO

• When a function is called, the local 
variables are allocated in the stack.

• When a function returns, the local 
variables are deallocated from the stack.
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Data Segment 
& BSS

Heap

Code +
Constant

Stack



main() starts

Stack – push & pop mechanisms
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a = 1

b = 2

variable ‘a’ in main().

variable ‘b’ in main().

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}



return addr 1

1

2

Stack – push & pop mechanisms
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a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Will become u in fun1().

Will become v in fun1().

Calling function “fun1()” starts.
It is the beginning of the call, and the CPU has not 
switched to fun1() yet.

“return addr 1” 
is approx. here.

main() starts



return addr 1

u = 1

v = 2

Stack – push & pop mechanisms

29

a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun1()” takes place. The CPU has 
switched to fun1() .

fun1() starts

main() starts



return addr 2

u = 1

v = 2

Stack – push & pop mechanisms
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a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun2()” starts.
It is the beginning of the call, and the CPU has not 
switched to fun2() yet.

2

1

return addr 1

Will become x in fun2().

Will become y in fun2().

return addr 2 is 
approx. here.

fun1() starts

main() starts



return addr 2

u = 1

v = 2

Stack – push & pop mechanisms
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a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun2()” takes place. The CPU has 
switched to fun2() .

x = 2

y = 1

return addr 1

fun1() starts

fun2() starts

c = 10 Local variables are allocated 
once the function starts.

main() starts



u = 1

v = 2

Stack – push & pop mechanisms
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a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}return addr 1

“Return” takes place.
(1) Return value is written to the EAX register.
(2) Stack shrinks.
(3) CPU jumps back to fun1().

x = 2

y = 1

return addr 2

fun1() starts

fun2() starts

c = 10

EAX: 13

main() starts



u = 1

v = 2

return addr 1

x = 2

y = 1

return addr 2

c = 10

Stack – push & pop mechanisms
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a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

“Return” takes place.
(1) Return value is written to the EAX register.
(2) Stack shrinks.
(3) CPU jumps back to main().

fun1() starts EAX: 13

main() starts



u = 1

v = 2

return addr 2

x = 2

y = 1

return addr 3

c = 10

a = 1

b = 13

Stack – push & pop mechanisms
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int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

EAX: 13

Upon “return”, the value of 
EAX is then copied to “b”

Those memory is NOT 
returned to the OS!!

Those memory will be re-
used when you call 
functions again.

main() starts



u = 1

v = 2

return addr 2

x = 2

y = 1

return addr 3

c = 10

a = 1

b = 13

Stack – push & pop mechanisms
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int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

EAX: 0

Eventually, the main 
function reaches 
“return 0”.

This takes the CPU 
pointing to the C library.

Inside the C library, we 
will eventually reach the 
system call exit().



Stack – limits 
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$ ulimit -a
core file size   (blocks, -c) 0
data seg size    (kbytes, -d) unlimited
......
stack size       (kbytes, -s) 8192
......

$ _

So, the limit is:
8192 x 1024 = 8MB.

$ ulimit -a
core file size   (blocks, -c) 0
data seg size    (kbytes, -d) unlimited
......
stack size       (kbytes, -s) 8192
......

$ ulimit -s 81920

Now, the limit is:
81920 x 1024 = 80MB.

Can you define a local array larger that the limit?
Segmentation 

fault



Stack – summary 

• What if it is a chain of endless 
recursive function calls?

• What will happen?

– Exception caught by the CPU!

• Stack overflow exception!

– Program terminated!

37

No! I’m full!



Stack – summary 

• “I really need to play with recursions.” Any 
workaround?

– Minimize the number of arguments

– Minimize the number of local variables

– Minimize the number of calls

– Use global variables

• Note: A function can ask the CPU to read 
and to write anywhere in the stack, not 
just the “zone” belonging to the running 
function!

– Isn’t it horrible (profitable and fun)?

38

No! I’m full!
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



Dynamically allocated memory – properties 

• Its name tells you its nature:

– The dynamically allocated memory is 
called the heap.

• Don’t mix it up with the binary heap;

• It has nothing to do with the binary heap.

– Dynamic: not defined at compile time.

– Allocation: only when you ask for 
memory, you would be allocated the 
memory.

40

Data Segment 
& BSS

Heap

Code +
Constant

Stack



Dynamically allocated memory – properties 

• Lecturers of a programming course would 
tell you the following:

– “malloc()” is a function that allocates 
memory for you.

– “free()” is a function that gives up a piece of 
memory that is produced by previous 
“malloc()” call.

• The lecturer of the OS course is to define 
and to defy what you know about the 
malloc() and free() library functions.
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Data Segment 
& BSS

Heap
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Constant

Stack



malloc()
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Data Segment 
& BSS

Heap

Code +
Constant

Stack
When a program just starts running, the entire 
heap space is unallocated, or empty.

An empty heap.



allocated space

malloc()
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Data Segment 
& BSS

Heap

Code +
Constant

Stack

When “malloc()” is called, the “brk()” system call is invoked 
accordingly.

“brk()” allocates the space required by “malloc()”. But, it 
doesn’t care how “malloc()” uses the space.

An empty heap.

grow



allocated space

malloc()
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Data Segment 
& BSS

Heap

Code +
Constant

Stack

The allocated space growing or shrinking depends on the 
further actions of the process. That means the “brk()” system 
call can grow or shrink the allocated area. 

In malloc(), the library call just invoke brk() for growing the 
heap space.

The free() call may shrink the heap space.

An empty heap.

grow

shrink



malloc()
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int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap

The return value of malloc() is of type 
“void *”, which means it is just a memory 
address only, and can be of any data types.

Such a memory address is the starting 
address of a piece of memory of 16 bytes 
(“16” is the request of malloc() call).



malloc()
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int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap
16 

bytes

Address returned by 1st malloc() call.

Data structure maintained by malloc().



malloc()
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int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap
16 

bytes

Data structure maintained by malloc().

Address returned by 1st malloc() call.

Address returned by 2nd malloc() call.

16 
bytes



malloc()
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int main(void) {
char *ptr1, *ptr2;
ptr1 = malloc(16);
ptr2 = malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap
16 

bytes
16 

bytes

ptr2 - ptr1
The result should be > 16. Let’s try the real program!



free()

• “free()” seems to be the opposite to “malloc()”:

– It de-allocates any allocated memory.

– When a program calls “free(ptr)”, then the address “ptr” 
must be the start of a piece of memory obtained by a 
previous “malloc()” call.
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Heap
16 

bytes
16 

bytes
16 

bytes
16 

bytes

ptr



free() – case #1

• Case #1: de-allocating the last block.

50

Old
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

ptr The last block is not needed.

New
Heap

16 
bytes

16 
bytes

16 
bytes

shrink

This is accomplished by calling brk() system call. This heap has become smaller.



free() – case #2

• Case #2: de-allocating an intermediate block.
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Old
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

ptr We don’t want an intermediate block.

New
Heap

16 
bytes

16 
bytes

shrink

Calling brk() system call without using your brain is not acceptable!



free() – case #2

• Case #2: de-allocating an intermediate block.
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Heap
16 

bytes
16 

bytes
16 

bytes
16 

bytes

NULL size

This pointer is used for creating a linked list of de-allocated block.

This size record the size of de-allocated block.

address

Here comes the role of the data structure created by malloc()!

32-bit system: 4+4 = 8 bytes
64-bit system: 8+8 = 16 bytes



free() – case #2

• Case #2: de-allocating an intermediate block.
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New
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

A global variable
NULL

The “Head” variable is a pointer 
acting as the start of the list of the 
free blocks.

“NULL” defines the end of the free list.

We have to keep the de-allocated blocks 
because they cannot be returned to the 
system.

As the number of de-allocated blocks 
cannot be known in prior, we need a 
linked list.



free() – case #2

• Case #2: another example.
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Old
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

free()

16 
bytes

16 
bytes

16 
bytes

free() free() free()

New
Heap

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

shrink

Head NULL



free() – cautions

• The calling program is assumed to be carefully written.

– After malloc() has been invoked, the program should read 
and write inside the requested area only.

– Now, you know why you’d have troubles when you write 
data outside the allocated space.
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Heap
16 

bytes
16 

bytes
16 

bytes
16 

bytes

You can only play within this zone. Please behave!

Note: be careful of the consequences of misbehaves…



free() – cautions

• The calling program is assumed to be carefully written.

– When free() is called, the program should provide free()
with the correct address…

• i.e., the address previously returned by a malloc() call.
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Heap
16 

bytes
16 

bytes
16 

bytes

incorrect address 
passed to free() A mis-calculated header based on the 

incorrect address.



When malloc() meets free blocks…

• Problem: whether to use the free blocks or not?

– Is there any free block that is large enough to satisfy the 
need of the malloc() call?
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16 
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16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

NULL



When malloc() meets free blocks…case #1

• Case #1: if there is no suitable free block…

– then, the malloc() function should call brk() system 
call…in order to claim more heap space.
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16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

NULL

32 bytes

Original heap size New space 
by brk()

New malloc() 
request

New 
header

Call invoked: 
malloc(32);



When malloc() meets free blocks…case #2

• Case #2: if there is a suitable free block
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16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

NULL

Original heap size

Call invoked: 
malloc(16);



When malloc() meets free blocks…case #2

• Case #2: if there is a suitable free block

– the malloc() function should reuse that free block.
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16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Head

NULL

Original heap size

Call invoked: 
malloc(16);



When malloc() meets free blocks…

• There can be other cases:
– A malloc() request that takes a partial block;

– A malloc() request that takes a partial block, but leaving 
no space in the previously free block.

• We will skip those subtle cases…
– It boils to implementation only...

– You already have the big picture about malloc() and 
free().
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When malloc() meets free blocks…

• Now, let us look at some implementations…
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Implicit free list

• Needs two information for each block

– size & is_allocated

63

free allocated Allocated & unused

How about memory allocation and free?



Implicit free list

• Allocation: May need linear time search

– Allocate the whole block or splitting

64

First fit: allocate the first hole that is big enough (fast)

Next fit: similar to first fit, but start where previous search finishes

Best fit: allocate the smallest hole that is big enough (helps 

fragmentation, larger search time)

Worst fit: allocate the largest hole



Implicit free list

• Free: Coalescing

– Coalescing with next block: easy

65

– How about coalescing 
with previous block?

• [Knuth 73] Add a 
boundary tag in the footer



Implicit free list

• Constant time coalescing w/ boundary tag (4 cases) 
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Implicit free list: summary

• May not be used in practical malloc() and free() 
implementations

– High memory allocation cost

• Some ideas are still useful and important

– Splitting available blocks

– Boundary tag
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Explicit free list

• Track only free blocks (LIFO or address-ordered)

• Block splitting is useful in allocation

• Boundary tag is still useful in coalescing

68



Segregated free list

• Segregated free list (分离空闲链表)
– Different free lists for different size classes

– Allocation
• Search appropriate list (larger size)

• Found and split

• Not found: search next

69

Approximates best -fit



Segregated free list

• Special example

– Buddy system (power-of-two block size)

70



Issues raised by malloc() and free()

• The kernel knows how much memory should be 
given to the heap.

– When you call brk(), the kernel tries to find the 
memory for you.

• Then…one natural question…

– Is it possible to run out of memory (OOM)?

71



Out of memory?

• Try this!  

72

#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Is it safe to run this 
program on a 32-bit 
machine?

What is the output?



Out of memory?

• On 32-bit Linux, why does the OOM generator stop 
at around 3055MB?

• Still remember what we said when we are talking 
about data segment?

– Every 32-bit Linux system has an addressable memory 
space of 4G-1 bytes.

– The kernel reserves 1GB addressing space.
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Out of memory?

• Try this!  Yet another OOM Generator!

74

Yet, what is the output?

#define ONE_MEG  1024 * 1024
char global[1024 * ONE_MEG];
int main(void) {

void *ptr;
int counter = 0;
char local[8000 * 1024];
while(1) {

ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}



Real OOM!
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, 0, ONE_MEG);
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Warning #1. Don’t run this program on 
any department’s machines.

Warning #2. Don’t run this program 
when you have important tasks running 
at the same time.

Explanation is in Part 2.

Lazy allocation
That is why previous programs 

run very fast.



Other Issues

• External fragmentation

– The heap memory looks like a map with many holes

– It is the source of inefficiency because of the 
unavoidable search for suitable space

– The memory wasted because external fragmentation is 
inevitable

• Internal fragmentation

– Payload is smaller than allocated block size

– Padding for alignment

– Placement policy

• Allocate a big block for small request
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User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;



What is segmentation fault?

• Someone must have told you:

– When you are accessing a piece of memory that is 
not allowed to be accessed, then the OS returns you 
an error called – segmentation fault.

• As a matter of fact, how many ways are there to 
generate a segmentation fault?
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What is segmentation fault?
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Data Segment 
& BSS

Allocated 
Heap

Code +
Constant

Allocated 
Stack

Unallocated 
Heap

Unallocated 
Stack

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

From illustration to reality…

Forget about the illustration, 
the memory in a process is 
separated into segments.

So, when you visit a segment 
in an illegal way, 
then…segmentation fault.

grow

grow

0xffffffff

0x00000000



0xffffffff

How to “segmentation fault”?
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Data

BSS

Allocated Heap

Allocated Stack

Code + Constant

Unusable

Unusable

WriteRead

YES

NO

YES

NO

NO

NO

NO

YES

YES

NO

YES

NO

NO

NO

YES

YES

Unallocated Zone

0x00000000



0xffffffff

0x00000000

How to “segmentation fault”?
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Data

BSS

Allocated Heap

Allocated Stack

Code + Constant

Unusable

Unusable

WriteRead

YES

NO

YES

NO

NO

NO

NO

YES

YES

NO

YES

NO

NO

NO

YES

YES

Unallocated Zone

Now, we can understand:

char *ptr = NULL;
char c = *ptr;

will generates

Segmentation fault

NULL = 0x00000000

*ptr is reading



Summary of segmentation fault

• When you have a so-called address (maybe it is just 
a random sequence of 4 bytes), one of the following 
cases happens:
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Read-only 
segments

Allocated 
segments

Unused or 
unallocated 

segments

Reading No problem No problem
Segmentation 

fault

Writing
Segmentation 

fault
No problem

Segmentation 
fault

See if you have luck…



Summary of segmentation fault

• Now, you know what is a segmentation fault, and 
the cause is always carelessness!

– Now, you know why “free()” sometimes give you 
segmentation fault…

• because you corrupt the list of free blocks!

– Now, you know why “malloc()”-ing a space that is 
smaller than required is ok…

• because you are overwriting the neighboring blocks!
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Summary of part 1 

• Memory of a process is divided into 
segments (segmentation):
– codes and constants;

– global and static variables;

– allocated memory (or heap);

– local variables (or stack);

• When you access a memory that is not 
allowed, then the OS returns you 
segmentation fault

• Every process’ segments are independent 
and distinct.
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Data Segment 
& BSS

Heap

Code +
Constant

Stack



Summary of part 1

• The dynamically allocated memory is not as simple 
as you learned before.

– Allocating large memory blocks is not efficient; instead, 
allocating small memory blocks can make use of the 
holes in the heap memory efficiently.

– Keep calling malloc() without calling free() is 
dangerous…

• because there is no garbage collector in C or the OS…

• OOM error awaits you!
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End of part 1
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2

Memory management

Global variable

Local variable

Dynamically-allocated 
memory

Code + 
constants

Process

How to use the addresses to access 
the memory device?

How do multiple process share the 
same physical memory device?

How to support large process?

How does the CPU read what it wants 
from the memory device?

……

The kernel and the 
hardware are doing 
lots of managements…



3

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



CPU working – illustration that you may know

• Let’s review the “fetch-decode-execute” cycle!

4

0xABCDEF00PC
instruction

memory bus

0x00000000EAX

0xABCDEF00

an integer0x12345678

mov 0x12345678 %EAX

This instruction says: 
“Move the memory 
value in 0x12345678 to 
the register EAX”.

The integer value:
0x0000000A



CPU working – illustration that you may know

• Let’s review the “fetch-decode-execute” cycle!

5

0xABCDEF00PC
instruction

memory bus

0x00000000EAX

0xABCDEF00

an integer0x12345678

mov 0x12345678 %EAX

0x0000000A

1
3

2 CPU decodes

This instruction says: 
“Move the memory 
value in 0x12345678 to 
the register EAX”.

The integer value:
0x0000000A

How to use the addresses?



“You’ve been living in a dream world, Neo”

• Can you guess the result?
– Two different processes, the same variable name,

carry different values
– Use the same address! (What?  How COME?!)

• Well, what is the meaning of a memory address?!
– Logical address: virtual memory
– Address translation needed (logical/virtual->physical)
– Why we use virtual memory??
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int main(void) {
int pid;
pid = fork();
printf("PID %d: %p.\n", getpid(), &pid);
if(pid)

wait(NULL);
return 0;

}

$ ./same_addr
PID 1234: 0xbfe85e0c.
PID 1235: 0xbfe85e0c.
$ _



CPU working … contiguous allocation?

• Each process is contained in a single section of mem
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Process A

Process B

Process C

Hole

Hole



CPU working … contiguous allocation?

• Problem #1…
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Process A

Process B

Process C

Hole

Hole

memory growth
e.g., because of brk() calls

We also know that a process’ memory 
can grow.

So, does a process always have a 
chance to grow to reach its need?



CPU working … contiguous allocation?

• Problem #2…
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Process A

Process B

Process C

Hole

Hole

We are not talking about the 
program’s size, but the process’ size!

What if we have a process 
that is larger that the 
physical memory?

What the CPU (or OS) can do is to 
give up running …

(1) the address space is no longer 
required to be contiguous.

So, we need to have the CPU design 
that can understand processes so that:

(2) it allows a process to have a size 
beyond the physical memory.



Virtual memory support in modern CPUs

• The new design of the CPU includes a new module: 
the memory management unit (MMU).

– MMU is designed to perform address translation.

– The MMU is an on-CPU device.

10



Virtual memory – how does it work?

• Step 1. When CPU wants to fetch an instruction, the 
virtual address is sent to MMU and is translated 
into a physical address.
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0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0xABCDEF00

0xAAAAAA00 0xAAAAAA00



Virtual memory – how does it work?

• Step 2. The memory returns the instruction 
addressed in physical address.
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0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0xABCDEF00

0xAAAAAA00 Physical 
Address

0xAAAAAA00



Virtual memory – how does it work?

• Step 3. The CPU decodes the instruction.

– An instruction always stores virtual addresses, but not 
physical addresses.
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0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0x12345678

0x13579A00

mov 0x12345678 %EAX

Physical 
Address

0xAAAAAA00



Virtual memory – how does it work?

• Step 4. With the help of the MMU, the target 
memory is retrieved.
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0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0x12345678

0x13579A00

mov 0x12345678 %EAX

0x0000000A

Physical 
Address

0xAAAAAA00

0x13579A00



Process X

Process Y

Physical Address

Virtual memory – What is the good?

• Merit 1. Different processes use the same virtual addresses, 
they may be translated to different physical addresses.
– Recall the “pid” variable in the example using fork().

– The address translation helps the CPU to retrieve data in a non-
contiguous layout (the process address space is contiguous ).
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Proc Y: 0x00000000B

0x13579A00

0x12345678
Proc X: 0x00000000A

0x12345678

0x2468CD00

Virtual Address



Process X

Process Y

Physical Address

Virtual memory – What is the good?

• Merit 2. Memory sharing can be implemented!

– This is how threads share memory!

– This is how different processes share codes! (HOW?)
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mov 0x12345678 %EAX

Proc Y: 0x00000000B

0xAAAAAA00

0x13579A00

0xABCDEF00

0x12345678
Proc X: 0x00000000A

0xABCDEF00

0x12345678

0xAAAAAA00

0x2468CD00

Virtual Address
0xABCDEF00PC



Virtual memory – What is the good?

• Merit 3. Memory growth can be implemented!

– When the memory of a process grows, the newly-
allocated memory is not required to be contiguous
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Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



MMU implementation

• How to implement the MMU?
– How to efficiently translate from virtual address to physical 

address?

– Translation is needed for every process

19

MMU

Process X

Process Y

Physical Address

0xAAAAAA00

0x13579A00

0xABCDEF00

0x12345678

0xABCDEF00

0x12345678

0xAAAAAA00

0x2468CD00

Virtual Address



MMU implementation – a translation table

• So, can translation be done by a lookup table?

– Remember, every process needs its own lookup table.

(Do you remember the reason?)
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MMU

Lookup 
table

Virtual address Physical Address

0x00000000 0x01234567

0x00000001 0x452796AB

...... ……

0xFFFFFFFF 0x6714EFD8

translation

Lookup Table internals
What is the problem 

with this method?



MMU implementation – a translation table

• Then, how large is the lookup table?

21

Virtual address Physical Address

0x00000000 0x01234567

0x00000001 0x452796AB

...... ……

0xFFFFFFFF 0x6714EFD8

Lookup Table internals

How many addresses are there? 232

Size of the lookup table =

Number of addresses
x  Size of an address

How large is an address? 4 bytes

Only this column is stored.

232 x 4 bytes = 16 Gbytes



MMU implementation – a translation table

• Then, how large is the lookup table?

22

How many addresses are there? 232

Size of the lookup table =

Number of addresses
x  Size of an address

How large is an address? 4 bytes

232 x 4 bytes = 16 Gbytes

Note. Every address in a CPU is 
always of 4 bytes.

Can we reduce the table size?

The only choice is to reduce 
the number of addresses
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MMU implementation – a partial lookup table

MMU internals

12 bits

Lookup 
table

20 bits 12 bits

unchanged

Size of the lookup table =

Number of addresses
x  Size of an address

220 x  4 bytes = 4 Mbytes

Physical 
address

Note. Every address in a CPU is 
always of 4 bytes although you 
only use 20 bits.

20 bits
Virtual

address



MMU implementation – paging

• This technique is called 
paging.

– This partitions the memory 
into fixed blocks called pages.

– The lookup table inside the 
MMU is now called the page 
table.
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20 bits 12 bits

Page 
table

20 bits 12 bits

unchanged

Virtual Page
Address

Page
offset

Physical Page
Address



Paging - properties

25

20 bits 12 bits

Virtual Page
address

Page
offset

Size = 4096 bytes (or 4KB)



Paging - properties

26

20 bits 12 bits

Page 
table

20 bits 12 bits

unchanged

Virtual Page
address

Page
offset

Size = 4096 bytes (or 4KB)

Selected 
page

Selected 
address

Physical Page
address



Paging - properties

• Adjacent virtual pages are not guaranteed to be 
mapped to adjacent physical pages.
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0x12345

Virtual Address

000

0x12345 001

...... ...

0x12345 FFF

0x12346 000

0x12346 001

...... ...

0x12346 FFF

0x54321 000

0x54321 001

...... ...

0x54321 FFF

0x09394 000

0x09394 001

...... ...

0x09394 FFFContinuous addresses

Virtual addresses 
within the same page 
are always mapped 
to the same physical 
page.

Physical Pages

Contiguous virtual 
addresses map to 
non-contiguous 
physical address.



Paging – memory allocation

• How to do memory allocation with paging

28

1  char *prev_ptr = NULL;
2  char *ptr = NULL;
3
4  void handler(int sig) {
5      printf("Page size = %d bytes\n",
6              (int) (ptr - prev_ptr));
7      exit(0);
8  }
9  int main(int argc, char **argv) {
10      char c;
11      signal(SIGSEGV, handler);
12      prev_ptr = ptr = sbrk(0);  // find the heap’s start.
13      sbrk(1);                   // increase heap by 1 byte?
14      while(1)
15          c = *(++ptr);
16  }



Paging – memory allocation

• A page is the basic unit of memory allocation.

29

The allocation is in a 
page-by-page manner.

The same case for the 
growth of the stack.



Paging – memory allocation

• Problem???

– The minimum allocation unit is 4,096 bytes.

– But, the process cannot use that much.

– So, the rest of the page is unused.
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Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

grow

grow

Used Heap

Unused

Internal fragmentation
means space is avoidably 
wasted when allocation is 
done in a page-by-page 
manner.



Paging – internal fragmentation
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Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

grow

grow

Used Heap

Unused

How about letting another process to use the “unused space”?

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

grow

grow

The MMU has to memorize that none 
of the processes could occupy the 
whole page. The growth of the usage 
has to be limited and monitored!

Internal fragmentation is here to stay…



Paging – putting it together
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Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

A

B

C

D

E

F

G

Allocated Pages

Allocated memory are 
broken into pages.

Unallocated zone does 
not occupy any pages.

Physical Devices

A B

C

D

E

F

G

Memory pages are 
then distributed on the 
physical memory or the 
swap area, i.e., the 
hard disk.

Memory Space

Unallocated 
Zone

grow

grow



Paging – page table design

• So, next waves of questions are:

– Who can tell which virtual page is 
allocated?

– Who can tell which page is on which 
device?

• Those questions can be answered 
by the design of the page table.
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Physical Devices

A B

C

D

E

F

G

Memory pages are 
then distributed on the 
physical memory or the 
swap area, i.e., the 
hard disk.



Paging – page table design

• How to design the page table?

– First of all, which information need to be maintained?

• Mapping from virtual pages to physical pages (called frames)

• Permission information

• Where is the page (in memory or not)

– Second…

• Each process needs one page table

34



The physical memory is 
just an array of frames. 
The size of a frame is 4KB.

Paging – page table design
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Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

... ... ... ...

This row means the 
virtual page “A” is 
mapped to the physical 
frame “0”.

This row, with NIL, means 
the virtual page “D” is not 
allocated.

Remember, the entire 4G 
memory zone is usually not 
fully utilized.

For the sake of convenience, we don’t use 
addresses here. Also, this column is not 
stored in the page table.



Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

... ... ... ...

Paging – page table design

36

This bit is to tell the CPU 
whether this row is valid or 
not.

If the row is invalid, it 
means that the virtual page 
is not in the memory.

Note. This is not the same 
as an unallocated page. 

1 – valid, in memory.
0 – invalid, not in memory.



Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

... ... ... ...

Paging – page table design

37

s – means sharable.

How does the CPU check if you can 
write to a memory zone?

When a virtual address is translated 
to an unallocated frame…

When you write to read-only pages…

When you try to execute a non-
executable pages…

SEGMENATION FAULT!!

OR

OR



Paging – page table design

• Other design issues 

38

How to store the page table if it is large (structure 
of page table)?

How to improve memory access performance 
(page table look incurs large overhead)?

Caching: Translation lookaside buffer (TLB)



Paging – page table structure

• The page table may be large…multiple MBs

– We would not want to allocate the page table 
contiguously in memory, how?

– Divide the page table into pieces

39

Two-level page table



Paging – page table structure

• The page table may be large…multiple MBs

– We would not want to allocate the page table 
contiguously in memory, how?

– Divide the page table into pieces

40

Hashed page tables

Inverted page tables

Besides hierarchical paging, we 
can also use



Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (1) large pages

• Reduce the page table entries

• Cons?
– Internal fragmentation

– Deduplication 

41



Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (2) Caching

42

The search in TLB is fast: Part 
of the instruction pipeline

The size of TLB is small: 
e.g., 32-1024 entries

Translation lookaside buffer (TLB)



Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (2) Caching

43

Effective memory-access time

Example：
• Hit ratio: 80%
• Mem access time: 100 ns
• One mem access for page table lookup

Effective mem-access time is
0.8*100+0.2*(100+100)=120ns



Paging – summary

• Virtual memory (VM) is just a table-lookup 
implementation. The specials about VM are:

– The table-lookup is implemented inside the CPU, i.e., a 
hardware solution.

– Each process should have its own page table.

44



Paging – summary

• How about the OS?

– The OS stores and manages the page tables of all 
processes.
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Paging – summary

• We talked about segmentation in part 1…

– Address mapping can also be done in segments

• Also permits physical address space of a process to be non-
contiguous 

• But usually incurs severe fragmentation in both memory and 
backing store

• Paging is used in most operating systems

– Hybrid scheme is also possible

46
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Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



Memory / page allocation?

48

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated 
Zone

grow

grow

• The stack and the heap will grow:
– (1) calling brk(), i.e., the heap grows;

– (2) calling nested function calls, i.e., the 
stack grows;

• The question is…
– Will the memory be immediately 

allocated for you when you call 
malloc()?



Remember the OOM generator?
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

This program runs very fast, 
why?



Memory / allocation – demand paging

• The reality is: allocation is done in a lazy way!

– The system only says that the memory is allocated.

– Yet, it is not really allocated until you access it.
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1  #define BUF_SIZE  512 * 1024
2  void re() {
3      char buf[BUF_SIZE];
4      while( getchar() != '\n' );
5      memset(buf, 0, sizeof(buf));
6      while( getchar() != '\n' );
7      re();
8  }
9
10 int main(void) {
11      re();
12      return 0;
13  }

This statement does not involve any 
memory access. 

So, the virtual address space is 
allocated, but the page is not 
allocated yet. 

This statement really accesses the 
“allocated” memory.

So, this statement really asks the 
system to allocate memory.



Memory / allocation – demand paging

• How about the heap?
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1  #define ONE_MEG (1024 * 1024)
2  #define COUNT   1024
3  
4  int main(void) {
5      int i;
6      char *ptr[COUNT];
7      for(i = 0; i < COUNT; i++)
8          ptr[i] = malloc(ONE_MEG);
9
10      for(i = 0; i < COUNT; i++) {
11          while(getchar() != '\n');
12          memset(ptr[i], 0, ONE_MEG);
13      }
14  }

As a matter of fact, malloc() does 
not involve any memory allocation, 
only involving the allocation of the 
virtual address page.

So, this loop is only for enlarging 
the virtual page allocation.

This statement really accesses the 
“allocated” memory.

So, this statement really asks the 
system to allocate memory.

This lazy way is called demand paging, but how does it work?

grow_heap.c



Demand paging – illustration.

• Let’s consider the “grow_heap.c” example.

– Suppose that a process initially has 4 page frames.

– We are now in the memset() for-loop in Lines 10 - 13.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 1 0

... ... ...

D 1 3

E 0 NIL

... ... ...



Demand paging – illustration.

• When memset() runs,

– the MMU finds that a virtual page involved is invalid,

– the CPU then generates an interrupt called page fault.

53

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Page fault

Virtual 
page #

Bit Frame #

A 1 0

... ... ...

D 1 3

E 0 NIL

... ... ...



Demand paging – illustration.

• The page fault handling routine is running:

– The kernel knows the page allocation for all processes. 

– It allocates a memory page for that request.

– Last, the page table entry for Page E is updated.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Page fault Handling
routine

allocation
Virtual 
page #

Bit Frame #

A 1 0

... ... ...

D 1 3

E 1 4

... ... ...



Demand paging – illustration.

• The routine finishes…and 

• the memset() statement is restarted.

– Then, no page fault will be generated until the next 
unallocated page is encountered.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 1 0

... ... ...

D 1 3

E 1 4

... ... ...

OK



Demand paging – illustration.

• So, how about the case when the routine finds that 
all frames are allocated?

– Then, we need the help of the swap area.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 1 0

... ... ...

H 1 7

I 0 NIL

... ... ...

Page fault Handling
routine

Swap area

? ?
?

I’m full!



Demand paging – illustration.

• Using the swap area:

– Step (1) Select a victim virtual page and copy the victim 
to the swap area.

• Now, Frame 0 is a free frame and the bit for Page A is 0.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 0 0

... ... ...

H 1 7

I 0 NIL

... ... ...

Page fault Handling
routine

Swap area

Virtual page: A

PID: 1234
Copy

The question is to select 
which page to swap out?



Demand paging – illustration.

• Using the swap area:

– Step (2) Allocate the free frame to the new frame 
allocation request.

• Now, Page I takes Frame 0.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 0 0

... ... ...

H 1 7

I 1 0

... ... ...

Page fault Handling
routine

Swap area

Virtual page: A

PID: 1234

Allocate



Demand paging – illustration.

• How about virtual page A is accessed again?

– Of course, a page fault is generated, and

– steps similar to the previous case takes place.
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MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual 
page #

Bit Frame #

A 0 0

... ... ...

H 1 7

I 1 0

... ... ...

Page fault

Swap area

Virtual page: A

PID: 1234

Handling
routine

Swapping out which 
page really matters



OOM generator

• Now, you should understand why this OOM 
generator run very fast.
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

The memory page frames are not 
really allocated (demand paging).

It is only for enlarging the virtual 
page allocation.



Real OOM – code 
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#define ONE_MEG  1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, 0, ONE_MEG);
counter++;
printf(“Allocated %d MB\n”, counter);

}

return 0;
}

Warning #1. Don’t run this program on 
any department’s machines.

Warning #2. Don’t run this program 
when you have important tasks running 
at the same time.

How does this program “eat” 
your memory?

What is the consequence after 
running this program?



Real OOM – illustration

• So, what will happen when the real OOM program 
is running?

– Suppose the OOM program has just started with only 
one page allocated. (For illustration only!)
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0

1

2

3

4

5

6

7

OS kernel

Swap area

Different colors define 
different processes in the 
system.

Let the OOM process take 
the green color.

Real oom: running



Real OOM – illustration

• OOM is running…1st stage. 

– The free memory frames are the first zone that the 
process has conquered.

– All other processes could hardly allocate pages.
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0

1

2

3

4

5

OS kernel

Swap area

Real oom: running

7

66

7



Real OOM – illustration

• OOM is running…2nd stage. 

– Occupied memory frames are the next zone that the 
process conquers (no unused frames).

– Disk activity flies high!
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0

1

2

3

4

5

6

7

OS kernel

Swap area

... ... ...OOM says: “All your 
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Real OOM – illustration

• OOM is running…3rd stage. 

– The previously-conquered frames are swapping to the 
swap area.

– Disk activity flies high!
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Real OOM – illustration

• OOM is running…Final stage. 

– The page fault handling routine finds that:

• No free space left in the swap area!

• Decided to kill the OOM process!
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Real OOM – illustration

• OOM has died, but… Painful aftermath. 

– Lots of page faults! Why?

• It is because other processes need to take back the frames!

• Disk activity flies high again, but will go down eventually.
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Demand paging - Issues

• Swap area

– Where is it?

– How large is it?

• Can we run a really large process (e.g., bigger than 
physical memory)?

– How large is it at most?

• How about fork() and exec*()?

– Can they be clever?
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Swap area – location 

• The swap area is usually a space reserved in a 
permanent storage device.
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Linux needs a separate 
partition and it is called the 
swap partition.

$ sudo fdisk /dev/sda
......
Command (m for help): p
......
/dev/sda1 ...... Linux
/dev/sda2 ...... Linux swap / Solaris
Command (m for help): _

Windows hides a file
“pagefile.sys”, which is 
the swap area, in one of the 
drives.



Swap area - size

• How large should the swap space be?

– It should be at least the same as the size of the physical 
memory, so that …

• when a really large process wants to take all the memory…

• all the pages on the physical memory can find a place to hide.

– An old rule said that “swap should be twice the size of 
the physical memory”.

• But, I can’t find the reasons anymore, and this rule does not 
hold nowadays because we now have too much RAM!
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How about running large programs

• When a process is larger than the physical memory, 
is it able to run?

– No need to load all data in memory…Demand paging

• Generates page fault to allocate physical page frames

• Trigger page replacement if there is no unused frames

• How large is a process that a system can support
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Max. process size = Physical memory size 

Available space in the swap partition (file)

Kernel memory size 

+

-



Unallocated

How about fork() & exec()

• What we have learned about the fork() system 
call is…duplication!

– The parent process and the child process are identical
from the userspace memory point of view.
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Unallocated

How about fork() & exec()

• What does duplication mean?  Allocate new pages for 
the child process?
– If yes…then consider exec*() system call as well…

– Isn’t it stupid?
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How about fork() & exec()

• Can we have a clever design with demand paging?

– A technique called copy-on-write is implemented
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Copy-on-write technique allows the parent and the child 
processes to share pages after the fork() system call is invoked.

A new, separated page will be copied and modified only when 
one of the processes wants to write on a shared page.



