
Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Chapter 0
Course Overview

1

主讲老师

• 李永坤

– 教育工作背景

• 本科：中科大；博士：香港中文大学

• 中科大计算机学院副教授

– 研究方向：存储系统

• 文件系统，Key-value系统

• 内存系统

• 图计算，云计算/大数据存储等

– 合作者：
• Prof. John C.S. Lui, Prof. Patrick P.C. Lee @CUHK, Prof. Richard Ma

@NUS, Prof. Song Jiang @UTA, Prof. Yipeng Zhou @Macquarie U

• Prof. Qun Huang@PKU, Hong Xie@CQU

– 主页：http://staff.ustc.edu.cn/~ykli/

2

助教信息

• 课程主页：http://staff.ustc.edu.cn/~ykli/os2022

• QQ群：742371585（进群验证信息"学号+姓名"）

3

刘朕 liuzhenm@mail.ustc.edu.cn

邓龙 ldeng@mail.ustc.edu.cn

王霄阳 wxy1999@mail.ustc.edu.cn

毛浩宇 maohaoyu@mail.ustc.edu.cn

王志强 wzq666@mail.ustc.edu.cn

李昱祁 yuqi_lee@mail.ustc.edu.cn

李卓远 skeleton_man@mail.ustc.edu.cn

课程介绍

• 教室和时间
– 理论（60）

• 周一6-7节（14:00-15:35）& 周三3-4节（9:45-11:20）

• 3C203

– 实验（40）：待定

• 前期课程要求
– C语言

– 数据结构

• 课件
– 英文为主

– 内容主要来源于WONG Tsz Yeung博士的课件和Operating
System Concepts 教材

4

• 教材
– https://www.os-book.com/OS10/index.html

• 参考书

5

教材和参考书

课程要求

• 课堂
– 按时上课

– 教材+PPT

• 作业
– 每1-2周一次，每次5-10个题目

– 严禁抄袭，按时提交

• 实验
– ~4次

– 5-15周，地点待定

– 严禁抄袭，按时提交

6

成绩考核

• 基本遵循往年比例分配

–作业：20%

–实验：30%

–期末考试（闭卷）：50%

7

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http:staff.ustc.edu.cn/~ykli

Chapter 1
Overview of an Operating System

1

Objectives

• Overview of OS

– Overview of Computer System: Organization & Architecture

– What is an OS

– OS Operation: Interrupt-driven via system call

• Major OS Components

– Process Management

– Memory Management

– Storage Management

• Kernel Data Structures

• Misc: Computing Environments & Open-Sourced OS

What is an Operating System?

• According to your experience…

– Networking;

– Storage;

– Multimedia;

– Gaming;

– What else?

3

None of the above were about the OS!

Before we talk about OS…

Overview of Computer System
-System Organization
-Storage Structure
-System Architecture

4

Computer System Organization

• Computer-system organization

– One or more CPUs, device controllers connect through
common bus providing access to shared memory

– Concurrent execution of CPUs and devices competing for
memory cycles

Computer-System Organization

• I/O devices and the CPU can execute concurrently

• Each device controller is in charge of a particular
device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from
local buffers

• Device controller informs CPU that it has finished its
operation by causing an interrupt

Computer Startup

• bootstrap program is loaded at power-up or reboot

– Typically stored in ROM or EPROM, generally known as
firmware

– Initializes all aspects of system

– Loads operating system kernel into memory and starts
execution

• System processes or system daemons

– Run the entire time the kernel is running

– On UNIX, the first system process is “init”

• After fully booted, waits for events to occur

– Signaled by interrupt

Interrupt Handling

• Interrupt can be triggered by hardware and
software

– Hardware sends signal to CPU

– Software executes a special operation: system call

• Interrupt procedure

– CPU stops what is doing

– Execute the service routine for the interrupt

– CPU resumes

• Operating system is interrupt driven

Interrupt Timeline

Common Functions of Interrupts

• Each computer design has its own interrupt mechanism

• Interrupt transfers control to the interrupt service routine

– A table of pointers to interrupt routines, the interrupt vector, can
be used to provide necessary speed

– The table of pointers is stored in low memory

• Interrupt architecture must save the address of the
interrupted instruction

– Modern architectures store the return address on system stack

Overview of Computer System
-System Organization
-Storage Structure
-System Architecture

11

Storage Structure

• Storage systems organized in hierarchy

– Speed

– Cost

– Volatility

Storage Structure

• Main memory

– CPU can load instructions only from memory (only large
storage media that the CPU can access directly)

– Random access, typically small size and volatile

– All forms of memory provide an array of bytes

• Each byte has its own address

• Interaction: load & store (memory <-> register)

• Instruction-execution cycle

– Fetch an instruction from memory and store in register

– Decode instruction (fetch operands if necessary)

– Store result back to memory

Storage Structure

• Secondary storage – extension of main memory that
provides large nonvolatile storage capacity

– Hard disks – rigid metal or glass platters covered with
magnetic recording material

• Disk surface is logically divided into tracks, which are subdivided into
sectors

• The disk controller determines the logical interaction between the
device and the computer

– Solid-state disks – faster than hard disks, nonvolatile

• Various technologies

• Becoming more popular

Caching

• Caching – copying information into faster storage
system; main memory can be viewed as a cache for
secondary storage

• Faster storage (cache) checked first to determine if
information is there
– If it is, information used directly from the cache (fast)

– If not, data copied to cache and used there

• Cache smaller than storage being cached
– Cache management important design problem

– Cache size and replacement policy

• Important principle, performed at many levels in a
computer (in hardware, operating system, software)

I/O Structure
• Storage is only one of many types of I/O devices

• Device controller
– More than one device may be attached

– Local buffer storage & a set of registers

• Device driver: for each device controller to manage I/O,
provides uniform interface between controller and kernel

• Interrupt-driven I/O
– Device driver loads registers within the controller

– Controller examines the registers to decide what action to take

– Device controller starts data transfer to its local buffer

– Informs driver via an interrupt and returns control to OS

Direct Memory Access Structure

• Used for high-speed I/O devices able to transmit
information at close to memory speeds

• Device controller transfers blocks of data from
buffer storage directly to main memory without
CPU intervention

• Only one interrupt is generated per block, rather
than the one interrupt per byte

How a Modern Computer Works

Overview of Computer System
-System Organization
-Storage Structure
-System Architecture

19

Computer-System Architecture

• Most systems use a single general-purpose
processor

– One main CPU capable of executing general-purpose
instruction set

• May have special-purpose processors as well

– Device-specific processors: disk, keyboard, etc…

– Run a limited instruction set

– Do not run user processes

– Managed by OS or built into the hardware

Computer-System Architecture

• Multiprocessors systems grow in use and importance
– Also known as parallel systems, multicore systems

• Advantages include:
– Increased throughput

– Economy of scale: share peripherals, mass storage and
power supply

– Increased reliability – graceful degradation or fault tolerance

• Two types
– Asymmetric Multiprocessing – each processor is assigned a

specie task: boss-worker relationship

– Symmetric Multiprocessing (SMP) – each processor
performs all tasks: all processors are peers

Symmetric Multiprocessing Architecture

• Symmetric Multiprocessing (SMP)

– Result from hardware or software

– Adds CPUs to increase computing power

– Causes non-uniform memory access (NUMA)

Multicore

• Multicore: include multiple cores on a single chip

• More efficient
– On-chip communication is faster than between-chip

communication

– Less power

• Dual-core design

Clustered Systems

• Like multiprocessor systems, but multiple systems
working together

– Usually sharing storage via a storage-area network (SAN)

– Provides a high-availability service which survives failures

• Asymmetric clustering has one machine in hot-standby mode

• Symmetric clustering has multiple nodes running applications,
monitoring each other

– Some clusters are for high-performance computing (HPC)

• Applications must be written to use parallelization

– Some have distributed lock manager (DLM) to avoid
conflicting operations

Clustered Systems

What is an Operating System?

26

Where is the OS?

• Let’s start understanding an OS from this question:
Where is it?

27

Where is the OS?

• Four components of a computer system

– Hardware – provides basic computing resources (CPU,
memory, I/O devices)

– Users: People, machines, other computers

– App. programs – define the ways in which the sys.
resources are used to solve the computing problems

• Word processors, compilers, web browsers, database systems,
video games, etc.

– Operating system

• Controls and coordinates use of hardware among various
applications and users

• It stands between the hardware and the user.

– A program that acts as an intermediary between a user of a
computer and the computer hardware

• Operating system goals:

– Execute user programs & make solving user problems easier

– Make the computer system convenient to use

– Use the computer hardware in an efficient manner

– Design tradeoff between convenient and efficiency

What is an Operating System?

User Hardware

Operating
System

What is an Operating System?

• How good is this design?

– The user does not have to program the hardware
directly.

• It hides all the troublesome operations of the hardware.

Example. The OS, on one hand, hides the physical system memory away from
you. On the other hand, it tells you that there is system memory available
when you run your applications.

User Hardware

Operating
System

Complex work…Process requests

30

What is an Operating System?

• Processes as the starting point!

– Whatever programs you run, you create processes.

• i.e., you need processes to open files, utilize system memory,
listen to music, etc.

– So, process lifecycle, process management, and other
related issues are essential topics of this course.

User Hardware
Process

Operating
System

31

What is an Operating System?

• Example (step 1)

User Hardware
Process

$ ls

ls

Most commands you type in the shell
are the same as starting a new process.

Operating
System

ls

32

What is an Operating System?

• Example (step 2)

User Hardware
Process File System

$ ls

ls

The operating system contains the codes
that are needed to work with the file
system.

The codes are called the kernel.

Operating
System

33

What is an Operating System?

• Example (step 3)

User Hardware
Process File System

$ ls

ls

The file system module inside the
operating system knows how to work
with devices, using device drivers.

Operating
System

34

What is an Operating System?

• Example (step 4)

User Hardware
Process

Operating
System

File System

$ ls

ls

Of course, the operating system will
allocate memory for the results.

Memory

35

What is an Operating System?

• Example (final step)

User Hardware
Process

Operating
System

File System

$ ls
. .. index.html
$ _

ls

The memory management sub-system
will copy the result to the memory of the
process.

At last, the result returns.

Memory

Return

36

What Operating Systems Do

• System View

– OS is a control program

• Controls execution of programs to prevent errors and improper
use of the computer

– OS is a resource allocator

• Manages all resources

• Decides between conflicting requests for efficient and fair
resource use

What Operating Systems Do

• Depends on the point of view

• User View
– PC users want convenience, ease of use and good

performance, don’t care about resource utilization

– But shared computer such as mainframe or minicomputer
must keep all users happy: maximize resource utilization

– Users of dedicate systems such as workstations have
dedicated resources but frequently use shared resources
from servers: tradeoff

– Mobile computers are resource poor, optimized for usability
and battery life

– Some computers have little or no user interface, such as
embedded computers in devices and automobiles

Operating System Definition

• No universally accepted definition

• Simple viewpoint
– “Everything a vendor ships when you order an operating

system” is a good approximation

– But varies wildly

• Common definition
– “The one program running at all times on the computer”

is the kernel.

• Everything else is either
– a system program (ships with the operating system) , or

– an application program.

Operating System Definition (Cont.)

• No universally accepted definition of what is part of
the operating system

– Operating systems grew increasingly sophisticated

– Microsoft case

• Current Mobile OS

– Once again the number of features constituting the OS is
increasing

– Core kernel + Middleware

• Databases, multimedia, graphics, etc…

Operating System Operations

41

Multiprogramming
• Operating system provides the environments within which

programs are executed
– Single user cannot keep CPU and I/O devices busy at all times

• Multiprogramming needed for efficiency: most important
aspect of OS
– Multiprogramming organizes jobs (code and data) so CPU always

has one to execute

– All jobs are initially kept on disk in the job pool, a subset of total
jobs in system is kept in memory,

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS switches to another
job

Memory Layout for Multi-programmed System

Multitasking

• Time sharing (multitasking) is logical extension in which
CPU switches jobs so frequently that users can interact with
each job while it is running, creating interactive computing
– Response time should be < 1 second

• Allow many users to share the computer
– Each user has at least one program executing in memory
process

• Issues
– If several jobs ready to run at the same time  CPU scheduling

– If processes don’t fit in memory, swapping moves them in and
out to run

– Virtual memory allows execution of processes not completely in
memory

Interrupt Driven Mechanism

• Interrupt driven (hardware and software)
– Hardware interrupt by one of the devices

– Software interrupt (exception or trap):
• Software error (e.g., division by zero)

• Request for operating system service

• Other process problems include infinite loop, processes
modifying each other or the operating system

– An interrupt service routine is provided to deal with the
interrupt

Dual-mode Operation

• Dual-mode operation allows OS to protect itself and
other system components
– User mode and kernel mode

– Mode bit provided by hardware
• Provides ability to distinguish when system is running user

code or kernel code

• Some instructions designated as privileged, only executable in
kernel mode

• System call changes mode to kernel, return from call resets it
to user

Transition from User to Kernel Mode

• At system boot time, the hardware starts in kernel mode

• OS is loaded and starts user application in user mode

• Interrupt occurs, the hardware switches from user mode to
kernel mode

• Whenever the OS gains control, it is in kernel mode

System Calls

• Informally, a system call is similar to a function call,
but…

– The function implementation is inside the OS.

– We name it the OS kernel.

int add_function(int a, int b) {
return (a + b);

}

int main(void) {
int result;
result = add_function(a,b);
return 0;

}

// this is a dummy example…

Function
implementation.

This is a
function call.

48

System Calls

• System calls are the programming interface between
processes and the OS kernel

– System calls provide the means for a user program to ask the
operating system to perform tasks

• A system call usually takes the form of a trap to a specific
location in the interrupt vector, treated by the hardware as
a software interrupt

• The system call service routine is a part of the OS

Interacting with the OS

Process

./program

Process

int main(void) {
time(NULL);
return 0;

}

//somewhere in the kernel.
int time (time_t * t) {

......
}

OS Kernel

Invoke & return

Here contains codes that
access the hardware clock!

50

System calls

• The system calls are usually
– primitive,

– important, and

– fundamental.

– e.g., the time() system call.

• Roughly speaking, we can categorize system calls as
follows:

Process File System Memory

Security Device

51

System calls VS Library function calls

• If a call is not system calls, then they are library calls
(or function calls)!

• Take fopen() as an example.
– fopen() invokes the system call open().

– So, why people invented fopen()?

– Because open() is too primitive and is not programmer-
friendly!

fopen(“hello.txt”, “w”);

open(“hello.txt”, O_WRONLY | O_CREAT | O_TRUNC, 0666);

Library call

System call

52

System calls VS Library function calls

• Library functions are usually compiled and packed
inside an object called the library file.

– In windows: DLL – dynamically linked library.

– In Linux: SO – shared objects.

Application
code invoking
fopen()

A library file containing
the implementation of

fopen().
OS Kernel

int open(......)

Big picture

53

OS Standards

• Who defines the system calls? Functionalities?
Arguments? Return values?

• There are standards!

Standards Full Name Example OS

POSIX Portable Operating
System Interface

Linux

BSD Berkeley Software
Distribution

Mac OS Darwin

SVR4 System V (five) Release 4 Solaris Unix

54

Introduction to Operating System
Components

Process

55

Process OR Program?

• A process is not a program!

ls -R /
Recursively print the directory entries,

starting from the directory ‘/’
Command A

ls -R /home
Recursively print the directory entries,

starting from the directory ‘/home’
Command B

Similarity Difference

Both use the program file “/bin/ls”. The program arguments are different.

The processes’ internal status are different,

such as running time.

Let’s consider the following two commands

56

Program != Process

• A process is an execution instance of a program.
– More than one process can execute the same program code
– Later, you’ll find that a process is not bounded to execute just

one program!

• A process is active.
– A process has its local states concerning the execution. E.g.,

• which line of codes it is running;
• which CPU core (if there are many) it is running on.

– The local states change over time.

• Commands about processes (and hopefully you’ve
tried them before) – e.g., ps & top.

57

Process-Related Tools

• The tool “ps” can report a vast amount of

information about every process in the system
– Try “ps -ef”.

This column shows the unique
identification number of a process,
called Process ID, or PID for short.

Hint: you can treat ps as the short-
form of “process status”

$ ps
PID TTY TIME CMD
1200 ... 00:00:00 bash
1234 ... 00:00:00 ps
$ _

By the way, this is called shell.

58

Shell – a process launching pad

• So, what is going on inside that shell?
– The shell creates a new process, and is called a child

process of the shell.

• The child process then executes the command “ps”.

$ ps
PID TTY TIME CMD
1200 ... 00:00:00 bash
1234 ... 00:00:00 ps
$ _

Shell – the
parent process

ps – the child
process

Parent-child
relationship

59

Process Hierarchy

• Process relationship:

– A parent process will have its child process.

– Also, a child process will have its child processes.

– This form a tree hierarchy.

Process A

Process B

Process C

Process D

Process E Process F

E.g., “Process E” is the shell and “Process F” is “ps”.

60

Process Summary
• A process is an execution instance of a program. It is a unit

of work within the system.
– Program is a passive entity, process is an active entity.

• Process needs resources to accomplish its task, process
termination requires reclaim of any reusable resources
– CPU, memory, I/O, files, Initialization data

• Single-threaded process has one program counter
specifying location of next instruction to execute, multi-
threaded process has one program counter per thread
– Process executes instructions sequentially, one at a time, until

completion

• Typically, system has many processes, some user, some
operating system running concurrently

Process Management Activities

• The operating system is responsible for the
following activities in connection with process
management:

– Creating and deleting both user and system processes

– Suspending and resuming processes

– Providing mechanisms for process synchronization

– Providing mechanisms for process communication

– Providing mechanisms for deadlock handling

Introduction to Operating System
Components

Memory

63

Process’ Memory

• What are the things that a process has to store?

Process

Global Variables

Local Variables

Dynamically
Allocated Memory

Program Code
and Constants

Every process should has its own
set of global variables, local
variables, and allocated memory.

64

Process’ Memory

• OMG…C is too low-level…

System memory layoutC program layout

Program code

Global variables

Constants

Local variables

Dynamically
Allocated
Memory

Data segment

Constants

Stack

Heap

Text segment

Execute

Loading
program

BTW, this arrangement is called segmentation!

65

Process’ Memory

• “Hey, you’re wrong! Some languages, e.g., Java, do
not have the above layout…”, you asked.

......
String str = new String(“hello”);
......

This statement creates an object!
C doesn’t have objects!

“hello”

JVM process

The object only exists inside the
JVM, and this JVM is just a process
inside the OS!

The “hello” String object is just a piece of
dynamically-allocated memory in the JVM
process.

It is created by “malloc()” and will be
“free()”-ed later.

Reality

Java Virtual Machine

OS Kernel

66

Sidetrack: Pros and Cons in using C

• Cons:

– Some people argued that C is a bad beginner’s
programming language. Now, you can understand why…

Because C requires a programmer to take care of the process-level memory
management.

Every programmer needs to know about the low-level memory layout in
order for him/her to understand what segmentation fault means!

Every aspect on memory management can be manipulated using C.

Learning malloc() exposes you to the heap manipulation. This makes a
high-level programming language becoming low-level. Plus, this exposes
you to unpredictable dangers!

* Disclaimer: choosing which programming language is really a personal choice.

67

Sidetrack: Pros and Cons in using C

• Pros:

– Some people argued that C is an efficient programming
language. Now, you can understand why…

Because C allows a programmer to manipulate the process-level memory
management “directly”.

That’s why many user libraries are implemented using C because of
efficiency consideration.

E.g., the Java Virtual Machine is implemented using C!

Most importantly, C is the only language to interact with the OS directly!
In other words, the system call interface is written in C.

* Disclaimer: choosing which programming language is really a personal choice.

68

Memory Hierarchy

• In case that someone doesn’t know about the
hierarchy below…

– A program is fetched from hard disk to main memory.

– When executed, instructions in the program are fetched
from the main memory to CPU.

CPU

Registers

Cache

Main Memory Hard Disk

69

Memory Hierarchy

• However, did you ever need to program those three
things when you want to run the program “ls”?

– Never! Then, who have the jobs done?

– Of course, OS!

CPU

Registers

Cache

Main Memory Hard Disk

70

Memory Hierarchy

• Typically, there are more than 100 processes running
“at the same time”.
– There is only a finite number of CPU cores, depending on how

much money you spent.
– Then, only a finite number of processes can be executed “really

at the same time”.
– So, other (non-running) processes are stored at different

devices controlled by the OS before they get a chance to run.

CPU

Registers

Cache

Main Memory Hard DiskProcess A
(running)

Process B

Process C

Process D

Process E

Process F

Process G

71

Memory Management Summary

• To execute a program

– All (or part) of the instructions must be in memory

– All (or part) of the data that is needed by the program must be in
memory.

• Memory management determines what is in memory

– Optimizing CPU utilization and computer response to users

• Memory management activities

– Keeping track of which parts of memory are currently being used
and by whom

– Deciding which processes (or parts thereof) and data to move into
and out of memory

– Allocating and deallocating memory space as needed

Introduction to Operating System
Components

Storage Management

73

What is a File System?

• A file system, FS, means the way that a storage
device is used.

• Have you heard of…

– FAT16, FAT32, NTFS, Ext3, Ext4, BtrFS?

– They are all file systems.

– It is about how a storage device is utilized.

Files / Data
Index

Metadata

74

What is a File System?

• A file system must record the following things:

– directories;

– files;

– allocated space;

– free space.

• Think about the consequences if any one of the
above is missing…

75

Two faces of a file system

• The storage design of the file system.

– A file spends most of its time on the disk.

– So, a file system is about how they are stored.

– Apart from files, many others things are stored in the
disk.

• The operations of the file system.

– A file can be manipulated by processes.

– So, a file system is also about the operations which
manipulate the content stored.

76

FS VS OS

• A FS is independent of an OS!

– If an OS supports a FS, then the OS can do whatever
operations over that storage device.

– Else, the OS doesn’t know how to read or update the
device’s content.

Windows XP supports Linux supports

NTFS, FAT32, FAT16, ISO9660,
Juliet, CIFS

NTFS, FAT32, FAT16, ISO9660,
Juliet, CIFS, Ext2, Ext3, etc…

Linux supports far more FS-es than any versions of Windows

77

File Operations?

• Pop quiz!
– Guess, what are the fundamental file (not dir) operations?

• Well…creating is not...
– It is just a special case of opening a file.

• Sorry…copying is not…
– Do you know how it is implemented through the above

operations?

• Sorry…moving is the same as renaming…
– Except that a file is moving from one disk to another.

Open Read Write Close Rename Delete

78

Storage Management
• OS provides uniform, logical view of information storage

– Abstracts physical properties to logical storage unit - file

– Various devices (i.e., disk drive, tape drive)
• Varying properties include access speed, capacity, data-transfer rate, access

method (sequential or random)

• File-System management
– Files usually organized into directories

– Access control to determine who can access what

– OS activities include
• Creating and deleting files and directories

• Primitives to manipulate files and directories

• Mapping files onto secondary storage

• Backup files onto stable (non-volatile) storage media

Mass-Storage Management

• Usually disks used to store data that does not fit in main
memory or data that must be kept for a long period of time

• Proper management is of central importance

– Entire speed of computer operation hinges on disk subsystem and
its algorithms

• OS activities

– Free-space management

– Storage allocation

– Disk scheduling

• Some storage need not be fast

– Tertiary storage includes optical storage, magnetic tape

– Still must be managed – by OS or applications

Performance of Various Levels of Storage

Kernel Data Structures

82

Kernel Data Structures

Lists, Trees, Hash Map and Bitmaps

83

Kernel Data Structures

• Many similar to standard programming data structures

• Lists

– Singly linked list

– Doubly linked list

– Circularly linked list

Kernel Data Structures

• Stack

– Last in first out (LIFO)

– Widely used when invoking function calls

• Queue

– First in first out (FIFO)

– Widely used in job scheduling

Kernel Data Structures

• Trees

– Binary tree

– Binary search tree: left <= right
• Worse-case search performance is O(n)

– Balanced binary search tree
• Worse-case search performance is O(lg n)

Kernel Data Structures

• Hash function

– Takes data as input, performs numeric operation on
the data, and returns a numeric value

– Retrieve data: O(1)

– Hash collision

• Hash function can create a hash map

Kernel Data Structures

• Bitmap – string of n binary digits representing
the status of n items

• Pros:

– Space efficiency

• Example: used to indicate the availability of disk
blocks

• Linux data structures defined in include files
<linux/list.h>, <linux/kfifo.h>,

<linux/rbtree.h>

MISC

Protection and Security, Computing Environments and
Open-sourced OS

89

Protection and Security
• Protection – any mechanism for controlling access of

processes or users to resources defined by the OS

• Security – defense of the system against internal and
external attacks
– Huge range, including denial-of-service, worms, viruses, identity

theft, theft of service

• Systems generally first distinguish among users, to
determine who can do what
– User identities (user IDs, security IDs) include name and

associated number, one per user, determine access control

– Group identifier (group ID) allows set of users to be defined and
controls managed, then also associated with each process, file

– Privilege escalation allows user to change to effective ID with
more rights

Computing Environments - Traditional

• Stand-alone general purpose machines

• Blurred as most systems interconnect with others
(i.e., the Internet)

– Portals provide web access to internal systems

– Network computers (thin clients) are like Web terminals

– Mobile computers interconnect via wireless networks

• Networking becoming ubiquitous – even home
systems use firewalls to protect home computers
from Internet attacks

Computing Environments - Mobile

• Handheld smartphones, tablets, etc

• What is the functional difference between them
and a “traditional” laptop?

– Extra feature – more OS features (GPS, gyroscope)

– Allows new types of apps like augmented reality

– Use IEEE 802.11 wireless, or cellular data networks for
connectivity

• Leaders are Apple iOS and Google Android

Computing Environments – Distributed

• Distributed computing
– Collection of separate, possibly heterogeneous, systems

networked together

– Network is a communication path, TCP/IP most common
• Local Area Network (LAN)

• Wide Area Network (WAN)

• Metropolitan Area Network (MAN)

• Personal Area Network (PAN)

– Network Operating System provides features between
systems across network

• Communication scheme allows systems to exchange messages

• Illusion of a single system

Computing Environments – Client-Server
Client-Server Computing

Dumb terminals supplanted by smart PCs

Many systems act as servers, responding to requests
generated by clients

Compute-server system provides an interface to client to
request services (i.e., database)

File-server system provides interface for clients to store
and retrieve files

Computing Environments - Peer-to-Peer

• Another model of distributed system, does not
distinguish clients and servers

– Instead all nodes are considered peers

– May each act as client, server or both

– Node must join P2P network

• Registers its service with central lookup service on network, or

• Broadcast request for service and respond to requests for
service via discovery protocol

– Examples include BitTorrent

Computing Environments - Virtualization

• Allows OSes to run applications within other OSes

• Emulation used when source CPU type is different from
target type (i.e. PowerPC to Intel x86)

– Generally slowest method

– Every machine-level instruction must be translated

• Virtualization – OS natively compiled for CPU, running
guest OSes also natively compiled

– Running multiple VMs allows many users to run tasks on a system
designed for a single user

– VMM (Virtual Machine Manager) provides virtualization services

Computing Environments - Virtualization

Computing Environments – Cloud Computing
• Delivers computing, storage, even apps as a service across a network

• Logical extension of virtualization because it uses virtualization as the
base for it functionality.
– Amazon EC2 has thousands of servers, millions of virtual machines, petabytes

of storage available across the Internet, pay based on usage

• Many types
– Public cloud – available via Internet to anyone willing to pay

– Private cloud – run by a company for the company’s own use

– Hybrid cloud – includes both public and private cloud components

– Software as a Service (SaaS) – one or more applications available via the
Internet (i.e., word processor)

– Platform as a Service (PaaS) – software stack ready for application use via the
Internet (i.e., a database server)

– Infrastructure as a Service (IaaS) – servers or storage available over Internet
(i.e., storage available for backup use)

Computing Environments – Cloud Computing

• Cloud computing environments composed of traditional
OSes, plus VMMs, plus cloud management tools

– Internet connectivity requires security like firewalls

– Load balancers spread traffic across multiple applications

Computing Environments – Real-Time Embedded Systems

• Real-time embedded systems: most prevalent form of
computers

– Car engines, robots, DVDs, etc.

• Real-time OS has well-defined fixed time constraints

– Processing must be done within constraint

– Correct operation only if constraints met

• Many other special computing environments as well

– Some have OSes, some perform tasks without an OS

Open-Source Operating Systems

• Operating systems made available in source-code format
rather than just binary closed-source

• Started by Free Software Foundation (FSF), which has
“copyleft” GNU Public License (GPL)

• Examples include GNU/Linux and BSD UNIX (including core
of Mac OS X)

• Can use VMM like VMware Player (Free on Windows),
Virtualbox (open source and free on many platforms -
http://www.virtualbox.com)

– Use to run guest operating systems for exploration

Summary

• OS Overview

– OS Concept

– Multiprogramming & Multitasking

– Dual Mode & System Call

• OS Components

– Process Management

– Memory Management

– Storage Management

• Computer System Organization & Architecture

– Interrupt

End of Chapter 1

103

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Chapter 2
Operating System Structures

1

2

Objectives

• Operating System Services
– User Operating System Interface

– System Calls

• Operating System Structure

• Operating System Design and Implementation

• MISC: Debugging, Generation & System Boot

Operating System Services

Services Overview, User Interface

3

4

Operating System Services

• Operating systems provide

– an environment for execution of programs and

– services to programs and users

• Services may differ from one OS to another

• What are the common classes?

– Convenience of the user

– Efficiency of the system

5

Overview of Operating System Services

6

OS Services for Helping Users

• Program execution

– Load a program into memory

– Run the program

– End execution

• either normally or

• abnormally (indicating error)

7

OS Services for Helping Users

• I/O operations - A running program may require
I/O, which may involve a file or an I/O device

– Common I/Os: read, write, etc.

– Special functions: recording CD/DVD

• Notes: Users usually cannot control I/O devices
directly, so OS provides a mean to do I/O

– Mainly for efficiency and protection

8

OS Services for Helping Users

• File-system manipulation - The file system is of
particular interest

– OS provides a variety of file systems

• Major services

– read and write files and directories

– create and delete files and directories

– search for a given file

– list file Information

– permission management: allow/deny access

9

OS Services for Helping Users

• Communications: information exchange between
processes

– Processes on the same computer

– Processes between computers over a network

• Implementations

– Shared memory

• Two or more processes read/write to a shared section of mem.

– Message passing

• Packets of information are moved between processes by OS

10

OS Services for Helping Users

• Error detection – OS needs to be constantly aware
of possible errors

• Error types
– CPU

– memory hardware: memory error, power failure, etc.

– I/O devices: parity error, connection failure, etc.

– user program: arithmetic overflow, access illegal mem.

• Error handling
– Ensure correct and consistent computing

– Halt the system, terminate an error-causing process etc.

11

OS Services for Ensuring Efficiency

• Systems with multiple users can gain efficiency by
sharing the computer resources

• Resource allocation
– Resources must be allocated to each user/job

– Resource types - CPU cycles, main memory, file storage,
I/O devices

– Special allocation code may be required, e.g., CPU
scheduling routines depend on
• Speed of the CPU, jobs, number of registers, etc.

12

OS Services for Ensuring Efficiency

• Accounting - To keep track of
– which users use how much and what kinds of resources

• Usage
– Accounting for billing users

– Accumulating usage statistics, can be used for
• Reconfiguration of the system

• Improvement of the efficiency

13

OS Services for Ensuring Efficiency

• Protection and security
– Concurrent processes should not interfere w/ each other

– Control the use of computer

• Protection
– Ensure that all access to system resources is controlled

• Security
– User authentication by password to gain access

– Extends to defending external I/O devices from invalid
access attempts

14

OS Services for Helping Users

• User interface - Almost all operating systems have a
user interface (UI).

– Three forms

• Command-Line (CLI)
– Shell command

• Batch
– Shell script

• Graphics User Interface (GUI)
– Windows system

15

User Operating System Interface - CLI

• Command line interface or command interpreter

– Allows direct command entry

– Included in the kernel or treated as a special program

• Sometimes multiple flavors implemented – shells

– Linux: multiple shells (C shell, Korn Shell etc.)

– Third-party shell or free user-written shell

– Most shells provide similar functionality (personal
preference)

16

Bourne Shell Command Interpreter

17

User Operating System Interface - CLI

• Main function of CLI

– Get and execute the next user-specified command

– Many commands manipulate files

• Two ways of implementing commands

– The command interpreter itself contains the code
• Jump to a section of its code & make appropriate system call

• Number of commands determines the size of CLI

– Implements commands through system program (UNIX)
• CLI does not understand the command

• Use the command to identify a file to be loaded into memory and executed

• Exp: rm file.txt (search for file rm, load into memory and exe w/ file.txt)

• Add new commands easily

18

User Operating System Interface - GUI

• User-friendly graphical user interface

– Mouse-based window-and-menu system (desktop metaphor)

– Icons represent files, programs, actions, etc

– Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open
directory (known as a folder)

– Invented at Xerox PARC in early 1970s

• Many systems now include both CLI and GUI interfaces

– Microsoft Windows is GUI with CLI “command” shell

– Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

– Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

19

Touchscreen Interfaces

• Touchscreen devices
require new interfaces
– Mouse not possible or not desired

– Actions and selection based on
gestures

– Virtual keyboard for text entry

– Voice commands

Choices of Interfaces

• Personal preference

• CLI: more efficient, easier for repetitive tasks

– System administrator

– Power users who have deep knowledge of a system

– Shell scripts

• GUI: user-friendly

• The design and implementation of user interface is
not a direct function of the OS

20

System Call

Usage, Implementation, Types

21

22

System Calls

• Programming interface to the services provided by
the OS

• Implementation language
– Typically written in a high-level language (C or C++)

– Certain low-level tasks (direct hardware access) are
written using assembly language

• Example of using system call
– Read data from a file and copy to another file

– open()+ read() + write()?

23

Example of System Calls

• System call sequence to copy the contents of one file to another file

System Call

• Simple programs may make heavy use of the OS
– A system executes thousands of system calls per second

– Not user-friendly

• Each OS has its own name for each system call
– This course/textbook uses generic examples

24

System Call

• How to use?
– Mostly accessed by programs via a high-level API rather

than direct system call use

• Why prefer API rather than invoking system call?
– Easy of use

• Simple programs may make heavy use of the OS

– Program portability
• Compile and run on any system that supports the same API

25

26

API

• Application Programming Interface (API)
– A set of functions that are available to application

programmers

27

API

• Application Programming Interface (API)
– A set of functions that are available to application

programmers

• Three most common APIs
– Win32 API for Windows

– POSIX API for POSIX-based systems
• including virtually all versions of UNIX, Linux, and Mac OS X

– Java API for the Java virtual machine (JVM)

• How to use API?
– Via a library of code provided by OS

– Libc: UNIX/LINUX with C language

28

System Call Implementation

• Who invokes system call: System call interface

– Provided by the run-time support system, which is

– a set of functions built into libraries within a compiler

• How?

– intercepts function calls in the API

– invokes necessary system calls

• Implementation

– Typically, a number associated with each system call

– System-call interface maintains a table indexed
according to the numbers

29

API – System Call – OS Relationship

30

Standard C Library Example

• C program invoking printf() library call, which calls write()
system call

31

Implementation Benefits

• The caller needs to know nothing about

– how the system call is implemented

– what it does during execution

– Just needs to obey API and understand what OS will do
as a result call

• Most details of OS interface are hidden from
programmer by API

– Managed by run-time support library

32

System Call Parameter Passing

• More information is required than simply the identity of
desired system call
– Parameters: file, address and length of buffer

• Three methods to pass parameters to the OS
– Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers

– Table-based
• Parameters stored in a block, or table, in memory, and address of block

passed as a parameter in a register

• This approach taken by Linux and Solaris

– Stack-based
• Parameters are placed, or pushed, onto the stack by the program and

popped off the stack by the operating system

33

Parameter Passing via Table

Types of System Calls

• Six major categories

– Process control

– File manipulation

– Device manipulation

– Information maintenance

– Communications

– Protection

34

35

Types of System Calls

• Process control

– end(), abort()
• Halt a running program normally or abnormally

• Transfer control to invoking command interpreter

• Memory dump & & error message
– Written to disk and examined by debugger

– Respond to error: alert window (GUI system) or terminate the entire job (batch system)

• Error level: normal termination (level 0)

36

Types of System Calls

• Process control

– end(), abort()

– load(), execute()
• Where to return?

– Return to existing program: save mem. image

– Both programs continue concurrently: multiprogram

– create_process(), terminate_process()

– get_process_attributes(), set_process_attributes()

• Job’s priority, maximum allowable execution time, etc

37

Types of System Calls

• Process control

– end(), abort()

– load(), execute()

– create_process(), terminate_process()

– get_process_attributes(), set_process_attributes()

– wait_time()

– wait_event(), signal_event()

– acquire_lock(), release_lock()

38

Example of Process Control: MS-DOS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program
– No process created

• Single memory space

• Loads program into memory,
overwriting all but the kernel

• Program exit -> shell reloaded

At system startup running a program

39

Example of Process Control: FreeBSD

• Unix variant

• Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork() system call to create
process
– Executes exec() to load program into process

– Shell waits for process to terminate or continues with
user commands

• Process exits with:
– code = 0 – no error

– code > 0 – error code

40

Types of System Calls

• File management

– create file, delete file

– open, close file

– read, write, reposition

– get and set file attributes

• Device management: physical/virtual devices

– request device, release device

– read, write, reposition

– get device attributes, set device attributes

– logically attach or detach devices

41

Types of System Calls

• Information maintenance

– Get time or date, set time or date

– Get system data, set system data

• Num. of current users, os version, amount of free mem. & disk

– Debugging

• Dump memory

• Single-step execution

• Time profile: timer interrupt
– The amount of time that the program executes at a particular location

42

Types of System Calls

• Communications

– Message-passing model
• Host name, IP, process name

• Get_hostid(), get_processid(), open_connection(),
close_connection(), accept_connection(),
read_message(), write_message()

• Useful for exchanging smaller amounts of data

– Shared-memory model
• Remove the normal restriction of preventing one process from accessing

another process’s memory

• Create and gain access to shared mem. region
– shared_memory_create(), shared_memory_attach()

• Threads: memory is shared by default

• Efficient and convenient, having protection and synchronization issues

43

Types of System Calls

• Protection

– Control access to resources

– All computer systems must be concerned

– Permission setting

• get_permission(), set_permission()

– Allow/deny access to certain resources

• allow_user(), deny_user()

44

Examples of Windows and Unix System Calls

https://www.kernel.org/doc/man-pages/
http://man7.org/linux/man-pages/

Operating System Structures

45

46

Operating System Structure

• General-purpose OS is a very large program

• Various ways to structure ones

– Simple structure – MS-DOS

– Monolithic-- UNIX

– Layered – an abstraction

– Microkernel –Mach

– Modules

– Hybrid system – most OSes

47

Simple Structure -- MS-DOS

• MS-DOS – written to provide the
most functionality in the least space

– Do not have well-defined structures

– Not divided into modules

– Its interfaces and levels of functionality
are not well separated
• Application programs can access basic I/O

routines

• Vulnerable to errant programs

• Limited by hardware

48

Monolithic Structure -- UNIX

• UNIX

– The original UNIX operating system had limited structuring, it
consists of two separable parts
• Systems programs

• The kernel
– Consists of everything below the system-call interface and above the physical hardware

– A series of interfaces and device drivers

– Monolithic structure: combine all functionality in one level
• File system, CPU scheduling, memory management, and other operating-

system functions

• Difficult to implement and maintain

• Performance advantage

49

Traditional UNIX System Structure

• Beyond simple but not fully layered

50

Layered Approach

• The operating system is divided into a number of layers (levels),
each built on top of lower layers
– The bottom layer (0), is the hardware; the highest layer (N) is the user

interface

• Implementation
– Each layer is an implementation of an abstract

object made up of data and operations

• Advantages
– Simple to construct and debug

– Hides the existence of DS, Ops, hardware
from upper layers

• Challenges
– How to define various layers?

– Efficiency problem
• I/O->memory manage->CPU scheduling->hardware

51

Microkernel System Structure

• Moves as much from the kernel into user space as possible
– Provides minimal process, memory management and communication

– Mach: example of microkernel (developed by CMU in mid-1980s)
• Mac OS X kernel (Darwin) partly based on Mach

• Main function
– Communication between client program and services (also in user space)

– Provided through message passing

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

52

Microkernel System Structure

• Moves as much from the kernel into user space as possible
– Provides minimal process, memory management and communication

– Mach: example of microkernel (developed by CMU in mid-1980s)
• Mac OS X kernel (Darwin) partly based on Mach

• Main function
– Communication between client program and services (also in user space)

– Provided through message passing

• Benefits
– Easier to extend a microkernel: add services to user space, no changes to kernel

– Easier to port the operating system to new architectures

– More reliable & more secure(less code is running in kernel mode)

• Detriments
– Performance overhead of user space to kernel space communication

53

Modules

• Many modern operating systems implement loadable
kernel modules

– The Kernel has a set of core components

– Links in additional services via modules (boot time or run time)

– Common in most modern OSes

54

Modules

• Many modern operating systems implement loadable
kernel modules

– The Kernel has a set of core components

– Links in additional services via modules (boot time or run time)

– Common in most modern OSes

• Similar to layered system

– Any module can call any other model

– More flexible

• Similar to the microkernel

– Primary module has only core functions

– No need to invoke message passing

– More efficient

55

Hybrid Systems

• Most modern operating systems combine different
structures, resulting in hybrid systems

– Why? Address performance, security, usability needs

• Examples

– Linux kernel
• Monolithic: single address space (for efficient performance)

• Modular: dynamic loading of functionality

– Windows
• Mostly monolithic, plus microkernel for different subsystem personalities

(running in user-mode), also support loadable kernel module

– Apple Mac OS X
• Mach microkernel, BSD Unix parts, plus I/O kit and dynamically loadable

modules (called kernel extensions)

• Layered system: user interface + application environment &
services + kernel (Mach+BSD UNIX)

• Mach Microkernel

– Memory management

– inter-process communication

– Thread scheduling

• BSD UNIX

– CLI

– POSIX API

– Networking

– File system

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

56

Mac OS X Structure

57

iOS

• Apple mobile OS for iPhone, iPad

– Structured on Mac OS X

– Added functionality

– Does not run OS X applications natively
• Also runs on different CPU architecture (ARM vs. Intel)

• Structure

– Cocoa Touch is Objective-C API for developing apps

– Media services layer for graphics, audio, video

– Core services provides cloud computing, databases

– Core operating system, based on Mac OS X kernel

58

Android

• Developed by Open Handset Alliance (mostly Google)

– Similar stack to IOS

– Open Source

• Based on Linux kernel

– Provides process, memory, device-driver management

• Optimization

– Adds power management

Operating System Design and
Implementation

59

60

Operating System Design and Implementation

• Design and Implementation of OS not “solvable”, but some
approaches have proven successful

• First problem: Design goals and specifications

– Affected by choice of hardware, type of system (batch, time-
sharing, single/multiple users, distributed, real-time, etc)

– User goals
• Convenient to use, easy to learn, reliable, safe, and fast

– System goals
• Easy to design, implement, and maintain, as well as flexible, reliable, error-

free, and efficient

– No unique solution to the problem of defining the requirements

61

Operating System Design and Implementation

• Important principle to separate

– Mechanism: How to do it?

– Policy: What will be done?

• Examples

– Timer mechanism (for CPU protection)

• Policy decision: How long the timer is to be set?

– Priority mechanism (in job scheduling)

• Policy: I/O-intensive programs have higher priority than CPU-
intensive ones or vice versa

• Benefits: maximum flexibility

– Change policy without changing mechanism

62

OS Implementation

• Much variation

– Early OSes in assembly language

– Now C, C++

• Actually usually a mix of languages

– Main body in C

– Lowest levels in assembly

– Systems programs in C, C++, scripting languages

• Pros and cons

– Code can be written faster, easier to understand/debug

– More high-level language, easier to port to other hardware

– Slower & increased storage requirement

63

Implementation

• Performance?

– Major performance improvements: better data
structures and algorithms

– How about developing excellent assembly-language
code in OS implementation?

• Modern compiler is well optimized

• A small amount of the code is critical to performance, easy to
do specialized optimization
– Interrupt handler

– I/O manager

– Memory manager

– CPU scheduler

MISC

Debugging, Generation, Booting

64

65

Operating-System Debugging

• Failure analysis

– log files: written with error information when process fails

– core dump: a capture of the memory of the processes

– crash dump: memory state when OS crashes

• Performance tuning

– Trace listings of system behavior

– Interactive tools: top displays resource usage of processes

• Kernighan’s Law

– “Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

66

Operating System Generation

• Operating systems are designed to run on any of a class of
machines

– The system must be configured or generated for each specific
computer site

• SYSGEN program obtains information concerning the
specific configuration of the hardware system

– Read from file, ask the operator or probe

– Generation methods
• Modify source code and completely recompile

• Select modules from precompiled library and link together

67

System Boot

• System booting on most computer systems

– Bootstrap program (residing in ROM) locates the kernel, loads it
into memory, and starts it
• ROM needs no initialization, cannot be easily infected by virus

• Diagnostics to determine machine state

• Initialization: CPU registers, device controllers, memory

– Some use two-step process: a simple bootstrap loader fetches a
more complex bootstrap program, which loads kernel (large OSes)

– Some store the entire OS in ROM (Mobile OS)

• Common bootstrap loader allows selection of kernel from
multiple disks, versions, kernel options (GRUB)

Summary

• Operating system services

• System calls

– Relationship between system call and API

• Operating system structures

– Modular is important

– Generally adopt a hybrid approach

• Design principles

– Separate policy from mechanism

68

Summary of Part I (Ch1 & Ch2)

• OS Overview

– OS Functionality

– Multiprogramming & Multitasking

• OS Operations

– Dual Mode & System Call

• OS Components

– Process Management

– Memory Management

– Storage Management

• Computing Environment

• Ch2 OS Structure
– Operating system services

– System calls

– Operating system structures

– Design principles

• Process management
– Concept, scheduling,

operation, communication,
synchronization

• Memory management
– Main memory, virtual mem

• Storage management
– Storage, FS, I/O

70

End of Chapter 2

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Chapter 3
Process Concepts & Operations

1

2

Outline

• Process Concept

– Program vs process

– Process in memory & PCB

– Process state

• Processes Operations

– Process creation, program execution, process
termination

– UNIX example: fork(), exec*(), wait()

What is a process?

3

Process

Relationship?

Differences?

Execution?

Program

Informally, a process is a program in execution.

4

Program

What is a program?

What is a program?

• What is a program?

– A program is a just a piece of code.

• But, which code do you mean?

– High-level language code: C or C++?

– Low-level language code: assembly code?

– Not-yet an executable: object code?

– Executable: machine code?

5

Flow of building a program (1 of 2)

6

Pre-processor

Compiler &
Optimizer

Assembly code: hello.s

C code: hello.c Expanded C code: hello.c

#define TXT “hello”

int main(void) {
printf(“%s\n”, TXT);
return 0;

}

(Still…1 of 2) Pre-processor

• The pre-processor expands:

– #define, #include, #ifdef, #ifndef, #endif, etc.

– Try: “gcc –E hello.c”

7

#define TXT “hello”

int main(void) {
printf(“%s\n”, TXT);
return 0;

}

Pre-processor

int main(void) {
printf(“%s\n”, "hello");
return 0;

}

Original code Expanded codegcc –E hello.c

(Still…1 of 2) Pre-processor

• Another example: the macro!

8

#define SWAP(a,b) { int c; c = a; a = b; b = c; }

int main(void) {
int i = 10, j = 20;
printf("before swap: i = %d, j = %d\n", i, j);
SWAP(i, j);
printf("after swap: i = %d, j = %d\n", i, j);

}

Pre-processor

int main(void) {
int i = 10, j = 20;
printf("before swap: i = %d, j = %d\n", i, j);
{ int c; c = i; i = j; j = c; };
printf("after swap: i = %d, j = %d\n", i, j);

}

(Still…1 of 2) Pre-processor

• How about: #include?

9

#include “header.h”

int main(void) {
add_fun(1,2);
return 0;

}

int add_fun(int a, int b) {
return (a + b);

}

int add_fun(int a, int b) {
return (a + b);

}

int main(void) {
add_fun(1,2);
return 0;

}

Pre-processorProgram: include.c

Program: header.h

(Still…1 of 2) Compiler and Optimizer

• The compiler performs:

– Syntax checking and analyzing;

– If there is no syntax error, construct intermediate codes,
i.e., assembly codes;

• The optimizer optimizes codes

– It improves stupid codes!

– Check the parameter of gcc

10

“-O” means to optimize.

The number followed is the
optimization level. Max is level 3,
i.e., “-O3”. Default is level is “-O1”.

“-O0”: means no optimization.

Flow of building a program (2 of 2)

11

Assembly code: hello.s

Assembler
“as” in Linux.

Linker
“ld” in Linux.

Object code: hello.o

Executable: hello
Static/Dynamic

library

(Still…2 of 2) Assembler and Linker

• The assembler assembles “hello.s” and
generates an object code “hello.o”

– A step closer to machine code

– Try: “as hello.s –o hello.o”

• The linker puts together all object files as well as
the libraries

– There are two kinds of libraries: statically-linked and
dynamically-linked ones

12

Sidetrack: Library files

• A library file is…

– just a bunch of function implementations.

– for the linker to look for the function(s) that the target C
program needs.

13

A bunch of “dot-o” files.

Shared library
with “.so” file
extension.

A static library
with “.a” file
extension. It is
also called an
archive.

.so

.a

Sidetrack: Library files

14

.a .so

Linking with static library file.

.o.o

The final
program is the
combination of
the above two
codes.

The linker only
checks whether the
functions used in
“.o” files exists in
the “.so” files or
not.

A smaller
program!

Linking with dynamic library file.

How to compile multiple files?

• gcc by default hides all the intermediate steps.

– Executable: “gcc -o hello hello.c” generates
“hello” directly.

– Object code: “gcc -c hello.c” generates “hello.o”
directly.

• How about working with multiple files?

15

How to compile multiple files?

16

Step 1.

Prepare all the source files.
Important: there must be
one and only one file
containing the main function.

Step 2.

Compile them into object
codes one by one.

Step 3.

$ gcc –o prog *.o

Construct the program
together with all the object
codes.

$ gcc –c code.c
......

Remember, below shows one of the solution.

*.c

*.o

prog

Conclusion on “what is a program?”

• A program is just an executable file!

– It is static;

– It may be associated with dynamically-linked files;

• “*.so” in Linux and “*.dll” in Windows.

• It may be compiled from more than one file

17

18

What is a process?

Process
Process

Process
Process

Process

Process in Memory

• A process is a program in execution
– A program (an executable file) becomes process when it

is loaded into memory

– Active

• Process in memory
– Text section

– Stack

– Heap

– Data section

– Program counter

– Contents of registers

19

Process in Memory

• Text section

– Program code

• Data section

– Global variables

• Stack

– Temporary data (function parameters, return addresses,
local variables)

• Heap

– Dynamically allocated memory during process run time

• Program counter and contents of registers

20

21

Process State

• As a process executes, it changes state, which is
defined in part by the current activity

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to occur

• I/O completion or reception of a signal

– ready: The process is waiting to be assigned to a
processor

– terminated: The process has finished execution

Diagram of Process State

• State diagram

• Only one process can be running on any processor
at any instant

• Many processes may be ready or waiting

22

23

How to switch processes?

Example: CPU switch from process to process

24

How to locate/represent a process?

• Process control block (PCB) or task control block

– Process state (running, waiting, etc)

– Program counter
• location of next instruction to execute

– CPU registers
• contents of all process-centric registers

– CPU scheduling information
• priorities, scheduling queue pointers

– Memory-management information
• memory allocated to the process

– I/O status information
• I/O devices allocated to process, list of open files

– Accounting information
• CPU used, clock time elapsed since start, time limits

25

Process Data Structure in Linux

• Represented by C structure task_struct

– <linux/sched.h>

pid t_pid; /* process identifier */

long state; /* state of the process */

struct sched_entity se; /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Process
structure

(PCB)
Kernel code
with system

calls

26

Relationship between Process Data & PCB

Kernel Space

User space

Process Invoking system
calls. E.g., fork(),
exec*(), wait().

Access
process’
internal

Conclusion on “what is a process?”

• A process is a program in execution

– process (active entity) != program (static entity)

– Why active?

• A program counter specifying the next instruction to execute +
a set of associated resources

• Only one process can be running on any processor
at any instant

27

Conclusion on “what is a process?”

• Two processes maybe associated with the same
program (Two users are running the same program)

– Example

• The same user invokes two copies of the web browser

– Separate execution sequences

• The text section may be equivalent

• The data, heap, and stack sections vary

• A process can be an execution environment for
other code

– Java programming environment

– java Program (java runs JVM as a process)

28

29

Process Operations

Process
Process

Process
Process

Process

Process Operations

• Process

– It associates with all the files opened by that process.

– It attaches to all the memory that is allocated for it.

– It contains every accounting information,

• running time, current memory usage, who owns the process,
etc.

• You couldn’t operate any things without processes.

30

31

Process Operations

• System must provide mechanisms for:

– process identification

– process creation

– program execution

– process termination

• Some basic and important system calls

– getpid()

– fork()

– exec*()

– wait()

– exit()

32

Process
Process

Process
Process

Process

Process Operations
- process identification

Process identification

• How can we identify processes?

– Each process is given an unique ID number, and is called
the process ID, or the PID.

– The system call, getpid(), prints the PID of the calling
process.

33

$./getpid
My PID is 1234
$./getpid
My PID is 1235
$./getpid
My PID is 1237

#include <stdio.h> // printf()
#include <unistd.h> // getpid()

int main(void) {
printf("My PID is %d\n”, getpid());

}

34

Process
Process

Process
Process

Process

Process Operations
- process identification
- process creation

35

Process Creation

• A process may create several new processes

– Parent process: the creating process

– Children processes: the new processes

• The first process

– The kernel, while it is booting up, creates the first
process – init.

– The “init” process:

• has PID = 1, and

• is running the program code “/sbin/init”.

– Its first task is to create more processes…

36

Process Creation

• Tree hierarchy

– Each of the new process may in turn create other
processes, and form a tree hierarchy

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

Process blossoming

• You can view the tree with the command:

– “pstree”; or

– “pstree –A” for ASCII-character-only display.

37

init

SSH
serverfork()

& exec*()
Shell

top

fork()
& exec*() fork()

& exec*()

also implies the parent-child relationship.

Process blossoming…with orphans?

• However, termination can happen, at any time and in any
place…
– All the resources are deallocated to OS when a process terminates

– A process may become an orphan when its parent terminated

– An orphan turns the hierarchy from a tree into a forest!

– Plus, no one would know the termination of the orphan.

38

init

SSH
server Shell

top

Now, this poor
process becomes
an orphan.

Process blossoming…with re-parent!

• In Linux…
– We have the re-parent operation.

– The “init” process will become the step-mother of all
orphans.

• Well…Windows maintains a forest-like hierarchy.

39

init

SSH
server Shell

top

re-parent

A short summary

• Observation 1

– The processes in Linux is always organized as a tree.

– Because of the re-parent operation, there is always only
one process tree.

• Observation 2

– The re-parent operation allows processes running
without the need of a parent terminal.

– Thus, the background jobs survive even though the
hosting terminal is closed.

40

41

Relationship between Parent and Child

• Resource sharing options

– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution options

– Parent and children execute concurrently

– Parent waits until children terminate

• Address space options

– Child is a duplicate of parent

– Child has a new program loaded into it

• We focus on UNIX examples to illustrate

Process creation

• To create a process, we use the system call fork()

42

Original execution flow
of a process

The process
invokes fork().

The process splits into two!

Flow of original process

Flow of newly-created process

Which process will be
executed after fork()?

Process creation – fork() system call

• So, how do fork() and the processes behave?

43

int main(void) {
printf(“Ready (PID = %d)\n”, getpid());
fork();
printf(“My PID is %d\n”, getpid());
return 0;

}

PID 1234

PID 1235

My PID is 1235
$ _

Process 1234 is the original
process, and we call it the
parent process.

Process 1235 is created by
the fork() system call, and
we call it the child process.

Why is this line of code executed twice?

$./fork_example_1

Ready (PID=1234)

My PID is 1234

Process creation – fork() system call

• So, how do fork() and the processes behave?

44

What do we know so far?

-Both the parent and the child execute the same program before and after fork().
-The child process starts its execution at the location that fork() is returned, not
from the beginning of the program.

int main(void) {
printf(“Ready (PID = %d)\n”, getpid());
fork();
printf(“My PID is %d\n”, getpid());
return 0;

}

Process creation – fork() system call

45

1 int main(void) {
2 int result;
3 printf("before fork ...\n");
4 result = fork();
5 printf("result = %d.\n", result);
6
7 if(result == 0) {
8 printf("I'm the child.\n");
9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...

PID 1234

One more example

Process creation – fork() system call

46

1 int main(void) {
2 int result;
3 printf("before fork ...\n");
4 result = fork();
5 printf("result = %d.\n", result);
6
7 if(result == 0) {
8 printf("I'm the child.\n");
9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...

PID 1234 PID 1235fork()

One more example

Process creation – fork() system call

47

$./fork_example_2
Before fork …

PID 1234 PID 1235fork()

Let there be only ONE CPU. Then…
- Only one process is allowed to be executed at one time.
- However, we can’t predict which process will be chosen by the OS.
- By the time, this mechanism is called process scheduling.

In this example, we assume that the parent, PID 1234,
runs first, after the fork() call.

Assumption

Process creation – fork() system call

48

1 int main(void) {
2 int result;
3 printf("before fork ...\n");
4 result = fork();
5 printf("result = %d.\n", result);
6
7 if(result == 0) {
8 printf("I'm the child.\n");
9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...

PID 1234
(running)

PID 1235
(waiting)

Important

For parent, the return
value of fork() is the
PID of the created child.

result = 1235

Process creation – fork() system call

49

1 int main(void) {
2 int result;
3 printf("before fork ...\n");
4 result = fork();
5 printf("result = %d.\n", result);
6
7 if(result == 0) {
8 printf("I'm the child.\n");
9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.

PID 1234
(dead)

PID 1235
(waiting)

Process creation – fork() system call

50

1 int main(void) {
2 int result;
3 printf("before fork ...\n");
4 result = fork();
5 printf("result = %d.\n", result);
6
7 if(result == 0) {
8 printf("I'm the child.\n");
9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.
result = 0

PID 1234
(dead)

PID 1235
(running)

Important

For child, the return value
of fork() is 0.

Process creation – fork() system call

51

1 int main(void) {
2 int result;
3 printf("before fork ...\n");
4 result = fork();
5 printf("result = %d.\n", result);
6
7 if(result == 0) {
8 printf("I'm the child.\n");
9 printf("My PID is %d\n", getpid());
10 }
11 else {
12 printf("I'm the parent.\n");
13 printf("My PID is %d\n", getpid());
14 }
15
16 printf("program terminated.\n");
17 }

$./fork_example_2
before fork ...
result = 1235
I’m the parent.
My PID is 1234
program terminated.
result = 0
I’m the child.
My PID is 1235
program terminated.
$ _

PID 1234
(dead)

PID 1235
(dead)

Process creation – fork() system call

• fork() behaves like “cell division”.

– It creates the child process by cloning from the parent
process, including…

52

Cloned items Descriptions

Program code
[File & Memory]

They are sharing the same piece of code.

Memory Including local variables, global variables, and dynamically
allocated memory.

Opened files
[Kernel’s internal]

If the parent has opened a file “A”, then the child will also have
file “A” opened automatically.

Program counter
[CPU register]

That’s why they both execute from the same line of code
after fork() returns.

Process creation – fork() system call

• However…

– fork() does not clone the following...

– Note: they are all data inside the memory of kernel.

53

Distinct items Parent Child

Return value of fork() PID of the child process. 0

PID Unchanged. Different, not necessarily be
“Parent PID + 1”

Parent process Unchanged. Doesn’t have the same parent
as that of the parent process.

Running time Cumulated. Just created, so should be 0.

54

Process
Process

Process
Process

Process

Process Operations
- process identification
- process creation
- program execution

fork() can only duplicate…

• fork() is rather boring…

– If a process can only duplicate itself and always runs the
same program, then…

– how can we execute other programs?

• We want CHANGE!

– Meet the exec() system call family.

55

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

56

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

$./exec_example
before execl ...

Arguments of the execl() call

1st argument: the program name, “/bin/ls” in the
example.
2nd argument: 1st argument to the program.
3rd argument: indicate the end of the list of arguments.

Program execution

• Example #1: run the command "/bin/ls"

57

execl("/bin/ls", "/bin/ls", NULL);

Argument
Order

Value in above
example

Description

1 "/bin/ls" The file that the programmer wants to execute.

2 "/bin/ls" When the process switches to "/bin/ls",
this string is the first program argument.

3 NULL This states the end of the program argument
list.

Program execution

• Example #2: run the command "/bin/ls -l"

58

execl("/bin/ls", "/bin/ls", "-l", NULL);

Argument
Order

Value in above
example

Description

1 "/bin/ls" The file that the programmer wants to execute.

2 "/bin/ls" When the process switches to "/bin/ls",
this string is the first program argument.

3 "-l" When the process switches to "/bin/ls",
this string is the second program argument.

4 NULL This states the end of the program argument
list.

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

59

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

$./exec_example
before execl ...

What is the output?

The same as the output of running
“ls” in the shell.

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

60

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

$./exec_example
before execl ...
exec_example
exec_example.c

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

61

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

$./exec_example
before execl ...
exec_example
exec_example.c

GUESS:
What happens next?

Program execution

• execl() – a member of the exec system call
family (and the family has 6 members).

62

$./exec_example
before execl ...
exec_example
exec_example.c
$ _

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

WHAT?!
The shell prompt appears!

The output says:
(1) The gray code block is not reached!
(2) The process is terminated!

WHY IS THAT?!

Program execution

• The exec system call family is not simply a function
that “invokes” a command.

63

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

Process
Originally, the process is executing the
program “exec_example”.

Program execution

• The exec system call family is not simply a function
that “invokes” a command.

64

int main(void) {

printf("before execl ...\n");

execl("/bin/ls", "/bin/ls", NULL);

printf("after execl ...\n");

return 0;
}

Process
The execl() call changes the execution from
“exec_example” to “/bin/ls”

/* The program “ls” */

int main(int argc, char ** argv)
{

......
exit(0);

}

Program execution

• The exec system call family is not simply a function
that “invokes” a command.

65

Process

The “return” or the “exit()”
statement in “/bin/ls” will terminate
the process…

Therefore, it is certain that the process
cannot go back to the old program!

/* The program “ls” */

int main(int argc, char ** argv)
{

......
exit(0);

}

Program execution - observation

• The process is changing the code that is executing and never
returns to the original code.
– The last two lines of codes are therefore not executed.

• The process that calls any one of the member of the exec
system call family will throw away many things, e.g.,
– Memory: local variables, global variables, and dynamically

allocated memory;
– Register value: e.g., the program counter;

• But, the process will preserve something, including:
– PID;
– Process relationship;
– Running time, etc.

66

67

Process
Process

Process
Process

Process

Process Operations
- process identification
- process creation
- program execution
- fork() + exec*() = ?

When fork() meets exec*()…

• The mix can become:

– A shell,

– The system() library call, etc…

68

Execute
command

Switch to
target program

Terminate

Resume

Parent

Child

fork() + exec*() = system()?