Copy-on-Write (COW)

• Before fork() …
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Copy-on-Write (COW)

• Right after fork() in invoked …
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Copy-on-Write (COW)

• When both processes read the pages…
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Copy-on-Write (COW)

• When one of the processes write to a shared page…
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Demand paging - performance

• Demand paging can significantly affect performance

– Service the page fault interrupt

– Read in the page

– Restart the instruction/process

• How to characterize?

– Effective access time

– 1 − 𝑝 ×𝑚𝑎 + 𝑝 × 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒

• 𝑚𝑎: memory access time (10-200ns)

• 𝑝: prob. of a page fault

• 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒: ms
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Example

• 𝑚𝑎: 200ns, 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒: 8ms

• 1/1000 page fault probability

– Effective access time: 1 − 𝑝 200𝑛𝑠 + 𝑝 × 8ms = 8.2𝜇𝑠

• To allow 10% performance degradation only

– 1 − 𝑝 200𝑛𝑠 + 𝑝 × 8ms < 220ns

– 𝑝 < 0.0000025

• Thus, page fault rate must be low
80



Summary of demand paging

• Demand paging enables over-commitment

– Large process can be supported

– Concurrent running of multiple processes is also 
supported

• One key issue is…

– How to select victim pages to swap out?

– Page-replacement algorithm
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Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



Page replacement – introduction 

• Remember the page replacement operation?

– It is the job of the kernel to find a victim page in the 
physical memory, and…

– write the victim page to the swap space.
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Page replacement – introduction 

• Replacing a page involves disk accesses, therefore a 
page fault is slow and expensive!
– Key issue: which page should be swapped out?

– Page replacement algorithms should minimize further 
page faults.

• In the following, we introduce four algorithms:
– Optimal; 

– First-in first-out (FIFO);

– Least recently used (LRU);

– Second-chance algorithm
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Page replacement – algorithm 

• Imagine that you are the kernel…
– you have a process just started to run;

– the process’ memory is larger than the physical memory;

– assume that all the pages are in the swap space.
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Page replacement – algorithm 

• Imagine that you are the kernel…
– you have a process just started to run;

– the process’ memory is larger than the physical memory;

– assume that all the pages are in the swap space.
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Page replacement – when an algorithm starts

• Initial condition

– Let all the frames be empty.
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Page replacement – optimal algorithm

• What is the best algorithm?

– Do not worry about the implementation at this moment.
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Page replacement – optimal algorithm

• If I know the future, then I know how to do better.

– That means I can optimize the result if the page 
reference string is given in advance.

– That’s why the algorithm is called “optimal”.
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Page replacement – optimal algorithm

• If I know the future, then I know how to do better.

– The first page request will cause a page fault.

• Because there are free frames, no replacement is needed.
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Page replacement – optimal algorithm

• Replace strategy:

– To replace the page that will not be used for the longest 
period of time.
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Page replacement – optimal algorithm

• The story goes on…

– But, do you think that this is a non-sense?

– Of course, this is to give you a sense that how close an 
algorithm is from the optimal.
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Page replacement – Problem of the optimal algorithm

• Unfortunately, you never know the future…

– It is not practical to implement such an algorithm

– Is there any easy-to-implement algorithm?

• You have already learnt process scheduling

• FIFO: the first page being swapped into the frames 
will be the first page being swapped out.

– The victim page will always be the oldest page.

– The age of a page is counted by the time period that it is 
stored in the memory.
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Page replacement – FIFO algorithm

• When there is no free frames, 

– The FIFO page replacement algorithm will choose the 
oldest page to be the victim.
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Page replacement – FIFO algorithm

• When there is no free frames, 

– The FIFO page replacement algorithm will choose the 
oldest page to be the victim.

– Of course, the oldest page changes.
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Page replacement – FIFO algorithm

• When a memory reference can be found in the 
memory, will the age of that frame be changed?

– NO! The frame storing “page 0” is still the oldest frame.
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Page replacement – FIFO algorithm

• The story goes on…

– Seems that there is no intelligence in this method…

– Pages which will be accessed again are swapped out
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Page replacement – LRU algorithm

• Can we do better?

– Still remember the locality rule?

• Recently accessed pages may be accessed again in near future

– Why not swap out the pages which are not accessed 
recently

• This is the least-recently-used (LRU) page replacement.
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Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.
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Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.
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Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.
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Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.
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Page replacement – LRU algorithm

• The performance of LRU is considered to be good, 
but how to implement the LRU algorithm efficiently

– Counters: requires to update counter and search  the 
table to find the page to evict

– Stack: implement with doubly linked list (pointer update)

• Common case in many systems

– A reference bit for each page (set by hardware)

– LRU approximation: Second-chance algorithm
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Page replacement – LRU approximation

• Second-chance algorithm

– Basic: FIFO

– Give the page a second chance if its reference bit is on
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Page replacement – LRU approximation

• Clock is the efficient implementation of the 2nd

chance algorithm (circular queue).
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H
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Page replacement – LRU approximation

• Clock is the efficient implementation of the 2nd

chance algorithm (circular queue).
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R:0

R:0

R:0

E

DF R:1

R:0R:0

G

R:0

H

R:0 out
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What if all reference 
bits are set?

Degenerates to FIFO



Page replacement – performance 

• Number of page frames VS  Performance.

– Increasing the number of page frames implies increasing 
the amount of the physical memory.

• So, it is natural to think that:

– I have more memory…and more frames…

– Then, my system must be faster than before!

– Therefore, the number of page faults must be fewer
than before, given the same page reference string.
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Page replacement – performance

• Your expectation:
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Page replacement – performance 

• The reality may be:
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This is called Belady’s anomaly



Page replacement – performance 

• Try the following:

– all page frames are initially empty;

– use FIFO page replacement algorithm;

– use the number of frames: 3, 4, and 5.

– The page reference string is:
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1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5



Page replacement – performance 

• Belady’s anomaly exists for some algorithms

– Both optimal and LRU do not suffer from it

• Stack algorithms: never exhibit Belady’s anomaly

– Feature: The set of pages in memory for 𝑛 frames is 
always a subset of the set of pages in memory for 𝑛 + 1
frames

– Example: LRU

• The 𝑛 most recently referenced pages will still be the most 
recently referenced pages when the number of frames 
increases 
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Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;



Allocation for user processes

• Free-frame list

– Demand paging and page replacement

• Constrains

– Limit on number of frames

• Upper bound: total available frames

• Lower bound: has a minimum number
– Performance consideration (limit page-fault rate)

– Defined by computer architecture (instructions)

– Process will be suspended if the number of allocated frames falls 
below the minimum requirement

– Global / local allocation (replacement)
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Allocation algorithm

• Equal allocation

–𝑚 frames among 𝑛 processes

•
𝑚

𝑛
frames for each process

– Memory waste

• Proportional allocation

– Size of process p𝑖 is 𝑠𝑖, then allocate

– 𝑎𝑖 =
𝑠𝑖

∑𝑠𝑖
×𝑚

• Priority-based scheme

– Ratio depends on both process size and priority
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Issues - Thrashing

• If a process does not have enough frames – number 
of frames required to support pages in active use

– Frequent page fault

• Replace a page that will be needed again right away

– This is called thrashing 

• Spend more time paging than executing
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Issues - Thrashing

• Example: Multiprogramming + global page replacement

– Increase CPU utilization (increase degree of multiprogramming)

– Frequent page fault (queue up for paging, reduce CPU utilization, 
increase degree of multiprogramming)
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Issues - Thrashing

• How to address?

– Local replacement/priority replacement

• Will not cause other processes to thrash

• Still not fully solve this problem
– Increase average time for a page fault

– longer queue for the paging device 

– longer effective access time even for non-thrashing processes
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• How to address?

– Provide as many frames as needed

• Use working-set strategy to estimate needed frames
– Working set: the set of pages in the recent Δ page references

Issues - Thrashing
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∑𝑊𝑆𝑆𝑖 > m: thrashing may occur



• How to address?

– Provide as many frames as needed

• Use working-set strategy to estimate needed frames
– Working set: the set of pages in the recent Δ page references

• Use page-fault frequency

Issues - Thrashing
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Allocation for kernel memory

• Kernel memory allocation requirement

– Features

• Varying (small) size requirement: different data structures

• Contiguous requirement (certain hardware devices interact 
with physical memory)

– Paging: Internal fragmentation

• Buddy system + Slab allocation
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Buddy system

• Allocate memory from a fixed-size segment

– Power-of-2 allocator (11 orders)

– Advantage: coalescing 
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Slab allocation

• Allocate memory for small objects (limit fragmentation)

– Slab: one/more contiguous pages

– Cache: one/more slabs 
• A separate cache for each unique kernel data structure
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Reduce fragmentation

Fast allocation 
(caching benefit)

Further reading: SLOB/SLUB



Memory mapped file

• Ordinary file access

– open(), read(), write()

– System call + disk access

• Memory mapped file

– Memory mapping a file: associate a part of the virtual 
address space with the file

– File access

• Initial access to file: demand paging

• Subsequent reads/writes: routine memory accesses

• Improves performance

– Refer to mmap(2) system call
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Memory mapped file

• Also allow multiple processes to map the same file
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Summary

• We have introduced…
– Segmentation

– Paging + page table

– Demand paging + COW + page replacement algorithms

– Allocation of frames
• User process

• Thrashing

• Kernel memory (buddy + slab)

– Memory-mapped file

• More…
– malloc() is not that simple: refer to “glibc malloc” 

– Other page-replacement algorithms
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Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID
- Erasure coding



Hard Disk Structure – Physical view

Physical address (cylinder, track, sector)

Track: 
The surface of a platter is divided into tracks  
Sector: 
Track is divided into sectors (512B data + ECC)
Cylinder: 
Set of tracks that are at one arm position

Access: Seek + Rotate

Seek time: 
move disk arm to desired cylinder

Rotational latency: 
spin at 5400/7200/10K/15K RPM



Hard Disk Structure – Physical view

Constant liner velocity (CLV)
➢ Uniform density of bits per track, 

outer track hold more sectors
➢ Variable rotation speed to keep the 

same rate of data moving
➢ CD-ROM/DVD-ROM

Constant angular velocity (CAV)
➢ Constant rotation speed 
➢ Higher density of bits in inner tracks
➢ Hard disks



Hard Disk Structure – Logical view

How to use?
Large 1-D arrays of logical blocks (usually 512 bytes)

Address mapping
Logical block number -> (cylinder #, track #, sector #)

Disk management is required

➢ Disks are prone to failures: defective sectors are 
common (bad blocks)
✓ Need to handle defective sectors: bad block 

management

➢ Disk formatting



Disk Management

Bad Block Management

✓ Maintain a list of bad blocks (initialized during low-level formatting) and 
preserve an amount of  spare sectors

✓ Sector sparing/forwarding: replace a bad sector logically with one spare 
sector
• Problem: invalidate disk scheduling algorithm
• Solution: spare sectors in each cylinder + spare cylinder

✓ Sector slipping: remap to the next sector (data movement is needed)



Disk Management

Disk Formatting

Step 1: Low-level formatting/physical formatting

✓ Divide into sectors so disk controller can read/write

✓ Fills the disk with a special data structure for each sector (data area(512B), 
header and trailer (sector number & ECC))
• The controller automatically does the ECC processing whenever a sector 

is read/written

✓ Done at factory, used for testing and initializing (e.g., the mapping). It is also 
possible to set the sector size (256B, 512B, 1K, 4K)



Disk Management

Disk Formatting

Step 2: How to use disks to hold files after shipment?

➢ Choice 1: File system
✓ Partition into one or more groups of cylinders (each as a separate disk)
✓ Logical formatting: creating a FS by storing the initial FS data structures 
✓ I/O optimization: Disk I/O (via blocks) & file system I/O (via clusters), why?

• More sequential access, fewer random access

➢ Choice 2: Raw disk
✓ Use disk partition as a large sequential array of logical blocks, without FS 
✓ Raw I/O: bypass all FS services (buffer cache, prefetching…), be able to 

control exact disk location 
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Topics
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Why needed?

• Requests are placed in the queue of pending 
requests for that drive if the drive/controller is busy
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R1 R2 Rn…Pending 
queue

Read/write, disk address, memory address, 
number of sectors to be transferred

Request ordering significantly affects the access 
performance (seek + rotate), so scheduling is needed



What is disk scheduling

• I/O access procedure
– Seek: move the head to the desired 

cylinder

– Rotate: spin to the target sector on 
the track

• Disk scheduling
– Choose the next request in the 

pending queue to service so as to 
minimize the seek time

• Scheduling algorithms
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FCFS Scheduling

• First-come, first-served (FCFS)

– Intrinsically fair, but does not provide the fastest service
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FCFS Scheduling

• First-come, first-served (FCFS)
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FCFS Scheduling

• Scheduling diagram
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Total head movement

(640 cylinders)

Wild swing is very common

E.g.: 122 to 14, then to 124

How to reduce the head 
movement?

Handle nearby requests first



SSTF Scheduling

• Shortest seek time first (SSTF)

– Choose the request with the least seek time

– Choose the request closest to the current head position

18



SSTF Scheduling

• Shortest seek time first (SSTF)
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SSTF Scheduling

• Scheduling diagram

20

Total head movement: 236 
cylinders (it is 640 for FCFS)

Essentially a form of SJF 
scheduling

It is not optimal

The sequence of 53-37-14-65… 
could reduce the head 
movement to 208

It may cause starvation



SCAN Scheduling

• Scan back and forth
– Starts at one end, moves toward the other end
– Service the requests as it reaches each cylinder
– Reverse the direction 
– Elevator algorithm

21



SCAN Scheduling

• Scan back and forth

22
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SCAN Scheduling

• Scheduling diagram

23

Any problem?

Assume a uniform request 
distribution

The heaviest density of requests 
is at the other end of the disk

They need to wait for a long 
time

Can we do something about this?



C-SCAN Scheduling

• Circular Scan back and forth
– A variant of SCAN: immediately return when reaches the end
– Aim for providing a more uniform wait time

24



C-SCAN Scheduling

• Circular scan

25

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67



C-SCAN Scheduling

• Scheduling diagram

26

No need to move across the full width of the disk, but only need to reach the 
final request

Improved SCAN and C-SCAN: LOOK and C-LOOK

Unnecessary



C-LOOK Scheduling

• Goes only as far as the final request

– Look for a request before moving
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C-LOOK Scheduling

• Scheduling diagram

28

Look for a request before continuing to move in a given direction

Fewer head movements than SCAN/C-SCAN



Summary of scheduling algorithms
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SSTF outperforms FCFS, but may suffer from starvation

SCAN and C-SCAN perform better for heavy load systems, 
and they are less likely to cause starvation

FCFS SSTF SCAN

C-SCAN C-LOOK



Selection of a scheduling algorithm

30

File allocation method
Large sequential I/O or 
small random I/O

Number and 
types of requests

Location of directories and 
index blocks (metadata I/O)

Disk Performance

Implementing scheduling in OS is necessary to satisfy other constraints 
(e.g., priority defined by OS)

Write disk scheduling as a separate module of the OS
Can be easily replaced with different alg. (default: SSTF/LOOK).
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Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID
- Erasure coding
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- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer



SSDs are widely used
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Advantages of flash-based SSDs: non-volatility, shock resistance, 
high speed and low energy consumption;



SSD Architecture
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• SSD components

– Multiple flash packages, controller, RAM 



Flash Package
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• Package > die/chip > plane > block > page 

Samsung K9XXG08UXM (SLC) (2 dies, 4 planes, 2048 blocks, 64 pages)



Flash Cell
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• Each cell stores one bit (or multiple bits)
• Program operation can only change the value from 1 to 0 (erase 

operation changes the value from 0 to 1)
– No overwritten

• The floating gate becomes thinner as the cell undergoes more 
program-erase cycles
– Decreasing reliability



Flash Types

37

• NAND flash and NOR flash

– NAND flash: denser capacity, only allow access in 
units of pages, faster erase operation

– Most SSD products are based on NAND flash

• NAND flash: SLC and MLC

– SLC: each cell stores one bit

• Longer life time, lower access latency, higher cost

– MLC: each cell stores two (or three) bits

• Higher capacity
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- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer



Read
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• Read: in unit of pages (4KB)

page register
data read: 25 μs

controller
serial bus: 100 μs



Write
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• Write: in unit of pages (4KB)

page register
program: 200 μs

controller
serial bus: 100 μs



Erase

41

• Erase

– In unit of blocks (64/128 pages) 

– Change all bits to 1

– Much slower than read/write: 1.5ms

• Each block can only tolerate limited number of P/E cycles

– SLC: 100K, MLC: 10K, TLC (several K to several hundred)

• The number of maximum P/E cycles decreases when

– More bits are stored in one cell

– The feature size of flash cell decreases (72nm, 34nm, 25nm)



Overwrite & Delete
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• Delete

– Simply mark the page as invalid

• Overwrite/update

– Does not support in-place overwrite

– Data can only be programmed to clean pages

• How about read-modify-write?



Read-Modify-Write

43

cache

writedelete

cache

read

modify

write

RMW may require a lot of read and write operations, so it is very slow



Trim
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cache

writedelete

read write back

erase

TRIM

TRIM avoids slow RMW operation during write, so it increases write performance

cache

remove

• Improve write performance degraded by RMW

– The OS also sends a TRIM command to SSD after delete pages

– Requires both OS and SSD to support



Software layer in controller 

45

• How to further improve write performance?

– Address mapping is needed

• Page states

– Garbage collection is also necessary

• Flash translation layer

free/clean

validinvalid

write

update

erase
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- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer
-



Flash Translation Layer
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• Three functionalities

– Address mapping

– Garbage collection

– Wear-leveling



Address Mapping
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• Sector mapping

• Block mapping

• Hybrid mapping

• Log-structured mapping



Sector Mapping

Mapping table is large: requires a large amount of RAM
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Block Mapping

50

• The  logical sector offset is the same with the physical 
sector offset

Smaller mapping table

If the FS issues writes with identical lsn, many erases



Hybrid Mapping
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• First use block mapping, then use sector mapping in 
each block

Small mapping table

Avoid a lot of erase operations

Longer time to identify the location of a page



Log-structured Mapping
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Log-structured Mapping
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Short summary
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• The performance of address mapping is 
workload dependent

– Block mapping is suitable for sequential workloads

– Sector mapping is suitable for random workloads

– Log-structured mapping is suitable for workloads 
with large sequential and small random requests

• Tradeoff exists



Garbage Collection

55

• Due to the existence of invalid pages, GC must 
be called to reclaim storage

– Choose a candidate block

– Write valid pages to another free block

– Erase the original block

2

1

0

3

2

0



Design Issues of GC Algorithms

56

• Tradeoff in GC design

– Efficiency: minimize writes

– Wear-leveling: erase every block as even as possible

– Tradeoff

– GC is considered together with wear-leveling

• Algorithms

– Greedy, random, and their variants

– Hot/cold identification



Other Technologies

• 3D NAND flash

• Non-volatile memory (NVRAM)

– PCM, STTRAM, ReRAM, etc…

– Byte-addressable and non-volatile

– 3D XPoint

57
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Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure codes
- Problems with EC
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RAID Motivation

Reliability 

Performance

Cost

One disk failure 
incurs data loss

Disks are slow

Fast and 
reliable disks 
are expensive



RAID Introduction

✓ In the past
➢ Combine small and cheap disks as a cost-effective

alternative to large and expensive disks

✓Nowadays
➢Higher performance
➢Higher reliability via redundant data
➢ Larger storage capacity

✓Many different levels of RAID systems
➢Different levels of redundancy, capacity, cost…

RAID: Redundant Array of Inexpensive (independent) Disks
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RAID Evaluation

Reliability 

Performance

Cost

Tolerance of 
disk failures

Sequential and random 
read/write

Data capacity/all 
capacity



RAID 0

• Block-level striping, no redundancy

• Provides higher data-transfer rate

• Does not improve reliability. Once a disk fails, data loss 
may happen (MTTF: mean time to failure)
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RAID 1

• How to improve reliability?

• Data mirroring (RAID1)
✓ Two copies of the data are held 

on two physical disks, and the 
data is always identical.

✓ Replication

• High storage cost
✓ Twice as many disks are required 

to store the same data when 
compared to RAID 0.

✓ Even worse storage efficiency 
with more copies
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Combinations

• RAID 0 provides reliability and 
RAID 1 provides reliability

• RAID 0+1 (RAID01)
✓ First data striping
✓ Then data mirroring

Same storage 
cost as RAID 1
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Combinations

• RAID 0 provides reliability and 
RAID 1 provides reliability

• RAID 0+1 (RAID01)
✓ First data striping
✓ Then data mirroring

• RAID 1+0 (RAID10)
✓ First data mirroring
✓ Then data striping Same storage cost
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RAID01 vs RAID10

Both suffer from high storage cost



RAID 4

• Balance the tradeoff between 
reliability and storage cost?
• Redundancy with parities

• Parity generation: Each parity 
block is the XOR value of the 
corresponding data disks

• Block-level data striping
• Data and parity blocks are 

distributed across disks
• Dedicated parity disk

• Any problem? 

𝐴𝑝 = 𝐴1⨂𝐴2⨂𝐴3
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How to update data

• Suppose A1 will be updated 
to A1’
• Both A1 and Ap need to 

be updated
• Read-modify-write (RMW)

RMW: 𝐴𝑝
′ = 𝐴𝑝⨂𝐴1⨂𝐴1′

𝐴𝑝′ = 𝐴1⨂𝐴2⨂𝐴3⨂𝐴1⨂𝐴1′

= 𝐴2⨂𝐴3⨂𝐴1′
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How to update data

• Suppose A1 will be updated to 
A1’
• Both A1 and Ap need to 

be updated
• Read-modify-write (RMW)

• How about updating both A1 
and A2 simultaneously?
• RMW? 
• Read-reconstruct-write 

(RRW)

• Selection of RMW/RRW

RRW: 𝐴𝑝
′ = 𝐴3⨂𝐴1′⨂𝐴2′

Both RMW and RRW incur 
extra reads and writes



Problems of RAID 4

• Problems of RAID 4

• Disk bandwidth are not fully 
utilized
• Parity disk will not be 

accessed under normal 
mode

• Parity disk may become the 
bottleneck
• E.g., updating A1, B2, C3

Read: A1, B2, C3, Ap, Bp, Cp
Write: A1’ B2’, C3’, Ap’, Bp’, Cp’
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RAID 5

• Similar to RAID 4
• One parity per stripe

• Key difference
• Uniform parity distribution

• RAID 5 is an ideal combination of 
• good performance
• good fault tolerance
• high capacity
• storage efficiency

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

...

𝐸𝑃 = 𝐸1⨁𝐸2⨁𝐸3⨁𝐸4

Parity update overhead still 
exist
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RAID 6

• How to tolerate more disk 
failures?

• RAID-6 protects against two disk 
failures by maintaining two 
parities

• Encoding/decoding operations:
➢ Based on Galois field

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

𝐴𝑞 = 𝑐0𝐴1⨁𝑐
1𝐴2⨁𝑐

2𝐴3⨁𝑐
3𝐴4

Parity update overhead 
becomes larger
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RDP Code

➢An RDP code example with 6 disks

d0,4

d1,4

d2,4

d3,4

⊕d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,5

d1,5

d2,5

d3,5

⊕
⊕
⊕
⊕

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

⊕
⊕
⊕
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Erasure Codes

➢Erasure codes

• Different redundancy levels

• 2-fault tolerant: RDP, EVENODD, X-Code

• 3-fault tolerant: STAR

• General-fault tolerant: Cauchy Reed-Solomon (CRS)

➢Generate m code blocks from k data blocks, so 

as to tolerate any m disk failures

A B A+B A+2BA B

74



Summary on Erasure Codes

➢The motivation to introduce erasure codes in 

large-scale storage systems

➢ In practice, erasure codes have seen widely 

deployment
• Google File System [Ford, OSDI’10]

• Windows Azure Storage [Huang, ATC’12]

• Facebook [Borthakur, Hadoop User Group Meeting 2010]

• …

The need to reduce the tremendous cost of storage
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Topics
- Problems with RAID/EC

- Optimizing parity updates
- Recovery
- Asynchronous coding
- …



SSD RAID

• RAID provides device-level fault tolerance

– Each stripe contains data and parity

• Limitation: Parity updates

– Update data -> update parity
• Update 𝐷1 to 𝐷1′

• RMW: 𝑃0
′ = 𝑃0⨁𝐷1⨁𝐷1′

• RRW: P0
′ = D0⨁𝐷1′⨁𝐷2

– Extra I/Os and GC

• SSD RAID

– Parity update influences both performance and endurance

Parity chunks: 
𝑃0 = 𝐷0⨁𝐷1⨁𝐷2
𝑃1 = 𝐷3⨁𝐷4⨁𝐷5
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Design tradeoff

• Design trade-off in SSD RAID arrays

– RAID improves reliability

– Parity updates incur extra I/Os and GC operations

• Degrade performance and endurance

How to address the parity update overhead?
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Parity Logging

• Original Parity logging

– Incoming reqs: {𝐴0, 𝐵0, 𝐶0 },{𝐴1, 𝐵1, 𝐶1 }, {𝐵0′, 𝐶0′, 𝐴1′}

• Drawbacks

– Pre-read: Extra reads

– Per-stripe basis: Extra log chunks; Partial parallelism
79



EPLOG
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No pre-read

Full parallelism

(Elastic)

Our solution: New RAID Design via Elastic Parity 
Logging (EPLOG)



EPLOG

• Benefits of EPLOG
– General RAID

– High endurance: Reduce parity writes to SSDs

– High performance: Reduce extra I/Os

– Low-cost deployment: Commodity hardware

81

No pre-read

Full parallelism

(Elastic)

✓ Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu. "Elastic Parity Logging for SSD RAID 
Arrays." IEEE/IFIP DSN (Regular paper), Toulouse, France, June 2016.

✓ Helen H. W. Chan,Yongkun Li, Patrick P. C. Lee, and Yinlong Xu."Elastic Parity Logging for SSD RAID 
Arrays: Design, Analysis, and Implementation.“ IEEE TPDS, volume: 29 , issue: 10 , Oct. 2018.
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Failure Recovery Problem

d0,4

d1,4

d2,4

d3,4

⊕d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3
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⊕

⊕
⊕
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Disk
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Disk
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Disk
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Disk

3

Disk

4

Disk

5

Suppose Disk 1 fails.  How do we recover Disk 1 efficiently?

➢Recovering disk failures is necessary
•Preserve the required redundancy level

➢Single-disk failure recovery
•Single-disk failure occurs more frequently than a concurrent multi-

disk failure
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Optimize Recovery Performance

• Traditional method: only use row blocks for repair.

Example: d0,1= d0,0d0,2d0,3d0,4

Need read (p−1)2=16 blocks
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Free 

disk

Disk
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Disk
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Disk
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Disk
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


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Optimize Recovery Performance

• Recovery choices: row blocks or diagonal blocks

Disk
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Disk
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Repair d0,1 from row blocks 
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d0,1
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Repair d0,1 from diagonal blocks 
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Single Disk Failure Hybrid Recovery

• Recover Disk 1.

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

d0,1

d1,1

d2,1

d3,1

Duplicate data block

❖ The four blocks are repeated twice.

❖ Result:  Need read 16−4=12<16 block for recovery.

d0,1                              diagonal

d1,1                              diagonal

d2,1 row

d3,1                                    row

Failure blocks       Recover choices

Xiang, L., Xu, Y., Lui, J., Chang, Q. “Optimal recovery of single disk failure in RDP code storage
systems”. ACM SIGMETRICS 2010.
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Hybrid Recovery

Previous approach leverages the code property, 
but not change the code

Alternative approach

Can we design new codes which benefit the 
recovery performance?

Yes! Our solution: OI-RAID



OI-RAID: An Example

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20D0

Group G0 Group G1 Group G2 Group G3 Group G4 Group G5 Group G6

Region

➢ Divide 21 disks into 7 groups

➢ Divide each disk into 9 storage units

➢ Form a region with every 33 storage unit array in a group
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OI-RAID: An Example

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20D0

Group G0 Group G1 Group G2 Group G3 Group G4 Group G5 Group G6

➢ Group regions into region sets based on BIBD

➢ (7,7,3,3,1)-BIBD:
Tuple T0：0，2，6    Tuple T1：0，1，3    Tuple T2：1，2，4    Tuple T3：2，3，5     

Tuple T4：3，4，6    Tuple T5：0，4，5    Tuple T6：1，5，6

89



OI-RAID: An Example

➢ Outer layer code
• RAID5 within a region set
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Group G0 Group G1 Group G2 Group G3 Group G4 Group G5 Group G6

0 1 2

3 4 5

➢ Inner layer code：

• RAID5 within a region 

along the diagonal line

The two layer code makes OI-RAID tolerate three arbitrary disk failures
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Single Failure Recovery
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Single Failure Recovery

0 1 2 6

3 4 5 11
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➢ To rebuild the 6 failed data units in disk D9

• OI-RAID reads only one unit from each surviving disk

✓ Neng Wang, Yinlong Xu, Yongkun Li, and Si Wu. "OI-RAID: A Two-layer RAID Architecture Towards Fast 
Recovery and High Reliability." IEEE/IFIP DSN, Toulouse, France, June 2016.

✓ Yongkun Li, Neng Wang, Chengjin Tian, Si Wu, Yueming Zhang, Yinlong Xu.“A Hierarchical RAID 
Architecture Towards Fast Recovery and High Reliability.“ IEEE TPDS, 29(4) , pp. 734 - 747, April 2018.
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Replication vs. Erasure Coding

• Replication has better read throughput while erasure 
coding has smaller storage overhead

• In practice: 

– Data will be frequently accessed in a short time

– Replication to erasure coding

A B A+B A+2BA B

A B A B

AB
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Clustered File System

Node

...

ToR

Rack

... ... ...

Core Switch

Cross rack traffic

Intra rack traffic

Cross-rack access typically takes longer time
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Dynamic Stripe Construction

Rack2 Rack3 Rack4Rack1

How to reduce/eliminate cross-rack traffic?
Our solution: Dynamic strip construction

1

5

6 5

2

5 1 3

1 3

4 6

4 6

4 3

5

2

2P P

Shuzhan Wei, Yongkun Li*, Yinlong Xu, and Si Wu. "DSC: Dynamic Stripe Construction for Asynchronous 
Encoding in Clustered File System." IEEE INFOCOM, Atlanta, USA, May 2017.

➢ Encoding speed increases by up to 81% 
➢ Improve frontend map-reduce tasks by 16.4%
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Many Other Problems

• Recovery in heterogeneous systems

• Storage system scaling

• Hybrid system design

– HDD+SSD

– NVRAM

• Leveraging SSDs in various systems

• Data consistency 

• …

97



Summary of Ch8

98

SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

Research Problems

✓ Cylinder, Track, Sector: CLV, CAV
✓ Access time
✓ FCFS, SSTF, SCAN/C-SCAN, LOOK/C-LOOK

✓ Structure and features
✓ Operations (read/write/erase/GC)

✓ RAID structures (RAID0, 1, 4, 5, 6)
✓ Parity update
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Story so far…

2

File System Operations

Operating System 
Kernel

User Space

Devices

Processes

File system 
Implementation

FAT32, EXT2/3
KV, Distributed FS, 

Graph System…



Outline

• File system introduction

• What are stored inside a storage device?

– File

– Directory

– Interfaces/Operations

• How are the data stored?

– File system layout

3



4

File system introduction
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Introduction

fopen()  fread()  fwrite()  fclose() Library Calls

NTFS-
specific 

functions

Ext4-
specific 

functions

FAT32-
specific 

functions

ISO9660-
specific 

functions

Kernel
Functions

open()   read()   write()   close() System Calls

Process

Kernel

Devices



Introduction
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FS Operations

Process A

Operating System Kernel

User space

Devices

⚫ To understand what a file system (FS) is, we follow 
two different, but related directions:

- Layout & Operations.



Introduction
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FS Operations

Process A

Operating System Kernel

User space

The layout.

Every FS has an unique layout on the 
storage device. The layout defines:
- What are the things stored in the device.
- Where the stored things are.

Devices



Introduction

8

FS Operations

Process A

Operating System Kernel

User space

The layout.

Devices

The set of FS operations defines how the OS 

should work with the FS layout.

In other words, OS knows the FS layout 

and works with that layout.



Introduction
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FS Operations

Process A

Operating System Kernel

User space

The layout.

Devices

The process uses system calls, which 
then invoke the FS operations, to access 
the storage device.



Introduction
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• Ask yourself:

– OS = FS?

– Correct answer: OS  FS

– An OS supports a FS

• An OS can support more than one FS.

• A FS can be read by more than one OS.



Introduction
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• Ask yourself:

– Storage Device = FS?

– Correct answer: Storage Device  FS.

• A FS must be stored on a device.

– But, a device may or may not contain any FS.

– Some storage devices can host more than one FS.

• A storage device is only a dummy container.

– It doesn’t know and doesn’t need to know what 

FS-es are stored inside it.

– The OS instructs the storage device how the data 

should be stored.



Outline of topics
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• There are two basic things that are  

stored inside a storage device, and are  

common to all existing file systems.

What are they?

– They are Files and Directories.

– We will learn what they are and some 

basic  operations of them.



Outline of topics
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• There are two basic things that are  

stored inside a storage device, and are  

common to all existing file systems.

How does a FS store data into the disk?

– That is, the layout of file systems.

– The layout affects many things:
• The speed in operating on the file systems;

• The reliability in using the file systems;

• The allocation and de-allocation of disk spaces.



Outline of topics

14

• Other topics

– We will look into the details of FAT32 and  
Ext2/3 file systems.

– Case studies: key-value systems, distributed 
file systems, graph storage systems
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Part1: FS – Programmer Perspective
- File
- Operations
- Directory



File

16

• Why do we need files?

– Storing information in memory is good because 

memory is fast.

– However, memory vanishes after process termination.

– File provides a long-term information storage.

• It is persistent and survives after process termination.

– File is also a shared object for processes to access  

concurrently.



File
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• What is a file?

– A uniform logical view of stored information 

provided by OS.

– OS perspective: A file is a logical storage unit (a 

sequence of logical records), it is an abstract data type

– User perspective: the smallest allotment of logical 

secondary storage

– File type (executable, object, source code, text, 

multimedia, archive…)

– File attributes

– File operations



File – what are going to be stored?
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• E.g., a text file.

h e l l o _ w o r l d ‘\n’

test.txt

Content? Content of the file

Filename? Content of its parent directory

What can we find out in this example?

File size? Attribute of the file

When a file is named, it becomes independent of the 
process, the user, and even the system



File Attributes
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• Typical file attributes

Name 

Identifier

Type 

Location

Size 

Time, date

Protection 

Human-readable form

Unique tag (a number which identifies the file within the FS)

Text file, source file, executable file…

Pointer to a device and to the location of the file on the device

Number of bytes, words, or blocks

Creation, last modification, last use…

Access control information (read/write/execute)

You can try the command “ls -l” 



File Attributes
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• Typical file attributes

Name 

Identifier

Type 

Location

Size 

Time, date

Protection 

Human-readable form

Unique tag (a number which identifies the file within the FS)

Text file, source file, executable file…

Pointer to a device and to the location of the file on the device

Number of bytes, words, or blocks

Creation, last modification, last use…

Access control information (read/write/execute)

Some new systems also support extended file 
attributes (e.g., checksum)



File Attributes
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• File attributes are FS dependent.

– Not OSdependent.

Common Attributes FAT32 NTFS Ext2/3/4

Name ✓ ✓ ✓

Size ✓ ✓ ✓

Permission ✓ ✓

Owner ✓ ✓

Access, creation, 
modification time

✓ ✓ ✓

The design of FAT32 
does not include any 
security ingredients.



File Permissions

• E.g., in Unix system

22

First field: File/director

2nd /3rd /4th fields (3 bits each): controls read/write/execute 

for the file owner/file’s group/others (e.g., 111:7,110:6)

What is the meaning of the permission 775/664?