69

1 int system_test(const char *cmd_str) {
2 if(cmd_str == -1)
3 return -1;
4 if(fork() == 0) {
5 execl(cmd_str, cmd_str, NULL);
6 fprintf(stderr,

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 return 0;
10 }
11
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

$./system_implement_1
before...

system_implement_1
system_implement_1.c

after...
$ _

Is this the
only result?

fork() + exec*() = system()?!

70

1 int system_test(const char *cmd_str) {
2 if(cmd_str == -1)
3 return -1;
4 if(fork() == 0) {
5 execl(cmd_str, cmd_str, NULL);
6 fprintf(stderr,

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 return 0;
10 }
11
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

$./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _

Some strange cases
happened when the
program is executed
repeatedly!! Why?

fork() + exec*() = system()...

71

1 int system_test(const char *cmd_str) {
2 if(cmd_str == -1)
3 return -1;
4 if(fork() == 0) {
5 execl(cmd_str, cmd_str, NULL);
6 fprintf(stderr,

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 return 0;
10 }
11
12 int main(void) {
13 printf("before...\n\n");
14 system_test("/bin/ls");
15 printf("\nafter...\n");
16 return 0;
17 }

Let’s re-color the program!

Parent process

Child process

Both processes

$./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _

$./system_implement_1
before...

after...
system_implement_1
system_implement_1.c
$ _

fork() + exec*() = system()...

72

Parent Childfork()

Parent

then

Expected execution
sequence.

$./system_implement_1
before...

after...
system_implement_1
System_implement_1.c
$ _

$./system_implement_1
before...

system_implement_1
System_implement_1.c

after...
$ _

Possible execution
sequence.

Parent

Child

Parent

then

fork()

73

fork() + exec*()

Is it enough?

fork() + exec*() = system()...

• Don’t forget that we’re trying to implement a system()-
compatible function…

– It is very weird to allow different execution orders.

• How to let the child to execute first?

– But…we can’t control the process scheduling of the OS to
this extent.

• Then, our problem becomes…

– How to suspend the execution of the parent process?

– How to wake the parent up after the child is terminated?

74

fork()+ exec*() + wait() = system()

75

1 int system_test(const char *cmd_str) {
2 if(cmd_str == -1)
3 return -1;
4 if(fork() == 0) {
5 execl("/bin/sh", "/bin/sh",

"-c", cmd_str, NULL);
6 fprintf(stderr,

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 wait(NULL);
10 return 0;
11 }
12
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

What is the
output now?

fork()+ exec*() + wait() = system()

76

1 int system_test(const char *cmd_str) {
2 if(cmd_str == -1)
3 return -1;
4 if(fork() == 0) {
5 execl("/bin/sh", "/bin/sh",

"-c", cmd_str, NULL);
6 fprintf(stderr,

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 wait(NULL);
10 return 0;
11 }
12
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

$./system_implement_2
before...

system_implement_2
System_implement_2.c

after...
$ _

The parent is
suspended until
the child
terminates

wait() – properties explained

• The wait() system call suspend the calling parent
process (Case 1).

• When to wake up?

– wait() returns and wakes up the calling process when
the one of its child processes changes from running to
terminated.

77

wait()

fork() Terminate

wake up

Case 1.

Parent is
suspended.

wait() – properties explained

• What happens if

– There were no running children;

– There were no children;

• wait() does not suspend the calling process
(Case 2)

78

wait()

fork() Terminate

Case 2.

no suspension
is needed.

wait() – summary

• The wait() system call suspend
the calling parent process (Case 1).

• wait() returns and wakes up the
calling process when the one of its
child processes changes from
running to terminated.

• wait() does not suspend the
calling process (Case 2) if
– There were no running children;

– There were no children;

79

wait()

fork() Terminate

wake up

Case 1.

Parent is
suspended.

wait()

fork() Terminate

Case 2.

no suspension
is needed.

More powerful wait()?

• Limitation of wait()?

– waits for any one of the children

– Detect child termination only

• How to wait for a particular process?

– waitpid()

80

wait() VS waitpid()

81

wait() waitpid()

Wait for any one of the children. Depending on the parameters,
waitpid() will wait for a particular
child only.

Detect child termination only. Depending on the parameters,
waitpid() can detect child’s status
changing:
-from running to suspended, and
-from suspended to running.

For more details, you must read the man pages of wait() and waitpid().

Summary of Process Operations

• A process is created by cloning
– fork() is the system call that clones processes
– Cloning is copying

• What are inherited?
• What are not?
• Metaphor of father-son relationship

– wait() can be used to suspend the parent process, so as to
guarantee the expected execution sequence

• Program execution is fundamental, but not trivial
– A process is the place that hosts a program and run it
– exec() system call family changes the program that a

process is running.
– A process can run more than one program…

• as long as there is a set of programs that keeps on calling the exec
system call family.

82

Summary of Ch3

• Concepts

– Process data in memory

– PCB

• Operations

– fork(), exec*(), wait()

– Just introduced how they could be used to create
processes and execute programs

– How about the internal working of these system calls?

• How does the kernel behaves when calling these system calls?

83

84

End of Chapter 3

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch3 - Process Operations

-from kernel’s perspective

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Process
structure

(PCB) Kernel code
with system

calls

2

Process in Memory

Kernel Space

User space

Process Invoking system
calls. E.g., fork(),
exec*(), wait().

Access
process’
internal

Kernel-space VS User-space

3

System Memory

Kernel-space
memory

User-space
memory

Kernel-space VS User-space

4

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing
what

Accessed
by whom

Kernel-space VS User-space

5

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing
what

Kernel data structure
Kernel code

Device drivers

Process’ memory
Program code of the

process

Accessed
by whom

Kernel-space VS User-space

6

System Memory

Kernel-space
memory

User-space
memory

Kernel-space memory User-space memory

Storing
what

Kernel data structure
Kernel code

Device drivers

Process’ memory.
Program code of the

process

Accessed
by whom Kernel code User program code +

kernel code

The kernel is invincible!

Process is going back and forth...

• A process will switch its execution
from user space to kernel space

• How?
– through invoking system call

7

System Memory

Kernel-space
memory

User-space
memory

Process is going back and forth...
• Example

– Say, the CPU is running a program
code of a process

– Where is the code?
• User-space memory
• Recall the process structure in memory

– Where should the program counter
point to?

8

System Memory

Kernel-space
memory

User-space
memory

Program
counter

Process is going back and forth...
• What happens…

– When the process is calling the system call
“getpid()”

• Where to get the PID
– PCB (in kernel-space memory)

• The CPU switches from the user-space to
the kernel-space, and reads the PID

9

System Memory

Kernel-space
memory

User-space
memory

Program
counter

Process is going back and forth...

• After finished executing getpid()
– What happens?
– CPU switches back to the user-space

memory, and continues running that
program code

10

System Memory

Kernel-space
memory

User-space
memory

Program
counter

User Mode & Kernel Mode

• Remember this?

11

Another question: How much time was spent in each part?

User time VS System time
• So, not just the memory, but also the execution of a

process is also divided into two parts.
– User time and system time

12

User time VS System time
• So, not just the memory, but also the execution of a

process is also divided into two parts.
– User time and system time

13

calling system call.
e.g., getpid()

Read information and
the system call returns.

Some system calls may take a long time.
E.g., accessing a floppy drive.

Total running time = user time + system time.

User time –
Time spent on codes in
user-space memory.

System time –
Time spent on codes in
kernel-space memory.

• Let’s tell the difference…with the tool “time”.

$ time ./time_example

real 0m0.003s
user 0m0.003s
sys 0m0.000s
$ _

User time VS System time – example 1

14

int main(void) {
int x = 0;
for(i = 1; i <= 100000; i++) {

x = x + i;
// printf(“x = %d\n”, x);
}
return 0;

}

Commented on purpose.

Time elapsed when “./time_example”
terminates.

The user time of “./time_example” measured
when the process is on CPU.

The system time of “./time_example” measured
when the process is on CPU.

Why comment
this line???

• Let’s tell the difference…with the tool “time”.

$ time ./time_example

real 0m0.003s
user 0m0.003s
sys 0m0.000s
$ _

User time VS System time – example 1

15

int main(void) {
int x = 0;
for(i = 1; i <= 100000; i++) {

x = x + i;
printf(“x = %d\n”, x);

}
return 0;

}
Comment released.

$ time ./time_example

real 0m0.677s
user 0m0.032s
sys 0m0.227s
$ _

See? Accessing hardware costs the process more time.

int main(void) {
int x = 0;
for(i = 1; i <= 100000; i++) {

x = x + i;
// printf(“x = %d\n”, x);
}
return 0;

}
Commented on purpose.

User time VS System time – example 2

• What is the difference of the two programs?

16

#define MAX 1000000

int main(void) {
int i;
for(i = 0; i < MAX; i++)

printf(“x\n”);
return 0;

}

#define MAX 1000000

int main(void) {
int i;
for(i = 0; i < MAX / 5 ; i++)

printf(“x\nx\nx\nx\nx\n”);
return 0;

}

Lessons learned: When writing a program, you must
consider both the user time and the system time

User time VS System time – short summary

• The user time and the system time together define
the performance of an application
– System call plays a major role in performance.
– Blocking system call: some system calls even stop your

process until the data is available.

• Programmers should pay attention to system
performance
– Reading a file byte-by-byte
– Reading a file block-by-block, where the size of a block is

4,096 bytes

17

18

Story so far…

User space and Kernel space

ProcessProcess

User time and system time

19

Next…

Working of system calls
- fork();
- exec*();
- wait() + exit();

ProcessProcess

20

Next…

Working of system calls
- fork();
- exec*();
- wait() + exit();

ProcessProcess

fork()

• From a programmer’s view, fork() behaves like
the following:

21

fork()

• From a programmer’s view, fork() behaves like
the following:

22

Original execution flow
of a process

The process
invokes fork().

The process splits into two!

Flow of original process

Flow of newly-created process

fork() is called.

fork() returns.

new process

What is doing here?
kernel is fork()-ing

The kernel is doing something
secret. What are those things?

fork()

• From the Kernel’s view…

23

Guess: What will be modified?

Process creation – fork() system call

• fork() behaves like “cell division”.
– It creates the child process by cloning from the parent

process, including…

24

Cloned items Descriptions

Program counter
[CPU register]

That’s why they both execute from the same line of code after
fork() returns.

Program code
[File & Memory]

They are sharing the same piece of code.

Memory Including local variables, global variables, and dynamically
allocated memory.

Opened files
[Kernel’s internal]

If the parent has opened a file “A”, then the child will also have
file “A” opened automatically.

Recall

Process creation – fork() system call

• However…
– fork() does not clone the following...
– Note: they are all data inside the memory of kernel.

25

Distinct items Parent Child

Return value of fork() PID of the child process. 0

PID Unchanged. Different, not necessarily be
“Parent PID + 1”

Parent process Unchanged. Doesn’t have the same parent
as that of the parent process.

Running time Cumulated. Just created, so should be 0.

Recall

fork() in action – the start…

26

OS Kernel

Process
1234

Process
345

Inside kernel, processes are arranged as a
doubly linked list, called the task list.
Q: What is each node?

fork() in action – the start…

27

OS Kernel

Process
1234

Process
345

PID = 1234

Running time

Array of opened files

PID = 1234

Running time

Array of opened filescopying

Inside kernel, processes are
arranged as a doubly linked
list, called the task list.
Q: What is each node?

This guy invoked
fork().

fork() in action – kernel-space update

28

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked
fork().

Process
345

reset to 0.

updated.

preserved.

fork() in action – kernel-space update

29

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked
fork().

Process
345

List of children Pointer to my parent

reset to 0.

updated.

preserved.

updated.
Add a new

child.

fork() in action – kernel-space update

30

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

This guy invoked
fork().

Process
345

List of children Pointer to my parent

A new node is
introduced.

reset to 0.

updated.

preserved.

updated.
Add a new

child.

fork() in action – user-space update

31

OS Kernel

Process
1234

This guy invoked
fork().

Process
1235

Process
345

What happened
to user space?

fork() in action – user-space update

32

OS Kernel

Process
1234

This guy invoked
fork().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Process
1235

Process
345

What happened
to user space?

fork() in action – user-space update

33

OS Kernel

Process
1234

This guy invoked
fork().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

copying

Process
1235

Process
345

fork() in action – finish

34

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

PID = 1235

Running time

Array of opened files

Ready to return
from fork()

List of children Pointer to my parent

Return value = 1235 Return value = 0

Process
1235

Process
345

Ready to return
from fork()

fork() in action – array of opened files?

• After fork()
– The child process share a set of opened files

• What are the array of opened files?

35

fork() in action – array of opened files?

• Array of opened files contains:

– That's why a parent process shares the same terminal
output stream as the child process!

36

Array Index Description

0 Standard Input Stream; FILE *stdin;

1 Standard Output Stream; FILE *stdout;

2 Standard Error Stream; FILE *stderr;

3 or beyond Storing the files you opened, e.g., fopen(), open(), etc.

37

Working of system calls
- fork();
- exec*();

Process

exec*()

• How about the exec*() call family?

38

exec*() is called.

The kernel is doing something
secret. What are those things?

The process returns to user-space
but is executing another program.

Process

Old
code New

code

e.g., execl("/bin/ls", "/bin/ls", NULL);

exec*() in action – the start…

39

OS Kernel

Process
1234

Process
345

PID = 1234

Running time

Array of opened files

The kernel searches the target
program file.

If it is not found, the process returns
from the system call.

Let’s assume that it can be found.

This guy invoked
exec*().

Searching

exec*() in action – the end

40

OS Kernel

Process
1234

Process
345

This guy invoked
exec*().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

What happens to the
user-space memory

exec*() in action – the end

41

OS Kernel

Process
1234

Process
345

This guy invoked
exec*().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Cleared!
Cleared!

Reset based
on the new
code!

Changed to
the new
program code!

exec*() in action – the end

42

OS Kernel

Process
1234

Process
345

This guy invoked
exec*().

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

The kernel code updates the
content on the user-space memory.

Also, registers’ values, such as the
program counter, will also be reset.

Process

43

Working of system calls
- fork();
- exec*();
- wait() + exit();

Process

Recall the example

44

1 int system_test(const char *cmd_str) {
2 if(cmd_str == -1)
3 return -1;
4 if(fork() == 0) {
5 execl("/bin/sh", "/bin/sh",

"-c", cmd_str, NULL);
6 fprintf(stderr,

"%s: command not found\n", cmd_str);
7 exit(-1);
8 }
9 wait(NULL);
10 return 0;
11 }
12
13 int main(void) {
14 printf("before...\n\n");
15 system_test("/bin/ls");
16 printf("\nafter...\n");
17 return 0;
18 }

$./system_implement_2
before...

system_implement_2
System_implement_2.c

after...
$ _

The parent is
suspended until
the child
terminates

wait()

• wait() system call
– Suspend the parent process
– Wake up when one child process terminates

• How to terminate the child process
– Through the exit() system call

• wait() and exit() – they come together!

45

46

wait() and exit() – Time Analysis

Child
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the
parent.

Child is terminated through
the exit() system call.

wait()
returns.

Of course, the kernel
coordinates the
series of events. But,
what on earth is
going on?

Guess…
• What is going on inside kernel?

– Child: exit()
• Process data + PCB

– Parent: wait()
• Process data + PCB

47

48

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

ChildParent

49

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

This guy invoked
exit().

ChildParent

What changes will be made
for the PCB?

50

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The kernel frees all the
allocated memory.

E.g., the list of opened files
are all closed.

This guy invoked
exit().

ChildParent

That’s why not calling fclose()
before exit() may be safe…

51

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

This guy invoked
exit().

ChildParent

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Then, the kernel removes
everything on the user-
space memory about the
concerned process,
including program code
and allocated memory.

Remember that kernel is
invincible

52

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

This guy invoked
exit().

ChildParent

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

 What is next?
How about permanently removing the child?

53

wait() and exit() – child side

OS Kernel

Process
1234

Parent

Removed from the process table immediately?
Not really! Why?

54

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

This guy invoked
exit().

ChildParent

Remain the entry of the
child in the process table

(terminated state)

Resources?
Deallocate

55

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The child is now called zombie.

Its storage in the kernel-space
memory is kept to a minimum

The PID (1235 in this example)
and process structure are
owned by the child

This guy invoked
exit().

ChildParent

56

wait() and exit() – child side

OS Kernel

Process
1234

Process
1235

PID = 1235

Running time

Array of opened files

The kernel notifies the parent of
the child process about the
termination of its child.

The notification is a signal called
SIGCHLD.

This guy invoked
exit().

ChildParent

SIGCHLD How to wake up parent?

Signal
• What is signal?

– A software interrupt
– It takes steps as in the hardware interrupt

• Two kinds of signals
– Generated from user space

• Ctrl+C, kill() system call, etc.

– Generated from kernel and CPU
• Segmentation fault (SIGSEGV), Floating point exception (SIGFPE), child

process termination (SIGCHLD), etc.

• Signal is very hard to master, will be skipped in this course
– Reference: Advanced Programming Environment in UNIX
– Linux manpage

57

A short summary for exit()

58

Step (1) Clean up most of the allocated kernel-space memory.

Step (2) Clean up all user-space memory.

Step (3) Notify the parent with SIGCHLD.

exit() is
called.

(1) (2) (3)

exit()
returns.

Although the child is still in the
system, it is no longer running.
There is no program code!!!

It turns into a mindless zombie…

You cannot kill a zombie process, as it is
already dead. Then how to eliminate it?

59

wait() and exit() – they come together!

Child
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the
parent.

Child is terminated through
the exit() system call.

wait()
returns. Now, it is trivial to

see that SIGCHLD
signal is the trick!

But, how to
handle SIGCHLD?

SIGCHLD

How to proceed
with wait()?

60

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

The kernel sets a signal handling routine
(and it is a function pointer) to the process.

That signal handling routine will be executed
when SIGCHLD comes.

This guy invoked
wait().

ChildParent

Signal handlers When SIGCHLD comes, please handle it.

How to handle SIGCHLD?

61

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

By default, every process does not respond
to the SIGCHLD signal (the signal handlers
are set only when wait() is called).

What if the parent is executing other tasks
(not call the wait() system call) when child
terminates (see the 2nd case of wait() later)?

This guy invoked
wait().

ChildParent

Signal handlers

62

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

The kernel set the process to be sleeping.

The formal way to say: the wait() system
call blocks the process until ...

This guy invoked
wait().

ChildParent

Signal handlers

Guess: when to wake up?

63

wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

This guy invoked
wait().

ChildParent

Signal handlers

Process
1235

SIGCHLD
from
1235

64

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

When SIGCHLD comes, the signal
handling routine is invoked!

Note: since the parent is still inside
the system call, instead of the
original program code, the parent
process is still blocked in some
sense…

This guy invoked
wait().

ChildParent

Signal handlers

SIGCHLD
from
1235

65

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

This guy invoked
wait().

ChildParent

Signal handlers

Default Handling of SIGCHLD

1. Accept and remove the
SIGCHLD;

2. Destroy the child process
that sends her the signal.

SIGCHLD
from
1235

Now, the child is truly
dead.

66

wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

Ready to return
from wait().

Parent

Signal handlers

The signal handler is then removed, i.e., the
process is ignoring SIGCHLD again.

It returns to the previously-executing code,
going back to the user space.

So, it looks like “wait() is returned from its
invocation”.

This is the reason why wait() system call waits
for any one of the child processes.

67

wait() and exit() – parent side

OS Kernel

Process
1234

PID = 1234

Running time

Array of opened files

Ready to return
from wait().

Parent

Return value = 1235
Lastly, the return value of wait() system call is
the PID of the terminated child.

68

wait() and exit() – parent side

Child
Process

Parent
Process

wait()
is called.

Parent

Child

wait()
blocks the
parent.

Child is terminated through
the exit() system call.

wait()
returns.

So, the child will be
given a clean death
by the wait()
system call.

SIGCHLD

Is it done?

• How about wait()is called after the child already
terminated?
– Remember the case 2 (which is safe)

69

wait()

fork() Terminate

wake up

Case 1.

Parent is
suspended.

wait()

fork() Terminate
Case 2.

no suspension
is needed.

70

wait() and exit() – parent side

Child
Process

Parent
Process

wait()
is called.

Parent

Child

Child is terminated through
the exit() system call.

What is going on inside the kernel?

SIGCHLD

Case 2.

71

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

Child was already terminated (became a
zombie), SIGCHLD is also sent to parent before

ChildParent

SIGCHLD
from
1235

72

wait() and exit() – parent side

OS Kernel

Process
1234

Process
1235

PID = 1234

Running time

Array of opened files

Similar to Case 1, the kernel sets the
signal handling routine...

Nevertheless, the wait() system call
finds that the SIGCHLD signal is
already there.

So, default actions are then taken
immediately.

This guy invoked
wait().

ChildParent

Signal handlers

SIGCHLD
from
1235

73

wait() and exit() – parent side

Child
Process

Parent
Process Parent

Child

Child is terminated through
the exit() system call.

The parent will experience a
negligible amount of
blocking period.

SIGCHLD

Case 2.

wait() returns.

wait() is called.

The zombie can exist up
to the moment that the
parent process calls
wait().

Orphans (zombies)

• What would happen if a parent did not invoke
wait() and terminated?
– Remember the reparent operation in Linux?

• init is the new parent, and it periodically invokes
wait()

74

wait() and exit() – short summary

• A process is turned into a zombie when…
– The process calls exit().
– The process returns from main().
– The process terminates abnormally.

• You know, the kernel knows that the process is terminated
abnormally. Hence, the kernel invokes exit() by itself.

• Remember why exec*() does not return to its
calling process in previous example…

75

wait() and exit() – short summary

• wait() is to reap zombie child processes
– You should never leave any zombies in the system.

• Linux will label zombie processes as “<defunct>”.
– To look for them: ps aux | grep defunct

• Learn waitpid() by yourself…

76

wait() and exit() – Example

77

int main(void)
{

int pid;
if((pid = fork())) {

printf("Look at the status of the process %d\n", pid);
while(getchar() != '\n');
wait(NULL);
printf("Look again!\n");
while(getchar() != '\n');

}
return 0;

}

What is the purpose of this program?

1
2
3
4
5
6
7
8
9
10
11
12

wait() and exit() – Example

78

int main(void)
{

int pid;
if((pid = fork())) {

printf("Look at the status of the process %d\n", pid);
while(getchar() != '\n');
wait(NULL);
printf("Look again!\n");
while(getchar() != '\n');

}
return 0;

}
This program requires you to type “enter” twice
before the process terminates.

You are expected to see the status of the child
process changes between the 1st and the 2nd

“enter”.

1
2
3
4
5
6
7
8
9
10
11
12

79

Working of system calls
- fork();
- exec*();
- wait() + exit();
- importance/fun in knowing

the above things?

The role of wait() in the OS…

• Why calling wait() is important
– It is not about process execution/suspension…
– It is about system resource management.

• Think about it:
– A zombie takes up a PID;
– The total number of PIDs are limited;

• Read the limit: “cat /proc/sys/kernel/pid_max”

– What will happen if we don’t clean up the zombies?

80

When wait() is absent…

• What is the result of this program?
– Do not try to know the result by running it

81

int main(void) {
while(fork());
return 0;

}

Think about what will be
happened to both parent
and child processes?

When wait() is absent…

• Don’t try this…

82

Parent: never reach here.

Child: reached immediately,
but no corresponding wait()
for the parent (ZOMBIE)

Parent

ChildChildChild

An infinite, zombie factory!

fork()

Turn into zombie
immediately!

int main(void) {
while(fork());
return 0;

}

Summary

• Process concept
– Process vs program
– User-space memory + PCB

• Process operations
– Creation, program execution, termination
– The internal workings of

• fork()
• exec*()
• wait()+exit(): come together

• Calling wait() is important

83

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

1

Ch4 Threads

Chapter 4: Threads

• Thread Concepts

– Why use threads

– Structure in Memory

– Benefits and Challenges

– Thread Models

• Programming

– Basic Programming: Pthreads Library

– Implicit Threading: Thread Pools & OpenMP

2

3

Multi-threading
- Motivation

Motivation - Application Side

• Most software applications are multithreaded, each
application is implemented as a process with
several threads of control

– Web browser

• displays images, retrieve data from network

– Word processor

• display graphics, respond to keystrokes, spelling & grammar
checking

4

Motivation - Application Side

• Most software applications are multithreaded

– Web browser

– Word processor

– Similar tasks in a single application (web server)

• Accept client requests, service the requests

• Usually serve thousands of clients

5

Motivation – Application Side

• Why not create a process for each task?

– Process creation is

• Heavy-weighted

• Resource intensive

• Still remember what kinds of data are included in a
process…

– Text, data, stack, heap in user-space memory

– PCB in kernel-space memory

• Many of the data can be shared between multiple
tasks within an application

6

Motivation – System Side

• Modern computers usually contain multicores

– But, each processor can run only one process at a time

– CPU is not fully utilized

• How to improve the efficiency?

– Assign one task to each core

– Real parallelism (not just concurrency with interleaving
on single-core system)

7

Concurrency vs. Parallelism

8

Concurrent execution on single-core system:

Parallel execution on a multi-core system:

9

Multi-threading
- Motivation
- Thread Concept

High-level Idea

10

Recall: Process in Memory

• User-space memory of Process A

11

Global
variable

Local
variable

Dynamically-
allocated
memory

Code

Multi-thread – internals

12

Page 12

Function A

Function B

Code

Local Local

Global variables

Dynamic

- All threads share the same code.

- A thread starts with one specific
function.
- We name it the thread function
- Functions A & B in the diagram

- The thread function can invoke
other functions or system calls

- But, a thread could never return to
the caller of the thread function.

Code
User-space memory of a

process

Multi-thread – internals

13

Page 13

Function A

Function B

Code

Local Local

Global variables

Dynamic

- All threads share the same global
variable zone and the same
dynamically allocated memory

- All threads can read from and write
to both areas

Global variables

User-space memory of a
process

Dynamically allocated memory

Multi-thread – internals

14

Page 14

Function A

Function B

Code

Local Local

Global variables

Dynamic

- Each thread has its own memory
range for the local variables

- So, the stack is the private zone for
each stack

User-space memory of a
process

Local variables

Benefits of Multi-thread

• Responsiveness and multi-tasking

– Multi-threading design allows an application to do
parallel tasks simultaneously

– Example: Although a thread is blocked, the process can
still depend on another thread to do other things!

– Especially important for interactive applications (user
interface)

15

Reading from
keyboard

Status: BLOCKED

Doing
calculation

Status: RUNNING
It’d be nice to
assign one thread
for one blocking
system/library call.

Benefits of Multi-thread

• Ease in data sharing, can be done using:

– global variables, and

– dynamically allocated memory.

• Processes share resources via shared memory or message
passing, which must be explicitly arranged by the
programmer

16

Reading from
keyboard

Doing
calculation

Of course, this leads to
the mutual exclusion &
the synchronization
problems (will be talked
in later chapters)

keyboard input

Benefits of Multi-thread

17

• Economy

– Allocating memory and resources for process creation is
costly, dozens of times slower than creating threads

– Context-switch between processes is also costly, several
times of slower

• Scalability

– Threads may be running in parallel on different cores

Programming Challenges

18

• Identifying tasks

– Divide separate and concurrent tasks

• Balance

– Tasks should perform equal work of equal value

• Data splitting

– Data must be divided to run on separate cores

• Data dependency

– Synchronization is needed

• Testing and debugging

19

Multi-threading
- Motivation
- Thread Concept
- Thread Models

Global
variable

Local
variable

Dynamically-
allocated
memory

Code +
constants

Process
structure

(PCB)

20

Recall Process Structure

Kernel Space

User space

Process

Similarly…

• Thread should also include
– Data/resources in user-space memory
– Structure in kernel

• How to provide thread support?
– User thread

• Implement in user space

– Kernel thread
• Supported and managed by kernel

• Thread models (relationship between user/kernel thread)
– Many-to-one
– One-to-one
– Many-to-many

21

Thread models

• Many-to-One Model
– All the threads are mapped to one

process structure in the kernel.

– Merit
• Easy for the kernel to implement.

– Drawback
• When a blocking system call is called,

all the threads will be blocked

– Example. Old UNIX & green thread
in some programming languages.

22

Kernel
Space

User
Space

Process
Structure

Many-to-one model

Thread models

• One-to-One Model
– Each thread is mapped to a process or

a thread structure

– Merit:
• Calling blocking system calls only block

those calling threads
• A high degree of concurrency

– Drawback:
• Cannot create too many threads as it is

restricted by the size of the kernel
memory

– Example. Linux and Windows follow
this thread model

23

Kernel
Space

User
Space

One-to-one model

Scheduling – why & who cares?

• If a scheduler only interests in processes…

24

Process-based Scheduler

thread lib thread lib thread lib thread lib

A thread library needs
to implements its only
scheduling policy. I only set which process to

run, and I don’t know what
is a thread.

Scheduling – why & who cares?

• If a scheduler only interests in threads…

25

Thread-based Scheduler

The scheduler doesn’t know what
is a process; it only knows threads.

Then, a process, without multi-
threading, is actually one thread
for the scheduler.since kernel

version 2.6!

Thread models

• Many-to-many Model

– Multiple threads are mapped to
multiple structures (group
mapping)

– Merit:

• Create as many threads as
necessary

• Also have a high degree of
concurrency

26

Kernel
Space

User
Space

Many-to-many model

27

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming

Thread Libraries

• A thread library provides the programmer with an
API for creating and managing threads

– Two ways of implementation: User-level or kernel-level

• Three main thread libraries

– POSIX Pthreads (user-level or kernel-level)

– Windows (kernel-level)

– Java (implemented using Windows API or Pthreads)

28

Creating Multiple Threads

• Asynchronous threading

– Parent resumes execution after creating a child

– Parent and child execute concurrently

– Each thread runs independently

• Little data sharing

• Synchronous threading

– Fork-join strategy: Parent waits for children to terminate

• Significant data sharing

29

The Pthreads Library

• Pthreads: POSIX standard defining an API for
thread creation and synchronization.
– Specification, not implementation

• How to use Pthreads?

30

Process Thread

Creation fork() pthread_create()

I.D. Type PID, an integer “pthread_t”, a structure

Who am I? getpid() pthread_self()

Termination exit() pthread_exit()

Wait for child
termination

wait() or waitpid() pthread_join()

Kill? kill() pthread_kill()

ISSUE 1: Thread Creation

31

Thread creation – pthread_create()

32

Thread Function

Main Function

5 int main(void) {
6 pthread_t tid;
7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);
9 return 0;
10 }

1 void * hello(void *input) {
2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4 }

Thread creation – pthread_create()

33

Thread Function

Main Function

1 void * hello(void *input) {
2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4 }

5 int main(void) {
6 pthread_t tid;
7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);
9 return 0;
10 }

Main Thread

At the beginning,
there is only one
thread running: the
main thread.

Thread creation – pthread_create()

34

Thread Function

Main Function

5 int main(void) {
6 pthread_t tid;
7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);
9 return 0;
10 }

Main Thread

1 void * hello(void *input) {
2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4 }

pthread_
create()

Hello Thread

The hello thread is
created!

It is running “together”
with the main thread.

Thread creation – pthread_create()

35

Thread Function

Main Function

5 int main(void) {
6 pthread_t tid;
7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);
9 return 0;
10 }

1 void * hello(void *input) {
2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4 }

This sets the thread function of the to-
be-created thread as: hello().

The pthread_create()
function allows one
argument to be passed to
the thread function.

Remember: A thread starts with one specific function (thread function)

Thread creation – pthread_create()

36

Thread Function

Main Function

5 int main(void) {
6 pthread_t tid;
7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);
9 return 0;
10 }

Main Thread

1 void * hello(void *input) {
2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4 }

Hello Thread

Remember wait()
and waitpid()?

pthread_join()
performs similarly.

Blocked

Thread creation – pthread_create()

37

Thread Function

Main Function

5 int main(void) {
6 pthread_t tid;
7 pthread_create(&tid, NULL, hello, “hello world”);
8 pthread_join(tid, NULL);
9 return 0;
10 }

Main Thread

1 void * hello(void *input) {
2 printf(“%s\n”, (char *) input);
3 pthread_exit(NULL);
4 }

Hello Thread

Termination of the
target thread causes
pthread_join()
to return.

Blocked

ISSUE 2: Passing parameters

38

Thread creation – passing parameter

39

Thread Function

Main Function

7 int main(void) {
8 pthread_t tid;
9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n”, input);
14 return 0;
15 }

1 void * do_your_job(void *input) {
2 printf(“child = %d\n”, *((int *) input));
3 *((int *) input) = 20;
4 printf(“child = %d\n”, *((int *) input));
5 pthread_exit(NULL);
6 }

Guess: What is
the output?

$./pthread_evil_1
main = 10
child = 10
child = 20
main = 20
$

Each thread has a
separated stack.

Why do we have
such results?

Thread creation – passing parameter

40

Global

Dynamic

Code

Local
(main thread)

7 int main(void) {
8 pthread_t tid;
9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;
14 }

Well, we all know that the local variable “input” is in the
stack for the main thread.

1 void * do_your_job(void *input) {
2 printf(“child = %d\n”, *((int *) input));
3 *((int *) input) = 20;
4 printf(“child = %d\n”, *((int *) input));
5 pthread_exit(NULL);
6 }

7 int main(void) {
8 pthread_t tid;
9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;
14 }

Thread creation – passing parameter

41

Global

Dynamic

Code

Local
(main thread)

Yet…the stack for the new thread is not on another process, but is on the
same piece of user-space memory as the main thread.

Local
(new thread)

1 void * do_your_job(void *input) {
2 printf(“child = %d\n”, *((int *) input));
3 *((int *) input) = 20;
4 printf(“child = %d\n”, *((int *) input));
5 pthread_exit(NULL);
6 }

7 int main(void) {
8 pthread_t tid;
9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;
14 }

Thread creation – passing parameter

42

Global

Dynamic

Code

Local
(main thread)

The pthread_create() function only passes an address to the new thread.
Worse, the address is pointing to a variable in the stack of the main thread!

Local
(new thread)

1 void * do_your_job(void *input) {
2 printf(“child = %d\n”, *((int *) input));
3 *((int *) input) = 20;
4 printf(“child = %d\n”, *((int *) input));
5 pthread_exit(NULL);
6 }

7 int main(void) {
8 pthread_t tid;
9 int input = 10;
10 printf(“main = %d\n”, input);
11 pthread_create(&tid, NULL, do_your_job, &input);
12 pthread_join(tid, NULL);
13 printf(“main = %d\n, input);
13 return 0;
14 }

Thread creation – passing parameter

43

Global

Dynamic

Code

Local
(main thread)

Therefore, the new thread can change the value in the main
thread, and vice versa.

Local
(new thread)

1 void * do_your_job(void *input) {
2 printf(“child = %d\n”, *((int *) input));
3 *((int *) input) = 20;
4 printf(“child = %d\n”, *((int *) input));
5 pthread_exit(NULL);
6 }

ISSUE 3: Multiple Threads

44

Thread creation – multiple threads

45

Thread Function

Main Function

6 int main(void) {
7 int i;
8 pthread_t tid[5];
9
10 for(i = 0; i < 5; i++)
11 pthread_create(&tid[i], NULL, do_your_job, &i);
12 for(i = 0; i < 5; i++)
13 pthread_join(tid[i], NULL);
14 return 0;
15 }

1 void * do_your_job(void *input) {
2 int id = *((int *) input);
3 printf("My ID number = %d\n", id);
4 pthread_exit(NULL);
5 }

Waiting on several
threads: enclose
pthread_join()
within a for loop

ISSUE 4: Return Value

46

Thread termination – passing return value

47

Thread Function

Main Function

7 int main(void) {
8 pthread_t tid;
9 int input = 10, *output;
10 pthread_create(&tid, NULL, do_your_job, &input);
11 pthread_join(tid, (void **) &output);
12 return 0;
13 }

1 void * do_your_job(void *input) {
2 int *output = (int *) malloc(sizeof(int));
3 srand(time(NULL));
4 *output = ((rand() % 10) + 1) * (*((int *) input));
5 pthread_exit(output);
6 } void pthread_exit(void *return_value);

Together with termination, a pointer to a global
variable or a piece of dynamically allocated
memory is returned to the main thread.

Using pass-by-reference, a pointer
to the result is received in the main
thread.

Other Libraries

• For Windows threads and Java threads, you can
refer to the textbook if you are interested in.

48

49

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming
- Implicit Threading

Implicit Threading

50

• Applications are containing hundreds or even thousands of
threads

– Program correctness is more difficult with explicit threads

• How to address the programming difficulties?

– Transfer the creation and management of threading from
programmers to compilers and run-time libraries

– Implicit threading

• We will introduce two methods

– Thread Pools

– OpenMP

Thread Pools

• Problems with multithreaded servers

– Time required to create threads, which will be discarded
once completed their work

– Unlimited threads could exhaust the system resources

• How to solve?

– Thread pool

– Idea

• Create a number of threads in a pool where they wait for work

– Procedure

• Awakens a thread if necessary

• Returns to the pool after completion

• Waits until one becomes free if the pool contains no available thread

51

Thread Pools

52

• Advantages

– Usually slightly faster to service a request with an
existing thread than create a new thread

– Allows the number of threads in the application(s) to be
bound to the size of the pool

OpenMP

53

• Provides support for parallel
programming in shared-memory
environments

• Set of compiler directives and an API
for C, C++, FORTRAN

• Identifies parallel regions – blocks of
code that can run in parallel

When OpenMP encounters the
directive, it creates as many threads
as there are processing cores

#pragma omp parallel for

for(i=0;i<N;i++) {

c[i] = a[i] + b[i];

}

Parallel for loop

54

Multi-threading
- Motivation
- Thread Concept
- Thread Models
- Basic Programming
- Implicit Threading
- Threading Issues

Semantics of fork() and exec()

55

• Two key system calls for processes: fork,exec

• fork(): Some UNIX systems have two versions

– The new process duplicates all threads, or

– Duplicates only the thread that invoked fork()

• exec(): usually works as normal

– Replace the running process - including all threads

Signal Handling

• Signals are used in UNIX systems to notify a process that a
particular event has occurred

– Synchronous signal and asynchronous signal

– Default handler or user-defined handler

• Where should a signal be delivered in multi-threaded program?

– Deliver the signal to the thread to which the signal applies

– Deliver the signal to every thread in the process

– Deliver the signal to certain threads in the process

– Assign a specific thread to receive all signals for the process

• Deliver a signal to a specified thread with Pthread

– pthread_kill(pthread_t tid, int signal)

56

Thread Cancellation

57

• Terminating a thread before it has finished

– Why needed?

– Example: Close a browser when multiple threads are loading
images

• Two general approaches

– Asynchronous cancellation terminates the target thread
immediately

• Problem: Troublesome when canceling a thread which is updating
data shared by other threads

– Deferred cancellation allows the target thread to periodically
check if it should be cancelled (can be canceled safely)

Thread Cancellation (Cont.) - Pthreads

58

• Pthreads code example

– pthread_cancel()

– Indicates only a request

• Three cancelation modes

• Default: deferred

– Cancelation occurs only when it reaches a cancelation point, can
be established by pthread_testcancel()

Thread-Local Storage

59

• Some applications, each thread may need its own copy of
certain data

– Transaction processing system: service each transaction (with a
unique identifier) in a thread

– How about local variables?

• Visible only during a single function invocation

• Thread-local storage (TLS) allows each thread to have its
own copy of data

– TLS is visible across function invocations

– Similar to static data

– TLS data are unique to each thread

Summary of Threads

• Virtually all modern OSes support multi-threading
– A thread is a basic unit of CPU utilization
– Each comprises a thread ID, a program counter, a register set,

and a stack
– All threads within a process share code section, data section,

other resources like open files and signals

• You should take great care when writing multi-
threaded programs

• You also have to take care of (will be talked later):
– Mutual exclusion and
– Synchronization

60

61

End of Chapter 4

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch5
Process Communication & Synchronization

1

Story so far…

• Process concept + operations

– Programmer’s perspective + kernel’s perspective

• Thread

– Lightweight process

• We mainly talked about the stuffs related to a single
process/thread, what if multiple processes exist…

2

3

Processes

• The processes within a system may be

– independent or

• Independent process cannot affect or be affected by other
processes

– cooperating

• Cooperating process can affect or be affected by other
processes

• Note: Any process that shares data with others is a
cooperating process

4

Cooperating Processes

• Why we need cooperating processes

– Information sharing

• e.g., shared file

– Computation speedup

• executing subtasks in parallel

– Modularity

• dividing system functions into separate processes

– Convenience

5

P

P

P

Inter-process communication (IPC)
- What and how?

6

Interprocess Communication

• IPC: used for exchanging data between processes

• Cooperating processes need

– interprocess communication (IPC) for exchanging data

• Paradigm for cooperating processes

– Producer-consumer problem, useful metaphor for many
applications (abstracted problem model)

• producer process produces information that is consumed by a
consumer process

• At least one producer and one consumer

7

Two models

• Two (abstracted) models of IPC

– Shared memory

• Establish a shared memory region, read/write to shared region

• Accesses are treated as routine memory accesses

• Faster

8

Two models

• Two (abstracted) models of IPC

– Message passing

• Exchange message

• Require kernel intervention

• Easier to implement in distributed system

9

Communications Models

Message passing Shared memory

Producer-Consumer Problem

• Shared memory solution

– A buffer is needed to allow processes to run concurrently

10

A buffer
-It is a shared object;
-It is a queue (imagine that it is an array implementation of queue).

A producer
process

-It produces a unit of data, and
-writes that a piece of data to the tail of the buffer at one time.

A consumer
process

-It removes a unit of data from the head of the bounded buffer at
one time.

bounded/unbounded buffer

Producer Consumerenqueue dequeue

Producer-Consumer Problem

11

Producer-
consumer

requirement #1

When the producer wants to
(a) put a new item in the buffer, but
(b) the buffer is already full…

Producer-
consumer

requirement #2

When the consumer wants to
(a) consumes an item from the buffer, but
(b) the buffer is empty…

Then,
(1) The producer should be suspended, and
(2) The consumer should wake the producer up after she has

dequeued an item.

Then,
(1) The consumer should be suspended, and
(2) The producer should wake the consumer up after she has

enqueued an item.

• Focus on bounded buffer: what are the requirements?

12

Producer-consumer solution (shared mem)

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item */

}

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Shared memory by producer
& consumer processes

Producer

Consumer

in (producer)out (consumer)

…

Only allows BUFFER_SIZE-1
items at the same time. Why?

13

Message Passing

• Communicating processes may reside on different
computers connected by a network

• IPC facility provides two operations:
– send(message) + receive(message)

• If processes P and Q wish to communicate
– Establish a communication link between them

– Exchange messages via send/receive

P

Q

Message
passing

14

Message Passing (Cont.)

• Implementation issues (logical):

– Naming: Direct/indirect communication

– Synchronization: Synchronous/asynchronous

– Buffering

15

Naming

• How to refer to each other?

• Direct communication: explicitly name each other

– Operations (symmetry)
• send (Q, message) – send a message to process Q

• receive(P, message) – receive a message from process P

– Properties of communication link

• Links are established automatically (every pair can establish)

• A link is associated with exactly one pair of processes

• Between each pair, there exists exactly one link

– Disadvantage: limited modularity (hard-coding)

16

Naming

• How to refer to each other?

• Indirect communication: sent to and received from
mailboxes (ports)

– Operations
• send (A, message) – send a message to mailbox A

• receive(A, message) – receive a message from mailbox A

– Properties of communication link

• A link is established between a pair of processes only if both
members have a shared mailbox

• A link may be associated with more than two processes

• Between each pair, a number of different links may exist

17

Issues of Indirect Communication

• ISSUE1: Who receives the message when multiple
processes are associated with one link?

– Who gets the message?

– Policies
• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver (based on an algorithm).
Sender is notified who the receiver was.

• ISSUE2: Who owns the mailbox?

– The process (ownership may be passed)

– The OS (need a method to create, send/receive, delete)

P1 Mailbox
P2

P3

18

Synchronization

• How to implement send/receive?

– Blocking is considered synchronous
• Blocking send - the sender is blocked until the msg is received

• Blocking receive - the receiver is blocked until a msg is available

– Non-blocking is considered asynchronous
• Non-blocking send - the sender sends the message and resumes

• Non-blocking receive - the receiver receives a valid msg or null

• Different combinations are possible

– When both send and receive are blocking, we have a
rendezvous between the processes.

– Other combinations need buffering.

19

Buffering

• Different combinations are possible

– When both send and receive are blocking, we have a rendezvous
between the processes.

– Other combinations need buffering.

• Messages reside in a temporary queue, which can be
implemented in three ways

– Zero capacity – no messages are queued on a link,
sender must wait for receiver (no buffering)

– Bounded capacity – finite length of n messages,
sender must wait if link is full

– Unbounded capacity – infinite length, sender never waits

20

P

P

P

Inter-process communication (IPC)
- What and how?
- POSIX shared memory

POSIX Shared Memory

• POSIX shared memory is organized using memory-
mapped file

– Associate the region of shared memory with a file

• Illustrate with the producer-consumer problem

– Producer

– Consumer

21

POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

22

Name of the shared memory object

Create the object if it does not exist

Open for reading & writing

Directory permissions

POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

– Configure object size
• ftruncate(shm_fd, SIZE);

23

File descriptor for the shared mem. Obj.

Size of the shared-memory object

POSIX Shared Memory

• Producer

– Create a shared-memory object
• shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

– Configure object size
• ftruncate(shm_fd, SIZE);

– Establish a memory-mapped file containing the object
• ptr = mmap(0,SIZE, PROT_WRITE,MAP_SHARED,shm_fd,0);

24

Allows writing to the object
(only writing is necessary for producer)

Changes to the shared-memory object will
be visible to all processes sharing the object

POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

25

Open for read only

POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

– Memory map the object
• ptr = mmap(0,SIZE, PROT_READ,MAP_SHARED,shm_fd,0);

26

Allows reading to the object
(only reading is necessary for consumer)

POSIX Shared Memory

• Consumer

– Open the shared-memory object
• shm_fd = shm_open(name, O_RDONLY, 0666);

– Memory map the object
• ptr = mmap(0,SIZE, PROT_READ,MAP_SHARED,shm_fd,0);

– Remove the shared memory object
• shm_unlink(name);

27

POSIX Shared Memory – Complete Solution

28

Producer Consumer

Direct access to the shared memory region

29

P

P

P

Inter-process communication (IPC)
- What and how?
- POSIX shared memory
- Sockets

30

Sockets

• A socket is defined as an endpoint for
communication (over a network)

– A pair of processes employ a pair of sockets

– A socket is identified by an IP address and a port
number

– All ports below 1024 are used for standard services

• telnet server listens to port 23

• FTP server listens to port 21

• HTTP server listens to port 80

31

Sockets

• Socket uses a client-server architecture

• All connections must be unique

– Establishing a new connection on the same host needs another
port (>1024)

• Special IP address 127.0.0.1 (loopback) refers to itself

– Allow a client and server on the same host to communicate using
the TCP/IP protocol

➢ Server waits for incoming client
requests by listening to a specific port

➢ Accepts a connection from the client
socket to complete the connection

32

Example in Java

• Three types of sockets

– Connection-oriented (TCP), Connectionless (UDP), Multicast –
data can be sent to multiple recipients

33

P

P

P

Inter-process communication (IPC)
- What and how?
- POSIX shared memory
- Sockets
- Pipes

What is pipe?

• Pipe is a shared object.

– Using pipe is a way to realize IPC.

– Acts as a conduit allowing two processes to
communicate.

34

ls lessdata

An IPC Example

ls | less

pipe

35

Pipes

• Four issues:

– Is the communication unidirectional or bidirectional?

– In the case of two-way communication, is it half or full-
duplex?

– Must there exist a relationship (i.e., parent-child)
between the communicating processes?

– Can the pipes be used over a network?

• Two common pipes

– Ordinary pipes and named pipes

Ordinary Pipes

• Ordinary pipes (no name in file system)
– Ordinary pipes are used only for related processes

(parent-child relationship)
• Processes must reside on the same machine

– Ordinary pipes are unidirectional (one-way
communication)

– Ceases to exist after communication has finished

• Ordinary pipes allow communication in standard
producer-consumer style
– Producer writes to one end (write-end)

– Consumer reads from the other end (read-end)

36

UNIX Pipe

• UNIX treats a pipe as a special file (child inherits it
from parent)

– Create: pipe(int fd[]);

• fd[0]: read end

• fd[1]: write end

– Access: Ordinary read() and write() system calls

37

ls lessByte stream
Unidirectional

ls | less

pipe
Write end

fd[1]

Read end
fd[0]

UNIX Pipe

• Pipes are anonymous (no name in file system), then
how to share?

– fork() duplicates parent’s file descriptors

– Parent and child use each end of the pipe

38

Sharing

UNIX Pipe

39

Create a child process

Parent process
Use the write end only

Child process
Use the read end only

unidirectional (one-
way communication

Pipe - Shell Example

40

Programmer’s point of view.

Shell

pipe

pipe();

ls

fork();

write(); less

fork();

read();

ls | less

Pipe – Shell Example

41

Kernel’s point of view.

Shell

ls less

pipe(); read();write();

enqueue dequeue

The pipe() system call
creates a piece of shared
storage in the kernel
space!

The pipe() system call
creates a piece of shared
storage in the kernel
space!

Yet, the pipe is more than
a storage: it is a FIFO
queue with finite space.

ls | less

Pipe – Shell Example

42

The producer-consumer model

ls less

read();write();

enqueue dequeue

Producer Consumer

More, this kind of application
demonstrates the producer-consumer
communication model.

Remember the two requirements of
the bounded buffer?

43

Named Pipes

• Named pipes (pipe with name in file system)
– No parent-child relationship is necessary (processes must reside

on the same machine)

– Several processes can use the named pipe for communication
(may have several writers)

– Continue to exist until it is explicitly deleted

– Communication is bidirectional (still half-duplex)

• Named pipes are referred to as FIFOs in UNIX

– Treated as typical files

– mkfifo(), open(), read(), write(), close()

Story so far…

• Interprocess communication (IPC)
– Necessary for cooperating processes
– Producer-consumer model

• IPC models
– Shared memory & message passing

• IPC schemes
– Shared memory
– Ordinary pipes (parent-child processes)
– FIFOs (processes on the same machine)
– Sockets (intermachine communication)

• More: Michael Kerrisk, “The Linux Programming Interface”
(http://www.man7.org/tlpi/)

44

IPC models – another point of view

45

Shared Objects Message Passing

Challenge. Coordination can only be
done by detecting the status of the

shared object.
E.g., is the pipe empty / full?

Challenge. Coordination relies on the
reliability and the efficiency of the

communication medium (and protocol).

E.g., pipes, shared memory, and regular
files.

E.g., socket programming, message
passing interface (MPI) library.

P1

P2

Shared
object

read &
write

P1

P2

Message
passing

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch5
Process Communication & Synchronization

-Part 2

1

Summary on IPC models – another point of view

2

Shared Objects Message Passing

Challenge. Coordination can only be
done by detecting the status of the

shared object.
E.g., is the pipe empty / full?

Challenge. Coordination relies on the
reliability and the efficiency of the

communication medium (and protocol).

E.g., pipes, shared memory, and regular
files.

E.g., socket programming, message
passing interface (MPI) library.

P1

P2

Shared
object

read &
write

P1

P2

Message
passing

3

P

P

P

IPC problem: Race condition

Evil source: the shared objects

• Pipe is implemented with the
thought that there may be
more than one process
accessing it “at the same time”

• For shared memory and files,
concurrent access may yield
unpredictable outcomes

4

Process Process

read() write()

File structure
in the kernel

data

Hard Disk

Understanding the problem…

5

Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1 attach to the shared memory X;
2 add 10 to X;
3 exit;

Guess what the final result should be?

High-level language for Program B

1 attach to the shared memory X;
2 minus 10 to X;
3 exit;

It may be 10, 0 or 20, can you believe it?

Understanding the problem…

6

Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1 attach to the shared memory X;
2 add 10 to X;
3 exit;

High-level language for Program B

1 attach to the shared memory X;
2 minus 10 to X;
3 exit;

Remember the flow of executing a program and the system hierarchy?

Understanding the problem…

7

Process BProcess A

Shared memory

Value = 10

add 10; minus 10;

The ScenarioHigh-level language for Program A

1 attach to the shared memory X;
2 add 10 to X;
3 exit;

Partial low-level language for Program A

1 attach to the shared memory X;
......
2.1 load memory X to register A;
2.2 add 10 to register A;
2.3 write register A to memory X;
......
3 exit;

Guess what? This code block is evil!

This operation
is not atomic

Understanding the problem…

8

Process B

Shared memory - X

Value = 10

State:
Ready

Register A
Value = 0

Process A

State:
Ready

Register A
Value = 0

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

The initial setting

9

Execution Flow #1

Problem not yet arise…

10

Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 10

Process A

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

State:
Ready

Register A
Value = 0

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

Execution Flow #1, Step 1

1

Problem not yet arise…

11

Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 20

Process A

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

State:
Ready

Register A
Value = 0

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

Execution Flow #1, Step 2

1

2

Problem not yet arise…

12

Process B

Shared memory - X

Value = 20

State:
Running

Register A
Value = 20

Process A

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

State:
Ready

Register A
Value = 0

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

Execution Flow #1, Step 3

1

2

3

Problem not yet arise…

13

Process B

Shared memory - X

Value = 20

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 20

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

Context Switching

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

Execution Flow #1, Step 4

2

1

3

4

Problem not yet arise…

14

Process B

Shared memory - X

Value = 20

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 10

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

Execution Flow #1, Step 5

1

2

3

4

5

Problem not yet arise…

15

Process B

Shared memory - X

Value = 10

State:
Ready

Register A
Value = 20

Process A

State:
Running

Register A
Value = 10

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

Execution Flow #1, Step 6

1

2

3

4

5

6

16

Execution Flow #2

Problem arise…

17

Process B

Shared memory - X

Value = 10

State:
Running

Register A
Value = 10

Process A

State:
Ready

Register A
Value = 0

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

Execution Flow #2, Step 1

1

Problem arise…

18

Process B

Shared memory - X

Value = 10

Register A
Value = 10

Process A

Register A
Value = 10

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

Execution Flow #2, Step 2

Context Switching

State:
Ready

State:
Running

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

1 2

Problem arise…

19

Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 10

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

Execution Flow #2, Step 3

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

Context Switching

State:
Running

State:
Ready

1 2

3

Problem arise…

20

Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 0

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

Execution Flow #2, Step 4

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

Context Switching

State:
Ready

State:
Running

1 2

3 4

Problem arise…

21

Process B

Shared memory - X

Value = 10

Register A
Value = 20

Process A

Register A
Value = 0

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

State:
Ready

State:
Running

1 2

3 4

HELP!! No matter which process runs next, the result is
either 0 or 20, but not 10!

The final result depends on the execution sequence!

Race condition – the curse

• The above scenario is called the race condition.

• A race condition means
– the outcome of an execution depends on a particular

order in which the shared resource is accessed.

• Remember: race condition is always a bad thing and
debugging race condition has no fun at all!
– It may end up …

• 99% of the executions are fine.

• 1% of the executions are problematic.

22

Race condition – the curse

• For shared memory and files,
concurrent access may yield
unpredictable outcomes
– Race condition

• Common situation
– Resource sharing occurs frequently in OS

• EXP: Kernel DS maintaining a list of opened
files, maintaining memory allocation,
process lists…

– Multicore brings an increased emphasis
on multithreading
• Multiple threads share global variables and

dynamically allocated memory

• Process synchronization is needed

23

Process Process

read() write()

File structure
in the kernel

data

Hard Disk

Topics in Process Synchronization

24

Process Sychronization

concurrent accesses suffer
from race condition

Guarantee mutual exclusion

Idea: How to achieve

Define critical section

How to implement

 Four requirements
 Software-based proposals

➢ Disabling interrupts
➢ strict alternation
➢ peterson’s solution
➢ mutex lock
➢ Semaphore (best choice)

Classic problems

 Producer-consumer problem
 Dining philosopher problem
 Reader-writer problem

Cooperating Processes

Semaphore Usage

Avoid deadlock

Solution

Application

25

P

P

P

Inter-process communication (IPC)
- Mutual exclusion

- what & how to achieve?

How to have
peace?

Mutual Exclusion

26

Process BProcess A

Shared memory

add 10; minus 10;

Process BProcess A

Shared memory

add 10; minus 10;

Two processes playing with the same
shared memory is dangerous.

We will face the curse - race condition.

The solution can be simple:

When I’m playing with the shared
memory, no one could touch it.

This is called mutual exclusion.
A set of processes would not have the
problem of race condition if mutual
exclusion is guaranteed.

How to realize mutual exclusion?

• Kernel
– Preemptive kernels and nonpreemptive kernels

• Allows (not allow) a process to be preempted while it is
running in kernel mode

– A nonpreemptive kernel is essentially free from race
conditions on kernel data structures, and also easy to
design (especially for SMP architecture)

– Why would anyone favor a preemptive kernel
• More responsive

• More suitable for real-time programming

27

Mutual Exclusion

• More generally, how to realize?

28

Program code
of process 1

......

critical section

......

Program code
of process n

Shared Object (manipulated by n
processes)
◼ Changing common variables
◼ Updating a table
◼ Writing a file
◼ …

Solution: To guarantee that when one process is executing in its critical
section, no other process is allowed execute in its critical section.

Code for
manipulating
shared object

Code for
manipulating
shared object

Critical Section – General Structure

29

critical section

Section entry

Section exit

Program code

Critical sections is the code segment
that is accessing the shared object.

Declaring the start of the critical section.

Declaring the end of the critical section.

As if telling other processes that:
“I start accessing the shared object.”

As if telling other processes that:
“I finish accessing the shared object.”

......

......

Reading

Writing

Shared Object

To guarantee that when one process is executing in its critical
section, no other process is allowed execute in its critical section.

Reminder section

Critical Section – Example

30

Process BProcess A

2.1 load memory X to
register A;

2.2 add 10 to register A;

2.3 write register A to
memory X;

2.1 load memory X to
register A;

2.2 minus 10 from register A;

2.3 write register A to
memory X;

Need a section entry here

Need a section exit here

Need a section entry here

Need a section exit here

Important concept here.

Both regions are called critical sections,
yet they can be different.

Critical Section

Summary…for the content so far…

• Race condition is a problem.
– It makes a concurrent program producing unpredictable

results if you are using shared objects as the
communication medium.

– The outcome of the computation totally depends on the
execution sequences of the processes involved.

• Mutual exclusion is a requirement.
– If it could be achieved, then the problem of the race

condition would be gone.

– Mutual exclusion hinders the performance of parallel
computations.

31

Summary…for the content so far…

• Defining critical sections is a solution.

– They are code segments that access shared objects.

– Critical section must be as tight as possible.

• Well, you can declare the entire code of a program to be a big
critical section.

• But, the program will be a very high chance to block other
processes or to be blocked by other processes.

– Note that one critical section can be designed for
accessing more than one shared objects.

32

Summary…for the content so far…

• Implementing section entry and exit is a challenge.

– The entry and the exit are the core parts that guarantee
mutual exclusion, but not the critical section.

– Unless they are correctly implemented, race condition
would appear.

33

34

P

P

P

Inter-process communication (IPC)
- Mutual exclusion:

- how to achieve?
- how to implement?

(section entry and exit)

How to have
peace?

Entry and exit implementation - requirements

• Requirement #1: Mutual Exclusion. No two processes
could be simultaneously inside their critical sections.

• Requirement #2. Each process is executing at a nonzero
speed, but no assumptions should be made about the
relative speed of the processes and the number of CPUs.

35

Implication: when one process is inside its critical section, any attempts to go
inside the critical sections by other processes are not allowed.

Implication: the solution cannot depend on the time spent inside the critical
section, and the solution cannot assume the number of CPUs in the system.

Entry and exit implementation - requirements

• Requirement #3: progress. No process running outside its
critical section should block other processes.

• Requirement #4: Bounded waiting. No process would have
to wait forever in order to enter its critical section.

36

Implication: Only processes that are not executing in their reminder sections can
participate in deciding which will enter its critical section.

Implication: There exists a bound or limit on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section (no processes should be starved to death).

A typical mutual exclusion scenario

37

Process A

Process B
BLOCKED

B tries to enter its critical
section but A is in its
critical section.

A leaves its critical section
and B resumes execution
accordingly.

Keys

Critical section
entry

Inside Critical
section

Critical section
exit

We will be using this
coloring scheme
throughout this part.

Remember, it is always the entry blocks other
processes, but not the critical section.

Shared object
(if any)

Mutual Exclusion Implementation

• Challenges of Implementing section entry & exit

– Both operations must be atomic

– Also need to satisfy the above requirements

– Performance consideration

• Hardware solution

– Rely on atomic instructions

– test_and_set()

– compare_and_swap

38

Example: test_and_set()

• Definition

• Mutual exclusion
implementation

39

Example: compare_and_swap()

• Definition

• Mutual exclusion
implementation

40

How to satisfy
bounded waiting?

Enhanced version

41

lock is initialized as false

Proposal #1 – disabling interrupt.
• Method

– Similar idea as nonpreemptive kernels
– To disable context switching when the process is

inside the critical section.

• Effect
– When a process is in its critical section, no other

processes could be able to run.

• Implementation
– A new system call should be provided.

• Correctness?
– Correct, but it is not an attractive solution.
– Not as feasible in a multiprocessor environment
– Performance issue (may sacrifice concurrency)

42

Critical Section

Interrupt disabled

Interrupt enabled

Program Code

Proposal #2: Mutex Locks

• Idea

– A process must acquire the lock before entering a
critical section, and release the lock when it exits the
critical section

– Using a new shared object to detect the status of other
processes, and “lock” the shared object

43

1 acquire(){
2 while(!available)
3 ; /* busy waiting */
4 available = false;
5 }

1 release(){
2 available = true;
3 }

Shared object: “available” (lock)

Proposal #2: Mutex Locks

• Implementation
– Calls to acquire and release locks

must be performed atomically

– Often use hardware instructions

• Issue
– Busy waiting: Waste CPU resource

• Spinlock

• Applications
– Multiprocessor system

• When locks are expected to be held
for short times

44

Critical Section

acquire();

release();

Program Code

Note that: all processes run the
following same code.

Other software-based solutions

• Aim

– To decide which process could go into its critical section

45

Program code
of process 1

......

Critical section

• Key Issues
– Detect the status of processes (section entry)

• Need other shared variables

– Atomicity of section entry and exit

Section entry

Section exit

Program code
of process n

......

Critical section

Section entry

Section exit

Proposal #3: Strict alternation

• Method
– Using a new shared object to detect the status of other

processes

46

Process 0 Process1

1 while (TRUE) {
2 while(turn != 0)
3 ;

4 critical_section();

5 turn = 1;

6 non_critical_section();
7 }

1 while (TRUE) {
2 while(turn != 1)
3 ;

4 critical_section();

5 turn = 0;

6 non_critical_section();
7 }

Shared object “turn” initial Value = 0

Allow to enter when
turn == 0

Allow to enter when
turn == 1

/* busy waiting */ /* busy waiting */
Entry

Exit

Proposal #3: Strict alternation

47

Process 0 Process1

1 while (TRUE) {
2 while(turn != 0)
3 ; /* busy waiting */

4 critical_section();

5 turn = 1;

6 non_critical_section();
7 }

1 while (TRUE) {
2 while(turn != 1)
3 ; /* busy waiting */

4 critical_section();

5 turn = 0;

6 non_critical_section();
7 }

Shared object “turn” initial Value = 0

Process 0

Process 1

turn = 0

turn = 1

turn = 0

The order of executing
the critical section is
alternating.

Proposal #3: Strict alternation - Cons

• Strict alternation seems good, yet, it is inefficient.

– Busy waiting wastes CPU resources.

• In addition, the alternating order is too strict.

– What if Process 0 wants to enter the critical section
twice in a row? NO WAY!

– Violate any requirement?

48

Requirement #3. No process running outside its critical
section should block other processes.

Proposal #4: Peterson’s solution

• How to improve the strict alternation proposal?

– The Peterson’s solution

• Highlights:

– Share two data items

• int turn; //whose turn to enter its critical section

• Boolean interested[2]; //if a process wants to enter

– Processes would act as a gentleman: if you want to
enter, I’ll let you first

– No alternation is there

49

Proposal #4: Peterson’s solution

50

13 void leave_region(int process) { /* process: who is leaving */

14 interested[process] = FALSE; /* I just left critical region */

15 }

Shared object: “turn” &
“interested[2]”

1 int turn; /* who can enter critical section */

2 int interested[2] = {FALSE,FALSE}; /* wants to enter critical section*/

3

4 void enter_region(int process) { /* process is 0 or 1 */

5 int other; /* number of the other process */

6 other = 1-process; /* other is 1 or 0 */

7 interested[process] = TRUE; /* want to enter critical section */

8 turn = other;

9 while (turn == other &&

interested[other] == TRUE)

10 ; /* busy waiting */

11 }

12

Entry

Exit

Proposal #4: Peterson’s solution

51

1 int turn;

2 int interested[2] = {FALSE,FALSE};

3

4 void enter_region(int process) {

5 int other;

6 other = 1-process;

7 interested[process] = TRUE;

8 turn = other;

9 while (turn == other &&

interested[other] == TRUE)

10 ; /* busy waiting */

11 }

12

13 void leave_region(int process) {

14 interested[process] = FALSE;

15 }

Line 8 therefore makes the
other one the turn to run.

Of course, the process is
willing to wait when she
wants to enter the critical
section.

“I’m a gentleman!”

The process always let
another process to enter the
critical region first although
she wants to enter too.

Proposal #4: Peterson’s solution

52

1 int turn;

2 int interested[2] = {FALSE,FALSE};

3

4 void enter_region(int process) {

5 int other;

6 other = 1-process;

7 interested[process] = TRUE;

8 turn = other;

9 while (turn == other &&

interested[other] == TRUE)

10 ; /* busy waiting */

11 }

12

13 void leave_region(int process) {

14 interested[process] = FALSE;

15 }

Process 0 Process 1

enter_region(): 4-8

Context Switching

Context Switching

enter_region(): 9

Critical Section

Context Switching

Busy waiting

enter_region(): 4-8

Context Switching

leave_region()

Context Switching

Critical Section

turn = 1;

turn = 0;

turn = 0;
interested[1] = T;

interested[0] = F;

and the story goes on…

Can you show that the
requirements are satisfied?

Proposal #4: Peterson’s solution

53

1 int turn;

2 int interested[2] = {FALSE,FALSE};

3

4 void enter_region(int process) {

5 int other;

6 other = 1-process;

7 interested[process] = TRUE;

8 turn = other;

9 while (turn == other &&

interested[other] == TRUE)

10 ; /* busy waiting */

11 }

12

13 void leave_region(int process) {

14 interested[process] = FALSE;

15 }

Process 0 Process 1

enter_region(): 4-7

Context Switching

Context Switching

enter_region(): 8-9

Context Switching

enter_region(): 4-7

Can you complete the flow?
(what is the difference?)

Can both processes progress?

Proposal #4: Peterson’s solution – issues

• Busy waiting has its own problem…

– An apparent problem: wasting CPU time.

– A hidden, serious problem: priority inversion problem.

• A low priority process is inside the critical region, but …

• A high priority process wants to enter the critical region.

• Then, the high priority process will perform busy waiting for a
long time or even forever.

54

Low-priority
process

Not scheduled for a long time.

High-priority
process

High priority process
created with preemption

Because it has a higher
priority, it will sit on the CPU
doing useless things.

Story so far…

55

Critical Section Problem

Disabling
interrupts

Strict
alternation

Peterson’s
solution

Mutex
lock

Efficiency
Concurrency

Violating
requirement

Busy Waiting

Priority
inversion

Atomicity
implementation

Use other shared variables to detect process status

Final proposal: Semaphore

• In real life, semaphore is a flag signaling system.

– It tells a train driver (or a plane pilot) when to stop and
when to proceed.

• When it comes to programming…

– A semaphore is a data type.

– You can imagine that it is an integer (but it is certainly
not an integer when it comes to real implementation).

56

source: wikipedia.

Final proposal: Semaphore

• Semaphore is a data type (additional shared object)

– Accessed only through two standard atomic operations

– down(): originally termed P (from Dutch proberen, “to
test”), wait() in textbook

• Decrementing the count

– up(): originally termed V (from verhogen, “to
increment”), signal() in textbook

• Incrementing the count

• Two types

– Binary semaphore: 0 or 1 (similar to mutex lock)

– Counting semaphore: control finite number of resources

57

Final proposal: Semaphore

• Idea

58

Shared
resource
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Semaphore
S = 5

Initialize the semaphore to the number of resource instances

Final proposal: Semaphore

• Idea

59

Shared
resource
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Acquire
resource
down()

Semaphore
S = 4

Wish to use a resource, perform down() to decrement the count

Final proposal: Semaphore

• Idea

60

Shared
resource
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Release
resource
up()

Semaphore
S = 5

Release a resource, perform up() to increment the count

Final proposal: Semaphore

• Idea

61

Shared
resource
instances

process 1

......

Critical section

Section entry

Section exit

process n

......

Critical section

Section entry

Section exit

Acquire
resource
down()

Acquire
resource
down()

Semaphore
S = 0

When the count goes to 0, block the processes that wish to use

typedef int semaphore;

Semaphore – Simple Implementation

62

1 void down(semaphore *s) {
2
3 while (*s == 0) {
4
5 ;//busy wait
6
7 }
8 *s = *s – 1;
9
10 }

1 void up(semaphore *s) {
2
3
4
5 *s = *s + 1;
6
7 }

Section Entry: down()

Section Exit: up()

Data Type definition

Counting Semaphore: initialized to
be the number of resources available

typedef int semaphore;

Semaphore – Address busy waiting

63

1 void down(semaphore *s) {
2
3 while (*s == 0) {
4
5 special_sleep();
6
7 }
8 *s = *s – 1;
9
10 }

1 void up(semaphore *s) {
2
3 if (*s == 0)
4 special_wakeup();
5 *s = *s + 1;
6
7 }

Section Entry: down()

Section Exit: up()

Data Type definition First issue: Busy waiting

Solution: block the process instead of
busy waiting (place the process into a
waiting queue)

typedef int semaphore;

Semaphore – Address busy waiting

64

Data Type definition First issue: Busy waiting

Solution: block the process instead of
busy waiting (place the process into a
waiting queue)

typedef struct{

int value;
struct process * list;

}semaphore;

Note

Implementation: The waiting queue
may be associated with the
semaphore, so a semaphore is not
just an integer

typedef int semaphore;

Semaphore – Atomicity

65

1 void down(semaphore *s) {
2
3 while (*s == 0) {
4
5 special_sleep();
6
7 }
8 *s = *s – 1;
9
10 }

1 void up(semaphore *s) {
2
3 if (*s == 0)
4 special_wakeup();
5 *s = *s + 1;
6
7 }

Section Entry: down()

Section Exit: up()

Data Type definition

Second issue: Atomicity (both
operations must be atomic)

Solution: Disabling interrupts

typedef int semaphore;

Semaphore – Atomicity

66

Section Entry: down()

Section Exit: up()

Data Type definition
Second issue: Atomicity (both
operations must be atomic)

Solution: Disabling interrupts

Also, only one process can invoke
“disable_interrupt()”. Later
processes would be blocked until
“enable_interrupt()” is called.

1 void down(semaphore *s) {
2 disable_interrupt();
3 while (*s == 0) {
4 enable_interrupt();
5 special_sleep();
6 disable_interrupt();
7 }
8 *s = *s – 1;
9 enable_interrupt();
10 }

1 void up(semaphore *s) {
2 disable_interrupt();
3 if (*s == 0)
4 special_wakeup();
5 *s = *s + 1;
6 enable_interrupt();
7 }

typedef int semaphore;

Semaphore – The code

67

1 void down(semaphore *s) {
2 disable_interrupt();
3 while (*s == 0) {
4 enable_interrupt();
5 special_sleep();
6 disable_interrupt();
7 }
8 *s = *s – 1;
9 enable_interrupt();
10 }

1 void up(semaphore *s) {
2 disable_interrupt();
3 if (*s == 0)
4 special_wakeup();
5 *s = *s + 1;
6 enable_interrupt();
7 }

Section Entry: down()

Section Exit: up()

Data Type definition
Why need these two statements?

Disabling interrupts may sacrifice
concurrency, so it is essential to keep the
critical section as short as possible

Semaphore – details

68

Process 1234

Semaphore X
Value = 0

1234

Waiting List

Suppose that process 1234 is willing to access
the shared resource (enter its critical section),
but no resource is available

Section Entry: down()

down(X)

1 void down(semaphore *s) {
2 disable_interrupt();
3 while (*s == 0) {
4 enable_interrupt();
5 special_sleep();
6 disable_interrupt();
7 }
8 *s = *s – 1;
9 enable_interrupt();
10 }

Semaphore – details

69

1234

Waiting List

2468

Process 1234 Process 2468

Semaphore X
Value = 0

wakeupwakeup

Process 1357

Section Exit: up()

up(X)

1 void up(semaphore *s) {
2 disable_interrupt();
3 if (*s == 0)
4 special_wakeup();
5 *s = *s + 1;
6 enable_interrupt();
7 }

Semaphore X
Value = 1

Semaphore – details

70

Process 1234 Process 2468

Section Entry: down()

1 void down(semaphore *s) {
2 disable_interrupt();
3 while (*s == 0) {
4 enable_interrupt();
5 special_sleep();
6 disable_interrupt();
7 }
8 *s = *s – 1;
9 enable_interrupt();
10 }

down(X)

Note that it is impossible for two
blocked processes to get out of the
down() simultaneously.

Why?

Only one process can invoke
disable_interrupt()

Only one process can manipulate
this shared variable

here

Semaphore – details

71

Process 1234 Process 2468

Section Entry: down()

1 void down(semaphore *s) {
2 disable_interrupt();
3 while (*s == 0) {
4 enable_interrupt();
5 special_sleep();
6 disable_interrupt();
7 }
8 *s = *s – 1;
9 enable_interrupt();
10 }

down(X)

Note that it is impossible for two
processes to get out of the down()
simultaneously.

Why?

Whether which process can get out
of down() is the business of the
scheduler.

here

Semaphore – in action

• Add them together…

72

semaphore *s;
s = 1; / initial value */

1 while(TRUE) {

2 down(s);

3 critical_section();

4 up(s);

5 }

entry

exit

s=0 s=0

s=1

s=1

s=0

s=1

Either one of the processes can
enter the critical section when
the first process calls “up(s)”.

s=1

Summary…on semaphore

• More on semaphore…it demonstrations an
important kind of operations – atomic operations.

• In other words, the entire up() and down() are
indivisible.

– If it returns, the change must have been made;

– If it is aborted, no change would be made.

73

Definition of atomic operation

- Either none of the instructions of an atomic operation were completed, or
- All instructions of an atomic operation are completed.

Summary…on critical section problem

• What happened is just the implementation of
mutual exclusion (section entry and section exit).

74

Comments

Disabling interrupts
Time consuming for multiprocessor systems, sacrifices

concurrency.

Strict alternation Not a good one, busy waiting & violating one mutual
exclusion requirement.

Peterson’s solution
Busy waiting & has a potential “priority inversion

problem”.

Mutex lock Busy waiting, often relies on hardware instructions.

Semaphore BEST CHOICE.

Story so far…

• Cooperating processes

– IPC mechanisms (shared memory, pipes, FIFOs, sockets)

– Race condition

• Synchronization

– Mutual exclusion

• Critical section problem

• Disabling interrupts, strict alternation, Peterson’s solution,
mutex lock, semaphore

• What is next?

– How to use semaphore to solve classic IPC problems

– Deadlock

75

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch5
Process Communication & Synchronization

-Part 3

1

Story so far…

• For shared memory and files,
concurrent access may yield
unpredictable outcomes
– Race condition

• To avoid race condition, mutual
exclusion must be guaranteed
– Critical section

– Implementations (entry/exit)
• Hardware instructions

• Disabling interrupts

• Strict alternation

• Peterson’s solution

• Mutex lock

• Semaphore

2

Process Process

read() write()

data

Shared objects

Semaphore Usage

• Semaphore can be used for

– Mutual exclusion (binary semaphore)

– Process synchronization (counting semaphore may be
needed)

• How to do process synchronization w/ semaphore?

– Mutual exclusion + coordination (multiple semaphores)

– Careless design may lead to other issues

• Deadlock

3

Topics

4

Deadlock

 Concept
 Necessary conditions
 Characterization
 Solutions

Classic problems

 Producer-consumer problem
 Dining philosopher problem
 Reader-writer problem

5

P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them
not to fight.

6

Deadlock Example

• Problems when using semaphore
Process P0

......

Critical
Section

down(X)
down(Y)

up(X)
up(Y)

Process P1

......

Critical
Section

down(Y)
down(X)

up(Y)
up(X)

Scenario: P0 must wait until P1 executes up(Y), P1
must wait until P0 executes up(X)

Deadlock

Deadlock Requirements

• Requirement #1: Mutual Exclusion.

– Only one process at a time can use a resource

• Requirement #2. Hold and wait.

– A process must be holding at least one resource and
waiting to acquire additional resources held by other
processes

7

Deadlock Requirements

• Requirement #3: No preemption.

– A resource can be released only voluntarily by the
process holding it after that process has completed its
task

• Requirement #4. Circular wait.

– There exists a set {P0, P1, …, Pn} of waiting processes such
that P0 waits for P1, P1 waits for P2, …, Pn–1 waits for Pn ,
Pn waits for P0

8

How to Handle Deadlocks

• Deadlock characterization: Deadlocks can be
described using resource-allocation graph

– Set V is partitioned into two types:

• P = {P1, P2, …, Pn}: processes

• R = {R1, R2, …, Rm}: all resource types (each type may have
multiple instances)

– Set E

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj→ Pi

9

Pi

Rj

Pi

Rj

10

Examples

How to Handle Deadlocks

• Detect deadlock and recover

– Case 1: Each resource has one instance

• Resource-allocation graph: detect the existence of a cycle

11

No deadlock

No cycles

Case 1: only one
instance per resource

type: deadlock

Contains a cycle

Case 2: several instances
per resource type:
possible deadlock

12

Examples

Deadlock No deadlock

How to Handle Deadlocks

• Detect deadlock and recover

– Case 2: Each resource has multiple instances

• Matrix method: four data structures
– Existing (total) resources (𝑚 types): (𝐸1, 𝐸2, … , 𝐸𝑚)

– Available resources: (𝐴1, 𝐴2, … , 𝐴𝑚)

– Allocation matrix：
𝐶11 ⋯ 𝐶1𝑚
⋮ ⋱ ⋮
𝐶𝑛1 ⋯ 𝐶𝑛𝑚

– Request matrix:
𝑅11 ⋯ 𝑅1𝑚
⋮ ⋱ ⋮

𝑅𝑛1 ⋯ 𝑅𝑛𝑚

13

(𝐶𝑖𝑗: # of type-j resources

held by process i)

(𝑅𝑖𝑗: # of type-j resources

requested by process i)

➢ Repeatedly check 𝑃𝑖 s.t. 𝑅𝑖 ≤ 𝐴? (𝑃𝑖 can be satisfied)
✓ Yes: 𝐴 = 𝐴 + 𝐶𝑖 (release resources)
✓ No: End (remaining processes are deadlocked)

How to Handle Deadlocks

• Prevent/avoid deadlocks: Banker’s algorithm

• Idea: check system state defined by (E, 𝐴, 𝐶, 𝑅)

• Safe state: exist one running sequence to guarantee that all
processes’ demand can be satisfied

• Unsafe state: Not exist any sequence to guarantee the demand
– It is not deadlock (it can still run for some time/processes may release

some resources)

14

A 3 9

B 2 4

C 2 7

Existing resources

Maximum demand

P
ro

cesses

A 3 9

B 4 4

C 2 7

A 3 9

B 0 -

C 2 7

A 3 9

B 2 4

C 7 7

A 3 9

B 2 4

C 0 -

Available: 3 Available: 1 Available: 5 Available: 0 Available: 7

How to Handle Deadlocks

• Prevent/avoid deadlocks: Banker’s algorithm

– For each request: safe (accept), unsafe (reject)

15

A 1 6

B 0 5

C 2 4

D 4 7

Existing resources

Maximum demand

P
ro

cesse
s

Available: 3
Available: 2 Available: 1

A 1 6

B 1 5

C 2 4

D 4 7

A 1 6

B 2 5

C 2 4

D 4 7

Safe state Unsafe state

B requests
one resource

reject

Running order: C D B A

The algorithm can also be extended to the case of multiple
resources, but it needs to know the demand

B requests one
resource

Accept

Initial state

16

How to Handle Deadlocks

• Ignore the problem and pretend that deadlocks
never occur (stop functioning and restart manually)

–鸵鸟算法（假装没发生）

– Used by most operating systems, including UNIX and
windows

– Deadlocks occur infrequently, avoiding/detecting it is
expensive

• A deadlock-free solution does not eliminate starvation

17

P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them
not to fight.

What are the problems?

• All the IPC classical problems use semaphores to
fulfill the synchronization requirements.

18

Properties Examples

Producer-
Consumer
Problem

Two classes of processes: producer and consumer;
At least one producer and one consumer.

FIFO buffer,
such as pipe.

Dining
Philosophy

Problem

They are all running the same program;
At least two processes.

Cross-road
traffic control.

Reader-Writer
Problem

Two classes of processes: reader and writer.
No limit on the number of the processes of each

class.
Database.

19

P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them
not to fight.

Producer-consumer problem – recall

• Also known as the bounded-buffer problem.

20

A bounded
buffer

-It is a shared object;
-Its size is bounded, say N slots.
-It is a queue (imagine that it is an array implementation of queue).

A producer
process

-It produces a unit of data, and
-writes that a piece of data to the tail of the buffer at one time.

A consumer
process

-It removes a unit of data from the head of the bounded buffer at
one time.

pipe – bounded

ls lessenqueue dequeue

Producer Consumer

ls | less

Producer-consumer problem – recall

21

Producer-
consumer

requirement #1

When the producer wants to
(a) put a new item in the buffer, but
(b) the buffer is already full…

Producer-
consumer

requirement #2

When the consumer wants to
(a) consumes an item from the buffer, but
(b) the buffer is empty…

Then,
(1) The producer should be suspended, and
(2) The consumer should wake the producer up after she has

dequeued an item.

Then,
(1) The consumer should be suspended, and
(2) The producer should wake the consumer up after she has

enqueued an item.

Producer-consumer problem

• Pipe is working fine. Is it enough?

– What if we cannot use pipes?

• Say, there are 2 producers and 2 consumers without any
parent-child relationships?

– Then, the kernel can’t protect you with a pipe.

• In the following, we revisit the producer-consumer
problem with the use of shared objects and
semaphores, instead of pipe.

22

Design – Semaphores

• ISSUE #1: Mutual Exclusion.

• ISSUE #2: Synchronization (coordination).

– Remember the two requirements:

• Insert an item when it is not FULL

• Consume an item when it is not EMPTY

– Can we use a binary semaphore?

23

Solution: one binary semaphore (mutex)

Solution: two counting semaphores (full & empty)

24

Producer-consumer problem – solution

Note

The functions “insert_item()” and
“remove_item()” are accessing the bounded
buffer (codes in critical section).

The size of the bounded buffer is “N”.

Consumer FunctionProducer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6
7
8 insert_item(item);
9
10
11 }
12 }

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5
6
7 item = remove_item();
8
9
10 consume_item(item);
11 }
12 }

25

Producer-consumer problem – solution

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

Note

Mutual exclusion requirement

Synchronization requirement

Shared object

Consumer FunctionProducer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6
7
8 insert_item(item);
9
10
11 }
12 }

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5
6
7 item = remove_item();
8
9
10 consume_item(item);
11 }
12 }

26

Producer-consumer problem – Understanding

Why we need three semaphores, “empty”,
“full”, “mutex”?

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

Shared object

Consumer FunctionProducer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6
7
8 insert_item(item);
9
10
11 }
12 }

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5
6
7 item = remove_item();
8
9
10 consume_item(item);
11 }
12 }

27

Producer-consumer problem – Understanding

Why we need three semaphores, “empty”,
“full”, “mutex”?

mutex:
What is its purpose?
Why is the initial value of mutex 1?

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

Consumer FunctionProducer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6
7 down(&mutex);
8 insert_item(item);
9 up(&mutex);
10
11 }
12 }

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9
10 consume_item(item);
11 }
12 }

28

Producer-consumer problem – Understanding

The “mutex” stands for mutual exclusion.

- down() and up() statements are the
entry and the exit of the critical section,
respectively.

What is the meaning of the initial value 1?

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

Producer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6
7 down(&mutex);
8 insert_item(item);
9 up(&mutex);
10
11 }
12 }

Why we need three semaphores, “empty”,
“full”, “mutex”?

mutex:
what is its purpose?
Why is the initial value of mutex 1?

29

Producer-consumer problem – Understanding

Why we need three semaphores, “empty”,
“full”, “mutex”?

How about “full” and “empty”?

Shared object

Consumer FunctionProducer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6 down(&empty);
7 down(&mutex);
8 insert_item(item);
9 up(&mutex);
10 up(&full);
11 }
12 }

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5 down(&full);
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9 up(&empty);
10 consume_item(item);
11 }
12 }

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

Producer-consumer problem – Understanding

• The two variables are not for mutual exclusion, but
for process synchronization.

– “Process synchronization” means to coordinate the set
of processes so as to produce meaningful output.

30

Consumer FunctionProducer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6 down(&empty);
7 down(&mutex);
8 insert_item(item);
9 up(&mutex);
10 up(&full);
11 }
12 }

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5 down(&full);
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9 up(&empty);
10 consume_item(item);
11 }
12 }

Consumer FunctionProducer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6 down(&empty);
7 down(&mutex);
8 insert_item(item);
9 up(&mutex);
10 up(&full);
11 }
12 }

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5 down(&full);
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9 up(&empty);
10 consume_item(item);
11 }
12 }

Producer-consumer problem – Understanding

31

For “empty”,
- Its initial value is N;
- It decrements by 1 in each iteration.
- When it reaches 0, the producers sleeps.

So, does it sound like one of the requirements? The consumer wakes the producer
up when it finds “empty” is 0.

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

Producer-consumer problem – Understanding

• Semaphore can be more than mutual exclusion!

32

empty It represents the number of empty slots.

full It represents the number of occupied slots.

Consumer FunctionProducer function

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6 down(&empty);
7 down(&mutex);
8 insert_item(item);
9 up(&mutex);
10 up(&full);
11 }
12 }

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5 down(&full);
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9 up(&empty);
10 consume_item(item);
11 }
12 }

Consumer FunctionProducer function

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5 down(&full);
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9 up(&empty);
10 consume_item(item);
11 }
12 }

33

Producer-consumer problem – question

Question.
Can we swap Lines 6 & 7 of the producer?

Let us simulate what will happen with the
modified code!

Shared object

#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6* down(&mutex);
7* down(&empty);
8 insert_item(item);
9 up(&mutex);
10 up(&full);
11 }
12 }

Producer

Consumer

34

Producer-consumer problem – question

mutex = 1 empty = 0 full = N

running until Line
10

We are showing the value of the
semaphores before the producer is
suspended.

Consumer FunctionProducer function

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5 down(&full);
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9 up(&empty);
10 consume_item(item);
11 }
12 }

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6* down(&mutex);
7* down(&empty);
8 insert_item(item);
9 up(&mutex);
10 up(&full);
11 }
12 }

Producer

Consumer

35

Producer-consumer problem – question

mutex = 0 empty = 0 full = N

because of
down(&mutex);
down(&empty);

Line 4–7* sleep

Consumer FunctionProducer function

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5 down(&full);
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9 up(&empty);
10 consume_item(item);
11 }
12 }

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6* down(&mutex);
7* down(&empty);
8 insert_item(item);
9 up(&mutex);
10 up(&full);
11 }
12 }

running until Line
10

Producer

Consumer

36

Producer-consumer problem – question

mutex = 0 empty = 0 full = N-1

context
switching

Line 4–7* sleep

Line 4–6 sleep

Endless
Sleep

Consumer FunctionProducer function

1 void consumer(void) {
2 int item;
3
4 while(TRUE) {
5 down(&full);
6 down(&mutex);
7 item = remove_item();
8 up(&mutex);
9 up(&empty);
10 consume_item(item);
11 }
12 }

1 void producer(void) {
2 int item;
3
4 while(TRUE) {
5 item = produce_item();
6* down(&mutex);
7* down(&empty);
8 insert_item(item);
9 up(&mutex);
10 up(&full);
11 }
12 }

running until Line
10

Producer-consumer problem

• Deadlock happens when a circular wait appears

– The producer is waiting for the consumer to “up()” the
“empty” semaphore, and

– the consumer is waiting for the producer to “up()” the
“mutex” semaphore.

37

Producer Consumer

mutex

empty

I’m holding it. I’m waiting for it.

I’m holding it (because I’ve
a chance to “up” it)I’m waiting for it.

Producer-consumer problem

• Deadlock happens when a circular wait appears

– The producer is waiting for the consumer to “up()” the
“empty” semaphore, and

– the consumer is waiting for the producer to “up()” the
“mutex” semaphore.

• No progress could be made by all processes + All
processes are blocked.

– Implication: careless implementation of the producer-
consumer solution can be disastrous.

38

Summary on producer-consumer problem

• The problem can be divided into two sub-problems.

– Mutual exclusion.

• The buffer is a shared object. Mutual exclusion is needed.

– Synchronization.

• Because the buffer’s size is bounded, coordination is needed.

39

Producer Consumer

Synchronization

Mutual Exclusion

Summary on producer-consumer problem

• How to guarantee mutual exclusion?

– A binary semaphore is used as the entry and the exit of
the critical sections.

• How to achieve synchronization?

– Two semaphores are used as counters to monitor the
status of the buffer.

– Two semaphores are needed because the two
suspension conditions are different.

40

41

P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them
not to fight.

Dining philosopher – introduction

• 5 philosophers, 5 plates of spaghetti, and
5 chopsticks.

• The jobs of each philosopher are
– to think and
– to eat: They need exactly two chopsticks in

order to eat the spaghetti.

• Question: how to construct a
synchronization protocol such that
– they will not result in any deadlocking

scenarios, and
– they will not be starved to death

42

43

Dining philosopher – introduction

Philosophers

Chopsticks

Spaghetti

Consider to have
infinite supply.

Process
Process

Process
Process

Process

Shared
Object

Shared
Object

Shared
Object

Shared
Object

Shared
Object

44

Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

Chopstick 4 Chopstick 2

Chopstick 3

The chopsticks are arranged in
the following manner.

Philosopher i needs
Chopsticks i and ((i+1) % N);

45

Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

Chopstick 4 Chopstick 2

Chopstick 3

Thinking or
waiting.

Eating.

46

Dining philosopher – introduction

Philosopher 1
Philosopher 4

Philosopher 2Philosopher 3

Philosopher 0

Chopstick 1Chopstick 0

CHopstick 4 Chopstick 2

Chopstick 3

Thinking or
waiting.

Eating.

Two guys cannot share
the same chopstick.

Dining philosopher – requirement #1

• Mutual exclusion

– What if there is no mutual exclusion?

• Then: while you’re eating, the two men besides you will and
must steal all your chopsticks!

• Let’s proposal the following solution:

– When you are hungry, you have to check if anyone is
using the chopstick that you need.

– If yes, you have to wait.

– If no, seize both chopsticks.

– After eating, put down all your chopsticks.

47

48

Dining philosopher – meeting requirement #1?

void take(int i) {
down(&chop[i]);

}

void put(int i) {
up(&chop[i]);

}

#define N 5
semaphore chop[N];

1 void philosopher(int i) {
2 while (TRUE) {
3 think();

4 take(i);
5 take((i+1) % N);

6 eat();

7 put(i);
8 put((i+1) % N);
9 }
10 }

A quick question: what should be
initial values?

Section
Entry

Section
Exit

Critical
Section

Shared object

Main Function

Helper Functions

49

Dining philosopher – meeting requirement #1?

1 void philosopher(int i) {
2 while (TRUE) {
3 think();

4 take(i);
5 take((i+1) % N);

6 eat();

7 put(i);
8 put((i+1) % N);
9 }
10 }

Main Function

Phil 1

Phil 2

Phil 3

Phil 4

Phil 5

Line
1-4

Line
1-4

Line
1-4

Line
1-4

Line
1-4

Final Destination: Deadlock!

Dining philosopher – requirement #2

• Synchronization

– Should avoid any potential deadlocking execution
order.

• How about the following suggestions:

– First, a philosopher takes a chopstick.

– If a philosopher finds that he cannot take the second
one, then he should put down the first chopstick.

– Then, the philosopher goes to sleep for a while.

– Again, the philosopher tries to get both chopsticks until
both ones are seized.

50

51

Dining philosopher – meeting requirement #2?

1 void take(int i) {
2 while(TRUE) {
3 down(&chop[i]);
4 if (isUsed((i+1)%N)) {
5 up(&chop[i]);
6 sleep(1);
7 }
8 else {
9 down(&chop[(i+1)%N]);
10 break;
11 }
12 }
13 }

1 void philosopher(int i) {
2 while (TRUE) {
3 think();
4 take(i);
5 eat();
6 up(&chop[i]);
7 up(&chop[(i+1)%N)]);
8 }
9 }

The code: meeting requirement #2?

1-3

1-4

52

Dining philosopher – meeting requirement #2?

1 void take(int i) {
2 while(TRUE) {
3 down(&chop[i]);
4 if (isUsed((i+1)%N)) {
5 up(&chop[i]);
6 sleep(1);
7 }
8 else {
9 down(&chop[(i+1)%N]);
10 break;
11 }
12 }
13 }

1 void philosopher(int i) {
2 while (TRUE) {
3 think();
4 take(i);
5 eat();
6 up(&chop[i]);
7 up(&chop[(i+1)%N)]);
8 }
9 }

1

2

3
1-4

1-4

1-3

1-4

Zzz

4-6

Zzz

4-6

Zzz

5-6

2-3

2-3

2-3

Potential Problem: Philosophers are all busy
but no progress were made!

Assume N = 3 (because the
space is limited)

Dining philosopher – before the final solution.

• Before we present the final solution, let’s see what
are the problems that we have.

53

Problems

Model a chopstick as a semaphore is intuitive, but is not working.

The problem is that we are afraid to “down()”, as that may lead to a deadlock.

Using sleep() to avoid deadlock is effective, yet bringing another problem.

We can always create an execution order that keeps all the philosophers busy, but
without useful output.

Idea:

- The chopsticks are useless in the model!

- Need to guarantee: when “Philosopher x” is
eating, the left and the right of “Philosoper x”
cannot eat!

54

Dining philosopher – before the final solution.

Philosopher 1
CAN’T EATPhilosopher 4

CAN’T EAT

Philosopher 2
CAN EAT

Philosopher 3
CAN EAT

Philosopher 0
EATING

Dining philosopher – the final solution.

55

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

1 void put(int i) {
2 down(&mutex);
3 state[i] = THINKING;
4 test(LEFT);
5 test(RIGHT);
6 up(&mutex);
7 }

1 void test(int i) {
2 if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3 state[i] = EATING;
4 up(&s[i]);
5 }
6 }

1 void philosopher(int i) {
2 think();
3 take(i);
4 eat();
5 put(i);
6 }

#define N 5
#define LEFT ((i+N-1) % N)
#define RIGHT ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object Main function

Section entry Section exit

Extremely important helper function

I will explain the
code later.

Dining philosopher – the final solution.

56

#define N 5
#define LEFT ((i+N-1) % N)
#define RIGHT ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object

Going “left” and “right” in a
circular manner.

The states of the philosophers, including
“EATING”, “THINKING”, and “HUNGRY”.

Remember, this is shared array.

To guarantee mutual exclusive access to
the “state[N]” array.

To fulfill the synchronization requirement.

Question. What are the initial values of the
“s[N]” array?

Guess:

What is the meaning
of the semaphore
s[N]?

57

Dining philosopher – the final solution.

Section entry

Extremely important helper function

If both chopsticks are available,
I eat. Else, I sleep.

1 void test(int i) {
2 if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3 state[i] = EATING;
4 up(&s[i]);
5 }
6 }

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

Question. What are they doing?

If they are eating, I can’t be eating.

#define N 5
#define LEFT ((i+N-1) % N)
#define RIGHT ((i+1) % N)

int state[N];
semaphore mutex = 1;
semaphore s[N];

Shared object

58

Dining philosopher – the final solution.

Section exit

Extremely important helper function

1 void test(int i) {
2 if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3 state[i] = EATING;
4 up(&s[i]);
5 }
6 }

Wake up the one who can eat!

1 void put(int i) {
2 down(&mutex);
3 state[i] = THINKING;
4 test(LEFT);
5 test(RIGHT);
6 up(&mutex);
7 }

Try to let the one on the left of
the caller to eat.

Try to let the one on the right
of the caller to eat.

59

Dining philosopher – the final solution.

Philosopher 1
THINKINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
THINKING

Note: no chopsticks objects
will be shown in this

illustration because we
don’t need them now.

An illustration: How can
Philosopher 1 start eating?

60

Dining philosopher – the final solution.

Philosopher 4
THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
HUNGRY

Call take();

To LEFT:
are you “EATING”?

To RIGHT:
are you “EATING”?

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

Section entry

Philosopher 1
THINKING

61

Dining philosopher – the final solution.

Philosopher 1
THINKINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
HUNGRY

Call take();

To LEFT:
are you “EATING”?

To RIGHT:
are you “EATING”?

Calling take().
but, it is blocked.

Why?

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

Section entry

62

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
THINKING

Philosopher 0
EATING To LEFT:

are you “EATING”?

To RIGHT:
are you
“EATING”?

Now, it is
freed from
blocking.

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

Section entry

63

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
HUNGRY

Philosopher 0
EATING

Blocked;
because of

down(&s[1]);

To LEFT:
are you
“EATING”?

To RIGHT:
are you
“EATING”?

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

Section entry

64

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
EATING

Blocked;
because of

down(&s[1]);

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

Section entry

65

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Call put();

To LEFT:
are you “HUNGRY”?

To RIGHT:
are you “HUNGRY”?

Blocked;
because of

down(&s[1]);

An illustration: How can
Philosopher 1 start eating?

1 void put(int i) {
2 down(&mutex);
3 state[i] = THINKING;
4 test(LEFT);
5 test(RIGHT);
6 up(&mutex);
7 }

Section exit

66

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

To RIGHT:
are you “EATING”?

To LEFT:
are you “EATING”?

Blocked;
because of

down(&s[1]);

1 void put(int i) {
2 down(&mutex);
3 state[i] = THINKING;
4 test(LEFT);
5 test(RIGHT);
6 up(&mutex);
7 }

Section exit
1 void test(int i) {
2 if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3 state[i] = EATING;
4 up(&s[i]);
5 }
6 }

Call put();

67

Dining philosopher – the final solution.

Philosopher 1
HUNGRYPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Call put();

Remove your
blocked state by
calling up(&s[1]);

Blocked;
because of

down(&s[1]);

1 void put(int i) {
2 down(&mutex);
3 state[i] = THINKING;
4 test(LEFT);
5 test(RIGHT);
6 up(&mutex);
7 }

Section exit
1 void test(int i) {
2 if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3 state[i] = EATING;
4 up(&s[i]);
5 }
6 }

68

Dining philosopher – the final solution.

Philosopher 1
EATINGPhilosopher 4

THINKING

Philosopher 2
THINKING

Philosopher 3
EATING

Philosopher 0
THINKING

Eventually...

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

Section entry

Dining philosopher - summary

• What is the shared object in the final solution?

– How to guarantee the mutual exclusion

69

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

1 void put(int i) {
2 down(&mutex);
3 state[i] = THINKING;
4 test(LEFT);
5 test(RIGHT);
6 up(&mutex);
7 }

Section entry Section exit

Dining philosopher - summary

• Think:

– Why the semaphore s[N] is needed

– How to set its initial value

70

1 void take(int i) {
2 down(&mutex);
3 state[i] = HUNGRY;
4 test(i);
5 up(&mutex);
6 down(&s[i]);
7 }

1 void test(int i) {
2 if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
3 state[i] = EATING;
4 up(&s[i]);
5 }
6 }

Section entry

Extremely important helper function

Dining philosopher - summary

• Solution to IPC problem can be difficult to
comprehend.

– Usually, intuitive methods failed.

– Depending on time, e.g., sleep(1), does not guarantee a
useful solution.

• As a matter of fact, dining philosopher is not
restricted to 5 philosophers.

71

72

P

P

P

The Deadlock Problem

Classic IPC problems
- Producer-consumer problem
- Dining philosopher problem
- Reader-writer problem

Let’s teach them
not to fight.

Reader-writer problem – introduction

• It is a concurrent database problem.

73

Reader

Reader

Reader

Readers are
allowed to read
the content of the
database concurrently.

Reader-writer problem – introduction

• It is a concurrent database problem.

74

A writer needs to lock
the database exclusively
so that the readers would
not retrieve inconsistent
data.

Writer

Reader

Reader

Reader

Reader-writer problem – introduction

• It is a concurrent database problem.

75

In other words, a writer
is forbidden to write any
data before the readers
have finished reading.

Writer

Reader
Reader

Reader

Writer

Reader-writer problem – introduction

• It is a concurrent database problem.

76

Reader

Writer

Reader

Of course, a writer will
also block the access from
other writers.

Reader-writer problem – subproblems

• A mutual exclusion problem.
– The database is a shared object.

• A synchronization problem.
– Rule 1. While a reader is reading, other readers is allowed to

read the database.
– Rule 2. While a reader is reading, no writers is allowed to

write to the database.
– Rule 3. While a writer is writing, no writers and readers are

allowed to access the database.

• A concurrency problem.
– Simultaneous access for multiple readers is allowed and

must be guaranteed.

77

Reader-writer problem – solution outline

• Mutual exclusion: relate the readers and the
writers to one semaphore.

– This guarantees no readers and writers could proceed to
their critical sections at the same time.

– This also guarantees no two writers could proceed to
their critical sections at the same time.

78

Semaphore
database

Reader Writer

Reader-writer problem – solution outline

• Readers’ concurrency

– The first reader coming to the system “down()” the
“database” semaphore.

– The last reader leaving the system “up()” the
“database” semaphore.

79

Reader
Reader

Reader
Reader

Reader

Shared object
reader counter

Reader-writer problem – final solution

80

semaphore db = 1;
semaphore mutex = 1;
int read_count = 0;

Reader FunctionShared object

Writer function

1 void writer(void) {
2 while(TRUE) {
3 prepare_write();
4 down(&db);

5 write_database();

6 up(&db);
7 }
8 }

Section Entry

Section Exit

Critical Section

1 void reader(void) {
2 while(TRUE) {
3 down(&mutex);
4 read_count++;
5 if(read_count == 1)
6 down(&db);
7 up(&mutex);

8 read_database();

9 down(&mutex);
10 read_count--;
11 if(read_count == 0)
12 up(&db);
13 up(&mutex);
14 process_data();
15 }
16 }

Section Entry

Section Exit

Critical Section

Reader-writer problem – final solution

81

semaphore db = 1;
semaphore mutex = 1;
int read_count = 0;

Shared object
Guarantee the mutual exclusion
between the readers and the writers.

Protect the “read_count” variable.

Keep track of the number of readers in
the system.

Reader-writer problem – final solution

82

semaphore db = 1;
semaphore mutex = 1;
int read_count = 0;

Shared object

Writer function

1 void writer(void) {
2 while(TRUE) {
3 prepare_write();
4 down(&db);

5 write_database();

6 up(&db);
7 }
8 }

Section Entry

Section Exit

Critical Section

The writer is allowed to enter its
critical section when no other
process is in its critical section
(protected by the “db” semaphore)

Reader-writer problem – final solution

83

semaphore db = 1;
semaphore mutex = 1;
int read_count = 0;

Reader FunctionShared object

1 void reader(void) {
2 while(TRUE) {
3 down(&mutex);
4 read_count++;
5 if(read_count == 1)
6 down(&db);
7 up(&mutex);

8 read_database();

9 down(&mutex);
10 read_count--;
11 if(read_count == 0)
12 up(&db);
13 up(&mutex);
14 process_data();
15 }
16 }

The first reader “down()” the “db”
semaphore so that no writers would be
allowed to enter their critical sections.

The last reader “up()” the “db” semaphore
so as to let the writers to enter their critical
section.

Reader-writer problem – summary

• This solution does not limit the number of readers
and the writers admitted to the system.

– A realistic database needs this property.

• This solution gives readers a higher priority over the
writers.

– Whenever there are readers, writers must be blocked,
not the other way round.

• What if a writer should be given a higher priority?

84

Summary on IPC problems

• The problems have the following properties in
common:
– Multiple processes;

– Shared and limited resources;

– Processes have to be synchronized in order to generate
useful output;

• The synchronization algorithms have the following
requirements in common:
– Guarantee mutual exclusion;

– Uphold the correct synchronization among processes;

– Deadlock-free.

85

Summary on Ch5

86

Race Condition

Processes Communication

Mutual Exclusion

How to realize

Define critical section

How to implement

 4 requirements & 5 schemes
 Semaphore

Classic problems

 Producer-consumer problem
 Dining philosopher problem
 Reader-writer problem

Cooperating Processes

Process Synchronization

Deadlock

IPC methods

Shared memory, Pipes, Sockets

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch6
Process Scheduling

1

Outline

2

Process Communication &
Synchronization

Process Scheduling

Scheduler

Context-
switching

Process Process Process

Kernel Space

User Space

P

P

P

Scheduling
Alg

Process
lifecycle

Why scheduling is needed

• Process execution

– Consists of a cycle of CPU execution and I/O wait

– CPU burst + I/O burst

3

CPU burst duration

Why scheduling is needed

4

A system may contain many processes which are at different
states (ready for running, waiting for I/O)

Multiprogramming
Question. How to improve CPU
utilization (CPU is much faster than I/O)?

Question. How to improve system
responsiveness (interactive applications)?

Multitasking

Scheduling is required because the number of computing
resource – the CPU – is limited.

5

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

6

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

Programmer’s point of view…

• This is how a fresh programmer looks at a process’
life cycle.

7

Running

Waiting
for results

Termination

Process
States

int main(void) {
int x = 1;
getchar();
return x;

} (1)

(2)

(3)

Kernel’s point of view…

8

New
(Just fork()-ed)

Waiting
(blocked)

Terminated
(Zombie)

Process
States

Ready Running

Big Picture

Kernel’s point of view…

9

Process
States

Ready Running

The birth of a process.

Except the first process “init”,
every process is created using
fork().

New

Waiting
(blocked)

Terminated

Kernel’s point of view…

10

Process
States

Ready Running

New

Waiting
(blocked)

Terminated

The process is ready.
It means it is ready to run but is not
running.

A process may become “ready” after...
- it is just created by fork();
- it has been running on the CPU

for some time and the OS chooses
another process to run;

- returning from blocked states.

All ready processes are kept on a list
called ready queue

Kernel’s point of view…

11

New

Waiting

Terminated

Process
States

Ready Running

Big PictureThe process is running.

The OS chooses this process to be
running on the CPU and changes
its state to “Running”.

Kernel’s point of view…

12

New

Waiting

Terminated

Process
States

Ready Running

Big PictureThe process is blocked.

While the process is running, it
may be waiting for something
and becomes blocked voluntarily.

Kernel’s point of view…

13

New

Waiting
(interruptible)

Terminated

Process
States

Ready Running

Big PictureExample. Reading a file.

Sometimes, the process has to wait for the response from the device and,
therefore, it is blocked.

Nevertheless, this blocking state is interruptible. E.g., “Ctrl + C” can get
the process out of the waiting state (but goes to termination state
instead).

Kernel’s point of view…

14

New

Waiting
(uninterruptible)

Terminated

Process
States

Ready Running

Big PictureSometimes, a process needs to wait for a resource but it doesn’t want to
be disturbed while it is waiting. In other words, the process wants that
resource very much. Then, the process status is set to the uninterruptible
status.

Kernel’s point of view…

15

New

Waiting

Terminated

Process
States

Ready Running

Big Picture
Return back to ready.

When response arrives, the status of the process changes back to Ready.
from any one of the blocked states.

Process data

Kernel’s point of view…

16

New

Waiting

Terminated

Process
States

Ready Running

Big Picture

The process is going to die.

The process may
- choose to terminate itself; or
- force to be terminated.

What is scheduling?

17

Running

So, what is process scheduling?

Mainly about how to make all the ready
processes become “Running”

This is the called short-term scheduling
or CPU scheduling.

Ready

Triggering Events

• When process scheduling happens:

18

A new process is
created.

When “fork()” is invoked and returns successfully.

Then, whether the parent or the child is scheduled is up to the
scheduler’s decision.

An existing process
is terminated.

The CPU is freed. The scheduler should choose another process to run.

A process waits for
I/O.

The CPU is freed. The scheduler should choose another process to run.

A process finishes
waiting for I/O.

The interrupt handling routine makes a scheduling request, if
necessary.

Key Issues

19

Running

Question #1: How to make a ready process
become running? (Note that the running
process may not terminate at that time)

Context switching

Ready

Question #2: How to decide which process should be running?

Scheduling criteria & scheduling algorithms

Question #3: How to design scheduling in a real/specific system?

Multiprocessor system, real-time system, algorithm evaluation

20

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

What is context switching?

• Before we can jump into the process scheduling
topic, we have to understand what “context
switching” is.

21

P1 P2 P3 P2

Scheduling is the procedure that decides which
process to run next.

Context switching is the actual switching procedure,
from one process to another.

Timer interrupt.

Hardware interrupt.

22

Switching from one process to another.

System Memory

Kernel-space

User-space
memory

Program counter

Other Register
values

Scheduler

Suppose this process gives up running on the CPU,
e.g., calling sleep(). Then:

Now, it is time for the scheduler to choose the next
process to run.

Running Waiting

sleep()

(1)

(2)

(3)

23

Switching from one process to another.

System Memory

Kernel-space

User-space
memory

Program counter

Other Register
values

Scheduler

sleep()

(1)

(2)

backup

(3)

But, before the scheduler can seize the control of the
CPU, a very important step has to be taken:

Backup all registers’ values.

The backup will be stored in the process structure

The context of a process

The union of the user-space
memory and the registers’

values of the process

24

Switching from one process to another.

System Memory

User-space
memory

Program counter

Other Register
values

load

Say, the scheduler decides to schedule another
process.

Then, the schedule has to load the context of the
new process into the main memory and into the
CPU.

(4)

We call the entire
operation:

context switching

Context switching has a price to pay…

• However, context switching may be expensive…
– Even worse, the target process may be currently stored

in the hard disk.

• So, minimizing the number of context switching
may help boosting system performance.

25

CPU

Registers

Cache

Main Memory Hard DiskProcess A
(running)

Process B

Process C

Process D

Process E

Process F

Process G

Expensive I/O swap

My turn!

26

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

Scheduling Criteria

• How to choose which algorithm to use in a
particular situation?

27

Algorithm Properties

CPU utilization

Response time

Throughput

Turnaround time Waiting time

Types

Preemptive

Nonpreemptive

Application

Multiprocessor
Real-time sys Application requirements and algorithm

properties may vary significantly

Classes of process scheduling

• Non-preemptive scheduling.

28

Cons
Bad for nowadays systems in which user experience and multi-tasking

are the primary goals.

Pros
Good for systems that emphasize the time in finishing tasks.

- Because the task is running without others’ interruption.

What is it?

When a process is chosen by the scheduler, the process would never
leave the scheduler until…

-the process voluntarily waits for I/O, or
-the process voluntarily releases the CPU, e.g., exit().

Where can I
find it?

Nowhere…but it could be found back in the mainframe computers in
1960s.

What is the
catch?

If the process is purely CPU-bound, it will seize the CPU from the time it is
chosen until it terminates.

Classes of process scheduling

• Preemptive scheduling.

29

Cons Bad for systems that emphasize the time in finishing tasks.

Where can I
find it?

Everywhere! This is the design of nowadays systems.

What is the
catch?

If that particular event is the periodic clock interrupt, then you can have
a time-sharing system.

What is it?

When a process is chosen by the scheduler, the process would never
leave the scheduler until…

-the process voluntarily waits for I/O, or
-the process voluntarily releases the CPU, e.g., exit().
-particular kinds of interrupts and events are detected.

Pros
Good for systems that emphasize interactiveness.

- Because every task will receive attentions from the CPU.

30

Performance measures

CPU
utilization

Throughput

Turnaround
time

In algorithm design:

What factors/performance measures
should be carefully considered?

Waiting
time

Response
time

31

Performance measures

CPU
utilization

Throughput

Turnaround
time

CPU utilization.

We want to keep CPU as busy as possible.

Theoretically, can range from 0-100%, but in
real system, range from 40%-90%

The higher the better

Waiting
time

Response
time

32

Performance measures

CPU
utilization

Throughput

Turnaround
time

Throughput.

Number of processes that are completed per
time unit

The higher the better

Waiting
time

Response
time

33

Performance measures

CPU
utilization

Throughput

Turnaround
time

Turnaround time.

Time to execute the process: interval from
the time of submission to the time of
completion (total running time + waiting
time+ doing I/O)

The lower the better

Waiting
time

Response
time

34

Performance measures

CPU
utilization

Throughput

Turnaround
time

Waiting time.

The time spent waiting in the ready queue

The lower the better

Waiting
time

Response
time

35

Performance measures

CPU
utilization

Throughput

Turnaround
time

Response time.

The time from the submission of a request
until the first response is produced (useful
measure for interactive systems)

The lower the better

Waiting
time

Response
time

36

Challenge

Question:

Can we optimize all the above
measures simultaneously?

Usually can not!

Fairness

Policy
enforcement

CPU-I/O
Balance

Little conflict

Big
conflict

Big
conflict

Design
Tradeoff

Common
goal

37

Topics
- Process lifecycle
- Process scheduling

- Context switching
- Scheduling criteria
- Scheduling algorithms
- Applications/Scenarios

• Inputs to the algorithms.

Scheduling algorithms

38

P1 P2 P3 P4
A set of

processes

For each
process…

Arrival
Time

CPU
requirement

It is interesting to note that
this is a non-sense!

How can we know the
requirement of each task?

Online
VS

Offline

An offline scheduling algorithm assumes that you know all the
processes submitted to the system before hand. But, an online
scheduling algorithm does not have such an assumption.

Yet, every real scheduler has to work in an “online scenario”. So, we
have to think in an “online” way…

• Outputs of the algorithms.

Scheduling algorithms

39

Scheduling
order

Individual & average
turnaround time

Individual & average
waiting time

Number of context
switching

40

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

P1

First-come, first-served scheduling

• Example 1.

41

Task Arrival
Time

CPU
Req.

P1 0 24

P2 1 3

P3 2 3

Gantt Chart

P2 P3

Input

0 2 4 6 8 1
0

1
2

1
4

1
6

1
8

2
2

2
4

2
6

2
8

3
0

2
0

Output

Waiting time: P1 = 0; P2 = 23; P3 = 25;

Average waiting time = (0+23+25)/3 = 16;

Turnaround time: P1 = 24; P2 = 26; P3 = 28;

Average turnaround time = (24+26+28)/3 = 26;

No preemption

P3

First-come, first-served scheduling

• Example 2.

42

Task Arrival
Time

CPU
Req.

P3 0 3

P2 1 3

P1 2 24

Gantt Chart

P2 P1

Input order
changed

0 2 4 6 8 1
0

1
2

1
4

1
6

1
8

2
2

2
4

2
6

2
8

3
0

2
0

Output

Waiting time: P1 = 4; P2 = 2; P3 = 0;

Average waiting time = (4+2+0)/3 = 2;
(which is 16 in the previous case)

Turnaround time: P1 = 28; P2 = 5; P3 = 3;

Average turnaround time = (28+5+3)/3 = 12;
(which is 26 in the previous case)

First-come, first-served scheduling

• A short summary:

– FIFO scheduling is sensitive to the input.

– The average waiting time is often long. Think about the
scenario (convoy effect):

• Someone is standing before you in the queue in KFC, and

• you find that he/she is ordering the bucket chicken meal (P1 in
example 1)!!!!

• So, two people (P2 and P3) are unhappy while only P1 is happy.

– Can we do something about this?

43

44

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

Non-preemptive SJF

45

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1P1 P1P1

P1

Set of processes

P2 P3 P4

Time = 0Time = 2Time = 4Time = 5

0 2 4 6 8 1
0

1
2

1
4

1
6

Not allow preemption

Non-preemptive SJF

46

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 7

P1

Set of processes

0 2 4 6 8 1
0

1
2

1
4

1
6

Non-preemptive SJF

47

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 7

P1 P3

Set of processes

0 2 4 6 8 1
0

1
2

1
4

1
6

Non-preemptive SJF

48

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 8

P1 P2P3

Set of processes

In this example, we use FIFO to break the tie.

0 2 4 6 8 1
0

1
2

1
4

1
6

Non-preemptive SJF

49

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P3 P4

Time = 12

P1 P4P3

Set of processes

P2

0 2 4 6 8 1
0

1
2

1
4

1
6

Time = 16

P4

Non-preemptive SJF

50

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P4P3 P2

0 2 4 6 8 1
0

1
2

1
4

1
6

P4

Waiting time:

Average = (0 + 6 + 3 + 7) / 4 = 4.

P1 = 0; P2 = 6; P3 = 3; P4 = 7;

Turnaround time:

Average = (7 + 10 + 4 + 11) / 4 = 8.

P1 = 7; P2 = 10; P3 = 4; P4 = 11;

Preemptive SJF

51

0 2 4 6 8 1
0

1
2

1
4

1
6

Rules for preemptive scheduling
(for this example only)

-Preemption happens when a new process arrives at
the system.

-Then, the scheduler steps in and selects the next
task based on their remaining CPU requirements.

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

Shortest-remaining-time-first

Preemptive SJF

52

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

P1

Set of processes

Time = 0

P1

Preemptive SJF

53

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

P2

Time = 2

P2

Preempted!

P1

P2 is selected!

P1 P2

Preemptive SJF

54

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 1

P4 5 4 4

Set of processes

P2 P3

Time = 4

P3

Preempted!

P1

P3 is selected!

P1 P3

P2

Preemptive SJF

55

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 4

Set of processes

P2 P3

Time = 5

P2

Preempted!

P1

P2 is selected!

P1

P2 P3

P4P2

Preemptive SJF

56

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 4

Set of processes

P2 P3

Time = 7

P4P1

P1

P2 P3

P4P4

P2

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 0

Time = 11

P1P4

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1

Time = 16

P4P1P1

Preemptive SJF

57

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 4

P4P1 P2 P3 P2

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1P4

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1

Waiting time:

Average = (9 + 1 + 0 + 2) / 4 = 3.

P1 = 9; P2 = 1; P3 = 0; P4 = 2;

Turnaround time:

Average = (16 + 5 + 1 + 6) / 4 = 7.

P1 = 16; P2 = 5; P3 = 1; P4 = 6;

SJF: Short summary

Non-preemptive SJF Preemptive SJF

Average waiting time 4 3 (smallest)

Average turnaround time 8 7 (smallest)

of context switching 3 (smallest) 5

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

The waiting time and the turnaround time decrease
at the expense of the increased number of context
switching.

SJF: Short summary

Non-preemptive SJF Preemptive SJF

Average waiting time 4 3 (smallest)

Average turnaround time 8 7 (smallest)

of context switching 3 (smallest) 5

Task Arrival
Time

CPU
Req.

P1 0 7

P2 2 4

P3 4 1

P4 5 4

SJF is provably optimal in that it gives the minimum
average waiting time

Challenge: How to know the length of the next CPU
request?

SJF: Short summary

Challenge: How to know the length of the next CPU
request?

Solution: Prediction (by expecting that the next CPU
burst will be similar in length to the previous ones)

General approach
exponential average

Most recent information

Predicted
value

61

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

Round-robin

• Round-Robin (RR) scheduling is preemptive.

– Every process is given a quantum, or the amount of time
allowed to execute.

– When the quantum of a process is used up (i.e., 0), the
process releases the CPU and this is the preemption.

– Then, the scheduler steps in and it chooses the next
process which has a non-zero quantum to run.

• Processes are running one-by-one, like a circular
queue.

– Designed specially for time-sharing systems

62

Round-robin

63

Rules for Round-Robin
(for this example only)

-The quantum of every process is fixed and is 2 units.

-The process queue is sorted according the processes’
arrival time, in an ascending order.
(This rule allows us to break tie.)

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

Round-robin

64

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 7

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

P1
Q:2

Time = 0

P1

Round-robin

65

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 4

P3 4 1 1

P4 5 4 4

Set of processes

Time = 2

P2P1

P1
Q:0

P2
Q:2

P1’s quantum is 0;
P2 is selected!

Round-robin

66

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 1

P4 5 4 4

Set of processes

Time = 4

P3P1

P1
Q:0

P2
Q:0

P1’s & P2’s quanta are 0;
P3 is selected!

P2

P3
Q:2

Round-robin

67

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 5

P4P1

P1
Q:0

P2
Q:0

P1’s & P2’s quanta are 0;
P4 is selected!

P2

P3
Q:2

P3

P4
Q:2

Round-robin

68

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 5

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 7

P1P1

P1
Q:0

P2
Q:0

Now, recharge is needed.

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:2

P2
Q:2

P4
Q:2

Now, recharge is needed.
P1 is selected.

Round-robin

69

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 2

P3 4 1 0

P4 5 4 2

Set of processes

Time = 9

P2P1

P1
Q:0

P2
Q:0

P1’s quantum is 0;
P2 is selected!

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1

Round-robin

70

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 0

P3 4 1 0

P4 5 4 2

Set of processes

Time = 11

P4P1

P1
Q:0

P2
Q:0

P1’s quantum is 0;
P4 is selected!

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2

Round-robin

71

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 3

P2 2 4 0

P3 4 1 0

P4 5 4 0

Set of processes

Time = 13

P1P1

P1
Q:0

P2
Q:0

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2 P4

P1
Q:2

Now, recharge is needed.Now, recharge is needed.
P1 is selected.

Round-robin

72

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 1

P2 2 4 0

P3 4 1 0

P4 5 4 0

Set of processes

Time = 15

P1P1

P1
Q:0

P2
Q:0

P2

P3
Q:2

P3

P4
Q:0

P4

P1
Q:0

P2
Q:2

P4
Q:2

P1 P2 P4

P1
Q:2

Now, recharge is needed.Now, recharge is needed.
P1 is selected.

P1

Round-robin

73

0 2 4 6 8 1
0

1
2

1
4

1
6

Task Arrival
Time

CPU Req.
Initial & Remain

P1 0 7 0

P2 2 4 0

P3 4 1 0

P4 5 4 0

P1 P2 P3 P4 P1 P2 P4 P1 P1

Waiting time:

Average = (9 + 5 + 0 + 4) / 4 = 4.5

P1 = 9; P2 = 5; P3 = 0; P4 = 4;

Turnaround time:

Average = (16 + 9 + 1 + 8) / 4 = 8.5

P1 = 16; P2 = 9; P3 = 1; P4 = 8;

RR VS SJF

74

Non-preemptive
SJF

Preemptive SJF RR

Average waiting time 4 3 4.5 (largest)

Average turnaround
time

8 7 8.5 (largest)

of context switching 3 5 8 (largest)

So, the RR algorithm gets all the bad! Why do we still need it?

The responsiveness of the processes is great under the RR algorithm. E.g., you
won’t feel a job is “frozen” because every job is on the CPU from time to time!

Round-robin

75

Issue for Round-Robin

-How to set the size of the time quantum?

-Too large: FCFS

-Too small: frequent context switch

-In practice: 10-100ms

-A rule of thumb: 80% CPU burst should be shorter than the
time quantum

Observations on RR

• Modified versions of round-robin are implemented
in (nearly) every modern OS.
– Users run a lot of interactive jobs on modern OS-es.

– Users’ priority list:
• Number one - Responsiveness;

• Number two - Efficiency;

• In other words, “ordinary users” expect a fast GUI response
than an efficient scheduler running behind.

• With the round-robin deployed, the scheduling
looks like random.
– It also looks like “fair to all processes”.

76

77

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

Priority Scheduling

• Some basics:
– A task is given a priority (and is usually an integer).

– A scheduler selects the next process based on the
priority.
• A typical practice: the highest priority is always chosen.

– Special case: SJF, FCFS (equal priority)

• How to define priority
– Internally: time limits, memory requirements, number of

open files, CPU burst and I/O burst…

– Externally: process importance, paid funds…

78

Priority Scheduling

79

0 2 4 6 8 1
0

1
2

1
4

1
6

Task CPU
Burst

Priority

P1 7 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2 P5

Assumption:

-All arrive at time 0
-Low numbers represent high priority

P1 P3 P4

Problem:

Solution: Aging (gradually increase the priority of
waiting processes)

Indefinite blocking or starvation

80

Different algorithms

Algorithms Preemptive? Target System

First-come, first-served
or First-in, First-out

(FIFO)
No. Out-of-date

Shortest-job-first (SJF) Can be both. Out-of-date

Round-robin (RR) Yes. Modern

Priority scheduling Yes. Modern

Priority scheduling
with multiple queues.

The real implementation!

The processes are
permanently assigned to
one queue

Multilevel queue scheduling

• Definitions.

– It is still a priority scheduler.

– But, at each priority class, different schedulers may be
deployed.

– Eg: Foreground processes and background processes

81

Priority class 2

Priority class 3

Priority class 4

Priority class 5

RR with quantum = 20 units.

RR with quantum = 10 units.

Non-preemptive, SJF

Non-preemptive, FIFO

Priority class 1 RR with quantum = 40 units.

Just an example.

Fixed-priority preemptive
scheduling among queues

Multilevel queue scheduling– an example

• Properties: process is assigned a fix priority when
they are submitted to the system.

82

Priority 1

Priority 2

Priority 3

Priority 4

Increasing priority E.g., using round-robin in each queue.

Multilevel queue scheduling– an example

• The highest priority class will be selected.
– To prevent high-priority tasks from running indefinitely.
– The tasks with a higher priority should be short-lived, but

important;

83

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

Multilevel queue scheduling– an example

• Lower priority classes will be scheduled only when
the upper priority classes has no tasks.

84

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

Multilevel queue scheduling– an example

• Of course, it is a good design to have a high-priority
task preempting a low-priority task.

(conditioned that the high-priority task is short-lived.)

85

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

Multilevel queue scheduling– an example

86

Priority class 1

Priority class 2

Priority class 3

Priority class 4

E.g., using round-robin in each queue.Increasing priority

• Any problem?
– Fixed priority

– Indefinite blocking or starvation

A process drops to a
lower priority class
after it has used up its
quantum and has the
quantum recharged.