Common
Attributes

Way to change them?

Command? Syscall?

Name

Size

Permission

Owner

Access, creation, 
modification time

Writing attributes?

• Can you change those attributes directly?

23

Common
Attributes

Way to change them?

Command? Syscall?

Name mv rename()

Size Too many tools to 
update files’ contents

write(), truncate(), 
etc.

Permission chmod chmod()

Owner chown chown()

Access, creation, 
modification time

touch utime()



Pathname vs Filename
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The pathname is unique within the entire file system.

The filename is not unique within the entire file system.

The filename is only unique within the directory that it resides.

• A file can be referred to by its name, 

then how to achieve this?

/home/os/test.txt The pathname

The directory that 
“test.txt” resides in

The filename



Pathname vs Filename
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• Why do we need to consider uniqueness?

open(“/some_directory/some_filename” , ......);

FS Operations

Data address

The OS kernel translates the pathname

into a set of data addresses on the device.

That means the pathname is the key!

If the pathname is not unique, how come 

the OS can successfully find  the data

needed?
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Part1: FS – Programmer Perspective
- File
- Operations
- Directory
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Overview

fopen()  fread()  fwrite()  fclose() Library Calls

NTFS-
specific 

functions

Ext4-
specific 

functions

FAT32-
specific 

functions

ISO9660-
specific 

functions

Kernel
Functions

open()   read()   write()   close() System Calls



File Open – Example

• What is fopen()? 

– First thing first, fopen() calls open().

– FILE *fopen(const char
*filename, const char *mode)

• What is the type “FILE”?

– “FILE”: a structure defined in “stdio.h”.

– fopen() creates memory for the “FILE” 
structure.

• Fact: occupying space in the area of 
dynamically allocated memory, i.e., malloc()

28

open()

fopen()

Return  3

FS-specific 
functions



What is inside the “FILE” structure?

• There is a lot of helpful data in FILE:

– Two important things: the file descriptor and a buffer!

29

int main(void) {
printf("fd of stdin = %d\n", fileno(stdin)  );
printf("fd of stdout = %d\n", fileno(stdout) );
printf("fd of stderr = %d\n", fileno(stderr) );

}

fileno() returns the file descriptor of the FILE structure.

The type of stdin, stdout, and stderr is “FILE *”

$ ./fileno
fd of stdin = 0
fd of stdout = 1
fd of stderr = 2
$ _



File operations

• The operating system should provide…
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Create
Allocate space, add an entry in the directory

Write
Filename, file content (write pointer)

Read 
Filename, mem location (read pointer)

Reposition
File seek (not involve actual I/O), required for random accesses

Delete
Release space, and erase directory entry

Truncate
Keeps attributes only



File operations

• Many operations involve searching the directory for 
locating the file (read/write/reposition…)

– Can we avoid this content searching???

31

Open-file table

An open() system call is provided, and it is called before a file is 
first used

OS keeps a table containing information about all open files (per-
process and system-wide table)

The file will be closed when it is no longer being actively used, 
using close() system call



The Truth of Opening a File
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unique
pathname

3

FS Operations

Process

Step (5) The OS returns  

the file descriptor to the  

process.

Step (4) The OS then  

associates the attributes to

a number and the number is 

called the file descriptor.

Step (3) The disk returns 

the file  attributes.

Step (1) The process 

supplies a pathname  to 

the OS.

Step (2) The OS looks  

for the file attributes of 

the target file in the disk.

fd

Note: these steps are OS-independent as well as FS-independent.

Kernel
Open-file 
Table



The Truth of Opening a File
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unique
pathname

3

FS Operations

Process

Step (5) The OS returns  

the file descriptor to the  

process.

Step (4) The OS then  

associates the attributes to

a  number and the number

is called the file descriptor. Step (3) The disk returns 

the file  attributes.

Step (1) The process 

supplies a pathname  to 

the OS.

Step (2) The OS looks  

for the file attributes of 

the target file in the disk.

fd

Note:

Opening a file only involves the 

pathname  and the attributes of
the  file, instead of the file content!

Note: these steps are OS-independent as well as FS-independent.



How to read from open files
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3 FS Operations

Process data
location

3

fd

Step (1) The process  

supplies a file  descriptor to 

the OS.

Step (2) The OS reads the file attributes and 

uses the stored attributes to locate the 

required data.

Step (3) The disk returns the 

required data.

- File data is stored in a fixed   
size cache in the kernel.

Step (4) The OS fills the buffer provided 

by the process with the data. Write data to 

the userspace buffer.

Open files

Kernel 
cache
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What is a file descriptor?

0 1 2
file descriptor 

array

Although a file is opened by two different processes, 
the kernel uses one structure to maintain it! 

Process A

0 1 2 3
file descriptor 

array

Process B

4 5

See?  A file descriptor is 
just an array index for 
each process to locate 
its opened files.

Open-file 
Table

3
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How about read and write (read() 
and write() system calls)?



read() & write()

• You know, I/O-related calls will invoke system calls.

37

Library calls that eventually invoke the 
read() system call

Library calls that eventually invoke the 
write() system call

scanf(), fscanf() printf(), fprintf()

getchar(), fgetc() putchar(), fputc()

gets(), fgets() puts(), fputs()

fread() fwrite()

int read ( int fd, void *buffer, int bytes_to_read )

int write ( int fd, void *buffer, int bytes_to_write )

From file to buffer.

From buffer to file.
Note: I modified the function prototypes.
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read() system call

read()

FS-specific 
functions

Step 2. Reading data2

File 
attributes

Kernel-level, list of opened files.

Runtime 
attributes1

Step 1.
- Check whether the end of the file is reached or not.

[ Comparing size and file seek. ]
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read() system call

read()

FS-specific 
functions

2

File 
attributes

Kernel-level, list of opened files.

Runtime 
attributes1

Step 3.
- File data is stored in a fixed size cache in the kernel.

Kernel cache

3

4
Step 4.
Write data to the 
userspace buffer.



40

write() system call

write()

File 
attributes

Kernel-level, list of opened files.

Runtime 
attributes

Step 2.
According to the data length, 
(1) change in file size, if any, and
(2) change in the file seek.

Kernel cache

1
Step 1.
Write data to the 
kernel buffer.

2 2

3 Step 3.
The call returns.
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write() system call

write()

FS-specific 
functions

File 
attributes

Kernel-level, list of opened files.

Runtime 
attributes

Kernel cache

4

1

2 2

4

Step 4.
The buffered data will be flushed to 
the disk from time to time.

3



The kernel buffer cache implies…

• Performance

– Increase reading performance?

– Increase writing performance?

• Problem

– Can you answer me why you cannot press the reset 
button?

– Can you answer me why you need to press the “eject” 
button before removing USB drives?

42



Short Summary
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• Every file has its unique pathname.

– Its pathname leads you to its attributes and the file

content.

A file has two important components!  Plus, 

there are usually stored separately.



Short Summary
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• We only introduce the read/write flow:

– File writing involves disk space allocation; but…

– The allocation of disk space is highly related to the  

design of the layout of the FS.

– Also, the same case for the de-allocation of the disk  

space…
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Part1: FS – Programmer Perspective
- File
- Operations
- Directory



Directory
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• A directory is a file.

– Then, does it imply that it has file attributes  and 

file content?

Answer: Sure
Answer: FS dependent

• How does a directory file look like?



Directory Traversal Process
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FS Operations

Process

bin

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (1) Suppose that the  process 
wants to open the file  “/bin/ls”.

The process then supplies the OS the 
unique pathname  “/bin/ls”.

Step (2) The OS retrieves

the  directory file of the 
root directory ‘/’.

Step (3) The disk returns 

the directory file.

file:/



Directory Traversal Process
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FS Operations

Process

ls

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (4) The OS looks for the 

name “bin” in the directory file.

Step (5) If found, the in the OS 

retrieves the directory file of 
“/bin” using the information of 

the file attributes of “bin”.

file: /bin

bin

/



Directory Traversal Process
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FS Operations

Process

ls

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (6) The OS looks for the name “ls” in 

the  directory file “bin”.

If found, then the OS knows that the file “/bin/ls”  

is found, and it starts the previously-discussed 

procedures to open the file “/bin/ls

bin



Short Summary
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• A directory file records all the files including  

directories that are belonging to it.
– So, do you understand “/bin/ls” now?

– Locate the directory file of the target directory and to print 

contents out.

• Locating a file requires the directory traversal 

process:

– open a file;

– listing the content of a directory.



File Creation and Directory
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• According to your experience, what is the  

file creation?

– E.g., creating a file named “test.txt”?

• “touch test.txt”?

• “vim test.txt”, then type “:wq”?

• “cp [some filename] test.txt”?

• The truth is:

File creation == Update of the directory file



File Creation and Directory
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• If I type “touch text.txt” and “text.txt” does not exist, 
what will happen to the Directory file?

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

text.txt

Directory file: “/home/os”

A new directory entry is created.

Note: “touch text.txt” will only create the directory entry,  

and there is no allocation for the file content.



File Deletion and Directory
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score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

text.txt

• Removing a file is the reverse of the creation process.

– Note that we are not ready to talk about de-allocation of 

the file content yet.

Directory file: “/home/os”



Updating directory file
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• When/how to update a directory file?

Creating a directory  file
syscall - mkdir();  

Example program - mkdir.

Add an entry to the  
directory file

syscall - open(), creat();  

Example program - cp, mv, etc.

Remove an entry to the  
directory file

syscall - unlink(); 

Example program - rm.

Remove a directory file
syscall – rmdir();  

Example program - rmdir.



Summary of part 1

• In this part, we have an introduction to FS

– File and directory

– The truth about the calls that we usually use,

– We learned: The content of a file is not the only entity, 
but also the file attributes.

• In the next part, we will go into the disk:

– How and where to store the file attributes?

– How and where to store the data?

– How to manage a disk?

55



Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Chapter 9, part2
File System Layout

1



2

Outline

You’re given a disk of 1TB space. How to utilize it? 

Allocated 
Space

Free 
Space

DirectoryFile content & 
attributes

Things need to be stored.

operations
Questions.
• Can I read back what I’ve written?
• Can I get back free space when I remove a file?
• How much space is consumed when I create a 1GB file?
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Outline

• We briefly introduce the evolution of the file system

layout:

– From a dummy way to advanced ways.

– The pros and cons are covered.

• We begin to look at some details of the  FAT file 

system and EXT file system
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How to store data?

• Consider the following case:

– You are going to design the layout of a FS.

– You are given the freedom to choose the  locations 

to store files, including directory files.

– How will you organize the data?

100GB0
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How to store data?

• Some (basic) rules are required:
– Every data written to the device must be able to be retrieved.

• Would you use the FS that will lose data randomly?

– Every FS operation should be done as efficient as possible.
• Would you use the FS if it takes a minute to retrieve several bytes of  

data?

– When a file is removed, the FS should free the 
corresponding  space.

• Would you use the FS if it cannot free any occupied space?

100GB0
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File System Layout

Trial 1.0
The Contiguous Allocation
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Trial 1.0 – the basics

• Just like a book!

Table of content

Chapter 1   ............ p.1
Chapter 2   ............ p.2
Chapter 3   ............ p.10

Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address
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Trial 1.0 – the basics

• Just like a book!
Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address

Suppose we have 3 files to store

rock.mp3
sweet.jpg
same.exe

We do not consider the directory 

structure at this moment

Like a book, we need to some space to 
store the table of content, which records 
the filename and the (starting and ending) 
addresses of the file content.
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Trial 1.0 – the basics

• Just like a book!

The table of content!

Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address

Filename Starting  

Address

Ending  

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes
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Trial 1.0 – the basics

• Just like a book!

The table of content!

Filename Starting  

Address

Ending  

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes

Contiguous allocation is very similar to the 
way we write a book. It starts with the table of 
content,  which we call the root directory.

Root  

Directory rock.mp3 sweet.jpg game.exe
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Trial 1.0 – the basics

Filename Starting  

Address

Ending  

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678

You can locate files easily (with a directory sturcture).

But, can you locate the allocated space and the free 
space in a short period of time?  

Free space is here.

But, it needs an O(n) search, where n 
is the total number of files.

Root  

Directory rock.mp3 sweet.jpg game.exe

What if the disk is large and 

the files are small?
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Trial 1.0 – the basics

File deletion is easy!   Space de-allocation is the same as 
updating the root directory!

Yet, how about file creation?

rock.mp3 sweet.jpg game.exe



13

Trial 1.0 – the bad #1

• Suppose we need to write a new, but large file?

ubuntu.iso

Can’t be written!

Root  

Directory
rock.mp3 game.exe

Really BAD!  We have enough space, but there is no 
holes that I can satisfy the request. The name of the 
problem is called:

External Fragmentation
Any solution?
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Trial 1.0 – the bad #1

• The defragmentation process may help.

Root  

Directory
rock.mp3 game.exe

Filename Starting  

Address

Ending  

Address

rock.mp3 0 2000

game.exe 5000 5678

game.exe

Filename Starting  

Address

Ending  

Address

rock.mp3

game.exe 2001 2679

ubuntu.iso 2680 6000

0 2000

move

ubuntu.iso

Very expensive (think 

about the disk structure)
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Trial 1.0 – the bad #2

• Comment:

– Also, the growth problem…there is no space 

for files to grow.

Growth problem!
Can you suggest any method?
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Trial 1.0 – the reality

• This kind of file systems has a name called the

contiguous allocation.

• This kind of file system is not totally useless…

– The suitable storage device is something that is…

– read-only (just like a book)
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Trial 1.0 – the reality

• Can you think of any real life example?

– Hint #1: better not grow any files.

– Hint #2: OK to delete files.

– Hint #3: better not add any files; or just add to the 

tail.

– ISO9660.
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File System Layout

Trial 2.0
The Linked List Allocation
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From Trial 1.0 to Trial 2.0…

• Lessons learned from Trial 1.0:

– File Size Growth: 

– Can we let every file to grow without paying an 

experience overhead?

– External fragmentation: 

– Can we reduce its damage?

• One goal

– To avoid allocating space in a contiguous manner!
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Trial 2.0 – the basics

• How?

– The first undesirable case in trial 1.0 is to write a 

large file (as it may fail or need defragmentation)

– So, can we write small files/units only?

• For large files, let us break them into small pieces…

ubuntu.iso

Root  

Directory
rock.mp3 game.exe
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Trial 2.0 – the basics

• How?

– The second undesirable case in trial 1.0 is when 

file grows (as it needs reallocation)

– So, how can we support dynamic growth?

• Let’s borrow the idea from the linked list…
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Trial 2.0 – the basics

• Linked list allocation…

– Step (1): Chop the storage device into equal-

sized blocks.
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Trial 2.0 – the basics

• Linked list allocation…

– Step (2): Fill the new file into the empty space  in a 

block-by-block manner.

ubuntu.iso

Root  

Directory

1 21
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Trial 2.0 – the basics

• Linked list allocation…

– Step (3): The root directory…

• becomes strange/complicated.

Filename Sequence  

of Block #

Sequence  

of Block #

rock.mp3 1-6 NULL

game.exe 19-25 NULL

ubuntu.iso 7-18 26-27

Since a directory file is an 

array,  it is difficult to pretend

to be a  linked list….

Root  

Directory

1 21 30

Can we have a better 
solution to optimize 
the directory?
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Trial 2.1 – the linked list

• Let’s borrow 4 bytes from each block.

– To write the block # of the next block into the first 

4 bytes of each block.

– Real linked list

Root  

Directory

......
NULL

(or 0)

......

27 0

Block  

26

Block  

27

1 21 3011

How does the root 
directory look like?
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Trial 2.1 – the linked list

• Let’s borrow 4 bytes from each block.

– To write the block # of the next block into the first 

4 bytes of each block.

– Real linked list

Root  

Directory

Filename First  

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7 ......
NULL

(or 0)

......

27 0

Block  

26

Block  

27

1 21 3011
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Trial 2.1 – the file size

• Note that we need the file size stored in the 

root directory because…

– The last block of a file may not be fully filled.

Root  

Directory

Filename First  

Block #

File Size

rock.mp3 1 600M

game.exe 19 2000M

ubuntu.iso 7 700M

1 21 3021
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Trial 2.1 – the free space

• One more thing: free space management.

– Extra data is needed to maintain a free list.

We can also maintain 

the free blocks  as a 

linked list, too.

Root  

rectoryDi

F

R

E

E

28

0

1 21 30
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Trial 2.1 – the good

• Pros:

External  

fragmentation 

problem is solved.

Files can grow

and shrink freely.

Free block  

management is 

easy to implement.

F

R

E

E

Root  

Directory

1 21 30
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Trial 2.1 – the bad #1

• Cons:

– Random access performance problem.

• The random access mode is to access a file at random locations.

– The OS needs to access a series of blocks before it can  

access an arbitrary block.

• Worst case: O(n) number of I/O accesses, where n is the number of 

blocks of the file.

F

R

E

E

Root  

Directory

1 21 30

Target blockAccessed blocks
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Trial 2.1 – the bad #2

• Cons (recall why we record file size?):
– Internal Fragmentation.

• A file is not always a multiple of the block size

• The last block of a file may not be fill 

completely.

– This empty space will be wasted since  

no other files can be allowed to fill such 

space.

F

R Root

E Directory 

E

0

U F

S R

E E

D E

Last block  

of a file

1 21 30
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From Trial 2.1 to Trial 2.2

• Can we further improve?

– We know that the internal fragmentation problem 

is here to stay.

– How about the random access problem?

• We are very wrong at the very beginning…decentralized 

next block location

The information about the next block should be centralized
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Trial 2.2 – the FAT

• The only difference between 2.1 and 2.2…

File  

Allocation  

Table (FAT)

F

R

E

E

Root  

Directory

Root

F  

R

E Directory 

E

Trial 2.1

Trial 2.2

All the information about the next 

block #s are centralized, and it is 

called FAT.
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Trial 2.2 – the FAT implementation

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Step  

(1)

Filename First  

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7

F

R

E

E

File

Allocation  

Table (FAT)

Root

Directory

11 21 30

Task: read “ubuntu.iso” sequentially.
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Trial 2.2 – the FAT

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Step (1). Look for the first block # of the file.

Step  

(1)

Filename First  

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7

F

R

E

E

File

Allocation  

Table (FAT)

Root

Directory

11 21 30

Step  

(1)

Task: read “ubuntu.iso” sequentially.
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Trial 2.2 – the FAT

Step  

(1)

Step  

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Filename First  

Block #

rock.mp3 1

game.exe 19

The next block of 7 is 8.ubuntu.iso 7

F

R

E

E

File

Allocation  

Table (FAT)

Root

Directory

11 21 30

Step (2). Read the file allocation table to  

determine the location of the next block.

Task: read “ubuntu.iso” sequentially.



37

Trial 2.2 – the FAT

Filename First  

Block #

rock.mp3 1

19

7

game.exe

ubuntu.iso

Step (2). Read the file allocation table to  

determine the location of the next block.

Root  

Directory

F

R

E

E

File  

Allocation  

Table (FAT)

Step  

(1)

Step  

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Note that the next block is not  

necessarily the adjacent one.

1 11 3021

Task: read “ubuntu.iso” sequentially.
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Trial 2.2 – the FAT

Filename First  

Block #

rock.mp3 1

19

7

game.exe

ubuntu.iso

Step (3). The process stops until the block  
with the “next block # = 0”.

Step  

(1)

Step  

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

F

R

E

E

File

Allocation  

Table (FAT)

Root

Directory

11 21 30

Task: read “ubuntu.iso” sequentially.
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Trial 2.2 – the FAT

The entire

layout…
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Trial 2.2 – the lookup

• A point to look into:

– Centralizing the data does not mean that the random  

access problem will be gone automatically, unless…

– the file allocation table is presented as an array.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

I know the  

starting  

position.

I know  

the width.

So, going to an arbitrary location  

is as simple as doing a pointer  

addition operation.

File Allocation Table

The random access problem can be eased by keeping a cached 
version of FAT inside the kernel.



Trial 2.2 – the lookup
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File Allocation Table (FAT)

FAT12/16/32 
specific 

operations

Cached 
(partial) FAT

If this table is partially kept on the cache, 
then extra I/O requests will be generated 
in locating the next block #.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0
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Trial 2.2 and the reality

• Every file system supported by MSDOS and

the Windows family is implementing the linked

list allocation.

• The file systems are:

– The FAT family: FAT12, FAT16, and FAT32;

– The New Technology File System: NTFS.
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FATs Brief Introduction

• What is the meaning of the numbers (12/16/32)?

– A block is named a cluster.

– The main difference among all the versions of  FAT    

FS-es is the cluster address size.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Cluster  

address size

Such a size defines the number of  

clusters…
cluster address size

2

File Allocation Table
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FATs Brief Introduction

• Cluster address sizes

– The larger the cluster address size is, the  larger 

the size of the file allocation table.

– The larger the cluster size is, the larger the size of 

the disk partition is.

File System FAT12 FAT16 FAT32

Cluster address  

length
12 bits 16 bits 32 bits (28?)

Number of  

clusters
4K 64K 256M

We will look into more details of FAT32 in later lectures
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Summary of Trial 2.2

• Is FAT a perfect solution…

– Tradeoff: trade space for performance

• The entire FAT has to be stored in memory so that…

• the performance of looking up of an arbitrary block is 

satisfactory.

• Can we have a solution that stands in middle?

– Not store the entire set of block locations in mem…

– I don’t need an extremely high performance in 

block lookups.
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File System Layout

Trial 3.0
The Index-Node Allocation



Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 1.0: Contiguous allocation (just like a book)

47

Filename Starting  

Address

Ending  

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes

Root  

Directory rock.mp3 sweet.jpg game.exe

Two key problems: External fragmentation + file growth



Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.0: Linked-list allocation: blocking

48

Key problem: complicated root directory

Filename Sequence  

of Block #

Sequence  

of Block #

rock.mp3 1-6 NULL

game.exe 19-25 NULL

ubuntu.iso 7-18 26-27

Root  

Directory

1 21 30



Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.1: Linked-list allocation: blocking + linked list

49

Key problem: random access problem

Root  

Directory

Filename First  

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7 ......
NULL

(or 0)

......

27 0

Block  

26

Block  

27

1 21 3011



Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.2: Linked-list allocation: centralized next-block # (FAT)

50

Requirement: FAT Caching 



Trial 2.2 - FAT

• FAT provides a good performance in all aspects

– File creation, file growth/shrink, file deletion …

– Random access performance…but requires to 

• cache the FAT

• Balance the tradeoff between Performance and 
memory space

– Partial caching

– How?

51
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Trial 2.2 - FAT

We are going to break the FAT into pieces…Trial 3.0
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Trial 3.0 – the beginning

Filename Index  

Node

rock.mp3

game.exe

ubuntu.iso

Root  

Directory

F

R  

E

Index  

Nodes

Index node #1

Block # 1 … 6

Next Block # 2 … 0

Index node #3

Block # 7 … 18 26 27

Next Block # 8 … 26 27 0

Index node #2

Block # 19 … 25

Next Block # 20 … 0

Any problem with 

this design?

E

11 21 301
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Trial 3.0 – the beginning

Filename Index  

Node

rock.mp3

game.exe

ubuntu.iso

Root  

Directory

F

R  

E

Index  

Nodes

Index node #1

Block # 1 … 6

Next Block # 2 … 0

The index nodes are 

variable-sized.

How to manage them?

E

11 21 301

Index node #3

Block # 7 … 18 26 27

Next Block # 8 … 26 27 0

Index node #2

Block # 19 … 25

Next Block # 20 … 0



Trial 3.0 – the beginning

• Problems with variable-sized index nodes

– How to locate an index node?

– How to support file growth…size of index nodes depends 
on file size

55

Root  

Directory

F

R  

E

Index  

Nodes
E

11 21 301

Index Node 1 Index Node 2 Index Node 3

Fix-sized index nodes are preferable, how to achieve? 
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Trial 3.0 – the heart

Index node structure

Direct Block #0

Direct Block #1

… ...

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block storing  

block address.

Data Block  

storing data.

...

...

1st layer of  

indirect  

blocks

2nd layer of  

indirect  

blocks

An innovative design  

of the index node,  

called extent.

...

Detailed structure of the index nodes will be talked later
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Trial 3.0 – the two kinds of blocks

Indirect block

Stores an array of block addresses.

An address may point to either a data block or  

another indirect block.

However, in a block, all the addresses are either  

pointing to indirect blocks or data blocks.

Data block

Stores file data.

Keys

Indirect blocks that  

point to indirect blocks

Indirect blocks that  

point to data blocks

Data blocks

The consequence

3rd layer
indirect

2nd layer
indirect

1st layer
Indirect

Where are the (indirect) 
blocks stored?

Root  

Directory

F

R  

E

Index  

Nodes
E
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Trial 3.0 – the file size

Number of direct  

blocks
12

Number of indirect  

blocks

Number of double  

indirect blocks

Number of triple  

indirect blocks

Block size 2x bytes

Address length 4 bytes

1

1

1

File size = number of data blocks * block size

The dominating factor.

Block size File size

1024 bytes = 210 approx. 16 Gbytes

4096 bytes = 212 approx. 4 Tbytes
“2x / 4=2x-2”  

addresses

12 x 2x  +

+

+

24x-6

How large files can be supported?

2x-2 *2x=22x-2

2x-2 * 2x-2 *2x=23x-4
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Trial 3.0 – the final design

Filename Index  

Node

rock.mp3

game.exe  

ubuntu.iso

Root  

Directory

F

R

E

E

Index  

Nodes

1 11 3021

Index node #1

…

…
Now, every index

node is of a fixed

size.Index node #2

…

…

Index node #3

…

…
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Trial 3.0 – the final design

Filename Index  

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3

Root  

Directory

F

R

E

E

Index Node  

Table

1 11 3021

Inside the index node table …

It is arranged as an array. So,  

looking up an index node will be fast.
Searching the index  

nodes using the  

index node #.

Now, this column stores  

the index node #.

Index  

node #1

Index  

node #2

… Index  

node #n-1

… … …

… … …

Layout & read 
process



Trial 3.0

• How about the tradeoff between performance and 
memory usage?

– Partial caching is easy

• Any overhead of Trial 3.0?

– The index-node allocation uses more  storage: 

• to trade for a larger file size (with fixed-size index 

nodes).

– The indirect blocks are the extra things.

61
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Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

~4M (x=12)

~4G (x=12)

1 block

~1K blocks
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Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

~4T (x=12)

~1M blocks
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Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

– Max. number of indirect blocks depends on 

• Block size

• File size

Block size Max. # of indirect  

blocks

Max. Extra Size  

involved

1024 bytes = 210 approx. 216 approx. 256 Mbytes

4096 bytes = 212 approx. 220 approx. 4 Gbytes

Remember, they are not static and  

they grow/shrink with the file size.
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Trial 3.0 – the summary

• FSes in UNIX and Linux use the index-node 

allocation method.
– The Ext2/3/4 file systems.

• The index node is called inode in those systems.

• Ext4 uses extent, not indirect blocks

– We will discuss the details of Ext file system later.
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From Trial 1.0 to Trial 3.0…

• We studied what are the possible ways to store 

data in the storage device.
– The things stored are usually:

Free space management

Actually, we didn’t cover that  

much…

File attributes

Except the file size and the  

locations of the data blocks,  

where and what are the other  

attributes?

Root directory

Hey, where are the sub-directories?

Still remember the directory traversal

Data block management

The FAT, the extents, the table of  

content.

Root  

Directory

F

R

E

E

Index Node  

Table

or FAT
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File System Layout

Root Directory and
Sub-directories
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Root directory

• We know that the root directory is vital.

– However, we have sub-directories…

– Where are they?

Filename Index  

Node #

rock.mp3 1

2

3

temp_dir ?

game.exe

ubuntu.iso

Filename First  

Block #

rock.mp3 1

19

7

temp_dir ?

game.exe

ubuntu.iso

Index Node
Allocation

Linked list

Allocation
Are the sub-directories

stored here?
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Sub-directories?

• Let’s take the index-node allocation as an example…

Directory File

Filename inode #

rock.mp3 1

game.exe 19

ubuntu.iso 7

temp_dir 100

File content … of 

the directory file

Root directory is a directory file.

Index node

Direct Block #0

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Directory is also a file, so it has an inode too
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Sub-directories?

• Let’s take the index-node allocation as an example…

Directory File

Filename inode #

rock.mp3 1

game.exe 19

ubuntu.iso 7

temp_dir 100

Root directory is a directory file.

Index node

Direct Block #0

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Directory File

filename inode #

file_a 123

dir_1 345

file_b 456

dir_2 567

Just  another  

directory file.

See, each directory entry keeps the address of the file attributes, 
not the attributes themselves (how about FAT file systems?)
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Traversing directory structure…

• Let’s take index-node allocation as an example…

Root Directory File

Filename inode #

File

Dir

Sub-Directory File

Filename inode #

The tree ends at the  

non-directory files.

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect 

Block

Triple Indirect 

Block

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect 

Block

Triple Indirect 

Block

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect 

Block

Triple Indirect 

Block

File contents

File 
contents

Content of a directory file is still 
a directory file
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Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/file”

Root  

Directory

F

Index Node R

Table E  

E

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Root Directory File

Filename inode #

file 123

… …

File contents
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Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/os/file”

Root  

Directory

F

Index Node R

Table E  

E

Sub-directory File

Filename inode #

file 456

… …

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Root Directory File

Filename inode #

file 123

os/ 124
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Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/os/file”

Root  

Directory

F

Index Node R

Table E  

E

Sub-directory File

Filename inode #

file 456

… …

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

File contents
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File System Layout

File system information
and partitioning



Storage layout

• What are stored on disk?

– Root directory, index nodes/FAT, data blocks, free 
space information…

– Others?

• E.g., How do we know where the root directory is?

• Where is the first inode?

– File system information

76

Root  

Directory

F

R  

E

Index  

Nodes
E
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File System Information

• It is a set of important, FS-specific data…

Examples of FS-Specific Data

How large is a block?

How many allocated blocks are there?

How many free blocks are there?

Where is the root directory?

Where is the allocation information, e.g., FAT & inode table?

How large is the allocation information?
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File System Information

• It is a set of important, FS-specific data…

– Can we hardcode those information in the 

kernel code…

– No!!! Because different storage devices have 

different needs.

FAT

F

R

E

E

Root  

Directory

FAT

F

R

E

E

Root  

Directory

E.g., different disk  

sizes result in  

different FAT sizes.
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File System Information

• It is a set of important, FS-specific data…

– Solution: The workaround is to save those information  
on the device.

FS-Specific  

Information
FAT

F

R

E

E

Root  

Directory

FS-Specific  

Information
FAT

F

R

E

E

Root  

Directory

Each device should has its own  

copy of information.
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File System Information

• It is a set of important, FS-specific data…

– Solution: The workaround is to save those information  
on the device.

Superblock
Index Node

F

R

E

E

Root  

Directory

In FAT* & NTFS Boot Sector

In Ext* Superblock

Boot Sector FAT

F

R

E

E

Root  

Directory



Story so far…

• We talked about the file system layout

– FAT and index node
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Superblock
Index Node

F

R

E

E

Root  

Directory

Boot Sector FAT

F

R

E

E

Root  

Directory

Only one file system can be stored in a disk?

What is the problem with a very large file system? Large FAT

No!
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Disk partitions

• Partitioning is needed to 

– limit the file system size

– support multiple file systems on a single disk

partition 1 partition 2
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Disk partitions

• What is a disk partition?

– A disk partition is a logical space…

• A file system must be stored in a partition.

• An operating system must be hosted in a partition.

C

O

D

E

partition 1 partition 2

A partition table stores the

- first sector,

- the length, and

- the type of a partition.

Boot Code:

the code specifies  

which partition to boot.



Master boot record (MBR)…
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BOOT CODE
Table

Entry #1
Table

Entry #2
Table

Entry #3
Table

Entry #4

512 bytes

0xAA55

446 bytes 16 bytes 2 bytes

Partition Table Entry

Bytes Description

0-0 Bootable flag; 0x80 means bootable.

1-3 Starting CHS address

4-4 Partition type
http://www.datarecovery.com/hexcodes.asp

5-7 Ending CHS address

8-11 Starting LBA address (measured in # of sectors)

12-15 Sizes in sectors

signature

The range of a partition is 
described by the: (offset, 
length)  tuple.



Disk partitions - summary

• Benefits of partitioning:

– Performance

• A smaller file system is more efficient!
– Think about FAT32.

– Multi-booting

• You can have a Windows XP + Linux + Mac installed on a single 
hard disk (not using VMware).

– Data management

• You can have one logical drive to store movies, one logical 
drive to store the OS-related files, etc.

85
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Final view of a disk storage space

• Final view of disk layout

• Now, do you know what is meant by “formatting” a

disk?
– Create and initialize a file system!

– In Windows, we have “format.exe”.

– In Linux, we have “mkfs.ext2”, “mkfs.ext3”, etc.

C

O

D

E

Boot  

Sector
FAT

Super  

block
inode  

Table

partition 1 partition 2
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Summary of part2

• We have looked into many details about different 

file system layouts:

– Contiguous allocation;

– Linked list allocation; and

– Index-node allocation.

• We also show the complete view of disk space

– File system specific information & disk partition

• Linked list allocation and index-node allocation are the 

main streams but not the only way to implement 

modern file systems.



So far, we have learnt: 
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What are stored on disk

File: content + attributes
Directory: Directory file

How to access them?

File operations: open(), read(), write()
Directory lookup: Directory traversal

How are the files stored on disk?

File system layout: Contiguous/linked-list (FAT)/index-node allocation

Topics not covered: 
Only the attributes of file name and locations are covered, how about other 
attributes? Free space management?

We’ll look into some real implementations (FAT32 + EXT2/3/4)



Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch10, part 1
Details of FAT32

1



Story so far…

2

What are stored on disk

File: content + attributes
Directory: Directory file

How to access them?

File operations: open(), read(), write()
Directory lookup: Directory traversal

How are the files stored on disk?

File system layout

Contiguous allocation
linked-list allocation (FAT*)

index-node allocation (EXT*)



Topics in Ch10

• Case study

3

File attributes and directory entries, file operations

Details of FAT32

Detailed layout, detailed inode structure (file attributes), FS operations…

Details of Ext2/3/4



Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files 

– Recover deleted files

4

Microsoft Extensible Firmware Initiative FAT32 File System 
Specification (FAT: General Overview of On-Disk Format), 
Version 1.03, December 6, 2000, hardware white papers @ 
Microsoft Corporation.



Recall on FAT allocation

• The layout

5

A block is named a cluster.

File System FAT12 FAT16 FAT32

Cluster addr length
12 bits 16 bits 32 bits (28?)

Number of  

clusters 4K 64K 256M



Trivia

• Cluster Size:

– Try typing “help format” in the command prompt in  
Windows.

• Calculating the maximum partition size

– with the cluster size = 32KB…

6

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB

When a sector is > 512B …

32 × 210 × 228 = 243 (8𝑇𝐵)



Typical layout of a FAT32 partition
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Root
Directory

FAT1 FAT2
Boot 
Sector

FSINFO

Propose Size

Boot sector Store FS-specific parameters 1 sector, 512 bytes

FSINFO Free-space management 1 sector, 512 bytes

Reserved 
sectors

Don’t ask me, ask Micro$oft! Variable, can be changed during format.

FAT (2 pieces)
A robust design: if “FAT 1” is 
corrupted or  containing bad sectors, 
then “FAT 2” can act as a  backup.

Variable, depends on disk size and 
cluster size.

Root directory Start of the directory tree.
At least one cluster, depend on the 
number of director entries.



Typical layout of a FAT32 partition
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$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0

Root
Directory

FAT1 FAT2
Boot 
Sector

FSINFO

Format the disk, “-F32” means FAT32.

Read the information stored in the boot sector.

Running “dosfsck”,  DOS 
file system check,  on a 
FAT32 FS.

This program reads
details from the Boot  
Sector.