Multilevel feedback queue scheduling

• How to improve the previous scheme?

– Allows a process to move between queues (dynamic
priority).

– Why needed?

• Eg.: Separate processes according to their CPU bursts.

87

Priority class 2

Priority class 3

Priority class 4

Priority class 5

RR with quantum = 20 units.

RR with quantum = 10 units.

Non-preemptive, SJF

Non-preemptive, FIFO

Priority class 1 RR with quantum = 40 units.

Just an example.

Multilevel feedback queue scheduling

• How to design (factors)?

– Number of queues

– Scheduling algorithm for each queue

– Method for determining when to upgrade/downgrade a
process

– Method for determining which queue a process will
enter

• Most general, but also most complex

– Can be configured to match a specific system

88

Summary

• Did we solve the conflict?

89

Fairness

Policy
enforcement

CPU-I/O
Balance

Little conflict

Big
conflict

Big
conflict

Priority scheduler
guarantees this.

“Not to schedule blocked
process” guarantee this.

Round-robin scheduler
guarantees this.

Multilevel feedback queue scheduling

90

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

91

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

92

Scheduling Issues with SMP

Processor Affinity
Attempt to keep a

process running on
the same processor

Soft/hard affinity

Scheduling between processors

Process migration: Invalidating the cache
of the first processor and repopulating
the cache of the second processor)

Process migration is costly

NUMA
CPU scheduler and
memory-placement

algorithms work
together

SMP: Each processor may have its private
queue of ready processes

Load balancing
Push migration: a specific task
periodically check the status & rebalance

Pull migration: an idle processor pulls a
waiting task from busy processor

No absolute rule concerning what policy is best

93

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

Real-time CPU Scheduling

94

Antilock brake system: Latency requirement: 3-5 ms

Interrupt latency (minimize or bounded):
✓ Determining interrupt type and save the state of the

current process
✓ Minimize the time interrupts may be disabled

Dispatch latency:
✓ Time required by dispatcher (preemption running

process and release resources of low-priority proc).
✓ Most effective way is to use preemptive kernel

Responsiveness: Respond
immediately to a real-time
process as soon as it
requires the CPU

Support priority-based alg.
with preemption

Hard real-time systems: A task must be served by its
deadline (otherwise, expired as no service at all)

Soft real-time systems: Critical processes will be given
preference over noncritical processes (no guarantee)

Real-time CPU Scheduling Algorithms

95

Rate monotonic scheduling

Assumption: Processes require CPU at constant periods: processing time t and period
p (rate 1/p)

Each process is assigned a priority proportional to its rate, and schedule processes
with a static priority policy with preemption (fixed priority)

Example

P1: p1=50, t1=20
P2: p2=100, t2=35

Real-time CPU Scheduling Algorithms

96

Rate monotonic scheduling

Processes require CPU at constant periods: processing time t and period p (rate 1/p)

Each process is assigned a priority proportional to its rate, and schedule processes
with a static priority policy with preemption (fixed priority)

Example

P1: p1=50, t1=25
P2: p2=80, t2=35

Can not guarantee that a set of processes can be scheduled

Any problem?

Real-time CPU Scheduling Algorithms

97

Earliest-deadline-first scheduling (EDF)

Dynamically assigns priorities according to deadline (the earlier the deadline, the
higher the priority)

Example

P1: p1=50, t1=25
P2: p2=80, t2=35

EDF does not require the processes to be periodic, nor require a constant
CPU time per burst

EDF requires the announcement of deadlines

98

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

99

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

Priorities 0 to 99 are
privileged classes.

The processes in those
queues are called “real-
time processes”.

Real-time processes are
either following RR or
FIFO scheduling
algorithm.

Completely Fair Scheduler

Logical view of the
Linux scheduler

Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

100

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

CFS

-Each process maintains virtual run
time (vruntime), recording how
long each has run

-CFS selects the process that has
the smallest vruntime value

-Decay factor: nice value (-20 to
+19): the smaller the value is, the
“higher priority” the process get

Completely Fair Scheduler

Linux Scheduler

• A multiple queue, (kind of) static priority scheduler.

101

0

...

99

Norm
al

RR FIFO

RR FIFO

CFS

CFS

-Use a red-black tree to maintain
runnable tasks
-The leftmost value is cached

Completely Fair Scheduler

102

- Applications/Scenarios
- Multiple processors
- Real-time systems
- Example: Linux scheduler
- Algorithm evaluation

How to select/evaluate a scheduling algorithm?

103

How to select a scheduling alg? (many algorithms with different parameters and properties)

Step 1: Define a criteria or the importance of various measures (application dependent)

Step 2: Design/Select an algorithm to satisfy the requirements. How to guarantee?

Evaluate Algorithms

Deterministic
modeling

Simple and fast

Demonstration
examples

Queueing modeling

Queueing network analysis

Distribution of CPU and I/O
burst (Poisson arrival)

Little’s law: 𝑛 = 𝜆 ×𝑊

Simulation & Implementation

Trace driven

High cost (coding/debugging…)

Hard to understand the full
design space

Summary on scheduling

• So, you may ask:
– “What is the best scheduling algorithm?”

– “What is the standard scheduling algorithm?”

• There is no best or standard algorithm because of,
at least, the following reasons:
– No one could predict how many clock ticks does a

process requires.

– On modern OS-es, processes are submitted online.

– Conflicting criterias

104

Summary on part 2

105

Process Communication &
Synchronization

Process Scheduling

Scheduler

Process Process Process

Kernel Space

User Space

P

P

P

Process Operations
(fork(),exec*(),wait()) Thread 1 Thread 2

Process

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch7
Memory Management

from a Programmer’s Perspective

1

Why we need memory management

• The running program code requires memory

– Because the CPU needs to fetch the instructions from
the memory for execution

• We must keep several processes in memory

– Improve both CPU utilization and responsiveness

– Multiprogramming

2

It is required to efficiently manage the memory

Topics in Ch7

3

What is the address space of a process?
How are the program code and data stored in memory?

How to allocate/free memory (malloc() + free())?
How much memory can be used in a program?

What are segmentation and segmentation fault?

From a programmer’s perspective: user-space memory management

What is virtual memory?
How to realize address mapping (paging)?

How to support very large programs (demand paging)?
How to do page replacement?

What is TLB?
What is memory-mapped file?

From the kernel’s perspective: How to manage the memory

4

Part 1: User-space memory

Global variable

Local variable

Dynamically-allocated
memory

Code +
constants

Process

Do you remember this?
- Content of a process (in user-space

memory)

How does each part use the memory?
- From a programmer’s perspective

Let’s forget about the kernel for a
moment. We are going to explore the
user-space memory first.

5

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Address space

6

Data Segment & BSS –
Global and static

variables

Heap – Dynamically
allocated memory

Code + Constant

Stack - Local variables

How does a programmer
look at the memory space?

- An array of bytes?

- Memory of a process is
divided into segments

- This way of arranging
memory is called
segmentation

Address space

7

Data Segment & BSS –
Global and static

variables

Heap – Dynamically
allocated memory

Code + Constant

Stack - Local variables

Increasing
address

$./addr
Local variable = 0xbfa8938c
malloc() space = 0x915c008
Global variable = 0x804a020
Code & constant = 0x8048550
$ _

Note
The addresses are not necessarily the
same in different processes

What is the process address space?

8

Address space

Data Segment & BSS –
Global and static

variables

Heap – Dynamically
allocated memory

Code + Constant

Stack - Local variables
0xffffffff = 0x100000000 - 1

1 ‘1’ bit + 16 ‘0’ bits

= 2^32 - 1

= 4G - 1

0xf = 1111

In a 32-bit system,
- One address maps to one byte.
- The maximum amount of memory

in a process is 4GB.

Increasing
address

Note
- This is the so called logical address

space
- Each process has its own address

space, and it can reside in any part
of the physical memory

How large is the address space?

9

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Program code & constants

• A program is an executable file

• A process is not bounded to one
program code.
– Remember exec*() family?

• The program code requires
memory space because…
– The CPU needs to fetch the

instructions from the memory for
execution.

10

Data Segment
& BSS

Heap

Code +
Constant

Stack

instruction

Program code & constants

• Question #1. What are the printouts from Line
3 & 4?

• Question #2. What is the printout from Line 6?

11

1 int main(void) {
2 char *string = "hello";
3 printf("\"hello\" = %p\n", "hello");
4 printf("String pointer = %p\n", string);
5 string[4] = '\0';
6 printf("Go to %s\n", string);
7 return 0;
8 }

Data Segment
& BSS

Heap

Code +
Constant

Stack

Segmentation fault

"hello" = 0x8048520
String pointer = 0x8048520

Program code & constants

12

• Constants are stored in code segment.

– The memory for constants is decided by the
program code

– Accessing of constants are done using
addresses (or pointers).

• Codes and constants are both read-only.

Data Segment
& BSS

Heap

Code +
Constant

Stack

1 int main(void) {
2 char *string = "hello";
3 printf("\"hello\" = %p\n", "hello");
4 printf("String pointer = %p\n", string);
5 string[4] = '\0';
6 printf("Go to %s\n", string);
7 return 0;
8 }

13

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Data Segment & BSS – properties

14

int global_int = 10;
int main(void) {

int local_int = 10;
static int static_int = 10;
printf("local_int addr = %p\n", &local_int);
printf("static_int addr = %p\n", &static_int);
printf("global_int addr = %p\n", &global_int);
return 0;

}

$./global_vs_static
local_int addr = 0xbf8bb8ac
static_int addr = 0x804a018
global_int addr = 0x804a014
$_

They are stored next
to each other.

This implies that they
are in the same
segment!

Data Segment
& BSS

Heap

Code +
Constant

Stack

Note: A static variable is treated as the
same as a global variable!

Data Segment & BSS – properties

15

• Data

– Containing initialized global and static
variables.

• BSS (Block Started by Symbol)

– Containing uninitialized global and
static variables. Data Segment

& BSS

Heap

Code +
Constant

Stack

Data Segment & BSS – locations

16

$./data_vs_bss
global bss = 0x804a028
static bss = 0x804a024
global data = 0x804a014
static data = 0x804a018
$_

1 int global_bss;
2 int global_data = 10;
3 int main(void) {
4 static int static_bss;
5 static int static_data = 10;
6 printf("global bss = %p\n", &global_bss);
7 printf("static bss = %p\n", &static_bss);
8 printf("global data = %p\n", &global_data);
9 printf("static data = %p\n", &static_data);
10 }

BSS

Data

Data Segment
& BSS

Heap

Code +
Constant

Stack

Data Segment & BSS – sizes

17

Guess! Which one is large?

$ gcc -O0 -o data_large data_large.c
$ gcc –O0 –o data_small data_small.c

$ ls –l data_small data_large

No optimization.

Program: data_large.c

char a[1000000] = {10};

int main(void) {
return 0;

}

Program: data_small.c

char a[100] = {10};

int main(void) {
return 0;

} What is the difference between data
and BSS?

Program: data_large.c

Data Segment & BSS – sizes

18

char a[1000000] = {10};

int main(void) {
return 0;

}

Program: data_small.c

char a[100] = {10};

int main(void) {
return 0;

}

$ gcc -O0 -o data_large data_large.c
$ gcc –O0 -o data_small data_small.c

$ ls –l data_small data_large
-rwxr-xr-x ... 1004816 ... data_large
-rwxr-xr-x ... 4916 ... data_small
$_

Wow!

The data segment has the required
space already allocated.

Program: bss_large.c

Data Segment & BSS – sizes

19

char a[1000000];

int main(void) {
return 0;

}

Program: bss_small.c

char a[100];

int main(void) {
return 0;

}

$ gcc -O0 -o bss_large bss_large.c
$ gcc –O0 -o bss_small bss_small.c

$ ls –l bss_small bss_large
-rwxr-xr-x ... 4775... bss_large
-rwxr-xr-x ... 4775... bss_small
$_

Same size!

To the program, BSS is just a bunch of symbols.
The space is not yet allocated.

The space will be allocated to the process once
it starts executing.

This is why BSS is called “Block Started by
Symbol”.

Data Segment & BSS – limits

20

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
......

$ _

In Linux, “ulimit” is a built-in
command in “/bin/bash”.

It sets or gets the system
limitations in the current shell.

How large is the data segment?

Does the “unlimited” mean that you can define a global array
with large enough size?

Data Segment & BSS – limits

21

$ gcc -Wall -O0 global_2gb.c -o global_2gb
global_2gb.c:6: warning: integer overflow in expression
global_2gb.c:6: error: size of array ‘a’ is negative
$ _

#define ONE_MEG (1024 * 1024)

char a[2048 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“2GB OK\n");

}

The size of an array is a 32-bit signed integer, no matter 32-bit or 64-bit systems.
Therefore…

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“1GB OK\n");

}

Data Segment & BSS – limits

22

Segmentation fault
why?

#define ONE_MEG (1024 * 1024)

char a[1024 * ONE_MEG];
char b[1024 * ONE_MEG];
char c[1024 * ONE_MEG];
char d[1024 * ONE_MEG];

int main(void) {
memset(a, 0, sizeof(a));
printf(“1GB OK\n");
memset(b, 0, sizeof(b));
printf(“2GB OK\n");
memset(c, 0, sizeof(c));
printf(“3GB OK\n");
memset(d, 0, sizeof(d));
printf(“4GB OK\n");

}

Program: global_4gb.c

On a 32-bit Linux system, the
user-space addressing space
is around 3GB.

The kernel reserves 1GB
addressing space.

Data Segment & BSS – summary

• Remember, “global variable == static variables”.

– Only the compiler cares about the difference!

• Everything in a computer has a limit!

– Different systems have different limits: 32-bit VS 64-bit.

– Your job is to adapt to such limits.

– On a 32-bit Linux system, the user-space addressing
space is around 3GB.

23

24

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Stack – properties

• The stack contains:

– all the local variables,

– all function parameters,

– program arguments, and

– environment variables.

25

Data Segment
& BSS

Heap

Code +
Constant

Stack

How are the data stored and what is the
size limit?

Stack – properties

• Stack: FILO

• When a function is called, the local
variables are allocated in the stack.

• When a function returns, the local
variables are deallocated from the stack.

26

Data Segment
& BSS

Heap

Code +
Constant

Stack

main() starts

Stack – push & pop mechanisms

27

a = 1

b = 2

variable ‘a’ in main().

variable ‘b’ in main().

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

return addr 1

1

2

Stack – push & pop mechanisms

28

a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Will become u in fun1().

Will become v in fun1().

Calling function “fun1()” starts.
It is the beginning of the call, and the CPU has not
switched to fun1() yet.

“return addr 1”
is approx. here.

main() starts

return addr 1

u = 1

v = 2

Stack – push & pop mechanisms

29

a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun1()” takes place. The CPU has
switched to fun1() .

fun1() starts

main() starts

return addr 2

u = 1

v = 2

Stack – push & pop mechanisms

30

a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun2()” starts.
It is the beginning of the call, and the CPU has not
switched to fun2() yet.

2

1

return addr 1

Will become x in fun2().

Will become y in fun2().

return addr 2 is
approx. here.

fun1() starts

main() starts

return addr 2

u = 1

v = 2

Stack – push & pop mechanisms

31

a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

Calling function “fun2()” takes place. The CPU has
switched to fun2() .

x = 2

y = 1

return addr 1

fun1() starts

fun2() starts

c = 10 Local variables are allocated
once the function starts.

main() starts

u = 1

v = 2

Stack – push & pop mechanisms

32

a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}return addr 1

“Return” takes place.
(1) Return value is written to the EAX register.
(2) Stack shrinks.
(3) CPU jumps back to fun1().

x = 2

y = 1

return addr 2

fun1() starts

fun2() starts

c = 10

EAX: 13

main() starts

u = 1

v = 2

return addr 1

x = 2

y = 1

return addr 2

c = 10

Stack – push & pop mechanisms

33

a = 1

b = 2

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

“Return” takes place.
(1) Return value is written to the EAX register.
(2) Stack shrinks.
(3) CPU jumps back to main().

fun1() starts EAX: 13

main() starts

u = 1

v = 2

return addr 2

x = 2

y = 1

return addr 3

c = 10

a = 1

b = 13

Stack – push & pop mechanisms

34

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

EAX: 13

Upon “return”, the value of
EAX is then copied to “b”

Those memory is NOT
returned to the OS!!

Those memory will be re-
used when you call
functions again.

main() starts

u = 1

v = 2

return addr 2

x = 2

y = 1

return addr 3

c = 10

a = 1

b = 13

Stack – push & pop mechanisms

35

int fun2(int x, int y) {
int c = 10;
return (x + y + c);

}

int fun1(int u, int v) {
return fun2(v, u);

}

int main(void) {
int a = 1, b = 2;
b = fun1(a, b);
return 0;

}

EAX: 0

Eventually, the main
function reaches
“return 0”.

This takes the CPU
pointing to the C library.

Inside the C library, we
will eventually reach the
system call exit().

Stack – limits

36

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
......
stack size (kbytes, -s) 8192
......

$ _

So, the limit is:
8192 x 1024 = 8MB.

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
......
stack size (kbytes, -s) 8192
......

$ ulimit -s 81920

Now, the limit is:
81920 x 1024 = 80MB.

Can you define a local array larger that the limit?
Segmentation

fault

Stack – summary

• What if it is a chain of endless
recursive function calls?

• What will happen?

– Exception caught by the CPU!

• Stack overflow exception!

– Program terminated!

37

No! I’m full!

Stack – summary

• “I really need to play with recursions.” Any
workaround?

– Minimize the number of arguments

– Minimize the number of local variables

– Minimize the number of calls

– Use global variables

• Note: A function can ask the CPU to read
and to write anywhere in the stack, not
just the “zone” belonging to the running
function!

– Isn’t it horrible (profitable and fun)?

38

No! I’m full!

39

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

Dynamically allocated memory – properties

• Its name tells you its nature:

– The dynamically allocated memory is
called the heap.

• Don’t mix it up with the binary heap;

• It has nothing to do with the binary heap.

– Dynamic: not defined at compile time.

– Allocation: only when you ask for
memory, you would be allocated the
memory.

40

Data Segment
& BSS

Heap

Code +
Constant

Stack

Dynamically allocated memory – properties

• Lecturers of a programming course would
tell you the following:

– “malloc()” is a function that allocates
memory for you.

– “free()” is a function that gives up a piece of
memory that is produced by previous
“malloc()” call.

• The lecturer of the OS course is to define
and to defy what you know about the
malloc() and free() library functions.

41

Data Segment
& BSS

Heap

Code +
Constant

Stack

malloc()

42

Data Segment
& BSS

Heap

Code +
Constant

Stack
When a program just starts running, the entire
heap space is unallocated, or empty.

An empty heap.

allocated space

malloc()

43

Data Segment
& BSS

Heap

Code +
Constant

Stack

When “malloc()” is called, the “brk()” system call is invoked
accordingly.

“brk()” allocates the space required by “malloc()”. But, it
doesn’t care how “malloc()” uses the space.

An empty heap.

grow

allocated space

malloc()

44

Data Segment
& BSS

Heap

Code +
Constant

Stack

The allocated space growing or shrinking depends on the
further actions of the process. That means the “brk()” system
call can grow or shrink the allocated area.

In malloc(), the library call just invoke brk() for growing the
heap space.

The free() call may shrink the heap space.

An empty heap.

grow

shrink

malloc()

45

int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap

The return value of malloc() is of type
“void *”, which means it is just a memory
address only, and can be of any data types.

Such a memory address is the starting
address of a piece of memory of 16 bytes
(“16” is the request of malloc() call).

malloc()

46

int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap
16

bytes

Address returned by 1st malloc() call.

Data structure maintained by malloc().

malloc()

47

int main(void) {
char *ptr1, *ptr2;
ptr1 = (char *)malloc(16);
ptr2 = (char *)malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap
16

bytes

Data structure maintained by malloc().

Address returned by 1st malloc() call.

Address returned by 2nd malloc() call.

16
bytes

malloc()

48

int main(void) {
char *ptr1, *ptr2;
ptr1 = malloc(16);
ptr2 = malloc(16);

printf("Distance between ptr1 and ptr2: %d bytes\n",
ptr2 – ptr1);

return 0;
}

Heap
16

bytes
16

bytes

ptr2 - ptr1
The result should be > 16. Let’s try the real program!

free()

• “free()” seems to be the opposite to “malloc()”:

– It de-allocates any allocated memory.

– When a program calls “free(ptr)”, then the address “ptr”
must be the start of a piece of memory obtained by a
previous “malloc()” call.

49

Heap
16

bytes
16

bytes
16

bytes
16

bytes

ptr

free() – case #1

• Case #1: de-allocating the last block.

50

Old
Heap

16
bytes

16
bytes

16
bytes

16
bytes

ptr The last block is not needed.

New
Heap

16
bytes

16
bytes

16
bytes

shrink

This is accomplished by calling brk() system call. This heap has become smaller.

free() – case #2

• Case #2: de-allocating an intermediate block.

51

Old
Heap

16
bytes

16
bytes

16
bytes

16
bytes

ptr We don’t want an intermediate block.

New
Heap

16
bytes

16
bytes

shrink

Calling brk() system call without using your brain is not acceptable!

free() – case #2

• Case #2: de-allocating an intermediate block.

52

Heap
16

bytes
16

bytes
16

bytes
16

bytes

NULL size

This pointer is used for creating a linked list of de-allocated block.

This size record the size of de-allocated block.

address

Here comes the role of the data structure created by malloc()!

32-bit system: 4+4 = 8 bytes
64-bit system: 8+8 = 16 bytes

free() – case #2

• Case #2: de-allocating an intermediate block.

53

New
Heap

16
bytes

16
bytes

16
bytes

16
bytes

Head

A global variable
NULL

The “Head” variable is a pointer
acting as the start of the list of the
free blocks.

“NULL” defines the end of the free list.

We have to keep the de-allocated blocks
because they cannot be returned to the
system.

As the number of de-allocated blocks
cannot be known in prior, we need a
linked list.

free() – case #2

• Case #2: another example.

54

Old
Heap

16
bytes

16
bytes

16
bytes

16
bytes

free()

16
bytes

16
bytes

16
bytes

free() free() free()

New
Heap

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

shrink

Head NULL

free() – cautions

• The calling program is assumed to be carefully written.

– After malloc() has been invoked, the program should read
and write inside the requested area only.

– Now, you know why you’d have troubles when you write
data outside the allocated space.

55

Heap
16

bytes
16

bytes
16

bytes
16

bytes

You can only play within this zone. Please behave!

Note: be careful of the consequences of misbehaves…

free() – cautions

• The calling program is assumed to be carefully written.

– When free() is called, the program should provide free()
with the correct address…

• i.e., the address previously returned by a malloc() call.

56

Heap
16

bytes
16

bytes
16

bytes

incorrect address
passed to free() A mis-calculated header based on the

incorrect address.

When malloc() meets free blocks…

• Problem: whether to use the free blocks or not?

– Is there any free block that is large enough to satisfy the
need of the malloc() call?

57

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

Head

NULL

When malloc() meets free blocks…case #1

• Case #1: if there is no suitable free block…

– then, the malloc() function should call brk() system
call…in order to claim more heap space.

58

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

Head

NULL

32 bytes

Original heap size New space
by brk()

New malloc()
request

New
header

Call invoked:
malloc(32);

When malloc() meets free blocks…case #2

• Case #2: if there is a suitable free block

59

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

Head

NULL

Original heap size

Call invoked:
malloc(16);

When malloc() meets free blocks…case #2

• Case #2: if there is a suitable free block

– the malloc() function should reuse that free block.

60

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

16
bytes

Head

NULL

Original heap size

Call invoked:
malloc(16);

When malloc() meets free blocks…

• There can be other cases:
– A malloc() request that takes a partial block;

– A malloc() request that takes a partial block, but leaving
no space in the previously free block.

• We will skip those subtle cases…
– It boils to implementation only...

– You already have the big picture about malloc() and
free().

61

When malloc() meets free blocks…

• Now, let us look at some implementations…

62

Implicit free list

• Needs two information for each block

– size & is_allocated

63

free allocated Allocated & unused

How about memory allocation and free?

Implicit free list

• Allocation: May need linear time search

– Allocate the whole block or splitting

64

First fit: allocate the first hole that is big enough (fast)

Next fit: similar to first fit, but start where previous search finishes

Best fit: allocate the smallest hole that is big enough (helps

fragmentation, larger search time)

Worst fit: allocate the largest hole

Implicit free list

• Free: Coalescing

– Coalescing with next block: easy

65

– How about coalescing
with previous block?

• [Knuth 73] Add a
boundary tag in the footer

Implicit free list

• Constant time coalescing w/ boundary tag (4 cases)

66

Implicit free list: summary

• May not be used in practical malloc() and free()
implementations

– High memory allocation cost

• Some ideas are still useful and important

– Splitting available blocks

– Boundary tag

67

Explicit free list

• Track only free blocks (LIFO or address-ordered)

• Block splitting is useful in allocation

• Boundary tag is still useful in coalescing

68

Segregated free list

• Segregated free list (分离空闲链表)
– Different free lists for different size classes

– Allocation
• Search appropriate list (larger size)

• Found and split

• Not found: search next

69

Approximates best -fit

Segregated free list

• Special example

– Buddy system (power-of-two block size)

70

Issues raised by malloc() and free()

• The kernel knows how much memory should be
given to the heap.

– When you call brk(), the kernel tries to find the
memory for you.

• Then…one natural question…

– Is it possible to run out of memory (OOM)?

71

Out of memory?

• Try this!

72

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Is it safe to run this
program on a 32-bit
machine?

What is the output?

Out of memory?

• On 32-bit Linux, why does the OOM generator stop
at around 3055MB?

• Still remember what we said when we are talking
about data segment?

– Every 32-bit Linux system has an addressable memory
space of 4G-1 bytes.

– The kernel reserves 1GB addressing space.

73

Out of memory?

• Try this! Yet another OOM Generator!

74

Yet, what is the output?

#define ONE_MEG 1024 * 1024
char global[1024 * ONE_MEG];
int main(void) {

void *ptr;
int counter = 0;
char local[8000 * 1024];
while(1) {

ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Real OOM!

75

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, 0, ONE_MEG);
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

Warning #1. Don’t run this program on
any department’s machines.

Warning #2. Don’t run this program
when you have important tasks running
at the same time.

Explanation is in Part 2.

Lazy allocation
That is why previous programs

run very fast.

Other Issues

• External fragmentation

– The heap memory looks like a map with many holes

– It is the source of inefficiency because of the
unavoidable search for suitable space

– The memory wasted because external fragmentation is
inevitable

• Internal fragmentation

– Payload is smaller than allocated block size

– Padding for alignment

– Placement policy

• Allocate a big block for small request

76

77

User-space memory management
- Address space;
- Code & constants;
- Data segment;
- Stack;
- Heap;
- Segmentation fault;

What is segmentation fault?

• Someone must have told you:

– When you are accessing a piece of memory that is
not allowed to be accessed, then the OS returns you
an error called – segmentation fault.

• As a matter of fact, how many ways are there to
generate a segmentation fault?

78

What is segmentation fault?

79

Data Segment
& BSS

Allocated
Heap

Code +
Constant

Allocated
Stack

Unallocated
Heap

Unallocated
Stack

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

From illustration to reality…

Forget about the illustration,
the memory in a process is
separated into segments.

So, when you visit a segment
in an illegal way,
then…segmentation fault.

grow

grow

0xffffffff

0x00000000

0xffffffff

How to “segmentation fault”?

80

Data

BSS

Allocated Heap

Allocated Stack

Code + Constant

Unusable

Unusable

WriteRead

YES

NO

YES

NO

NO

NO

NO

YES

YES

NO

YES

NO

NO

NO

YES

YES

Unallocated Zone

0x00000000

0xffffffff

0x00000000

How to “segmentation fault”?

81

Data

BSS

Allocated Heap

Allocated Stack

Code + Constant

Unusable

Unusable

WriteRead

YES

NO

YES

NO

NO

NO

NO

YES

YES

NO

YES

NO

NO

NO

YES

YES

Unallocated Zone

Now, we can understand:

char *ptr = NULL;
char c = *ptr;

will generates

Segmentation fault

NULL = 0x00000000

*ptr is reading

Summary of segmentation fault

• When you have a so-called address (maybe it is just
a random sequence of 4 bytes), one of the following
cases happens:

82

Read-only
segments

Allocated
segments

Unused or
unallocated

segments

Reading No problem No problem
Segmentation

fault

Writing
Segmentation

fault
No problem

Segmentation
fault

See if you have luck…

Summary of segmentation fault

• Now, you know what is a segmentation fault, and
the cause is always carelessness!

– Now, you know why “free()” sometimes give you
segmentation fault…

• because you corrupt the list of free blocks!

– Now, you know why “malloc()”-ing a space that is
smaller than required is ok…

• because you are overwriting the neighboring blocks!

83

Summary of part 1

• Memory of a process is divided into
segments (segmentation):
– codes and constants;

– global and static variables;

– allocated memory (or heap);

– local variables (or stack);

• When you access a memory that is not
allowed, then the OS returns you
segmentation fault

• Every process’ segments are independent
and distinct.

84

Data Segment
& BSS

Heap

Code +
Constant

Stack

Summary of part 1

• The dynamically allocated memory is not as simple
as you learned before.

– Allocating large memory blocks is not efficient; instead,
allocating small memory blocks can make use of the
holes in the heap memory efficiently.

– Keep calling malloc() without calling free() is
dangerous…

• because there is no garbage collector in C or the OS…

• OOM error awaits you!

85

End of part 1

86

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch7, part 2
Memory Management from the Kernel’s Perspective:

Virtual Memory Support

1

2

Memory management

Global variable

Local variable

Dynamically-allocated
memory

Code +
constants

Process

How to use the addresses to access
the memory device?

How do multiple process share the
same physical memory device?

How to support large process?

How does the CPU read what it wants
from the memory device?

……

The kernel and the
hardware are doing
lots of managements…

3

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

CPU working – illustration that you may know

• Let’s review the “fetch-decode-execute” cycle!

4

0xABCDEF00PC
instruction

memory bus

0x00000000EAX

0xABCDEF00

an integer0x12345678

mov 0x12345678 %EAX

This instruction says:
“Move the memory
value in 0x12345678 to
the register EAX”.

The integer value:
0x0000000A

CPU working – illustration that you may know

• Let’s review the “fetch-decode-execute” cycle!

5

0xABCDEF00PC
instruction

memory bus

0x00000000EAX

0xABCDEF00

an integer0x12345678

mov 0x12345678 %EAX

0x0000000A

1
3

2 CPU decodes

This instruction says:
“Move the memory
value in 0x12345678 to
the register EAX”.

The integer value:
0x0000000A

How to use the addresses?

“You’ve been living in a dream world, Neo”

• Can you guess the result?
– Two different processes, the same variable name,

carry different values
– Use the same address! (What? How COME?!)

• Well, what is the meaning of a memory address?!
– Logical address: virtual memory
– Address translation needed (logical/virtual->physical)
– Why we use virtual memory??

6

int main(void) {
int pid;
pid = fork();
printf("PID %d: %p.\n", getpid(), &pid);
if(pid)

wait(NULL);
return 0;

}

$./same_addr
PID 1234: 0xbfe85e0c.
PID 1235: 0xbfe85e0c.
$ _

CPU working … contiguous allocation?

• Each process is contained in a single section of mem

7

Process A

Process B

Process C

Hole

Hole

CPU working … contiguous allocation?

• Problem #1…

8

Process A

Process B

Process C

Hole

Hole

memory growth
e.g., because of brk() calls

We also know that a process’ memory
can grow.

So, does a process always have a
chance to grow to reach its need?

CPU working … contiguous allocation?

• Problem #2…

9

Process A

Process B

Process C

Hole

Hole

We are not talking about the
program’s size, but the process’ size!

What if we have a process
that is larger that the
physical memory?

What the CPU (or OS) can do is to
give up running …

(1) the address space is no longer
required to be contiguous.

So, we need to have the CPU design
that can understand processes so that:

(2) it allows a process to have a size
beyond the physical memory.

Virtual memory support in modern CPUs

• The new design of the CPU includes a new module:
the memory management unit (MMU).

– MMU is designed to perform address translation.

– The MMU is an on-CPU device.

10

Virtual memory – how does it work?

• Step 1. When CPU wants to fetch an instruction, the
virtual address is sent to MMU and is translated
into a physical address.

11

0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0xABCDEF00

0xAAAAAA00 0xAAAAAA00

Virtual memory – how does it work?

• Step 2. The memory returns the instruction
addressed in physical address.

12

0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0xABCDEF00

0xAAAAAA00 Physical
Address

0xAAAAAA00

Virtual memory – how does it work?

• Step 3. The CPU decodes the instruction.

– An instruction always stores virtual addresses, but not
physical addresses.

13

0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0x12345678

0x13579A00

mov 0x12345678 %EAX

Physical
Address

0xAAAAAA00

Virtual memory – how does it work?

• Step 4. With the help of the MMU, the target
memory is retrieved.

14

0xABCDEF00PC
mov 0x12345678 %EAX

0x00000000EAX

0x0000000A

MMU

0x12345678

0x13579A00

mov 0x12345678 %EAX

0x0000000A

Physical
Address

0xAAAAAA00

0x13579A00

Process X

Process Y

Physical Address

Virtual memory – What is the good?

• Merit 1. Different processes use the same virtual addresses,
they may be translated to different physical addresses.
– Recall the “pid” variable in the example using fork().

– The address translation helps the CPU to retrieve data in a non-
contiguous layout (the process address space is contiguous).

15

Proc Y: 0x00000000B

0x13579A00

0x12345678
Proc X: 0x00000000A

0x12345678

0x2468CD00

Virtual Address

Process X

Process Y

Physical Address

Virtual memory – What is the good?

• Merit 2. Memory sharing can be implemented!

– This is how threads share memory!

– This is how different processes share codes! (HOW?)

16

mov 0x12345678 %EAX

Proc Y: 0x00000000B

0xAAAAAA00

0x13579A00

0xABCDEF00

0x12345678
Proc X: 0x00000000A

0xABCDEF00

0x12345678

0xAAAAAA00

0x2468CD00

Virtual Address
0xABCDEF00PC

Virtual memory – What is the good?

• Merit 3. Memory growth can be implemented!

– When the memory of a process grows, the newly-
allocated memory is not required to be contiguous

17

18

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

MMU implementation

• How to implement the MMU?
– How to efficiently translate from virtual address to physical

address?

– Translation is needed for every process

19

MMU

Process X

Process Y

Physical Address

0xAAAAAA00

0x13579A00

0xABCDEF00

0x12345678

0xABCDEF00

0x12345678

0xAAAAAA00

0x2468CD00

Virtual Address

MMU implementation – a translation table

• So, can translation be done by a lookup table?

– Remember, every process needs its own lookup table.

(Do you remember the reason?)

20

MMU

Lookup
table

Virtual address Physical Address

0x00000000 0x01234567

0x00000001 0x452796AB

...... ……

0xFFFFFFFF 0x6714EFD8

translation

Lookup Table internals
What is the problem

with this method?

MMU implementation – a translation table

• Then, how large is the lookup table?

21

Virtual address Physical Address

0x00000000 0x01234567

0x00000001 0x452796AB

...... ……

0xFFFFFFFF 0x6714EFD8

Lookup Table internals

How many addresses are there? 232

Size of the lookup table =

Number of addresses
x Size of an address

How large is an address? 4 bytes

Only this column is stored.

232 x 4 bytes = 16 Gbytes

MMU implementation – a translation table

• Then, how large is the lookup table?

22

How many addresses are there? 232

Size of the lookup table =

Number of addresses
x Size of an address

How large is an address? 4 bytes

232 x 4 bytes = 16 Gbytes

Note. Every address in a CPU is
always of 4 bytes.

Can we reduce the table size?

The only choice is to reduce
the number of addresses

23

MMU implementation – a partial lookup table

MMU internals

12 bits

Lookup
table

20 bits 12 bits

unchanged

Size of the lookup table =

Number of addresses
x Size of an address

220 x 4 bytes = 4 Mbytes

Physical
address

Note. Every address in a CPU is
always of 4 bytes although you
only use 20 bits.

20 bits
Virtual

address

MMU implementation – paging

• This technique is called
paging.

– This partitions the memory
into fixed blocks called pages.

– The lookup table inside the
MMU is now called the page
table.

24

20 bits 12 bits

Page
table

20 bits 12 bits

unchanged

Virtual Page
Address

Page
offset

Physical Page
Address

Paging - properties

25

20 bits 12 bits

Virtual Page
address

Page
offset

Size = 4096 bytes (or 4KB)

Paging - properties

26

20 bits 12 bits

Page
table

20 bits 12 bits

unchanged

Virtual Page
address

Page
offset

Size = 4096 bytes (or 4KB)

Selected
page

Selected
address

Physical Page
address

Paging - properties

• Adjacent virtual pages are not guaranteed to be
mapped to adjacent physical pages.

27

0x12345

Virtual Address

000

0x12345 001

...... ...

0x12345 FFF

0x12346 000

0x12346 001

...... ...

0x12346 FFF

0x54321 000

0x54321 001

...... ...

0x54321 FFF

0x09394 000

0x09394 001

...... ...

0x09394 FFFContinuous addresses

Virtual addresses
within the same page
are always mapped
to the same physical
page.

Physical Pages

Contiguous virtual
addresses map to
non-contiguous
physical address.

Paging – memory allocation

• How to do memory allocation with paging

28

1 char *prev_ptr = NULL;
2 char *ptr = NULL;
3
4 void handler(int sig) {
5 printf("Page size = %d bytes\n",
6 (int) (ptr - prev_ptr));
7 exit(0);
8 }
9 int main(int argc, char **argv) {
10 char c;
11 signal(SIGSEGV, handler);
12 prev_ptr = ptr = sbrk(0); // find the heap’s start.
13 sbrk(1); // increase heap by 1 byte?
14 while(1)
15 c = *(++ptr);
16 }

Paging – memory allocation

• A page is the basic unit of memory allocation.

29

The allocation is in a
page-by-page manner.

The same case for the
growth of the stack.

Paging – memory allocation

• Problem???

– The minimum allocation unit is 4,096 bytes.

– But, the process cannot use that much.

– So, the rest of the page is unused.

30

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

grow

grow

Used Heap

Unused

Internal fragmentation
means space is avoidably
wasted when allocation is
done in a page-by-page
manner.

Paging – internal fragmentation

31

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

grow

grow

Used Heap

Unused

How about letting another process to use the “unused space”?

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

grow

grow

The MMU has to memorize that none
of the processes could occupy the
whole page. The growth of the usage
has to be limited and monitored!

Internal fragmentation is here to stay…

Paging – putting it together

32

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

A

B

C

D

E

F

G

Allocated Pages

Allocated memory are
broken into pages.

Unallocated zone does
not occupy any pages.

Physical Devices

A B

C

D

E

F

G

Memory pages are
then distributed on the
physical memory or the
swap area, i.e., the
hard disk.

Memory Space

Unallocated
Zone

grow

grow

Paging – page table design

• So, next waves of questions are:

– Who can tell which virtual page is
allocated?

– Who can tell which page is on which
device?

• Those questions can be answered
by the design of the page table.

33

Physical Devices

A B

C

D

E

F

G

Memory pages are
then distributed on the
physical memory or the
swap area, i.e., the
hard disk.

Paging – page table design

• How to design the page table?

– First of all, which information need to be maintained?

• Mapping from virtual pages to physical pages (called frames)

• Permission information

• Where is the page (in memory or not)

– Second…

• Each process needs one page table

34

The physical memory is
just an array of frames.
The size of a frame is 4KB.

Paging – page table design

35

Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

...

This row means the
virtual page “A” is
mapped to the physical
frame “0”.

This row, with NIL, means
the virtual page “D” is not
allocated.

Remember, the entire 4G
memory zone is usually not
fully utilized.

For the sake of convenience, we don’t use
addresses here. Also, this column is not
stored in the page table.

Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

...

Paging – page table design

36

This bit is to tell the CPU
whether this row is valid or
not.

If the row is invalid, it
means that the virtual page
is not in the memory.

Note. This is not the same
as an unallocated page.

1 – valid, in memory.
0 – invalid, not in memory.

Page Table of Process A

Virtual Page # Permission Valid-invalid bit Frame #

A rwx- 1 0

B NIL 0 NIL

C r--s 1 2

D NIL 0 NIL

...

Paging – page table design

37

s – means sharable.

How does the CPU check if you can
write to a memory zone?

When a virtual address is translated
to an unallocated frame…

When you write to read-only pages…

When you try to execute a non-
executable pages…

SEGMENATION FAULT!!

OR

OR

Paging – page table design

• Other design issues

38

How to store the page table if it is large (structure
of page table)?

How to improve memory access performance
(page table look incurs large overhead)?

Caching: Translation lookaside buffer (TLB)

Paging – page table structure

• The page table may be large…multiple MBs

– We would not want to allocate the page table
contiguously in memory, how?

– Divide the page table into pieces

39

Two-level page table

Paging – page table structure

• The page table may be large…multiple MBs

– We would not want to allocate the page table
contiguously in memory, how?

– Divide the page table into pieces

40

Hashed page tables

Inverted page tables

Besides hierarchical paging, we
can also use

Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (1) large pages

• Reduce the page table entries

• Cons?
– Internal fragmentation

– Deduplication

41

Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (2) Caching

42

The search in TLB is fast: Part
of the instruction pipeline

The size of TLB is small:
e.g., 32-1024 entries

Translation lookaside buffer (TLB)

Paging – Performance Boost

• Memory access requires to look up page table

– This overhead is even larger with multi-level page tables

– Any solution?

– (2) Caching

43

Effective memory-access time

Example：
• Hit ratio: 80%
• Mem access time: 100 ns
• One mem access for page table lookup

Effective mem-access time is
0.8*100+0.2*(100+100)=120ns

Paging – summary

• Virtual memory (VM) is just a table-lookup
implementation. The specials about VM are:

– The table-lookup is implemented inside the CPU, i.e., a
hardware solution.

– Each process should have its own page table.

44

Paging – summary

• How about the OS?

– The OS stores and manages the page tables of all
processes.

45

Paging – summary

• We talked about segmentation in part 1…

– Address mapping can also be done in segments

• Also permits physical address space of a process to be non-
contiguous

• But usually incurs severe fragmentation in both memory and
backing store

• Paging is used in most operating systems

– Hybrid scheme is also possible

46

47

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

Memory / page allocation?

48

Code + Constant

Data

BSS

Allocated Heap

Allocated Stack

Unallocated
Zone

grow

grow

• The stack and the heap will grow:
– (1) calling brk(), i.e., the heap grows;

– (2) calling nested function calls, i.e., the
stack grows;

• The question is…
– Will the memory be immediately

allocated for you when you call
malloc()?

Remember the OOM generator?

49

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

This program runs very fast,
why?

Memory / allocation – demand paging

• The reality is: allocation is done in a lazy way!

– The system only says that the memory is allocated.

– Yet, it is not really allocated until you access it.

50

1 #define BUF_SIZE 512 * 1024
2 void re() {
3 char buf[BUF_SIZE];
4 while(getchar() != '\n');
5 memset(buf, 0, sizeof(buf));
6 while(getchar() != '\n');
7 re();
8 }
9
10 int main(void) {
11 re();
12 return 0;
13 }

This statement does not involve any
memory access.

So, the virtual address space is
allocated, but the page is not
allocated yet.

This statement really accesses the
“allocated” memory.

So, this statement really asks the
system to allocate memory.

Memory / allocation – demand paging

• How about the heap?

51

1 #define ONE_MEG (1024 * 1024)
2 #define COUNT 1024
3
4 int main(void) {
5 int i;
6 char *ptr[COUNT];
7 for(i = 0; i < COUNT; i++)
8 ptr[i] = malloc(ONE_MEG);
9
10 for(i = 0; i < COUNT; i++) {
11 while(getchar() != '\n');
12 memset(ptr[i], 0, ONE_MEG);
13 }
14 }

As a matter of fact, malloc() does
not involve any memory allocation,
only involving the allocation of the
virtual address page.

So, this loop is only for enlarging
the virtual page allocation.

This statement really accesses the
“allocated” memory.

So, this statement really asks the
system to allocate memory.

This lazy way is called demand paging, but how does it work?

grow_heap.c

Demand paging – illustration.

• Let’s consider the “grow_heap.c” example.

– Suppose that a process initially has 4 page frames.

– We are now in the memset() for-loop in Lines 10 - 13.

52

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 1 0

...

D 1 3

E 0 NIL

...

Demand paging – illustration.

• When memset() runs,

– the MMU finds that a virtual page involved is invalid,

– the CPU then generates an interrupt called page fault.

53

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Page fault

Virtual
page #

Bit Frame #

A 1 0

...

D 1 3

E 0 NIL

...

Demand paging – illustration.

• The page fault handling routine is running:

– The kernel knows the page allocation for all processes.

– It allocates a memory page for that request.

– Last, the page table entry for Page E is updated.

54

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Page fault Handling
routine

allocation
Virtual
page #

Bit Frame #

A 1 0

...

D 1 3

E 1 4

...

Demand paging – illustration.

• The routine finishes…and

• the memset() statement is restarted.

– Then, no page fault will be generated until the next
unallocated page is encountered.

55

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 1 0

...

D 1 3

E 1 4

...

OK

Demand paging – illustration.

• So, how about the case when the routine finds that
all frames are allocated?

– Then, we need the help of the swap area.

56

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 1 0

...

H 1 7

I 0 NIL

...

Page fault Handling
routine

Swap area

? ?
?

I’m full!

Demand paging – illustration.

• Using the swap area:

– Step (1) Select a victim virtual page and copy the victim
to the swap area.

• Now, Frame 0 is a free frame and the bit for Page A is 0.

57

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 0 0

...

H 1 7

I 0 NIL

...

Page fault Handling
routine

Swap area

Virtual page: A

PID: 1234
Copy

The question is to select
which page to swap out?

Demand paging – illustration.

• Using the swap area:

– Step (2) Allocate the free frame to the new frame
allocation request.

• Now, Page I takes Frame 0.

58

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 0 0

...

H 1 7

I 1 0

...

Page fault Handling
routine

Swap area

Virtual page: A

PID: 1234

Allocate

Demand paging – illustration.

• How about virtual page A is accessed again?

– Of course, a page fault is generated, and

– steps similar to the previous case takes place.

59

MMU

0

1

2

3

4

5

6

7

OS kernel

Assumption: 1 process only.

Virtual
page #

Bit Frame #

A 0 0

...

H 1 7

I 1 0

...

Page fault

Swap area

Virtual page: A

PID: 1234

Handling
routine

Swapping out which
page really matters

OOM generator

• Now, you should understand why this OOM
generator run very fast.

60

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
counter++;
printf("Allocated %d MB\n", counter);

}

return 0;
}

The memory page frames are not
really allocated (demand paging).

It is only for enlarging the virtual
page allocation.

Real OOM – code

61

#define ONE_MEG 1024 * 1024

int main(void) {
void *ptr;
int counter = 0;

while(1) {
ptr = malloc(ONE_MEG);
if(!ptr)

break;
memset(ptr, 0, ONE_MEG);
counter++;
printf(“Allocated %d MB\n”, counter);

}

return 0;
}

Warning #1. Don’t run this program on
any department’s machines.

Warning #2. Don’t run this program
when you have important tasks running
at the same time.

How does this program “eat”
your memory?

What is the consequence after
running this program?

Real OOM – illustration

• So, what will happen when the real OOM program
is running?

– Suppose the OOM program has just started with only
one page allocated. (For illustration only!)

62

0

1

2

3

4

5

6

7

OS kernel

Swap area

Different colors define
different processes in the
system.

Let the OOM process take
the green color.

Real oom: running

Real OOM – illustration

• OOM is running…1st stage.

– The free memory frames are the first zone that the
process has conquered.

– All other processes could hardly allocate pages.

63

0

1

2

3

4

5

OS kernel

Swap area

Real oom: running

7

66

7

Real OOM – illustration

• OOM is running…2nd stage.

– Occupied memory frames are the next zone that the
process conquers (no unused frames).

– Disk activity flies high!

64

0

1

2

3

4

5

6

7

OS kernel

Swap area

...OOM says: “All your
frames belong to us.”

...

...

...

...

Real oom: running

Page replacement operations
will be carried out by the OS.

Real OOM – illustration

• OOM is running…3rd stage.

– The previously-conquered frames are swapping to the
swap area.

– Disk activity flies high!

65

0

1

2

3

4

5

6

7

OS kernel

Swap area

...OOM says: “All your
frames belong to us.”

OOM says: “Resistance is
futile. All the swap space
will belong to us.”

......

...

...

...

...

...

...

...

...

...

...

...

...

Real oom: running

Page replacement operations
will be carried out by the OS.

Real OOM – illustration

• OOM is running…Final stage.

– The page fault handling routine finds that:

• No free space left in the swap area!

• Decided to kill the OOM process!

66

0

1

2

3

4

5

6

7

OS kernel

Swap area

...OOM says: “All your
frames belong to us.”

OOM says: “Resistance is
futile. All the swap space
will belong to us.”

......

...

...

...

...

...

...

...

...

...

Handling
routine

...

...
...

...

...

...

...
...

...

...

...

...

...

... ...

...

...

SIGKILL

Real oom: running

Real OOM – illustration

• OOM has died, but… Painful aftermath.

– Lots of page faults! Why?

• It is because other processes need to take back the frames!

• Disk activity flies high again, but will go down eventually.

67

0

1

2

3

4

5

6

7

OS kernel

Swap area

...

......

...

...

...

...

page
fault
page
fault
page
fault
page
fault
page
fault

Real oom: killed

Demand paging - Issues

• Swap area

– Where is it?

– How large is it?

• Can we run a really large process (e.g., bigger than
physical memory)?

– How large is it at most?

• How about fork() and exec*()?

– Can they be clever?

68

Swap area – location

• The swap area is usually a space reserved in a
permanent storage device.

69

Linux needs a separate
partition and it is called the
swap partition.

$ sudo fdisk /dev/sda
......
Command (m for help): p
......
/dev/sda1 Linux
/dev/sda2 Linux swap / Solaris
Command (m for help): _

Windows hides a file
“pagefile.sys”, which is
the swap area, in one of the
drives.

Swap area - size

• How large should the swap space be?

– It should be at least the same as the size of the physical
memory, so that …

• when a really large process wants to take all the memory…

• all the pages on the physical memory can find a place to hide.

– An old rule said that “swap should be twice the size of
the physical memory”.

• But, I can’t find the reasons anymore, and this rule does not
hold nowadays because we now have too much RAM!

70

How about running large programs

• When a process is larger than the physical memory,
is it able to run?

– No need to load all data in memory…Demand paging

• Generates page fault to allocate physical page frames

• Trigger page replacement if there is no unused frames

• How large is a process that a system can support

71

Max. process size = Physical memory size

Available space in the swap partition (file)

Kernel memory size

+

-

Unallocated

How about fork() & exec()

• What we have learned about the fork() system
call is…duplication!

– The parent process and the child process are identical
from the userspace memory point of view.

72

Code

Data

BSS

Heap

Stack

Parent

Unallocated

Code

Data

BSS

Heap

Stack

Child

fork()

Unallocated

How about fork() & exec()

• What does duplication mean? Allocate new pages for
the child process?
– If yes…then consider exec*() system call as well…

– Isn’t it stupid?

73

Code

Data

BSS

Heap

Stack

Parent

Unallocated

Code

Data

BSS

Heap

Stack

Child

fork()

Unallocated

Code

Data

BSS

Heap

Stack

Child

Exec*()

How about fork() & exec()

• Can we have a clever design with demand paging?

– A technique called copy-on-write is implemented

74

Copy-on-write technique allows the parent and the child
processes to share pages after the fork() system call is invoked.

A new, separated page will be copied and modified only when
one of the processes wants to write on a shared page.

Copy-on-Write (COW)

• Before fork() …

75

Copy-on-Write (COW)

• Right after fork() in invoked …

76

Copy-on-Write (COW)

• When both processes read the pages…

77

Copy-on-Write (COW)

• When one of the processes write to a shared page…

78

Demand paging - performance

• Demand paging can significantly affect performance

– Service the page fault interrupt

– Read in the page

– Restart the instruction/process

• How to characterize?

– Effective access time

– 1 − 𝑝 ×𝑚𝑎 + 𝑝 × 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒

• 𝑚𝑎: memory access time (10-200ns)

• 𝑝: prob. of a page fault

• 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒: ms

79

Example

• 𝑚𝑎: 200ns, 𝑝𝑎𝑔𝑒 𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒: 8ms

• 1/1000 page fault probability

– Effective access time: 1 − 𝑝 200𝑛𝑠 + 𝑝 × 8ms = 8.2𝜇𝑠

• To allow 10% performance degradation only

– 1 − 𝑝 200𝑛𝑠 + 𝑝 × 8ms < 220ns

– 𝑝 < 0.0000025

• Thus, page fault rate must be low
80

Summary of demand paging

• Demand paging enables over-commitment

– Large process can be supported

– Concurrent running of multiple processes is also
supported

• One key issue is…

– How to select victim pages to swap out?

– Page-replacement algorithm

81

82

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

Page replacement – introduction

• Remember the page replacement operation?

– It is the job of the kernel to find a victim page in the
physical memory, and…

– write the victim page to the swap space.

83

MMU

1

2

3

4

5

6

7

Page replacement

Page fault Handling
routine

Swap area

Virtual page: 0

PID: 1234
Copy

00

Page replacement – introduction

• Replacing a page involves disk accesses, therefore a
page fault is slow and expensive!
– Key issue: which page should be swapped out?

– Page replacement algorithms should minimize further
page faults.

• In the following, we introduce four algorithms:
– Optimal;

– First-in first-out (FIFO);

– Least recently used (LRU);

– Second-chance algorithm

84

Page replacement – algorithm

• Imagine that you are the kernel…
– you have a process just started to run;

– the process’ memory is larger than the physical memory;

– assume that all the pages are in the swap space.

85

Process

5

2

8

4

7

page reference string

2, 1, 9, 3, 5, 6, 4, …

These numbers are the order of the
virtual page numbers that the
process will access to.

These blocks are the page frames. The
numbers mean the virtual page numbers that
are on the memory frames.

Note: this is not the scenario that the process is just started.

Memory
frames

Page replacement – algorithm

• Imagine that you are the kernel…
– you have a process just started to run;

– the process’ memory is larger than the physical memory;

– assume that all the pages are in the swap space.

86

Process

5

2

8

4

7
Note: this is not the scenario that the process is just started.

Memory
frames

2, 1, 9, 3, 5, 6, 4, …

The memory pages that are
not in the memory.

1st 2nd 3rd …

Virtual page
access order.

Page replacement – when an algorithm starts

• Initial condition

– Let all the frames be empty.

87

-

-

Number of page faults 00

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-

Page replacement – optimal algorithm

• What is the best algorithm?

– Do not worry about the implementation at this moment.

88

-

-

Number of page faults 0

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-

Page replacement – optimal algorithm

• If I know the future, then I know how to do better.

– That means I can optimize the result if the page
reference string is given in advance.

– That’s why the algorithm is called “optimal”.

89

-

-

Number of page faults 0

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-

readahead

Page replacement – optimal algorithm

• If I know the future, then I know how to do better.

– The first page request will cause a page fault.

• Because there are free frames, no replacement is needed.

90

-

-

Number of page faults 3

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

readahead

Page replacement – optimal algorithm

• Replace strategy:

– To replace the page that will not be used for the longest
period of time.

91

-

-

Number of page faults 3

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

reuse = infinity

reuse = 2 access later

reuse = 11 access later

We should replace this frame.

Page replacement – optimal algorithm

• The story goes on…

– But, do you think that this is a non-sense?

– Of course, this is to give you a sense that how close an
algorithm is from the optimal.

92

-

-

Number of page faults 4

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

2

0

1

2

0

3

5

2

0

3

2

4

3

2

4

3

2

4

3

2

0

3

2

0

3

2

0

3

1

0

3

678

Page replacement – Problem of the optimal algorithm

• Unfortunately, you never know the future…

– It is not practical to implement such an algorithm

– Is there any easy-to-implement algorithm?

• You have already learnt process scheduling

• FIFO: the first page being swapped into the frames
will be the first page being swapped out.

– The victim page will always be the oldest page.

– The age of a page is counted by the time period that it is
stored in the memory.

93

Page replacement – FIFO algorithm

• When there is no free frames,

– The FIFO page replacement algorithm will choose the
oldest page to be the victim.

94

-

-

Number of page faults 3

oldest

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

Page replacement – FIFO algorithm

• When there is no free frames,

– The FIFO page replacement algorithm will choose the
oldest page to be the victim.

– Of course, the oldest page changes.

95

-

-

Number of page faults 4oldest

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

Page replacement – FIFO algorithm

• When a memory reference can be found in the
memory, will the age of that frame be changed?

– NO! The frame storing “page 0” is still the oldest frame.

96

-

-

Number of page faults 4oldest

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

2

0

1

Remember, no page fault in this time.

Page replacement – FIFO algorithm

• The story goes on…

– Seems that there is no intelligence in this method…

– Pages which will be accessed again are swapped out

97

-

-

Number of page faults 5

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

0

2

3

0

2

3

0

1

3

11

Number of page faults in the optimal algorithm 8

Page replacement – LRU algorithm

• Can we do better?

– Still remember the locality rule?

• Recently accessed pages may be accessed again in near future

– Why not swap out the pages which are not accessed
recently

• This is the least-recently-used (LRU) page replacement.

98

Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.

99

-

-

Number of page faults 3

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

age = 2

age = 1

age = 0

We should replace this frame.

look back

To replace the page that is least-recently used

Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.

100

-

-

Number of page faults 4

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

age = 0

age = 2

age = 1

2

0

1

Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.

101

-

-

Number of page faults 4

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

age = 1

age = 0

age = 2

2

0

1

2

0

1

The age of this frame becomes 0.

Page replacement – LRU algorithm

• Strategy:
– Attach every frame with an age, which is an integer.

– When a page is just accessed,
• no matter that page is originally on a frame or not, set its age to be 0.

• Other frames’ ages are incremented by 1.

102

-

-

Number of page faults

7 0 1 2 0 3 0 4 2 3 0 3 2 1

-7 7

0

-

7

0

1

2

0

1

2

0

1

2

0

3

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

0

3

2

0

3

2

1

3

2

10
Number of page faults in the FIFO algorithm 11

Number of page faults in the optimal algorithm 8

Page replacement – LRU algorithm

• The performance of LRU is considered to be good,
but how to implement the LRU algorithm efficiently

– Counters: requires to update counter and search the
table to find the page to evict

– Stack: implement with doubly linked list (pointer update)

• Common case in many systems

– A reference bit for each page (set by hardware)

– LRU approximation: Second-chance algorithm

103

Page replacement – LRU approximation

• Second-chance algorithm

– Basic: FIFO

– Give the page a second chance if its reference bit is on

104

A B C D

R:1 R:0 R:0 R:1

Oldest

NULL

AB C D

R:0R:0 R:0 R:1

Oldest

NULLOUT!

2nd

Chance!

If a page is heavily used, its
reference bit will be very
likely to be on.

Page replacement – LRU approximation

• Clock is the efficient implementation of the 2nd

chance algorithm (circular queue).

OUT! A

B

C

R:1

R:0

R:0

E

DF R:1

R:0R:0

G

R:0

H

R:0

105

Page replacement – LRU approximation

• Clock is the efficient implementation of the 2nd

chance algorithm (circular queue).

A

B

C

R:0

R:0

R:0

E

DF R:1

R:0R:0

G

R:0

H

R:0 out

106

What if all reference
bits are set?

Degenerates to FIFO

Page replacement – performance

• Number of page frames VS Performance.

– Increasing the number of page frames implies increasing
the amount of the physical memory.

• So, it is natural to think that:

– I have more memory…and more frames…

– Then, my system must be faster than before!

– Therefore, the number of page faults must be fewer
than before, given the same page reference string.

107

Page replacement – performance

• Your expectation:

108

Page replacement – performance

• The reality may be:

109

This is called Belady’s anomaly

Page replacement – performance

• Try the following:

– all page frames are initially empty;

– use FIFO page replacement algorithm;

– use the number of frames: 3, 4, and 5.

– The page reference string is:

110

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Page replacement – performance

• Belady’s anomaly exists for some algorithms

– Both optimal and LRU do not suffer from it

• Stack algorithms: never exhibit Belady’s anomaly

– Feature: The set of pages in memory for 𝑛 frames is
always a subset of the set of pages in memory for 𝑛 + 1
frames

– Example: LRU

• The 𝑛 most recently referenced pages will still be the most
recently referenced pages when the number of frames
increases

111

112

Memory Management
- Virtual memory;
- MMU implementation & paging;
- Demand paging;
- Page replacement algorithms;
- Allocation of frames;

Allocation for user processes

• Free-frame list

– Demand paging and page replacement

• Constrains

– Limit on number of frames

• Upper bound: total available frames

• Lower bound: has a minimum number
– Performance consideration (limit page-fault rate)

– Defined by computer architecture (instructions)

– Process will be suspended if the number of allocated frames falls
below the minimum requirement

– Global / local allocation (replacement)

113

Allocation algorithm

• Equal allocation

–𝑚 frames among 𝑛 processes

•
𝑚

𝑛
frames for each process

– Memory waste

• Proportional allocation

– Size of process p𝑖 is 𝑠𝑖, then allocate

– 𝑎𝑖 =
𝑠𝑖

∑𝑠𝑖
×𝑚

• Priority-based scheme

– Ratio depends on both process size and priority

114

Issues - Thrashing

• If a process does not have enough frames – number
of frames required to support pages in active use

– Frequent page fault

• Replace a page that will be needed again right away

– This is called thrashing

• Spend more time paging than executing

115

Issues - Thrashing

• Example: Multiprogramming + global page replacement

– Increase CPU utilization (increase degree of multiprogramming)

– Frequent page fault (queue up for paging, reduce CPU utilization,
increase degree of multiprogramming)

116

Issues - Thrashing

• How to address?

– Local replacement/priority replacement

• Will not cause other processes to thrash

• Still not fully solve this problem
– Increase average time for a page fault

– longer queue for the paging device

– longer effective access time even for non-thrashing processes

117

• How to address?

– Provide as many frames as needed

• Use working-set strategy to estimate needed frames
– Working set: the set of pages in the recent Δ page references

Issues - Thrashing

118

∑𝑊𝑆𝑆𝑖 > m: thrashing may occur

• How to address?

– Provide as many frames as needed

• Use working-set strategy to estimate needed frames
– Working set: the set of pages in the recent Δ page references

• Use page-fault frequency

Issues - Thrashing

119

Allocation for kernel memory

• Kernel memory allocation requirement

– Features

• Varying (small) size requirement: different data structures

• Contiguous requirement (certain hardware devices interact
with physical memory)

– Paging: Internal fragmentation

• Buddy system + Slab allocation

120

Buddy system

• Allocate memory from a fixed-size segment

– Power-of-2 allocator (11 orders)

– Advantage: coalescing

121

Slab allocation

• Allocate memory for small objects (limit fragmentation)

– Slab: one/more contiguous pages

– Cache: one/more slabs
• A separate cache for each unique kernel data structure

122

Reduce fragmentation

Fast allocation
(caching benefit)

Further reading: SLOB/SLUB

Memory mapped file

• Ordinary file access

– open(), read(), write()

– System call + disk access

• Memory mapped file

– Memory mapping a file: associate a part of the virtual
address space with the file

– File access

• Initial access to file: demand paging

• Subsequent reads/writes: routine memory accesses

• Improves performance

– Refer to mmap(2) system call

123

Memory mapped file

• Also allow multiple processes to map the same file

124

Summary

• We have introduced…
– Segmentation

– Paging + page table

– Demand paging + COW + page replacement algorithms

– Allocation of frames
• User process

• Thrashing

• Kernel memory (buddy + slab)

– Memory-mapped file

• More…
– malloc() is not that simple: refer to “glibc malloc”

– Other page-replacement algorithms

125

126

Hope you enjoyed the OS course!

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

1

Chapter 8
Mass Storage

Topics in Part 3 (Storage Management)

2

File System Operations

Operating System
Kernel

User Space

Devices

Processes

File system
Implementation

FAT32, EXT2/3
KV, Distributed FS,

Graph System…

Storage Hierarchy

3

Topics (Mass Storage)

4

SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

Research Problems

5

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID
- Erasure coding

Hard Disk Structure – Physical view

Physical address (cylinder, track, sector)

Track:
The surface of a platter is divided into tracks
Sector:
Track is divided into sectors (512B data + ECC)
Cylinder:
Set of tracks that are at one arm position

Access: Seek + Rotate

Seek time:
move disk arm to desired cylinder

Rotational latency:
spin at 5400/7200/10K/15K RPM

Hard Disk Structure – Physical view

Constant liner velocity (CLV)
➢ Uniform density of bits per track,

outer track hold more sectors
➢ Variable rotation speed to keep the

same rate of data moving
➢ CD-ROM/DVD-ROM

Constant angular velocity (CAV)
➢ Constant rotation speed
➢ Higher density of bits in inner tracks
➢ Hard disks

Hard Disk Structure – Logical view

How to use?
Large 1-D arrays of logical blocks (usually 512 bytes)

Address mapping
Logical block number -> (cylinder #, track #, sector #)

Disk management is required

➢ Disks are prone to failures: defective sectors are
common (bad blocks)
✓ Need to handle defective sectors: bad block

management

➢ Disk formatting

Disk Management

Bad Block Management

✓ Maintain a list of bad blocks (initialized during low-level formatting) and
preserve an amount of spare sectors

✓ Sector sparing/forwarding: replace a bad sector logically with one spare
sector
• Problem: invalidate disk scheduling algorithm
• Solution: spare sectors in each cylinder + spare cylinder

✓ Sector slipping: remap to the next sector (data movement is needed)

Disk Management

Disk Formatting

Step 1: Low-level formatting/physical formatting

✓ Divide into sectors so disk controller can read/write

✓ Fills the disk with a special data structure for each sector (data area(512B),
header and trailer (sector number & ECC))
• The controller automatically does the ECC processing whenever a sector

is read/written

✓ Done at factory, used for testing and initializing (e.g., the mapping). It is also
possible to set the sector size (256B, 512B, 1K, 4K)

Disk Management

Disk Formatting

Step 2: How to use disks to hold files after shipment?

➢ Choice 1: File system
✓ Partition into one or more groups of cylinders (each as a separate disk)
✓ Logical formatting: creating a FS by storing the initial FS data structures
✓ I/O optimization: Disk I/O (via blocks) & file system I/O (via clusters), why?

• More sequential access, fewer random access

➢ Choice 2: Raw disk
✓ Use disk partition as a large sequential array of logical blocks, without FS
✓ Raw I/O: bypass all FS services (buffer cache, prefetching…), be able to

control exact disk location

12

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure codes
- Problems with EC

Why needed?

• Requests are placed in the queue of pending
requests for that drive if the drive/controller is busy

13

R1 R2 Rn…Pending
queue

Read/write, disk address, memory address,
number of sectors to be transferred

Request ordering significantly affects the access
performance (seek + rotate), so scheduling is needed

What is disk scheduling

• I/O access procedure
– Seek: move the head to the desired

cylinder

– Rotate: spin to the target sector on
the track

• Disk scheduling
– Choose the next request in the

pending queue to service so as to
minimize the seek time

• Scheduling algorithms

14

FCFS Scheduling

• First-come, first-served (FCFS)

– Intrinsically fair, but does not provide the fastest service

15

FCFS Scheduling

• First-come, first-served (FCFS)

16

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

FCFS Scheduling

• Scheduling diagram

17

Total head movement

(640 cylinders)

Wild swing is very common

E.g.: 122 to 14, then to 124

How to reduce the head
movement?

Handle nearby requests first

SSTF Scheduling

• Shortest seek time first (SSTF)

– Choose the request with the least seek time

– Choose the request closest to the current head position

18

SSTF Scheduling

• Shortest seek time first (SSTF)

19

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

SSTF Scheduling

• Scheduling diagram

20

Total head movement: 236
cylinders (it is 640 for FCFS)

Essentially a form of SJF
scheduling

It is not optimal

The sequence of 53-37-14-65…
could reduce the head
movement to 208

It may cause starvation

SCAN Scheduling

• Scan back and forth
– Starts at one end, moves toward the other end
– Service the requests as it reaches each cylinder
– Reverse the direction
– Elevator algorithm

21

SCAN Scheduling

• Scan back and forth

22

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

Suppose the head is moving from 53 to 0

SCAN Scheduling

• Scheduling diagram

23

Any problem?

Assume a uniform request
distribution

The heaviest density of requests
is at the other end of the disk

They need to wait for a long
time

Can we do something about this?

C-SCAN Scheduling

• Circular Scan back and forth
– A variant of SCAN: immediately return when reaches the end
– Aim for providing a more uniform wait time

24

C-SCAN Scheduling

• Circular scan

25

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

C-SCAN Scheduling

• Scheduling diagram

26

No need to move across the full width of the disk, but only need to reach the
final request

Improved SCAN and C-SCAN: LOOK and C-LOOK

Unnecessary

C-LOOK Scheduling

• Goes only as far as the final request

– Look for a request before moving

27

Platter

183

98

122

37

124

14

67

65

Platter

Request
Queue

0 199
14 37 65 67 98 122 124 18353

98

183

37

122

14

124

65

67

C-LOOK Scheduling

• Scheduling diagram

28

Look for a request before continuing to move in a given direction

Fewer head movements than SCAN/C-SCAN

Summary of scheduling algorithms

29

SSTF outperforms FCFS, but may suffer from starvation

SCAN and C-SCAN perform better for heavy load systems,
and they are less likely to cause starvation

FCFS SSTF SCAN

C-SCAN C-LOOK

Selection of a scheduling algorithm

30

File allocation method
Large sequential I/O or
small random I/O

Number and
types of requests

Location of directories and
index blocks (metadata I/O)

Disk Performance

Implementing scheduling in OS is necessary to satisfy other constraints
(e.g., priority defined by OS)

Write disk scheduling as a separate module of the OS
Can be easily replaced with different alg. (default: SSTF/LOOK).

31

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID
- Erasure coding

32

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

SSDs are widely used

33

Advantages of flash-based SSDs: non-volatility, shock resistance,
high speed and low energy consumption;

SSD Architecture

34

• SSD components

– Multiple flash packages, controller, RAM

Flash Package

35

• Package > die/chip > plane > block > page

Samsung K9XXG08UXM (SLC) (2 dies, 4 planes, 2048 blocks, 64 pages)

Flash Cell

36

• Each cell stores one bit (or multiple bits)
• Program operation can only change the value from 1 to 0 (erase

operation changes the value from 0 to 1)
– No overwritten

• The floating gate becomes thinner as the cell undergoes more
program-erase cycles
– Decreasing reliability

Flash Types

37

• NAND flash and NOR flash

– NAND flash: denser capacity, only allow access in
units of pages, faster erase operation

– Most SSD products are based on NAND flash

• NAND flash: SLC and MLC

– SLC: each cell stores one bit

• Longer life time, lower access latency, higher cost

– MLC: each cell stores two (or three) bits

• Higher capacity

38

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer

Read

39

• Read: in unit of pages (4KB)

page register
data read: 25 μs

controller
serial bus: 100 μs

Write

40

• Write: in unit of pages (4KB)

page register
program: 200 μs

controller
serial bus: 100 μs

Erase

41

• Erase

– In unit of blocks (64/128 pages)

– Change all bits to 1

– Much slower than read/write: 1.5ms

• Each block can only tolerate limited number of P/E cycles

– SLC: 100K, MLC: 10K, TLC (several K to several hundred)

• The number of maximum P/E cycles decreases when

– More bits are stored in one cell

– The feature size of flash cell decreases (72nm, 34nm, 25nm)

Overwrite & Delete

42

• Delete

– Simply mark the page as invalid

• Overwrite/update

– Does not support in-place overwrite

– Data can only be programmed to clean pages

• How about read-modify-write?

Read-Modify-Write

43

cache

writedelete

cache

read

modify

write

RMW may require a lot of read and write operations, so it is very slow

Trim

44

cache

writedelete

read write back

erase

TRIM

TRIM avoids slow RMW operation during write, so it increases write performance

cache

remove

• Improve write performance degraded by RMW

– The OS also sends a TRIM command to SSD after delete pages

– Requires both OS and SSD to support

Software layer in controller

45

• How to further improve write performance?

– Address mapping is needed

• Page states

– Garbage collection is also necessary

• Flash translation layer

free/clean

validinvalid

write

update

erase

46

- Solid-state drives (SSDs)
-SSD architecture
-SSD operations
-Flash translation layer
-

Flash Translation Layer

47

• Three functionalities

– Address mapping

– Garbage collection

– Wear-leveling

Address Mapping

48

• Sector mapping

• Block mapping

• Hybrid mapping

• Log-structured mapping

Sector Mapping

Mapping table is large: requires a large amount of RAM

49

Block Mapping

50

• The logical sector offset is the same with the physical
sector offset

Smaller mapping table

If the FS issues writes with identical lsn, many erases

Hybrid Mapping

51

• First use block mapping, then use sector mapping in
each block

Small mapping table

Avoid a lot of erase operations

Longer time to identify the location of a page

Log-structured Mapping

52

2

1

0

3

6

5

4

7

10

9

8

11

14

13

12

15

0 1 2 3

0 2 1 5

lbn

pbn

D
ata b

lo
cks

5

0

0

3

10

9

5

4 3pbn

Lo
g b

lo
cks

(lbn, pbn)

(0,0)
(1,2)
(2,1)
(3,5)

In Flash In RAM

BMT

(lsn, (pbn, off))

SMT

Data blocks: block mapping
Log blocks: sector mapping

Log-structured Mapping

53

2

1

0

3

6

5

4

7

10

9

8

11

14

13

12

15

0 1 2 3

0 2 1 5

lbn

pbn

D
ata b

lo
cks

5

0

0

3

10

9

5

4 3pbn

Lo
g b

lo
cks

(lbn, pbn)

(0,0)
(1,2)
(2,1)
(3,5)

In Flash In RAM

BMT

(lsn, (pbn, off))

(0, (4,0))

SMT

Data blocks: block mapping
Log blocks: sector mapping

0’
Multiple
variants

Short summary

54

• The performance of address mapping is
workload dependent

– Block mapping is suitable for sequential workloads

– Sector mapping is suitable for random workloads

– Log-structured mapping is suitable for workloads
with large sequential and small random requests

• Tradeoff exists

Garbage Collection

55

• Due to the existence of invalid pages, GC must
be called to reclaim storage

– Choose a candidate block

– Write valid pages to another free block

– Erase the original block

2

1

0

3

2

0

Design Issues of GC Algorithms

56

• Tradeoff in GC design

– Efficiency: minimize writes

– Wear-leveling: erase every block as even as possible

– Tradeoff

– GC is considered together with wear-leveling

• Algorithms

– Greedy, random, and their variants

– Hot/cold identification

Other Technologies

• 3D NAND flash

• Non-volatile memory (NVRAM)

– PCM, STTRAM, ReRAM, etc…

– Byte-addressable and non-volatile

– 3D XPoint

57

58

Topics
- Disk structure
- Disk scheduling
- Solid-state drives (SSDs)
- RAID & Erasure codes
- Problems with EC

59

RAID Motivation

Reliability

Performance

Cost

One disk failure
incurs data loss

Disks are slow

Fast and
reliable disks
are expensive

RAID Introduction

✓ In the past
➢ Combine small and cheap disks as a cost-effective

alternative to large and expensive disks

✓Nowadays
➢Higher performance
➢Higher reliability via redundant data
➢ Larger storage capacity

✓Many different levels of RAID systems
➢Different levels of redundancy, capacity, cost…

RAID: Redundant Array of Inexpensive (independent) Disks

60

61

RAID Evaluation

Reliability

Performance

Cost

Tolerance of
disk failures

Sequential and random
read/write

Data capacity/all
capacity

RAID 0

• Block-level striping, no redundancy

• Provides higher data-transfer rate

• Does not improve reliability. Once a disk fails, data loss
may happen (MTTF: mean time to failure)

62

RAID 1

• How to improve reliability?

• Data mirroring (RAID1)
✓ Two copies of the data are held

on two physical disks, and the
data is always identical.

✓ Replication

• High storage cost
✓ Twice as many disks are required

to store the same data when
compared to RAID 0.

✓ Even worse storage efficiency
with more copies

63

64

Combinations

• RAID 0 provides reliability and
RAID 1 provides reliability

• RAID 0+1 (RAID01)
✓ First data striping
✓ Then data mirroring

Same storage
cost as RAID 1

65

Combinations

• RAID 0 provides reliability and
RAID 1 provides reliability

• RAID 0+1 (RAID01)
✓ First data striping
✓ Then data mirroring

• RAID 1+0 (RAID10)
✓ First data mirroring
✓ Then data striping Same storage cost

66

RAID01 vs RAID10

Both suffer from high storage cost

RAID 4

• Balance the tradeoff between
reliability and storage cost?
• Redundancy with parities

• Parity generation: Each parity
block is the XOR value of the
corresponding data disks

• Block-level data striping
• Data and parity blocks are

distributed across disks
• Dedicated parity disk

• Any problem?

𝐴𝑝 = 𝐴1⨂𝐴2⨂𝐴3

67

68

How to update data

• Suppose A1 will be updated
to A1’
• Both A1 and Ap need to

be updated
• Read-modify-write (RMW)

RMW: 𝐴𝑝
′ = 𝐴𝑝⨂𝐴1⨂𝐴1′

𝐴𝑝′ = 𝐴1⨂𝐴2⨂𝐴3⨂𝐴1⨂𝐴1′

= 𝐴2⨂𝐴3⨂𝐴1′

69

How to update data

• Suppose A1 will be updated to
A1’
• Both A1 and Ap need to

be updated
• Read-modify-write (RMW)

• How about updating both A1
and A2 simultaneously?
• RMW?
• Read-reconstruct-write

(RRW)

• Selection of RMW/RRW

RRW: 𝐴𝑝
′ = 𝐴3⨂𝐴1′⨂𝐴2′

Both RMW and RRW incur
extra reads and writes

Problems of RAID 4

• Problems of RAID 4

• Disk bandwidth are not fully
utilized
• Parity disk will not be

accessed under normal
mode

• Parity disk may become the
bottleneck
• E.g., updating A1, B2, C3

Read: A1, B2, C3, Ap, Bp, Cp
Write: A1’ B2’, C3’, Ap’, Bp’, Cp’

70

RAID 5

• Similar to RAID 4
• One parity per stripe

• Key difference
• Uniform parity distribution

• RAID 5 is an ideal combination of
• good performance
• good fault tolerance
• high capacity
• storage efficiency

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

...

𝐸𝑃 = 𝐸1⨁𝐸2⨁𝐸3⨁𝐸4

Parity update overhead still
exist

71

RAID 6

• How to tolerate more disk
failures?

• RAID-6 protects against two disk
failures by maintaining two
parities

• Encoding/decoding operations:
➢ Based on Galois field

𝐴𝑃 = 𝐴1⨁𝐴2⨁𝐴3⨁𝐴4

𝐴𝑞 = 𝑐0𝐴1⨁𝑐
1𝐴2⨁𝑐

2𝐴3⨁𝑐
3𝐴4

Parity update overhead
becomes larger

72

RDP Code

➢An RDP code example with 6 disks

d0,4

d1,4

d2,4

d3,4

⊕d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,5

d1,5

d2,5

d3,5

⊕
⊕
⊕
⊕

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

⊕
⊕
⊕

73

Erasure Codes

➢Erasure codes

• Different redundancy levels

• 2-fault tolerant: RDP, EVENODD, X-Code

• 3-fault tolerant: STAR

• General-fault tolerant: Cauchy Reed-Solomon (CRS)

➢Generate m code blocks from k data blocks, so

as to tolerate any m disk failures

A B A+B A+2BA B

74

Summary on Erasure Codes

➢The motivation to introduce erasure codes in

large-scale storage systems

➢ In practice, erasure codes have seen widely

deployment
• Google File System [Ford, OSDI’10]

• Windows Azure Storage [Huang, ATC’12]

• Facebook [Borthakur, Hadoop User Group Meeting 2010]

• …

The need to reduce the tremendous cost of storage

75

76

Topics
- Problems with RAID/EC

- Optimizing parity updates
- Recovery
- Asynchronous coding
- …

SSD RAID

• RAID provides device-level fault tolerance

– Each stripe contains data and parity

• Limitation: Parity updates

– Update data -> update parity
• Update 𝐷1 to 𝐷1′

• RMW: 𝑃0
′ = 𝑃0⨁𝐷1⨁𝐷1′

• RRW: P0
′ = D0⨁𝐷1′⨁𝐷2

– Extra I/Os and GC

• SSD RAID

– Parity update influences both performance and endurance

Parity chunks:
𝑃0 = 𝐷0⨁𝐷1⨁𝐷2
𝑃1 = 𝐷3⨁𝐷4⨁𝐷5

77

Design tradeoff

• Design trade-off in SSD RAID arrays

– RAID improves reliability

– Parity updates incur extra I/Os and GC operations

• Degrade performance and endurance

How to address the parity update overhead?

78

Parity Logging

• Original Parity logging

– Incoming reqs: {𝐴0, 𝐵0, 𝐶0 },{𝐴1, 𝐵1, 𝐶1 }, {𝐵0′, 𝐶0′, 𝐴1′}

• Drawbacks

– Pre-read: Extra reads

– Per-stripe basis: Extra log chunks; Partial parallelism
79

EPLOG

80

No pre-read

Full parallelism

(Elastic)

Our solution: New RAID Design via Elastic Parity
Logging (EPLOG)

EPLOG

• Benefits of EPLOG
– General RAID

– High endurance: Reduce parity writes to SSDs

– High performance: Reduce extra I/Os

– Low-cost deployment: Commodity hardware

81

No pre-read

Full parallelism

(Elastic)

✓ Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu. "Elastic Parity Logging for SSD RAID
Arrays." IEEE/IFIP DSN (Regular paper), Toulouse, France, June 2016.

✓ Helen H. W. Chan,Yongkun Li, Patrick P. C. Lee, and Yinlong Xu."Elastic Parity Logging for SSD RAID
Arrays: Design, Analysis, and Implementation.“ IEEE TPDS, volume: 29 , issue: 10 , Oct. 2018.

82

Topics
- Problems with RAID/EC

- Optimizing parity updates
- Recovery
- Asynchronous coding
- …

Failure Recovery Problem

d0,4

d1,4

d2,4

d3,4

⊕d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

d0,5

d1,5

d2,5

d3,5

⊕
⊕
⊕
⊕

⊕
⊕
⊕

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

Suppose Disk 1 fails. How do we recover Disk 1 efficiently?

➢Recovering disk failures is necessary
•Preserve the required redundancy level

➢Single-disk failure recovery
•Single-disk failure occurs more frequently than a concurrent multi-

disk failure

83

Optimize Recovery Performance

• Traditional method: only use row blocks for repair.

Example: d0,1= d0,0d0,2d0,3d0,4

Need read (p−1)2=16 blocks

d3,1

d2,1

d1,1

d0,1

Free

disk

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

d0,1

d1,1

d2,1

d3,1









84

Optimize Recovery Performance

• Recovery choices: row blocks or diagonal blocks

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

d0,1

d1,1

d2,1

d3,1

Repair d0,1 from row blocks

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

d0,1

d1,1

d2,1

d3,1

Repair d0,1 from diagonal blocks

85

Single Disk Failure Hybrid Recovery

• Recover Disk 1.

Disk

0

Disk

1

Disk

2

Disk

3

Disk

4

Disk

5

d0,1

d1,1

d2,1

d3,1

Duplicate data block

❖ The four blocks are repeated twice.

❖ Result: Need read 16−4=12<16 block for recovery.

d0,1 diagonal

d1,1 diagonal

d2,1 row

d3,1 row

Failure blocks Recover choices

Xiang, L., Xu, Y., Lui, J., Chang, Q. “Optimal recovery of single disk failure in RDP code storage
systems”. ACM SIGMETRICS 2010.

86

87

Hybrid Recovery

Previous approach leverages the code property,
but not change the code

Alternative approach

Can we design new codes which benefit the
recovery performance?

Yes! Our solution: OI-RAID

OI-RAID: An Example

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20D0

Group G0 Group G1 Group G2 Group G3 Group G4 Group G5 Group G6

Region

➢ Divide 21 disks into 7 groups

➢ Divide each disk into 9 storage units

➢ Form a region with every 33 storage unit array in a group

88

OI-RAID: An Example

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20D0

Group G0 Group G1 Group G2 Group G3 Group G4 Group G5 Group G6

➢ Group regions into region sets based on BIBD

➢ (7,7,3,3,1)-BIBD:
Tuple T0：0，2，6 Tuple T1：0，1，3 Tuple T2：1，2，4 Tuple T3：2，3，5

Tuple T4：3，4，6 Tuple T5：0，4，5 Tuple T6：1，5，6

89

OI-RAID: An Example

➢ Outer layer code
• RAID5 within a region set

0 1 2 6

3 4 5 11

6 7 8 12

9 10 11 15

30 31 32 36

33 34 35 39

7 8 0 1

9 10 5 3

13 14 12 13

16 17 17 15

37 38 18 19

40 41 21 22

2 6 7 8

4 10 11 9

14 18 19 20

16 23 21 22

20 24 25 26

23 27 28 29

12 13 14 18

16 17 15 22

24 25 26 30

29 27 28 34

30 31 32 36

35 33 34 41

19

23

31

35

37

39

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

20 0 1

21 4 5

32 24 25

33 28 29

38 36 37

40 40 41

2

3

26

27

38

39

D18 D19 D20D0

Group G0 Group G1 Group G2 Group G3 Group G4 Group G5 Group G6

0 1 2

3 4 5

➢ Inner layer code：

• RAID5 within a region

along the diagonal line

The two layer code makes OI-RAID tolerate three arbitrary disk failures

90

Single Failure Recovery

0 1 2 6

3 4 5 11

6 7 8 12

9 10 11 15

30 31 32 36

33 34 35 39

7 8 0 1

9 10 5 3

13 14 12 13

16 17 17 15

37 38 18 19

40 41 21 22

2 6 7 8

4 10 11 9

14 18 19 20

16 23 21 22

20 24 25 26

23 27 28 29

12 13 14 18

16 17 15 22

24 25 26 30

29 27 28 34

30 31 32 36

35 33 34 41

19

23

31

35

37

39

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

20 0 1

21 4 5

32 24 25

33 28 29

38 36 37

40 40 41

2

3

26

27

38

39

D18 D19 D20D0

Group G0 Group G1 Group G2 Group G3 Group G4 Group G5 Group G6

91

Single Failure Recovery

0 1 2 6

3 4 5 11

6 7 8 12

9 10 11 15

30 31 32 36

33 34 35 39

7 8 0 1

9 10 5 3

13 14 12 13

16 17 17 15

37 38 18 19

40 41 21 22

2 6 7 8

4 10 11 9

14 18 19 20

16 23 21 22

20 24 25 26

23 27 28 29

12 13 14 18

16 17 15 22

24 25 26 30

29 27 28 34

30 31 32 36

35 33 34 41

19

23

31

35

37

39

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

20 0 1

21 4 5

32 24 25

33 28 29

38 36 37

40 40 41

2

3

26

27

38

39

D18 D19 D20D0

Group G0 Group G1 Group G2 Group G3 Group G4 Group G5 Group G6

➢ To rebuild the 6 failed data units in disk D9

• OI-RAID reads only one unit from each surviving disk

✓ Neng Wang, Yinlong Xu, Yongkun Li, and Si Wu. "OI-RAID: A Two-layer RAID Architecture Towards Fast
Recovery and High Reliability." IEEE/IFIP DSN, Toulouse, France, June 2016.

✓ Yongkun Li, Neng Wang, Chengjin Tian, Si Wu, Yueming Zhang, Yinlong Xu.“A Hierarchical RAID
Architecture Towards Fast Recovery and High Reliability.“ IEEE TPDS, 29(4) , pp. 734 - 747, April 2018.

92

93

Topics
- Problems with RAID/EC

- Optimizing parity updates
- Recovery
- Asynchronous coding
- …

...

Replication vs. Erasure Coding

• Replication has better read throughput while erasure
coding has smaller storage overhead

• In practice:

– Data will be frequently accessed in a short time

– Replication to erasure coding

A B A+B A+2BA B

A B A B

AB

94

Clustered File System

Node

...

ToR

Rack

...

Core Switch

Cross rack traffic

Intra rack traffic

Cross-rack access typically takes longer time

95

Dynamic Stripe Construction

Rack2 Rack3 Rack4Rack1

How to reduce/eliminate cross-rack traffic?
Our solution: Dynamic strip construction

1

5

6 5

2

5 1 3

1 3

4 6

4 6

4 3

5

2

2P P

Shuzhan Wei, Yongkun Li*, Yinlong Xu, and Si Wu. "DSC: Dynamic Stripe Construction for Asynchronous
Encoding in Clustered File System." IEEE INFOCOM, Atlanta, USA, May 2017.

➢ Encoding speed increases by up to 81%
➢ Improve frontend map-reduce tasks by 16.4%

96

Many Other Problems

• Recovery in heterogeneous systems

• Storage system scaling

• Hybrid system design

– HDD+SSD

– NVRAM

• Leveraging SSDs in various systems

• Data consistency

• …

97

Summary of Ch8

98

SSD Structure

SSD Features/Issues

Disk Structure

Disk Scheduling

RAID

Erasure Coding

Research Problems

✓ Cylinder, Track, Sector: CLV, CAV
✓ Access time
✓ FCFS, SSTF, SCAN/C-SCAN, LOOK/C-LOOK

✓ Structure and features
✓ Operations (read/write/erase/GC)

✓ RAID structures (RAID0, 1, 4, 5, 6)
✓ Parity update

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Chapter 9, part 1
File Systems – Programmer Perspective

Story so far…

2

File System Operations

Operating System
Kernel

User Space

Devices

Processes

File system
Implementation

FAT32, EXT2/3
KV, Distributed FS,

Graph System…

Outline

• File system introduction

• What are stored inside a storage device?

– File

– Directory

– Interfaces/Operations

• How are the data stored?

– File system layout

3

4

File system introduction

5

Introduction

fopen() fread() fwrite() fclose() Library Calls

NTFS-
specific

functions

Ext4-
specific

functions

FAT32-
specific

functions

ISO9660-
specific

functions

Kernel
Functions

open() read() write() close() System Calls

Process

Kernel

Devices

Introduction

6

FS Operations

Process A

Operating System Kernel

User space

Devices

⚫ To understand what a file system (FS) is, we follow
two different, but related directions:

- Layout & Operations.

Introduction

7

FS Operations

Process A

Operating System Kernel

User space

The layout.

Every FS has an unique layout on the
storage device. The layout defines:
- What are the things stored in the device.
- Where the stored things are.

Devices

Introduction

8

FS Operations

Process A

Operating System Kernel

User space

The layout.

Devices

The set of FS operations defines how the OS

should work with the FS layout.

In other words, OS knows the FS layout

and works with that layout.

Introduction

9

FS Operations

Process A

Operating System Kernel

User space

The layout.

Devices

The process uses system calls, which
then invoke the FS operations, to access
the storage device.

Introduction

10

• Ask yourself:

– OS = FS?

– Correct answer: OS  FS

– An OS supports a FS

• An OS can support more than one FS.

• A FS can be read by more than one OS.

Introduction

11

• Ask yourself:

– Storage Device = FS?

– Correct answer: Storage Device  FS.

• A FS must be stored on a device.

– But, a device may or may not contain any FS.

– Some storage devices can host more than one FS.

• A storage device is only a dummy container.

– It doesn’t know and doesn’t need to know what

FS-es are stored inside it.

– The OS instructs the storage device how the data

should be stored.

Outline of topics

12

• There are two basic things that are

stored inside a storage device, and are

common to all existing file systems.

What are they?

– They are Files and Directories.

– We will learn what they are and some

basic operations of them.

Outline of topics

13

• There are two basic things that are

stored inside a storage device, and are

common to all existing file systems.

How does a FS store data into the disk?

– That is, the layout of file systems.

– The layout affects many things:
• The speed in operating on the file systems;

• The reliability in using the file systems;

• The allocation and de-allocation of disk spaces.

Outline of topics

14

• Other topics

– We will look into the details of FAT32 and
Ext2/3 file systems.

– Case studies: key-value systems, distributed
file systems, graph storage systems

15

Part1: FS – Programmer Perspective
- File
- Operations
- Directory

File

16

• Why do we need files?

– Storing information in memory is good because

memory is fast.

– However, memory vanishes after process termination.

– File provides a long-term information storage.

• It is persistent and survives after process termination.

– File is also a shared object for processes to access

concurrently.

File

17

• What is a file?

– A uniform logical view of stored information

provided by OS.

– OS perspective: A file is a logical storage unit (a

sequence of logical records), it is an abstract data type

– User perspective: the smallest allotment of logical

secondary storage

– File type (executable, object, source code, text,

multimedia, archive…)

– File attributes

– File operations

File – what are going to be stored?

18

• E.g., a text file.

h e l l o _ w o r l d ‘\n’

test.txt

Content? Content of the file

Filename? Content of its parent directory

What can we find out in this example?

File size? Attribute of the file

When a file is named, it becomes independent of the
process, the user, and even the system

File Attributes

19

• Typical file attributes

Name

Identifier

Type

Location

Size

Time, date

Protection

Human-readable form

Unique tag (a number which identifies the file within the FS)

Text file, source file, executable file…

Pointer to a device and to the location of the file on the device

Number of bytes, words, or blocks

Creation, last modification, last use…

Access control information (read/write/execute)

You can try the command “ls -l”

File Attributes

20

• Typical file attributes

Name

Identifier

Type

Location

Size

Time, date

Protection

Human-readable form

Unique tag (a number which identifies the file within the FS)

Text file, source file, executable file…

Pointer to a device and to the location of the file on the device

Number of bytes, words, or blocks

Creation, last modification, last use…

Access control information (read/write/execute)

Some new systems also support extended file
attributes (e.g., checksum)

File Attributes

21

• File attributes are FS dependent.

– Not OSdependent.

Common Attributes FAT32 NTFS Ext2/3/4

Name ✓ ✓ ✓

Size ✓ ✓ ✓

Permission ✓ ✓

Owner ✓ ✓

Access, creation,
modification time

✓ ✓ ✓

The design of FAT32
does not include any
security ingredients.

File Permissions

• E.g., in Unix system

22

First field: File/director

2nd /3rd /4th fields (3 bits each): controls read/write/execute

for the file owner/file’s group/others (e.g., 111:7,110:6)

What is the meaning of the permission 775/664?

Common
Attributes

Way to change them?

Command? Syscall?

Name

Size

Permission

Owner

Access, creation,
modification time

Writing attributes?

• Can you change those attributes directly?

23

Common
Attributes

Way to change them?

Command? Syscall?

Name mv rename()

Size Too many tools to
update files’ contents

write(), truncate(),
etc.

Permission chmod chmod()

Owner chown chown()

Access, creation,
modification time

touch utime()

Pathname vs Filename

24

The pathname is unique within the entire file system.

The filename is not unique within the entire file system.

The filename is only unique within the directory that it resides.

• A file can be referred to by its name,

then how to achieve this?

/home/os/test.txt The pathname

The directory that
“test.txt” resides in

The filename

Pathname vs Filename

25

• Why do we need to consider uniqueness?

open(“/some_directory/some_filename” ,);

FS Operations

Data address

The OS kernel translates the pathname

into a set of data addresses on the device.

That means the pathname is the key!

If the pathname is not unique, how come

the OS can successfully find the data

needed?

26

Part1: FS – Programmer Perspective
- File
- Operations
- Directory

27

Overview

fopen() fread() fwrite() fclose() Library Calls

NTFS-
specific

functions

Ext4-
specific

functions

FAT32-
specific

functions

ISO9660-
specific

functions

Kernel
Functions

open() read() write() close() System Calls

File Open – Example

• What is fopen()?

– First thing first, fopen() calls open().

– FILE *fopen(const char
*filename, const char *mode)

• What is the type “FILE”?

– “FILE”: a structure defined in “stdio.h”.

– fopen() creates memory for the “FILE”
structure.

• Fact: occupying space in the area of
dynamically allocated memory, i.e., malloc()

28

open()

fopen()

Return 3

FS-specific
functions

What is inside the “FILE” structure?

• There is a lot of helpful data in FILE:

– Two important things: the file descriptor and a buffer!

29

int main(void) {
printf("fd of stdin = %d\n", fileno(stdin));
printf("fd of stdout = %d\n", fileno(stdout));
printf("fd of stderr = %d\n", fileno(stderr));

}

fileno() returns the file descriptor of the FILE structure.

The type of stdin, stdout, and stderr is “FILE *”

$./fileno
fd of stdin = 0
fd of stdout = 1
fd of stderr = 2
$ _

File operations

• The operating system should provide…

30

Create
Allocate space, add an entry in the directory

Write
Filename, file content (write pointer)

Read
Filename, mem location (read pointer)

Reposition
File seek (not involve actual I/O), required for random accesses

Delete
Release space, and erase directory entry

Truncate
Keeps attributes only

File operations

• Many operations involve searching the directory for
locating the file (read/write/reposition…)

– Can we avoid this content searching???

31

Open-file table

An open() system call is provided, and it is called before a file is
first used

OS keeps a table containing information about all open files (per-
process and system-wide table)

The file will be closed when it is no longer being actively used,
using close() system call

The Truth of Opening a File

32

unique
pathname

3

FS Operations

Process

Step (5) The OS returns

the file descriptor to the

process.

Step (4) The OS then

associates the attributes to

a number and the number is

called the file descriptor.

Step (3) The disk returns

the file attributes.

Step (1) The process

supplies a pathname to

the OS.

Step (2) The OS looks

for the file attributes of

the target file in the disk.

fd

Note: these steps are OS-independent as well as FS-independent.

Kernel
Open-file
Table

The Truth of Opening a File

33

unique
pathname

3

FS Operations

Process

Step (5) The OS returns

the file descriptor to the

process.

Step (4) The OS then

associates the attributes to

a number and the number

is called the file descriptor. Step (3) The disk returns

the file attributes.

Step (1) The process

supplies a pathname to

the OS.

Step (2) The OS looks

for the file attributes of

the target file in the disk.

fd

Note:

Opening a file only involves the

pathname and the attributes of
the file, instead of the file content!

Note: these steps are OS-independent as well as FS-independent.

How to read from open files

34

3 FS Operations

Process data
location

3

fd

Step (1) The process

supplies a file descriptor to

the OS.

Step (2) The OS reads the file attributes and

uses the stored attributes to locate the

required data.

Step (3) The disk returns the

required data.

- File data is stored in a fixed
size cache in the kernel.

Step (4) The OS fills the buffer provided

by the process with the data. Write data to

the userspace buffer.

Open files

Kernel
cache

35

What is a file descriptor?

0 1 2
file descriptor

array

Although a file is opened by two different processes,
the kernel uses one structure to maintain it!

Process A

0 1 2 3
file descriptor

array

Process B

4 5

See? A file descriptor is
just an array index for
each process to locate
its opened files.

Open-file
Table

3

36

How about read and write (read()
and write() system calls)?

read() & write()

• You know, I/O-related calls will invoke system calls.

37

Library calls that eventually invoke the
read() system call

Library calls that eventually invoke the
write() system call

scanf(), fscanf() printf(), fprintf()

getchar(), fgetc() putchar(), fputc()

gets(), fgets() puts(), fputs()

fread() fwrite()

int read (int fd, void *buffer, int bytes_to_read)

int write (int fd, void *buffer, int bytes_to_write)

From file to buffer.

From buffer to file.
Note: I modified the function prototypes.

38

read() system call

read()

FS-specific
functions

Step 2. Reading data2

File
attributes

Kernel-level, list of opened files.

Runtime
attributes1

Step 1.
- Check whether the end of the file is reached or not.

[Comparing size and file seek.]

39

read() system call

read()

FS-specific
functions

2

File
attributes

Kernel-level, list of opened files.

Runtime
attributes1

Step 3.
- File data is stored in a fixed size cache in the kernel.

Kernel cache

3

4
Step 4.
Write data to the
userspace buffer.

40

write() system call

write()

File
attributes

Kernel-level, list of opened files.

Runtime
attributes

Step 2.
According to the data length,
(1) change in file size, if any, and
(2) change in the file seek.

Kernel cache

1
Step 1.
Write data to the
kernel buffer.

2 2

3 Step 3.
The call returns.

41

write() system call

write()

FS-specific
functions

File
attributes

Kernel-level, list of opened files.

Runtime
attributes

Kernel cache

4

1

2 2

4

Step 4.
The buffered data will be flushed to
the disk from time to time.

3

The kernel buffer cache implies…

• Performance

– Increase reading performance?

– Increase writing performance?

• Problem

– Can you answer me why you cannot press the reset
button?

– Can you answer me why you need to press the “eject”
button before removing USB drives?

42

Short Summary

43

• Every file has its unique pathname.

– Its pathname leads you to its attributes and the file

content.

A file has two important components! Plus,

there are usually stored separately.

Short Summary

44

• We only introduce the read/write flow:

– File writing involves disk space allocation; but…

– The allocation of disk space is highly related to the

design of the layout of the FS.

– Also, the same case for the de-allocation of the disk

space…

45

Part1: FS – Programmer Perspective
- File
- Operations
- Directory

Directory

46

• A directory is a file.

– Then, does it imply that it has file attributes and

file content?

Answer: Sure
Answer: FS dependent

• How does a directory file look like?

Directory Traversal Process

47

FS Operations

Process

bin

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (1) Suppose that the process
wants to open the file “/bin/ls”.

The process then supplies the OS the
unique pathname “/bin/ls”.

Step (2) The OS retrieves

the directory file of the
root directory ‘/’.

Step (3) The disk returns

the directory file.

file:/

Directory Traversal Process

48

FS Operations

Process

ls

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (4) The OS looks for the

name “bin” in the directory file.

Step (5) If found, the in the OS

retrieves the directory file of
“/bin” using the information of

the file attributes of “bin”.

file: /bin

bin

/

Directory Traversal Process

49

FS Operations

Process

ls

b i n / l/ s

/bin/ls

• How to locate a file using pathname?

Step (6) The OS looks for the name “ls” in

the directory file “bin”.

If found, then the OS knows that the file “/bin/ls”

is found, and it starts the previously-discussed

procedures to open the file “/bin/ls

bin

Short Summary

50

• A directory file records all the files including

directories that are belonging to it.
– So, do you understand “/bin/ls” now?

– Locate the directory file of the target directory and to print

contents out.

• Locating a file requires the directory traversal

process:

– open a file;

– listing the content of a directory.

File Creation and Directory

51

• According to your experience, what is the

file creation?

– E.g., creating a file named “test.txt”?

• “touch test.txt”?

• “vim test.txt”, then type “:wq”?

• “cp [some filename] test.txt”?

• The truth is:

File creation == Update of the directory file

File Creation and Directory

52

• If I type “touch text.txt” and “text.txt” does not exist,
what will happen to the Directory file?

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

text.txt

Directory file: “/home/os”

A new directory entry is created.

Note: “touch text.txt” will only create the directory entry,

and there is no allocation for the file content.

File Deletion and Directory

53

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

score_sheet.xls

midterm_marks.xls

final_exam_paper.pdf

……

text.txt

• Removing a file is the reverse of the creation process.

– Note that we are not ready to talk about de-allocation of

the file content yet.

Directory file: “/home/os”

Updating directory file

54

• When/how to update a directory file?

Creating a directory file
syscall - mkdir();

Example program - mkdir.

Add an entry to the
directory file

syscall - open(), creat();

Example program - cp, mv, etc.

Remove an entry to the
directory file

syscall - unlink();

Example program - rm.

Remove a directory file
syscall – rmdir();

Example program - rmdir.

Summary of part 1

• In this part, we have an introduction to FS

– File and directory

– The truth about the calls that we usually use,

– We learned: The content of a file is not the only entity,
but also the file attributes.

• In the next part, we will go into the disk:

– How and where to store the file attributes?

– How and where to store the data?

– How to manage a disk?

55

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Chapter 9, part2
File System Layout

1

2

Outline

You’re given a disk of 1TB space. How to utilize it?

Allocated
Space

Free
Space

DirectoryFile content &
attributes

Things need to be stored.

operations
Questions.
• Can I read back what I’ve written?
• Can I get back free space when I remove a file?
• How much space is consumed when I create a 1GB file?

3

Outline

• We briefly introduce the evolution of the file system

layout:

– From a dummy way to advanced ways.

– The pros and cons are covered.

• We begin to look at some details of the FAT file

system and EXT file system

4

How to store data?

• Consider the following case:

– You are going to design the layout of a FS.

– You are given the freedom to choose the locations

to store files, including directory files.

– How will you organize the data?

100GB0

5

How to store data?

• Some (basic) rules are required:
– Every data written to the device must be able to be retrieved.

• Would you use the FS that will lose data randomly?

– Every FS operation should be done as efficient as possible.
• Would you use the FS if it takes a minute to retrieve several bytes of

data?

– When a file is removed, the FS should free the
corresponding space.

• Would you use the FS if it cannot free any occupied space?

100GB0

6

File System Layout

Trial 1.0
The Contiguous Allocation

7

Trial 1.0 – the basics

• Just like a book!

Table of content

Chapter 1 p.1
Chapter 2 p.2
Chapter 3 p.10

Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address

8

Trial 1.0 – the basics

• Just like a book!
Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address

Suppose we have 3 files to store

rock.mp3
sweet.jpg
same.exe

We do not consider the directory

structure at this moment

Like a book, we need to some space to
store the table of content, which records
the filename and the (starting and ending)
addresses of the file content.

9

Trial 1.0 – the basics

• Just like a book!

The table of content!

Book VS Trial #1

Book Trial #1

Chapter Filename

Starting Page Starting Address

NIL Ending Address

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes

10

Trial 1.0 – the basics

• Just like a book!

The table of content!

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes

Contiguous allocation is very similar to the
way we write a book. It starts with the table of
content, which we call the root directory.

Root

Directory rock.mp3 sweet.jpg game.exe

11

Trial 1.0 – the basics

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678

You can locate files easily (with a directory sturcture).

But, can you locate the allocated space and the free
space in a short period of time?

Free space is here.

But, it needs an O(n) search, where n
is the total number of files.

Root

Directory rock.mp3 sweet.jpg game.exe

What if the disk is large and

the files are small?

12

Trial 1.0 – the basics

File deletion is easy! Space de-allocation is the same as
updating the root directory!

Yet, how about file creation?

rock.mp3 sweet.jpg game.exe

13

Trial 1.0 – the bad #1

• Suppose we need to write a new, but large file?

ubuntu.iso

Can’t be written!

Root

Directory
rock.mp3 game.exe

Really BAD! We have enough space, but there is no
holes that I can satisfy the request. The name of the
problem is called:

External Fragmentation
Any solution?

14

Trial 1.0 – the bad #1

• The defragmentation process may help.

Root

Directory
rock.mp3 game.exe

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

game.exe 5000 5678

game.exe

Filename Starting

Address

Ending

Address

rock.mp3

game.exe 2001 2679

ubuntu.iso 2680 6000

0 2000

move

ubuntu.iso

Very expensive (think

about the disk structure)

15

Trial 1.0 – the bad #2

• Comment:

– Also, the growth problem…there is no space

for files to grow.

Growth problem!
Can you suggest any method?

16

Trial 1.0 – the reality

• This kind of file systems has a name called the

contiguous allocation.

• This kind of file system is not totally useless…

– The suitable storage device is something that is…

– read-only (just like a book)

17

Trial 1.0 – the reality

• Can you think of any real life example?

– Hint #1: better not grow any files.

– Hint #2: OK to delete files.

– Hint #3: better not add any files; or just add to the

tail.

– ISO9660.

18

File System Layout

Trial 2.0
The Linked List Allocation

19

From Trial 1.0 to Trial 2.0…

• Lessons learned from Trial 1.0:

– File Size Growth:

– Can we let every file to grow without paying an

experience overhead?

– External fragmentation:

– Can we reduce its damage?

• One goal

– To avoid allocating space in a contiguous manner!

20

Trial 2.0 – the basics

• How?

– The first undesirable case in trial 1.0 is to write a

large file (as it may fail or need defragmentation)

– So, can we write small files/units only?

• For large files, let us break them into small pieces…

ubuntu.iso

Root

Directory
rock.mp3 game.exe

21

Trial 2.0 – the basics

• How?

– The second undesirable case in trial 1.0 is when

file grows (as it needs reallocation)

– So, how can we support dynamic growth?

• Let’s borrow the idea from the linked list…

22

Trial 2.0 – the basics

• Linked list allocation…

– Step (1): Chop the storage device into equal-

sized blocks.

23

Trial 2.0 – the basics

• Linked list allocation…

– Step (2): Fill the new file into the empty space in a

block-by-block manner.

ubuntu.iso

Root

Directory

1 21

24

Trial 2.0 – the basics

• Linked list allocation…

– Step (3): The root directory…

• becomes strange/complicated.

Filename Sequence

of Block #

Sequence

of Block #

rock.mp3 1-6 NULL

game.exe 19-25 NULL

ubuntu.iso 7-18 26-27

Since a directory file is an

array, it is difficult to pretend

to be a linked list….

Root

Directory

1 21 30

Can we have a better
solution to optimize
the directory?

25

Trial 2.1 – the linked list

• Let’s borrow 4 bytes from each block.

– To write the block # of the next block into the first

4 bytes of each block.

– Real linked list

Root

Directory

......
NULL

(or 0)

......

27 0

Block

26

Block

27

1 21 3011

How does the root
directory look like?

26

Trial 2.1 – the linked list

• Let’s borrow 4 bytes from each block.

– To write the block # of the next block into the first

4 bytes of each block.

– Real linked list

Root

Directory

Filename First

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7
NULL

(or 0)

......

27 0

Block

26

Block

27

1 21 3011

27

Trial 2.1 – the file size

• Note that we need the file size stored in the

root directory because…

– The last block of a file may not be fully filled.

Root

Directory

Filename First

Block #

File Size

rock.mp3 1 600M

game.exe 19 2000M

ubuntu.iso 7 700M

1 21 3021

28

Trial 2.1 – the free space

• One more thing: free space management.

– Extra data is needed to maintain a free list.

We can also maintain

the free blocks as a

linked list, too.

Root

rectoryDi

F

R

E

E

28

0

1 21 30

29

Trial 2.1 – the good

• Pros:

External

fragmentation

problem is solved.

Files can grow

and shrink freely.

Free block

management is

easy to implement.

F

R

E

E

Root

Directory

1 21 30

30

Trial 2.1 – the bad #1

• Cons:

– Random access performance problem.

• The random access mode is to access a file at random locations.

– The OS needs to access a series of blocks before it can

access an arbitrary block.

• Worst case: O(n) number of I/O accesses, where n is the number of

blocks of the file.

F

R

E

E

Root

Directory

1 21 30

Target blockAccessed blocks

31

Trial 2.1 – the bad #2

• Cons (recall why we record file size?):
– Internal Fragmentation.

• A file is not always a multiple of the block size

• The last block of a file may not be fill

completely.

– This empty space will be wasted since

no other files can be allowed to fill such

space.

F

R Root

E Directory

E

0

U F

S R

E E

D E

Last block

of a file

1 21 30

32

From Trial 2.1 to Trial 2.2

• Can we further improve?

– We know that the internal fragmentation problem

is here to stay.

– How about the random access problem?

• We are very wrong at the very beginning…decentralized

next block location

The information about the next block should be centralized

33

Trial 2.2 – the FAT

• The only difference between 2.1 and 2.2…

File

Allocation

Table (FAT)

F

R

E

E

Root

Directory

Root

F

R

E Directory

E

Trial 2.1

Trial 2.2

All the information about the next

block #s are centralized, and it is

called FAT.

34

Trial 2.2 – the FAT implementation

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Step

(1)

Filename First

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7

F

R

E

E

File

Allocation

Table (FAT)

Root

Directory

11 21 30

Task: read “ubuntu.iso” sequentially.

35

Trial 2.2 – the FAT

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Step (1). Look for the first block # of the file.

Step

(1)

Filename First

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7

F

R

E

E

File

Allocation

Table (FAT)

Root

Directory

11 21 30

Step

(1)

Task: read “ubuntu.iso” sequentially.

36

Trial 2.2 – the FAT

Step

(1)

Step

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Filename First

Block #

rock.mp3 1

game.exe 19

The next block of 7 is 8.ubuntu.iso 7

F

R

E

E

File

Allocation

Table (FAT)

Root

Directory

11 21 30

Step (2). Read the file allocation table to

determine the location of the next block.

Task: read “ubuntu.iso” sequentially.

37

Trial 2.2 – the FAT

Filename First

Block #

rock.mp3 1

19

7

game.exe

ubuntu.iso

Step (2). Read the file allocation table to

determine the location of the next block.

Root

Directory

F

R

E

E

File

Allocation

Table (FAT)

Step

(1)

Step

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Note that the next block is not

necessarily the adjacent one.

1 11 3021

Task: read “ubuntu.iso” sequentially.

38

Trial 2.2 – the FAT

Filename First

Block #

rock.mp3 1

19

7

game.exe

ubuntu.iso

Step (3). The process stops until the block
with the “next block # = 0”.

Step

(1)

Step

(2)

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

F

R

E

E

File

Allocation

Table (FAT)

Root

Directory

11 21 30

Task: read “ubuntu.iso” sequentially.

39

Trial 2.2 – the FAT

The entire

layout…

40

Trial 2.2 – the lookup

• A point to look into:

– Centralizing the data does not mean that the random

access problem will be gone automatically, unless…

– the file allocation table is presented as an array.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

I know the

starting

position.

I know

the width.

So, going to an arbitrary location

is as simple as doing a pointer

addition operation.

File Allocation Table

The random access problem can be eased by keeping a cached
version of FAT inside the kernel.

Trial 2.2 – the lookup

41

File Allocation Table (FAT)

FAT12/16/32
specific

operations

Cached
(partial) FAT

If this table is partially kept on the cache,
then extra I/O requests will be generated
in locating the next block #.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

42

Trial 2.2 and the reality

• Every file system supported by MSDOS and

the Windows family is implementing the linked

list allocation.

• The file systems are:

– The FAT family: FAT12, FAT16, and FAT32;

– The New Technology File System: NTFS.

43

FATs Brief Introduction

• What is the meaning of the numbers (12/16/32)?

– A block is named a cluster.

– The main difference among all the versions of FAT

FS-es is the cluster address size.

Block # 1 … 6 7 … 18 19 … 25 26 27 28 29 30

Next Block # 2 … 0 8 … 26 20 … 0 27 0 29 30 0

Cluster

address size

Such a size defines the number of

clusters…
cluster address size

2

File Allocation Table

44

FATs Brief Introduction

• Cluster address sizes

– The larger the cluster address size is, the larger

the size of the file allocation table.

– The larger the cluster size is, the larger the size of

the disk partition is.

File System FAT12 FAT16 FAT32

Cluster address

length
12 bits 16 bits 32 bits (28?)

Number of

clusters
4K 64K 256M

We will look into more details of FAT32 in later lectures

45

Summary of Trial 2.2

• Is FAT a perfect solution…

– Tradeoff: trade space for performance

• The entire FAT has to be stored in memory so that…

• the performance of looking up of an arbitrary block is

satisfactory.

• Can we have a solution that stands in middle?

– Not store the entire set of block locations in mem…

– I don’t need an extremely high performance in

block lookups.

46

File System Layout

Trial 3.0
The Index-Node Allocation

Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 1.0: Contiguous allocation (just like a book)

47

Filename Starting

Address

Ending

Address

rock.mp3 0 2000

sweet.jpg 2001 3456

game.exe 5000 5678
File attributes

Root

Directory rock.mp3 sweet.jpg game.exe

Two key problems: External fragmentation + file growth

Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.0: Linked-list allocation: blocking

48

Key problem: complicated root directory

Filename Sequence

of Block #

Sequence

of Block #

rock.mp3 1-6 NULL

game.exe 19-25 NULL

ubuntu.iso 7-18 26-27

Root

Directory

1 21 30

Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.1: Linked-list allocation: blocking + linked list

49

Key problem: random access problem

Root

Directory

Filename First

Block #

rock.mp3 1

game.exe 19

ubuntu.iso 7
NULL

(or 0)

......

27 0

Block

26

Block

27

1 21 3011

Back to Trial 1.0-2.2

• File system layout: how to store file and directory

– 2.2: Linked-list allocation: centralized next-block # (FAT)

50

Requirement: FAT Caching

Trial 2.2 - FAT

• FAT provides a good performance in all aspects

– File creation, file growth/shrink, file deletion …

– Random access performance…but requires to

• cache the FAT

• Balance the tradeoff between Performance and
memory space

– Partial caching

– How?

51

52

Trial 2.2 - FAT

We are going to break the FAT into pieces…Trial 3.0

53

Trial 3.0 – the beginning

Filename Index

Node

rock.mp3

game.exe

ubuntu.iso

Root

Directory

F

R

E

Index

Nodes

Index node #1

Block # 1 … 6

Next Block # 2 … 0

Index node #3

Block # 7 … 18 26 27

Next Block # 8 … 26 27 0

Index node #2

Block # 19 … 25

Next Block # 20 … 0

Any problem with

this design?

E

11 21 301

54

Trial 3.0 – the beginning

Filename Index

Node

rock.mp3

game.exe

ubuntu.iso

Root

Directory

F

R

E

Index

Nodes

Index node #1

Block # 1 … 6

Next Block # 2 … 0

The index nodes are

variable-sized.

How to manage them?

E

11 21 301

Index node #3

Block # 7 … 18 26 27

Next Block # 8 … 26 27 0

Index node #2

Block # 19 … 25

Next Block # 20 … 0

Trial 3.0 – the beginning

• Problems with variable-sized index nodes

– How to locate an index node?

– How to support file growth…size of index nodes depends
on file size

55

Root

Directory

F

R

E

Index

Nodes
E

11 21 301

Index Node 1 Index Node 2 Index Node 3

Fix-sized index nodes are preferable, how to achieve?

56

Trial 3.0 – the heart

Index node structure

Direct Block #0

Direct Block #1

… ...

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block storing

block address.

Data Block

storing data.

...

...

1st layer of

indirect

blocks

2nd layer of

indirect

blocks

An innovative design

of the index node,

called extent.

...

Detailed structure of the index nodes will be talked later

57

Trial 3.0 – the two kinds of blocks

Indirect block

Stores an array of block addresses.

An address may point to either a data block or

another indirect block.

However, in a block, all the addresses are either

pointing to indirect blocks or data blocks.

Data block

Stores file data.

Keys

Indirect blocks that

point to indirect blocks

Indirect blocks that

point to data blocks

Data blocks

The consequence

3rd layer
indirect

2nd layer
indirect

1st layer
Indirect

Where are the (indirect)
blocks stored?

Root

Directory

F

R

E

Index

Nodes
E

58

Trial 3.0 – the file size

Number of direct

blocks
12

Number of indirect

blocks

Number of double

indirect blocks

Number of triple

indirect blocks

Block size 2x bytes

Address length 4 bytes

1

1

1

File size = number of data blocks * block size

The dominating factor.

Block size File size

1024 bytes = 210 approx. 16 Gbytes

4096 bytes = 212 approx. 4 Tbytes
“2x / 4=2x-2”

addresses

12 x 2x +

+

+

24x-6

How large files can be supported?

2x-2 *2x=22x-2

2x-2 * 2x-2 *2x=23x-4

59

Trial 3.0 – the final design

Filename Index

Node

rock.mp3

game.exe

ubuntu.iso

Root

Directory

F

R

E

E

Index

Nodes

1 11 3021

Index node #1

…

…
Now, every index

node is of a fixed

size.Index node #2

…

…

Index node #3

…

…

60

Trial 3.0 – the final design

Filename Index

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3

Root

Directory

F

R

E

E

Index Node

Table

1 11 3021

Inside the index node table …

It is arranged as an array. So,

looking up an index node will be fast.
Searching the index

nodes using the

index node #.

Now, this column stores

the index node #.

Index

node #1

Index

node #2

… Index

node #n-1

… … …

… … …

Layout & read
process

Trial 3.0

• How about the tradeoff between performance and
memory usage?

– Partial caching is easy

• Any overhead of Trial 3.0?

– The index-node allocation uses more storage:

• to trade for a larger file size (with fixed-size index

nodes).

– The indirect blocks are the extra things.

61

62

Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

~4M (x=12)

~4G (x=12)

1 block

~1K blocks

63

Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

~4T (x=12)

~1M blocks

64

Trial 3.0 – Storage Overhead

• The indirect blocks are the extra things.

– Max. number of indirect blocks depends on

• Block size

• File size

Block size Max. # of indirect

blocks

Max. Extra Size

involved

1024 bytes = 210 approx. 216 approx. 256 Mbytes

4096 bytes = 212 approx. 220 approx. 4 Gbytes

Remember, they are not static and

they grow/shrink with the file size.

65

Trial 3.0 – the summary

• FSes in UNIX and Linux use the index-node

allocation method.
– The Ext2/3/4 file systems.

• The index node is called inode in those systems.

• Ext4 uses extent, not indirect blocks

– We will discuss the details of Ext file system later.

66

From Trial 1.0 to Trial 3.0…

• We studied what are the possible ways to store

data in the storage device.
– The things stored are usually:

Free space management

Actually, we didn’t cover that

much…

File attributes

Except the file size and the

locations of the data blocks,

where and what are the other

attributes?

Root directory

Hey, where are the sub-directories?

Still remember the directory traversal

Data block management

The FAT, the extents, the table of

content.

Root

Directory

F

R

E

E

Index Node

Table

or FAT

67

File System Layout

Root Directory and
Sub-directories

68

Root directory

• We know that the root directory is vital.

– However, we have sub-directories…

– Where are they?

Filename Index

Node #

rock.mp3 1

2

3

temp_dir ?

game.exe

ubuntu.iso

Filename First

Block #

rock.mp3 1

19

7

temp_dir ?

game.exe

ubuntu.iso

Index Node
Allocation

Linked list

Allocation
Are the sub-directories

stored here?

69

Sub-directories?

• Let’s take the index-node allocation as an example…

Directory File

Filename inode #

rock.mp3 1

game.exe 19

ubuntu.iso 7

temp_dir 100

File content … of

the directory file

Root directory is a directory file.

Index node

Direct Block #0

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Directory is also a file, so it has an inode too

70

Sub-directories?

• Let’s take the index-node allocation as an example…

Directory File

Filename inode #

rock.mp3 1

game.exe 19

ubuntu.iso 7

temp_dir 100

Root directory is a directory file.

Index node

Direct Block #0

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Directory File

filename inode #

file_a 123

dir_1 345

file_b 456

dir_2 567

Just another

directory file.

See, each directory entry keeps the address of the file attributes,
not the attributes themselves (how about FAT file systems?)

71

Traversing directory structure…

• Let’s take index-node allocation as an example…

Root Directory File

Filename inode #

File

Dir

Sub-Directory File

Filename inode #

The tree ends at the

non-directory files.

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect

Block

Triple Indirect

Block

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect

Block

Triple Indirect

Block

Index node

Direct Block #0

Direct Block #11

Indirect Block

Double Indirect

Block

Triple Indirect

Block

File contents

File
contents

Content of a directory file is still
a directory file

72

Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/file”

Root

Directory

F

Index Node R

Table E

E

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Root Directory File

Filename inode #

file 123

… …

File contents

73

Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/os/file”

Root

Directory

F

Index Node R

Table E

E

Sub-directory File

Filename inode #

file 456

… …

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Root Directory File

Filename inode #

file 123

os/ 124

74

Traversing directory structure…

• Work together with the layout
– Let’s still take index-node allocation as an example…

– E.g.: “/os/file”

Root

Directory

F

Index Node R

Table E

E

Sub-directory File

Filename inode #

file 456

… …

Index node structure

Direct Block #0

Direct Block #0 …

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

File contents

75

File System Layout

File system information
and partitioning

Storage layout

• What are stored on disk?

– Root directory, index nodes/FAT, data blocks, free
space information…

– Others?

• E.g., How do we know where the root directory is?

• Where is the first inode?

– File system information

76

Root

Directory

F

R

E

Index

Nodes
E

77

File System Information

• It is a set of important, FS-specific data…

Examples of FS-Specific Data

How large is a block?

How many allocated blocks are there?

How many free blocks are there?

Where is the root directory?

Where is the allocation information, e.g., FAT & inode table?

How large is the allocation information?

78

File System Information

• It is a set of important, FS-specific data…

– Can we hardcode those information in the

kernel code…

– No!!! Because different storage devices have

different needs.

FAT

F

R

E

E

Root

Directory

FAT

F

R

E

E

Root

Directory

E.g., different disk

sizes result in

different FAT sizes.

79

File System Information

• It is a set of important, FS-specific data…

– Solution: The workaround is to save those information
on the device.

FS-Specific

Information
FAT

F

R

E

E

Root

Directory

FS-Specific

Information
FAT

F

R

E

E

Root

Directory

Each device should has its own

copy of information.

80

File System Information

• It is a set of important, FS-specific data…

– Solution: The workaround is to save those information
on the device.

Superblock
Index Node

F

R

E

E

Root

Directory

In FAT* & NTFS Boot Sector

In Ext* Superblock

Boot Sector FAT

F

R

E

E

Root

Directory

Story so far…

• We talked about the file system layout

– FAT and index node

81

Superblock
Index Node

F

R

E

E

Root

Directory

Boot Sector FAT

F

R

E

E

Root

Directory

Only one file system can be stored in a disk?

What is the problem with a very large file system? Large FAT

No!

82

Disk partitions

• Partitioning is needed to

– limit the file system size

– support multiple file systems on a single disk

partition 1 partition 2

83

Disk partitions

• What is a disk partition?

– A disk partition is a logical space…

• A file system must be stored in a partition.

• An operating system must be hosted in a partition.

C

O

D

E

partition 1 partition 2

A partition table stores the

- first sector,

- the length, and

- the type of a partition.

Boot Code:

the code specifies

which partition to boot.

Master boot record (MBR)…

84

BOOT CODE
Table

Entry #1
Table

Entry #2
Table

Entry #3
Table

Entry #4

512 bytes

0xAA55

446 bytes 16 bytes 2 bytes

Partition Table Entry

Bytes Description

0-0 Bootable flag; 0x80 means bootable.

1-3 Starting CHS address

4-4 Partition type
http://www.datarecovery.com/hexcodes.asp

5-7 Ending CHS address

8-11 Starting LBA address (measured in # of sectors)

12-15 Sizes in sectors

signature

The range of a partition is
described by the: (offset,
length) tuple.