Typical layout of a FAT32 partition
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Root
Directory

FAT1 FAT2
Boot 
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkfs.fat"
Media byte 0xf8 (hard disk)

512 bytes per logical sector
512 bytes per cluster
32 reserved sectors

First FAT starts at byte 16384 (sector 32)
2 FATs, 32 bit entries

516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)

129022 data clusters (66059264 bytes)
......

The boot sector says:
A cluster is made of 1 sector.

One cluster size: 512 
bytes in this case

Details of the Boot Sector

32 sectors



Typical layout of a FAT32 partition
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Root
Directory

FAT1 FAT2
Boot 
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkdosfs"
Media byte 0xf8 (hard disk)

512 bytes per logical sector
512 bytes per cluster
32 reserved sectors

First FAT starts at byte 16384 (sector 32)
2 FATs, 32 bit entries

516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)

129022 data clusters (66059264 bytes)
......

The boot sector says:
2 FATs and each of them is of 
size 516,608 bytes.

32 sectors 1009 1009

Number of FATs and the  
length of each entry in a FAT.

Good! No slack space  between 
reserved  sectors of the first FAT.



Typical layout of a FAT32 partition
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Root
Directory

FAT1 FAT2
Boot 
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkdosfs"
Media byte 0xf8 (hard disk)

512 bytes per logical sector
512 bytes per cluster
32 reserved sectors

First FAT starts at byte 16384 (sector 32)
2 FATs, 32 bit entries

516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)

129022 data clusters (66059264 bytes)
......

The first data cluster is 
Cluster #2 and it is usually, 
not always, the root 
directory.

Cluster #0 & #1 are 
reserved.

32 sectors 1009 1009 2050 and beyond…

32 + 1009 x 2 = 2050



Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files 

– Recover deleted files

12



Directory Traversal

13

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

Cluster #2

Filename Attributes Cluster #

. ...... ?

.. ...... ?

...... ...... ......

windows ...... 123

A directory 
entry

c:\> dir c:\windows
……
06/13/2012  2,033,216    explorer.exe
08/04/2015     169,120    notepad.exe
……
c:\> _

How does this work?

Check this out by yourself.

Whether those two 
directory entries exist or 
not.

Step (1) Read the directory file of the root 
directory starting from Cluster #2.

“C:\windows” starts from Cluster #123.



Directory Traversal
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Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

Cluster #123

Filename Attributes Cluster #

. ...... ?

.. ...... ?

...... ...... ......

notepad.exe ...... 456

c:\> dir c:\windows
……
06/13/2012  2,033,216    explorer.exe
08/04/2015     169,120    notepad.exe
……
c:\> _

How does this work?

Step (2) Read the directory file of the 
“C:\windows” starting from Cluster #123.

But, where are the 
information, e.g., file size, 
modification time, etc?



Directory entry
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Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address 
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

How?

what?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

Note. This is the 8+3 naming convention.

8 characters for name +
3 characters for file extension

Filename Attributes Cluster #

explorer.exe ...... 32

• Directory entry is just a structure.



Directory entry
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• Directory entry is just a structure.

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address 
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Filename Attributes Cluster #

explorer.exe ...... 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

How to calculate the first 
cluster address?



Directory entry

17

• Directory entry is just a structure.

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address 
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Lower 2 
bytes

Filename Attributes Cluster #

explorer.exe ...... 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

00 00 20 00

Higher 2 
bytes

Cluster 
address

8192=

It is not 32, why?



Big Endian vs Little Endian
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• Endian-ness is about byte ordering.

– It means the way that a machine (we mean the entire 
computer architecture) orders the bytes.

4-byte integer value:
0x89ABCDEF

Ending (small) value
in small address

Ending (small) value
in large address

89 AB CD EF

Increasing address

EF CD AB 89

Increasing address

Big
endian

Little
endian



Big Endian vs Little Endian
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• Directory entry is just a structure.

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address 
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Filename Attributes Cluster #

explorer.exe ...... 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

00 00 20 00 8192=

00 00 00 20 32=

Big
endian

Little
endian

The FAT is defined to use little-endian byte 
ordering, as its original implementation was 
on the Intel x86 platform



The file size…
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Filename Attributes Cluster #

explorer.exe ...... 32Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address 
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

So, what is the largest size of a file?

what?

4G – 1 bytes



Directory entry
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Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address 
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Note. This is the 8+3 naming convention.

8 characters for name +
3 characters for file extension

• Any problem with this design?

Example: 

How to store the file: 
“I_love_the_operating_syste
m_course.txt”

How to store long 
filename?



FAT series – LFN directory entry

• LFN: Long File Name.

– In FAT32, the 8+3 naming convention is removed by…

– Adding more entries to represent the filename

22

Directory file

LFN #3

LFN #2

LFN #1

Normal Entry
The normal directory entry is still there.

Each LFN entry represents 13 characters in 
Unicode, i.e., 2 bytes per character.
Yet, the sequence is upside-down!



FAT series – LFN directory entry
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Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address 
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Bytes Description

0-0 Sequence Number

1-10
File name characters
(5 characters in Unicode)

11-11 File attributes - always 0x0F

12-12 Reserved.

13-13 Checksum

14-25
File name characters
(6 characters  in Unicode)

26-27 Reserved

28-31 File name characters
(2 characters in Unicode)

LFN entryNormal entry



FAT series – LFN directory entry

• Filename: 
“I_love_the_operating_system_course.txt”.

24

436d 005f 0063 006f 0075 000f 0040 7200 Cm._.c.o.u...@r.
7300 6500 2e00 7400 7800 0000 7400 0000 s.e...t.x...t...

0265 0072 0061 0074 0069 000f 0040 6e00 .e.r.a.t.i...@n.
6700 5f00 7300 7900 7300 0000 7400 6500 g._.s.y.s...t.e.

0149 005f 006c 006f 0076 000f 0040 6500 .I._.l.o.v...@e.
5f00 7400 6800 6500 5f00 0000 6f00 7000 _.t.h.e._...o.p.

495f 4c4f 5645 7e31 5458 5420 0064 b99e  I_LOVE~1TXT .d..
773d 773d 0000 b99e 773d 0000 0000 0000  w=w=....w=......

Normal

LFN #1

LFN #2

LFN #3

Byte 11 is always 0x0F to indicate that is a LFN.



FAT series – LFN directory entry
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436d 005f 0063 006f 0075 000f 0040 7200 Cm._.c.o.u...@r.
7300 6500 2e00 7400 7800 0000 7400 0000 s.e...t.x...t...

0265 0072 0061 0074 0069 000f 0040 6e00 .e.r.a.t.i...@n.
6700 5f00 7300 7900 7300 0000 7400 6500 g._.s.y.s...t.e.

0149 005f 006c 006f 0076 000f 0040 6500 .I._.l.o.v...@e.
5f00 7400 6800 6500 5f00 0000 6f00 7000 _.t.h.e._...o.p.

495f 4c4f 5645 7e31 5458 5420 0064 b99e  I_LOVE~1TXT .d..
773d 773d 0000 b99e 773d 0000 0000 0000  w=w=....w=......

Normal

LFN #1

LFN #2

LFN #3

Directory file

LFN #3: “m_cou” “rse.tx” “t”

LFN #2: “erati” “ng_sys” “te”

LFN #1: “I_lov” “e_the_” “op”

Normal Entry

This is the sequence number, and they are 
arranged in descending order.

The terminating directory entry has the 
sequence number OR-ed with 0x40.



FAT series – directory entry: a short summary

• A directory is an extremely important part of a FAT-
like file system.

– It stores the start of the content, i.e., the start cluster 
number.

– It stores the end of the content, i.e., the file size; 
without the file size, how can you know when you 
should stop reading a cluster?

– It stores all file attributes.

26



Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

–Read files

– Write files

– Delete files 

– Recover deleted files

27



How to read a file?
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Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

Step 1. Read the content from Cluster #32. 

Note. The file size may also help determine if 
the last cluster is reached (remember where it 
is stored?)

Suppose we already read out the 
directory entry…

You know the process of 
directory traversal, right?



How to read a file?
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Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

1 ...

... ...

32 33

33 EOF

34 0
Step 1. Read the content from Cluster #32. 
Note. The file size may also help determining 
if the last cluster is reached.

Step 2. Look for the next cluster and it is 
Cluster #33 (from the FAT table)

35 0

0 ...



How to read a file?
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Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

... ...

32 33

33 EOF

34 0
Step 3. Since the FAT has marked “EOF”, we 
have reached the last cluster.

Note. The file size help determine how many 
bytes to read from the last cluster.

35 0

1 ...

0 ...

FAT entry structure??
Remember: 28bits are used to

represent cluster number for FAT32



How to read a file?
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Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

... ...

32 33

33 EOF

34 0
Step 3. Since the FAT has marked “EOF”, we 
have reached the last cluster.

Note. The file size help determine how many 
bytes to read from the last cluster.

35 0

1 ...

0 ...

Damaged     = 0x0ffffff7

EOF        >= 0x0ffffff8

Unallocated = 0x0



Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files 

– Recover deleted files

32



How to write a file?
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Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0
Step 1. Locate the last cluster.

Step 2. Start writing to the non-full cluster.35 0

1 ...

0 ...



How to write a file?
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Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0

Step 3. Allocate the next cluster through FSINFO.

35 0

1 ...

0 ...

What is stored in FSINFO?
How to allocate?



How to write a file?
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Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0

FSINFO

# of free clusters 4

Next free cluster # 34

Step 3. Allocate the next cluster through FSINFO.

35 0

1 ...

0 ...



How to write a file?
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Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

... ...

32 33

33 34

34 EOF

Step 3. Allocate the next cluster through FSINFO.

Step 4. Update the FATs and FSINFO.

Step 5. When write finishes, update the file size.FSINFO

# of free clusters 3

Next free cluster # 35

35 0

1 ...

0 ...



How to write a file?
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Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

... ...

32 33

33 34

34 EOF Q: How to obtain the next free cluster?

FSINFO

# of free clusters 3

Next free cluster # 35

35 0

1 ...

0 ...



How to write a file?
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Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe ...... 32

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

... ...

32 33

33 34

34 EOF

FSINFO

# of free clusters 3

Next free cluster # 35

35 0

The search for the next free cluster is a circular, 
next-available search.

Why implementing next-available? 
Principle of locality

Why circular? 
To find out every free block

1 ...

0 ...



Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files 

– Recover deleted files

39



How to delete a file?
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Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe ...... 32

... ...

32 33

33 34

34 EOF

FSINFO

# of free clusters 3

Next free cluster # 35

35 0

Step 1. De-allocate all the blocks 
involved. Update FSINFO and FATs.

... ...

32 0

33 0

34 0

35 0

FSINFO

# of free clusters 6

Next free cluster # 32

1 ...

0 ...

1 ...

0 ...



How to delete a file?
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Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Cluster #123

Filename Attributes Cluster #

. ...... ?

.. ...... ?

explorer.exe ...... 32

notepad.exe ...... 456

How about the directory entry



How to delete a file?
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Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Cluster #123

Filename Attributes Cluster #

. ...... ?

.. ...... ?

_xplorer.exe ...... 32

notepad.exe ...... 456

How about the directory entry

Step 2. Change the first byte of 
the directory entry to 0xE5.

LFN entries also receive the 
same treatment.

That’s the end of deletion!

The first character  
becomes “0xE5”.

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)



Really delete a file?
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• Can you see that: the file is not really removed 
from the FS layout?
– Perform a search in all the free space. Then, you will find 

all deleted file contents.

• “Deleted data” persists until the de-allocated 
clusters are reused.
– This is an issue between performance (during deletion) 

and security.

• Any way(s) to delete a file securely?



How to delete a file “securely”?
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Mac OS X Secure Disk Erase

Brute Force?
http://www.ohgizmo.com/2009/06/01/manual-hard-drive-destroyer-looks-like-fun/

What will the research community tell you?

http://cdn.computerscience1.net/2006/fall/lectures/8/articles8.pdf



Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files 

– Recover deleted files

45



How to “rescue” a deleted file?

46

• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from 
being over-written.

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

Cluster #123

Filename Attributes Cluster #

. ...... ?

.. ...... ?

_xplorer.exe ...... 32

notepad.exe ...... 456

All the things are still here!

The first character  
becomes “0xE5”.



How to “rescue” a deleted file?
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• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from 
being over-written.

File size <= 1 
cluster

Because the first cluster address is still readable,  the recovery is having a 
very high successful rate.

Note that filenames with the same postfix may also be found.

Principle of “rescue” deleted file

Data persists unless the sectors are reallocated and overwritten.



How to “rescue” a deleted file?
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• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from 
being over-written.

Principle of “rescue” deleted file

Data persists unless the sectors are reallocated and overwritten.

File size > 1 
cluster

It is still possible as the clusters of a file are likely to be contiguously 
allocated. 

The next-available search provides a hint in looking for deleted blocks.

If not, you’d better have the checksum and the exact file size beforehand, 
so that you can use a brute-force method to recover the file.



How to “rescue” a deleted file?
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• What if the value of the 32nd cluster is not 0?

Root
Directory

FAT1 FAT2
Boot 

Sector
FSINFO

It is hard to find  them 
out without  some hints. 

The  use of checksum  
may be a good  hint…

... ...

32 0

33 0

34 0

35 0

1 ...

0 ... _xplorer.exe ...... 32

The first cluster is the one  
that we can be sure of…



FAT series – conclusion 

• It is a “nice” file system:

– Space efficient: 4 bytes overhead (FAT entry) per data 
cluster.

• Deletion problem:

– This is a lazy yet fast implementation.

– Need extra protection for deleted data.

• Deployment:

– It is everywhere: SD cards, USB drives, disks…

50
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Details of Ext2/3 File System
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Trivia

• Extended File System (Ext2/3/4)

– Follow index-node allocation

– Primary FS for Linux distribution

– Ext4 was merged in the Linux 2.6.28 and released in 2008

– Backward-compatible

– For simplicity, we focus on Ext2/3

– Features of Ext2/3/4

– https://ext4.wiki.kernel.org/index.php/Main_Page

– http://e2fsprogs.sourceforge.net/ext2.html



Details of Ext2/3 

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling 
- VFS

3



Details of Ext2/3 

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling 
- VFS

4
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Index-node allocation

Filename Index  

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3

Root  

Directory

F

R

E

E

Index Node  

Table

1 11 3021

It is arranged as an array. So,  

looking up an index node will be fast.

Index  

node #1

Index  

node #2

… Index  

node #n-1

… … …

… … …

• Ext2/3 file systems follow the index-node allocation



Specific Layout

• The file system is not that simple…
– it is divided into groups, and …

– every group has the same structure.



Specific Layout

G

Superblock D
T

Block 

Bitmap

Inode

Bitmap

Inode 

Table

Data 

Blocks

Superblock D
T

G
Block 

Bitmap

Inode

Bitmap

Inode 

Table

Data 

Blocks

They are

the same.

Group 0

Group 1

They are different.

• The file system is not that simple…
– it is divided into groups, and …

– every group has the same structure.



Specific Layout

• Why doing so?

– This is for reliability and performance.

G

Superblock D
T

Block 

Bitmap

Inode

Bitmap

Inode 

Table

Data 

Blocks

Superblock D
T

G
Block 

Bitmap

Inode

Bitmap

Inode 

Table

Data 

Blocks

They are

the same.

Group 0

Group 1

They are different.



Specific Layout

• Why doing so?

– For reliability…

G

Superblock D
T

Block 

Bitmap

Inode

Bitmap

Inode 

Table

Data 

Blocks

Superblock D
T

G
Block 

Bitmap

Inode

Bitmap

Inode 

Table

Data 

Blocks

They are

the same.

Group 0

Group 1

They are different.
The superblock in Group 0 is called the primary superblock. 

Other superblocks are called the backup superblock. 

There are many copies of the superblock So, this 

increases the reliability of the FS.



Specific Layout

• Why doing so?

–For performance…

G

Superblock D
T

Block 

Bitmap

Inode

Bitmap

Inode 

Table

Data 

Blocks

Superblock D
T

G
Block 

Bitmap

Inode

Bitmap

Inode 

Table

Data 

Blocks

They are

the same.

Group 0

Group 1

They are different.

E.g.,

- Inode table in Group 0 stores inodes from #1 to #100;

- Inode table in Group 1 stores inodes from #101 to #200;

- etc…

The good about this is to keep the inodes and the file

contents close together!



Specific Layout

• Why doing so?

– For performance…

......

The inodes in a particular group will usually refer to the

data blocks in the same group.

So, this keeps them close together in a physical sense.

The storage device may be able to locate the data in a

faster manner. (Remember the principle of locality?)

Group 0 Group 1 Group n-1



Superblock Stores FS specific data.

Superblock

G 

D 

T

Block 

Bitmap

Inode 

Bitmap

Inode 

Table

Data 

Blocks

Layout in Each Group

Total number of inodes in the system.

Total number of blocks in the system.

Number of reserved blocks

Total number of free blocks.

Total number of free inodes.

Location of the first block.

The size of a block.

12



Superblock Stores FS specific data. E.g., the total number of blocks, etc.

GDT – Group Descriptor Table

It stores:

-The starting block numbers of the block bitmap, the inode

bitmap, and the inode table.

- Free block count, free inode count, etc…

Superblock

G 

D 

T

Block 

Bitmap

Inode 

Bitmap

Inode 

Table

Data 

Blocks

Layout in Each Group

Inode Table An array of inodes ordered by the inode #.

Data Blocks An array of blocks that stored files.

Block Bitmap A bit string that represents if a block is allocated or not.

Inode Bitmap A bit string that represents if an inode is allocated or not.

13



Layout in Each Group

• What is a block bitmap?

– A sequence of bits indicates the allocation of 

the blocks.

It says “blocks 0-2 are allocated ”, 

then “block 3 is unallocated ”...

1 1 1 0 1 0 1 1 1 0 1 1
0 Unallocated

1 Allocated

Superblock

G

D

T

Block 

Bitmap

Inode 

Bitmap

Inode 

Table

Data 

Blocks



Layout in Each Group

• Then, what is an inode bitmap?

– A sequence of bits indicates the allocation of 

the inodes.

– This implies that…

Superblock

G

D

T

Block 

Bitmap

Inode 

Bitmap

Inode 

Table

Data 

Blocks

1 1 1 0 1 0 1 1 1 0 1 1
0 Unallocated

1 Allocated

The number of files in the file system is fixed!



Details of Ext2/3 

- Layout
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- Link file
- Buffer cache
- Journaling 
- VFS
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Inode Structure

• We know that…

– The locations of the data blocks of a file are stored in

the inode.

Index node structure

Direct Block #0

Direct Block #1

… ...

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block storing  

block address.

Data Block  

storing data.

...

...

1st layer of  

indirect  

blocks

2nd layer of  

indirect  

blocks

...



Inode Structure

An inode is the structure that 

stores every information about 

a file.

The locations of the data 

blocks

Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

What are stored in inode
besides block addresses?

More details: https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Inode_Table



Inode Structure

What is the maximum file 

size supported?

264 – 1

= 16 x 230 Gbytes – 1 byte

Is this really the case?

Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

Remember the dominating 
factor:  24x-6

Block size File size

1024B = 210 ~16 Gbytes

4096B = 212 ~4 Tbytes



Inode Structure

What is link count?
Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

We will talk about it later

Where is the file name?

Let us take a look at the 

directory structure



Directory Structure

The directory entry stores the file 

name and the inode #.

1 int main(void) {

2 DIR * dir; 

3

4

struct dirent *entry;

5 dir = opendir(“/”); 

6

7 while ( (entry = readdir(dir)) != NULL) {

8 // print the directory name

9 printf(“%s\n”, entry->d_name);

10 }

11

12 closedir(dir);

13 return 0;

14 }

struct dirent { 

ino_t d_ino; // inode number

// offset to the next

// record length

// file type

// file name

off_t 

unsigned 

unsigned 

char *

d_off; 

d_reclen; 

d_type; 

d_name;

dirent

short 

char

}

Filename Index  

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3



Directory Structure

10

inode number

Entry size

Type

File name length

F rock 18 F game4 4 F ubuntu550 unused

A Linux directory with 
three files

struct dirent { 

ino_t d_ino; // inode number

// offset to the next

// record length

// file type

// file name

off_t 

unsigned 

unsigned 

char *

d_off; 

d_reclen; 

d_type; 

d_name;

dirent

short 

char

}



Directory Structure

10

inode number

Entry size

Type

File name length

F rock 18 F game4 4 F ubuntu550 unused

10 F rock unused4 F ubuntu550 unused

A Linux directory with 
three files

After game has been removed



Accessing Directory File

• How to access directory file?

1 int main(void) {

2 DIR * dir;

3 struct dirent *entry;

4

5 dir = opendir(“/”);

6

7 while ( (entry = readdir(dir)) != NULL) {

8

9

10

11

// print the directory name 

printf(“%s\n”, entry->d_name);

}

12 closedir(dir);

13

14 }

return 0;

Open the directory file.

Read the directory 

entries one by one until

there is not further

entries.

Close the directory file.

Note: opendir(), readdir(), 

and closedir() are library

function calls.
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Example use in Linux

Link File

• Can we allow a file to have multiple names and 
be accessed by several paths?

• How to create shortcuts? 

# ls /dir1/12.jpg 

12.jpg

# ln /dir1/12.jpg

# _

/my_link

# ls /dir1/12.jpg 

12.jpg

# ln –s

# _

/dir1/12.jpg /my_link

These are called hard link and symbolic link



Link File – what is a hard link?

• A hard link is a directory entry pointing

to an existing file.

– No new file content is created!

Directory: /dir1 Directory: /

# ls /dir1/12.jpg 

12.jpg

# ln /dir1/12.jpg

# _

/my_link

A new directory entry 

is created.

Inode # … FilenameInode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Inode # … Filename

2 … .

2 … ..

5,086 … my_link



Link File – what is a hard link?

• Conceptually speaking, this creates a file 

with two pathnames.

Inode #: 5086

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1 Directory: /

How to maintain this info.



Link File – what is a link count?

• There is a field called link count in an inode.

– It stores the number of directory entries pointing to

the inode.

Inode #: 5086

Link Count 2

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1 Directory: /



Link File – showing the link counts

• Special hard links

– The directory “.” is a hard link to itself.

– The directory “..” is a hard link to the parent directory.

08:07 bin

09:25 boot

17:58 dev

17:58 etc

14:23 home

What does this large 

number imply?
# ls -l /
total 124 

drwxr-xr-x 

drwxr-xr-x 

drwxr-xr-x 

drwxr-xr-x 

drwxr-xr-x

......

root

root

root

root

root

root

root

root

root

root

4096

4096

14520

12288

4096

2015-11-15

2015-11-11

2015-11-23

2015-11-23

2015-06-21

2

4
17

165

6

This implies “/etc” has a lot of sub-directories.



Link File – showing the link counts

• Special hard links

– The directory “.” is a hard link to itself.

– The directory “..” is a hard link to the parent directory.

• What is the value of the link count, if

– A file is created

– A directory is created



Link File – showing the link counts

• When a regular file is created, the link count is always 1

• When a directory is created, the initial link count is 
always 2

# stat Makefile 

File: `Makefile'

Size: 4552 

Device: 801h/2049d

......

Blocks: 16

Inode: 30669

IO Block: 4096 regular file

Links: 1

# mkdir temp

# stat temp

File: 

Size: 

Device:

......

`temp' 

4096

804h/2052d

Blocks: 8

Inode: 10994310

IO Block: 4096 directory

Links: 2

Why it is 2



Link File – showing the link counts

Parent of “temp”
The new directory “temp”

• When a directory is created, the initial link count is 
always 2. Why?

# mkdir temp

# stat temp

File: 

Size: 

Device:

......

`temp' 

4096

804h/2052d

Blocks: 8

Inode: 10994310

IO Block: 4096 directory

Links: 2

link #1

link #2

Inode # … Filename

10,994,310 … .

123 … ..

Inode # … Filename

123 … .

2 … ..

10,994,310 … temp

Inode #: 10,994,310

Link Count



Link File – showing the link counts

Parent of “temp” The new directory “temp”

• The hosting directory of the newly creating directory 
will have its link count increased by 1.

Inode # ... Filename

10,994,310 … .

123 … ..

Inode # ... Filename

123 ... .

2 ... ..

10,994,310 ... temp



Link File – decrementing the link count?

• How about removing a file?

Inode #: 5086

Link Count 1

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode #: 5086

Link Count 0

Directory: /dir1

Removing

the file…

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg



Link File – decrementing the link count?

• How about removing a file?

– The system call that removing a file is, therefore, 
called unlink().

• The unlink() system call is to decrement the link count by

exactly one.

• When the link count == 0, the data blocks and the inode

will all be de-allocated by the kernel.

Inode #: 5086

Link Count 0

Directory: /dir1 De-allocated

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg



Link File – decrementing the link count?

• Back to the previous hard link example…

Inode #: 5086

Link Count 2

Inode #: 5086

Link Count 1

Inode #: 5086

Link Count 2

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Directory: /

# ls /dir1/12.jpg 

12.jpg

# ln /dir1/12.jpg /my_link



Link File – decrementing the link count?

• Back to the previous hard link example…

De-allocated

Inode #: 5086

Link Count 2

Inode #: 5086

Link Count 1

Inode #: 5086

Link Count 0

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Directory: /

# ls /dir1/12.jpg 

12.jpg

# ln /dir1/12.jpg /my_link

# rm /dir/12.jpg

# rm /my_link



Link File – what is a symbolic link?

• A symbolic link is a file.

– Unlike the hard link, a new inode is created

for each symbolic link.

– It stores the pathname (shortcut)

Inode # … Filename

2 … .

2 … ..

6,120 … my_link

Directory: /dir1 Directory: /

# ls /dir1/12.jpg 

12.jpg

# ln –s

# ls –l

/mylink

#

/dir1/12.jpg /my_link

/mylink

-> /dir1/12.jpg

A new directory 

entry is created.

Another 

inode

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg



Link File – what is a symbolic link?

• How to store the target path?
– If the pathname is less than 60 characters

– It is stored in the 12 direct block and the 3
indirect block pointers.

– Else, one extra data block is allocated

Directory: /
Inode #: 6120

Link Count 1

Direct  #0

…… 

Single Indirect

Double Indirect 

Triple indirect

Inode # … Filename

2 … .

2 … ..

6,120 … my_link

(12 + 3) x 4 = 60



Short summary

• Hard link

– A directory entry pointing to an existing file

– They point to the same inode (no new file content)

– A file with two pathname

– Remove file == unlink (link count - 1)

– Examples: dot/dot dot

• Symbolic link

– A file with a new inode

– Stores the target pathname

– Shortcuts



Details of Ext2/3 

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling 
- VFS

42



File system performance

• Recall the read/write process

– Directory traversal

– Reading inode

– Data blocks

Root  

Directory

F

R

E

E

Index Node  

Table

How to improve file system performance?



Kernel Buffer Cache

• Kernel Buffer Cache

– The kernel will keep a set of copies of the read/written 
data blocks.

– The space that stores those blocks are called the buffer 
cache.

– It is used for reducing the time in accessing those blocks 
in the near future

• Why effective?

– Principle of locality

44



Kernel Buffer Cache

• What need to be cached?

– Data blocks, directory file, inode?

– All of them can benefit from caching

45

Root  

Directory

F

R

E

E

Index Node  

Table



Kernel Buffer Cache

• Three types of buffer caches!

Page Cache It buffers the data blocks of an opened file.

Directory entry 
(dcache) cache

Directory entry is stored in the kernel.

Inode cache The content of an inode is stored in the kernel temporary.

Remember, those cached data is stored in the kernel even 
though the corresponding file is closed!

By the way, the cache is managed under the LRU algorithm.
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Kernel Buffer Cache

Mode Description

Reading mode When a process reads a file, the data will be cached automatically.

E.g., Readahead system call

Read/write mode with kernel buffer cache

47

Ways Descriptions

System call ssize_t readahead(int fd, off64_t offset, size_t count);

A blocking system call that stores requested range of data into the kernel 
page caches

Later read() calls over the range will not block.



Readahead

• How does it work?
– When a file reading operation is requesting for Block x, there is a 

chance that Block x+1 will also be needed.

– Such a chance depends on:
• The file reading mode: sequential access or random access.

• The file reading history: whether the process prefers reading sequentially 
or not.

– If such a chance is high, then reading a series of continuous 
blocks will reduce the number of disk accesses. Why?

• Because the disk head is not always stopped at your desired locations.

• Because a mechanical disk is good at reading sequential data.

• How about SSD?

48



Kernel Buffer Cache

Mode Description

Write-through 
mode

Both the on-disk and the cached copies update together.

E.g., The write() system call will not return until the on-disk copy is written.

Write-back 
mode

When a piece of data is going to be written to a file, the cached copy is 
updated first. The update of the on-disk copy is delayed.

On-demand writing dirty blocks back.

Command: sync
System calls: sync(), fsync()

Read/write mode with kernel buffer cache

49

How about write?
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File System Consistency

• Think about caching…tradeoff?

– System inconsistency exists

• Power failure, pressing reset button accidentally; etc.

• Disk only provides 

– atomic write of one sector at a time

• A write may require modifying several sectors 

– How to atomically update file system from one 
consistent state to another?

The file system journal is the current, state-
of-the-art practice.



Your boss orders

you to do a set of tasks!

Task list:
1) Buy boss a DC.

2) Pick up boss’ friend.

3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

You write down all the tasks 

assigned to you into a log book.

Example: Journaling File System
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Task list:
1) Buy boss a DC.

2) Pick up boss’ friend.
3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

You cross out a 

task when

it is completed.

Example: Journaling File System
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Unfortunately, a car accident happens!

You lost all your memory!!

Your boss sends your 

colleague to finish your job. 

But, he doesn’t know about 

your progress.

Worse, your boss has 

forgotten what are the tasks 

given to you!

The log book 

comes in handy!

Example: Journaling File System
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User Program FS operations invoked by the user program

Task list:

1) Buy boss a DC.

2) Pick up boss’ friend.
3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

System crash! 

All memory lost!
OS

The journal!

File system 

recovery tool

Example: Journaling File System
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What is journal?

• A journal is the log book for the file system.

– It is kept inside the file system, i.e., inside the disk.

• In database: Write-ahead logging

• In file systems: Journaling

– Applications: Linux ext3 and ext4, Windows NTFS

Data blocksJournalFS Data

a new item

56

Basic idea: when updating the disk, before overwriting the structures in 

place, first write down a little note describing what you are about to do



What is journal?

• In order to make use of the journal:

– A set of file system operations becomes an atomic 
transaction.

• Either all operations are completed successfully, or

• no operation is completed.

– A transaction marks all the changes that will be done 
to the FS.

– Every transaction is written to the journal.

57



• How does Linux ext3 incorporate the journaling?

– Most of on-disk structures are identical to Linux ext2

– The new key structure is the journal itself

– It occupies some small amount of space within the 
partition or on another device

Journaling in Linux ext3

Ext2

Ext3

58



• How to do journaling?

• Task: update inode (I[v2]), bitmap (B[v2]), and 
data block (Db) to disk
– Metadata + data

• Strategy: Data journaling
– Write all data (metadata+data) to journal

• Before writing them to their final disk locations, we first write 
them to log (a.k.a. journal)

– An available mode with the Linux ext3 file system

Data Journaling

59



• Journal layout:

– TxB: Transaction begin block
• It contains some kind of transaction identifier (TID)

– TxE: Transaction end block
• Marker of the end of this transaction

• It also contain the TID

• Checkpoint
– Overwrite the old structures in the file system after the 

transaction being safely on disk

Data Journaling
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• Operation sequence:

– Journal write

• Write the transaction to log and wait for these 
writes to complete

• TxB, all pending data, metadata updates, TxE

– Checkpoint

• Write the pending metadata and data updates to 
their final locations

• Any problem with this flow?

– What if crash occurs during the writes to journal

Data Journaling
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• We need to write the set of blocks (TxB, I[v2], 
B[v2], Db, TxE) 

– Issue one block at a time

• It is slow because of waiting for each to complete

– Issue all blocks at once

• Five writes -> a single sequential write: Faster way

• However, it is unsafe…
• The disk internally may perform scheduling and complete small 

pieces of the big write in any order

Data Journaling
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• Issue all blocks at once

– Suppose: disk internally 

• (1) writes TxB, I[v2], B[v2], TxE and later 

• (2) writes Db

– When crash occurs during the writes to journal

• If the disk loses power between (1) and (2)

Data Journaling

Problem: Transaction looks like a valid transaction, but 
the file system can’t look at the fourth block and know it is wrong
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• How to solve this problem?

– Issue transactional write in two steps

• First step: writes all blocks except the TxE block to journal

• Second step: file system issues the write of the TxE

Data Journaling

Make sure the write of TxE is atomic

Journal 
write

Journal 
commit
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• Operation sequence:

– Journal write

• Write the contents of the transaction (including TxB, 
metadata, and data)

– Journal commit

• metadata, and data (including TxE)

– Checkpoint

• Write the contents of the update to their on-disk 
locations

Data Journaling

The write order must be guaranteed
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• How to do recovery?

– Case 1: crash happens before journal commit

– Case 2: crash happens after journal commit, but 
before checkpoint

Data Journaling

Easy! Skip the pending update

Replay transactions in order. Called redo logging
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Data Journaling

• The log is of finite size

– What problems may arise if it is full?

• Long time to replay

• Unable to append new transactions

• Manage as a circular log

– Free space after checkpointing
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Data Journaling

• Write sequence

• Data Journaling Timeline

68

Journal 
write

Journal 
commit

Checkpoint Free



• Any problem with data journaling?
– Write every Db to disk twice

• Commit to log (journal file)
• Checkpoint to on-disk location

• How to avoid writing twice?

– Metadata journaling: Logging metadata only

Metadata Journaling

This data is not written to journal
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Metadata Journaling

• Write-back mode: no order restriction (data/journal)
– How about data is written to disk after journal commit?

• File system is consistent (from the perspective of metadata)

• Metadata points to garbage data

• Ordered mode
– Data is written to file system before journal commit

– Rule: 
• Write the pointed-to object before the object that points to it

• Core of crash consistency

– Widely deployed by Ext3, NTFS, etc.
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Metadata Journaling

• Write sequence

71

Journal 
metadata 

write

Journal 
commit

Checkpoint
metadata

FreeData 
write

The two writes can be 
issued in parallel 



Summary on journal

• Working principle:

– All the changes to the FS are written to the journal 
first, including:

• the changes in the metadata, i.e., information other than the 
file content. E.g., the inodes, the directory entries, etc.

• the file data (depends on data journaling/metadata 
journaling)

– Then, the system call returns to the user process.

– Meanwhile, the entries in the journal are replayed and  
the changes are reflected to the actual file system.
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Virtual File System (VFS)

VFS: an FS abstraction layer

– Transparently and uniformly supports multiple FSes

– A VFS specifies an interface 

– A specific FS implements this interface 

• Old days: “the” file system 

• Nowadays: many fs types 
and instances co-exist



VFS

• Let’s look into the implementation of open().

http://lxr.linux.no/linux-old+v2.4.31/fs/open.c

710        if (f->f_op && f->f_op->open) {
711                error = f->f_op->open(inode,f);
712                if (error)
713                        goto cleanup_all;
714        }

struct file

struct file_operations {
loff (*llseek)...
ssize_t (*read)...
......
int (*open) ...
......

}
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VFS

• For each file system, they have their own set of file 
operations.

Parent Methods
VFS layer

open read

write llseek

FAT32 Methods.

http://lxr.linux.no/linux-
old+v2.4.31/fs/fat/file.c#L26

fat_file_operations

Ext3 Methods.

http://lxr.linux.no/linux-
old+v2.4.31/fs/ext3/file.c#L113

ext3_file_operations
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VFS

• So, the beauty in such design is that:

– The caller,  i.e. the VFS layer, doesn’t need to care 
about nor hard-coding which FS you are working on.

error = f->f_op->open(inode,f);

The only things that require hard-coding are:
- The definition of the file operations.
- The assignment of file operation structures for each FS.
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VFS

• A follow-up question is:

– What if a FS does not support a particular subset of 
operations?