Disk partitions - summary

• Benefits of partitioning:

– Performance

• A smaller file system is more efficient!
– Think about FAT32.

– Multi-booting

• You can have a Windows XP + Linux + Mac installed on a single
hard disk (not using VMware).

– Data management

• You can have one logical drive to store movies, one logical
drive to store the OS-related files, etc.

85

86

Final view of a disk storage space

• Final view of disk layout

• Now, do you know what is meant by “formatting” a

disk?
– Create and initialize a file system!

– In Windows, we have “format.exe”.

– In Linux, we have “mkfs.ext2”, “mkfs.ext3”, etc.

C

O

D

E

Boot

Sector
FAT

Super

block
inode

Table

partition 1 partition 2

87

Summary of part2

• We have looked into many details about different

file system layouts:

– Contiguous allocation;

– Linked list allocation; and

– Index-node allocation.

• We also show the complete view of disk space

– File system specific information & disk partition

• Linked list allocation and index-node allocation are the

main streams but not the only way to implement

modern file systems.

So far, we have learnt:

88

What are stored on disk

File: content + attributes
Directory: Directory file

How to access them?

File operations: open(), read(), write()
Directory lookup: Directory traversal

How are the files stored on disk?

File system layout: Contiguous/linked-list (FAT)/index-node allocation

Topics not covered:
Only the attributes of file name and locations are covered, how about other
attributes? Free space management?

We’ll look into some real implementations (FAT32 + EXT2/3/4)

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch10, part 1
Details of FAT32

1

Story so far…

2

What are stored on disk

File: content + attributes
Directory: Directory file

How to access them?

File operations: open(), read(), write()
Directory lookup: Directory traversal

How are the files stored on disk?

File system layout

Contiguous allocation
linked-list allocation (FAT*)

index-node allocation (EXT*)

Topics in Ch10

• Case study

3

File attributes and directory entries, file operations

Details of FAT32

Detailed layout, detailed inode structure (file attributes), FS operations…

Details of Ext2/3/4

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

4

Microsoft Extensible Firmware Initiative FAT32 File System
Specification (FAT: General Overview of On-Disk Format),
Version 1.03, December 6, 2000, hardware white papers @
Microsoft Corporation.

Recall on FAT allocation

• The layout

5

A block is named a cluster.

File System FAT12 FAT16 FAT32

Cluster addr length
12 bits 16 bits 32 bits (28?)

Number of

clusters 4K 64K 256M

Trivia

• Cluster Size:

– Try typing “help format” in the command prompt in
Windows.

• Calculating the maximum partition size

– with the cluster size = 32KB…

6

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB

When a sector is > 512B …

32 × 210 × 228 = 243 (8𝑇𝐵)

Typical layout of a FAT32 partition

7

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

Propose Size

Boot sector Store FS-specific parameters 1 sector, 512 bytes

FSINFO Free-space management 1 sector, 512 bytes

Reserved
sectors

Don’t ask me, ask Micro$oft! Variable, can be changed during format.

FAT (2 pieces)
A robust design: if “FAT 1” is
corrupted or containing bad sectors,
then “FAT 2” can act as a backup.

Variable, depends on disk size and
cluster size.

Root directory Start of the directory tree.
At least one cluster, depend on the
number of director entries.

Typical layout of a FAT32 partition

8

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

Format the disk, “-F32” means FAT32.

Read the information stored in the boot sector.

Running “dosfsck”, DOS
file system check, on a
FAT32 FS.

This program reads
details from the Boot
Sector.

Typical layout of a FAT32 partition

9

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkfs.fat"
Media byte 0xf8 (hard disk)

512 bytes per logical sector
512 bytes per cluster
32 reserved sectors

First FAT starts at byte 16384 (sector 32)
2 FATs, 32 bit entries

516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)

129022 data clusters (66059264 bytes)
......

The boot sector says:
A cluster is made of 1 sector.

One cluster size: 512
bytes in this case

Details of the Boot Sector

32 sectors

Typical layout of a FAT32 partition

10

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkdosfs"
Media byte 0xf8 (hard disk)

512 bytes per logical sector
512 bytes per cluster
32 reserved sectors

First FAT starts at byte 16384 (sector 32)
2 FATs, 32 bit entries

516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)

129022 data clusters (66059264 bytes)
......

The boot sector says:
2 FATs and each of them is of
size 516,608 bytes.

32 sectors 1009 1009

Number of FATs and the
length of each entry in a FAT.

Good! No slack space between
reserved sectors of the first FAT.

Typical layout of a FAT32 partition

11

Root
Directory

FAT1 FAT2
Boot
Sector

FSINFO

$ sudo mkfs.vfat -F32 /dev/ram0
mkfs.fat 3.0.28 (2015-05-16)
......
$ sudo dosfsck -v /dev/ram0
fsck.fat 3.0.28 (2015-05-16)

Checking we can access the last sector of the filesystem
Boot sector contents:
System ID "mkdosfs"
Media byte 0xf8 (hard disk)

512 bytes per logical sector
512 bytes per cluster
32 reserved sectors

First FAT starts at byte 16384 (sector 32)
2 FATs, 32 bit entries

516608 bytes per FAT (= 1009 sectors)
Root directory start at cluster 2 (arbitrary size)
Data area starts at byte 1049600 (sector 2050)

129022 data clusters (66059264 bytes)
......

The first data cluster is
Cluster #2 and it is usually,
not always, the root
directory.

Cluster #0 & #1 are
reserved.

32 sectors 1009 1009 2050 and beyond…

32 + 1009 x 2 = 2050

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

12

Directory Traversal

13

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Cluster #2

Filename Attributes Cluster #

. ?

.. ?

......

windows 123

A directory
entry

c:\> dir c:\windows
……
06/13/2012 2,033,216 explorer.exe
08/04/2015 169,120 notepad.exe
……
c:\> _

How does this work?

Check this out by yourself.

Whether those two
directory entries exist or
not.

Step (1) Read the directory file of the root
directory starting from Cluster #2.

“C:\windows” starts from Cluster #123.

Directory Traversal

14

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Cluster #123

Filename Attributes Cluster #

. ?

.. ?

......

notepad.exe 456

c:\> dir c:\windows
……
06/13/2012 2,033,216 explorer.exe
08/04/2015 169,120 notepad.exe
……
c:\> _

How does this work?

Step (2) Read the directory file of the
“C:\windows” starting from Cluster #123.

But, where are the
information, e.g., file size,
modification time, etc?

Directory entry

15

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

How?

what?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

Note. This is the 8+3 naming convention.

8 characters for name +
3 characters for file extension

Filename Attributes Cluster #

explorer.exe 32

• Directory entry is just a structure.

Directory entry

16

• Directory entry is just a structure.

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Filename Attributes Cluster #

explorer.exe 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

How to calculate the first
cluster address?

Directory entry

17

• Directory entry is just a structure.

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Lower 2
bytes

Filename Attributes Cluster #

explorer.exe 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

00 00 20 00

Higher 2
bytes

Cluster
address

8192=

It is not 32, why?

Big Endian vs Little Endian

18

• Endian-ness is about byte ordering.

– It means the way that a machine (we mean the entire
computer architecture) orders the bytes.

4-byte integer value:
0x89ABCDEF

Ending (small) value
in small address

Ending (small) value
in large address

89 AB CD EF

Increasing address

EF CD AB 89

Increasing address

Big
endian

Little
endian

Big Endian vs Little Endian

19

• Directory entry is just a structure.

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Filename Attributes Cluster #

explorer.exe 32

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

what?

00 00 20 00 8192=

00 00 00 20 32=

Big
endian

Little
endian

The FAT is defined to use little-endian byte
ordering, as its original implementation was
on the Intel x86 platform

The file size…

20

Filename Attributes Cluster #

explorer.exe 32Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

How?

e x p l o r e r

e x e … … … … …

… … … … 00 00 … …

… … 20 00 00 C4 0F 00

0 7

8 15

16 23

24 31

So, what is the largest size of a file?

what?

4G – 1 bytes

Directory entry

21

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Note. This is the 8+3 naming convention.

8 characters for name +
3 characters for file extension

• Any problem with this design?

Example:

How to store the file:
“I_love_the_operating_syste
m_course.txt”

How to store long
filename?

FAT series – LFN directory entry

• LFN: Long File Name.

– In FAT32, the 8+3 naming convention is removed by…

– Adding more entries to represent the filename

22

Directory file

LFN #3

LFN #2

LFN #1

Normal Entry
The normal directory entry is still there.

Each LFN entry represents 13 characters in
Unicode, i.e., 2 bytes per character.
Yet, the sequence is upside-down!

FAT series – LFN directory entry

23

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

1-10 7+3 characters of filename + extension.

11-11 File attributes (e.g., read only, hidden)

12-12 Reserved.

13-19 Creation and access time information.

20-21
High 2 bytes of the first cluster address
(0 for FAT16 and FAT12).

22-25 Written time information.

26-27 Low 2 bytes of first cluster address.

28-31 File size.

Bytes Description

0-0 Sequence Number

1-10
File name characters
(5 characters in Unicode)

11-11 File attributes - always 0x0F

12-12 Reserved.

13-13 Checksum

14-25
File name characters
(6 characters in Unicode)

26-27 Reserved

28-31 File name characters
(2 characters in Unicode)

LFN entryNormal entry

FAT series – LFN directory entry

• Filename:
“I_love_the_operating_system_course.txt”.

24

436d 005f 0063 006f 0075 000f 0040 7200 Cm._.c.o.u...@r.
7300 6500 2e00 7400 7800 0000 7400 0000 s.e...t.x...t...

0265 0072 0061 0074 0069 000f 0040 6e00 .e.r.a.t.i...@n.
6700 5f00 7300 7900 7300 0000 7400 6500 g._.s.y.s...t.e.

0149 005f 006c 006f 0076 000f 0040 6500 .I._.l.o.v...@e.
5f00 7400 6800 6500 5f00 0000 6f00 7000 _.t.h.e._...o.p.

495f 4c4f 5645 7e31 5458 5420 0064 b99e I_LOVE~1TXT .d..
773d 773d 0000 b99e 773d 0000 0000 0000 w=w=....w=......

Normal

LFN #1

LFN #2

LFN #3

Byte 11 is always 0x0F to indicate that is a LFN.

FAT series – LFN directory entry

25

436d 005f 0063 006f 0075 000f 0040 7200 Cm._.c.o.u...@r.
7300 6500 2e00 7400 7800 0000 7400 0000 s.e...t.x...t...

0265 0072 0061 0074 0069 000f 0040 6e00 .e.r.a.t.i...@n.
6700 5f00 7300 7900 7300 0000 7400 6500 g._.s.y.s...t.e.

0149 005f 006c 006f 0076 000f 0040 6500 .I._.l.o.v...@e.
5f00 7400 6800 6500 5f00 0000 6f00 7000 _.t.h.e._...o.p.

495f 4c4f 5645 7e31 5458 5420 0064 b99e I_LOVE~1TXT .d..
773d 773d 0000 b99e 773d 0000 0000 0000 w=w=....w=......

Normal

LFN #1

LFN #2

LFN #3

Directory file

LFN #3: “m_cou” “rse.tx” “t”

LFN #2: “erati” “ng_sys” “te”

LFN #1: “I_lov” “e_the_” “op”

Normal Entry

This is the sequence number, and they are
arranged in descending order.

The terminating directory entry has the
sequence number OR-ed with 0x40.

FAT series – directory entry: a short summary

• A directory is an extremely important part of a FAT-
like file system.

– It stores the start of the content, i.e., the start cluster
number.

– It stores the end of the content, i.e., the file size;
without the file size, how can you know when you
should stop reading a cluster?

– It stores all file attributes.

26

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

–Read files

– Write files

– Delete files

– Recover deleted files

27

How to read a file?

28

Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Step 1. Read the content from Cluster #32.

Note. The file size may also help determine if
the last cluster is reached (remember where it
is stored?)

Suppose we already read out the
directory entry…

You know the process of
directory traversal, right?

How to read a file?

29

Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

1 ...

... ...

32 33

33 EOF

34 0
Step 1. Read the content from Cluster #32.
Note. The file size may also help determining
if the last cluster is reached.

Step 2. Look for the next cluster and it is
Cluster #33 (from the FAT table)

35 0

0 ...

How to read a file?

30

Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 EOF

34 0
Step 3. Since the FAT has marked “EOF”, we
have reached the last cluster.

Note. The file size help determine how many
bytes to read from the last cluster.

35 0

1 ...

0 ...

FAT entry structure??
Remember: 28bits are used to

represent cluster number for FAT32

How to read a file?

31

Task: read “C:\windows\explorer.exe” sequentially.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 EOF

34 0
Step 3. Since the FAT has marked “EOF”, we
have reached the last cluster.

Note. The file size help determine how many
bytes to read from the last cluster.

35 0

1 ...

0 ...

Damaged = 0x0ffffff7

EOF >= 0x0ffffff8

Unallocated = 0x0

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

32

How to write a file?

33

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0
Step 1. Locate the last cluster.

Step 2. Start writing to the non-full cluster.35 0

1 ...

0 ...

How to write a file?

34

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0

Step 3. Allocate the next cluster through FSINFO.

35 0

1 ...

0 ...

What is stored in FSINFO?
How to allocate?

How to write a file?

35

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

2 EOF

... ...

32 33

33 EOF

34 0

FSINFO

of free clusters 4

Next free cluster # 34

Step 3. Allocate the next cluster through FSINFO.

35 0

1 ...

0 ...

How to write a file?

36

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 34

34 EOF

Step 3. Allocate the next cluster through FSINFO.

Step 4. Update the FATs and FSINFO.

Step 5. When write finishes, update the file size.FSINFO

of free clusters 3

Next free cluster # 35

35 0

1 ...

0 ...

How to write a file?

37

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 34

34 EOF Q: How to obtain the next free cluster?

FSINFO

of free clusters 3

Next free cluster # 35

35 0

1 ...

0 ...

How to write a file?

38

Task: append data to “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

... ...

32 33

33 34

34 EOF

FSINFO

of free clusters 3

Next free cluster # 35

35 0

The search for the next free cluster is a circular,
next-available search.

Why implementing next-available?
Principle of locality

Why circular?
To find out every free block

1 ...

0 ...

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

39

How to delete a file?

40

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Filename Attributes Cluster #

explorer.exe 32

... ...

32 33

33 34

34 EOF

FSINFO

of free clusters 3

Next free cluster # 35

35 0

Step 1. De-allocate all the blocks
involved. Update FSINFO and FATs.

... ...

32 0

33 0

34 0

35 0

FSINFO

of free clusters 6

Next free cluster # 32

1 ...

0 ...

1 ...

0 ...

How to delete a file?

41

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Cluster #123

Filename Attributes Cluster #

. ?

.. ?

explorer.exe 32

notepad.exe 456

How about the directory entry

How to delete a file?

42

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Task: delete “C:\windows\explorer.exe”.

Cluster #123

Filename Attributes Cluster #

. ?

.. ?

_xplorer.exe 32

notepad.exe 456

How about the directory entry

Step 2. Change the first byte of
the directory entry to 0xE5.

LFN entries also receive the
same treatment.

That’s the end of deletion!

The first character
becomes “0xE5”.

Bytes Description

0-0
1

st
character of the filename

(0x00 or 0xe5 means unallocated)

Really delete a file?

43

• Can you see that: the file is not really removed
from the FS layout?
– Perform a search in all the free space. Then, you will find

all deleted file contents.

• “Deleted data” persists until the de-allocated
clusters are reused.
– This is an issue between performance (during deletion)

and security.

• Any way(s) to delete a file securely?

How to delete a file “securely”?

44

Mac OS X Secure Disk Erase

Brute Force?
http://www.ohgizmo.com/2009/06/01/manual-hard-drive-destroyer-looks-like-fun/

What will the research community tell you?

http://cdn.computerscience1.net/2006/fall/lectures/8/articles8.pdf

Details of FAT32

• Introduction

• Directory and File Attributes

• File Operations

– Read files

– Write files

– Delete files

– Recover deleted files

45

How to “rescue” a deleted file?

46

• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from
being over-written.

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

Cluster #123

Filename Attributes Cluster #

. ?

.. ?

_xplorer.exe 32

notepad.exe 456

All the things are still here!

The first character
becomes “0xE5”.

How to “rescue” a deleted file?

47

• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from
being over-written.

File size <= 1
cluster

Because the first cluster address is still readable, the recovery is having a
very high successful rate.

Note that filenames with the same postfix may also be found.

Principle of “rescue” deleted file

Data persists unless the sectors are reallocated and overwritten.

How to “rescue” a deleted file?

48

• If you’re really care about the deleted file, then…

– PULL THE POWER PLUG AT ONCE!

– Pulling the power plug stops the target clusters from
being over-written.

Principle of “rescue” deleted file

Data persists unless the sectors are reallocated and overwritten.

File size > 1
cluster

It is still possible as the clusters of a file are likely to be contiguously
allocated.

The next-available search provides a hint in looking for deleted blocks.

If not, you’d better have the checksum and the exact file size beforehand,
so that you can use a brute-force method to recover the file.

How to “rescue” a deleted file?

49

• What if the value of the 32nd cluster is not 0?

Root
Directory

FAT1 FAT2
Boot

Sector
FSINFO

It is hard to find them
out without some hints.

The use of checksum
may be a good hint…

... ...

32 0

33 0

34 0

35 0

1 ...

0 ... _xplorer.exe 32

The first cluster is the one
that we can be sure of…

FAT series – conclusion

• It is a “nice” file system:

– Space efficient: 4 bytes overhead (FAT entry) per data
cluster.

• Deletion problem:

– This is a lazy yet fast implementation.

– Need extra protection for deleted data.

• Deployment:

– It is everywhere: SD cards, USB drives, disks…

50

Operating Systems

Associate Prof. Yongkun Li
中科大-计算机学院副教授
http://staff.ustc.edu.cn/~ykli

Ch10, part2

Details of Ext2/3 File System

1

Trivia

• Extended File System (Ext2/3/4)

– Follow index-node allocation

– Primary FS for Linux distribution

– Ext4 was merged in the Linux 2.6.28 and released in 2008

– Backward-compatible

– For simplicity, we focus on Ext2/3

– Features of Ext2/3/4

– https://ext4.wiki.kernel.org/index.php/Main_Page

– http://e2fsprogs.sourceforge.net/ext2.html

Details of Ext2/3

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling
- VFS

3

Details of Ext2/3

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling
- VFS

4

5

Index-node allocation

Filename Index

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3

Root

Directory

F

R

E

E

Index Node

Table

1 11 3021

It is arranged as an array. So,

looking up an index node will be fast.

Index

node #1

Index

node #2

… Index

node #n-1

… … …

… … …

• Ext2/3 file systems follow the index-node allocation

Specific Layout

• The file system is not that simple…
– it is divided into groups, and …

– every group has the same structure.

Specific Layout

G

Superblock D
T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Superblock D
T

G
Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

They are

the same.

Group 0

Group 1

They are different.

• The file system is not that simple…
– it is divided into groups, and …

– every group has the same structure.

Specific Layout

• Why doing so?

– This is for reliability and performance.

G

Superblock D
T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Superblock D
T

G
Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

They are

the same.

Group 0

Group 1

They are different.

Specific Layout

• Why doing so?

– For reliability…

G

Superblock D
T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Superblock D
T

G
Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

They are

the same.

Group 0

Group 1

They are different.
The superblock in Group 0 is called the primary superblock.

Other superblocks are called the backup superblock.

There are many copies of the superblock So, this

increases the reliability of the FS.

Specific Layout

• Why doing so?

–For performance…

G

Superblock D
T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Superblock D
T

G
Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

They are

the same.

Group 0

Group 1

They are different.

E.g.,

- Inode table in Group 0 stores inodes from #1 to #100;

- Inode table in Group 1 stores inodes from #101 to #200;

- etc…

The good about this is to keep the inodes and the file

contents close together!

Specific Layout

• Why doing so?

– For performance…

......

The inodes in a particular group will usually refer to the

data blocks in the same group.

So, this keeps them close together in a physical sense.

The storage device may be able to locate the data in a

faster manner. (Remember the principle of locality?)

Group 0 Group 1 Group n-1

Superblock Stores FS specific data.

Superblock

G

D

T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Layout in Each Group

Total number of inodes in the system.

Total number of blocks in the system.

Number of reserved blocks

Total number of free blocks.

Total number of free inodes.

Location of the first block.

The size of a block.

12

Superblock Stores FS specific data. E.g., the total number of blocks, etc.

GDT – Group Descriptor Table

It stores:

-The starting block numbers of the block bitmap, the inode

bitmap, and the inode table.

- Free block count, free inode count, etc…

Superblock

G

D

T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Layout in Each Group

Inode Table An array of inodes ordered by the inode #.

Data Blocks An array of blocks that stored files.

Block Bitmap A bit string that represents if a block is allocated or not.

Inode Bitmap A bit string that represents if an inode is allocated or not.

13

Layout in Each Group

• What is a block bitmap?

– A sequence of bits indicates the allocation of

the blocks.

It says “blocks 0-2 are allocated ”,

then “block 3 is unallocated ”...

1 1 1 0 1 0 1 1 1 0 1 1
0 Unallocated

1 Allocated

Superblock

G

D

T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

Layout in Each Group

• Then, what is an inode bitmap?

– A sequence of bits indicates the allocation of

the inodes.

– This implies that…

Superblock

G

D

T

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks

1 1 1 0 1 0 1 1 1 0 1 1
0 Unallocated

1 Allocated

The number of files in the file system is fixed!

Details of Ext2/3

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling
- VFS

16

Inode Structure

• We know that…

– The locations of the data blocks of a file are stored in

the inode.

Index node structure

Direct Block #0

Direct Block #1

… ...

Direct Block #11

Indirect Block

Double Indirect Block

Triple Indirect Block

Data Block storing

block address.

Data Block

storing data.

...

...

1st layer of

indirect

blocks

2nd layer of

indirect

blocks

...

Inode Structure

An inode is the structure that

stores every information about

a file.

The locations of the data

blocks

Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

What are stored in inode
besides block addresses?

More details: https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Inode_Table

Inode Structure

What is the maximum file

size supported?

264 – 1

= 16 x 230 Gbytes – 1 byte

Is this really the case?

Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

Remember the dominating
factor: 24x-6

Block size File size

1024B = 210 ~16 Gbytes

4096B = 212 ~4 Tbytes

Inode Structure

What is link count?
Inode Structure (128 bytes long)

Bytes Value

0-1 File type and permission

2-3 User ID

4-7 Lower 32 bits of file sizes in bytes

8-23 Time information

24-25 Group ID

26-27 Link count

… …

40-87 12 direct data block pointers

88-91 Single indirect block pointer

92-95 Double indirect block pointer

96-99 Triple Indirect block pointer

… …

108-111 Upper 32 bits of file sizes in bytes

We will talk about it later

Where is the file name?

Let us take a look at the

directory structure

Directory Structure

The directory entry stores the file

name and the inode #.

1 int main(void) {

2 DIR * dir;

3

4

struct dirent *entry;

5 dir = opendir(“/”);

6

7 while ((entry = readdir(dir)) != NULL) {

8 // print the directory name

9 printf(“%s\n”, entry->d_name);

10 }

11

12 closedir(dir);

13 return 0;

14 }

struct dirent {

ino_t d_ino; // inode number

// offset to the next

// record length

// file type

// file name

off_t

unsigned

unsigned

char *

d_off;

d_reclen;

d_type;

d_name;

dirent

short

char

}

Filename Index

Node #

rock.mp3 1

game.exe 2

ubuntu.iso 3

Directory Structure

10

inode number

Entry size

Type

File name length

F rock 18 F game4 4 F ubuntu550 unused

A Linux directory with
three files

struct dirent {

ino_t d_ino; // inode number

// offset to the next

// record length

// file type

// file name

off_t

unsigned

unsigned

char *

d_off;

d_reclen;

d_type;

d_name;

dirent

short

char

}

Directory Structure

10

inode number

Entry size

Type

File name length

F rock 18 F game4 4 F ubuntu550 unused

10 F rock unused4 F ubuntu550 unused

A Linux directory with
three files

After game has been removed

Accessing Directory File

• How to access directory file?

1 int main(void) {

2 DIR * dir;

3 struct dirent *entry;

4

5 dir = opendir(“/”);

6

7 while ((entry = readdir(dir)) != NULL) {

8

9

10

11

// print the directory name

printf(“%s\n”, entry->d_name);

}

12 closedir(dir);

13

14 }

return 0;

Open the directory file.

Read the directory

entries one by one until

there is not further

entries.

Close the directory file.

Note: opendir(), readdir(),

and closedir() are library

function calls.

Details of Ext2/3

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling
- VFS

25

Example use in Linux

Link File

• Can we allow a file to have multiple names and
be accessed by several paths?

• How to create shortcuts?

ls /dir1/12.jpg

12.jpg

ln /dir1/12.jpg

_

/my_link

ls /dir1/12.jpg

12.jpg

ln –s

_

/dir1/12.jpg /my_link

These are called hard link and symbolic link

Link File – what is a hard link?

• A hard link is a directory entry pointing

to an existing file.

– No new file content is created!

Directory: /dir1 Directory: /

ls /dir1/12.jpg

12.jpg

ln /dir1/12.jpg

_

/my_link

A new directory entry

is created.

Inode # … FilenameInode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Link File – what is a hard link?

• Conceptually speaking, this creates a file

with two pathnames.

Inode #: 5086

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1 Directory: /

How to maintain this info.

Link File – what is a link count?

• There is a field called link count in an inode.

– It stores the number of directory entries pointing to

the inode.

Inode #: 5086

Link Count 2

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1 Directory: /

Link File – showing the link counts

• Special hard links

– The directory “.” is a hard link to itself.

– The directory “..” is a hard link to the parent directory.

08:07 bin

09:25 boot

17:58 dev

17:58 etc

14:23 home

What does this large

number imply?
ls -l /
total 124

drwxr-xr-x

drwxr-xr-x

drwxr-xr-x

drwxr-xr-x

drwxr-xr-x

......

root

root

root

root

root

root

root

root

root

root

4096

4096

14520

12288

4096

2015-11-15

2015-11-11

2015-11-23

2015-11-23

2015-06-21

2

4
17

165

6

This implies “/etc” has a lot of sub-directories.

Link File – showing the link counts

• Special hard links

– The directory “.” is a hard link to itself.

– The directory “..” is a hard link to the parent directory.

• What is the value of the link count, if

– A file is created

– A directory is created

Link File – showing the link counts

• When a regular file is created, the link count is always 1

• When a directory is created, the initial link count is
always 2

stat Makefile

File: `Makefile'

Size: 4552

Device: 801h/2049d

......

Blocks: 16

Inode: 30669

IO Block: 4096 regular file

Links: 1

mkdir temp

stat temp

File:

Size:

Device:

......

`temp'

4096

804h/2052d

Blocks: 8

Inode: 10994310

IO Block: 4096 directory

Links: 2

Why it is 2

Link File – showing the link counts

Parent of “temp”
The new directory “temp”

• When a directory is created, the initial link count is
always 2. Why?

mkdir temp

stat temp

File:

Size:

Device:

......

`temp'

4096

804h/2052d

Blocks: 8

Inode: 10994310

IO Block: 4096 directory

Links: 2

link #1

link #2

Inode # … Filename

10,994,310 … .

123 … ..

Inode # … Filename

123 … .

2 … ..

10,994,310 … temp

Inode #: 10,994,310

Link Count

Link File – showing the link counts

Parent of “temp” The new directory “temp”

• The hosting directory of the newly creating directory
will have its link count increased by 1.

Inode # ... Filename

10,994,310 … .

123 … ..

Inode # ... Filename

123

2

10,994,310 ... temp

Link File – decrementing the link count?

• How about removing a file?

Inode #: 5086

Link Count 1

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode #: 5086

Link Count 0

Directory: /dir1

Removing

the file…

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Link File – decrementing the link count?

• How about removing a file?

– The system call that removing a file is, therefore,
called unlink().

• The unlink() system call is to decrement the link count by

exactly one.

• When the link count == 0, the data blocks and the inode

will all be de-allocated by the kernel.

Inode #: 5086

Link Count 0

Directory: /dir1 De-allocated

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Link File – decrementing the link count?

• Back to the previous hard link example…

Inode #: 5086

Link Count 2

Inode #: 5086

Link Count 1

Inode #: 5086

Link Count 2

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Directory: /

ls /dir1/12.jpg

12.jpg

ln /dir1/12.jpg /my_link

Link File – decrementing the link count?

• Back to the previous hard link example…

De-allocated

Inode #: 5086

Link Count 2

Inode #: 5086

Link Count 1

Inode #: 5086

Link Count 0

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Directory: /dir1

Inode # … Filename

2 … .

2 … ..

5,086 … my_link

Directory: /

ls /dir1/12.jpg

12.jpg

ln /dir1/12.jpg /my_link

rm /dir/12.jpg

rm /my_link

Link File – what is a symbolic link?

• A symbolic link is a file.

– Unlike the hard link, a new inode is created

for each symbolic link.

– It stores the pathname (shortcut)

Inode # … Filename

2 … .

2 … ..

6,120 … my_link

Directory: /dir1 Directory: /

ls /dir1/12.jpg

12.jpg

ln –s

ls –l

/mylink

#

/dir1/12.jpg /my_link

/mylink

-> /dir1/12.jpg

A new directory

entry is created.

Another

inode

Inode # … Filename

123 … .

2 … ..

5,086 … 12.jpg

Link File – what is a symbolic link?

• How to store the target path?
– If the pathname is less than 60 characters

– It is stored in the 12 direct block and the 3
indirect block pointers.

– Else, one extra data block is allocated

Directory: /
Inode #: 6120

Link Count 1

Direct #0

……

Single Indirect

Double Indirect

Triple indirect

Inode # … Filename

2 … .

2 … ..

6,120 … my_link

(12 + 3) x 4 = 60

Short summary

• Hard link

– A directory entry pointing to an existing file

– They point to the same inode (no new file content)

– A file with two pathname

– Remove file == unlink (link count - 1)

– Examples: dot/dot dot

• Symbolic link

– A file with a new inode

– Stores the target pathname

– Shortcuts

Details of Ext2/3

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling
- VFS

42

File system performance

• Recall the read/write process

– Directory traversal

– Reading inode

– Data blocks

Root

Directory

F

R

E

E

Index Node

Table

How to improve file system performance?

Kernel Buffer Cache

• Kernel Buffer Cache

– The kernel will keep a set of copies of the read/written
data blocks.

– The space that stores those blocks are called the buffer
cache.

– It is used for reducing the time in accessing those blocks
in the near future

• Why effective?

– Principle of locality

44

Kernel Buffer Cache

• What need to be cached?

– Data blocks, directory file, inode?

– All of them can benefit from caching

45

Root

Directory

F

R

E

E

Index Node

Table

Kernel Buffer Cache

• Three types of buffer caches!

Page Cache It buffers the data blocks of an opened file.

Directory entry
(dcache) cache

Directory entry is stored in the kernel.

Inode cache The content of an inode is stored in the kernel temporary.

Remember, those cached data is stored in the kernel even
though the corresponding file is closed!

By the way, the cache is managed under the LRU algorithm.

46

Kernel Buffer Cache

Mode Description

Reading mode When a process reads a file, the data will be cached automatically.

E.g., Readahead system call

Read/write mode with kernel buffer cache

47

Ways Descriptions

System call ssize_t readahead(int fd, off64_t offset, size_t count);

A blocking system call that stores requested range of data into the kernel
page caches

Later read() calls over the range will not block.

Readahead

• How does it work?
– When a file reading operation is requesting for Block x, there is a

chance that Block x+1 will also be needed.

– Such a chance depends on:
• The file reading mode: sequential access or random access.

• The file reading history: whether the process prefers reading sequentially
or not.

– If such a chance is high, then reading a series of continuous
blocks will reduce the number of disk accesses. Why?

• Because the disk head is not always stopped at your desired locations.

• Because a mechanical disk is good at reading sequential data.

• How about SSD?

48

Kernel Buffer Cache

Mode Description

Write-through
mode

Both the on-disk and the cached copies update together.

E.g., The write() system call will not return until the on-disk copy is written.

Write-back
mode

When a piece of data is going to be written to a file, the cached copy is
updated first. The update of the on-disk copy is delayed.

On-demand writing dirty blocks back.

Command: sync
System calls: sync(), fsync()

Read/write mode with kernel buffer cache

49

How about write?

Details of Ext2/3

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling
- VFS

50

File System Consistency

• Think about caching…tradeoff?

– System inconsistency exists

• Power failure, pressing reset button accidentally; etc.

• Disk only provides

– atomic write of one sector at a time

• A write may require modifying several sectors

– How to atomically update file system from one
consistent state to another?

The file system journal is the current, state-
of-the-art practice.

Your boss orders

you to do a set of tasks!

Task list:
1) Buy boss a DC.

2) Pick up boss’ friend.

3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

You write down all the tasks

assigned to you into a log book.

Example: Journaling File System

52

Task list:
1) Buy boss a DC.

2) Pick up boss’ friend.
3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

You cross out a

task when

it is completed.

Example: Journaling File System

53

Unfortunately, a car accident happens!

You lost all your memory!!

Your boss sends your

colleague to finish your job.

But, he doesn’t know about

your progress.

Worse, your boss has

forgotten what are the tasks

given to you!

The log book

comes in handy!

Example: Journaling File System

54

User Program FS operations invoked by the user program

Task list:

1) Buy boss a DC.

2) Pick up boss’ friend.
3) Drive his friend back to his home.

4) Buy boss a coffee when I return.

System crash!

All memory lost!
OS

The journal!

File system

recovery tool

Example: Journaling File System

55

What is journal?

• A journal is the log book for the file system.

– It is kept inside the file system, i.e., inside the disk.

• In database: Write-ahead logging

• In file systems: Journaling

– Applications: Linux ext3 and ext4, Windows NTFS

Data blocksJournalFS Data

a new item

56

Basic idea: when updating the disk, before overwriting the structures in

place, first write down a little note describing what you are about to do

What is journal?

• In order to make use of the journal:

– A set of file system operations becomes an atomic
transaction.

• Either all operations are completed successfully, or

• no operation is completed.

– A transaction marks all the changes that will be done
to the FS.

– Every transaction is written to the journal.

57

• How does Linux ext3 incorporate the journaling?

– Most of on-disk structures are identical to Linux ext2

– The new key structure is the journal itself

– It occupies some small amount of space within the
partition or on another device

Journaling in Linux ext3

Ext2

Ext3

58

• How to do journaling?

• Task: update inode (I[v2]), bitmap (B[v2]), and
data block (Db) to disk
– Metadata + data

• Strategy: Data journaling
– Write all data (metadata+data) to journal

• Before writing them to their final disk locations, we first write
them to log (a.k.a. journal)

– An available mode with the Linux ext3 file system

Data Journaling

59

• Journal layout:

– TxB: Transaction begin block
• It contains some kind of transaction identifier (TID)

– TxE: Transaction end block
• Marker of the end of this transaction

• It also contain the TID

• Checkpoint
– Overwrite the old structures in the file system after the

transaction being safely on disk

Data Journaling

60

• Operation sequence:

– Journal write

• Write the transaction to log and wait for these
writes to complete

• TxB, all pending data, metadata updates, TxE

– Checkpoint

• Write the pending metadata and data updates to
their final locations

• Any problem with this flow?

– What if crash occurs during the writes to journal

Data Journaling

61

• We need to write the set of blocks (TxB, I[v2],
B[v2], Db, TxE)

– Issue one block at a time

• It is slow because of waiting for each to complete

– Issue all blocks at once

• Five writes -> a single sequential write: Faster way

• However, it is unsafe…
• The disk internally may perform scheduling and complete small

pieces of the big write in any order

Data Journaling

62

• Issue all blocks at once

– Suppose: disk internally

• (1) writes TxB, I[v2], B[v2], TxE and later

• (2) writes Db

– When crash occurs during the writes to journal

• If the disk loses power between (1) and (2)

Data Journaling

Problem: Transaction looks like a valid transaction, but
the file system can’t look at the fourth block and know it is wrong

63

• How to solve this problem?

– Issue transactional write in two steps

• First step: writes all blocks except the TxE block to journal

• Second step: file system issues the write of the TxE

Data Journaling

Make sure the write of TxE is atomic

Journal
write

Journal
commit

64

• Operation sequence:

– Journal write

• Write the contents of the transaction (including TxB,
metadata, and data)

– Journal commit

• metadata, and data (including TxE)

– Checkpoint

• Write the contents of the update to their on-disk
locations

Data Journaling

The write order must be guaranteed

65

• How to do recovery?

– Case 1: crash happens before journal commit

– Case 2: crash happens after journal commit, but
before checkpoint

Data Journaling

Easy! Skip the pending update

Replay transactions in order. Called redo logging

66

Data Journaling

• The log is of finite size

– What problems may arise if it is full?

• Long time to replay

• Unable to append new transactions

• Manage as a circular log

– Free space after checkpointing

67

Data Journaling

• Write sequence

• Data Journaling Timeline

68

Journal
write

Journal
commit

Checkpoint Free

• Any problem with data journaling?
– Write every Db to disk twice

• Commit to log (journal file)
• Checkpoint to on-disk location

• How to avoid writing twice?

– Metadata journaling: Logging metadata only

Metadata Journaling

This data is not written to journal

69

Metadata Journaling

• Write-back mode: no order restriction (data/journal)
– How about data is written to disk after journal commit?

• File system is consistent (from the perspective of metadata)

• Metadata points to garbage data

• Ordered mode
– Data is written to file system before journal commit

– Rule:
• Write the pointed-to object before the object that points to it

• Core of crash consistency

– Widely deployed by Ext3, NTFS, etc.

70

Metadata Journaling

• Write sequence

71

Journal
metadata

write

Journal
commit

Checkpoint
metadata

FreeData
write

The two writes can be
issued in parallel

Summary on journal

• Working principle:

– All the changes to the FS are written to the journal
first, including:

• the changes in the metadata, i.e., information other than the
file content. E.g., the inodes, the directory entries, etc.

• the file data (depends on data journaling/metadata
journaling)

– Then, the system call returns to the user process.

– Meanwhile, the entries in the journal are replayed and
the changes are reflected to the actual file system.

72

Details of Ext2/3

- Layout
- Inode and directory structure
- Link file
- Buffer cache
- Journaling
- VFS

73

Virtual File System (VFS)

VFS: an FS abstraction layer

– Transparently and uniformly supports multiple FSes

– A VFS specifies an interface

– A specific FS implements this interface

• Old days: “the” file system

• Nowadays: many fs types
and instances co-exist

VFS

• Let’s look into the implementation of open().

http://lxr.linux.no/linux-old+v2.4.31/fs/open.c

710 if (f->f_op && f->f_op->open) {
711 error = f->f_op->open(inode,f);
712 if (error)
713 goto cleanup_all;
714 }

struct file

struct file_operations {
loff (*llseek)...
ssize_t (*read)...
......
int (*open) ...
......

}

75

VFS

• For each file system, they have their own set of file
operations.

Parent Methods
VFS layer

open read

write llseek

FAT32 Methods.

http://lxr.linux.no/linux-
old+v2.4.31/fs/fat/file.c#L26

fat_file_operations

Ext3 Methods.

http://lxr.linux.no/linux-
old+v2.4.31/fs/ext3/file.c#L113

ext3_file_operations

76

VFS

• So, the beauty in such design is that:

– The caller, i.e. the VFS layer, doesn’t need to care
about nor hard-coding which FS you are working on.

error = f->f_op->open(inode,f);

The only things that require hard-coding are:
- The definition of the file operations.
- The assignment of file operation structures for each FS.

77

VFS

• A follow-up question is:

– What if a FS does not support a particular subset of
operations?

– E.g., FAT32 does not need to implement chmod()!

– Solution?

• Simple! Using NULL pointers!

• When a NULL pointer to a file is detected, returning an error
or proceed without any changes.

78

Summary

• Ext* file systems are the primary FS for Linux

– They follow the index-node allocation

– We talked about…

• Detailed layout (grouping, bitmaps)

• Inode structure

• Directory structure

• Link file (hard link and symbolic link)

• Kernel buffer cache and readahead

• Journaling (data journaling, metadata journaling)

• VFS

79

Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

I/O Systems

12.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Overview

I/O management is a major component of operating system design

Important aspect of computer operation

I/O devices vary greatly

Various methods to control them

Performance management

Ports, busses, device controllers connect to various devices

Device drivers encapsulate device details

Present uniform device-access interface to I/O subsystem

12.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

I/O Hardware

Incredible variety of I/O devices

Storage

Transmission

Human-interface

Common concepts

Port – connection point for device

Bus - daisy chain or shared direct access

 PCI bus common in PCs and servers, PCI Express (PCIe)

 expansion bus connects relatively slow devices

Controller (host adapter) – electronics that operate port, bus, device

 Sometimes integrated

 Sometimes separate circuit board (host adapter)

12.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

A Typical PC Bus Structure

12.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

I/O Hardware

How to control devices?

Devices usually have registers where device driver places

commands, addresses, and data to write, or read data from

registers after command execution

Data-in register, data-out register, status register,

control register

How to communicate with controller?

Devices have addresses, used by

 Direct I/O instructions

 Memory-mapped I/O

– Device data and command registers mapped to

processor address space

12.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Device I/O Port Locations on PCs (partial)

12.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Polling (轮询)

For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when

transfer done

Step 1 is busy-wait cycle to wait for I/O from device

Reasonable if device is fast

But inefficient if device is slow

12.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Interrupts (中断)

CPU Interrupt-request line triggered by I/O device

Two lines:

 Maskable （可屏蔽） and nonmaskable （非屏蔽） interrupt

Checked by processor after each instruction

Interrupt handler receives interrupts

Interrupt vector （中断向量） to dispatch interrupt to correct handler

Context switch at start and end

Based on priority, some are nonmaskable

Interrupt chaining if more than one device at same interrupt

number

12.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Intel Pentium Processor Event-Vector Table

非屏蔽中断

12.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Interrupts (Cont.)

Interrupt mechanism also used for exceptions （异常）

Terminate process, crash system due to hardware error

Page fault

executes when memory access error

System call

executes via software interrupt or trap to trigger kernel

to execute request

12.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Direct Memory Access

Used to avoid programmed I/O (one byte at a time) (程序控制I/O) for

large data movement

Requires DMA controller

Bypasses CPU to transfer data directly between device & memory

How to work?

OS writes DMA command block into memory

 Source and destination addresses

 Read or write mode

 Count of bytes

Writes location of command block to DMA controller, then CPU can

continue to execute other tasks

DMA controller masters bus and does the transmission without CPU

 DMA-request and DMA acknowledge between DMA controller and

device controller

12.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Application I/O Interface

Devices vary in many dimensions

Character-stream or block

Sequential or random-access

Synchronous or asynchronous

Sharable or dedicated

Speed of operation

read-write, read only, write only

How to provide a standard and uniform I/O interface?

Abstraction, encapsulation, layering (抽象，封装，分层)

12.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

A Kernel I/O Structure

12.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

I/O Devices

Block devices include disk drives

Commands include read, write, seek

Raw I/O, direct I/O, or file-system access

Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via

demand paging

DMA

Character devices include keyboards, mice, serial ports

Commands include get(), put()

Network devices

socket interface

12.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Clocks and Timers

Functionalities of hardware clock and timer

Get current time

Get elapsed time

Timer

Programmable interval timer (可编程间隔定时器) used for

timings, periodic interrupts

Process scheduler: interrupt when time quantum is zero

I/O subsystem: periodic flush

12.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Two I/O Methods

Synchronous Asynchronous

12.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Kernel I/O Subsystem

Kernel I/O subsystem provides many services

I/O scheduling

Maintain a per-device queue

Re-ordering the requests

Average waiting time, fairness, etc.

Buffering - store data in memory while transferring between devices

To cope with device speed mismatch

To cope with device transfer size mismatch

To maintain “copy semantics” (e.g., copy from application’s buffer

to kernel buffer)

12.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Kernel I/O Subsystem

Caching - faster device holding copy of data

Always just a copy

Key to performance

Sometimes combined with buffering

Spooling - hold output for a device

If device can serve only one request at a time, e.g., Printing

Error handling and I/O protection

OS can recover from disk read error, device unavailable, transient

write failures

All I/O instructions defined to be privileged

Power management, etc.

12.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 2nd Edition

Summary

I/O hardware

Port, bus, controller

Polling, interrupt, DMA

Application I/O interface

block devices, character devices, network devices, clock and

timer

Kernel I/O subsystem

Services

Hardware White Paper Hardware White Paper Hardware White Paper Hardware White Paper
Designing Hardware for Microsoft® Operating Systems

Microsoft Extensible Firmware Initiative
FAT32 File System Specification
FAT: General Overview of On-Disk Format

Version 1.03, December 6, 2000
Microsoft Corporation

The FAT (File Allocation Table) file system has its origins in the late 1970s and early1980s
and was the file system supported by the Microsoft® MS-DOS® operating system. It was
originally developed as a simple file system suitable for floppy disk drives less than 500K in
size. Over time it has been enhanced to support larger and larger media. Currently there are
three FAT file system types: FAT12, FAT16 and FAT32. The basic difference in these FAT
sub types, and the reason for the names, is the size, in bits, of the entries in the actual FAT
structure on the disk. There are 12 bits in a FAT12 FAT entry, 16 bits in a FAT16 FAT entry
and 32 bits in a FAT32 FAT entry.

Contents
Notational Conventions in this Document ..7
General Comments (Applicable to FAT File System All Types)..7
Boot Sector and BPB...7
FAT Data Structure ...13
FAT Type Determination ..14
FAT Volume Initialization ..19
FAT32 FSInfo Sector Structure and Backup Boot Sector...21
FAT Directory Structure ...22
FAT Long Directory Entries ...25
Name Limits and Character Sets ...29
Name Matching In Short & Long Names..30
Naming Conventions and Long Names...30
Effect of Long Directory Entries on Down Level Versions of FAT ...32
Validating The Contents of a Directory ..32
Other Notes Relating to FAT Directories..33

Microsoft, MS_DOS, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United States
and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

© 2000 Microsoft Corporation. All rights reserved.

FAT: General Overview of On-Disk Format—Page 2

© 2000 Microsoft Corporation. All rights reserved. 2

Microsoft Extensible Firmware Initiative FAT32 File System Specification

IMPORTANT-READ CAREFULLY: This Microsoft Agreement (“Agreement”) is a legal agreement
between you (either an individual or a single entity) and Microsoft Corporation (“Microsoft”) for the
version of the Microsoft specification identified above which you are about to download
(“Specification”). BY DOWNLOADING, COPYING OR OTHERWISE USING THE
SPECIFICATION, YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT DOWNLOAD, COPY,
OR USE THE SPECIFICATION.

The Specification is owned by Microsoft or its suppliers and is protected by copyright laws and
international copyright treaties, as well as other intellectual property laws and treaties.

1. LIMITED LICENSE AND COVENANT NOT TO SUE.

(a) Provided that you comply with all terms and conditions of this Agreement and subject to
the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following non-exclusive,
worldwide, royalty-free, non-transferable, non-sublicenseable license under any copyrights owned
or licensable by Microsoft without payment of consideration to unaffiliated third parties, to
reproduce the Specification solely for the purposes of creating portions of products which comply
with the Specification in unmodified form.

(b) Provided that you comply with all terms and conditions of this Agreement and subject to
the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following non-exclusive,
worldwide, royalty-free, non-transferable, non-sublicenseable, reciprocal limited covenant not to
sue under its Necessary Claims solely to make, have made, use, import, and directly and
indirectly, offer to sell, sell and otherwise distribute and dispose of portions of products which
comply with the Specification in unmodified form.
For purposes of sections (a) and (b) above, the Specification is “unmodified” if there are no
changes, additions or extensions to the Specification, and “Necessary Claims” means claims of a
patent or patent application which are (1) owned or licenseable by Microsoft without payment of
consideration to an unaffiliated third party; and (2) have an effective filing date on or before
December 31, 2010, that must be infringed in order to make a portion(s) of a product that
complies with the Specification. Necessary Claims does not include claims relating to
semiconductor manufacturing technology or microprocessor circuits or claims not required to be
infringed in complying with the Specification (even if in the same patent as Necessary Claims).

(c) The foregoing covenant not to sue shall not extend to any part or function of a product
which (i) is not required to comply with the Specification in unmodified form, or (ii) to which there
was a commercially reasonable alternative to infringing a Necessary Claim.
(d) Each of the license and the covenant not to sue described above shall be unavailable to
you and shall terminate immediately if you or any of your Affiliates (collectively “Covenantee
Party”) “Initiates” any action for patent infringement against: (x) Microsoft or any of its Affiliates
(collectively “Granting Party”), (y) any customers or distributors of the Granting Party, or other
recipients of a covenant not to sue with respect to the Specification from the Granting Party
(“Covenantees”); or (z) any customers or distributors of Covenantees (all parties identified in (y)
and (z) collectively referred to as “Customers”), which action is based on a conformant
implementation of the Specification. As used herein, “Affiliate” means any entity which directly or
indirectly controls, is controlled by, or is under common control with a party; and control shall
mean the power, whether direct or indirect, to direct or cause the direction of the management or
policies of any entity whether through the ownership of voting securities, by contract or otherwise.
“Initiates” means that a Covenantee Party is the first (as between the Granting Party and the
Covenantee Party) to file or institute any legal or administrative claim or action for patent
infringement against the Granting Party or any of the Customers. “Initiates” includes any situation
in which a Covenantee Party files or initiates a legal or administrative claim or action for patent

FAT: General Overview of On-Disk Format—Page 3

© 2000 Microsoft Corporation. All rights reserved. 3

infringement solely as a counterclaim or equivalent in response to a Granting Party first filing or
instituting a legal or administrative patent infringement claim against such Covenantee Party.

(e) Each of the license and the covenant not to sue described above shall not extend to your
use of any portion of the Specification for any purpose other than (a) to create portions of an
operating system (i) only as necessary to adapt such operating system so that it can directly
interact with a firmware implementation of the Extensible Firmware Initiative Specification v. 1.0
(“EFI Specification”); (ii) only as necessary to emulate an implementation of the EFI Specification;
and (b) to create firmware, applications, utilities and/or drivers that will be used and/or licensed
for only the following purposes: (i) to install, repair and maintain hardware, firmware and portions
of operating system software which are utilized in the boot process; (ii) to provide to an operating
system runtime services that are specified in the EFI Specification; (iii) to diagnose and correct
failures in the hardware, firmware or operating system software; (iv) to query for identification of a
computer system (whether by serial numbers, asset tags, user or otherwise); (v) to perform
inventory of a computer system; and (vi) to manufacture, install and setup any hardware,
firmware or operating system software.

(f) Microsoft reserves all other rights it may have in the Specification and any intellectual
property therein. The furnishing of this document does not give you any license or covenant not
to sue with respect to any other Microsoft patents, trademarks, copyrights or other intellectual
property rights.

2. ADDITIONAL LIMITATIONS AND OBLIGATIONS.
(a)The foregoing license and covenant not to sue is applicable only to the version of the
Specification which you are about to download. It does not apply to any additional versions of or
extensions to the Specification.
(b)Without prejudice to any other rights, Microsoft may terminate this Agreement if you fail to
comply with the terms and conditions of this Agreement. In such event you must destroy all
copies of the Specification.

3. INTELLECTUAL PROPERTY RIGHTS. All ownership, title and intellectual property rights
in and to the Specification are owned by Microsoft or its suppliers.

4. U.S. GOVERNMENT RIGHTS. Any Specification provided to the U.S. Government pursuant
to solicitations issued on or after December 1, 1995 is provided with the commercial rights and
restrictions described elsewhere herein. Any Specification provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 is provided with RESTRICTED
RIGHTS as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFAR, 48 CFR 252.227-
7013 (OCT 1988), as applicable.

5. EXPORT RESTRICTIONS. Export of the Specification, any part thereof, or any process
or service that is the direct product of the Specification (the foregoing collectively referred to as
the “Restricted Components”) from the United States is regulated by the Export Administration
Regulations (EAR, 15 CFR 730-744) of the U.S. Commerce Department, Bureau of Export
Administration (“BXA”). You agree to comply with the EAR in the export or re-export of the
Restricted Components (i) to any country to which the U.S. has embargoed or restricted the
export of goods or services, which currently include, but are not necessarily limited to Cuba, Iran,
Iraq, Libya, North Korea, Sudan, Syria and the Federal Republic of Yugoslavia (including Serbia,
but not Montenegro), or to any national of any such country, wherever located, who intends to
transmit or transport the Restricted Components back to such country; (ii) to any person or entity
who you know or have reason to know will utilize the Restricted Components in the design,
development or production of nuclear, chemical or biological weapons; or (iii) to any person or
entity who has been prohibited from participating in U.S. export transactions by any federal
agency of the U.S. government. You warrant and represent that neither the BXA nor any other
U.S. federal agency has suspended, revoked or denied your export privileges. For additional
information see http://www.microsoft.com/exporting.

FAT: General Overview of On-Disk Format—Page 4

© 2000 Microsoft Corporation. All rights reserved. 4

6. DISCLAIMER OF WARRANTIES. To the maximum extent permitted by applicable law,
Microsoft and its suppliers provide the Specification (and all intellectual property therein) and any
(if any) support services related to the Specification (“Support Services”) AS IS AND WITH ALL
FAULTS, and hereby disclaim all warranties and conditions, either express, implied or statutory,
including, but not limited to, any (if any) implied warranties or conditions of merchantability, of
fitness for a particular purpose, of lack of viruses, of accuracy or completeness of responses, of
results, and of lack of negligence or lack of workmanlike effort, all with regard to the Specification,
any intellectual property therein and the provision of or failure to provide Support Services.
ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT, WITH
REGARD TO THE SPECIFICATION AND ANY INTELLECTUAL PROPERTY THEREIN. THE
ENTIRE RISK AS TO THE QUALITY OF OR ARISING OUT OF USE OR PERFORMANCE OF
THE SPECIFICATION, ANY INTELLECTUAL PROPERTY THEREIN, AND SUPPORT
SERVICES, IF ANY, REMAINS WITH YOU.

7. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES.
To the maximum extent permitted by applicable law, in no event shall Microsoft or its suppliers be
liable for any special, incidental, indirect, or consequential damages whatsoever (including, but
not limited to, damages for loss of profits or confidential or other information, for business
interruption, for personal injury, for loss of privacy, for failure to meet any duty including of good
faith or of reasonable care, for negligence, and for any other pecuniary or other loss whatsoever)
arising out of or in any way related to the use of or inability to use the SPECIFICATION, ANY
INTELLECTUAL PROPERTY THEREIN, the provision of or failure to provide Support Services,
or otherwise under or in connection with any provision of this AGREEMENT, even in the event of
the fault, tort (including negligence), strict liability, breach of contract or breach of warranty of
Microsoft or any supplier, and even if Microsoft or any supplier has been advised of the possibility
of such damages.

8. LIMITATION OF LIABILITY AND REMEDIES. Notwithstanding any damages that you
might incur for any reason whatsoever (including, without limitation, all damages referenced
above and all direct or general damages), the entire liability of Microsoft and any of its suppliers
under any provision of this Agreement and your exclusive remedy for all of the foregoing shall be
limited to the greater of the amount actually paid by you for the Specification or U.S.$5.00. The
foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails its essential purpose.

9. APPLICABLE LAW. If you acquired this Specification in the United States, this
Agreement is governed by the laws of the State of Washington. If you acquired this Specification
in Canada, unless expressly prohibited by local law, this Agreement is governed by the laws in
force in the Province of Ontario, Canada; and, in respect of any dispute which may arise
hereunder, you consent to the jurisdiction of the federal and provincial courts sitting in Toronto,
Ontario. If this Specification was acquired outside the United States, then local law may apply.

10.QUESTIONS. Should you have any questions concerning this Agreement, or if you desire to
contact Microsoft for any reason, please contact the Microsoft subsidiary serving your country, or
write: Microsoft Sales Information Center/One Microsoft Way/Redmond, WA 98052-6399.

11.ENTIRE AGREEMENT. This Agreement is the entire agreement between you and Microsoft
relating to the Specification and the Support Services (if any) and they supersede all prior or
contemporaneous oral or written communications, proposals and representations with respect to
the Specification or any other subject matter covered by this Agreement. To the extent the terms
of any Microsoft policies or programs for Support Services conflict with the terms of this
Agreement, the terms of this Agreement shall control.

FAT: General Overview of On-Disk Format—Page 5

© 2000 Microsoft Corporation. All rights reserved. 5

Si vous avez acquis votre produit Microsoft au CANADA, la garantie limitée suivante vous
concerne :

RENONCIATION AUX GARANTIES. Dans toute la mesure permise par la législation en vigueur,
Microsoft et ses fournisseurs fournissent la Specification (et à toute propriété intellectuelle dans
celle-ci) et tous (selon le cas) les services d’assistance liés à la Specification (“Services
d’assistance”) TELS QUELS ET AVEC TOUS LEURS DÉFAUTS, et par les présentes excluent
toute garantie ou condition, expresse ou implicite, légale ou conventionnelle, écrite ou verbale, y
compris, mais sans limitation, toute (selon le cas) garantie ou condition implicite ou légale de
qualité marchande, de conformité à un usage particulier, d’absence de virus, d’exactitude et
d’intégralité des réponses, de résultats, d’efforts techniques et professionnels et d’absence de
négligence, le tout relativement à la Specification, à toute propriété intellectuelle dans celle-ci et à
la prestation ou à la non-prestation des Services d’assistance. DE PLUS, IL N’Y A AUCUNE
GARANTIE ET CONDITION DE TITRE, DE JOUISSANCE PAISIBLE, DE POSSESSION
PAISIBLE, DE SIMILARITÉ À LA DESCRIPTION ET D’ABSENCE DE CONTREFAÇON
RELATIVEMENT À LA SPÉCIFICATION ET À TOUTE PROPRIÉTÉ INTELLECTUELLE DANS
CELLE-CI. VOUS SUPPORTEZ TOUS LES RISQUES DÉCOULANT DE L’UTILISATION ET DE
LA PERFORMANCE DE LA SPÉCIFICATION ET DE TOUTE PROPRIÉTÉ INTELLECTUELLE
DANS CELLE-CI ET CEUX DÉCOULANT DES SERVICES D’ASSISTANCE (S’IL Y A LIEU).

EXCLUSION DES DOMMAGES INDIRECTS, ACCESSOIRES ET AUTRES. Dans toute la
mesure permise par la législation en vigueur, Microsoft et ses fournisseurs ne sont en aucun cas
responsables de tout dommage spécial, indirect, accessoire, moral ou exemplaire quel qu’il soit
(y compris, mais sans limitation, les dommages entraînés par la perte de bénéfices ou la perte
d’information confidentielle ou autre, l’interruption des affaires, les préjudices corporels, la perte
de confidentialité, le défaut de remplir toute obligation y compris les obligations de bonne foi et de
diligence raisonnable, la négligence et toute autre perte pécuniaire ou autre perte de quelque
nature que ce soit) découlant de, ou de toute autre manière lié à, l’utilisation ou l’impossibilité
d’utiliser la Spécification, toute propriété intellectuelle dans celle-ci, la prestation ou la non-
prestation des Services d’assistance ou autrement en vertu de ou relativement à toute disposition
de cette convention, que ce soit en cas de faute, de délit (y compris la négligence), de
responsabilité stricte, de manquement à un contrat ou de manquement à une garantie de
Microsoft ou de l’un de ses fournisseurs, et ce, même si Microsoft ou l’un de ses fournisseurs a
été avisé de la possibilité de tels dommages.

LIMITATION DE RESPONSABILITÉ ET RECOURS. Malgré tout dommage que vous pourriez
encourir pour quelque raison que ce soit (y compris, mais sans limitation, tous les dommages
mentionnés ci-dessus et tous les dommages directs et généraux), la seule responsabilité de
Microsoft et de ses fournisseurs en vertu de toute disposition de cette convention et votre unique
recours en regard de tout ce qui précède sont limités au plus élevé des montants suivants: soit
(a) le montant que vous avez payé pour la Spécification, soit (b) un montant équivalant à cinq
dollars U.S. (5,00 $ U.S.). Les limitations, exclusions et renonciations ci-dessus s’appliquent
dans toute la mesure permise par la législation en vigueur, et ce même si leur application a pour
effet de priver un recours de son essence.

DROITS LIMITÉS DU GOUVERNEMENT AMÉRICAIN
Tout Produit Logiciel fourni au gouvernement américain conformément à des demandes émises
le ou après le 1er décembre 1995 est offert avec les restrictions et droits commerciaux décrits
ailleurs dans la présente convention. Tout Produit Logiciel fourni au gouvernement américain
conformément à des demandes émises avant le 1er décembre 1995 est offert avec des DROITS
LIMITÉS tels que prévus dans le FAR, 48CFR 52.227-14 (juin 1987) ou dans le FAR, 48CFR
252.227-7013 (octobre 1988), tels qu’applicables.
Sauf lorsqu’expressément prohibé par la législation locale, la présente convention est régie par
les lois en vigueur dans la province d’Ontario, Canada. Pour tout différend qui pourrait découler
des présentes, vous acceptez la compétence des tribunaux fédéraux et provinciaux siégeant à
Toronto, Ontario.

FAT: General Overview of On-Disk Format—Page 6

© 2000 Microsoft Corporation. All rights reserved. 6

Si vous avez des questions concernant cette convention ou si vous désirez communiquer avec
Microsoft pour quelque raison que ce soit, veuillez contacter la succursale Microsoft desservant
votre pays, ou écrire à: Microsoft Sales Information Center, One Microsoft Way, Redmond,
Washington 98052-6399.

FAT: General Overview of On-Disk Format—Page 7

© 2000 Microsoft Corporation. All rights reserved. 7

Notational Conventions in this Document

Numbers that have the characters “0x” at the beginning of them are hexadecimal (base 16) numbers.

Any numbers that do not have the characters “0x” at the beginning are decimal (base 10) numbers.

The code fragments in this document are written in the ‘C’ programming language. Strict typing and
syntax are not adhered to.

There are several code fragments in this document that freely mix 32-bit and 16-bit data elements. It is
assumed that you are a programmer who understands how to properly type such operations so that
data is not lost due to truncation of 32-bit values to 16-bit values. Also take note that all data types are
UNSIGNED. Do not do FAT computations with signed integer types, because the computations will
be wrong on some FAT volumes.

General Comments (Applicable to FAT File System All Types)
All of the FAT file systems were originally developed for the IBM PC machine architecture. The
importance of this is that FAT file system on disk data structure is all “little endian.” If we look at one
32-bit FAT entry stored on disk as a series of four 8-bit bytes—the first being byte[0] and the last
being byte[4]—here is where the 32 bits numbered 00 through 31 are (00 being the least significant
bit):

byte[3] 3 3 2 2 2 2 2 2

1 0 9 8 7 6 5 4

byte[2] 2 2 2 2 1 1 1 1
3 2 1 0 9 8 7 6

byte[1] 1 1 1 1 1 1 0 0
5 4 3 2 1 0 9 8

byte[0] 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

This is important if your machine is a “big endian” machine, because you will have to translate
between big and little endian as you move data to and from the disk.

A FAT file system volume is composed of four basic regions, which are laid out in this order on the
volume:
 0 – Reserved Region
 1 – FAT Region
 2 – Root Directory Region (doesn’t exist on FAT32 volumes)
 3 – File and Directory Data Region

Boot Sector and BPB
The first important data structure on a FAT volume is called the BPB (BIOS Parameter Block), which
is located in the first sector of the volume in the Reserved Region. This sector is sometimes called the
“boot sector” or the “reserved sector” or the “0th sector,” but the important fact is simply that it is the
first sector of the volume.