– E.g., FAT32 does not need to implement chmod()!

– Solution?

• Simple!  Using NULL pointers!

• When a NULL pointer to a file is detected, returning an error 
or proceed without any changes.
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Summary

• Ext* file systems are the primary FS for Linux

– They follow the index-node allocation

– We talked about…

• Detailed layout (grouping, bitmaps)

• Inode structure

• Directory structure

• Link file (hard link and symbolic link)

• Kernel buffer cache and readahead

• Journaling (data journaling, metadata journaling)

• VFS
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I/O Systems
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Overview

I/O management is a major component of operating system design

Important aspect of computer operation

I/O devices vary greatly

Various methods to control them

Performance management 

Ports, busses, device controllers connect to various devices

Device drivers encapsulate device details

Present uniform device-access interface to I/O subsystem
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I/O Hardware

Incredible variety of I/O devices

Storage

Transmission

Human-interface

Common concepts

Port – connection point for device

Bus - daisy chain or shared direct access

 PCI bus common in PCs and servers, PCI Express (PCIe) 

 expansion bus connects relatively slow devices

Controller (host adapter) – electronics that operate port, bus, device

 Sometimes integrated

 Sometimes separate circuit board (host adapter)
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A Typical PC Bus Structure
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I/O Hardware

How to control devices?

Devices usually have registers where device driver places 

commands, addresses, and data to write, or read data from 

registers after command execution

Data-in register, data-out register, status register, 

control register

How to communicate with controller? 

Devices have addresses, used by

 Direct I/O instructions

 Memory-mapped I/O

– Device data and command registers mapped to 

processor address space



12.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials  – 2nd Edition

Device I/O Port Locations on PCs (partial)
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Polling (轮询)

For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out 

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when 

transfer done

Step 1 is busy-wait cycle to wait for I/O from device

Reasonable if device is fast

But inefficient if device is slow
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Interrupts (中断)

CPU Interrupt-request line triggered by I/O device

Two lines:

 Maskable （可屏蔽） and nonmaskable （非屏蔽） interrupt

Checked by processor after each instruction

Interrupt handler receives interrupts

Interrupt vector （中断向量） to dispatch interrupt to correct handler

Context switch at start and end

Based on priority, some are nonmaskable

Interrupt chaining if more than one device at same interrupt 

number
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Intel Pentium Processor Event-Vector Table

非屏蔽中断
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Interrupts (Cont.)

Interrupt mechanism also used for exceptions （异常）

Terminate process, crash system due to hardware error

Page fault 

executes when memory access error

System call 

executes via software interrupt or trap to trigger kernel 

to execute request
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Direct Memory Access

Used to avoid programmed I/O (one byte at a time) (程序控制I/O) for 

large data movement 

Requires DMA controller

Bypasses CPU to transfer data directly between device & memory 

How to work?

OS writes DMA command block into memory 

 Source and destination addresses

 Read or write mode

 Count of bytes

Writes location of command block to DMA controller, then CPU can 

continue to execute other tasks

DMA controller masters bus and does the transmission without CPU

 DMA-request and DMA acknowledge between DMA controller and 

device controller
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Application I/O Interface

Devices vary in many dimensions

Character-stream or block

Sequential or random-access

Synchronous or asynchronous 

Sharable or dedicated

Speed of operation

read-write, read only, write only

How to provide a standard and uniform I/O interface? 

Abstraction, encapsulation, layering (抽象，封装，分层)
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A Kernel I/O Structure
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I/O Devices

Block devices include disk drives

Commands include read, write, seek

Raw I/O, direct I/O, or file-system access

Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via 

demand paging

DMA

Character devices include keyboards, mice, serial ports

Commands include get(), put()

Network devices

socket interface
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Clocks and Timers

Functionalities of hardware clock and timer

Get current time

Get elapsed time

Timer

Programmable interval timer (可编程间隔定时器) used for 

timings, periodic interrupts

Process scheduler: interrupt when time quantum is zero

I/O subsystem: periodic flush
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Two I/O Methods

Synchronous Asynchronous
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Kernel I/O Subsystem

Kernel I/O subsystem provides many services

I/O scheduling

Maintain a per-device queue

Re-ordering the  requests

Average waiting time, fairness, etc.

Buffering - store data in memory while transferring between devices

To cope with device speed mismatch

To cope with device transfer size mismatch

To maintain “copy semantics” (e.g., copy from application’s buffer 

to kernel buffer)
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Kernel I/O Subsystem

Caching - faster device holding copy of data

Always just a copy

Key to performance

Sometimes combined with buffering

Spooling - hold output for a device

If device can serve only one request at a time, e.g., Printing

Error handling and I/O protection

OS can recover from disk read error, device unavailable, transient 

write failures

All I/O instructions defined to be privileged

Power management, etc.
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Summary

I/O hardware

Port, bus, controller

Polling, interrupt, DMA

Application I/O interface

block devices, character devices, network devices, clock and 

timer

Kernel I/O subsystem

Services
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Microsoft Extensible Firmware Initiative FAT32 File System Specification 
 
IMPORTANT-READ CAREFULLY: This Microsoft Agreement (“Agreement”) is a legal agreement 
between you (either an individual or a single entity) and Microsoft Corporation (“Microsoft”) for the 
version of the Microsoft specification identified above which you are about to download 
(“Specification”). BY DOWNLOADING, COPYING OR OTHERWISE USING THE 
SPECIFICATION, YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF 
YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT DOWNLOAD, COPY, 
OR USE THE SPECIFICATION. 
 
The Specification is owned by Microsoft or its suppliers and is protected by copyright laws and 
international copyright treaties, as well as other intellectual property laws and treaties.  
 
1. LIMITED LICENSE AND COVENANT NOT TO SUE.  
 
(a) Provided that you comply with all terms and conditions of this Agreement and subject to 
the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following non-exclusive, 
worldwide, royalty-free, non-transferable, non-sublicenseable license under any copyrights owned 
or licensable by Microsoft without payment of consideration to unaffiliated third parties, to 
reproduce the Specification solely for the purposes of creating portions of products which comply 
with the Specification in unmodified form. 
  
(b) Provided that you comply with all terms and conditions of this Agreement and subject to 
the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following non-exclusive, 
worldwide, royalty-free, non-transferable, non-sublicenseable, reciprocal limited covenant not to 
sue under its Necessary Claims solely to make, have made, use, import, and directly and 
indirectly, offer to sell, sell and otherwise distribute and dispose of portions of products which 
comply with the Specification in unmodified form. 
For purposes of sections (a) and (b) above, the Specification is “unmodified” if there are no 
changes, additions or extensions to the Specification, and “Necessary Claims” means claims of a 
patent or patent application which are (1) owned or licenseable by Microsoft without payment of 
consideration to an unaffiliated third party; and (2) have an effective filing date on or before 
December 31, 2010, that must be infringed in order to make a portion(s) of a product that 
complies with the Specification.  Necessary Claims does not include claims relating to 
semiconductor manufacturing technology or microprocessor circuits or claims not required to be 
infringed in complying with the Specification (even if in the same patent as Necessary Claims). 
 
(c) The foregoing covenant not to sue shall not extend to any part or function of a product  
which (i) is not required to comply with the Specification in unmodified form, or (ii) to which there 
was a commercially reasonable alternative to infringing a Necessary Claim.  
(d) Each of the license and the covenant not to sue described above shall be unavailable to 
you and shall terminate immediately if you or any of your Affiliates (collectively “Covenantee 
Party”) “Initiates” any action for patent infringement against:  (x) Microsoft or any of its Affiliates 
(collectively “Granting Party”), (y) any customers or distributors of the Granting Party, or other 
recipients of a covenant not to sue with respect to the Specification from the Granting Party 
(“Covenantees”); or (z) any customers or distributors of Covenantees (all parties identified in (y) 
and (z) collectively referred to as “Customers”), which action is based on a conformant 
implementation of the Specification.  As used herein, “Affiliate” means any entity which directly or 
indirectly controls, is controlled by, or is under common control with a party; and control shall 
mean the power, whether direct or indirect, to direct or cause the direction of the management or 
policies of any entity whether through the ownership of voting securities, by contract or otherwise. 
“Initiates” means that a Covenantee Party is the first (as between the Granting Party and the 
Covenantee Party) to file or institute any legal or administrative claim or action for patent 
infringement against the Granting Party or any of the Customers. “Initiates” includes any situation 
in which a Covenantee Party files or initiates a legal or administrative claim or action for patent 
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infringement solely as a counterclaim or equivalent in response to a Granting Party first filing or 
instituting a legal or administrative patent infringement claim against such Covenantee Party. 
 
(e) Each of the license and the covenant not to sue described above shall not extend to your 
use of any portion of the Specification for any purpose other than (a) to create portions of an 
operating system (i) only as necessary to adapt such operating system so that it can directly 
interact with a firmware implementation of the Extensible Firmware Initiative Specification v. 1.0 
(“EFI Specification”); (ii) only as necessary to emulate an implementation of the EFI Specification; 
and (b) to create firmware, applications, utilities and/or drivers that will be used and/or licensed 
for only the following purposes:  (i) to install, repair and maintain hardware, firmware and portions 
of operating system software which are utilized in the boot process; (ii) to provide to an operating 
system runtime services that are specified in the EFI Specification; (iii) to diagnose and correct 
failures in the hardware, firmware or operating system software; (iv) to query for identification of a 
computer system (whether by serial numbers, asset tags, user or otherwise); (v) to perform 
inventory of a computer system; and (vi) to manufacture, install and setup any hardware, 
firmware or operating system software.  
 
(f) Microsoft reserves all other rights it may have in the Specification and any intellectual 
property therein.  The furnishing of this document does not give you any license or covenant not 
to sue with respect to any other Microsoft patents, trademarks, copyrights or other intellectual 
property rights.   
 
2. ADDITIONAL LIMITATIONS AND OBLIGATIONS.  
(a)The foregoing license and covenant not to sue is applicable only to the version of the 
Specification which you are about to download.  It does not apply to any additional versions of or 
extensions to the Specification. 
(b)Without prejudice to any other rights, Microsoft may terminate this Agreement if you fail to 
comply with the terms and conditions of this Agreement.  In such event you must destroy all 
copies of the Specification. 
 
3.  INTELLECTUAL PROPERTY RIGHTS. All ownership, title and intellectual property rights 
in and to the Specification are owned by Microsoft or its suppliers.  
 
4. U.S. GOVERNMENT RIGHTS.  Any Specification provided to the U.S. Government pursuant 
to solicitations issued on or after December 1, 1995 is provided with the commercial rights and 
restrictions described elsewhere herein.  Any Specification provided to the U.S. Government 
pursuant to solicitations issued prior to December 1, 1995 is provided with RESTRICTED 
RIGHTS as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFAR, 48 CFR 252.227-
7013 (OCT 1988), as applicable.  
 
5. EXPORT RESTRICTIONS. Export of the Specification, any part thereof, or any process 
or service that is the direct product of the Specification (the foregoing collectively referred to as 
the “Restricted Components”) from the United States is regulated by the Export Administration 
Regulations (EAR, 15 CFR 730-744) of the U.S. Commerce Department, Bureau of Export 
Administration (“BXA”).  You agree to comply with the EAR in the export or re-export of the 
Restricted Components (i) to any country to which the U.S. has embargoed or restricted the 
export of goods or services, which currently include, but are not necessarily limited to Cuba, Iran, 
Iraq, Libya, North Korea, Sudan, Syria and the Federal Republic of Yugoslavia (including Serbia, 
but not Montenegro), or to any national of any such country, wherever located, who intends to 
transmit or transport the Restricted Components back to such country; (ii) to any person or entity 
who you know or have reason to know will utilize the Restricted Components in the design, 
development or production of nuclear, chemical or biological weapons; or (iii) to any person or 
entity who has been prohibited from participating in U.S. export transactions by any federal 
agency of the U.S. government.  You warrant and represent that neither the BXA nor any other 
U.S. federal agency has suspended, revoked or denied your export privileges.  For additional 
information see http://www.microsoft.com/exporting. 
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6. DISCLAIMER OF  WARRANTIES.  To the maximum extent permitted by applicable law, 
Microsoft and its suppliers provide the Specification (and all intellectual property therein) and any 
(if any) support services related to the Specification (“Support Services”) AS IS AND WITH ALL 
FAULTS, and hereby disclaim all warranties and conditions, either express, implied or statutory, 
including, but not limited to, any (if any) implied warranties or conditions of merchantability, of 
fitness for a particular purpose, of lack of viruses, of accuracy or completeness of responses, of 
results, and of lack of negligence or lack of workmanlike effort, all with regard to the Specification, 
any intellectual property therein and the provision of or failure to provide Support Services.  
ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET 
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT, WITH 
REGARD TO THE SPECIFICATION AND ANY INTELLECTUAL PROPERTY THEREIN.  THE 
ENTIRE RISK AS TO THE QUALITY OF OR ARISING OUT OF USE OR PERFORMANCE OF 
THE SPECIFICATION, ANY INTELLECTUAL PROPERTY THEREIN, AND SUPPORT 
SERVICES, IF ANY, REMAINS WITH YOU. 
 
7. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES.  
To the maximum extent permitted by applicable law, in no event shall Microsoft or its suppliers be 
liable for any special, incidental, indirect, or consequential damages whatsoever (including, but 
not limited to, damages for loss of profits or confidential or other information, for business 
interruption, for personal injury, for loss of privacy, for failure to meet any duty including of good 
faith or of reasonable care, for negligence, and for any other pecuniary or other loss whatsoever) 
arising out of or in any way related to the use of or inability to use the SPECIFICATION, ANY 
INTELLECTUAL PROPERTY THEREIN, the provision of or failure to provide Support Services, 
or otherwise under or in connection with any provision of this AGREEMENT, even in the event of 
the fault, tort (including negligence), strict liability, breach of contract or breach of warranty of 
Microsoft or any supplier, and even if Microsoft or any supplier has been advised of the possibility 
of such damages.  
 
8. LIMITATION OF LIABILITY AND REMEDIES. Notwithstanding any damages that you 
might incur for any reason whatsoever (including, without limitation, all damages referenced 
above and all direct or general damages), the entire liability of Microsoft and any of its suppliers 
under any provision of this Agreement and your exclusive remedy for all of the foregoing shall be 
limited to the greater of the amount actually paid by you for the Specification or U.S.$5.00.  The 
foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by 
applicable law, even if any remedy fails its essential purpose. 
 
9. APPLICABLE LAW. If you acquired this Specification in the United States, this 
Agreement is governed by the laws of the State of Washington. If you acquired this Specification 
in Canada, unless expressly prohibited by local law, this Agreement is governed by the laws in 
force in the Province of Ontario, Canada; and, in respect of any dispute which may arise 
hereunder, you consent to the jurisdiction of the federal and provincial courts sitting in Toronto, 
Ontario. If this Specification was acquired outside the United States, then local law may apply. 
 
10.QUESTIONS. Should you have any questions concerning this Agreement, or if you desire to 
contact Microsoft for any reason, please contact the Microsoft subsidiary serving your country, or 
write: Microsoft Sales Information Center/One Microsoft Way/Redmond, WA 98052-6399.  
 
11.ENTIRE AGREEMENT.  This Agreement  is the entire agreement between you and Microsoft 
relating to the Specification and the Support Services (if any) and they supersede all prior or 
contemporaneous oral or written communications,  proposals and representations with respect to 
the Specification or any other subject matter covered by this Agreement.  To the extent the terms 
of any Microsoft policies or programs for Support Services conflict with the terms of this 
Agreement, the terms of this Agreement shall control. 
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Si vous avez acquis votre produit Microsoft au CANADA, la garantie limitée suivante vous 
concerne : 
 
RENONCIATION AUX GARANTIES. Dans toute la mesure permise par la législation en vigueur, 
Microsoft et ses fournisseurs fournissent la Specification (et à toute propriété intellectuelle dans 
celle-ci)  et tous (selon le cas) les services d’assistance liés à la Specification (“Services 
d’assistance”) TELS QUELS ET AVEC TOUS LEURS DÉFAUTS, et par les présentes excluent 
toute garantie ou condition, expresse ou implicite, légale ou conventionnelle, écrite ou verbale, y 
compris, mais sans limitation, toute (selon le cas) garantie ou condition implicite ou légale de 
qualité marchande, de conformité à un usage particulier, d’absence de virus, d’exactitude et 
d’intégralité des réponses, de résultats, d’efforts techniques et professionnels et d’absence de 
négligence, le tout relativement à la Specification, à toute propriété intellectuelle dans celle-ci et à 
la prestation ou à la non-prestation des Services d’assistance.  DE PLUS, IL N’Y A AUCUNE 
GARANTIE ET CONDITION DE TITRE, DE JOUISSANCE PAISIBLE, DE POSSESSION 
PAISIBLE, DE SIMILARITÉ À LA DESCRIPTION ET D’ABSENCE DE CONTREFAÇON 
RELATIVEMENT À LA SPÉCIFICATION ET À TOUTE PROPRIÉTÉ INTELLECTUELLE DANS 
CELLE-CI.  VOUS SUPPORTEZ TOUS LES RISQUES DÉCOULANT DE L’UTILISATION ET DE 
LA PERFORMANCE DE LA SPÉCIFICATION ET DE TOUTE PROPRIÉTÉ INTELLECTUELLE 
DANS CELLE-CI  ET CEUX DÉCOULANT DES SERVICES D’ASSISTANCE (S’IL Y A LIEU). 
 
EXCLUSION DES DOMMAGES INDIRECTS, ACCESSOIRES ET AUTRES.  Dans toute la 
mesure permise par la législation en vigueur, Microsoft et ses fournisseurs ne sont en aucun cas 
responsables de tout dommage spécial, indirect, accessoire, moral ou exemplaire quel qu’il soit 
(y compris, mais sans limitation, les dommages entraînés par la perte de bénéfices ou la perte 
d’information confidentielle ou autre, l’interruption des affaires, les préjudices corporels, la perte 
de confidentialité, le défaut de remplir toute obligation y compris les obligations de bonne foi et de 
diligence raisonnable, la négligence et toute autre perte pécuniaire ou autre perte de quelque 
nature que ce soit) découlant de, ou de toute autre manière lié à, l’utilisation ou l’impossibilité 
d’utiliser la Spécification, toute propriété intellectuelle dans celle-ci, la prestation ou la non-
prestation des Services d’assistance ou autrement en vertu de ou relativement à toute disposition 
de cette convention, que ce soit en cas de faute, de délit (y compris la négligence), de 
responsabilité stricte, de manquement à un contrat ou de manquement à une garantie de 
Microsoft ou de l’un de ses fournisseurs, et ce, même si Microsoft ou l’un de ses fournisseurs a 
été avisé de la possibilité de tels dommages. 
 
LIMITATION DE RESPONSABILITÉ ET RECOURS.  Malgré tout dommage que vous pourriez 
encourir pour quelque raison que ce soit (y compris, mais sans limitation, tous les dommages 
mentionnés ci-dessus et tous les dommages directs et généraux), la seule responsabilité de 
Microsoft et de ses fournisseurs en vertu de toute disposition de cette convention et votre unique 
recours en regard de tout ce qui précède sont limités au plus élevé des montants suivants:  soit 
(a) le montant que vous avez payé pour la Spécification, soit (b) un montant équivalant à cinq 
dollars U.S. (5,00 $ U.S.).  Les limitations, exclusions et renonciations ci-dessus s’appliquent 
dans toute la mesure permise par la législation en vigueur, et ce même si leur application a pour 
effet de priver un recours de son essence. 
 
DROITS LIMITÉS DU GOUVERNEMENT AMÉRICAIN 
Tout Produit Logiciel fourni au gouvernement américain conformément à des demandes émises 
le ou après le 1er décembre 1995 est offert avec les restrictions et droits commerciaux décrits 
ailleurs dans la présente convention.  Tout Produit Logiciel fourni au gouvernement américain 
conformément à des demandes émises avant le 1er décembre 1995 est offert avec des DROITS 
LIMITÉS tels que prévus dans le FAR, 48CFR 52.227-14 (juin 1987) ou dans le FAR, 48CFR 
252.227-7013 (octobre 1988), tels qu’applicables. 
Sauf lorsqu’expressément prohibé par la législation locale, la présente  convention est régie par 
les lois en vigueur dans la province d’Ontario, Canada.  Pour tout différend qui pourrait découler 
des présentes, vous acceptez la compétence des tribunaux fédéraux et provinciaux siégeant à 
Toronto, Ontario. 
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Si vous avez des questions concernant cette convention ou si vous désirez communiquer avec 
Microsoft pour quelque raison que ce soit, veuillez contacter la succursale Microsoft desservant 
votre pays, ou écrire à: Microsoft Sales Information Center, One Microsoft Way, Redmond, 
Washington 98052-6399. 
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Notational Conventions in this Document 
 
Numbers that have the characters “0x” at the beginning of them are hexadecimal (base 16) numbers. 
 
Any numbers that do not have the characters “0x” at the beginning are decimal (base 10) numbers. 
 
The code fragments in this document are written in the ‘C’ programming language. Strict typing and 
syntax are not adhered to. 
 
There are several code fragments in this document that freely mix 32-bit and 16-bit data elements. It is 
assumed that you are a programmer who understands how to properly type such operations so that 
data is not lost due to truncation of 32-bit values to 16-bit values. Also take note that all data types are 
UNSIGNED. Do not do FAT computations with signed integer types, because the computations will 
be wrong on some FAT volumes. 
 
General Comments (Applicable to FAT File System All Types) 
All of the FAT file systems were originally developed for the IBM PC machine architecture. The 
importance of this is that FAT file system on disk data structure is all “little endian.” If we look at one 
32-bit FAT entry stored on disk as a series of four 8-bit bytes—the first being byte[0] and the last 
being byte[4]—here is where the 32 bits numbered 00 through 31 are (00 being the least significant 
bit): 
 
byte[3] 3 3 2 2 2 2 2 2

1 0 9 8 7 6 5 4

byte[2] 2 2 2 2 1 1 1 1
3 2 1 0 9 8 7 6

byte[1] 1 1 1 1 1 1 0 0
5 4 3 2 1 0 9 8

byte[0] 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

 
This is important if your machine is a “big endian” machine, because you will have to translate 
between big and little endian as you move data to and from the disk. 
 
A FAT file system volume is composed of four basic regions, which are laid out in this order on the 
volume: 
 0 – Reserved Region 
 1 – FAT Region 
 2 – Root Directory Region (doesn’t exist on FAT32 volumes) 
 3 – File and Directory Data Region 
 
Boot Sector and BPB 
The first important data structure on a FAT volume is called the BPB (BIOS Parameter Block), which 
is located in the first sector of the volume in the Reserved Region. This sector is sometimes called the 
“boot sector” or the “reserved sector” or the “0th sector,” but the important fact is simply that it is the 
first sector of the volume.  
 
This is the first thing about the FAT file system that sometimes causes confusion. In MS-DOS version 
1.x, there was not a BPB in the boot sector. In this first version of the FAT file system, there were 
only two different formats, the one for single-sided and the one for double-sided 360K 5.25-inch 
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floppy disks. The determination of which type was on the disk was done by looking at the first byte of 
the FAT (the low 8 bits of FAT[0]).  
 
This type of media determination was superseded in MS-DOS version 2.x by putting a BPB in the 
boot sector, and the old style of media determination (done by looking at the first byte of the FAT) 
was no longer supported. All FAT volumes must have a BPB in the boot sector.  
 
This brings us to the second point of confusion relating to FAT volume determination: What exactly 
does a BPB look like? The BPB in the boot sector defined for MS-DOS 2.x only allowed for a FAT 
volume with strictly less than 65,536 sectors (32 MB worth of 512-byte sectors). This limitation was 
due to the fact that the “total sectors” field was only a 16-bit field. This limitation was addressed by 
MS-DOS 3.x, where the BPB was modified to include a new 32-bit field for the total sectors value.  
 
The next BPB change occurred with the Microsoft Windows 95 operating system, specifically OEM 
Service Release 2 (OSR2), where the FAT32 type was introduced. FAT16 was limited by the 
maximum size of the FAT and the maximum valid cluster size to no more than a 2 GB volume if the 
disk had 512-byte sectors. FAT32 addressed this limitation on the amount of disk space that one FAT 
volume could occupy so that disks larger than 2 GB only had to have one partition defined.  
 
The FAT32 BPB exactly matches the FAT12/FAT16 BPB up to and including the BPB_TotSec32 
field. They differ starting at offset 36, depending on whether the media type is FAT12/FAT16 or 
FAT32 (see discussion below for determining FAT type). The relevant point here is that the BPB in 
the boot sector of a FAT volume should always be one that has all of the new BPB fields for either the 
FAT12/FAT16 or FAT32 BPB type. Doing it this way ensures the maximum compatibility of the FAT 
volume and ensures that all FAT file system drivers will understand and support the volume properly, 
because it always contains all of the currently defined fields.  
 
NOTE: In the following description, all the fields whose names start with BPB_ are part of the BPB. 
All the fields whose names start with BS_ are part of the boot sector and not really part of the BPB. 
The following shows the start of sector 0 of a FAT volume, which contains the BPB: 
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 Boot Sector and BPB Structure 
Name Offset 

(byte) 
Size 
(bytes) 

Description 

BS_jmpBoot 0 3 Jump instruction to boot code. This field has two allowed forms: 
jmpBoot[0] = 0xEB, jmpBoot[1] = 0x??, jmpBoot[2] = 0x90  
and 
jmpBoot[0] = 0xE9, jmpBoot[1] = 0x??, jmpBoot[2] = 0x?? 
 
0x?? indicates that any 8-bit value is allowed in that byte. What this 
forms is a three-byte Intel x86 unconditional branch (jump) 
instruction that jumps to the start of the operating system bootstrap 
code. This code typically occupies the rest of sector 0 of the volume 
following the BPB and possibly other sectors. Either of these forms 
is acceptable. JmpBoot[0] = 0xEB is the more frequently used 
format. 

BS_OEMName 3 8 “MSWIN4.1” There are many misconceptions about this field. It is 
only a name string. Microsoft operating systems don’t pay any 
attention to this field. Some FAT drivers do. This is the reason that 
the indicated string, “MSWIN4.1”, is the recommended setting, 
because it is the setting least likely to cause compatibility problems. 
If you want to put something else in here, that is your option, but 
the result may be that some FAT drivers might not recognize the 
volume. Typically this is some indication of what system formatted 
the volume. 

BPB_BytsPerSec 11 2 Count of bytes per sector. This value may take on only the 
following values: 512, 1024, 2048 or 4096. If maximum 
compatibility with old implementations is desired, only the value 
512 should be used. There is a lot of FAT code in the world that is 
basically “hard wired” to 512 bytes per sector and doesn’t bother to 
check this field to make sure it is 512. Microsoft operating systems 
will properly support 1024, 2048, and 4096. 
 
Note: Do not misinterpret these statements about maximum 
compatibility. If the media being recorded has a physical sector size 
N, you must use N and this must still be less than or equal to 4096. 
Maximum compatibility is achieved by only using media with 
specific sector sizes. 

BPB_SecPerClus 13 1 Number of sectors per allocation unit. This value must be a power 
of 2 that is greater than 0. The legal values are 1, 2, 4, 8, 16, 32, 64, 
and 128. Note however, that a value should never be used that 
results in a “bytes per cluster” value (BPB_BytsPerSec * 
BPB_SecPerClus) greater than 32K (32 * 1024). There is a 
misconception that values greater than this are OK. Values that 
cause a cluster size greater than 32K bytes do not work properly; do 
not try to define one. Some versions of some systems allow 64K 
bytes per cluster value. Many application setup programs will not 
work correctly on such a FAT volume. 

BPB_RsvdSecCnt 14 2 Number of reserved sectors in the Reserved region of the volume 
starting at the first sector of the volume. This field must not be 0. 
For FAT12 and FAT16 volumes, this value should never be 
anything other than 1. For FAT32 volumes, this value is typically 
32. There is a lot of FAT code in the world “hard wired” to 1 
reserved sector for FAT12 and FAT16 volumes and that doesn’t 
bother to check this field to make sure it is 1. Microsoft operating 
systems will properly support any non-zero value in this field. 
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BPB_NumFATs 16 1 The count of FAT data structures on the volume. This field should 
always contain the value 2 for any FAT volume of any type. 
Although any value greater than or equal to 1 is perfectly valid, 
many software programs and a few operating systems’ FAT file 
system drivers may not function properly if the value is something 
other than 2. All Microsoft file system drivers will support a value 
other than 2, but it is still highly recommended that no value other 
than 2 be used in this field.  
 
The reason the standard value for this field is 2 is to provide redun-
dancy for the FAT data structure so that if a sector goes bad in one 
of the FATs, that data is not lost because it is duplicated in the other 
FAT. On non-disk-based media, such as FLASH memory cards, 
where such redundancy is a useless feature, a value of 1 may be 
used to save the space that a second copy of the FAT uses, but 
some FAT file system drivers might not recognize such a volume 
properly. 

BPB_RootEntCnt 17 2 For FAT12 and FAT16 volumes, this field contains the count of 32-
byte directory entries in the root directory. For FAT32 volumes, 
this field must be set to 0. For FAT12 and FAT16 volumes, this 
value should always specify a count that when multiplied by 32 
results in an even multiple of BPB_BytsPerSec. For maximum 
compatibility, FAT16 volumes should use the value 512. 

BPB_TotSec16 19 2 This field is the old 16-bit total count of sectors on the volume. 
This count includes the count of all sectors in all four regions of the 
volume. This field can be 0; if it is 0, then BPB_TotSec32 must be 
non-zero. For FAT32 volumes, this field must be 0. For FAT12 and 
FAT16 volumes, this field contains the sector count, and 
BPB_TotSec32 is 0 if the total sector count “fits” (is less than 
0x10000). 

BPB_Media 21 1 0xF8 is the standard value for “fixed” (non-removable) media. For 
removable media, 0xF0 is frequently used. The legal values for this 
field are 0xF0, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, and 
0xFF. The only other important point is that whatever value is put 
in here must also be put in the low byte of the FAT[0] entry. This 
dates back to the old MS-DOS 1.x media determination noted 
earlier and is no longer usually used for anything. 

BPB_FATSz16 22 2 This field is the FAT12/FAT16 16-bit count of sectors occupied by 
ONE FAT. On FAT32 volumes this field must be 0, and 
BPB_FATSz32 contains the FAT size count. 

BPB_SecPerTrk 24 2 Sectors per track for interrupt 0x13. This field is only relevant for 
media that have a geometry (volume is broken down into tracks by 
multiple heads and cylinders) and are visible on interrupt 0x13. 
This field contains the “sectors per track” geometry value.  

BPB_NumHeads 26 2 Number of heads for interrupt 0x13. This field is relevant as 
discussed earlier for BPB_SecPerTrk. This field contains the one 
based “count of heads”. For example, on a 1.44 MB 3.5-inch floppy 
drive this value is 2. 

BPB_HiddSec 28 4 Count of hidden sectors preceding the partition that contains this 
FAT volume. This field is generally only relevant for media visible 
on interrupt 0x13. This field should always be zero on media that 
are not partitioned. Exactly what value is appropriate is operating 
system specific. 

BPB_TotSec32  32 4 This field is the new 32-bit total count of sectors on the volume. 
This count includes the count of all sectors in all four regions of the 
volume. This field can be 0; if it is 0, then BPB_TotSec16 must be 
non-zero. For FAT32 volumes, this field must be non-zero. For 
FAT12/FAT16 volumes, this field contains the sector count if 
BPB_TotSec16 is 0 (count is greater than or equal to 0x10000). 
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At this point, the BPB/boot sector for FAT12 and FAT16 differs from the BPB/boot sector for FAT32. 
The first table shows the structure for FAT12 and FAT16 starting at offset 36 of the boot sector. 
 
Fat12 and Fat16 Structure Starting at Offset 36 
Name Offset 

(byte) 
Size 
(bytes) 

Description 

BS_DrvNum 36 1 Int 0x13 drive number (e.g. 0x80). This field supports MS-DOS 
bootstrap and is set to the INT 0x13 drive number of the media 
(0x00 for floppy disks, 0x80 for hard disks).  
NOTE: This field is actually operating system specific. 

BS_Reserved1 37 1 Reserved (used by Windows NT). Code that formats FAT volumes 
should always set this byte to 0. 

BS_BootSig 38 1 Extended boot signature (0x29). This is a signature byte that 
indicates that the following three fields in the boot sector are 
present. 

BS_VolID 39 4 Volume serial number. This field, together with BS_VolLab, 
supports volume tracking on removable media. These values allow 
FAT file system drivers to detect that the wrong disk is inserted in a 
removable drive. This ID is usually generated by simply combining 
the current date and time into a 32-bit value. 

BS_VolLab 43 11 Volume label. This field matches the 11-byte volume label 
recorded in the root directory.  
NOTE: FAT file system drivers should make sure that they update 
this field when the volume label file in the root directory has its 
name changed or created. The setting for this field when there is no 
volume label is the string “NO NAME ”. 

BS_FilSysType 54 8 One of the strings “FAT12 ”, “FAT16 ”, or “FAT ”.  
NOTE: Many people think that the string in this field has 
something to do with the determination of what type of FAT—
FAT12, FAT16, or FAT32—that the volume has. This is not true. 
You will note from its name that this field is not actually part of the 
BPB. This string is informational only and is not used by Microsoft 
file system drivers to determine FAT typ,e because it is frequently 
not set correctly or is not present. See the FAT Type Determination 
section of this document. This string should be set based on the 
FAT type though, because some non-Microsoft FAT file system 
drivers do look at it. 
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Here is the structure for FAT32 starting at offset 36 of the boot sector. 
 
FAT32 Structure Starting at Offset 36 
Name Offset 

(byte) 
Size 
(bytes) 

Description 

BPB_FATSz32 36 4 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. This field is the FAT32 32-bit count of 
sectors occupied by ONE FAT. BPB_FATSz16 must be 0.  

BPB_ExtFlags 40 2 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. 
Bits 0-3 -- Zero-based number of active FAT. Only valid if mirroring 

is disabled. 
Bits 4-6 -- Reserved. 
Bit      7 -- 0 means the FAT is mirrored at runtime into all FATs. 
 -- 1 means only one FAT is active; it is the one referenced 

in bits 0-3. 
Bits 8-15  -- Reserved. 

BPB_FSVer 42 2 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. High byte is major revision number. 
Low byte is minor revision number. This is the version number of 
the FAT32 volume. This supports the ability to extend the FAT32 
media type in the future without worrying about old FAT32 drivers 
mounting the volume. This document defines the version to 0:0.  If 
this field is non-zero, back-level Windows versions will not mount 
the volume.  
NOTE:  Disk utilities should respect this field and not operate on 
volumes with a higher major or minor version number than that for 
which they were designed. FAT32 file system drivers must check 
this field and not mount the volume if it does not contain a version 
number that was defined at the time the driver was written. 

BPB_RootClus 44 4 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. This is set to the cluster number of the 
first cluster of the root directory, usually 2 but not required to be 2.  
NOTE:  Disk utilities that change the location of the root directory 
should make every effort to place the first cluster of the root 
directory in the first non-bad cluster on the drive (i.e., in cluster 2, 
unless it’s marked bad). This is specified so that disk repair utilities 
can easily find the root directory if this field accidentally gets 
zeroed.  

BPB_FSInfo 48 2 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. Sector number of FSINFO structure in the 
reserved area of the FAT32 volume. Usually 1.   
NOTE: There will be a copy of the FSINFO structure in BackupBoot, 
but only the copy pointed to by this field will be kept up to date (i.e., 
both the primary and backup boot record will point to the same 
FSINFO sector). 

BPB_BkBootSec 50 2 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. If non-zero, indicates the sector number 
in the reserved area of the volume of a copy of the boot record. 
Usually 6. No value other than 6 is recommended. 

BPB_Reserved 52 12 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. Reserved for future expansion. Code 
that formats FAT32 volumes should always set all of the bytes of 
this field to 0. 

BS_DrvNum 64 1 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 

BS_Reserved1 65 1 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 
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BS_BootSig 66 1 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 

BS_VolID 67 4 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 

BS_VolLab 71 11 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 

BS_FilSysType 82 8 Always set to the string ”FAT32 ”.  Please see the note for this 
field in the FAT12/FAT16 section earlier. This field has nothing to 
do with FAT type determination. 

 
There is one other important note about Sector 0 of a FAT volume. If we consider the contents of the 
sector as a byte array, it must be true that sector[510] equals 0x55, and sector[511] equals 0xAA.  
 
NOTE: Many FAT documents mistakenly say that this 0xAA55 signature occupies the “last 2 bytes 
of the boot sector”. This statement is correct if — and only if — BPB_BytsPerSec is 512. If 
BPB_BytsPerSec is greater than 512, the offsets of these signature bytes do not change (although it is 
perfectly OK for the last two bytes at the end of the boot sector to also contain this signature). 
 
Check your assumptions about the value in the BPB_TotSec16/32 field. Assume we have a disk or 
partition of size in sectors DskSz. If the BPB TotSec field (either BPB_TotSec16 or BPB_TotSec32 
— whichever is non-zero) is less than or equal to DskSz, there is nothing whatsoever wrong with the 
FAT volume. In fact, it is not at all unusual to have a BPB_TotSec16/32 value that is slightly smaller 
than DskSz. It is also perfectly OK for the BPB_TotSec16/32 value to be considerably smaller than 
DskSz.  
 
All this means is that disk space is being wasted. It does not by itself mean that the FAT volume is 
damaged in some way. However, if BPB_TotSec16/32 is larger than DskSz, the volume is seriously 
damaged or malformed because it extends past the end of the media or overlaps data that follows it on 
the disk. Treating a volume for which the BPB_TotSec16/32 value is “too large” for the media or 
partition as valid can lead to catastrophic data loss. 
 
FAT Data Structure 
The next data structure that is important is the FAT itself. What this data structure does is define a 
singly linked list of the “extents” (clusters) of a file. Note at this point that a FAT directory or file 
container is nothing but a regular file that has a special attribute indicating it is a directory. The only 
other special thing about a directory is that the data or contents of the “file” is a series of 32=byte FAT 
directory entries (see discussion below). In all other respects, a directory is just like a file. The FAT 
maps the data region of the volume by cluster number. The first data cluster is cluster 2.  
 
The first sector of cluster 2 (the data region of the disk) is computed using the BPB fields for the 
volume as follows. First, we determine the count of sectors occupied by the root directory: 
 
RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;

 
Note that on a FAT32 volume the BPB_RootEntCnt value is always 0, so on a FAT32 volume 
RootDirSectors is always 0. The 32 in the above is the size of one FAT directory entry in bytes. 
Note also that this computation rounds up. 
 
The start of the data region, the first sector of cluster 2, is computed as follows: 
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If(BPB_FATSz16 != 0)
FATSz = BPB_FATSz16;

Else
FATSz = BPB_FATSz32;

FirstDataSector = BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors;

 
NOTE: This sector number is relative to the first sector of the volume that contains the BPB (the 
sector that contains the BPB is sector number 0). This does not necessarily map directly onto the 
drive, because sector 0 of the volume is not necessarily sector 0 of the drive due to partitioning. 
 
Given any valid data cluster number N, the sector number of the first sector of that cluster (again 
relative to sector 0 of the FAT volume) is computed as follows: 
 
FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) + FirstDataSector;

 
NOTE: Because BPB_SecPerClus is restricted to powers of 2 (1,2,4,8,16,32….), this means that 
division and multiplication by BPB_SecPerClus can actually be performed via SHIFT operations on 
2s complement architectures that are usually faster instructions than MULT and DIV instructions. On 
current Intel X86 processors, this is largely irrelevant though because the MULT and DIV machine 
instructions are heavily optimized for multiplication and division by powers of 2. 
 
FAT Type Determination 
There is considerable confusion over exactly how this works, which leads to many “off by 1”, “off by 
2”, “off by 10”, and “massively off” errors. It is really quite simple how this works. The FAT type—
one of FAT12, FAT16, or FAT32—is determined by the count of clusters on the volume and nothing 
else.  
 
Please read everything in this section carefully, all of the words are important. For example, note that 
the statement was “count of clusters.” This is not the same thing as “maximum valid cluster number,” 
because the first data cluster is 2 and not 0 or 1.  
 
To begin, let’s discuss exactly how the “count of clusters” value is determined. This is all done using 
the BPB fields for the volume. First, we determine the count of sectors occupied by the root directory 
as noted earlier. 
 
RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;

 
Note that on a FAT32 volume, the BPB_RootEntCnt value is always 0; so on a FAT32 volume, 
RootDirSectors is always 0.  
 
Next, we determine the count of sectors in the data region of the volume: 
 
If(BPB_FATSz16 != 0)

FATSz = BPB_FATSz16;
Else

FATSz = BPB_FATSz32;

If(BPB_TotSec16 != 0)
TotSec = BPB_TotSec16;

Else
TotSec = BPB_TotSec32;

DataSec = TotSec – (BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors);
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Now we determine the count of clusters: 
 
CountofClusters = DataSec / BPB_SecPerClus;

 
Please note that this computation rounds down. 
 
Now we can determine the FAT type. Please note carefully or you will commit an off-by-one error!  
 
In the following example, when it says <, it does not mean <=. Note also that the numbers are correct. 
The first number for FAT12 is 4085; the second number for FAT16 is 65525. These numbers and the 
‘<’ signs are not wrong. 
 
If(CountofClusters < 4085) {
/* Volume is FAT12 */
} else if(CountofClusters < 65525) {

/* Volume is FAT16 */
} else {

/* Volume is FAT32 */
}

 
This is the one and only way that FAT type is determined. There is no such thing as a FAT12 volume 
that has more than 4084 clusters. There is no such thing as a FAT16 volume that has less than 4085 
clusters or more than 65,524 clusters. There is no such thing as a FAT32 volume that has less than 
65,525 clusters. If you try to make a FAT volume that violates this rule, Microsoft operating systems 
will not handle them correctly because they will think the volume has a different type of FAT than 
what you think it does. 
 
NOTE: As is noted numerous times earlier, the world is full of FAT code that is wrong. There is a lot 
of FAT type code that is off by 1 or 2 or 8 or 10 or 16. For this reason, it is highly recommended that 
if you are formatting a FAT volume which has maximum compatibility with all existing FAT code, 
then you should you avoid making volumes of any type that have close to 4,085 or 65,525 clusters. 
Stay at least 16 clusters on each side away from these cut-over cluster counts. 
 
Note also that the CountofClusters value is exactly that—the count of data clusters starting at cluster 
2. The maximum valid cluster number for the volume is CountofClusters + 1, and the “count of 
clusters including the two reserved clusters” is CountofClusters + 2. 
 
There is one more important computation related to the FAT. Given any valid cluster number N, 
where in the FAT(s) is the entry for that cluster number? The only FAT type for which this is complex 
is FAT12. For FAT16 and FAT32, the computation is simple: 
 
If(BPB_FATSz16 != 0)

FATSz = BPB_FATSz16;
Else

FATSz = BPB_FATSz32;

If(FATType == FAT16)
FATOffset = N * 2;

Else if (FATType == FAT32)
FATOffset = N * 4;

ThisFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_BytsPerSec);
ThisFATEntOffset = REM(FATOffset / BPB_BytsPerSec);
 
REM(…) is the remainder operator. That means the remainder after division of FATOffset by 
BPB_BytsPerSec. ThisFATSecNum is the sector number of the FAT sector that contains the entry for 
cluster N in the first FAT. If you want the sector number in the second FAT, you add FATSz to 
ThisFATSecNum; for the third FAT, you add 2*FATSz, and so on.  
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You now read sector number ThisFATSecNum (remember this is a sector number relative to sector 0 
of the FAT volume). Assume this is read into an 8-bit byte array named SecBuff. Also assume that the 
type WORD is a 16-bit unsigned and that the type DWORD is a 32-bit unsigned. 
 
If(FATType == FAT16)

FAT16ClusEntryVal = *((WORD *) &SecBuff[ThisFATEntOffset]);
Else

FAT32ClusEntryVal = (*((DWORD *) &SecBuff[ThisFATEntOffset])) & 0x0FFFFFFF;

Fetches the contents of that cluster. To set the contents of this same cluster you do the following: 
 
If(FATType == FAT16)

*((WORD *) &SecBuff[ThisFATEntOffset]) = FAT16ClusEntryVal;
Else {

FAT32ClusEntryVal = FAT32ClusEntryVal & 0x0FFFFFFF;
*((DWORD *) &SecBuff[ThisFATEntOffset]) =

(*((DWORD *) &SecBuff[ThisFATEntOffset])) & 0xF0000000;
*((DWORD *) &SecBuff[ThisFATEntOffset]) =

(*((DWORD *) &SecBuff[ThisFATEntOffset])) | FAT32ClusEntryVal;
}

Note how the FAT32 code above works. A FAT32 FAT entry is actually only a 28-bit entry. The high 
4 bits of a FAT32 FAT entry are reserved. The only time that the high 4 bits of FAT32 FAT entries 
should ever be changed is when the volume is formatted, at which time the whole 32-bit FAT entry 
should be zeroed, including the high 4 bits.  
 
A bit more explanation is in order here, because this point about FAT32 FAT entries seems to cause a 
great deal of confusion. Basically 32-bit FAT entries are not really 32-bit values; they are only 28-bit 
values. For example, all of these 32-bit cluster entry values: 0x10000000, 0xF0000000, and 
0x00000000 all indicate that the cluster is FREE, because you ignore the high 4 bits when you read 
the cluster entry value. If the 32-bit free cluster value is currently 0x30000000 and you want to mark 
this cluster as bad by storing the value 0x0FFFFFF7 in it. Then the 32-bit entry will contain the value 
0x3FFFFFF7 when you are done, because you must preserve the high 4 bits when you write in the 
0x0FFFFFF7 bad cluster mark. 
 
Take note that because the BPB_BytsPerSec value is always divisible by 2 and 4, you never have to 
worry about a FAT16 or FAT32 FAT entry spanning over a sector boundary (this is not true of 
FAT12). 
 
The code for FAT12 is more complicated because there are 1.5 bytes (12-bits) per FAT entry. 
 

if (FATType == FAT12)
FATOffset = N + (N / 2);

/* Multiply by 1.5 without using floating point, the divide by 2 rounds DOWN */

ThisFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_BytsPerSec);
ThisFATEntOffset = REM(FATOffset / BPB_BytsPerSec);

 
We now have to check for the sector boundary case: 
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If(ThisFATEntOffset == (BPB_BytsPerSec – 1)) {
/* This cluster access spans a sector boundary in the FAT */
/* There are a number of strategies to handling this. The */
/* easiest is to always load FAT sectors into memory */
/* in pairs if the volume is FAT12 (if you want to load */
/* FAT sector N, you also load FAT sector N+1 immediately */
/* following it in memory unless sector N is the last FAT */
/* sector). It is assumed that this is the strategy used here */
/* which makes this if test for a sector boundary span */
/* unnecessary. */

}

 
We now access the FAT entry as a WORD just as we do for FAT16, but if the cluster number is 
EVEN, we only want the low 12-bits of the 16-bits we fetch; and if the cluster number is ODD, we 
only want the high 12-bits of the 16-bits we fetch. 
 
FAT12ClusEntryVal = *((WORD *) &SecBuff[ThisFATEntOffset]);
If(N & 0x0001)

FAT12ClusEntryVal = FAT12ClusEntryVal >> 4; /* Cluster number is ODD */
Else

FAT12ClusEntryVal = FAT12ClusEntryVal & 0x0FFF; /* Cluster number is EVEN */

Fetches the contents of that cluster. To set the contents of this same cluster you do the following: 
 
If(N & 0x0001) {

FAT12ClusEntryVal = FAT12ClusEntryVal << 4; /* Cluster number is ODD */
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) & 0x000F;
} Else {

FAT12ClusEntryVal = FAT12ClusEntryVal & 0x0FFF; /* Cluster number is EVEN */
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) & 0xF000;
}
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) | FAT12ClusEntryVal;

 
NOTE: It is assumed that the >> operator shifts a bit value of 0 into the high 4 bits and that the << 
operator shifts a bit value of 0 into the low 4 bits. 
 
The way the data of a file is associated with the file is as follows. In the directory entry, the cluster 
number of the first cluster of the file is recorded. The first cluster (extent) of the file is the data 
associated with this first cluster number, and the location of that data on the volume is computed from 
the cluster number as described earlier (computation of FirstSectorofCluster).  
 
Note that a zero-length file—a file that has no data allocated to it—has a first cluster number of 0 
placed in its directory entry. This cluster location in the FAT (see earlier computation of 
ThisFATSecNum and ThisFATEntOffset) contains either an EOC mark (End Of Clusterchain) or the 
cluster number of the next cluster of the file. The EOC value is FAT type dependant (assume 
FATContent is the contents of the cluster entry in the FAT being checked to see whether it is an EOC 
mark): 
 
IsEOF = FALSE;
If(FATType == FAT12) {

If(FATContent >= 0x0FF8)
IsEOF = TRUE;

} else if(FATType == FAT16) {
If(FATContent >= 0xFFF8)

IsEOF = TRUE;
} else if (FATType == FAT32) {

If(FATContent >= 0x0FFFFFF8)
IsEOF = TRUE;

}
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Note that the cluster number whose cluster entry in the FAT contains the EOC mark is allocated to the 
file and is also the last cluster allocated to the file. Microsoft operating system FAT drivers use the 
EOC value 0x0FFF for FAT12, 0xFFFF for FAT16, and 0x0FFFFFFF for FAT32 when they set the 
contents of a cluster to the EOC mark. There are various disk utilities for Microsoft operating systems 
that use a different value, however. 
 
There is also a special “BAD CLUSTER” mark. Any cluster that contains the “BAD CLUSTER” 
value in its FAT entry is a cluster that should not be placed on the free list because it is prone to disk 
errors. The “BAD CLUSTER” value is 0x0FF7 for FAT12, 0xFFF7 for FAT16, and 0x0FFFFFF7 for 
FAT32. The other relevant note here is that these bad clusters are also lost clusters—clusters that 
appear to be allocated because they contain a non-zero value but which are not part of any files 
allocation chain. Disk repair utilities must recognize lost clusters that contain this special value as bad 
clusters and not change the content of the cluster entry.  
 
NOTE: It is not possible for the bad cluster mark to be an allocatable cluster number on FAT12 and 
FAT16 volumes, but it is feasible for 0x0FFFFFF7 to be an allocatable cluster number on FAT32 
volumes. To avoid possible confusion by disk utilities, no FAT32 volume should ever be configured 
such that 0x0FFFFFF7 is an allocatable cluster number.  
 
The list of free clusters in the FAT is nothing more than the list of all clusters that contain the value 0 
in their FAT cluster entry. Note that this value must be fetched as described earlier as for any other 
FAT entry that is not free. This list of free clusters is not stored anywhere on the volume; it must be 
computed when the volume is mounted by scanning the FAT for entries that contain the value 0. On 
FAT32 volumes, the BPB_FSInfo sector may contain a valid count of free clusters on the volume. See 
the documentation of the FAT32 FSInfo sector. 
 
What are the two reserved clusters at the start of the FAT for? The first reserved cluster, FAT[0], 
contains the BPB_Media byte value in its low 8 bits, and all other bits are set to 1. For example, if the 
BPB_Media value is 0xF8, for FAT12 FAT[0] = 0x0FF8, for FAT16 FAT[0] = 0xFFF8, and for 
FAT32 FAT[0] = 0x0FFFFFF8. The second reserved cluster, FAT[1], is set by FORMAT to the EOC 
mark. On FAT12 volumes, it is not used and is simply always contains an EOC mark. For FAT16 and 
FAT32, the file system driver may use the high two bits of the FAT[1] entry for dirty volume flags (all 
other bits, are always left set to 1). Note that the bit location is different for FAT16 and FAT32, 
because they are the high 2 bits of the entry.  
 
For FAT16: 

ClnShutBitMask = 0x8000;
HrdErrBitMask = 0x4000;

 
For FAT32: 

ClnShutBitMask = 0x08000000;
HrdErrBitMask = 0x04000000;

 
Bit ClnShutBitMask – If bit is 1, volume is “clean”. 

If bit is 0, volume is “dirty”. This indicates that the file system driver did not 
Dismount the volume properly the last time it had the volume mounted. It 
would be a good idea to run a Chkdsk/Scandisk disk repair utility on it, 
because it may be damaged. 

Bit HrdErrBitMask – If this bit is 1, no disk read/write errors were encountered. 
If this bit is 0, the file system driver encountered a disk I/O error on the 
Volume the last time it was mounted, which is an indicator that some sectors 
may have gone bad on the volume. It would be a good idea to run a 
Chkdsk/Scandisk disk repair utility that does surface analysis on it to look 
for new bad sectors. 
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Here are two more important notes about the FAT region of a FAT volume: 

1. The last sector of the FAT is not necessarily all part of the FAT. The FAT stops at the cluster 
number in the last FAT sector that corresponds to the entry for cluster number 
CountofClusters + 1 (see the CountofClusters computation earlier), and this entry is not 
necessarily at the end of the last FAT sector. FAT code should not make any assumptions 
about what the contents of the last FAT sector are after the CountofClusters + 1 entry. FAT 
format code should zero the bytes after this entry though. 

2. The BPB_FATSz16 (BPB_FATSz32 for FAT32 volumes) value may be bigger than it needs 
to be. In other words, there may be totally unused FAT sectors at the end of each FAT in the 
FAT region of the volume. For this reason, the last sector of the FAT is always computed 
using the CountofClusters + 1 value, never from the BPB_FATSz16/32 value. FAT code 
should not make any assumptions about what the contents of these “extra” FAT sectors are. 
FAT format code should zero the contents of these extra FAT sectors though. 

 
FAT Volume Initialization 
At this point, the careful reader should have one very interesting question. Given that the FAT type 
(FAT12, FAT16, or FAT32) is dependant on the number of clusters—and that the sectors available in 
the data area of a FAT volume is dependant on the size of the FAT—when handed an unformatted 
volume that does not yet have a BPB, how do you determine all this and compute the proper values to 
put in BPB_SecPerClus and either BPB_FATSz16 or BPB_FATSz32? The way Microsoft operating 
systems do this is with a fixed value, several tables, and a clever piece of arithmetic.  
 
Microsoft operating systems only do FAT12 on floppy disks. Because there is a limited number of 
floppy formats that all have a fixed size, this is done with a simple table: 
 
“If it is a floppy of this type, then the BPB looks like this.”

 
There is no dynamic computation for FAT12. For the FAT12 formats, all the computation for 
BPB_SecPerClus and BPB_FATSz16 was worked out by hand on a piece of paper and recorded in the 
table (being careful of course that the resultant cluster count was always less than 4085). If your media 
is larger than 4 MB, do not bother with FAT12. Use smaller BPB_SecPerClus values so that the 
volume will be FAT16.  
 
The rest of this section is totally specific to drives that have 512 bytes per sector. You cannot use these 
tables, or the clever arithmetic, with drives that have a different sector size. The “fixed value” is 
simply a volume size that is the “FAT16 to FAT32 cutover value”. Any volume size smaller than this 
is FAT16 and any volume of this size or larger is FAT32. For Windows, this value is 512 MB. Any 
FAT volume smaller than 512 MB is FAT16, and any FAT volume of 512 MB or larger is FAT32.  
 
Please don’t draw an incorrect conclusion here.  
 
There are many FAT16 volumes out there that are larger than 512 MB. There are various ways to 
force the format to be FAT16 rather than the default of FAT32, and there is a great deal of code that 
implements different limits. All we are talking about here is the default cutover value for MS-DOS 
and Windows on volumes that have not yet been formatted. There are two tables—one is for FAT16 
and the other is for FAT32. An entry in these tables is selected based on the size of the volume in 512 
byte sectors (the value that will go in BPB_TotSec16 or BPB_TotSec32), and the value that this table 
sets is the BPB_SecPerClus value.  
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struct DSKSZTOSECPERCLUS {
DWORD DiskSize;
BYTE SecPerClusVal;

};

/*
*This is the table for FAT16 drives. NOTE that this table includes
* entries for disk sizes larger than 512 MB even though typically
* only the entries for disks < 512 MB in size are used.
* The way this table is accessed is to look for the first entry
* in the table for which the disk size is less than or equal
* to the DiskSize field in that table entry. For this table to
* work properly BPB_RsvdSecCnt must be 1, BPB_NumFATs
* must be 2, and BPB_RootEntCnt must be 512. Any of these values
* being different may require the first table entries DiskSize value
* to be changed otherwise the cluster count may be to low for FAT16.

*/
DSKSZTOSECPERCLUS DskTableFAT16 [] = {

{ 8400, 0}, /* disks up to 4.1 MB, the 0 value for SecPerClusVal trips an error */
{ 32680, 2}, /* disks up to 16 MB, 1k cluster */
{ 262144, 4}, /* disks up to 128 MB, 2k cluster */
{ 524288, 8}, /* disks up to 256 MB, 4k cluster */
{ 1048576, 16}, /* disks up to 512 MB, 8k cluster */
/* The entries after this point are not used unless FAT16 is forced */
{ 2097152, 32}, /* disks up to 1 GB, 16k cluster */
{ 4194304, 64}, /* disks up to 2 GB, 32k cluster */
{ 0xFFFFFFFF, 0} /* any disk greater than 2GB, 0 value for SecPerClusVal trips an error */

};

/*
* This is the table for FAT32 drives. NOTE that this table includes
* entries for disk sizes smaller than 512 MB even though typically
* only the entries for disks >= 512 MB in size are used.
* The way this table is accessed is to look for the first entry
* in the table for which the disk size is less than or equal
* to the DiskSize field in that table entry. For this table to
* work properly BPB_RsvdSecCnt must be 32, and BPB_NumFATs
* must be 2. Any of these values being different may require the first
* table entries DiskSize value to be changed otherwise the cluster count
* may be to low for FAT32.
*/

DSKSZTOSECPERCLUS DskTableFAT32 [] = {
{ 66600, 0}, /* disks up to 32.5 MB, the 0 value for SecPerClusVal trips an error */
{ 532480, 1}, /* disks up to 260 MB, .5k cluster */
{ 16777216, 8}, /* disks up to 8 GB, 4k cluster */
{ 33554432, 16}, /* disks up to 16 GB, 8k cluster */
{ 67108864, 32}, /* disks up to 32 GB, 16k cluster */
{ 0xFFFFFFFF, 64}/* disks greater than 32GB, 32k cluster */

};

So given a disk size and a FAT type of FAT16 or FAT32, we now have a BPB_SecPerClus value. The 
only thing we have left is do is to compute how many sectors the FAT takes up so that we can set 
BPB_FATSz16 or BPB_FATSz32. Note that at this point we assume that BPB_RootEntCnt, 
BPB_RsvdSecCnt, and BPB_NumFATs are appropriately set. We also assume that DskSize is the size 
of the volume that we are either going to put in BPB_TotSec32 or BPB_TotSec16. 
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RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;
TmpVal1 = DskSize – (BPB_ResvdSecCnt + RootDirSectors);
TmpVal2 = (256 * BPB_SecPerClus) + BPB_NumFATs;
If(FATType == FAT32)

TmpVal2 = TmpVal2 / 2;
FATSz = (TMPVal1 + (TmpVal2 – 1)) / TmpVal2;
If(FATType == FAT32) {

BPB_FATSz16 = 0;
BPB_FATSz32 = FATSz;

} else {
BPB_FATSz16 = LOWORD(FATSz);
/* there is no BPB_FATSz32 in a FAT16 BPB */

}

Do not spend too much time trying to figure out why this math works. The basis for the computation 
is complicated; the important point is that this is how Microsoft operating systems do it, and it works. 
Note, however, that this math does not work perfectly. It will occasionally set a FATSz that is up to 
2 sectors too large for FAT16, and occasionally up to 8 sectors too large for FAT32. It will never 
compute a FATSz value that is too small, however. Because it is OK to have a FATSz that is too 
large, at the expense of wasting a few sectors, the fact that this computation is surprisingly simple 
more than makes up for it being off in a safe way in some cases. 
   
FAT32 FSInfo Sector Structure and Backup Boot Sector 
On a FAT32 volume, the FAT can be a large data structure, unlike on FAT16 where it is limited to a 
maximum of 128K worth of sectors and FAT12 where it is limited to a maximum of 6K worth of 
sectors. For this reason, a provision is made to store the “last known” free cluster count on the FAT32 
volume so that it does not have to be computed as soon as an API call is made to ask how much free 
space there is on the volume (like at the end of a directory listing). The FSInfo sector number is the 
value in the BPB_FSInfo field; for Microsoft operating systems it is always set to 1. Here is the 
structure of the FSInfo sector: 
 
FAT32 FSInfo Sector Structure and Backup Boot Sector 

Name Offset 
(byte) 

Size 
(bytes) 

Description 

FSI_LeadSig 0 4 Value 0x41615252. This lead signature is used to validate that this 
is in fact an FSInfo sector. 

FSI_Reserved1 4 480 This field is currently reserved for future expansion. FAT32 format 
code should always initialize all bytes of this field to 0. Bytes in 
this field must currently never be used. 

FSI_StrucSig 484 4 Value 0x61417272. Another signature that is more localized in the 
sector to the location of the fields that are used. 

FSI_Free_Count 488 4 Contains the last known free cluster count on the volume. If the 
value is 0xFFFFFFFF, then the free count is unknown and must be 
computed. Any other value can be used, but is not necessarily 
correct. It should be range checked at least to make sure it is <= 
volume cluster count. 

FSI_Nxt_Free 492 4 This is a hint for the FAT driver. It indicates the cluster number at 
which the driver should start looking for free clusters. Because a 
FAT32 FAT is large, it can be rather time consuming if there are a 
lot of allocated clusters at the start of the FAT and the driver starts 
looking for a free cluster starting at cluster 2. Typically this value is 
set to the last cluster number that the driver allocated. If the value is 
0xFFFFFFFF, then there is no hint and the driver should start 
looking at cluster 2. Any other value can be used, but should be 
checked first to make sure it is a valid cluster number for the 
volume. 

FSI_Reserved2 496 12 This field is currently reserved for future expansion. FAT32 format 
code should always initialize all bytes of this field to 0. Bytes in 
this field must currently never be used.  
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FSI_TrailSig 508 4 Value 0xAA550000. This trail signature is used to validate that this 
is in fact an FSInfo sector. Note that the high 2 bytes of this 
value—which go into the bytes at offsets 510 and 511—match the 
signature bytes used at the same offsets in sector 0. 

 
Another feature on FAT32 volumes that is not present on FAT16/FAT12 is the BPB_BkBootSec field. 
FAT16/FAT12 volumes can be totally lost if the contents of sector 0 of the volume are overwritten or 
sector 0 goes bad and cannot be read. This is a “single point of failure” for FAT16 and FAT12 
volumes. The BPB_BkBootSec field reduces the severity of this problem for FAT32 volumes, because 
starting at that sector number on the volume—6—there is a backup copy of the boot sector 
information including the volume’s BPB.  
 
In the case where the sector 0 information has been accidentally overwritten, all a disk repair utility 
has to do is restore the boot sector(s) from the backup copy. In the case where sector 0 goes bad, this 
allows the volume to be mounted so that the user can access data before replacing the disk.  
 
This second case—sector 0 goes bad—is the reason why no value other than 6 should ever be placed 
in the BPB_BkBootSec field. If sector 0 is unreadable, various operating systems are “hard wired” to 
check for backup boot sector(s) starting at sector 6 of the FAT32 volume. Note that starting at the 
BPB_BkBootSec sector is a complete boot record. The Microsoft FAT32 “boot sector” is actually 
three 512-byte sectors long. There is a copy of all three of these sectors starting at the 
BPB_BkBootSec sector. A copy of the FSInfo sector is also there, even though the BPB_FSInfo field 
in this backup boot sector is set to the same value as is stored in the sector 0 BPB.  
 
NOTE: All 3 of these sectors have the 0xAA55 signature in sector offsets 510 and 511, just like the 
first boot sector does (see the earlier discussion at the end of the BPB structure description). 
 
FAT Directory Structure 
We will first talk about short directory entries and ignore long directory entries for the moment. 
 
A FAT directory is nothing but a “file” composed of a linear list of 32-byte structures. The only 
special directory, which must always be present, is the root directory. For FAT12 and FAT16 media, 
the root directory is located in a fixed location on the disk immediately following the last FAT and is 
of a fixed size in sectors computed from the BPB_RootEntCnt value (see computations for 
RootDirSectors earlier in this document). For FAT12 and FAT16 media, the first sector of the root 
directory is sector number relative to the first sector of the FAT volume: 
 
FirstRootDirSecNum = BPB_ResvdSecCnt + (BPB_NumFATs * BPB_FATSz16);

 
For FAT32, the root directory can be of variable size and is a cluster chain, just like any other 
directory is. The first cluster of the root directory on a FAT32 volume is stored in BPB_RootClus. 
Unlike other directories, the root directory itself on any FAT type does not have any date or time 
stamps, does not have a file name (other than the implied file name “\”), and does not contain “.” and 
“..” files as the first two directory entries in the directory. The only other special aspect of the root 
directory is that it is the only directory on the FAT volume for which it is valid to have a file that has 
only the ATTR_VOLUME_ID attribute bit set (see below). 
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FAT 32 Byte Directory Entry Structure 
Name Offset 

(byte) 
Size 
(bytes) 

Description 

DIR_Name 0 11 Short name. 
DIR_Attr 11 1 File attributes: 

ATTR_READ_ONLY    0x01 
ATTR_HIDDEN  0x02 
ATTR_SYSTEM  0x04 
ATTR_VOLUME_ID  0x08 
ATTR_DIRECTORY 0x10 
ATTR_ARCHIVE   0x20 
ATTR_LONG_NAME  ATTR_READ_ONLY | 

ATTR_HIDDEN | 
ATTR_SYSTEM | 
ATTR_VOLUME_ID 

The upper two bits of the attribute byte are reserved and should 
always be set to 0 when a file is created and never modified or 
looked at after that. 

DIR_NTRes 12 1 Reserved for use by Windows NT. Set value to 0 when a file is 
created and never modify or look at it after that. 

DIR_CrtTimeTenth 13 1 Millisecond stamp at file creation time. This field actually 
contains a count of tenths of a second. The granularity of the 
seconds part of DIR_CrtTime is 2 seconds so this field is a 
count of tenths of a second and its valid value range is 0-199 
inclusive. 

DIR_FstClusHI 20 2 High word of this entry’s first cluster number (always 0 for a 
FAT12 or FAT16 volume). 

DIR_WrtTime 22 2 Time of last write. Note that file creation is considered a write. 
DIR_WrtDate 24 2 Date of last write. Note that file creation is considered a write. 
DIR_FstClusLO 26 2 Low word of this entry’s first cluster number. 
DIR_FileSize 28 4 32-bit DWORD holding this file’s size in bytes. 
 
 
DIR_Name[0] 
Special notes about the first byte (DIR_Name[0]) of a FAT directory entry: 
 
•  If DIR_Name[0] == 0xE5, then the directory entry is free (there is no file or directory name in this 

entry).  
 
•  If DIR_Name[0] == 0x00, then the directory entry is free (same as for 0xE5), and there are no 

allocated directory entries after this one (all of the DIR_Name[0] bytes in all of the entries after 
this one are also set to 0).  

 
The special 0 value, rather than the 0xE5 value, indicates to FAT file system driver code that the 
rest of the entries in this directory do not need to be examined because they are all free.  

 
•  If DIR_Name[0] == 0x05, then the actual file name character for this byte is 0xE5. 0xE5 is 

actually a valid KANJI lead byte value for the character set used in Japan. The special 0x05 value 
is used so that this special file name case for Japan can be handled properly and not cause FAT file 
system code to think that the entry is free.  

 

DIR_CrtTime 14 2 Time file was created. 
DIR_CrtDate 16 2 Date file was created. 
DIR_LstAccDate 18 2 Last access date. Note that there is no last access time, only a 

date. This is the date of last read or write. In the case of a write, 
this should be set to the same date as DIR_WrtDate. 
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The DIR_Name field is actually broken into two parts+ the 8-character main part of the name, and the 
3-character extension. These two parts are “trailing space padded” with bytes of 0x20.  
 
DIR_Name[0] may not equal 0x20. There is an implied ‘.’ character between the main part of the 
name and the extension part of the name that is not present in DIR_Name. Lower case characters are 
not allowed in DIR_Name (what these characters are is country specific).  
 
The following characters are not legal in any bytes of DIR_Name:  
•  Values less than 0x20 except for the special case of 0x05 in DIR_Name[0] described above. 
•  0x22, 0x2A, 0x2B, 0x2C, 0x2E, 0x2F, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x5B, 0x5C, 0x5D, 

and 0x7C.  
 
Here are some examples of how a user-entered name maps into DIR_Name: 
 
“foo.bar” -> “FOO BAR”
“FOO.BAR” -> “FOO BAR”
“Foo.Bar” -> “FOO BAR”
“foo” -> “FOO “
“foo.” -> “FOO “
“PICKLE.A” -> “PICKLE A “
“prettybg.big” -> “PRETTYBGBIG”
“.big” -> illegal, DIR_Name[0] cannot be 0x20

 
In FAT directories all names are unique. Look at the first three examples earlier. Those different 
names all refer to the same file, and there can only be one file with DIR_Name set to “FOO     BAR” 
in any directory. 
 
DIR_Attr specifies attributes of the file: 
 

ATTR_READ_ONLY  Indicates that writes to the file should fail. 
ATTR_HIDDEN  Indicates that normal directory listings should not show this file.  
ATTR_SYSTEM  Indicates that this is an operating system file. 
ATTR_VOLUME_ID  There should only be one “file” on the volume that has this attribute 

set, and that file must be in the root directory. This name of this file is 
actually the label for the volume. DIR_FstClusHI and 
DIR_FstClusLO must always be 0 for the volume label (no data 
clusters are allocated to the volume label file).  

ATTR_DIRECTORY Indicates that this file is actually a container for other files. 
ATTR_ARCHIVE   This attribute supports backup utilities. This bit is set by the FAT file 

system driver when a file is created, renamed, or written to. Backup 
utilities may use this attribute to indicate which files on the volume 
have been modified since the last time that a backup was performed. 

 
Note that the ATTR_LONG_NAME attribute bit combination indicates that the “file” is actually part 
of the long name entry for some other file. See the next section for more information on this attribute 
combination. 
 
When a directory is created, a file with the ATTR_DIRECTORY bit set in its DIR_Attr field, you set 
its DIR_FileSize to 0. DIR_FileSize is not used and is always 0 on a file with the 
ATTR_DIRECTORY attribute (directories are sized by simply following their cluster chains to the 
EOC mark). One cluster is allocated to the directory (unless it is the root directory on a FAT16/FAT12 
volume), and you set DIR_FstClusLO and DIR_FstClusHI to that cluster number and place an EOC 
mark in that clusters entry in the FAT. Next, you initialize all bytes of that cluster to 0. If the directory 
is the root directory, you are done (there are no dot or dotdot entries in the root directory). If the 
directory is not the root directory, you need to create two special entries in the first two 32-byte 
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directory entries of the directory (the first two 32 byte entries in the data region of the cluster you just 
allocated).  
 
The first directory entry has DIR_Name set to:  
“. ”

 
The second has DIR_Name set to:  
“.. ”

 
These are called the dot and dotdot entries. The DIR_FileSize field on both entries is set to 0, and all 
of the date and time fields in both of these entries are set to the same values as they were in the 
directory entry for the directory that you just created. You now set DIR_FstClusLO and 
DIR_FstClusHI for the dot entry (the first entry) to the same values you put in those fields for the 
directories directory entry (the cluster number of the cluster that contains the dot and dotdot entries).  
 