This is the first thing about the FAT file system that sometimes causes confusion. In MS-DOS version
1.x, there was not a BPB in the boot sector. In this first version of the FAT file system, there were
only two different formats, the one for single-sided and the one for double-sided 360K 5.25-inch

FAT: General Overview of On-Disk Format—Page 8

© 2000 Microsoft Corporation. All rights reserved. 8

floppy disks. The determination of which type was on the disk was done by looking at the first byte of
the FAT (the low 8 bits of FAT[0]).

This type of media determination was superseded in MS-DOS version 2.x by putting a BPB in the
boot sector, and the old style of media determination (done by looking at the first byte of the FAT)
was no longer supported. All FAT volumes must have a BPB in the boot sector.

This brings us to the second point of confusion relating to FAT volume determination: What exactly
does a BPB look like? The BPB in the boot sector defined for MS-DOS 2.x only allowed for a FAT
volume with strictly less than 65,536 sectors (32 MB worth of 512-byte sectors). This limitation was
due to the fact that the “total sectors” field was only a 16-bit field. This limitation was addressed by
MS-DOS 3.x, where the BPB was modified to include a new 32-bit field for the total sectors value.

The next BPB change occurred with the Microsoft Windows 95 operating system, specifically OEM
Service Release 2 (OSR2), where the FAT32 type was introduced. FAT16 was limited by the
maximum size of the FAT and the maximum valid cluster size to no more than a 2 GB volume if the
disk had 512-byte sectors. FAT32 addressed this limitation on the amount of disk space that one FAT
volume could occupy so that disks larger than 2 GB only had to have one partition defined.

The FAT32 BPB exactly matches the FAT12/FAT16 BPB up to and including the BPB_TotSec32
field. They differ starting at offset 36, depending on whether the media type is FAT12/FAT16 or
FAT32 (see discussion below for determining FAT type). The relevant point here is that the BPB in
the boot sector of a FAT volume should always be one that has all of the new BPB fields for either the
FAT12/FAT16 or FAT32 BPB type. Doing it this way ensures the maximum compatibility of the FAT
volume and ensures that all FAT file system drivers will understand and support the volume properly,
because it always contains all of the currently defined fields.

NOTE: In the following description, all the fields whose names start with BPB_ are part of the BPB.
All the fields whose names start with BS_ are part of the boot sector and not really part of the BPB.
The following shows the start of sector 0 of a FAT volume, which contains the BPB:

FAT: General Overview of On-Disk Format—Page 9

© 2000 Microsoft Corporation. All rights reserved. 9

 Boot Sector and BPB Structure
Name Offset

(byte)
Size
(bytes)

Description

BS_jmpBoot 0 3 Jump instruction to boot code. This field has two allowed forms:
jmpBoot[0] = 0xEB, jmpBoot[1] = 0x??, jmpBoot[2] = 0x90
and
jmpBoot[0] = 0xE9, jmpBoot[1] = 0x??, jmpBoot[2] = 0x??

0x?? indicates that any 8-bit value is allowed in that byte. What this
forms is a three-byte Intel x86 unconditional branch (jump)
instruction that jumps to the start of the operating system bootstrap
code. This code typically occupies the rest of sector 0 of the volume
following the BPB and possibly other sectors. Either of these forms
is acceptable. JmpBoot[0] = 0xEB is the more frequently used
format.

BS_OEMName 3 8 “MSWIN4.1” There are many misconceptions about this field. It is
only a name string. Microsoft operating systems don’t pay any
attention to this field. Some FAT drivers do. This is the reason that
the indicated string, “MSWIN4.1”, is the recommended setting,
because it is the setting least likely to cause compatibility problems.
If you want to put something else in here, that is your option, but
the result may be that some FAT drivers might not recognize the
volume. Typically this is some indication of what system formatted
the volume.

BPB_BytsPerSec 11 2 Count of bytes per sector. This value may take on only the
following values: 512, 1024, 2048 or 4096. If maximum
compatibility with old implementations is desired, only the value
512 should be used. There is a lot of FAT code in the world that is
basically “hard wired” to 512 bytes per sector and doesn’t bother to
check this field to make sure it is 512. Microsoft operating systems
will properly support 1024, 2048, and 4096.

Note: Do not misinterpret these statements about maximum
compatibility. If the media being recorded has a physical sector size
N, you must use N and this must still be less than or equal to 4096.
Maximum compatibility is achieved by only using media with
specific sector sizes.

BPB_SecPerClus 13 1 Number of sectors per allocation unit. This value must be a power
of 2 that is greater than 0. The legal values are 1, 2, 4, 8, 16, 32, 64,
and 128. Note however, that a value should never be used that
results in a “bytes per cluster” value (BPB_BytsPerSec *
BPB_SecPerClus) greater than 32K (32 * 1024). There is a
misconception that values greater than this are OK. Values that
cause a cluster size greater than 32K bytes do not work properly; do
not try to define one. Some versions of some systems allow 64K
bytes per cluster value. Many application setup programs will not
work correctly on such a FAT volume.

BPB_RsvdSecCnt 14 2 Number of reserved sectors in the Reserved region of the volume
starting at the first sector of the volume. This field must not be 0.
For FAT12 and FAT16 volumes, this value should never be
anything other than 1. For FAT32 volumes, this value is typically
32. There is a lot of FAT code in the world “hard wired” to 1
reserved sector for FAT12 and FAT16 volumes and that doesn’t
bother to check this field to make sure it is 1. Microsoft operating
systems will properly support any non-zero value in this field.

FAT: General Overview of On-Disk Format—Page 10

© 2000 Microsoft Corporation. All rights reserved. 10

BPB_NumFATs 16 1 The count of FAT data structures on the volume. This field should
always contain the value 2 for any FAT volume of any type.
Although any value greater than or equal to 1 is perfectly valid,
many software programs and a few operating systems’ FAT file
system drivers may not function properly if the value is something
other than 2. All Microsoft file system drivers will support a value
other than 2, but it is still highly recommended that no value other
than 2 be used in this field.

The reason the standard value for this field is 2 is to provide redun-
dancy for the FAT data structure so that if a sector goes bad in one
of the FATs, that data is not lost because it is duplicated in the other
FAT. On non-disk-based media, such as FLASH memory cards,
where such redundancy is a useless feature, a value of 1 may be
used to save the space that a second copy of the FAT uses, but
some FAT file system drivers might not recognize such a volume
properly.

BPB_RootEntCnt 17 2 For FAT12 and FAT16 volumes, this field contains the count of 32-
byte directory entries in the root directory. For FAT32 volumes,
this field must be set to 0. For FAT12 and FAT16 volumes, this
value should always specify a count that when multiplied by 32
results in an even multiple of BPB_BytsPerSec. For maximum
compatibility, FAT16 volumes should use the value 512.

BPB_TotSec16 19 2 This field is the old 16-bit total count of sectors on the volume.
This count includes the count of all sectors in all four regions of the
volume. This field can be 0; if it is 0, then BPB_TotSec32 must be
non-zero. For FAT32 volumes, this field must be 0. For FAT12 and
FAT16 volumes, this field contains the sector count, and
BPB_TotSec32 is 0 if the total sector count “fits” (is less than
0x10000).

BPB_Media 21 1 0xF8 is the standard value for “fixed” (non-removable) media. For
removable media, 0xF0 is frequently used. The legal values for this
field are 0xF0, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, and
0xFF. The only other important point is that whatever value is put
in here must also be put in the low byte of the FAT[0] entry. This
dates back to the old MS-DOS 1.x media determination noted
earlier and is no longer usually used for anything.

BPB_FATSz16 22 2 This field is the FAT12/FAT16 16-bit count of sectors occupied by
ONE FAT. On FAT32 volumes this field must be 0, and
BPB_FATSz32 contains the FAT size count.

BPB_SecPerTrk 24 2 Sectors per track for interrupt 0x13. This field is only relevant for
media that have a geometry (volume is broken down into tracks by
multiple heads and cylinders) and are visible on interrupt 0x13.
This field contains the “sectors per track” geometry value.

BPB_NumHeads 26 2 Number of heads for interrupt 0x13. This field is relevant as
discussed earlier for BPB_SecPerTrk. This field contains the one
based “count of heads”. For example, on a 1.44 MB 3.5-inch floppy
drive this value is 2.

BPB_HiddSec 28 4 Count of hidden sectors preceding the partition that contains this
FAT volume. This field is generally only relevant for media visible
on interrupt 0x13. This field should always be zero on media that
are not partitioned. Exactly what value is appropriate is operating
system specific.

BPB_TotSec32 32 4 This field is the new 32-bit total count of sectors on the volume.
This count includes the count of all sectors in all four regions of the
volume. This field can be 0; if it is 0, then BPB_TotSec16 must be
non-zero. For FAT32 volumes, this field must be non-zero. For
FAT12/FAT16 volumes, this field contains the sector count if
BPB_TotSec16 is 0 (count is greater than or equal to 0x10000).

FAT: General Overview of On-Disk Format—Page 11

© 2000 Microsoft Corporation. All rights reserved. 11

At this point, the BPB/boot sector for FAT12 and FAT16 differs from the BPB/boot sector for FAT32.
The first table shows the structure for FAT12 and FAT16 starting at offset 36 of the boot sector.

Fat12 and Fat16 Structure Starting at Offset 36
Name Offset

(byte)
Size
(bytes)

Description

BS_DrvNum 36 1 Int 0x13 drive number (e.g. 0x80). This field supports MS-DOS
bootstrap and is set to the INT 0x13 drive number of the media
(0x00 for floppy disks, 0x80 for hard disks).
NOTE: This field is actually operating system specific.

BS_Reserved1 37 1 Reserved (used by Windows NT). Code that formats FAT volumes
should always set this byte to 0.

BS_BootSig 38 1 Extended boot signature (0x29). This is a signature byte that
indicates that the following three fields in the boot sector are
present.

BS_VolID 39 4 Volume serial number. This field, together with BS_VolLab,
supports volume tracking on removable media. These values allow
FAT file system drivers to detect that the wrong disk is inserted in a
removable drive. This ID is usually generated by simply combining
the current date and time into a 32-bit value.

BS_VolLab 43 11 Volume label. This field matches the 11-byte volume label
recorded in the root directory.
NOTE: FAT file system drivers should make sure that they update
this field when the volume label file in the root directory has its
name changed or created. The setting for this field when there is no
volume label is the string “NO NAME ”.

BS_FilSysType 54 8 One of the strings “FAT12 ”, “FAT16 ”, or “FAT ”.
NOTE: Many people think that the string in this field has
something to do with the determination of what type of FAT—
FAT12, FAT16, or FAT32—that the volume has. This is not true.
You will note from its name that this field is not actually part of the
BPB. This string is informational only and is not used by Microsoft
file system drivers to determine FAT typ,e because it is frequently
not set correctly or is not present. See the FAT Type Determination
section of this document. This string should be set based on the
FAT type though, because some non-Microsoft FAT file system
drivers do look at it.

FAT: General Overview of On-Disk Format—Page 12

© 2000 Microsoft Corporation. All rights reserved. 12

Here is the structure for FAT32 starting at offset 36 of the boot sector.

FAT32 Structure Starting at Offset 36
Name Offset

(byte)
Size
(bytes)

Description

BPB_FATSz32 36 4 This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media. This field is the FAT32 32-bit count of
sectors occupied by ONE FAT. BPB_FATSz16 must be 0.

BPB_ExtFlags 40 2 This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media.
Bits 0-3 -- Zero-based number of active FAT. Only valid if mirroring

is disabled.
Bits 4-6 -- Reserved.
Bit 7 -- 0 means the FAT is mirrored at runtime into all FATs.
 -- 1 means only one FAT is active; it is the one referenced

in bits 0-3.
Bits 8-15 -- Reserved.

BPB_FSVer 42 2 This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media. High byte is major revision number.
Low byte is minor revision number. This is the version number of
the FAT32 volume. This supports the ability to extend the FAT32
media type in the future without worrying about old FAT32 drivers
mounting the volume. This document defines the version to 0:0. If
this field is non-zero, back-level Windows versions will not mount
the volume.
NOTE: Disk utilities should respect this field and not operate on
volumes with a higher major or minor version number than that for
which they were designed. FAT32 file system drivers must check
this field and not mount the volume if it does not contain a version
number that was defined at the time the driver was written.

BPB_RootClus 44 4 This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media. This is set to the cluster number of the
first cluster of the root directory, usually 2 but not required to be 2.
NOTE: Disk utilities that change the location of the root directory
should make every effort to place the first cluster of the root
directory in the first non-bad cluster on the drive (i.e., in cluster 2,
unless it’s marked bad). This is specified so that disk repair utilities
can easily find the root directory if this field accidentally gets
zeroed.

BPB_FSInfo 48 2 This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media. Sector number of FSINFO structure in the
reserved area of the FAT32 volume. Usually 1.
NOTE: There will be a copy of the FSINFO structure in BackupBoot,
but only the copy pointed to by this field will be kept up to date (i.e.,
both the primary and backup boot record will point to the same
FSINFO sector).

BPB_BkBootSec 50 2 This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media. If non-zero, indicates the sector number
in the reserved area of the volume of a copy of the boot record.
Usually 6. No value other than 6 is recommended.

BPB_Reserved 52 12 This field is only defined for FAT32 media and does not exist on
FAT12 and FAT16 media. Reserved for future expansion. Code
that formats FAT32 volumes should always set all of the bytes of
this field to 0.

BS_DrvNum 64 1 This field has the same definition as it does for FAT12 and FAT16
media. The only difference for FAT32 media is that the field is at a
different offset in the boot sector.

BS_Reserved1 65 1 This field has the same definition as it does for FAT12 and FAT16
media. The only difference for FAT32 media is that the field is at a
different offset in the boot sector.

FAT: General Overview of On-Disk Format—Page 13

© 2000 Microsoft Corporation. All rights reserved. 13

BS_BootSig 66 1 This field has the same definition as it does for FAT12 and FAT16
media. The only difference for FAT32 media is that the field is at a
different offset in the boot sector.

BS_VolID 67 4 This field has the same definition as it does for FAT12 and FAT16
media. The only difference for FAT32 media is that the field is at a
different offset in the boot sector.

BS_VolLab 71 11 This field has the same definition as it does for FAT12 and FAT16
media. The only difference for FAT32 media is that the field is at a
different offset in the boot sector.

BS_FilSysType 82 8 Always set to the string ”FAT32 ”. Please see the note for this
field in the FAT12/FAT16 section earlier. This field has nothing to
do with FAT type determination.

There is one other important note about Sector 0 of a FAT volume. If we consider the contents of the
sector as a byte array, it must be true that sector[510] equals 0x55, and sector[511] equals 0xAA.

NOTE: Many FAT documents mistakenly say that this 0xAA55 signature occupies the “last 2 bytes
of the boot sector”. This statement is correct if — and only if — BPB_BytsPerSec is 512. If
BPB_BytsPerSec is greater than 512, the offsets of these signature bytes do not change (although it is
perfectly OK for the last two bytes at the end of the boot sector to also contain this signature).

Check your assumptions about the value in the BPB_TotSec16/32 field. Assume we have a disk or
partition of size in sectors DskSz. If the BPB TotSec field (either BPB_TotSec16 or BPB_TotSec32
— whichever is non-zero) is less than or equal to DskSz, there is nothing whatsoever wrong with the
FAT volume. In fact, it is not at all unusual to have a BPB_TotSec16/32 value that is slightly smaller
than DskSz. It is also perfectly OK for the BPB_TotSec16/32 value to be considerably smaller than
DskSz.

All this means is that disk space is being wasted. It does not by itself mean that the FAT volume is
damaged in some way. However, if BPB_TotSec16/32 is larger than DskSz, the volume is seriously
damaged or malformed because it extends past the end of the media or overlaps data that follows it on
the disk. Treating a volume for which the BPB_TotSec16/32 value is “too large” for the media or
partition as valid can lead to catastrophic data loss.

FAT Data Structure
The next data structure that is important is the FAT itself. What this data structure does is define a
singly linked list of the “extents” (clusters) of a file. Note at this point that a FAT directory or file
container is nothing but a regular file that has a special attribute indicating it is a directory. The only
other special thing about a directory is that the data or contents of the “file” is a series of 32=byte FAT
directory entries (see discussion below). In all other respects, a directory is just like a file. The FAT
maps the data region of the volume by cluster number. The first data cluster is cluster 2.

The first sector of cluster 2 (the data region of the disk) is computed using the BPB fields for the
volume as follows. First, we determine the count of sectors occupied by the root directory:

RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;

Note that on a FAT32 volume the BPB_RootEntCnt value is always 0, so on a FAT32 volume
RootDirSectors is always 0. The 32 in the above is the size of one FAT directory entry in bytes.
Note also that this computation rounds up.

The start of the data region, the first sector of cluster 2, is computed as follows:

FAT: General Overview of On-Disk Format—Page 14

© 2000 Microsoft Corporation. All rights reserved. 14

If(BPB_FATSz16 != 0)
FATSz = BPB_FATSz16;

Else
FATSz = BPB_FATSz32;

FirstDataSector = BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors;

NOTE: This sector number is relative to the first sector of the volume that contains the BPB (the
sector that contains the BPB is sector number 0). This does not necessarily map directly onto the
drive, because sector 0 of the volume is not necessarily sector 0 of the drive due to partitioning.

Given any valid data cluster number N, the sector number of the first sector of that cluster (again
relative to sector 0 of the FAT volume) is computed as follows:

FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) + FirstDataSector;

NOTE: Because BPB_SecPerClus is restricted to powers of 2 (1,2,4,8,16,32….), this means that
division and multiplication by BPB_SecPerClus can actually be performed via SHIFT operations on
2s complement architectures that are usually faster instructions than MULT and DIV instructions. On
current Intel X86 processors, this is largely irrelevant though because the MULT and DIV machine
instructions are heavily optimized for multiplication and division by powers of 2.

FAT Type Determination
There is considerable confusion over exactly how this works, which leads to many “off by 1”, “off by
2”, “off by 10”, and “massively off” errors. It is really quite simple how this works. The FAT type—
one of FAT12, FAT16, or FAT32—is determined by the count of clusters on the volume and nothing
else.

Please read everything in this section carefully, all of the words are important. For example, note that
the statement was “count of clusters.” This is not the same thing as “maximum valid cluster number,”
because the first data cluster is 2 and not 0 or 1.

To begin, let’s discuss exactly how the “count of clusters” value is determined. This is all done using
the BPB fields for the volume. First, we determine the count of sectors occupied by the root directory
as noted earlier.

RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;

Note that on a FAT32 volume, the BPB_RootEntCnt value is always 0; so on a FAT32 volume,
RootDirSectors is always 0.

Next, we determine the count of sectors in the data region of the volume:

If(BPB_FATSz16 != 0)

FATSz = BPB_FATSz16;
Else

FATSz = BPB_FATSz32;

If(BPB_TotSec16 != 0)
TotSec = BPB_TotSec16;

Else
TotSec = BPB_TotSec32;

DataSec = TotSec – (BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors);

FAT: General Overview of On-Disk Format—Page 15

© 2000 Microsoft Corporation. All rights reserved. 15

Now we determine the count of clusters:

CountofClusters = DataSec / BPB_SecPerClus;

Please note that this computation rounds down.

Now we can determine the FAT type. Please note carefully or you will commit an off-by-one error!

In the following example, when it says <, it does not mean <=. Note also that the numbers are correct.
The first number for FAT12 is 4085; the second number for FAT16 is 65525. These numbers and the
‘<’ signs are not wrong.

If(CountofClusters < 4085) {
/* Volume is FAT12 */
} else if(CountofClusters < 65525) {

/* Volume is FAT16 */
} else {

/* Volume is FAT32 */
}

This is the one and only way that FAT type is determined. There is no such thing as a FAT12 volume
that has more than 4084 clusters. There is no such thing as a FAT16 volume that has less than 4085
clusters or more than 65,524 clusters. There is no such thing as a FAT32 volume that has less than
65,525 clusters. If you try to make a FAT volume that violates this rule, Microsoft operating systems
will not handle them correctly because they will think the volume has a different type of FAT than
what you think it does.

NOTE: As is noted numerous times earlier, the world is full of FAT code that is wrong. There is a lot
of FAT type code that is off by 1 or 2 or 8 or 10 or 16. For this reason, it is highly recommended that
if you are formatting a FAT volume which has maximum compatibility with all existing FAT code,
then you should you avoid making volumes of any type that have close to 4,085 or 65,525 clusters.
Stay at least 16 clusters on each side away from these cut-over cluster counts.

Note also that the CountofClusters value is exactly that—the count of data clusters starting at cluster
2. The maximum valid cluster number for the volume is CountofClusters + 1, and the “count of
clusters including the two reserved clusters” is CountofClusters + 2.

There is one more important computation related to the FAT. Given any valid cluster number N,
where in the FAT(s) is the entry for that cluster number? The only FAT type for which this is complex
is FAT12. For FAT16 and FAT32, the computation is simple:

If(BPB_FATSz16 != 0)

FATSz = BPB_FATSz16;
Else

FATSz = BPB_FATSz32;

If(FATType == FAT16)
FATOffset = N * 2;

Else if (FATType == FAT32)
FATOffset = N * 4;

ThisFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_BytsPerSec);
ThisFATEntOffset = REM(FATOffset / BPB_BytsPerSec);

REM(…) is the remainder operator. That means the remainder after division of FATOffset by
BPB_BytsPerSec. ThisFATSecNum is the sector number of the FAT sector that contains the entry for
cluster N in the first FAT. If you want the sector number in the second FAT, you add FATSz to
ThisFATSecNum; for the third FAT, you add 2*FATSz, and so on.

FAT: General Overview of On-Disk Format—Page 16

© 2000 Microsoft Corporation. All rights reserved. 16

You now read sector number ThisFATSecNum (remember this is a sector number relative to sector 0
of the FAT volume). Assume this is read into an 8-bit byte array named SecBuff. Also assume that the
type WORD is a 16-bit unsigned and that the type DWORD is a 32-bit unsigned.

If(FATType == FAT16)

FAT16ClusEntryVal = *((WORD *) &SecBuff[ThisFATEntOffset]);
Else

FAT32ClusEntryVal = (*((DWORD *) &SecBuff[ThisFATEntOffset])) & 0x0FFFFFFF;

Fetches the contents of that cluster. To set the contents of this same cluster you do the following:

If(FATType == FAT16)

*((WORD *) &SecBuff[ThisFATEntOffset]) = FAT16ClusEntryVal;
Else {

FAT32ClusEntryVal = FAT32ClusEntryVal & 0x0FFFFFFF;
*((DWORD *) &SecBuff[ThisFATEntOffset]) =

(*((DWORD *) &SecBuff[ThisFATEntOffset])) & 0xF0000000;
*((DWORD *) &SecBuff[ThisFATEntOffset]) =

(*((DWORD *) &SecBuff[ThisFATEntOffset])) | FAT32ClusEntryVal;
}

Note how the FAT32 code above works. A FAT32 FAT entry is actually only a 28-bit entry. The high
4 bits of a FAT32 FAT entry are reserved. The only time that the high 4 bits of FAT32 FAT entries
should ever be changed is when the volume is formatted, at which time the whole 32-bit FAT entry
should be zeroed, including the high 4 bits.

A bit more explanation is in order here, because this point about FAT32 FAT entries seems to cause a
great deal of confusion. Basically 32-bit FAT entries are not really 32-bit values; they are only 28-bit
values. For example, all of these 32-bit cluster entry values: 0x10000000, 0xF0000000, and
0x00000000 all indicate that the cluster is FREE, because you ignore the high 4 bits when you read
the cluster entry value. If the 32-bit free cluster value is currently 0x30000000 and you want to mark
this cluster as bad by storing the value 0x0FFFFFF7 in it. Then the 32-bit entry will contain the value
0x3FFFFFF7 when you are done, because you must preserve the high 4 bits when you write in the
0x0FFFFFF7 bad cluster mark.

Take note that because the BPB_BytsPerSec value is always divisible by 2 and 4, you never have to
worry about a FAT16 or FAT32 FAT entry spanning over a sector boundary (this is not true of
FAT12).

The code for FAT12 is more complicated because there are 1.5 bytes (12-bits) per FAT entry.

if (FATType == FAT12)
FATOffset = N + (N / 2);

/* Multiply by 1.5 without using floating point, the divide by 2 rounds DOWN */

ThisFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_BytsPerSec);
ThisFATEntOffset = REM(FATOffset / BPB_BytsPerSec);

We now have to check for the sector boundary case:

FAT: General Overview of On-Disk Format—Page 17

© 2000 Microsoft Corporation. All rights reserved. 17

If(ThisFATEntOffset == (BPB_BytsPerSec – 1)) {
/* This cluster access spans a sector boundary in the FAT */
/* There are a number of strategies to handling this. The */
/* easiest is to always load FAT sectors into memory */
/* in pairs if the volume is FAT12 (if you want to load */
/* FAT sector N, you also load FAT sector N+1 immediately */
/* following it in memory unless sector N is the last FAT */
/* sector). It is assumed that this is the strategy used here */
/* which makes this if test for a sector boundary span */
/* unnecessary. */

}

We now access the FAT entry as a WORD just as we do for FAT16, but if the cluster number is
EVEN, we only want the low 12-bits of the 16-bits we fetch; and if the cluster number is ODD, we
only want the high 12-bits of the 16-bits we fetch.

FAT12ClusEntryVal = *((WORD *) &SecBuff[ThisFATEntOffset]);
If(N & 0x0001)

FAT12ClusEntryVal = FAT12ClusEntryVal >> 4; /* Cluster number is ODD */
Else

FAT12ClusEntryVal = FAT12ClusEntryVal & 0x0FFF; /* Cluster number is EVEN */

Fetches the contents of that cluster. To set the contents of this same cluster you do the following:

If(N & 0x0001) {

FAT12ClusEntryVal = FAT12ClusEntryVal << 4; /* Cluster number is ODD */
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) & 0x000F;
} Else {

FAT12ClusEntryVal = FAT12ClusEntryVal & 0x0FFF; /* Cluster number is EVEN */
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) & 0xF000;
}
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) | FAT12ClusEntryVal;

NOTE: It is assumed that the >> operator shifts a bit value of 0 into the high 4 bits and that the <<
operator shifts a bit value of 0 into the low 4 bits.

The way the data of a file is associated with the file is as follows. In the directory entry, the cluster
number of the first cluster of the file is recorded. The first cluster (extent) of the file is the data
associated with this first cluster number, and the location of that data on the volume is computed from
the cluster number as described earlier (computation of FirstSectorofCluster).

Note that a zero-length file—a file that has no data allocated to it—has a first cluster number of 0
placed in its directory entry. This cluster location in the FAT (see earlier computation of
ThisFATSecNum and ThisFATEntOffset) contains either an EOC mark (End Of Clusterchain) or the
cluster number of the next cluster of the file. The EOC value is FAT type dependant (assume
FATContent is the contents of the cluster entry in the FAT being checked to see whether it is an EOC
mark):

IsEOF = FALSE;
If(FATType == FAT12) {

If(FATContent >= 0x0FF8)
IsEOF = TRUE;

} else if(FATType == FAT16) {
If(FATContent >= 0xFFF8)

IsEOF = TRUE;
} else if (FATType == FAT32) {

If(FATContent >= 0x0FFFFFF8)
IsEOF = TRUE;

}

FAT: General Overview of On-Disk Format—Page 18

© 2000 Microsoft Corporation. All rights reserved. 18

Note that the cluster number whose cluster entry in the FAT contains the EOC mark is allocated to the
file and is also the last cluster allocated to the file. Microsoft operating system FAT drivers use the
EOC value 0x0FFF for FAT12, 0xFFFF for FAT16, and 0x0FFFFFFF for FAT32 when they set the
contents of a cluster to the EOC mark. There are various disk utilities for Microsoft operating systems
that use a different value, however.

There is also a special “BAD CLUSTER” mark. Any cluster that contains the “BAD CLUSTER”
value in its FAT entry is a cluster that should not be placed on the free list because it is prone to disk
errors. The “BAD CLUSTER” value is 0x0FF7 for FAT12, 0xFFF7 for FAT16, and 0x0FFFFFF7 for
FAT32. The other relevant note here is that these bad clusters are also lost clusters—clusters that
appear to be allocated because they contain a non-zero value but which are not part of any files
allocation chain. Disk repair utilities must recognize lost clusters that contain this special value as bad
clusters and not change the content of the cluster entry.

NOTE: It is not possible for the bad cluster mark to be an allocatable cluster number on FAT12 and
FAT16 volumes, but it is feasible for 0x0FFFFFF7 to be an allocatable cluster number on FAT32
volumes. To avoid possible confusion by disk utilities, no FAT32 volume should ever be configured
such that 0x0FFFFFF7 is an allocatable cluster number.

The list of free clusters in the FAT is nothing more than the list of all clusters that contain the value 0
in their FAT cluster entry. Note that this value must be fetched as described earlier as for any other
FAT entry that is not free. This list of free clusters is not stored anywhere on the volume; it must be
computed when the volume is mounted by scanning the FAT for entries that contain the value 0. On
FAT32 volumes, the BPB_FSInfo sector may contain a valid count of free clusters on the volume. See
the documentation of the FAT32 FSInfo sector.

What are the two reserved clusters at the start of the FAT for? The first reserved cluster, FAT[0],
contains the BPB_Media byte value in its low 8 bits, and all other bits are set to 1. For example, if the
BPB_Media value is 0xF8, for FAT12 FAT[0] = 0x0FF8, for FAT16 FAT[0] = 0xFFF8, and for
FAT32 FAT[0] = 0x0FFFFFF8. The second reserved cluster, FAT[1], is set by FORMAT to the EOC
mark. On FAT12 volumes, it is not used and is simply always contains an EOC mark. For FAT16 and
FAT32, the file system driver may use the high two bits of the FAT[1] entry for dirty volume flags (all
other bits, are always left set to 1). Note that the bit location is different for FAT16 and FAT32,
because they are the high 2 bits of the entry.

For FAT16:

ClnShutBitMask = 0x8000;
HrdErrBitMask = 0x4000;

For FAT32:

ClnShutBitMask = 0x08000000;
HrdErrBitMask = 0x04000000;

Bit ClnShutBitMask – If bit is 1, volume is “clean”.

If bit is 0, volume is “dirty”. This indicates that the file system driver did not
Dismount the volume properly the last time it had the volume mounted. It
would be a good idea to run a Chkdsk/Scandisk disk repair utility on it,
because it may be damaged.

Bit HrdErrBitMask – If this bit is 1, no disk read/write errors were encountered.
If this bit is 0, the file system driver encountered a disk I/O error on the
Volume the last time it was mounted, which is an indicator that some sectors
may have gone bad on the volume. It would be a good idea to run a
Chkdsk/Scandisk disk repair utility that does surface analysis on it to look
for new bad sectors.

FAT: General Overview of On-Disk Format—Page 19

© 2000 Microsoft Corporation. All rights reserved. 19

Here are two more important notes about the FAT region of a FAT volume:

1. The last sector of the FAT is not necessarily all part of the FAT. The FAT stops at the cluster
number in the last FAT sector that corresponds to the entry for cluster number
CountofClusters + 1 (see the CountofClusters computation earlier), and this entry is not
necessarily at the end of the last FAT sector. FAT code should not make any assumptions
about what the contents of the last FAT sector are after the CountofClusters + 1 entry. FAT
format code should zero the bytes after this entry though.

2. The BPB_FATSz16 (BPB_FATSz32 for FAT32 volumes) value may be bigger than it needs
to be. In other words, there may be totally unused FAT sectors at the end of each FAT in the
FAT region of the volume. For this reason, the last sector of the FAT is always computed
using the CountofClusters + 1 value, never from the BPB_FATSz16/32 value. FAT code
should not make any assumptions about what the contents of these “extra” FAT sectors are.
FAT format code should zero the contents of these extra FAT sectors though.

FAT Volume Initialization
At this point, the careful reader should have one very interesting question. Given that the FAT type
(FAT12, FAT16, or FAT32) is dependant on the number of clusters—and that the sectors available in
the data area of a FAT volume is dependant on the size of the FAT—when handed an unformatted
volume that does not yet have a BPB, how do you determine all this and compute the proper values to
put in BPB_SecPerClus and either BPB_FATSz16 or BPB_FATSz32? The way Microsoft operating
systems do this is with a fixed value, several tables, and a clever piece of arithmetic.

Microsoft operating systems only do FAT12 on floppy disks. Because there is a limited number of
floppy formats that all have a fixed size, this is done with a simple table:

“If it is a floppy of this type, then the BPB looks like this.”

There is no dynamic computation for FAT12. For the FAT12 formats, all the computation for
BPB_SecPerClus and BPB_FATSz16 was worked out by hand on a piece of paper and recorded in the
table (being careful of course that the resultant cluster count was always less than 4085). If your media
is larger than 4 MB, do not bother with FAT12. Use smaller BPB_SecPerClus values so that the
volume will be FAT16.

The rest of this section is totally specific to drives that have 512 bytes per sector. You cannot use these
tables, or the clever arithmetic, with drives that have a different sector size. The “fixed value” is
simply a volume size that is the “FAT16 to FAT32 cutover value”. Any volume size smaller than this
is FAT16 and any volume of this size or larger is FAT32. For Windows, this value is 512 MB. Any
FAT volume smaller than 512 MB is FAT16, and any FAT volume of 512 MB or larger is FAT32.

Please don’t draw an incorrect conclusion here.

There are many FAT16 volumes out there that are larger than 512 MB. There are various ways to
force the format to be FAT16 rather than the default of FAT32, and there is a great deal of code that
implements different limits. All we are talking about here is the default cutover value for MS-DOS
and Windows on volumes that have not yet been formatted. There are two tables—one is for FAT16
and the other is for FAT32. An entry in these tables is selected based on the size of the volume in 512
byte sectors (the value that will go in BPB_TotSec16 or BPB_TotSec32), and the value that this table
sets is the BPB_SecPerClus value.

FAT: General Overview of On-Disk Format—Page 20

© 2000 Microsoft Corporation. All rights reserved. 20

struct DSKSZTOSECPERCLUS {
DWORD DiskSize;
BYTE SecPerClusVal;

};

/*
*This is the table for FAT16 drives. NOTE that this table includes
* entries for disk sizes larger than 512 MB even though typically
* only the entries for disks < 512 MB in size are used.
* The way this table is accessed is to look for the first entry
* in the table for which the disk size is less than or equal
* to the DiskSize field in that table entry. For this table to
* work properly BPB_RsvdSecCnt must be 1, BPB_NumFATs
* must be 2, and BPB_RootEntCnt must be 512. Any of these values
* being different may require the first table entries DiskSize value
* to be changed otherwise the cluster count may be to low for FAT16.

*/
DSKSZTOSECPERCLUS DskTableFAT16 [] = {

{ 8400, 0}, /* disks up to 4.1 MB, the 0 value for SecPerClusVal trips an error */
{ 32680, 2}, /* disks up to 16 MB, 1k cluster */
{ 262144, 4}, /* disks up to 128 MB, 2k cluster */
{ 524288, 8}, /* disks up to 256 MB, 4k cluster */
{ 1048576, 16}, /* disks up to 512 MB, 8k cluster */
/* The entries after this point are not used unless FAT16 is forced */
{ 2097152, 32}, /* disks up to 1 GB, 16k cluster */
{ 4194304, 64}, /* disks up to 2 GB, 32k cluster */
{ 0xFFFFFFFF, 0} /* any disk greater than 2GB, 0 value for SecPerClusVal trips an error */

};

/*
* This is the table for FAT32 drives. NOTE that this table includes
* entries for disk sizes smaller than 512 MB even though typically
* only the entries for disks >= 512 MB in size are used.
* The way this table is accessed is to look for the first entry
* in the table for which the disk size is less than or equal
* to the DiskSize field in that table entry. For this table to
* work properly BPB_RsvdSecCnt must be 32, and BPB_NumFATs
* must be 2. Any of these values being different may require the first
* table entries DiskSize value to be changed otherwise the cluster count
* may be to low for FAT32.
*/

DSKSZTOSECPERCLUS DskTableFAT32 [] = {
{ 66600, 0}, /* disks up to 32.5 MB, the 0 value for SecPerClusVal trips an error */
{ 532480, 1}, /* disks up to 260 MB, .5k cluster */
{ 16777216, 8}, /* disks up to 8 GB, 4k cluster */
{ 33554432, 16}, /* disks up to 16 GB, 8k cluster */
{ 67108864, 32}, /* disks up to 32 GB, 16k cluster */
{ 0xFFFFFFFF, 64}/* disks greater than 32GB, 32k cluster */

};

So given a disk size and a FAT type of FAT16 or FAT32, we now have a BPB_SecPerClus value. The
only thing we have left is do is to compute how many sectors the FAT takes up so that we can set
BPB_FATSz16 or BPB_FATSz32. Note that at this point we assume that BPB_RootEntCnt,
BPB_RsvdSecCnt, and BPB_NumFATs are appropriately set. We also assume that DskSize is the size
of the volume that we are either going to put in BPB_TotSec32 or BPB_TotSec16.

FAT: General Overview of On-Disk Format—Page 21

© 2000 Microsoft Corporation. All rights reserved. 21

RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;
TmpVal1 = DskSize – (BPB_ResvdSecCnt + RootDirSectors);
TmpVal2 = (256 * BPB_SecPerClus) + BPB_NumFATs;
If(FATType == FAT32)

TmpVal2 = TmpVal2 / 2;
FATSz = (TMPVal1 + (TmpVal2 – 1)) / TmpVal2;
If(FATType == FAT32) {

BPB_FATSz16 = 0;
BPB_FATSz32 = FATSz;

} else {
BPB_FATSz16 = LOWORD(FATSz);
/* there is no BPB_FATSz32 in a FAT16 BPB */

}

Do not spend too much time trying to figure out why this math works. The basis for the computation
is complicated; the important point is that this is how Microsoft operating systems do it, and it works.
Note, however, that this math does not work perfectly. It will occasionally set a FATSz that is up to
2 sectors too large for FAT16, and occasionally up to 8 sectors too large for FAT32. It will never
compute a FATSz value that is too small, however. Because it is OK to have a FATSz that is too
large, at the expense of wasting a few sectors, the fact that this computation is surprisingly simple
more than makes up for it being off in a safe way in some cases.

FAT32 FSInfo Sector Structure and Backup Boot Sector
On a FAT32 volume, the FAT can be a large data structure, unlike on FAT16 where it is limited to a
maximum of 128K worth of sectors and FAT12 where it is limited to a maximum of 6K worth of
sectors. For this reason, a provision is made to store the “last known” free cluster count on the FAT32
volume so that it does not have to be computed as soon as an API call is made to ask how much free
space there is on the volume (like at the end of a directory listing). The FSInfo sector number is the
value in the BPB_FSInfo field; for Microsoft operating systems it is always set to 1. Here is the
structure of the FSInfo sector:

FAT32 FSInfo Sector Structure and Backup Boot Sector

Name Offset
(byte)

Size
(bytes)

Description

FSI_LeadSig 0 4 Value 0x41615252. This lead signature is used to validate that this
is in fact an FSInfo sector.

FSI_Reserved1 4 480 This field is currently reserved for future expansion. FAT32 format
code should always initialize all bytes of this field to 0. Bytes in
this field must currently never be used.

FSI_StrucSig 484 4 Value 0x61417272. Another signature that is more localized in the
sector to the location of the fields that are used.

FSI_Free_Count 488 4 Contains the last known free cluster count on the volume. If the
value is 0xFFFFFFFF, then the free count is unknown and must be
computed. Any other value can be used, but is not necessarily
correct. It should be range checked at least to make sure it is <=
volume cluster count.

FSI_Nxt_Free 492 4 This is a hint for the FAT driver. It indicates the cluster number at
which the driver should start looking for free clusters. Because a
FAT32 FAT is large, it can be rather time consuming if there are a
lot of allocated clusters at the start of the FAT and the driver starts
looking for a free cluster starting at cluster 2. Typically this value is
set to the last cluster number that the driver allocated. If the value is
0xFFFFFFFF, then there is no hint and the driver should start
looking at cluster 2. Any other value can be used, but should be
checked first to make sure it is a valid cluster number for the
volume.

FSI_Reserved2 496 12 This field is currently reserved for future expansion. FAT32 format
code should always initialize all bytes of this field to 0. Bytes in
this field must currently never be used.

FAT: General Overview of On-Disk Format—Page 22

© 2000 Microsoft Corporation. All rights reserved. 22

FSI_TrailSig 508 4 Value 0xAA550000. This trail signature is used to validate that this
is in fact an FSInfo sector. Note that the high 2 bytes of this
value—which go into the bytes at offsets 510 and 511—match the
signature bytes used at the same offsets in sector 0.

Another feature on FAT32 volumes that is not present on FAT16/FAT12 is the BPB_BkBootSec field.
FAT16/FAT12 volumes can be totally lost if the contents of sector 0 of the volume are overwritten or
sector 0 goes bad and cannot be read. This is a “single point of failure” for FAT16 and FAT12
volumes. The BPB_BkBootSec field reduces the severity of this problem for FAT32 volumes, because
starting at that sector number on the volume—6—there is a backup copy of the boot sector
information including the volume’s BPB.

In the case where the sector 0 information has been accidentally overwritten, all a disk repair utility
has to do is restore the boot sector(s) from the backup copy. In the case where sector 0 goes bad, this
allows the volume to be mounted so that the user can access data before replacing the disk.

This second case—sector 0 goes bad—is the reason why no value other than 6 should ever be placed
in the BPB_BkBootSec field. If sector 0 is unreadable, various operating systems are “hard wired” to
check for backup boot sector(s) starting at sector 6 of the FAT32 volume. Note that starting at the
BPB_BkBootSec sector is a complete boot record. The Microsoft FAT32 “boot sector” is actually
three 512-byte sectors long. There is a copy of all three of these sectors starting at the
BPB_BkBootSec sector. A copy of the FSInfo sector is also there, even though the BPB_FSInfo field
in this backup boot sector is set to the same value as is stored in the sector 0 BPB.

NOTE: All 3 of these sectors have the 0xAA55 signature in sector offsets 510 and 511, just like the
first boot sector does (see the earlier discussion at the end of the BPB structure description).

FAT Directory Structure
We will first talk about short directory entries and ignore long directory entries for the moment.

A FAT directory is nothing but a “file” composed of a linear list of 32-byte structures. The only
special directory, which must always be present, is the root directory. For FAT12 and FAT16 media,
the root directory is located in a fixed location on the disk immediately following the last FAT and is
of a fixed size in sectors computed from the BPB_RootEntCnt value (see computations for
RootDirSectors earlier in this document). For FAT12 and FAT16 media, the first sector of the root
directory is sector number relative to the first sector of the FAT volume:

FirstRootDirSecNum = BPB_ResvdSecCnt + (BPB_NumFATs * BPB_FATSz16);

For FAT32, the root directory can be of variable size and is a cluster chain, just like any other
directory is. The first cluster of the root directory on a FAT32 volume is stored in BPB_RootClus.
Unlike other directories, the root directory itself on any FAT type does not have any date or time
stamps, does not have a file name (other than the implied file name “\”), and does not contain “.” and
“..” files as the first two directory entries in the directory. The only other special aspect of the root
directory is that it is the only directory on the FAT volume for which it is valid to have a file that has
only the ATTR_VOLUME_ID attribute bit set (see below).

FAT: General Overview of On-Disk Format—Page 23

© 2000 Microsoft Corporation. All rights reserved. 23

FAT 32 Byte Directory Entry Structure
Name Offset

(byte)
Size
(bytes)

Description

DIR_Name 0 11 Short name.
DIR_Attr 11 1 File attributes:

ATTR_READ_ONLY 0x01
ATTR_HIDDEN 0x02
ATTR_SYSTEM 0x04
ATTR_VOLUME_ID 0x08
ATTR_DIRECTORY 0x10
ATTR_ARCHIVE 0x20
ATTR_LONG_NAME ATTR_READ_ONLY |

ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID

The upper two bits of the attribute byte are reserved and should
always be set to 0 when a file is created and never modified or
looked at after that.

DIR_NTRes 12 1 Reserved for use by Windows NT. Set value to 0 when a file is
created and never modify or look at it after that.

DIR_CrtTimeTenth 13 1 Millisecond stamp at file creation time. This field actually
contains a count of tenths of a second. The granularity of the
seconds part of DIR_CrtTime is 2 seconds so this field is a
count of tenths of a second and its valid value range is 0-199
inclusive.

DIR_FstClusHI 20 2 High word of this entry’s first cluster number (always 0 for a
FAT12 or FAT16 volume).

DIR_WrtTime 22 2 Time of last write. Note that file creation is considered a write.
DIR_WrtDate 24 2 Date of last write. Note that file creation is considered a write.
DIR_FstClusLO 26 2 Low word of this entry’s first cluster number.
DIR_FileSize 28 4 32-bit DWORD holding this file’s size in bytes.

DIR_Name[0]
Special notes about the first byte (DIR_Name[0]) of a FAT directory entry:

• If DIR_Name[0] == 0xE5, then the directory entry is free (there is no file or directory name in this

entry).

• If DIR_Name[0] == 0x00, then the directory entry is free (same as for 0xE5), and there are no

allocated directory entries after this one (all of the DIR_Name[0] bytes in all of the entries after
this one are also set to 0).

The special 0 value, rather than the 0xE5 value, indicates to FAT file system driver code that the
rest of the entries in this directory do not need to be examined because they are all free.

• If DIR_Name[0] == 0x05, then the actual file name character for this byte is 0xE5. 0xE5 is

actually a valid KANJI lead byte value for the character set used in Japan. The special 0x05 value
is used so that this special file name case for Japan can be handled properly and not cause FAT file
system code to think that the entry is free.

DIR_CrtTime 14 2 Time file was created.
DIR_CrtDate 16 2 Date file was created.
DIR_LstAccDate 18 2 Last access date. Note that there is no last access time, only a

date. This is the date of last read or write. In the case of a write,
this should be set to the same date as DIR_WrtDate.

FAT: General Overview of On-Disk Format—Page 24

© 2000 Microsoft Corporation. All rights reserved. 24

The DIR_Name field is actually broken into two parts+ the 8-character main part of the name, and the
3-character extension. These two parts are “trailing space padded” with bytes of 0x20.

DIR_Name[0] may not equal 0x20. There is an implied ‘.’ character between the main part of the
name and the extension part of the name that is not present in DIR_Name. Lower case characters are
not allowed in DIR_Name (what these characters are is country specific).

The following characters are not legal in any bytes of DIR_Name:
• Values less than 0x20 except for the special case of 0x05 in DIR_Name[0] described above.
• 0x22, 0x2A, 0x2B, 0x2C, 0x2E, 0x2F, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x5B, 0x5C, 0x5D,

and 0x7C.

Here are some examples of how a user-entered name maps into DIR_Name:

“foo.bar” -> “FOO BAR”
“FOO.BAR” -> “FOO BAR”
“Foo.Bar” -> “FOO BAR”
“foo” -> “FOO “
“foo.” -> “FOO “
“PICKLE.A” -> “PICKLE A “
“prettybg.big” -> “PRETTYBGBIG”
“.big” -> illegal, DIR_Name[0] cannot be 0x20

In FAT directories all names are unique. Look at the first three examples earlier. Those different
names all refer to the same file, and there can only be one file with DIR_Name set to “FOO BAR”
in any directory.

DIR_Attr specifies attributes of the file:

ATTR_READ_ONLY Indicates that writes to the file should fail.
ATTR_HIDDEN Indicates that normal directory listings should not show this file.
ATTR_SYSTEM Indicates that this is an operating system file.
ATTR_VOLUME_ID There should only be one “file” on the volume that has this attribute

set, and that file must be in the root directory. This name of this file is
actually the label for the volume. DIR_FstClusHI and
DIR_FstClusLO must always be 0 for the volume label (no data
clusters are allocated to the volume label file).

ATTR_DIRECTORY Indicates that this file is actually a container for other files.
ATTR_ARCHIVE This attribute supports backup utilities. This bit is set by the FAT file

system driver when a file is created, renamed, or written to. Backup
utilities may use this attribute to indicate which files on the volume
have been modified since the last time that a backup was performed.

Note that the ATTR_LONG_NAME attribute bit combination indicates that the “file” is actually part
of the long name entry for some other file. See the next section for more information on this attribute
combination.

When a directory is created, a file with the ATTR_DIRECTORY bit set in its DIR_Attr field, you set
its DIR_FileSize to 0. DIR_FileSize is not used and is always 0 on a file with the
ATTR_DIRECTORY attribute (directories are sized by simply following their cluster chains to the
EOC mark). One cluster is allocated to the directory (unless it is the root directory on a FAT16/FAT12
volume), and you set DIR_FstClusLO and DIR_FstClusHI to that cluster number and place an EOC
mark in that clusters entry in the FAT. Next, you initialize all bytes of that cluster to 0. If the directory
is the root directory, you are done (there are no dot or dotdot entries in the root directory). If the
directory is not the root directory, you need to create two special entries in the first two 32-byte

FAT: General Overview of On-Disk Format—Page 25

© 2000 Microsoft Corporation. All rights reserved. 25

directory entries of the directory (the first two 32 byte entries in the data region of the cluster you just
allocated).

The first directory entry has DIR_Name set to:
“. ”

The second has DIR_Name set to:
“.. ”

These are called the dot and dotdot entries. The DIR_FileSize field on both entries is set to 0, and all
of the date and time fields in both of these entries are set to the same values as they were in the
directory entry for the directory that you just created. You now set DIR_FstClusLO and
DIR_FstClusHI for the dot entry (the first entry) to the same values you put in those fields for the
directories directory entry (the cluster number of the cluster that contains the dot and dotdot entries).

Finally, you set DIR_FstClusLO and DIR_FstClusHI for the dotdot entry (the second entry) to the
first cluster number of the directory in which you just created the directory (value is 0 if this directory
is the root directory even for FAT32 volumes).

Here is the summary for the dot and dotdot entries:
• The dot entry is a directory that points to itself.
• The dotdot entry points to the starting cluster of the parent of this directory (which is 0 if this

directories parent is the root directory).

Date and Time Formats
Many FAT file systems do not support Date/Time other than DIR_WrtTime and DIR_WrtDate. For
this reason, DIR_CrtTimeMil, DIR_CrtTime, DIR_CrtDate, and DIR_LstAccDate are actually
optional fields. DIR_WrtTime and DIR_WrtDate must be supported, however. If the other date and
time fields are not supported, they should be set to 0 on file create and ignored on other file
operations.

Date Format. A FAT directory entry date stamp is a 16-bit field that is basically a date relative to the
MS-DOS epoch of 01/01/1980. Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the
MSB of the 16-bit word):

Bits 0–4: Day of month, valid value range 1-31 inclusive.
Bits 5–8: Month of year, 1 = January, valid value range 1–12 inclusive.
Bits 9–15: Count of years from 1980, valid value range 0–127 inclusive (1980–2107).

Time Format. A FAT directory entry time stamp is a 16-bit field that has a granularity of 2 seconds.
Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the 16-bit word).

Bits 0–4: 2-second count, valid value range 0–29 inclusive (0 – 58 seconds).
Bits 5–10: Minutes, valid value range 0–59 inclusive.
Bits 11–15: Hours, valid value range 0–23 inclusive.

The valid time range is from Midnight 00:00:00 to 23:59:58.

FAT Long Directory Entries
In adding long directory entries to the FAT file system it was crucial that their addition to the FAT file
system's existing design:

FAT: General Overview of On-Disk Format—Page 26

© 2000 Microsoft Corporation. All rights reserved. 26

• Be essentially transparent on earlier versions of MS-DOS. The primary goal being that existing
MS-DOS APIs on previous versions of MS-DOS/Windows do not easily "find" long directory
entries. The only MS-DOS APIs that can "find" long directory entries are the FCB-based-find
APIs when used with a full meta-character matching pattern (i.e. *.*) and full attribute matching
bits (i.e. matching attributes are FFh). On post-Windows 95 versions of MS-DOS/Windows, no
MS-DOS API can accidentally "find" a single long directory entry.

• Be located in close physical proximity, on the media, to the short directory entries they are
associated with. As will be evident, long directory entries are immediately contiguous to the short
directory entry they are associated with and their existence imposes an unnoticeable performance
impact on the file system.

• If detected by disk maintenance utilities, they do not jeopardize the integrity of existing file data.
Disk maintenance utilities typically do not use MS-DOS APIs to access on-media file-system-
specific data structures. Rather they read physical or logical sector information from the disk and
judge for themselves what the directory entries contain. Based on the heuristics employed in the
utilities, the utility may take various steps to "repair" what it perceives to be "damaged" file-
system-specific data structures. Long directory entries were added to the FAT file system in such
a way as to not cause the loss of file data if a disk containing long directory entries was "repaired"
by a pre-Windows 95-compatible disk utility on a previous version of MS-DOS/Windows.

In order to meet the goals of locality-of-access and transparency, the long directory entry is defined as
a short directory entry with a special attribute. As described previously, a long directory entry is just a
regular directory entry in which the attribute field has a value of:

ATTR_LONG_NAME ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID

A mask for determining whether an entry is a long-name sub-component should also be defined:

ATTR_LONG_NAME_MASK ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID |
ATTR_DIRECTORY |
ATTR_ARCHIVE

When such a directory entry is encountered it is given special treatment by the file system. It is
treated as part of a set of directory entries that are associated with a single short directory entry. Each
long directory entry has the following structure:

FAT Long Directory Entry Structure
Name Offset

(byte)
Size
(bytes)

Description

LDIR_Ord 0 1 The order of this entry in the sequence of long dir entries
associated with the short dir entry at the end of the long dir set.

If masked with 0x40 (LAST_LONG_ENTRY), this indicates the
entry is the last long dir entry in a set of long dir entries. All valid
sets of long dir entries must begin with an entry having this
mask.

LDIR_Name1 1 10 Characters 1-5 of the long-name sub-component in this dir entry.
LDIR_Attr 11 1 Attributes - must be ATTR_LONG_NAME

FAT: General Overview of On-Disk Format—Page 27

© 2000 Microsoft Corporation. All rights reserved. 27

LDIR_Type 12 1 If zero, indicates a directory entry that is a sub-component of a
long name. NOTE: Other values reserved for future extensions.

Non-zero implies other dirent types.

LDIR_Chksum 13 1 Checksum of name in the short dir entry at the end of the long dir
set.

LDIR_Name2 14 12 Characters 6-11 of the long-name sub-component in this dir
entry.

LDIR_FstClusLO 26 2 Must be ZERO. This is an artifact of the FAT "first cluster" and
must be zero for compatibility with existing disk utilities. It's
meaningless in the context of a long dir entry.

LDIR_Name3 28 4 Characters 12-13 of the long-name sub-component in this dir
entry.

Organization and Association of Short & Long Directory Entries

A set of long entries is always associated with a short entry that they always immediately precede.
Long entries are paired with short entries for one reason: only short directory entries are visible to
previous versions of MS-DOS/Windows. Without a short entry to accompany it, a long directory
entry would be completely invisible on previous versions of MS-DOS/Windows. A long entry never
legally exists all by itself. If long entries are found without being paired with a valid short entry, they
are termed orphans. The following figure depicts a set of n long directory entries associated with it's
single short entry.

Long entries always immediately precede and are physically contiguous with, the short entry they are
associated with. The file system makes a few other checks to ensure that a set of long entries is
actually associated with a short entry.

Sequence Of Long Directory Entries
Entry Ordinal
Nth Long entry LAST_LONG_ENTRY (0x40) | N
… Additional Long Entries …
1st Long entry 1
Short Entry Associated With Preceding Long Entries (not applicable)

First, every member of a set of long entries is uniquely numbered and the last member of the set is or'd
with a flag indicating that it is, in fact, the last member of the set. The LDIR_Ord field is used to
make this determination. The first member of a set has an LDIR_Ord value of one. The nth long
member of the set has a value of (n OR LAST_LONG_ENTRY). Note that the LDIR_Ord field
cannot have values of 0xE5 or 0x00. These values have always been used by the file system to
indicate a "free" directory entry, or the "last" directory entry in a cluster. Values for LDIR_Ord do not
take on these two values over their range. Values for LDIR_Ord must run from 1 to (n OR
LAST_LONG_ENTRY). If they do not, the long entries are "damaged" and are treated as orphans by
the file system.

Second, an 8-bit checksum is computed on the name contained in the short directory entry at the time
the short and long directory entries are created. All 11 characters of the name in the short entry are
used in the checksum calculation. The check sum is placed in every long entry. If any of the check
sums in the set of long entries do not agree with the computed checksum of the name contained in the
short entry, then the long entries are treated as orphans. This can occur if a disk containing long and
short entries is taken to a previous version of MS-DOS/Windows and only the short name of a file or
directory with a long entries is renamed.

The algorithm, implemented in C, for computing the checksum is:

FAT: General Overview of On-Disk Format—Page 28

© 2000 Microsoft Corporation. All rights reserved. 28

//---
// ChkSum()
// Returns an unsigned byte checksum computed on an unsigned byte
// array. The array must be 11 bytes long and is assumed to contain
// a name stored in the format of a MS-DOS directory entry.
// Passed: pFcbName Pointer to an unsigned byte array assumed to be
// 11 bytes long.
// Returns: Sum An 8-bit unsigned checksum of the array pointed
// to by pFcbName.
//--
unsigned char ChkSum (unsigned char *pFcbName)
{

short FcbNameLen;
unsigned char Sum;

Sum = 0;
for (FcbNameLen=11; FcbNameLen!=0; FcbNameLen--) {

// NOTE: The operation is an unsigned char rotate right
Sum = ((Sum & 1) ? 0x80 : 0) + (Sum >> 1) + *pFcbName++;

}
return (Sum);

}

As a consequence of this pairing, the short directory entry serves as the structure that contains fields
like: last access date, creation time, creation date, first cluster, and size. It also holds a name that is
visible on previous versions of MS-DOS/Windows. The long directory entries are free to contain new
information and need not replicate information already available in the short entry. Principally, the
long entries contain the long name of a file. The name contained in a short entry which is associated
with a set of long entries is termed the alias name, or simply alias, of the file.

Storage of a Long-Name Within Long Directory Entries

A long name can consist of more characters than can fit in a single long directory entry. When this
occurs the name is stored in more than one long entry. In any event, the name fields themselves
within the long entries are disjoint. The following example is provided to illustrate how a long name
is stored across several long directory entries. Names are also NUL terminated and padded with
0xFFFF characters in order to detect corruption of long name fields by errant disk utilities. A name
that fits exactly in a n long directory entries (i.e. is an integer multiple of 13) is not NUL terminated
and not padded with 0xFFFFs.

Suppose a file is created with the name: "The quick brown.fox". The following example illustrates
how the name is packed into long and short directory entries. Most fields in the directory entries are
also filled in as well.

Short entry

1st long entry

2nd long entry
(and last)

chk-
sum

chk-
sumT h e q u

i c k b r o

w n f o x.

T QH E U I F X~ 1 O

42h

01h

00h

00h

0000h

0000h

0000h

0000h FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh

0Fh

0Fh

20h Rsvd

Last
Access
Date

Last
Time

First
Cluster File Size

NT

Date
ModifiedDate

Time

Modified
LastCreated

Created

FAT: General Overview of On-Disk Format—Page 29

© 2000 Microsoft Corporation. All rights reserved. 29

The heuristics used to "auto-generate" a short name from a long name are explained in a later section.

Name Limits and Character Sets

Short Directory Entries

Short names are limited to 8 characters followed by an optional period (.) and extension of up to 3
characters. The total path length of a short name cannot exceed 80 characters (64 char path + 3 drive
letter + 12 for 8.3 name + NUL) including the trailing NUL. The characters may be any combination
of letters, digits, or characters with code point values greater than 127. The following special
characters are also allowed:

$ % ' - _ @ ~ ` ! () { } ^ # &

Names are stored in a short directory entry in the OEM code page that the system is configured for at
the time the directory entry is created. Short directory entries remain in OEM for compatibility with
previous versions of MS-DOS/Windows. OEM characters are single 8-bit characters or can be DBCS
character pairs for certain code pages.

Short names passed to the file system are always converted to upper case and their original case value
is lost. One problem that is generally true of most OEM code pages is that they map lower to upper
case extended characters in a non-unique fashion. That is, they map multiple extended characters to a
single upper case character. This creates problems because it does not preserve the information that
the extended character provides. This mapping also prevents the creation of some file names that
would normally differ, but because of the mapping to upper case they become the same file name.

Long Directory Entries

Long names are limited to 255 characters, not including the trailing NUL. The total path length of a
long name cannot exceed 260 characters, including the trailing NUL. The characters may be any
combination of those defined for short names with the addition of the period (.) character used
multiple times within the long name. A space is also a valid character in a long name as it always has
been for a short name. However, in short names it typically is not used. The following six special
characters are now allowed in a long name. They are not legal in a short name.

+ , ; = []

Embedded spaces within a long name are allowed. Leading and trailing spaces in a long name are
ignored.

Leading and embedded periods are allowed in a name and are stored in the long name. Trailing
periods are ignored.

Long names are stored in long directory entries in UNICODE. UNICODE characters are 16-bit
characters. It is not be possible to store UNICODE in short directory entries since the names stored
there are 8-bit characters or DBCS characters.

Long names passed to the file system are not converted to upper case and their original case value is
preserved. UNICODE solves the case mapping problem prevalent in some OEM code pages by
always providing a translation for lower case characters to a single, unique upper case character.

FAT: General Overview of On-Disk Format—Page 30

© 2000 Microsoft Corporation. All rights reserved. 30

Name Matching In Short & Long Names
The names contained in the set of all short directory entries are termed the "short name space". The
names contained in the set of all long directory entries are termed the "long name space". Together,
they form a single unified name space in which no duplicate names can exist. That is: any name
within a specific directory, whether it is a short name or a long name, can occur only once in the name
space. Furthermore, although the case of a name is preserved in a long name, no two names can have
the same name although the names on the media actually differ by case. That is names like "foobar"
cannot be created if there is already a short entry with a name of "FOOBAR" or a long name with a
name of "FooBar".

All types of search operations within the file system (i.e. find, open, create, delete, rename) are case-
insensitive. An open of "FOOBAR" will open either "FooBar" or "foobar" if one or the other exists.
A find using "FOOBAR" as a pattern will find the same files mentioned. The same rules are also true
for extended characters that are accented.

A short name search operation checks only the names of the short directory entries for a match. A
long name search operation checks both the long and short directory entries. As the file system
traverses a directory, it caches the long-name sub-components contained in long directory entries. As
soon as a short directory entry is encountered that is associated with the cached long name, the long
name search operation will check the cached long name first and then the short name for a match.

When a character on the media, whether it is stored in the OEM character set or in UNICODE, cannot
be translated into the appropriate character in the OEM or ANSI code page, it is always "translated" to
the "_" (underscore) character as it is returned to the user – it is NOT modified on the disk. This
character is the same in all OEM code pages and ANSI.

Naming Conventions and Long Names
An API allows the caller to specify the long name to be assigned to a file or directory. They do not
allow the caller to independently specify the short name. The reason for this prohibition is that the
short and long names are considered to be a single unified name space. As should be obvious the file
system's name space does not support duplicate names. In other words, a long name for a file may not
contain the same name, ignoring case, as the short name in a different file. This restriction is intended
to prevent confusion among users, and applications, regarding the proper name of a file or directory.
To make this restriction transparent, whenever a long name is created and the no matching long name
exists, the short name is automatically generated from the long name in such a way that it does not
collide with an existing short name.