Finally, you set DIR_FstClusLO and DIR_FstClusHI for the dotdot entry (the second entry) to the 
first cluster number of the directory in which you just created the directory (value is 0 if this directory 
is the root directory even for FAT32 volumes).  
 
Here is the summary for the dot and dotdot entries:  
•  The dot entry is a directory that points to itself.  
•  The dotdot entry points to the starting cluster of the parent of this directory (which is 0 if this 

directories parent is the root directory). 
 
Date and Time Formats 
Many FAT file systems do not support Date/Time other than DIR_WrtTime and DIR_WrtDate. For 
this reason, DIR_CrtTimeMil, DIR_CrtTime, DIR_CrtDate, and DIR_LstAccDate are actually 
optional fields. DIR_WrtTime and DIR_WrtDate must be supported, however. If the other date and 
time fields are not supported, they should be set to 0 on file create and ignored on other file 
operations. 
 
Date Format. A FAT directory entry date stamp is a 16-bit field that is basically a date relative to the 
MS-DOS epoch of 01/01/1980. Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the 
MSB of the 16-bit word): 
 

Bits 0–4: Day of month, valid value range 1-31 inclusive. 
Bits 5–8: Month of year, 1 = January, valid value range 1–12 inclusive. 
Bits 9–15: Count of years from 1980, valid value range 0–127 inclusive (1980–2107). 

 
Time Format. A FAT directory entry time stamp is a 16-bit field that has a granularity of 2 seconds. 
Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the 16-bit word). 
 

Bits 0–4: 2-second count, valid value range 0–29 inclusive (0 – 58 seconds). 
Bits 5–10: Minutes, valid value range 0–59 inclusive. 
Bits 11–15: Hours, valid value range 0–23 inclusive. 

 
The valid time range is from Midnight 00:00:00 to 23:59:58. 
 
FAT Long Directory Entries 
In adding long directory entries to the FAT file system it was crucial that their addition to the FAT file 
system's existing design: 
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•  Be essentially transparent on earlier versions of MS-DOS.  The primary goal being that existing 
MS-DOS APIs on previous versions of MS-DOS/Windows do not easily "find" long directory 
entries.  The only MS-DOS APIs that can "find" long directory entries are the FCB-based-find 
APIs when used with a full meta-character matching pattern (i.e. *.*) and full attribute matching 
bits (i.e. matching attributes are FFh).  On post-Windows 95 versions of MS-DOS/Windows, no 
MS-DOS API can accidentally "find" a single long directory entry. 

•  Be located in close physical proximity, on the media, to the short directory entries they are 
associated with.  As will be evident, long directory entries are immediately contiguous to the short 
directory entry they are associated with and their existence imposes an unnoticeable performance 
impact on the file system. 

•  If detected by disk maintenance utilities, they do not jeopardize the integrity of existing file data.  
Disk maintenance utilities typically do not use MS-DOS APIs to access on-media file-system-
specific data structures.  Rather they read physical or logical sector information from the disk and 
judge for themselves what the directory entries contain.  Based on the heuristics employed in the 
utilities, the utility may take various steps to "repair" what it perceives to be "damaged" file-
system-specific data structures.  Long directory entries were added to the FAT file system in such 
a way as to not cause the loss of file data if a disk containing long directory entries was "repaired" 
by a pre-Windows 95-compatible disk utility on a previous version of MS-DOS/Windows. 

 
In order to meet the goals of locality-of-access and transparency, the long directory entry is defined as 
a short directory entry with a special attribute.  As described previously, a long directory entry is just a 
regular directory entry in which the attribute field has a value of: 
 

ATTR_LONG_NAME ATTR_READ_ONLY | 
ATTR_HIDDEN | 
ATTR_SYSTEM | 
ATTR_VOLUME_ID 

 
A mask for determining whether an entry is a long-name sub-component should also be defined: 
 

ATTR_LONG_NAME_MASK ATTR_READ_ONLY | 
ATTR_HIDDEN | 
ATTR_SYSTEM | 
ATTR_VOLUME_ID | 
ATTR_DIRECTORY | 
ATTR_ARCHIVE 
 

When such a directory entry is encountered it is given special treatment by the file system.  It is 
treated as part of a set of directory entries that are associated with a single short directory entry. Each 
long directory entry has the following structure: 
 
FAT Long Directory Entry Structure 
Name Offset  

(byte) 
Size  
(bytes) 

Description 

LDIR_Ord 0 1 The order of this entry in the sequence of long dir entries 
associated with the short dir entry at the end of the long dir set. 
 
If masked with 0x40 (LAST_LONG_ENTRY), this indicates the 
entry is the last long dir entry in a set of long dir entries. All valid 
sets of long dir entries must begin with an entry having this 
mask. 

LDIR_Name1 1 10 Characters 1-5 of the long-name sub-component in this dir entry. 
LDIR_Attr 11 1 Attributes - must be ATTR_LONG_NAME 
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LDIR_Type 12 1 If zero, indicates a directory entry that is a sub-component of a 
long name.  NOTE: Other values reserved for future extensions. 
 
Non-zero implies other dirent types. 

LDIR_Chksum 13 1 Checksum of name in the short dir entry at the end of the long dir 
set. 

LDIR_Name2 14 12 Characters 6-11 of the long-name sub-component in this dir 
entry. 

LDIR_FstClusLO 26 2 Must be ZERO. This is an artifact of the FAT "first cluster" and 
must be zero for compatibility with existing disk utilities.  It's 
meaningless in the context of a long dir entry. 

LDIR_Name3 28 4 Characters 12-13 of the long-name sub-component in this dir 
entry. 

 
Organization and Association of Short & Long Directory Entries 
 
A set of long entries is always associated with a short entry that they always immediately precede.  
Long entries are paired with short entries for one reason: only short directory entries are visible to 
previous versions of MS-DOS/Windows.  Without a short entry to accompany it, a long directory 
entry would be completely invisible on previous versions of MS-DOS/Windows.  A long entry never 
legally exists all by itself.  If long entries are found without being paired with a valid short entry, they 
are termed orphans.  The following figure depicts a set of n long directory entries associated with it's 
single short entry. 
 
Long entries always immediately precede and are physically contiguous with, the short entry they are 
associated with.  The file system makes a few other checks to ensure that a set of long entries is 
actually associated with a short entry. 
 
Sequence Of Long Directory Entries 
Entry Ordinal 
Nth Long entry LAST_LONG_ENTRY (0x40) | N 
… Additional Long Entries … 
1st Long entry 1 
Short Entry Associated With Preceding Long Entries (not applicable) 
 
First, every member of a set of long entries is uniquely numbered and the last member of the set is or'd 
with a flag indicating that it is, in fact, the last member of the set.  The LDIR_Ord field is used to 
make this determination.  The first member of a set has an LDIR_Ord value of one.  The nth long 
member of the set has a value of (n OR LAST_LONG_ENTRY).  Note that the LDIR_Ord field 
cannot have values of 0xE5 or 0x00.  These values have always been used by the file system to 
indicate a "free" directory entry, or the "last" directory entry in a cluster.  Values for LDIR_Ord do not 
take on these two values over their range.  Values for LDIR_Ord must run from 1 to (n OR 
LAST_LONG_ENTRY).  If they do not, the long entries are "damaged" and are treated as orphans by 
the file system. 
 
Second, an 8-bit checksum is computed on the name contained in the short directory entry at the time 
the short and long directory entries are created.  All 11 characters of the name in the short entry are 
used in the checksum calculation.  The check sum is placed in every long entry.  If any of the check 
sums in the set of long entries do not agree with the computed checksum of the name contained in the 
short entry, then the long entries are treated as orphans.  This can occur if a disk containing long and 
short entries is taken to a previous version of MS-DOS/Windows and only the short name of a file or 
directory with a long entries is renamed. 
 
The algorithm, implemented in C, for computing the checksum is: 
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//-----------------------------------------------------------------------------
// ChkSum()
// Returns an unsigned byte checksum computed on an unsigned byte
// array. The array must be 11 bytes long and is assumed to contain
// a name stored in the format of a MS-DOS directory entry.
// Passed: pFcbName Pointer to an unsigned byte array assumed to be
// 11 bytes long.
// Returns: Sum An 8-bit unsigned checksum of the array pointed
// to by pFcbName.
//------------------------------------------------------------------------------
unsigned char ChkSum (unsigned char *pFcbName)
{

short FcbNameLen;
unsigned char Sum;

Sum = 0;
for (FcbNameLen=11; FcbNameLen!=0; FcbNameLen--) {

// NOTE: The operation is an unsigned char rotate right
Sum = ((Sum & 1) ? 0x80 : 0) + (Sum >> 1) + *pFcbName++;

}
return (Sum);

}

 
As a consequence of this pairing, the short directory entry serves as the structure that contains fields 
like: last access date, creation time, creation date, first cluster, and size.  It also holds a name that is 
visible on previous versions of MS-DOS/Windows.  The long directory entries are free to contain new 
information and need not replicate information already available in the short entry.  Principally, the 
long entries contain the long name of a file.  The name contained in a short entry which is associated 
with a set of long entries is termed the alias name, or simply alias, of the file. 
 
Storage of a Long-Name Within Long Directory Entries 
 
A long name can consist of more characters than can fit in a single long directory entry.  When this 
occurs the name is stored in more than one long entry.  In any event, the name fields themselves 
within the long entries are disjoint.  The following example is provided to illustrate how a long name 
is stored across several long directory entries.  Names are also NUL terminated and padded with 
0xFFFF characters in order to detect corruption of long name fields by errant disk utilities.  A name 
that fits exactly in a n long directory entries (i.e. is an integer multiple of 13) is not NUL terminated 
and not padded with 0xFFFFs. 
 
Suppose a file is created with the name: "The quick brown.fox".  The following example illustrates 
how the name is packed into long and short directory entries.  Most fields in the directory entries are 
also filled in as well. 
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1st long entry

2nd long entry
(and last)
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The heuristics used to "auto-generate" a short name from a long name are explained in a later section. 
 
Name Limits and Character Sets 
 
Short Directory Entries 
 
Short names are limited to 8 characters followed by an optional period (.) and extension of up to 3 
characters.  The total path length of a short name cannot exceed 80 characters (64 char path + 3 drive 
letter + 12 for 8.3 name + NUL) including the trailing NUL.  The characters may be any combination 
of letters, digits, or characters with code point values greater than 127.  The following special 
characters are also allowed: 
 

$   %   '   -   _   @   ~    `   !   (    )   {   }  ^  #  & 
 

Names are stored in a short directory entry in the OEM code page that the system is configured for at 
the time the directory entry is created.  Short directory entries remain in OEM for compatibility with 
previous versions of MS-DOS/Windows.  OEM characters are single 8-bit characters or can be DBCS 
character pairs for certain code pages. 
 
Short names passed to the file system are always converted to upper case and their original case value 
is lost.  One problem that is generally true of most OEM code pages is that they map lower to upper 
case extended characters in a non-unique fashion.  That is, they map multiple extended characters to a 
single upper case character.  This creates problems because it does not preserve the information that 
the extended character provides.  This mapping also prevents the creation of some file names that 
would normally differ, but because of the mapping to upper case they become the same file name. 
 
Long Directory Entries 
 
Long names are limited to 255 characters, not including the trailing NUL.  The total path length of a 
long name cannot exceed 260 characters, including the trailing NUL.  The characters may be any 
combination of those defined for short names with the addition of the period (.) character used 
multiple times within the long name.  A space is also a valid character in a long name as it always has 
been for a short name.  However, in short names it typically is not used.  The following six special 
characters are now allowed in a long name.  They are not legal in a short name. 
 

+   ,   ;   =   [   ] 
 
Embedded spaces within a long name are allowed.  Leading and trailing spaces in a long name are 
ignored.  
 
Leading and embedded periods are allowed in a name and are stored in the long name.  Trailing 
periods are ignored. 
 
Long names are stored in long directory entries in UNICODE.  UNICODE characters are 16-bit 
characters.  It is not be possible to store UNICODE in short directory entries since the names stored 
there are 8-bit characters or DBCS characters. 
 
Long names passed to the file system are not converted to upper case and their original case value is 
preserved.  UNICODE solves the case mapping problem prevalent in some OEM code pages by 
always providing a translation for lower case characters to a single, unique upper case character. 
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Name Matching In Short & Long Names 
The names contained in the set of all short directory entries are termed the "short name space".  The 
names contained in the set of all long directory entries are termed the "long name space".  Together, 
they form a single unified name space in which no duplicate names can exist.  That is: any name 
within a specific directory, whether it is a short name or a long name, can occur only once in the name 
space.  Furthermore, although the case of a name is preserved in a long name, no two names can have 
the same name although the names on the media actually differ by case.  That is names like "foobar" 
cannot be created if there is already a short entry with a name of "FOOBAR" or a long name with a 
name of "FooBar". 
 
All types of search operations within the file system (i.e. find, open, create, delete, rename) are case-
insensitive.  An open of "FOOBAR" will open either "FooBar" or "foobar" if one or the other exists.  
A find using "FOOBAR" as a pattern will find the same files mentioned.  The same rules are also true 
for extended characters that are accented. 
 
A short name search operation checks only the names of the short directory entries for a match.  A 
long name search operation checks both the long and short directory entries.  As the file system 
traverses a directory, it caches the long-name sub-components contained in long directory entries.  As 
soon as a short directory entry is encountered that is associated with the cached long name, the long 
name search operation will check the cached long name first and then the short name for a match. 
 
When a character on the media, whether it is stored in the OEM character set or in UNICODE, cannot 
be translated into the appropriate character in the OEM or ANSI code page, it is always "translated" to 
the "_" (underscore) character as it is returned to the user – it is NOT modified on the disk.  This 
character is the same in all OEM code pages and ANSI. 
 
Naming Conventions and Long Names 
An API allows the caller to specify the long name to be assigned to a file or directory.  They do not 
allow the caller to independently specify the short name.  The reason for this prohibition is that the 
short and long names are considered to be a single unified name space.  As should be obvious the file 
system's name space does not support duplicate names.  In other words, a long name for a file may not 
contain the same name, ignoring case, as the short name in a different file.  This restriction is intended 
to prevent confusion among users, and applications, regarding the proper name of a file or directory.  
To make this restriction transparent, whenever a long name is created and the no matching long name 
exists, the short name is automatically generated from the long name in such a way that it does not 
collide with an existing short name. 
 
The technique chosen to auto-generate short names from long names is modeled after Windows NT.  
Auto-generated short names are composed of the basis-name and an optional numeric-tail. 
 
The Basis-Name Generation Algorithm 
 
The basis-name generation algorithm is outlined below.  This is a sample algorithm and serves to 
illustrate how short names can be auto-generated from long names. An implementation should follow 
this basic sequence of steps. 
 
1. The UNICODE name passed to the file system is converted to upper case. 

2. The upper cased UNICODE name is converted to OEM. 
if  (the uppercased UNICODE glyph does not exist as an OEM glyph in the OEM code page) 
 or (the OEM glyph is invalid in an 8.3 name) 
{ 



FAT: General Overview of On-Disk Format—Page 31 

© 2000 Microsoft Corporation. All rights reserved. 31

 Replace the glyph to an OEM '_' (underscore) character. 
 Set a "lossy conversion" flag. 
} 

3. Strip all leading and embedded spaces from the long name. 

4. Strip all leading periods from the long name. 

5. While  (not at end of the long name) 
 and (char is not a period) 
 and (total chars copied < 8) 
{ 
 Copy characters into primary portion of the basis name 
} 

6. Insert a dot at the end of the primary components of the basis-name iff the basis name has an 
extension after the last period in the name. 

7. Scan for the last embedded period in the long name. 
If (the last embedded period was found) 
{ 
 While  (not at end of the long name) 
  and (total chars copied < 3) 
 { 
  Copy characters into extension portion of the basis name 
 } 
} 

Proceed to numeric-tail generation. 
 
The Numeric-Tail Generation Algorithm 
 
 If   (a "lossy conversion" was not flagged) 

 and (the long name fits within the 8.3 naming conventions) 
 and (the basis-name does not collide with any existing short name) 
{ 
 The short name is only the basis-name without the numeric tail. 
} 
else 
{ 
 Insert a numeric-tail "~n" to the end of the primary name such that the value of the "~n" is 
chosen so that the  
 name thus formed does not collide with any existing short name and that the primary name does 
not exceed eight  characters in length. 
} 

The "~n" string can range from "~1" to "~999999".  The number "n" is chosen so that it is the next 
number in a sequence of files with similar basis-names.  For example, assume the following short 
names existed: LETTER~1.DOC and LETTER~2.DOC.  As expected, the next auto-generated name 
of name of this type would be LETTER~3.DOC.  Assume the following short names existed: 
LETTER~1.DOC, LETTER~3.DOC.  Again, the next auto-generated name of name of this type 
would be LETTER~2.DOC.  However, one absolutely cannot count on this behavior.  In a directory 
with a very large mix of names of this type, the selection algorithm is optimized for speed and may 
select another "n" based on the characteristics of short names that end in "~n" and have similar leading 
name patterns. 
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Effect of Long Directory Entries on Down Level Versions of FAT 
The support of long names is most important on the hard disk, however it will be supported on 
removable media as well.  The implementation provides support for long names without breaking 
compatibility with the existing FAT format.  A disk can be read by a down level system without any 
compatibility problems.  An existing disk does not go through a conversion process before it can start 
using long names.  All of the current files remain unmodified.  The long name directory entries are 
added when a long name is created.  The addition of a long name to an existing file may require the 
8.3 directory entry to be moved if the required adjacent directory entries are not available. 
 
The long name entries are as hidden as hidden or system files are on a down level system.  This is 
enough to keep the casual user from causing problems.  The user can copy the files off using the 8.3 
name, and put new files on without any side effects 
 
The interesting part of this is what happens when the disk is taken to a down level FAT system and the 
directory is changed.  This can affect the long name entries since the down level system ignores these 
long names and will not ensure they are properly associated with the 8.3 names. 
 
A down level system will only see the long name entries when searching for a label.  On a down level 
system, the volume label will be incorrectly reported if the true volume label does not come before all 
of the long name entries in the root directory.  This is because the long name entries also have the 
volume label bit set.  This is unfortunate, but is not a critical problem. 
 
If an attempt is made to remove the volume label, one of the long name directory entries may be 
deleted.  This would be a rare occurrence.  It is easily detected on an aware system.  The long name 
entry will no longer be a valid file entry, since one or more of the long entries is marked as deleted.  If 
the deleted entry is reused, then the attribute byte will not have the proper value for a long name entry.   
 
If a file is renamed on a down level system, then only the short name will be renamed.  The long name 
will not be affected.  Since the long and short names must be kept consistent across the name space, it 
is desirable to have the long name become invalid as a result of this rename.  The checksum of the 8.3 
name that is kept in the long name directory provides the ability to detect this type of change.  This 
checksum will be checked to validate the long name before it is used.  Rename will cause problems 
only if the renamed 8.3 file name happens to have the same checksum.  The checksum algorithm 
chosen has a relatively flat distribution across the short name space. 
 
This rename of the 8.3 name must also not conflict with any of the long names.  Otherwise a down 
level system could create a short name in one file that matches a long name, when case is ignored, in a 
different file.  To prevent this, the automatic creation of an 8.3 name from a long name, that has an 8.3 
format, will directly map the long name to the 8.3 name by converting the characters to upper case. 
 
If the file is deleted, then the long name is simply orphaned.  If a new file is created, the long name 
may be incorrectly associated with the new file name.  As in the case of a rename the checksum of the 
8.3 name will help prevent this incorrect association. 
 
Validating The Contents of a Directory 
These guidelines are provided so that disk maintenance utilities can verify individual directory entries 
for 'correctness' while maintaining compatibility with future enhancements to the directory structure. 
 
1. DO NOT look at the content of directory entry fields marked 'reserved' and assume that, if they 

are any value other than zero, that they are 'bad'. 
2. DO NOT reset the content of directory entry fields marked reserved to zero when they contain 

non-zero values (under the assumption that they are "bad").  Directory entry fields are designated 
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reserved, rather than must-be-zero.  They should be ignored by your application..  These fields are 
intended for future extensions of the file system.  By ignoring them an utility can continue to run 
on future versions of the operating system. 

3. DO use the A_LONG attribute first when determining whether a directory entry is a long 
directory entry or a short directory entry.  The following algorithm is the correct algorithm for 
making this determination: 

 
 if  (((LDIR_attr & ATTR_LONG_NAME_MASK) == ATTR_LONG_NAME) && (LDIR_Ord != 0xE5)) 

{ 
 /*   Found an active long name sub-component.   */ 
} 

 
4. DO use bits 4 and 3 of a short entry together when determining what type of short directory entry 

is being inspected.    The following algorithm is the correct algorithm for making this 
determination: 

 
 if  (((LDIR_attr & ATTR_LONG_NAME_MASK) != ATTR_LONG_NAME) && (LDIR_Ord != 0xE5)) 

{ 
 if        ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == 0x00) 
  /*   Found a file.   */ 
 else if ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == ATTR_DIRECTORY) 
  /*   Found a directory.   */ 
 else if ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == ATTR_VOLUME_ID) 
  /*   Found a volume label.   */ 
 else 
  /*   Found an invalid directory entry.   */ 
} 

 
5. DO NOT assume that a non-zero value in the "type" field indicates a bad directory entry.  Do not 

force the "type" field to zero. 
6. Use the "checksum" field as a value to validate the directory entry.  The "first cluster" field is 

currently being set to zero, though this might change in future. 
 
Other Notes Relating to FAT Directories 
•  Long File Name directory entries are identical on all FAT types. See the preceeding sections for 

details.  
 
•  DIR_FileSize is a 32-bit field. For FAT32 volumes, your FAT file system driver must not allow a 

cluster chain to be created that is longer than 0x100000000 bytes, and the last byte of the last 
cluster in a chain that long cannot be allocated to the file. This must be done so that no file has a 
file size > 0xFFFFFFFF bytes. This is a fundamental limit of all FAT file systems. The maximum 
allowed file size on a FAT volume is 0xFFFFFFFF (4,294,967,295) bytes. 

 
•  Similarly, a FAT file system driver must not allow a directory (a file that is actually a container for 

other files) to be larger than 65,536 * 32 (2,097,152) bytes.  
 
NOTE: This limit does not apply to the number of files in the directory. This limit is on the size of 
the directory itself and has nothing to do with the content of the directory. There are two reasons 
for this limit: 

 
1. Because FAT directories are not sorted or indexed, it is a bad idea to create huge directories; 

otherwise, operations like creating a new entry (which requires every allocated directory entry 
to be checked to verify that the name doesn’t already exist in the directory) become very slow.  
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2. There are many FAT file system drivers and disk utilities, including Microsoft’s, that expect to 
be able to count the entries in a directory using a 16-bit WORD variable. For this reason, 
directories cannot have more than 16-bits worth of entries. 

 
 



42

Crash Consistency: FSCK and Journaling

As we’ve seen thus far, the file system manages a set of data structures to
implement the expected abstractions: files, directories, and all of the other
metadata needed to support the basic abstraction that we expect from a
file system. Unlike most data structures (for example, those found in
memory of a running program), file system data structures must persist,
i.e., they must survive over the long haul, stored on devices that retain
data despite power loss (such as hard disks or flash-based SSDs).

One major challenge faced by a file system is how to update persis-
tent data structures despite the presence of a power loss or system crash.
Specifically, what happens if, right in the middle of updating on-disk
structures, someone trips over the power cord and the machine loses
power? Or the operating system encounters a bug and crashes? Because
of power losses and crashes, updating a persistent data structure can be
quite tricky, and leads to a new and interesting problem in file system
implementation, known as the crash-consistency problem.

This problem is quite simple to understand. Imagine you have to up-
date two on-disk structures, A and B, in order to complete a particular
operation. Because the disk only services a single request at a time, one
of these requests will reach the disk first (either A or B). If the system
crashes or loses power after one write completes, the on-disk structure
will be left in an inconsistent state. And thus, we have a problem that all
file systems need to solve:

THE CRUX: HOW TO UPDATE THE DISK DESPITE CRASHES

The system may crash or lose power between any two writes, and
thus the on-disk state may only partially get updated. After the crash,
the system boots and wishes to mount the file system again (in order to
access files and such). Given that crashes can occur at arbitrary points
in time, how do we ensure the file system keeps the on-disk image in a
reasonable state?

1



2 CRASH CONSISTENCY: FSCK AND JOURNALING

In this chapter, we’ll describe this problem in more detail, and look
at some methods file systems have used to overcome it. We’ll begin by
examining the approach taken by older file systems, known as fsck or the
file system checker. We’ll then turn our attention to another approach,
known as journaling (also known as write-ahead logging), a technique
which adds a little bit of overhead to each write but recovers more quickly
from crashes or power losses. We will discuss the basic machinery of
journaling, including a few different flavors of journaling that Linux ext3
[T98,PAA05] (a relatively modern journaling file system) implements.

42.1 A Detailed Example

To kick off our investigation of journaling, let’s look at an example.
We’ll need to use a workload that updates on-disk structures in some
way. Assume here that the workload is simple: the append of a single
data block to an existing file. The append is accomplished by opening the
file, calling lseek() to move the file offset to the end of the file, and then
issuing a single 4KB write to the file before closing it.

Let’s also assume we are using standard simple file system structures
on the disk, similar to file systems we have seen before. This tiny example
includes an inode bitmap (with just 8 bits, one per inode), a data bitmap
(also 8 bits, one per data block), inodes (8 total, numbered 0 to 7, and
spread across four blocks), and data blocks (8 total, numbered 0 to 7).
Here is a diagram of this file system:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v1]
Da

If you look at the structures in the picture, you can see that a single inode
is allocated (inode number 2), which is marked in the inode bitmap, and a
single allocated data block (data block 4), also marked in the data bitmap.
The inode is denoted I[v1], as it is the first version of this inode; it will
soon be updated (due to the workload described above).

Let’s peek inside this simplified inode too. Inside of I[v1], we see:

owner : remzi

permissions : read-write

size : 1

pointer : 4

pointer : null

pointer : null

pointer : null

In this simplified inode, the size of the file is 1 (it has one block al-
located), the first direct pointer points to block 4 (the first data block of
the file, Da), and all three other direct pointers are set to null (indicating
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that they are not used). Of course, real inodes have many more fields; see
previous chapters for more information.

When we append to the file, we are adding a new data block to it, and
thus must update three on-disk structures: the inode (which must point
to the new block as well as have a bigger size due to the append), the
new data block Db, and a new version of the data bitmap (call it B[v2]) to
indicate that the new data block has been allocated.

Thus, in the memory of the system, we have three blocks which we
must write to disk. The updated inode (inode version 2, or I[v2] for short)
now looks like this:

owner : remzi

permissions : read-write

size : 2

pointer : 4

pointer : 5

pointer : null

pointer : null

The updated data bitmap (B[v2]) now looks like this: 00001100. Finally,
there is the data block (Db), which is just filled with whatever it is users
put into files. Stolen music perhaps?

What we would like is for the final on-disk image of the file system to
look like this:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v2]
Da Db

To achieve this transition, the file system must perform three sepa-
rate writes to the disk, one each for the inode (I[v2]), bitmap (B[v2]), and
data block (Db). Note that these writes usually don’t happen immedi-
ately when the user issues a write() system call; rather, the dirty in-
ode, bitmap, and new data will sit in main memory (in the page cache
or buffer cache) for some time first; then, when the file system finally
decides to write them to disk (after say 5 seconds or 30 seconds), the file
system will issue the requisite write requests to the disk. Unfortunately,
a crash may occur and thus interfere with these updates to the disk. In
particular, if a crash happens after one or two of these writes have taken
place, but not all three, the file system could be left in a funny state.

Crash Scenarios

To understand the problem better, let’s look at some example crash sce-
narios. Imagine only a single write succeeds; there are thus three possible
outcomes, which we list here:
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4 CRASH CONSISTENCY: FSCK AND JOURNALING

• Just the data block (Db) is written to disk. In this case, the data is
on disk, but there is no inode that points to it and no bitmap that
even says the block is allocated. Thus, it is as if the write never
occurred. This case is not a problem at all, from the perspective of

file-system crash consistency1.

• Just the updated inode (I[v2]) is written to disk. In this case, the
inode points to the disk address (5) where Db was about to be writ-
ten, but Db has not yet been written there. Thus, if we trust that
pointer, we will read garbage data from the disk (the old contents
of disk address 5).

Further, we have a new problem, which we call a file-system in-
consistency. The on-disk bitmap is telling us that data block 5 has
not been allocated, but the inode is saying that it has. The disagree-
ment between the bitmap and the inode is an inconsistency in the
data structures of the file system; to use the file system, we must
somehow resolve this problem (more on that below).

• Just the updated bitmap (B[v2]) is written to disk. In this case, the
bitmap indicates that block 5 is allocated, but there is no inode that
points to it. Thus the file system is inconsistent again; if left unre-
solved, this write would result in a space leak, as block 5 would
never be used by the file system.

There are also three more crash scenarios in this attempt to write three
blocks to disk. In these cases, two writes succeed and the last one fails:

• The inode (I[v2]) and bitmap (B[v2]) are written to disk, but not
data (Db). In this case, the file system metadata is completely con-
sistent: the inode has a pointer to block 5, the bitmap indicates that
5 is in use, and thus everything looks OK from the perspective of
the file system’s metadata. But there is one problem: 5 has garbage
in it again.

• The inode (I[v2]) and the data block (Db) are written, but not the
bitmap (B[v2]). In this case, we have the inode pointing to the cor-
rect data on disk, but again have an inconsistency between the in-
ode and the old version of the bitmap (B1). Thus, we once again
need to resolve the problem before using the file system.

• The bitmap (B[v2]) and data block (Db) are written, but not the
inode (I[v2]). In this case, we again have an inconsistency between
the inode and the data bitmap. However, even though the block
was written and the bitmap indicates its usage, we have no idea
which file it belongs to, as no inode points to the file.

1However, it might be a problem for the user, who just lost some data!
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The Crash Consistency Problem

Hopefully, from these crash scenarios, you can see the many problems
that can occur to our on-disk file system image because of crashes: we can
have inconsistency in file system data structures; we can have space leaks;
we can return garbage data to a user; and so forth. What we’d like to do
ideally is move the file system from one consistent state (e.g., before the
file got appended to) to another atomically (e.g., after the inode, bitmap,
and new data block have been written to disk). Unfortunately, we can’t
do this easily because the disk only commits one write at a time, and
crashes or power loss may occur between these updates. We call this
general problem the crash-consistency problem (we could also call it the
consistent-update problem).

42.2 Solution #1: The File System Checker

Early file systems took a simple approach to crash consistency. Basi-
cally, they decided to let inconsistencies happen and then fix them later
(when rebooting). A classic example of this lazy approach is found in a

tool that does this: fsck2. fsck is a UNIX tool for finding such inconsis-
tencies and repairing them [M86]; similar tools to check and repair a disk
partition exist on different systems. Note that such an approach can’t fix
all problems; consider, for example, the case above where the file system
looks consistent but the inode points to garbage data. The only real goal
is to make sure the file system metadata is internally consistent.

The tool fsck operates in a number of phases, as summarized in
McKusick and Kowalski’s paper [MK96]. It is run before the file system
is mounted and made available (fsck assumes that no other file-system
activity is on-going while it runs); once finished, the on-disk file system
should be consistent and thus can be made accessible to users.

Here is a basic summary of what fsck does:

• Superblock: fsck first checks if the superblock looks reasonable,
mostly doing sanity checks such as making sure the file system size
is greater than the number of blocks that have been allocated. Usu-
ally the goal of these sanity checks is to find a suspect (corrupt)
superblock; in this case, the system (or administrator) may decide
to use an alternate copy of the superblock.

• Free blocks: Next, fsck scans the inodes, indirect blocks, double
indirect blocks, etc., to build an understanding of which blocks are
currently allocated within the file system. It uses this knowledge
to produce a correct version of the allocation bitmaps; thus, if there
is any inconsistency between bitmaps and inodes, it is resolved by
trusting the information within the inodes. The same type of check
is performed for all the inodes, making sure that all inodes that look
like they are in use are marked as such in the inode bitmaps.

2Pronounced either “eff-ess-see-kay”, “eff-ess-check”, or, if you don’t like the tool, “eff-
suck”. Yes, serious professional people use this term.
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6 CRASH CONSISTENCY: FSCK AND JOURNALING

• Inode state: Each inode is checked for corruption or other prob-
lems. For example, fsck makes sure that each allocated inode has
a valid type field (e.g., regular file, directory, symbolic link, etc.). If
there are problems with the inode fields that are not easily fixed, the
inode is considered suspect and cleared by fsck; the inode bitmap
is correspondingly updated.

• Inode links: fsck also verifies the link count of each allocated in-
ode. As you may recall, the link count indicates the number of dif-
ferent directories that contain a reference (i.e., a link) to this par-
ticular file. To verify the link count, fsck scans through the en-
tire directory tree, starting at the root directory, and builds its own
link counts for every file and directory in the file system. If there
is a mismatch between the newly-calculated count and that found
within an inode, corrective action must be taken, usually by fixing
the count within the inode. If an allocated inode is discovered but
no directory refers to it, it is moved to the lost+found directory.

• Duplicates: fsck also checks for duplicate pointers, i.e., cases where
two different inodes refer to the same block. If one inode is obvi-
ously bad, it may be cleared. Alternately, the pointed-to block could
be copied, thus giving each inode its own copy as desired.

• Bad blocks: A check for bad block pointers is also performed while
scanning through the list of all pointers. A pointer is considered
“bad” if it obviously points to something outside its valid range,
e.g., it has an address that refers to a block greater than the parti-
tion size. In this case, fsck can’t do anything too intelligent; it just
removes (clears) the pointer from the inode or indirect block.

• Directory checks: fsck does not understand the contents of user
files; however, directories hold specifically formatted information
created by the file system itself. Thus, fsck performs additional
integrity checks on the contents of each directory, making sure that
“.” and “..” are the first entries, that each inode referred to in a
directory entry is allocated, and ensuring that no directory is linked
to more than once in the entire hierarchy.

As you can see, building a working fsck requires intricate knowledge
of the file system; making sure such a piece of code works correctly in all
cases can be challenging [G+08]. However, fsck (and similar approaches)
have a bigger and perhaps more fundamental problem: they are too slow.
With a very large disk volume, scanning the entire disk to find all the
allocated blocks and read the entire directory tree may take many minutes
or hours. Performance of fsck, as disks grew in capacity and RAIDs
grew in popularity, became prohibitive (despite recent advances [M+13]).

At a higher level, the basic premise of fsck seems just a tad irra-
tional. Consider our example above, where just three blocks are written
to the disk; it is incredibly expensive to scan the entire disk to fix prob-
lems that occurred during an update of just three blocks. This situation is
akin to dropping your keys on the floor in your bedroom, and then com-
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CRASH CONSISTENCY: FSCK AND JOURNALING 7

mencing a search-the-entire-house-for-keys recovery algorithm, starting in
the basement and working your way through every room. It works but is
wasteful. Thus, as disks (and RAIDs) grew, researchers and practitioners
started to look for other solutions.

42.3 Solution #2: Journaling (or Write-Ahead Logging)

Probably the most popular solution to the consistent update problem
is to steal an idea from the world of database management systems. That
idea, known as write-ahead logging, was invented to address exactly this
type of problem. In file systems, we usually call write-ahead logging jour-
naling for historical reasons. The first file system to do this was Cedar
[H87], though many modern file systems use the idea, including Linux
ext3 and ext4, reiserfs, IBM’s JFS, SGI’s XFS, and Windows NTFS.

The basic idea is as follows. When updating the disk, before over-
writing the structures in place, first write down a little note (somewhere
else on the disk, in a well-known location) describing what you are about
to do. Writing this note is the “write ahead” part, and we write it to a
structure that we organize as a “log”; hence, write-ahead logging.