The technique chosen to auto-generate short names from long names is modeled after Windows NT.
Auto-generated short names are composed of the basis-name and an optional numeric-tail.

The Basis-Name Generation Algorithm

The basis-name generation algorithm is outlined below. This is a sample algorithm and serves to
illustrate how short names can be auto-generated from long names. An implementation should follow
this basic sequence of steps.

1. The UNICODE name passed to the file system is converted to upper case.

2. The upper cased UNICODE name is converted to OEM.
if (the uppercased UNICODE glyph does not exist as an OEM glyph in the OEM code page)
 or (the OEM glyph is invalid in an 8.3 name)
{

FAT: General Overview of On-Disk Format—Page 31

© 2000 Microsoft Corporation. All rights reserved. 31

 Replace the glyph to an OEM '_' (underscore) character.
 Set a "lossy conversion" flag.
}

3. Strip all leading and embedded spaces from the long name.

4. Strip all leading periods from the long name.

5. While (not at end of the long name)
 and (char is not a period)
 and (total chars copied < 8)
{
 Copy characters into primary portion of the basis name
}

6. Insert a dot at the end of the primary components of the basis-name iff the basis name has an
extension after the last period in the name.

7. Scan for the last embedded period in the long name.
If (the last embedded period was found)
{
 While (not at end of the long name)
 and (total chars copied < 3)
 {
 Copy characters into extension portion of the basis name
 }
}

Proceed to numeric-tail generation.

The Numeric-Tail Generation Algorithm

 If (a "lossy conversion" was not flagged)

 and (the long name fits within the 8.3 naming conventions)
 and (the basis-name does not collide with any existing short name)
{
 The short name is only the basis-name without the numeric tail.
}
else
{
 Insert a numeric-tail "~n" to the end of the primary name such that the value of the "~n" is
chosen so that the
 name thus formed does not collide with any existing short name and that the primary name does
not exceed eight characters in length.
}

The "~n" string can range from "~1" to "~999999". The number "n" is chosen so that it is the next
number in a sequence of files with similar basis-names. For example, assume the following short
names existed: LETTER~1.DOC and LETTER~2.DOC. As expected, the next auto-generated name
of name of this type would be LETTER~3.DOC. Assume the following short names existed:
LETTER~1.DOC, LETTER~3.DOC. Again, the next auto-generated name of name of this type
would be LETTER~2.DOC. However, one absolutely cannot count on this behavior. In a directory
with a very large mix of names of this type, the selection algorithm is optimized for speed and may
select another "n" based on the characteristics of short names that end in "~n" and have similar leading
name patterns.

FAT: General Overview of On-Disk Format—Page 32

© 2000 Microsoft Corporation. All rights reserved. 32

Effect of Long Directory Entries on Down Level Versions of FAT
The support of long names is most important on the hard disk, however it will be supported on
removable media as well. The implementation provides support for long names without breaking
compatibility with the existing FAT format. A disk can be read by a down level system without any
compatibility problems. An existing disk does not go through a conversion process before it can start
using long names. All of the current files remain unmodified. The long name directory entries are
added when a long name is created. The addition of a long name to an existing file may require the
8.3 directory entry to be moved if the required adjacent directory entries are not available.

The long name entries are as hidden as hidden or system files are on a down level system. This is
enough to keep the casual user from causing problems. The user can copy the files off using the 8.3
name, and put new files on without any side effects

The interesting part of this is what happens when the disk is taken to a down level FAT system and the
directory is changed. This can affect the long name entries since the down level system ignores these
long names and will not ensure they are properly associated with the 8.3 names.

A down level system will only see the long name entries when searching for a label. On a down level
system, the volume label will be incorrectly reported if the true volume label does not come before all
of the long name entries in the root directory. This is because the long name entries also have the
volume label bit set. This is unfortunate, but is not a critical problem.

If an attempt is made to remove the volume label, one of the long name directory entries may be
deleted. This would be a rare occurrence. It is easily detected on an aware system. The long name
entry will no longer be a valid file entry, since one or more of the long entries is marked as deleted. If
the deleted entry is reused, then the attribute byte will not have the proper value for a long name entry.

If a file is renamed on a down level system, then only the short name will be renamed. The long name
will not be affected. Since the long and short names must be kept consistent across the name space, it
is desirable to have the long name become invalid as a result of this rename. The checksum of the 8.3
name that is kept in the long name directory provides the ability to detect this type of change. This
checksum will be checked to validate the long name before it is used. Rename will cause problems
only if the renamed 8.3 file name happens to have the same checksum. The checksum algorithm
chosen has a relatively flat distribution across the short name space.

This rename of the 8.3 name must also not conflict with any of the long names. Otherwise a down
level system could create a short name in one file that matches a long name, when case is ignored, in a
different file. To prevent this, the automatic creation of an 8.3 name from a long name, that has an 8.3
format, will directly map the long name to the 8.3 name by converting the characters to upper case.

If the file is deleted, then the long name is simply orphaned. If a new file is created, the long name
may be incorrectly associated with the new file name. As in the case of a rename the checksum of the
8.3 name will help prevent this incorrect association.

Validating The Contents of a Directory
These guidelines are provided so that disk maintenance utilities can verify individual directory entries
for 'correctness' while maintaining compatibility with future enhancements to the directory structure.

1. DO NOT look at the content of directory entry fields marked 'reserved' and assume that, if they

are any value other than zero, that they are 'bad'.
2. DO NOT reset the content of directory entry fields marked reserved to zero when they contain

non-zero values (under the assumption that they are "bad"). Directory entry fields are designated

FAT: General Overview of On-Disk Format—Page 33

© 2000 Microsoft Corporation. All rights reserved. 33

reserved, rather than must-be-zero. They should be ignored by your application.. These fields are
intended for future extensions of the file system. By ignoring them an utility can continue to run
on future versions of the operating system.

3. DO use the A_LONG attribute first when determining whether a directory entry is a long
directory entry or a short directory entry. The following algorithm is the correct algorithm for
making this determination:

 if (((LDIR_attr & ATTR_LONG_NAME_MASK) == ATTR_LONG_NAME) && (LDIR_Ord != 0xE5))

{
 /* Found an active long name sub-component. */
}

4. DO use bits 4 and 3 of a short entry together when determining what type of short directory entry

is being inspected. The following algorithm is the correct algorithm for making this
determination:

 if (((LDIR_attr & ATTR_LONG_NAME_MASK) != ATTR_LONG_NAME) && (LDIR_Ord != 0xE5))

{
 if ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == 0x00)
 /* Found a file. */
 else if ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == ATTR_DIRECTORY)
 /* Found a directory. */
 else if ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == ATTR_VOLUME_ID)
 /* Found a volume label. */
 else
 /* Found an invalid directory entry. */
}

5. DO NOT assume that a non-zero value in the "type" field indicates a bad directory entry. Do not

force the "type" field to zero.
6. Use the "checksum" field as a value to validate the directory entry. The "first cluster" field is

currently being set to zero, though this might change in future.

Other Notes Relating to FAT Directories
• Long File Name directory entries are identical on all FAT types. See the preceeding sections for

details.

• DIR_FileSize is a 32-bit field. For FAT32 volumes, your FAT file system driver must not allow a

cluster chain to be created that is longer than 0x100000000 bytes, and the last byte of the last
cluster in a chain that long cannot be allocated to the file. This must be done so that no file has a
file size > 0xFFFFFFFF bytes. This is a fundamental limit of all FAT file systems. The maximum
allowed file size on a FAT volume is 0xFFFFFFFF (4,294,967,295) bytes.

• Similarly, a FAT file system driver must not allow a directory (a file that is actually a container for

other files) to be larger than 65,536 * 32 (2,097,152) bytes.

NOTE: This limit does not apply to the number of files in the directory. This limit is on the size of
the directory itself and has nothing to do with the content of the directory. There are two reasons
for this limit:

1. Because FAT directories are not sorted or indexed, it is a bad idea to create huge directories;

otherwise, operations like creating a new entry (which requires every allocated directory entry
to be checked to verify that the name doesn’t already exist in the directory) become very slow.

FAT: General Overview of On-Disk Format—Page 34

© 2000 Microsoft Corporation. All rights reserved. 34

2. There are many FAT file system drivers and disk utilities, including Microsoft’s, that expect to
be able to count the entries in a directory using a 16-bit WORD variable. For this reason,
directories cannot have more than 16-bits worth of entries.

42

Crash Consistency: FSCK and Journaling

As we’ve seen thus far, the file system manages a set of data structures to
implement the expected abstractions: files, directories, and all of the other
metadata needed to support the basic abstraction that we expect from a
file system. Unlike most data structures (for example, those found in
memory of a running program), file system data structures must persist,
i.e., they must survive over the long haul, stored on devices that retain
data despite power loss (such as hard disks or flash-based SSDs).

One major challenge faced by a file system is how to update persis-
tent data structures despite the presence of a power loss or system crash.
Specifically, what happens if, right in the middle of updating on-disk
structures, someone trips over the power cord and the machine loses
power? Or the operating system encounters a bug and crashes? Because
of power losses and crashes, updating a persistent data structure can be
quite tricky, and leads to a new and interesting problem in file system
implementation, known as the crash-consistency problem.

This problem is quite simple to understand. Imagine you have to up-
date two on-disk structures, A and B, in order to complete a particular
operation. Because the disk only services a single request at a time, one
of these requests will reach the disk first (either A or B). If the system
crashes or loses power after one write completes, the on-disk structure
will be left in an inconsistent state. And thus, we have a problem that all
file systems need to solve:

THE CRUX: HOW TO UPDATE THE DISK DESPITE CRASHES

The system may crash or lose power between any two writes, and
thus the on-disk state may only partially get updated. After the crash,
the system boots and wishes to mount the file system again (in order to
access files and such). Given that crashes can occur at arbitrary points
in time, how do we ensure the file system keeps the on-disk image in a
reasonable state?

1

2 CRASH CONSISTENCY: FSCK AND JOURNALING

In this chapter, we’ll describe this problem in more detail, and look
at some methods file systems have used to overcome it. We’ll begin by
examining the approach taken by older file systems, known as fsck or the
file system checker. We’ll then turn our attention to another approach,
known as journaling (also known as write-ahead logging), a technique
which adds a little bit of overhead to each write but recovers more quickly
from crashes or power losses. We will discuss the basic machinery of
journaling, including a few different flavors of journaling that Linux ext3
[T98,PAA05] (a relatively modern journaling file system) implements.

42.1 A Detailed Example

To kick off our investigation of journaling, let’s look at an example.
We’ll need to use a workload that updates on-disk structures in some
way. Assume here that the workload is simple: the append of a single
data block to an existing file. The append is accomplished by opening the
file, calling lseek() to move the file offset to the end of the file, and then
issuing a single 4KB write to the file before closing it.

Let’s also assume we are using standard simple file system structures
on the disk, similar to file systems we have seen before. This tiny example
includes an inode bitmap (with just 8 bits, one per inode), a data bitmap
(also 8 bits, one per data block), inodes (8 total, numbered 0 to 7, and
spread across four blocks), and data blocks (8 total, numbered 0 to 7).
Here is a diagram of this file system:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v1]
Da

If you look at the structures in the picture, you can see that a single inode
is allocated (inode number 2), which is marked in the inode bitmap, and a
single allocated data block (data block 4), also marked in the data bitmap.
The inode is denoted I[v1], as it is the first version of this inode; it will
soon be updated (due to the workload described above).

Let’s peek inside this simplified inode too. Inside of I[v1], we see:

owner : remzi

permissions : read-write

size : 1

pointer : 4

pointer : null

pointer : null

pointer : null

In this simplified inode, the size of the file is 1 (it has one block al-
located), the first direct pointer points to block 4 (the first data block of
the file, Da), and all three other direct pointers are set to null (indicating

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 3

that they are not used). Of course, real inodes have many more fields; see
previous chapters for more information.

When we append to the file, we are adding a new data block to it, and
thus must update three on-disk structures: the inode (which must point
to the new block as well as have a bigger size due to the append), the
new data block Db, and a new version of the data bitmap (call it B[v2]) to
indicate that the new data block has been allocated.

Thus, in the memory of the system, we have three blocks which we
must write to disk. The updated inode (inode version 2, or I[v2] for short)
now looks like this:

owner : remzi

permissions : read-write

size : 2

pointer : 4

pointer : 5

pointer : null

pointer : null

The updated data bitmap (B[v2]) now looks like this: 00001100. Finally,
there is the data block (Db), which is just filled with whatever it is users
put into files. Stolen music perhaps?

What we would like is for the final on-disk image of the file system to
look like this:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v2]
Da Db

To achieve this transition, the file system must perform three sepa-
rate writes to the disk, one each for the inode (I[v2]), bitmap (B[v2]), and
data block (Db). Note that these writes usually don’t happen immedi-
ately when the user issues a write() system call; rather, the dirty in-
ode, bitmap, and new data will sit in main memory (in the page cache
or buffer cache) for some time first; then, when the file system finally
decides to write them to disk (after say 5 seconds or 30 seconds), the file
system will issue the requisite write requests to the disk. Unfortunately,
a crash may occur and thus interfere with these updates to the disk. In
particular, if a crash happens after one or two of these writes have taken
place, but not all three, the file system could be left in a funny state.

Crash Scenarios

To understand the problem better, let’s look at some example crash sce-
narios. Imagine only a single write succeeds; there are thus three possible
outcomes, which we list here:

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

4 CRASH CONSISTENCY: FSCK AND JOURNALING

• Just the data block (Db) is written to disk. In this case, the data is
on disk, but there is no inode that points to it and no bitmap that
even says the block is allocated. Thus, it is as if the write never
occurred. This case is not a problem at all, from the perspective of

file-system crash consistency1.

• Just the updated inode (I[v2]) is written to disk. In this case, the
inode points to the disk address (5) where Db was about to be writ-
ten, but Db has not yet been written there. Thus, if we trust that
pointer, we will read garbage data from the disk (the old contents
of disk address 5).

Further, we have a new problem, which we call a file-system in-
consistency. The on-disk bitmap is telling us that data block 5 has
not been allocated, but the inode is saying that it has. The disagree-
ment between the bitmap and the inode is an inconsistency in the
data structures of the file system; to use the file system, we must
somehow resolve this problem (more on that below).

• Just the updated bitmap (B[v2]) is written to disk. In this case, the
bitmap indicates that block 5 is allocated, but there is no inode that
points to it. Thus the file system is inconsistent again; if left unre-
solved, this write would result in a space leak, as block 5 would
never be used by the file system.

There are also three more crash scenarios in this attempt to write three
blocks to disk. In these cases, two writes succeed and the last one fails:

• The inode (I[v2]) and bitmap (B[v2]) are written to disk, but not
data (Db). In this case, the file system metadata is completely con-
sistent: the inode has a pointer to block 5, the bitmap indicates that
5 is in use, and thus everything looks OK from the perspective of
the file system’s metadata. But there is one problem: 5 has garbage
in it again.

• The inode (I[v2]) and the data block (Db) are written, but not the
bitmap (B[v2]). In this case, we have the inode pointing to the cor-
rect data on disk, but again have an inconsistency between the in-
ode and the old version of the bitmap (B1). Thus, we once again
need to resolve the problem before using the file system.

• The bitmap (B[v2]) and data block (Db) are written, but not the
inode (I[v2]). In this case, we again have an inconsistency between
the inode and the data bitmap. However, even though the block
was written and the bitmap indicates its usage, we have no idea
which file it belongs to, as no inode points to the file.

1However, it might be a problem for the user, who just lost some data!

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 5

The Crash Consistency Problem

Hopefully, from these crash scenarios, you can see the many problems
that can occur to our on-disk file system image because of crashes: we can
have inconsistency in file system data structures; we can have space leaks;
we can return garbage data to a user; and so forth. What we’d like to do
ideally is move the file system from one consistent state (e.g., before the
file got appended to) to another atomically (e.g., after the inode, bitmap,
and new data block have been written to disk). Unfortunately, we can’t
do this easily because the disk only commits one write at a time, and
crashes or power loss may occur between these updates. We call this
general problem the crash-consistency problem (we could also call it the
consistent-update problem).

42.2 Solution #1: The File System Checker

Early file systems took a simple approach to crash consistency. Basi-
cally, they decided to let inconsistencies happen and then fix them later
(when rebooting). A classic example of this lazy approach is found in a

tool that does this: fsck2. fsck is a UNIX tool for finding such inconsis-
tencies and repairing them [M86]; similar tools to check and repair a disk
partition exist on different systems. Note that such an approach can’t fix
all problems; consider, for example, the case above where the file system
looks consistent but the inode points to garbage data. The only real goal
is to make sure the file system metadata is internally consistent.

The tool fsck operates in a number of phases, as summarized in
McKusick and Kowalski’s paper [MK96]. It is run before the file system
is mounted and made available (fsck assumes that no other file-system
activity is on-going while it runs); once finished, the on-disk file system
should be consistent and thus can be made accessible to users.

Here is a basic summary of what fsck does:

• Superblock: fsck first checks if the superblock looks reasonable,
mostly doing sanity checks such as making sure the file system size
is greater than the number of blocks that have been allocated. Usu-
ally the goal of these sanity checks is to find a suspect (corrupt)
superblock; in this case, the system (or administrator) may decide
to use an alternate copy of the superblock.

• Free blocks: Next, fsck scans the inodes, indirect blocks, double
indirect blocks, etc., to build an understanding of which blocks are
currently allocated within the file system. It uses this knowledge
to produce a correct version of the allocation bitmaps; thus, if there
is any inconsistency between bitmaps and inodes, it is resolved by
trusting the information within the inodes. The same type of check
is performed for all the inodes, making sure that all inodes that look
like they are in use are marked as such in the inode bitmaps.

2Pronounced either “eff-ess-see-kay”, “eff-ess-check”, or, if you don’t like the tool, “eff-
suck”. Yes, serious professional people use this term.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

6 CRASH CONSISTENCY: FSCK AND JOURNALING

• Inode state: Each inode is checked for corruption or other prob-
lems. For example, fsck makes sure that each allocated inode has
a valid type field (e.g., regular file, directory, symbolic link, etc.). If
there are problems with the inode fields that are not easily fixed, the
inode is considered suspect and cleared by fsck; the inode bitmap
is correspondingly updated.

• Inode links: fsck also verifies the link count of each allocated in-
ode. As you may recall, the link count indicates the number of dif-
ferent directories that contain a reference (i.e., a link) to this par-
ticular file. To verify the link count, fsck scans through the en-
tire directory tree, starting at the root directory, and builds its own
link counts for every file and directory in the file system. If there
is a mismatch between the newly-calculated count and that found
within an inode, corrective action must be taken, usually by fixing
the count within the inode. If an allocated inode is discovered but
no directory refers to it, it is moved to the lost+found directory.

• Duplicates: fsck also checks for duplicate pointers, i.e., cases where
two different inodes refer to the same block. If one inode is obvi-
ously bad, it may be cleared. Alternately, the pointed-to block could
be copied, thus giving each inode its own copy as desired.

• Bad blocks: A check for bad block pointers is also performed while
scanning through the list of all pointers. A pointer is considered
“bad” if it obviously points to something outside its valid range,
e.g., it has an address that refers to a block greater than the parti-
tion size. In this case, fsck can’t do anything too intelligent; it just
removes (clears) the pointer from the inode or indirect block.

• Directory checks: fsck does not understand the contents of user
files; however, directories hold specifically formatted information
created by the file system itself. Thus, fsck performs additional
integrity checks on the contents of each directory, making sure that
“.” and “..” are the first entries, that each inode referred to in a
directory entry is allocated, and ensuring that no directory is linked
to more than once in the entire hierarchy.

As you can see, building a working fsck requires intricate knowledge
of the file system; making sure such a piece of code works correctly in all
cases can be challenging [G+08]. However, fsck (and similar approaches)
have a bigger and perhaps more fundamental problem: they are too slow.
With a very large disk volume, scanning the entire disk to find all the
allocated blocks and read the entire directory tree may take many minutes
or hours. Performance of fsck, as disks grew in capacity and RAIDs
grew in popularity, became prohibitive (despite recent advances [M+13]).

At a higher level, the basic premise of fsck seems just a tad irra-
tional. Consider our example above, where just three blocks are written
to the disk; it is incredibly expensive to scan the entire disk to fix prob-
lems that occurred during an update of just three blocks. This situation is
akin to dropping your keys on the floor in your bedroom, and then com-

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 7

mencing a search-the-entire-house-for-keys recovery algorithm, starting in
the basement and working your way through every room. It works but is
wasteful. Thus, as disks (and RAIDs) grew, researchers and practitioners
started to look for other solutions.

42.3 Solution #2: Journaling (or Write-Ahead Logging)

Probably the most popular solution to the consistent update problem
is to steal an idea from the world of database management systems. That
idea, known as write-ahead logging, was invented to address exactly this
type of problem. In file systems, we usually call write-ahead logging jour-
naling for historical reasons. The first file system to do this was Cedar
[H87], though many modern file systems use the idea, including Linux
ext3 and ext4, reiserfs, IBM’s JFS, SGI’s XFS, and Windows NTFS.

The basic idea is as follows. When updating the disk, before over-
writing the structures in place, first write down a little note (somewhere
else on the disk, in a well-known location) describing what you are about
to do. Writing this note is the “write ahead” part, and we write it to a
structure that we organize as a “log”; hence, write-ahead logging.

By writing the note to disk, you are guaranteeing that if a crash takes
places during the update (overwrite) of the structures you are updating,
you can go back and look at the note you made and try again; thus, you
will know exactly what to fix (and how to fix it) after a crash, instead
of having to scan the entire disk. By design, journaling thus adds a bit
of work during updates to greatly reduce the amount of work required
during recovery.

We’ll now describe how Linux ext3, a popular journaling file system,
incorporates journaling into the file system. Most of the on-disk struc-
tures are identical to Linux ext2, e.g., the disk is divided into block groups,
and each block group has an inode and data bitmap as well as inodes and
data blocks. The new key structure is the journal itself, which occupies
some small amount of space within the partition or on another device.
Thus, an ext2 file system (without journaling) looks like this:

Super Group 0 Group 1 . . . Group N

Assuming the journal is placed within the same file system image
(though sometimes it is placed on a separate device, or as a file within
the file system), an ext3 file system with a journal looks like this:

Super Journal Group 0 Group 1 . . . Group N

The real difference is just the presence of the journal, and of course,
how it is used.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

8 CRASH CONSISTENCY: FSCK AND JOURNALING

Data Journaling

Let’s look at a simple example to understand how data journaling works.
Data journaling is available as a mode with the Linux ext3 file system,
from which much of this discussion is based.

Say we have our canonical update again, where we wish to write the
inode (I[v2]), bitmap (B[v2]), and data block (Db) to disk again. Before
writing them to their final disk locations, we are now first going to write
them to the log (a.k.a. journal). This is what this will look like in the log:

J
o

u
rn

a
l

TxB I[v2] B[v2] Db TxE

You can see we have written five blocks here. The transaction begin
(TxB) tells us about this update, including information about the pend-
ing update to the file system (e.g., the final addresses of the blocks I[v2],
B[v2], and Db), as well as some kind of transaction identifier (TID). The
middle three blocks just contain the exact contents of the blocks them-
selves; this is known as physical logging as we are putting the exact
physical contents of the update in the journal (an alternate idea, logi-
cal logging, puts a more compact logical representation of the update in
the journal, e.g., “this update wishes to append data block Db to file X”,
which is a little more complex but can save space in the log and perhaps
improve performance). The final block (TxE) is a marker of the end of this
transaction, and will also contain the TID.

Once this transaction is safely on disk, we are ready to overwrite the
old structures in the file system; this process is called checkpointing.
Thus, to checkpoint the file system (i.e., bring it up to date with the pend-
ing update in the journal), we issue the writes I[v2], B[v2], and Db to
their disk locations as seen above; if these writes complete successfully,
we have successfully checkpointed the file system and are basically done.
Thus, our initial sequence of operations:

1. Journal write: Write the transaction, including a transaction-begin
block, all pending data and metadata updates, and a transaction-
end block, to the log; wait for these writes to complete.

2. Checkpoint: Write the pending metadata and data updates to their
final locations in the file system.

In our example, we would write TxB, I[v2], B[v2], Db, and TxE to the
journal first. When these writes complete, we would complete the update
by checkpointing I[v2], B[v2], and Db, to their final locations on disk.

Things get a little trickier when a crash occurs during the writes to
the journal. Here, we are trying to write the set of blocks in the transac-
tion (e.g., TxB, I[v2], B[v2], Db, TxE) to disk. One simple way to do this
would be to issue each one at a time, waiting for each to complete, and
then issuing the next. However, this is slow. Ideally, we’d like to issue

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 9

ASIDE: FORCING WRITES TO DISK

To enforce ordering between two disk writes, modern file systems have
to take a few extra precautions. In olden times, forcing ordering between
two writes, A and B, was easy: just issue the write of A to the disk, wait
for the disk to interrupt the OS when the write is complete, and then issue
the write of B.

Things got slightly more complex due to the increased use of write caches
within disks. With write buffering enabled (sometimes called immediate
reporting), a disk will inform the OS the write is complete when it simply
has been placed in the disk’s memory cache, and has not yet reached
disk. If the OS then issues a subsequent write, it is not guaranteed to
reach the disk after previous writes; thus ordering between writes is not
preserved. One solution is to disable write buffering. However, more
modern systems take extra precautions and issue explicit write barriers;
such a barrier, when it completes, guarantees that all writes issued before
the barrier will reach disk before any writes issued after the barrier.

All of this machinery requires a great deal of trust in the correct oper-
ation of the disk. Unfortunately, recent research shows that some disk
manufacturers, in an effort to deliver “higher performing” disks, explic-
itly ignore write-barrier requests, thus making the disks seemingly run
faster but at the risk of incorrect operation [C+13, R+11]. As Kahan said,
the fast almost always beats out the slow, even if the fast is wrong.

all five block writes at once, as this would turn five writes into a single
sequential write and thus be faster. However, this is unsafe, for the fol-
lowing reason: given such a big write, the disk internally may perform
scheduling and complete small pieces of the big write in any order. Thus,
the disk internally may (1) write TxB, I[v2], B[v2], and TxE and only later
(2) write Db. Unfortunately, if the disk loses power between (1) and (2),
this is what ends up on disk:

J
o

u
rn

a
l

TxB
id=1

I[v2] B[v2] ?? TxE
id=1

Why is this a problem? Well, the transaction looks like a valid trans-
action (it has a begin and an end with matching sequence numbers). Fur-
ther, the file system can’t look at that fourth block and know it is wrong;
after all, it is arbitrary user data. Thus, if the system now reboots and
runs recovery, it will replay this transaction, and ignorantly copy the con-
tents of the garbage block ’??’ to the location where Db is supposed to
live. This is bad for arbitrary user data in a file; it is much worse if it hap-
pens to a critical piece of file system, such as the superblock, which could
render the file system unmountable.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

10 CRASH CONSISTENCY: FSCK AND JOURNALING

ASIDE: OPTIMIZING LOG WRITES

You may have noticed a particular inefficiency of writing to the log.
Namely, the file system first has to write out the transaction-begin block
and contents of the transaction; only after these writes complete can the
file system send the transaction-end block to disk. The performance im-
pact is clear, if you think about how a disk works: usually an extra rota-
tion is incurred (think about why).

One of our former graduate students, Vijayan Prabhakaran, had a simple
idea to fix this problem [P+05]. When writing a transaction to the journal,
include a checksum of the contents of the journal in the begin and end
blocks. Doing so enables the file system to write the entire transaction at
once, without incurring a wait; if, during recovery, the file system sees
a mismatch in the computed checksum versus the stored checksum in
the transaction, it can conclude that a crash occurred during the write
of the transaction and thus discard the file-system update. Thus, with a
small tweak in the write protocol and recovery system, a file system can
achieve faster common-case performance; on top of that, the system is
slightly more reliable, as any reads from the journal are now protected by
a checksum.

This simple fix was attractive enough to gain the notice of Linux file sys-
tem developers, who then incorporated it into the next generation Linux
file system, called (you guessed it!) Linux ext4. It now ships on mil-
lions of machines worldwide, including the Android handheld platform.
Thus, every time you write to disk on many Linux-based systems, a little
code developed at Wisconsin makes your system a little faster and more
reliable.

To avoid this problem, the file system issues the transactional write in
two steps. First, it writes all blocks except the TxE block to the journal,
issuing these writes all at once. When these writes complete, the journal
will look something like this (assuming our append workload again):

J
o

u
rn

a
l

TxB
id=1

I[v2] B[v2] Db

When those writes complete, the file system issues the write of the TxE
block, thus leaving the journal in this final, safe state:

J
o

u
rn

a
l

TxB
id=1

I[v2] B[v2] Db TxE
id=1

An important aspect of this process is the atomicity guarantee pro-
vided by the disk. It turns out that the disk guarantees that any 512-byte

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 11

write will either happen or not (and never be half-written); thus, to make
sure the write of TxE is atomic, one should make it a single 512-byte block.
Thus, our current protocol to update the file system, with each of its three
phases labeled:

1. Journal write: Write the contents of the transaction (including TxB,
metadata, and data) to the log; wait for these writes to complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for write to complete; transaction is said to be
committed.

3. Checkpoint: Write the contents of the update (metadata and data)
to their final on-disk locations.

Recovery

Let’s now understand how a file system can use the contents of the jour-
nal to recover from a crash. A crash may happen at any time during this
sequence of updates. If the crash happens before the transaction is writ-
ten safely to the log (i.e., before Step 2 above completes), then our job
is easy: the pending update is simply skipped. If the crash happens af-
ter the transaction has committed to the log, but before the checkpoint is
complete, the file system can recover the update as follows. When the
system boots, the file system recovery process will scan the log and look
for transactions that have committed to the disk; these transactions are
thus replayed (in order), with the file system again attempting to write
out the blocks in the transaction to their final on-disk locations. This form
of logging is one of the simplest forms there is, and is called redo logging.
By recovering the committed transactions in the journal, the file system
ensures that the on-disk structures are consistent, and thus can proceed
by mounting the file system and readying itself for new requests.

Note that it is fine for a crash to happen at any point during check-
pointing, even after some of the updates to the final locations of the blocks
have completed. In the worst case, some of these updates are simply per-
formed again during recovery. Because recovery is a rare operation (only
taking place after an unexpected system crash), a few redundant writes

are nothing to worry about3.

Batching Log Updates

You might have noticed that the basic protocol could add a lot of extra
disk traffic. For example, imagine we create two files in a row, called
file1 and file2, in the same directory. To create one file, one has to
update a number of on-disk structures, minimally including: the inode
bitmap (to allocate a new inode), the newly-created inode of the file, the

3Unless you worry about everything, in which case we can’t help you. Stop worrying so
much, it is unhealthy! But now you’re probably worried about over-worrying.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

12 CRASH CONSISTENCY: FSCK AND JOURNALING

data block of the parent directory containing the new directory entry, as
well as the parent directory inode (which now has a new modification
time). With journaling, we logically commit all of this information to the
journal for each of our two file creations; because the files are in the same
directory, and assuming they even have inodes within the same inode
block, this means that if we’re not careful, we’ll end up writing these
same blocks over and over.

To remedy this problem, some file systems do not commit each update
to disk one at a time (e.g., Linux ext3); rather, one can buffer all updates
into a global transaction. In our example above, when the two files are
created, the file system just marks the in-memory inode bitmap, inodes
of the files, directory data, and directory inode as dirty, and adds them to
the list of blocks that form the current transaction. When it is finally time
to write these blocks to disk (say, after a timeout of 5 seconds), this single
global transaction is committed containing all of the updates described
above. Thus, by buffering updates, a file system can avoid excessive write
traffic to disk in many cases.

Making The Log Finite

We thus have arrived at a basic protocol for updating file-system on-disk
structures. The file system buffers updates in memory for some time;
when it is finally time to write to disk, the file system first carefully writes
out the details of the transaction to the journal (a.k.a. write-ahead log);
after the transaction is complete, the file system checkpoints those blocks
to their final locations on disk.

However, the log is of a finite size. If we keep adding transactions to
it (as in this figure), it will soon fill. What do you think happens then?

J
o

u
rn

a
l

Tx1 Tx2 Tx3 Tx4 Tx5 ...

Two problems arise when the log becomes full. The first is simpler,
but less critical: the larger the log, the longer recovery will take, as the
recovery process must replay all the transactions within the log (in order)
to recover. The second is more of an issue: when the log is full (or nearly
full), no further transactions can be committed to the disk, thus making
the file system “less than useful” (i.e., useless).

To address these problems, journaling file systems treat the log as a
circular data structure, re-using it over and over; this is why the journal
is sometimes referred to as a circular log. To do so, the file system must
take action some time after a checkpoint. Specifically, once a transaction
has been checkpointed, the file system should free the space it was occu-
pying within the journal, allowing the log space to be reused. There are
many ways to achieve this end; for example, you could simply mark the

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 13

oldest and newest non-checkpointed transactions in the log in a journal
superblock; all other space is free. Here is a graphical depiction:

J
o

u
rn

a
l

Journal

Super
Tx1 Tx2 Tx3 Tx4 Tx5 ...

In the journal superblock (not to be confused with the main file system
superblock), the journaling system records enough information to know
which transactions have not yet been checkpointed, and thus reduces re-
covery time as well as enables re-use of the log in a circular fashion. And
thus we add another step to our basic protocol:

1. Journal write: Write the contents of the transaction (containing TxB
and the contents of the update) to the log; wait for these writes to
complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction is
now committed.

3. Checkpoint: Write the contents of the update to their final locations
within the file system.

4. Free: Some time later, mark the transaction free in the journal by
updating the journal superblock.

Thus we have our final data journaling protocol. But there is still a
problem: we are writing each data block to the disk twice, which is a
heavy cost to pay, especially for something as rare as a system crash. Can
you figure out a way to retain consistency without writing data twice?

Metadata Journaling

Although recovery is now fast (scanning the journal and replaying a few
transactions as opposed to scanning the entire disk), normal operation
of the file system is slower than we might desire. In particular, for each
write to disk, we are now also writing to the journal first, thus doubling
write traffic; this doubling is especially painful during sequential write
workloads, which now will proceed at half the peak write bandwidth of
the drive. Further, between writes to the journal and writes to the main
file system, there is a costly seek, which adds noticeable overhead for
some workloads.

Because of the high cost of writing every data block to disk twice, peo-
ple have tried a few different things in order to speed up performance.
For example, the mode of journaling we described above is often called
data journaling (as in Linux ext3), as it journals all user data (in addition
to the metadata of the file system). A simpler (and more common) form
of journaling is sometimes called ordered journaling (or just metadata

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

14 CRASH CONSISTENCY: FSCK AND JOURNALING

journaling), and it is nearly the same, except that user data is not writ-
ten to the journal. Thus, when performing the same update as above, the
following information would be written to the journal:

J
o

u
rn

a
l

TxB I[v2] B[v2] TxE

The data block Db, previously written to the log, would instead be
written to the file system proper, avoiding the extra write; given that most
I/O traffic to the disk is data, not writing data twice substantially reduces
the I/O load of journaling. The modification does raise an interesting
question, though: when should we write data blocks to disk?

Let’s again consider our example append of a file to understand the
problem better. The update consists of three blocks: I[v2], B[v2], and
Db. The first two are both metadata and will be logged and then check-
pointed; the latter will only be written once to the file system. When
should we write Db to disk? Does it matter?

As it turns out, the ordering of the data write does matter for metadata-
only journaling. For example, what if we write Db to disk after the trans-
action (containing I[v2] and B[v2]) completes? Unfortunately, this ap-
proach has a problem: the file system is consistent but I[v2] may end up
pointing to garbage data. Specifically, consider the case where I[v2] and
B[v2] are written but Db did not make it to disk. The file system will then
try to recover. Because Db is not in the log, the file system will replay
writes to I[v2] and B[v2], and produce a consistent file system (from the
perspective of file-system metadata). However, I[v2] will be pointing to
garbage data, i.e., at whatever was in the slot where Db was headed.

To ensure this situation does not arise, some file systems (e.g., Linux
ext3) write data blocks (of regular files) to the disk first, before related
metadata is written to disk. Specifically, the protocol is as follows:

1. Data write: Write data to final location; wait for completion
(the wait is optional; see below for details).

2. Journal metadata write: Write the begin block and metadata to the
log; wait for writes to complete.

3. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction (in-
cluding data) is now committed.

4. Checkpoint metadata: Write the contents of the metadata update
to their final locations within the file system.

5. Free: Later, mark the transaction free in journal superblock.

By forcing the data write first, a file system can guarantee that a pointer
will never point to garbage. Indeed, this rule of “write the pointed-to
object before the object that points to it” is at the core of crash consis-
tency, and is exploited even further by other crash consistency schemes
[GP94] (see below for details).

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 15

In most systems, metadata journaling (akin to ordered journaling of
ext3) is more popular than full data journaling. For example, Windows
NTFS and SGI’s XFS both use some form of metadata journaling. Linux
ext3 gives you the option of choosing either data, ordered, or unordered
modes (in unordered mode, data can be written at any time). All of these
modes keep metadata consistent; they vary in their semantics for data.

Finally, note that forcing the data write to complete (Step 1) before
issuing writes to the journal (Step 2) is not required for correctness, as
indicated in the protocol above. Specifically, it would be fine to issue data
writes as well as the transaction-begin block and metadata to the journal;
the only real requirement is that Steps 1 and 2 complete before the issuing
of the journal commit block (Step 3).

Tricky Case: Block Reuse

There are some interesting corner cases that make journaling more tricky,
and thus are worth discussing. A number of them revolve around block
reuse; as Stephen Tweedie (one of the main forces behind ext3) said:

“What’s the hideous part of the entire system? ... It’s deleting files.
Everything to do with delete is hairy. Everything to do with delete...
you have nightmares around what happens if blocks get deleted and
then reallocated.” [T00]

The particular example Tweedie gives is as follows. Suppose you are
using some form of metadata journaling (and thus data blocks for files
are not journaled). Let’s say you have a directory called foo. The user
adds an entry to foo (say by creating a file), and thus the contents of
foo (because directories are considered metadata) are written to the log;
assume the location of the foo directory data is block 1000. The log thus
contains something like this:

J
o

u
rn

a
l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

At this point, the user deletes everything in the directory as well as the
directory itself, freeing up block 1000 for reuse. Finally, the user creates a
new file (say foobar), which ends up reusing the same block (1000) that
used to belong to foo. The inode of foobar is committed to disk, as is
its data; note, however, because metadata journaling is in use, only the
inode of foobar is committed to the journal; the newly-written data in
block 1000 in the file foobar is not journaled.

J
o

u
rn

a
l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

TxB
id=2

I[foobar]
ptr:1000

TxE
id=2

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

16 CRASH CONSISTENCY: FSCK AND JOURNALING

Journal File System
TxB Contents TxE Metadata Data

(metadata) (data)

issue issue issue
complete

complete
complete

issue
complete

issue issue
complete

complete

Figure 42.1: Data Journaling Timeline

Now assume a crash occurs and all of this information is still in the
log. During replay, the recovery process simply replays everything in
the log, including the write of directory data in block 1000; the replay
thus overwrites the user data of current file foobar with old directory
contents! Clearly this is not a correct recovery action, and certainly it will
be a surprise to the user when reading the file foobar.

There are a number of solutions to this problem. One could, for ex-
ample, never reuse blocks until the delete of said blocks is checkpointed
out of the journal. What Linux ext3 does instead is to add a new type
of record to the journal, known as a revoke record. In the case above,
deleting the directory would cause a revoke record to be written to the
journal. When replaying the journal, the system first scans for such re-
voke records; any such revoked data is never replayed, thus avoiding the
problem mentioned above.

Wrapping Up Journaling: A Timeline

Before ending our discussion of journaling, we summarize the protocols
we have discussed with timelines depicting each of them. Figure 42.1
shows the protocol when journaling data as well as metadata, whereas
Figure 42.2 shows the protocol when journaling only metadata.

In each figure, time increases in the downward direction, and each row
in the figure shows the logical time that a write can be issued or might
complete. For example, in the data journaling protocol (Figure 42.1), the
writes of the transaction begin block (TxB) and the contents of the trans-
action can logically be issued at the same time, and thus can be completed
in any order; however, the write to the transaction end block (TxE) must
not be issued until said previous writes complete. Similarly, the check-
pointing writes to data and metadata blocks cannot begin until the trans-
action end block has committed. Horizontal dashed lines show where
write-ordering requirements must be obeyed.

A similar timeline is shown for the metadata journaling protocol. Note
that the data write can logically be issued at the same time as the writes

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 17

Journal File System
TxB Contents TxE Metadata Data

(metadata)

issue issue issue
complete

complete
complete

issue
complete

issue
complete

Figure 42.2: Metadata Journaling Timeline

to the transaction begin and the contents of the journal; however, it must
be issued and complete before the transaction end has been issued.

Finally, note that the time of completion marked for each write in the
timelines is arbitrary. In a real system, completion time is determined by
the I/O subsystem, which may reorder writes to improve performance.
The only guarantees about ordering that we have are those that must
be enforced for protocol correctness (and are shown via the horizontal
dashed lines in the figures).

42.4 Solution #3: Other Approaches

We’ve thus far described two options in keeping file system metadata
consistent: a lazy approach based on fsck, and a more active approach
known as journaling. However, these are not the only two approaches.
One such approach, known as Soft Updates [GP94], was introduced by
Ganger and Patt. This approach carefully orders all writes to the file sys-
tem to ensure that the on-disk structures are never left in an inconsis-
tent state. For example, by writing a pointed-to data block to disk before
the inode that points to it, we can ensure that the inode never points to
garbage; similar rules can be derived for all the structures of the file sys-
tem. Implementing Soft Updates can be a challenge, however; whereas
the journaling layer described above can be implemented with relatively
little knowledge of the exact file system structures, Soft Updates requires
intricate knowledge of each file system data structure and thus adds a fair
amount of complexity to the system.

Another approach is known as copy-on-write (yes, COW), and is used
in a number of popular file systems, including Sun’s ZFS [B07]. This tech-
nique never overwrites files or directories in place; rather, it places new
updates to previously unused locations on disk. After a number of up-
dates are completed, COW file systems flip the root structure of the file
system to include pointers to the newly updated structures. Doing so
makes keeping the file system consistent straightforward. We’ll be learn-
ing more about this technique when we discuss the log-structured file
system (LFS) in a future chapter; LFS is an early example of a COW.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

18 CRASH CONSISTENCY: FSCK AND JOURNALING

Another approach is one we just developed here at Wisconsin. In this
technique, entitled backpointer-based consistency (or BBC), no ordering
is enforced between writes. To achieve consistency, an additional back
pointer is added to every block in the system; for example, each data
block has a reference to the inode to which it belongs. When accessing
a file, the file system can determine if the file is consistent by checking if
the forward pointer (e.g., the address in the inode or direct block) points
to a block that refers back to it. If so, everything must have safely reached
disk and thus the file is consistent; if not, the file is inconsistent, and an
error is returned. By adding back pointers to the file system, a new form
of lazy crash consistency can be attained [C+12].

Finally, we also have explored techniques to reduce the number of
times a journal protocol has to wait for disk writes to complete. Entitled
optimistic crash consistency [C+13], this new approach issues as many
writes to disk as possible and uses a generalized form of the transaction
checksum [P+05], as well as a few other techniques, to detect inconsisten-
cies should they arise. For some workloads, these optimistic techniques
can improve performance by an order of magnitude. However, to truly
function well, a slightly different disk interface is required [C+13].

42.5 Summary

We have introduced the problem of crash consistency, and discussed
various approaches to attacking this problem. The older approach of
building a file system checker works but is likely too slow to recover on
modern systems. Thus, many file systems now use journaling. Journaling
reduces recovery time from O(size-of-the-disk-volume) to O(size-of-the-
log), thus speeding recovery substantially after a crash and restart. For
this reason, many modern file systems use journaling. We have also seen
that journaling can come in many different forms; the most commonly
used is ordered metadata journaling, which reduces the amount of traffic
to the journal while still preserving reasonable consistency guarantees for
both file system metadata as well as user data.

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 19

References

[B07] “ZFS: The Last Word in File Systems”
Jeff Bonwick and Bill Moore
Available: http://www.ostep.org/Citations/zfs last.pdf
ZFS uses copy-on-write and journaling, actually, as in some cases, logging writes to disk will perform
better.

[C+12] “Consistency Without Ordering”
Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
FAST ’12, San Jose, California
A recent paper of ours about a new form of crash consistency based on back pointers. Read it for the
exciting details!

[C+13] “Optimistic Crash Consistency”
Vijay Chidambaram, Thanu S. Pillai, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
SOSP ’13, Nemacolin Woodlands Resort, PA, November 2013
Our work on a more optimistic and higher performance journaling protocol. For workloads that call
fsync() a lot, performance can be greatly improved.

[GP94] “Metadata Update Performance in File Systems”
Gregory R. Ganger and Yale N. Patt
OSDI ’94
A clever paper about using careful ordering of writes as the main way to achieve consistency. Imple-
mented later in BSD-based systems.

[G+08] “SQCK: A Declarative File System Checker”
Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
OSDI ’08, San Diego, California
Our own paper on a new and better way to build a file system checker using SQL queries. We also show
some problems with the existing checker, finding numerous bugs and odd behaviors, a direct result of
the complexity of fsck.

[H87] “Reimplementing the Cedar File System Using Logging and Group Commit”
Robert Hagmann
SOSP ’87, Austin, Texas, November 1987
The first work (that we know of) that applied write-ahead logging (a.k.a. journaling) to a file system.

[M+13] “ffsck: The Fast File System Checker”
Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
FAST ’13, San Jose, California, February 2013
A recent paper of ours detailing how to make fsck an order of magnitude faster. Some of the ideas have
already been incorporated into the BSD file system checker [MK96] and are deployed today.

[MK96] “Fsck - The UNIX File System Check Program”
Marshall Kirk McKusick and T. J. Kowalski
Revised in 1996
Describes the first comprehensive file-system checking tool, the eponymous fsck. Written by some of
the same people who brought you FFS.

[MJLF84] “A Fast File System for UNIX”
Marshall K. McKusick, William N. Joy, Sam J. Leffler, Robert S. Fabry
ACM Transactions on Computing Systems.
August 1984, Volume 2:3
You already know enough about FFS, right? But yeah, it is OK to reference papers like this more than
once in a book.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

20 CRASH CONSISTENCY: FSCK AND JOURNALING

[P+05] “IRON File Systems”
Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
SOSP ’05, Brighton, England, October 2005
A paper mostly focused on studying how file systems react to disk failures. Towards the end, we intro-
duce a transaction checksum to speed up logging, which was eventually adopted into Linux ext4.

[PAA05] “Analysis and Evolution of Journaling File Systems”
Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
USENIX ’05, Anaheim, California, April 2005
An early paper we wrote analyzing how journaling file systems work.

[R+11] “Coerced Cache Eviction and Discreet-Mode Journaling”
Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
DSN ’11, Hong Kong, China, June 2011
Our own paper on the problem of disks that buffer writes in a memory cache instead of forcing them to
disk, even when explicitly told not to do that! Our solution to overcome this problem: if you want A to
be written to disk before B, first write A, then send a lot of “dummy” writes to disk, hopefully causing
A to be forced to disk to make room for them in the cache. A neat if impractical solution.

[T98] “Journaling the Linux ext2fs File System”
Stephen C. Tweedie
The Fourth Annual Linux Expo, May 1998
Tweedie did much of the heavy lifting in adding journaling to the Linux ext2 file system; the result,
not surprisingly, is called ext3. Some nice design decisions include the strong focus on backwards
compatibility, e.g., you can just add a journaling file to an existing ext2 file system and then mount it
as an ext3 file system.

[T00] “EXT3, Journaling Filesystem”
Stephen Tweedie
Talk at the Ottawa Linux Symposium, July 2000
olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
A transcript of a talk given by Tweedie on ext3.

[T01] “The Linux ext2 File System”
Theodore Ts’o, June, 2001.
Available: http://e2fsprogs.sourceforge.net/ext2.html
A simple Linux file system based on the ideas found in FFS. For a while it was quite heavily used; now
it is really just in the kernel as an example of a simple file system.

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

Key-Value and Graph Storage

李永坤

博士、副教授

中科大计算机学院
http://staff.ustc.edu.cn/~ykli/

1

Key-Value (KV) Storage

2

Why key-value stores?

➢ The amount of data is growing exponentially

⚫ Facebook adds billions of new content every day

⚫ Hundreds of billions of e-mail messages are sent

worldwide every day

⚫ It is estimated that the total volume of global data will

reach 40ZB in 2020

3

Why key-value stores?

➢ Data format and storage requirement

⚫ Unstructured data is very common

⚫ In web application, unstructured data requires efficient

write, query and scan service support

4

Why key-value stores?

➢ The RDBMS is facing challenges

⚫ RDBMS can’t meet demand:

⚫ Management of massive unstructured data

⚫ High concurrent access to data

⚫ High scalability and high availability

Massive unstructured data

High concurrent access

High scalability

5

Why key-value stores?

➢ The file system is facing challenges

⚫ Both file system scalability and directory tree management

face new challenges

Massive unstructured

small data

The management mode

of the directory tree

High overhead & Bad scalability

6

⚫ A new storage architecture

⚫ A flexible type of NoSQL database

⚫ A data storage paradigm

What are key-value stores

➢ KV stores

7

⚫ web indexing, e-commerce, social networks

What are key-value stores

➢ Applications of key-value stores

Social network E-commerce Online game Recommendation system

8

Google Facebook Apache PingCAP

➢ LSM-tree based KV stores are most common

What are key-value stores

⚫ optimize for write intensive workloads

⚫ widely deployed

⚫ BigTable and LevelDB at Google

⚫ HBase, Cassandra and RocksDB at FaceBook

9

✓It buffers and sorts data in C0, then writes into C1 on disk sequentially

✓When Ci is full, it merges with Ci+1, then writes into Ci+1

LSM-tree

➢ LSM-tree structure

<Key, Value>

<Key, Value>

<Key, Value>

<Key, Value>

10

Level 0

Level 1

Level 6

… …

Memory

Disk

Level 2 …

…

Memtable
Immutable

Memtable
SSTable

Read/Write Process

11

Bloom Filter

➢How to quickly determine the existence of a kv

pair in each SSTable?

• Key comparison is slow

• Bloom filter

Bloom filters have false positive with rate 1 − 𝑒−
𝑘

𝑏

𝑘

,

minimized to be 𝟎. 𝟔𝟏𝟖𝟓𝒃 when 𝑘 = 𝑙𝑛2 × 𝑏

12

Level 0

Level 1

Level 6

… …

Memory

Disk

Level 2

…

…

1…800 100…1000

2…500 501-750 762…1000

1…300 305..500 502…752 782…1000

1…100 100…200 201..300 301..400 901…1000

Get key=763 Bloom filter Bloom filter

Bloom filter Bloom filter

…

With the Help of Bloom Filter

False positive incurs extra I/O requests

13

(database sizes 1 GB and 100 GB. Key size 16 B and value size 1 KB)

(From Wisckey @ FAST ’16)

➢ RA/ WA

I/O Amplification in LSM-tree

14

➢ Wisckey (FAST’16)

• Separates values from keys

• Values are stored in a separate log file

• Keys are stored in an LSM-tree with a addr pointer

Key-Value Separation

15

➢ Compared with LeveDB

Evaluation

Random Load

Key: 16B, Value: 64B to 256KB

Random Lookup

Key: 16B, Value: 64B to 256KB

It improves a lot, especially when values are large.

16

[1]VLDB ’10 FlashStore [2]SIGMOD ’11 SkimpyStash [3]SOSP ’11 SILT

[4]MSST ’12 BloomStore(Bloom-Filter based memory-efficient) [5]SIGMOD ‘12 bLSM

[6]EuroSys ’14 LOCS(on open-channel SSD) [7]ATC ’15 LSM-trie

[8]MSST’15 Atlas(Baidu’s kv store)

[9]FAST ’16 WiscKey

[10]ATC ’17 TRIAD

[11]SOSP ’17 PebblesDB(Fragmented LSM Trees)

[12]ATC ’17 HiKV (hybrid index on DRAM-NVM)

[13]CIDR ’17 Optimize Space Amplification in RocksDB

[14]SIGMOD ’18 Dostoevesky (blanced performance)

[15]FAST ’19 GearDB (on hard drive)

[16]FAST ’19 SLM-DB (B+tree index on single level LSM Tree)

[17]SOSP ’19 KVell (on NVMe SSD)

[18]ATC ’20 MatrixKV

[19]FAST ’20 HotRing (hash table in memory)

[20]FAST ’21 SpanDB (on NVMe SSD)

[21]FAST ’21 REMIX (range index)

[22]VLDB ’21 Viper (hash table for persistent memory)

[23]ATC ’21 DiffKV

[24]FAST ’22 DEPART

Other Related Works

➢ Related works

17

HashKV

➢ Limitations of circular log in key-value separation

➢ Large GC overhead

• Data movements: need to write back valid KV

• Valid KV identification: need to access LSM-tree
18

HashKV
➢Core idea

• Hash-based data grouping

• Dynamic reserved space allocation

19

Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, Yinlong Xu. “HashKV: Enabling

Efficient Updates in KV Storage via Hashing”. USENIX ATC 2018.

HashKV

➢HashKV achieves 3.1-4.7x throughput of vLog

and reduces the write size by 30.1-57.3%

20

ElasticBF

➢ False positive of BF

• 0.6185b (b: bits-per-key)

➢ Reducing False Positive Rate
• Increase the bits-per-key used by all Bloom filters

• Large memory space overhead

Bits-per-key 2bits 3bits 4bits 5bits 6bits

False positive rate 40% 23.7% 14.7% 9.2% 5.6%

Size Database size Bits-per-key Memory cost

100B 10TB(Level7) 8 100GB

With limited memory space, how to reduce extra I/O requests

caused by false positive of Bloom filter so as to improve read performance?
21

ElasticBF：Access Locality

➢ Access frequency of SSTables in low levels are higher

➢ Unevenness of access frequency is very common in the same level

Key-value pair size Size of database Benchmark Number of read requests

1KB 100GB YCSB[1] 1 million

22

ElasticBF

➢Main idea

• Hot SSTables

• Allocate more bits per key to reduce false positive rate

• Cold SSTables

• Allocate fewer bits per key to save memory space

Separability

0.6185b/n
n
= 0.6185𝑏

Non-exist as long as one filter

unit gives negative return

23
Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, Yinlong Xu. "ElasticBF: Elastic Bloom Filter with

Hotness Awareness for Boosting Read Performance in Large Key-Value Stores". USENIX ATC 2019.

ElasticBF

➢Key issues/challenges

• How to design an adjusting rule to determine the most

appropriate number of filter units for each SSTable?

• How to realize a dynamic adjustment with small

overhead?

Maintain a MQ in memory

Minimize extra I/Os with hotness awareness

24

Dynamic Adjustment

➢Multiple LRU lists in memory

25

Experiment Results

➢ Different workloads

1.84x-2.24x

The number of I/O requests for data access is greatly reduced
26

DiffKV: Basics

27

…

…

…

Immutable

MemTable
MemTable

Memory

Disk

· · · · ·

…

Sorted Group

L0

L1

Ln

SSTable

➢Store keys and values together

• Keys and values are fully sorted in each level

• Compaction across levels → high I/O amplifications

Relaxing Fully-Sorted

Ordering

28

➢Each level is not necessarily fully sorted by keys

• e.g., PebblesDB [SOSP’17], Dostoevsky

[SIGMOD’18], etc.

• Support efficient writes, but sacrifice reads and scans

..

· · · · · ·

…

…… …

… …

Guard

L0

L1

Ln

Sorted GroupSSTable

Immutable

MemTable
MemTable

Memory

Disk

Fragmented

LSM-tree in

PebblesDB

KV Separation

➢Store keys and values separately

• e.g., WiscKey, HashKV, Titan, Bourbon, etc.

• Support efficient writes and reads, but have poor

scan performance

29

Immutable

MemTable
MemTable

Memory

Disk

…

…

…

· · · · ·

…

values

Append-

only log

…

KV separation

L0

Ln

L1

Sorted GroupSSTable

<key,v_loc>

WiscKey

Trade-off Analysis

➢Are the optimizations suitable for all conditions?

• Relax fully-sorted ordering

• Efficient in small-to-medium values

• KV separation

• Suitable for large values

30
Trade-offs between reads/writes and scans

……

DiffKV

➢Decouple keys and values

• vTree: a multiple-level tree; each level has multiple

sorted groups

• Values in a level are not fully sorted and have

overlapped key ranges

31

…

Memory

Disk

MemTable

Li SSTable SSTable

<Key, Value>

<Value> <key>

Manage the order of values!

vTable vTable

Partially

sorted in

each level

vLi

Microbenchmarks of DiffKV

➢ Compared to RocksDB and PebblesDB

• 2.7-3.8x inserts; 2.3-3.7x updates; 2.6-3.4x reads

• Comparable scan performance

➢ Compared to Titan

• 3.2x scans; up to 1.7x updates; 43.2% lower scan latency

➢ DiffKV has acceptable space usage

32

Throughput Average latency Space usage

Summary on KV

➢Key-value stores are common

• LSM-tree is the basic structure

• Large read and write amplifications

➢Research efforts

• New architectures to reduce read/write amplification

• I/O scheduling and optimizations

• Leverage new hardware: NVRAM/SSD

• Application-specific design/optimization

• Distributed KV stores

• …

33

Graph Systems

34

Graphs are common

Online Social NetworkWeb Graph

Music / Movie Online shops

35

Graphs are common

Protein Molecular Network City Traffic Network Router Network

36

Graph Stucture

➢Graph

• A set of vertices and edges

Undirected Graph Directed Graph Weighted Undirected Graph

37

Large scale of graph data

➢Space requirement

38

➢Real life graphs

• Imbalanced degree distribution

• Power law distribution

• Complicated structure

• Poor locality

Characteristics for graph data

39

Graph Processing System

40

Graphs in General File System

0

1

3

4

2

5

6

(0, 1)

(0, 3)

(0, 4)

(1, 2)

(2, 0)

(2, 6)

(3, 2)

(3, 6)

(4, 5)

(5, 6)

(6, 4)

Edge list is stored in a file

BFS

Need a lot of

random disk

accesses

41

Graph Processing System

➢GraphChi

• The first single-PC graph process system

Aapo Kyrola, Guy Blelloch, Carlos Guestrin. GraphChi: Large-Scale Graph

Computation on Just a PC. USENIX OSDI 2012.
42

➢ Computation model

• Vertex-centric programming

• “Think like a vertex”

• Each edge and vertex is associated with a value

• Iteration-based computation

GraphChi

v
Gather

Update

Scatter

43

GraphChi

➢ PSW : intervals and shards

• Vertices are numbered from 0 to n-1

• P intervals

• sub-graph = interval of vertices

shard(1)

interval(1) interval(2) interval(P)

shard(2) shard(P)

0 9999100 700 <<partition-by>>

source destination
edge

In shards, edges

sorted by

source node.

44

GraphChi

➢ Layout

• Shard: in-edges for interval of vertices; sorted by source-id

Shard 1

Shards are small enough to fit in memory; balanced size of shards

in
-e

d
g

e
s
 f
o

r
v
e

rt
ic

e
s
 0

..
9

9

s
o

rt
e

d
 b

y
 s

o
u

rc
e

_
id

Vertices

0..99

Vertices

100..699

Vertices

700..999

Vertices

1000..9999

Shard 2 Shard 3 Shard 4Shard 1

45

<0, 1>

GraphChi

➢ Layout

• Shard: in-edges for interval of vertices; sorted by source-id

46

0

1

3

4

2

7

5

6

8

9

Example Graph

Shard 1 Shard 2 Shard 3

<1, 2>

<2, 0>

<3, 0>

<6, 2>

<7, 2>

<0, 4>

<3, 4>

<4, 5>

<6, 3>

<6, 4>

<6, 5>

<4, 6>

<5, 8>

<6, 7>

<7, 9>

<8, 6>

<8, 7>

<9, 8>

s
o

rt
e

d
 b

y
 s

o
u

rc
e

_
id

GraphChi

➢Parallel Sliding Windows

47

GraphChi

➢Other design details/implementations

• Refer to the paper and source code

• C++ implementation: 8,000 lines of code

• Java-implementation also available

Source code and examples:

http://github.com/graphchi

48

➢Highly efficient data structure to store graph

• Index array: store the offset in CSR array

• CSR array: store the out-neighbors of vertices

CSR Format

49

0

1

3

4

2

7

5

6

8

9
0 2 3 4 6 8 9 14 16 18 19

CSR array

1 4 2 0 0 4 5 6 8 2 3 4 5 7 2 9 6 7 8

Index array

Example Graph

➢Highly efficient data structure to store graph

• High efficiency to access out-neighbors (BFS, RW)

• E.g., access the neighbors of vertex 6

CSR Format

50

0 2 3 4 6 8 9 14 16 18 19

CSR array

Index array

1 4 2 0 0 4 5 6 8 2 3 4 5 7 2 9 6 7 8

0

1

3

4

2

7

5

6

8

9

Example Graph

Sequentially read the out

neighbors of vertex 6

Limitations

➢How to support dynamic graphs?

➢How to store attributes?

0 2 3 4 6 8 9 14 16 18 19

CSR array

Index array

1 4 2 0 0 4 5 6 8 2 3 4 5 7 2 9 6 7 8

Sequentially read the out

neighbors of vertex 6

51

Example

0

1

3

4

2

7

5

6

8

9

Hard to support dynamic graphs

Add a new edge (0, 7) to CSR

Rewrite most part of CSR

How to support fast query on dynamic graph?

CSR file

Index file Offsets in CSR file

Out-neighbors

Related Works

➢Single machine graph processing systems

GraphChi

OSDI

Xstream

SOSP

GridGraph

ATC

FlashGraph

FAST

Quegel

VLDB

GraphQ

ATC

CLIP

ATC

Graphene

FAST

53

ODS

ATC

CGraph

ATC

V-Part

FAST

Mosaic

Eurosys

2012 2013 2015 2016 2017 2018 2019

Graph

Walker

ATC

2020 2021

FlashMob

SOSP

ThunderRW

VLDB

DepGraph

HPCA

GraphABCD

ISCA

Related Works

➢Distributed graph processing systems

PowerGraph

OSDI

chaos

SOSP

G-Miner

Eurosys

Pregel

SIGMOD

GraphLab

UAI

Distributed

GraphLab

VLDB

GraphX

OSDI

54

Giraph

Hadoop

Mizan

EuroSys

Lfgraph

SIGOPS

PowerLyra

EuroSys

Trinity

SIGMOD

gRouting

ATC

Gemini

OSDI

2010 2012 2013 2014 2015 2016 2018

ShenTu

SC

KnightKing

SOSP

2019 2020

GraphScope

VLDB

2021

Summary on graph systems

➢Graphs become extremely large

• Data must be kept on disk or in clusters

➢Graph systems have specific features

• Random access

• Computation models

• Application requirements

➢A large body of works…

55

Thanks!

56

	0
	1
	2
	3.1
	3.2
	4
	5.1
	5.2
	5.3
	6
	7.1
	7.2
	8
	9.1
	9.2
	10.1
	10.2
	11
	补充-FAT
	补充-Journal
	补充-KV图