By writing the note to disk, you are guaranteeing that if a crash takes
places during the update (overwrite) of the structures you are updating,
you can go back and look at the note you made and try again; thus, you
will know exactly what to fix (and how to fix it) after a crash, instead
of having to scan the entire disk. By design, journaling thus adds a bit
of work during updates to greatly reduce the amount of work required
during recovery.

We’ll now describe how Linux ext3, a popular journaling file system,
incorporates journaling into the file system. Most of the on-disk struc-
tures are identical to Linux ext2, e.g., the disk is divided into block groups,
and each block group has an inode and data bitmap as well as inodes and
data blocks. The new key structure is the journal itself, which occupies
some small amount of space within the partition or on another device.
Thus, an ext2 file system (without journaling) looks like this:

Super Group 0 Group 1 . . . Group N

Assuming the journal is placed within the same file system image
(though sometimes it is placed on a separate device, or as a file within
the file system), an ext3 file system with a journal looks like this:

Super Journal Group 0 Group 1 . . . Group N

The real difference is just the presence of the journal, and of course,
how it is used.
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8 CRASH CONSISTENCY: FSCK AND JOURNALING

Data Journaling

Let’s look at a simple example to understand how data journaling works.
Data journaling is available as a mode with the Linux ext3 file system,
from which much of this discussion is based.

Say we have our canonical update again, where we wish to write the
inode (I[v2]), bitmap (B[v2]), and data block (Db) to disk again. Before
writing them to their final disk locations, we are now first going to write
them to the log (a.k.a. journal). This is what this will look like in the log:

J
o

u
rn

a
l

TxB I[v2] B[v2] Db TxE

You can see we have written five blocks here. The transaction begin
(TxB) tells us about this update, including information about the pend-
ing update to the file system (e.g., the final addresses of the blocks I[v2],
B[v2], and Db), as well as some kind of transaction identifier (TID). The
middle three blocks just contain the exact contents of the blocks them-
selves; this is known as physical logging as we are putting the exact
physical contents of the update in the journal (an alternate idea, logi-
cal logging, puts a more compact logical representation of the update in
the journal, e.g., “this update wishes to append data block Db to file X”,
which is a little more complex but can save space in the log and perhaps
improve performance). The final block (TxE) is a marker of the end of this
transaction, and will also contain the TID.

Once this transaction is safely on disk, we are ready to overwrite the
old structures in the file system; this process is called checkpointing.
Thus, to checkpoint the file system (i.e., bring it up to date with the pend-
ing update in the journal), we issue the writes I[v2], B[v2], and Db to
their disk locations as seen above; if these writes complete successfully,
we have successfully checkpointed the file system and are basically done.
Thus, our initial sequence of operations:

1. Journal write: Write the transaction, including a transaction-begin
block, all pending data and metadata updates, and a transaction-
end block, to the log; wait for these writes to complete.

2. Checkpoint: Write the pending metadata and data updates to their
final locations in the file system.

In our example, we would write TxB, I[v2], B[v2], Db, and TxE to the
journal first. When these writes complete, we would complete the update
by checkpointing I[v2], B[v2], and Db, to their final locations on disk.

Things get a little trickier when a crash occurs during the writes to
the journal. Here, we are trying to write the set of blocks in the transac-
tion (e.g., TxB, I[v2], B[v2], Db, TxE) to disk. One simple way to do this
would be to issue each one at a time, waiting for each to complete, and
then issuing the next. However, this is slow. Ideally, we’d like to issue
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ASIDE: FORCING WRITES TO DISK

To enforce ordering between two disk writes, modern file systems have
to take a few extra precautions. In olden times, forcing ordering between
two writes, A and B, was easy: just issue the write of A to the disk, wait
for the disk to interrupt the OS when the write is complete, and then issue
the write of B.

Things got slightly more complex due to the increased use of write caches
within disks. With write buffering enabled (sometimes called immediate
reporting), a disk will inform the OS the write is complete when it simply
has been placed in the disk’s memory cache, and has not yet reached
disk. If the OS then issues a subsequent write, it is not guaranteed to
reach the disk after previous writes; thus ordering between writes is not
preserved. One solution is to disable write buffering. However, more
modern systems take extra precautions and issue explicit write barriers;
such a barrier, when it completes, guarantees that all writes issued before
the barrier will reach disk before any writes issued after the barrier.

All of this machinery requires a great deal of trust in the correct oper-
ation of the disk. Unfortunately, recent research shows that some disk
manufacturers, in an effort to deliver “higher performing” disks, explic-
itly ignore write-barrier requests, thus making the disks seemingly run
faster but at the risk of incorrect operation [C+13, R+11]. As Kahan said,
the fast almost always beats out the slow, even if the fast is wrong.

all five block writes at once, as this would turn five writes into a single
sequential write and thus be faster. However, this is unsafe, for the fol-
lowing reason: given such a big write, the disk internally may perform
scheduling and complete small pieces of the big write in any order. Thus,
the disk internally may (1) write TxB, I[v2], B[v2], and TxE and only later
(2) write Db. Unfortunately, if the disk loses power between (1) and (2),
this is what ends up on disk:

J
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TxB
id=1

I[v2] B[v2] ?? TxE
id=1

Why is this a problem? Well, the transaction looks like a valid trans-
action (it has a begin and an end with matching sequence numbers). Fur-
ther, the file system can’t look at that fourth block and know it is wrong;
after all, it is arbitrary user data. Thus, if the system now reboots and
runs recovery, it will replay this transaction, and ignorantly copy the con-
tents of the garbage block ’??’ to the location where Db is supposed to
live. This is bad for arbitrary user data in a file; it is much worse if it hap-
pens to a critical piece of file system, such as the superblock, which could
render the file system unmountable.
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10 CRASH CONSISTENCY: FSCK AND JOURNALING

ASIDE: OPTIMIZING LOG WRITES

You may have noticed a particular inefficiency of writing to the log.
Namely, the file system first has to write out the transaction-begin block
and contents of the transaction; only after these writes complete can the
file system send the transaction-end block to disk. The performance im-
pact is clear, if you think about how a disk works: usually an extra rota-
tion is incurred (think about why).

One of our former graduate students, Vijayan Prabhakaran, had a simple
idea to fix this problem [P+05]. When writing a transaction to the journal,
include a checksum of the contents of the journal in the begin and end
blocks. Doing so enables the file system to write the entire transaction at
once, without incurring a wait; if, during recovery, the file system sees
a mismatch in the computed checksum versus the stored checksum in
the transaction, it can conclude that a crash occurred during the write
of the transaction and thus discard the file-system update. Thus, with a
small tweak in the write protocol and recovery system, a file system can
achieve faster common-case performance; on top of that, the system is
slightly more reliable, as any reads from the journal are now protected by
a checksum.

This simple fix was attractive enough to gain the notice of Linux file sys-
tem developers, who then incorporated it into the next generation Linux
file system, called (you guessed it!) Linux ext4. It now ships on mil-
lions of machines worldwide, including the Android handheld platform.
Thus, every time you write to disk on many Linux-based systems, a little
code developed at Wisconsin makes your system a little faster and more
reliable.

To avoid this problem, the file system issues the transactional write in
two steps. First, it writes all blocks except the TxE block to the journal,
issuing these writes all at once. When these writes complete, the journal
will look something like this (assuming our append workload again):

J
o
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TxB
id=1

I[v2] B[v2] Db

When those writes complete, the file system issues the write of the TxE
block, thus leaving the journal in this final, safe state:

J
o

u
rn
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l

TxB
id=1

I[v2] B[v2] Db TxE
id=1

An important aspect of this process is the atomicity guarantee pro-
vided by the disk. It turns out that the disk guarantees that any 512-byte
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write will either happen or not (and never be half-written); thus, to make
sure the write of TxE is atomic, one should make it a single 512-byte block.
Thus, our current protocol to update the file system, with each of its three
phases labeled:

1. Journal write: Write the contents of the transaction (including TxB,
metadata, and data) to the log; wait for these writes to complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for write to complete; transaction is said to be
committed.

3. Checkpoint: Write the contents of the update (metadata and data)
to their final on-disk locations.

Recovery

Let’s now understand how a file system can use the contents of the jour-
nal to recover from a crash. A crash may happen at any time during this
sequence of updates. If the crash happens before the transaction is writ-
ten safely to the log (i.e., before Step 2 above completes), then our job
is easy: the pending update is simply skipped. If the crash happens af-
ter the transaction has committed to the log, but before the checkpoint is
complete, the file system can recover the update as follows. When the
system boots, the file system recovery process will scan the log and look
for transactions that have committed to the disk; these transactions are
thus replayed (in order), with the file system again attempting to write
out the blocks in the transaction to their final on-disk locations. This form
of logging is one of the simplest forms there is, and is called redo logging.
By recovering the committed transactions in the journal, the file system
ensures that the on-disk structures are consistent, and thus can proceed
by mounting the file system and readying itself for new requests.

Note that it is fine for a crash to happen at any point during check-
pointing, even after some of the updates to the final locations of the blocks
have completed. In the worst case, some of these updates are simply per-
formed again during recovery. Because recovery is a rare operation (only
taking place after an unexpected system crash), a few redundant writes

are nothing to worry about3.

Batching Log Updates

You might have noticed that the basic protocol could add a lot of extra
disk traffic. For example, imagine we create two files in a row, called
file1 and file2, in the same directory. To create one file, one has to
update a number of on-disk structures, minimally including: the inode
bitmap (to allocate a new inode), the newly-created inode of the file, the

3Unless you worry about everything, in which case we can’t help you. Stop worrying so
much, it is unhealthy! But now you’re probably worried about over-worrying.
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12 CRASH CONSISTENCY: FSCK AND JOURNALING

data block of the parent directory containing the new directory entry, as
well as the parent directory inode (which now has a new modification
time). With journaling, we logically commit all of this information to the
journal for each of our two file creations; because the files are in the same
directory, and assuming they even have inodes within the same inode
block, this means that if we’re not careful, we’ll end up writing these
same blocks over and over.

To remedy this problem, some file systems do not commit each update
to disk one at a time (e.g., Linux ext3); rather, one can buffer all updates
into a global transaction. In our example above, when the two files are
created, the file system just marks the in-memory inode bitmap, inodes
of the files, directory data, and directory inode as dirty, and adds them to
the list of blocks that form the current transaction. When it is finally time
to write these blocks to disk (say, after a timeout of 5 seconds), this single
global transaction is committed containing all of the updates described
above. Thus, by buffering updates, a file system can avoid excessive write
traffic to disk in many cases.

Making The Log Finite

We thus have arrived at a basic protocol for updating file-system on-disk
structures. The file system buffers updates in memory for some time;
when it is finally time to write to disk, the file system first carefully writes
out the details of the transaction to the journal (a.k.a. write-ahead log);
after the transaction is complete, the file system checkpoints those blocks
to their final locations on disk.

However, the log is of a finite size. If we keep adding transactions to
it (as in this figure), it will soon fill. What do you think happens then?

J
o
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Tx1 Tx2 Tx3 Tx4 Tx5 ...

Two problems arise when the log becomes full. The first is simpler,
but less critical: the larger the log, the longer recovery will take, as the
recovery process must replay all the transactions within the log (in order)
to recover. The second is more of an issue: when the log is full (or nearly
full), no further transactions can be committed to the disk, thus making
the file system “less than useful” (i.e., useless).

To address these problems, journaling file systems treat the log as a
circular data structure, re-using it over and over; this is why the journal
is sometimes referred to as a circular log. To do so, the file system must
take action some time after a checkpoint. Specifically, once a transaction
has been checkpointed, the file system should free the space it was occu-
pying within the journal, allowing the log space to be reused. There are
many ways to achieve this end; for example, you could simply mark the
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oldest and newest non-checkpointed transactions in the log in a journal
superblock; all other space is free. Here is a graphical depiction:

J
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Journal

Super
Tx1 Tx2 Tx3 Tx4 Tx5 ...

In the journal superblock (not to be confused with the main file system
superblock), the journaling system records enough information to know
which transactions have not yet been checkpointed, and thus reduces re-
covery time as well as enables re-use of the log in a circular fashion. And
thus we add another step to our basic protocol:

1. Journal write: Write the contents of the transaction (containing TxB
and the contents of the update) to the log; wait for these writes to
complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction is
now committed.

3. Checkpoint: Write the contents of the update to their final locations
within the file system.

4. Free: Some time later, mark the transaction free in the journal by
updating the journal superblock.

Thus we have our final data journaling protocol. But there is still a
problem: we are writing each data block to the disk twice, which is a
heavy cost to pay, especially for something as rare as a system crash. Can
you figure out a way to retain consistency without writing data twice?

Metadata Journaling

Although recovery is now fast (scanning the journal and replaying a few
transactions as opposed to scanning the entire disk), normal operation
of the file system is slower than we might desire. In particular, for each
write to disk, we are now also writing to the journal first, thus doubling
write traffic; this doubling is especially painful during sequential write
workloads, which now will proceed at half the peak write bandwidth of
the drive. Further, between writes to the journal and writes to the main
file system, there is a costly seek, which adds noticeable overhead for
some workloads.

Because of the high cost of writing every data block to disk twice, peo-
ple have tried a few different things in order to speed up performance.
For example, the mode of journaling we described above is often called
data journaling (as in Linux ext3), as it journals all user data (in addition
to the metadata of the file system). A simpler (and more common) form
of journaling is sometimes called ordered journaling (or just metadata
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14 CRASH CONSISTENCY: FSCK AND JOURNALING

journaling), and it is nearly the same, except that user data is not writ-
ten to the journal. Thus, when performing the same update as above, the
following information would be written to the journal:

J
o

u
rn

a
l

TxB I[v2] B[v2] TxE

The data block Db, previously written to the log, would instead be
written to the file system proper, avoiding the extra write; given that most
I/O traffic to the disk is data, not writing data twice substantially reduces
the I/O load of journaling. The modification does raise an interesting
question, though: when should we write data blocks to disk?

Let’s again consider our example append of a file to understand the
problem better. The update consists of three blocks: I[v2], B[v2], and
Db. The first two are both metadata and will be logged and then check-
pointed; the latter will only be written once to the file system. When
should we write Db to disk? Does it matter?

As it turns out, the ordering of the data write does matter for metadata-
only journaling. For example, what if we write Db to disk after the trans-
action (containing I[v2] and B[v2]) completes? Unfortunately, this ap-
proach has a problem: the file system is consistent but I[v2] may end up
pointing to garbage data. Specifically, consider the case where I[v2] and
B[v2] are written but Db did not make it to disk. The file system will then
try to recover. Because Db is not in the log, the file system will replay
writes to I[v2] and B[v2], and produce a consistent file system (from the
perspective of file-system metadata). However, I[v2] will be pointing to
garbage data, i.e., at whatever was in the slot where Db was headed.

To ensure this situation does not arise, some file systems (e.g., Linux
ext3) write data blocks (of regular files) to the disk first, before related
metadata is written to disk. Specifically, the protocol is as follows:

1. Data write: Write data to final location; wait for completion
(the wait is optional; see below for details).

2. Journal metadata write: Write the begin block and metadata to the
log; wait for writes to complete.

3. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction (in-
cluding data) is now committed.

4. Checkpoint metadata: Write the contents of the metadata update
to their final locations within the file system.

5. Free: Later, mark the transaction free in journal superblock.

By forcing the data write first, a file system can guarantee that a pointer
will never point to garbage. Indeed, this rule of “write the pointed-to
object before the object that points to it” is at the core of crash consis-
tency, and is exploited even further by other crash consistency schemes
[GP94] (see below for details).
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In most systems, metadata journaling (akin to ordered journaling of
ext3) is more popular than full data journaling. For example, Windows
NTFS and SGI’s XFS both use some form of metadata journaling. Linux
ext3 gives you the option of choosing either data, ordered, or unordered
modes (in unordered mode, data can be written at any time). All of these
modes keep metadata consistent; they vary in their semantics for data.

Finally, note that forcing the data write to complete (Step 1) before
issuing writes to the journal (Step 2) is not required for correctness, as
indicated in the protocol above. Specifically, it would be fine to issue data
writes as well as the transaction-begin block and metadata to the journal;
the only real requirement is that Steps 1 and 2 complete before the issuing
of the journal commit block (Step 3).

Tricky Case: Block Reuse

There are some interesting corner cases that make journaling more tricky,
and thus are worth discussing. A number of them revolve around block
reuse; as Stephen Tweedie (one of the main forces behind ext3) said:

“What’s the hideous part of the entire system? ... It’s deleting files.
Everything to do with delete is hairy. Everything to do with delete...
you have nightmares around what happens if blocks get deleted and
then reallocated.” [T00]

The particular example Tweedie gives is as follows. Suppose you are
using some form of metadata journaling (and thus data blocks for files
are not journaled). Let’s say you have a directory called foo. The user
adds an entry to foo (say by creating a file), and thus the contents of
foo (because directories are considered metadata) are written to the log;
assume the location of the foo directory data is block 1000. The log thus
contains something like this:

J
o

u
rn

a
l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

At this point, the user deletes everything in the directory as well as the
directory itself, freeing up block 1000 for reuse. Finally, the user creates a
new file (say foobar), which ends up reusing the same block (1000) that
used to belong to foo. The inode of foobar is committed to disk, as is
its data; note, however, because metadata journaling is in use, only the
inode of foobar is committed to the journal; the newly-written data in
block 1000 in the file foobar is not journaled.

J
o

u
rn

a
l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

TxB
id=2

I[foobar]
ptr:1000

TxE
id=2
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16 CRASH CONSISTENCY: FSCK AND JOURNALING

Journal File System
TxB Contents TxE Metadata Data

(metadata) (data)

issue issue issue
complete

complete
complete

issue
complete

issue issue
complete

complete

Figure 42.1: Data Journaling Timeline

Now assume a crash occurs and all of this information is still in the
log. During replay, the recovery process simply replays everything in
the log, including the write of directory data in block 1000; the replay
thus overwrites the user data of current file foobar with old directory
contents! Clearly this is not a correct recovery action, and certainly it will
be a surprise to the user when reading the file foobar.

There are a number of solutions to this problem. One could, for ex-
ample, never reuse blocks until the delete of said blocks is checkpointed
out of the journal. What Linux ext3 does instead is to add a new type
of record to the journal, known as a revoke record. In the case above,
deleting the directory would cause a revoke record to be written to the
journal. When replaying the journal, the system first scans for such re-
voke records; any such revoked data is never replayed, thus avoiding the
problem mentioned above.

Wrapping Up Journaling: A Timeline

Before ending our discussion of journaling, we summarize the protocols
we have discussed with timelines depicting each of them. Figure 42.1
shows the protocol when journaling data as well as metadata, whereas
Figure 42.2 shows the protocol when journaling only metadata.

In each figure, time increases in the downward direction, and each row
in the figure shows the logical time that a write can be issued or might
complete. For example, in the data journaling protocol (Figure 42.1), the
writes of the transaction begin block (TxB) and the contents of the trans-
action can logically be issued at the same time, and thus can be completed
in any order; however, the write to the transaction end block (TxE) must
not be issued until said previous writes complete. Similarly, the check-
pointing writes to data and metadata blocks cannot begin until the trans-
action end block has committed. Horizontal dashed lines show where
write-ordering requirements must be obeyed.

A similar timeline is shown for the metadata journaling protocol. Note
that the data write can logically be issued at the same time as the writes
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Journal File System
TxB Contents TxE Metadata Data

(metadata)

issue issue issue
complete

complete
complete

issue
complete

issue
complete

Figure 42.2: Metadata Journaling Timeline

to the transaction begin and the contents of the journal; however, it must
be issued and complete before the transaction end has been issued.

Finally, note that the time of completion marked for each write in the
timelines is arbitrary. In a real system, completion time is determined by
the I/O subsystem, which may reorder writes to improve performance.
The only guarantees about ordering that we have are those that must
be enforced for protocol correctness (and are shown via the horizontal
dashed lines in the figures).

42.4 Solution #3: Other Approaches

We’ve thus far described two options in keeping file system metadata
consistent: a lazy approach based on fsck, and a more active approach
known as journaling. However, these are not the only two approaches.
One such approach, known as Soft Updates [GP94], was introduced by
Ganger and Patt. This approach carefully orders all writes to the file sys-
tem to ensure that the on-disk structures are never left in an inconsis-
tent state. For example, by writing a pointed-to data block to disk before
the inode that points to it, we can ensure that the inode never points to
garbage; similar rules can be derived for all the structures of the file sys-
tem. Implementing Soft Updates can be a challenge, however; whereas
the journaling layer described above can be implemented with relatively
little knowledge of the exact file system structures, Soft Updates requires
intricate knowledge of each file system data structure and thus adds a fair
amount of complexity to the system.

Another approach is known as copy-on-write (yes, COW), and is used
in a number of popular file systems, including Sun’s ZFS [B07]. This tech-
nique never overwrites files or directories in place; rather, it places new
updates to previously unused locations on disk. After a number of up-
dates are completed, COW file systems flip the root structure of the file
system to include pointers to the newly updated structures. Doing so
makes keeping the file system consistent straightforward. We’ll be learn-
ing more about this technique when we discuss the log-structured file
system (LFS) in a future chapter; LFS is an early example of a COW.
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18 CRASH CONSISTENCY: FSCK AND JOURNALING

Another approach is one we just developed here at Wisconsin. In this
technique, entitled backpointer-based consistency (or BBC), no ordering
is enforced between writes. To achieve consistency, an additional back
pointer is added to every block in the system; for example, each data
block has a reference to the inode to which it belongs. When accessing
a file, the file system can determine if the file is consistent by checking if
the forward pointer (e.g., the address in the inode or direct block) points
to a block that refers back to it. If so, everything must have safely reached
disk and thus the file is consistent; if not, the file is inconsistent, and an
error is returned. By adding back pointers to the file system, a new form
of lazy crash consistency can be attained [C+12].

Finally, we also have explored techniques to reduce the number of
times a journal protocol has to wait for disk writes to complete. Entitled
optimistic crash consistency [C+13], this new approach issues as many
writes to disk as possible and uses a generalized form of the transaction
checksum [P+05], as well as a few other techniques, to detect inconsisten-
cies should they arise. For some workloads, these optimistic techniques
can improve performance by an order of magnitude. However, to truly
function well, a slightly different disk interface is required [C+13].

42.5 Summary

We have introduced the problem of crash consistency, and discussed
various approaches to attacking this problem. The older approach of
building a file system checker works but is likely too slow to recover on
modern systems. Thus, many file systems now use journaling. Journaling
reduces recovery time from O(size-of-the-disk-volume) to O(size-of-the-
log), thus speeding recovery substantially after a crash and restart. For
this reason, many modern file systems use journaling. We have also seen
that journaling can come in many different forms; the most commonly
used is ordered metadata journaling, which reduces the amount of traffic
to the journal while still preserving reasonable consistency guarantees for
both file system metadata as well as user data.
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Key-Value (KV) Storage
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Why key-value stores?

➢ The amount of data is growing exponentially

⚫ Facebook adds billions of new content every day

⚫ Hundreds of billions of e-mail messages are sent 

worldwide every day 

⚫ It is estimated that the total volume of global data will 

reach 40ZB in 2020
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Why key-value stores?

➢ Data format and storage requirement

⚫ Unstructured data is very common

⚫ In web application, unstructured data requires efficient 

write, query and scan service support
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Why key-value stores?

➢ The RDBMS is facing challenges

⚫ RDBMS can’t meet demand:

⚫ Management of massive unstructured data

⚫ High concurrent access to data

⚫ High scalability and high availability

Massive unstructured data

High concurrent access 

High scalability 
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Why key-value stores?

➢ The file system is facing challenges

⚫ Both file system scalability and directory tree management 

face new challenges

Massive unstructured  

small data 

The management mode 

of the directory tree

High overhead  & Bad scalability
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⚫ A new storage architecture

⚫ A flexible type of NoSQL database

⚫ A data storage paradigm 

What are key-value stores

➢ KV stores
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⚫ web indexing, e-commerce, social networks

What are key-value stores

➢ Applications of key-value stores

Social network E-commerce Online game Recommendation system
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Google Facebook Apache PingCAP

➢ LSM-tree based KV stores are most common

What are key-value stores

⚫ optimize for write intensive workloads

⚫ widely deployed

⚫ BigTable and LevelDB at Google

⚫ HBase, Cassandra and RocksDB at FaceBook
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✓It buffers and sorts data in C0, then writes into C1 on disk sequentially

✓When Ci is full, it merges with Ci+1, then writes into Ci+1 

LSM-tree

➢ LSM-tree structure

<Key, Value>

<Key, Value>

<Key, Value>

<Key, Value>
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Level 0

Level 1

Level 6

… …

Memory

Disk

Level 2 …

…

Memtable
Immutable

Memtable
SSTable

Read/Write Process
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Bloom Filter

➢How to quickly determine the existence of a kv

pair in each SSTable?

• Key comparison is slow

• Bloom filter

Bloom filters have false positive with rate 1 − 𝑒−
𝑘

𝑏

𝑘

, 

minimized to be 𝟎. 𝟔𝟏𝟖𝟓𝒃 when 𝑘 = 𝑙𝑛2 × 𝑏

12



Level 0

Level 1

Level 6

… …

Memory

Disk

Level 2

…

…

1…800 100…1000

2…500 501-750 762…1000

1…300 305..500 502…752 782…1000

1…100 100…200 201..300 301..400 901…1000

Get key=763 Bloom filter Bloom filter

Bloom filter Bloom filter

…

With the Help of Bloom Filter

False positive incurs extra I/O requests
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(database sizes 1 GB and 100 GB. Key size 16 B and value size 1 KB)

(From Wisckey @ FAST ’16)

➢ RA/ WA

I/O Amplification in LSM-tree
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➢ Wisckey (FAST’16)

• Separates values from keys

• Values are stored in a separate log file

• Keys are stored in an LSM-tree with a addr pointer 

Key-Value Separation
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➢ Compared with LeveDB

Evaluation

Random Load

Key: 16B, Value: 64B to 256KB

Random Lookup

Key: 16B, Value: 64B to 256KB

It improves a lot, especially when values are large.
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[1]VLDB ’10 FlashStore [2]SIGMOD ’11 SkimpyStash [3]SOSP ’11 SILT

[4]MSST ’12 BloomStore(Bloom-Filter based memory-efficient )              [5]SIGMOD ‘12 bLSM

[6]EuroSys ’14 LOCS(on open-channel SSD) [7]ATC ’15 LSM-trie

[8]MSST’15 Atlas(Baidu’s kv store)     

[9]FAST ’16  WiscKey

[10]ATC ’17  TRIAD

[11]SOSP ’17 PebblesDB(Fragmented LSM Trees)                                    

[12]ATC ’17  HiKV (hybrid index on DRAM-NVM) 

[13]CIDR ’17 Optimize Space Amplification in RocksDB

[14]SIGMOD  ’18 Dostoevesky (blanced performance) 

[15]FAST ’19 GearDB (on hard drive) 

[16]FAST ’19 SLM-DB (B+tree index on single level LSM Tree) 

[17]SOSP ’19 KVell (on NVMe SSD)

[18]ATC ’20 MatrixKV

[19]FAST ’20 HotRing (hash table in memory)

[20]FAST ’21 SpanDB (on NVMe SSD)

[21]FAST ’21 REMIX (range index)

[22]VLDB ’21 Viper (hash table for persistent memory)

[23]ATC ’21 DiffKV

[24]FAST ’22 DEPART

Other Related Works

➢ Related works
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HashKV

➢ Limitations of circular log in key-value separation

➢ Large GC overhead

• Data movements: need to write back valid KV 

• Valid KV identification: need to access LSM-tree
18



HashKV
➢Core idea

• Hash-based data grouping

• Dynamic reserved space allocation

19
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Efficient Updates in KV Storage via Hashing”. USENIX ATC 2018.



HashKV

➢HashKV achieves 3.1-4.7x throughput of vLog

and reduces the write size by 30.1-57.3%
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ElasticBF

➢ False positive of BF

• 0.6185b (b: bits-per-key)

➢ Reducing False Positive Rate
• Increase the bits-per-key used by all Bloom filters

• Large memory space overhead

Bits-per-key 2bits 3bits 4bits 5bits 6bits

False positive rate 40% 23.7% 14.7% 9.2% 5.6%

Size Database size Bits-per-key Memory cost

100B 10TB(Level7) 8 100GB

With limited memory space, how to reduce extra I/O requests 

caused by false positive of Bloom filter so as to improve read performance? 
21



ElasticBF：Access Locality

➢ Access frequency of SSTables in low levels are higher 

➢ Unevenness of access frequency is very common in the same level

Key-value pair size Size of database Benchmark Number of read requests

1KB 100GB YCSB[1] 1 million
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ElasticBF

➢Main idea

• Hot SSTables

• Allocate more bits per key to reduce false positive rate

• Cold SSTables

• Allocate fewer bits per key to save memory space

Separability

0.6185b/n
n
= 0.6185𝑏

Non-exist as long as one filter 

unit gives negative return

23
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Hotness Awareness for Boosting Read Performance in Large Key-Value Stores". USENIX ATC 2019.



ElasticBF

➢Key issues/challenges

• How to design an adjusting rule to determine the most 

appropriate number of filter units for each SSTable? 

• How to realize a dynamic adjustment with small 

overhead?

Maintain a MQ in memory

Minimize extra I/Os with hotness awareness

24



Dynamic Adjustment

➢Multiple LRU lists in memory
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Experiment Results

➢ Different workloads 

1.84x-2.24x

The number of I/O requests for data access is greatly reduced
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DiffKV: Basics

27

…

…

…

Immutable

MemTable
MemTable

Memory

Disk

· · · · · 

…

Sorted Group

L0

L1

Ln

SSTable

➢Store keys and values together

• Keys and values are fully sorted in each level

• Compaction across levels → high I/O amplifications



Relaxing Fully-Sorted 

Ordering

28

➢Each level is not necessarily fully sorted by keys

• e.g., PebblesDB [SOSP’17], Dostoevsky 

[SIGMOD’18], etc.

• Support efficient writes, but sacrifice reads and scans

..

· · · · · ·

…

…… …

… …

Guard

L0

L1

Ln

Sorted GroupSSTable

Immutable

MemTable
MemTable

Memory

Disk

Fragmented 

LSM-tree in 

PebblesDB



KV Separation

➢Store keys and values separately

• e.g., WiscKey, HashKV, Titan, Bourbon, etc.

• Support efficient writes and reads, but have poor

scan performance
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Immutable

MemTable
MemTable

Memory

Disk
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…

· · · · ·
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values

Append-

only log

…

KV separation

L0

Ln

L1

Sorted GroupSSTable

<key,v_loc>

WiscKey



Trade-off Analysis

➢Are the optimizations suitable for all conditions?

• Relax fully-sorted ordering

• Efficient in small-to-medium values

• KV separation

• Suitable for large values

30
Trade-offs between reads/writes and scans



……

DiffKV

➢Decouple keys and values

• vTree: a multiple-level tree; each level has multiple 

sorted groups 

• Values in a level are not fully sorted and have 

overlapped key ranges

31

…

Memory

Disk

MemTable

Li SSTable SSTable

<Key, Value> 

<Value> <key> 

Manage the order of values!

vTable vTable

Partially 

sorted in 

each level

vLi



Microbenchmarks of DiffKV

➢ Compared to RocksDB and PebblesDB

• 2.7-3.8x inserts; 2.3-3.7x updates; 2.6-3.4x reads

• Comparable scan performance

➢ Compared to Titan

• 3.2x scans; up to 1.7x updates; 43.2% lower scan latency

➢ DiffKV has acceptable space usage

32
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Summary on KV

➢Key-value stores are common

• LSM-tree is the basic structure

• Large read and write amplifications

➢Research efforts

• New architectures to reduce read/write amplification

• I/O scheduling and optimizations

• Leverage new hardware: NVRAM/SSD

• Application-specific design/optimization

• Distributed KV stores

• …
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Graph Systems
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Graphs are common

Online Social NetworkWeb Graph

Music / Movie Online shops
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Graphs are common

Protein Molecular Network City Traffic Network Router Network
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Graph Stucture

➢Graph

• A set of vertices and edges

Undirected Graph Directed Graph Weighted Undirected Graph
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Large scale of graph data

➢Space requirement
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➢Real life graphs

• Imbalanced degree distribution

• Power law distribution

• Complicated structure 

• Poor locality

Characteristics for graph data
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Graph Processing System
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Graphs in General File System
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( 1, 2 )
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( 3, 6 )

( 4, 5 )

( 5, 6 )

( 6, 4 )

Edge list is stored in a file

BFS

Need a lot of 

random disk 

accesses
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Graph Processing System

➢GraphChi

• The first single-PC graph process system

Aapo Kyrola, Guy Blelloch, Carlos Guestrin. GraphChi: Large-Scale Graph 

Computation on Just a PC. USENIX OSDI 2012.
42



➢ Computation model

• Vertex-centric programming

• “Think like a vertex”

• Each edge and vertex is associated with a value

• Iteration-based computation

GraphChi

v
Gather

Update 

Scatter
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GraphChi

➢ PSW : intervals and shards

• Vertices are numbered from 0 to n-1

• P intervals

• sub-graph = interval of vertices

shard(1)

interval(1) interval(2) interval(P)

shard(2) shard(P)

0 9999100 700 <<partition-by>>

source destination
edge

In shards, edges 

sorted by 

source node.
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GraphChi

➢ Layout

• Shard: in-edges for interval of vertices; sorted by source-id

Shard 1

Shards are small enough to fit in memory; balanced size of shards
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<0, 1>

GraphChi

➢ Layout

• Shard: in-edges for interval of vertices; sorted by source-id
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GraphChi

➢Parallel Sliding Windows
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GraphChi

➢Other design details/implementations

• Refer to the paper and source code

• C++ implementation: 8,000 lines of code

• Java-implementation also available

Source code and examples:

http://github.com/graphchi
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➢Highly efficient data structure to store graph

• Index array: store the offset in CSR array 

• CSR array: store the out-neighbors of vertices

CSR Format

49
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➢Highly efficient data structure to store graph

• High efficiency to access out-neighbors (BFS, RW)

• E.g., access the neighbors of vertex 6

CSR Format
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Limitations

➢How to support dynamic graphs?

➢How to store attributes?

0 2 3 4 6 8 9 14 16 18 19

CSR array

Index array

1 4 2 0 0 4 5 6 8 2 3 4 5 7 2 9 6 7 8

Sequentially read the out 

neighbors of vertex 6
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Example
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Hard to support dynamic graphs

Add a new edge (0, 7) to CSR

Rewrite most part of CSR

How to support fast query on dynamic graph? 

CSR file

Index file Offsets in CSR file

Out-neighbors



Related Works

➢Single machine graph processing systems

GraphChi

OSDI

Xstream

SOSP

GridGraph

ATC

FlashGraph

FAST

Quegel

VLDB

GraphQ

ATC

CLIP

ATC

Graphene

FAST
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ODS 

ATC

CGraph

ATC

V-Part

FAST

Mosaic

Eurosys

2012 2013 2015 2016 2017 2018 2019

Graph

Walker

ATC

2020 2021

FlashMob

SOSP

ThunderRW

VLDB

DepGraph

HPCA



GraphABCD

ISCA

Related Works

➢Distributed graph processing systems

PowerGraph

OSDI

chaos

SOSP

G-Miner

Eurosys

Pregel

SIGMOD

GraphLab

UAI    

Distributed 

GraphLab

VLDB

GraphX

OSDI
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Giraph

Hadoop

Mizan

EuroSys

Lfgraph

SIGOPS

PowerLyra

EuroSys

Trinity

SIGMOD

gRouting

ATC

Gemini

OSDI

2010 2012 2013 2014 2015 2016 2018

ShenTu

SC

KnightKing

SOSP

2019 2020

GraphScope

VLDB

2021



Summary on graph systems

➢Graphs become extremely large

• Data must be kept on disk or in clusters

➢Graph systems have specific features

• Random access

• Computation models

• Application requirements

➢A large body of works…
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Thanks!
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