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Course crew: Instructors

3A112, Room 1409, Sci. & Lab

Hong An CS1002A.01 Monday 8,9,10 han@ustc.edu.cn Building(west)

. 3A112, ; Room 409,High Performance
Hui Zhang CS1002A.02 Friday 3,4,5 fzhh@ustc.edu.cn Computing Center(east)
Fuyou 3B102, Room 517, Electronic Teaching
Miao Cs1002a03 'uesday 34,5 @ USIGiediiCnigy oy S o)
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Course crew: TAs

jinxu@mail.ustc.edu.cn Room 1406, Sci. & Lab Building(west) 13511610125
JE.E shijun18@mail.ustc.edu.cn Room 1411, Sci. & Lab Building(west) 17756023365
T wangzh95@mail.ustc.edu.cn Room 1411, Sci. & Lab Building(west) 15273133022

P zsr1341864378@mail.ustc.edu.cn  Room 1411, Sci. & Lab Building(west) 17873661361

m Office hours and Discussion
® 140+ students, Chaired by 4 TAs, fellow students
® Fact to face help
® See web page for times
[ J

http://acsa.ustc.edu.cn/ics/information.html




Outline O ¢onzasxs

} Tech

Course and Crew

What's the difference between “Big" and
"Small"?

Why Take This Course?

.
A Great Ideas in Computing Systems
A What' s This Course All About ?

Summary

‘V




Questions

B How powerful are today's computers? Why are they so
powerful?

What can computers do?

® Is an abacus a computer? How to understand Turing's
contribution to computers?

How are they done?

B What are the serious flaws in today's computers?

What can't computers do?

2025/2/24
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What is the definition of a computer?

A computer is a machine that can be programmed to carry out
sequences of arithmetic or logical operations automatically.
Modern computers can perform generic sets of operations
known as programs.

A broad range of industrial and consumer products use
computers as control systems.

® Simple special-purpose devices like microwave ovens and remote
controls

® Factory devices like industrial robots and computer-aided design

® General-purpose devices like personal computers and mobile devices
like smartphones.

Early computers were meant to be used only for calculations.

® Simple manual instruments like the abacus have aided people in doing
calculations since ancient times.

A modern computer consists of at least one processing
element along with some type of computer memory.

2025/2/24



Today, computer is in everything!

B

Games

Refrngerators

Set-top boxes
) Cameras

Media
Smart Players

; Supercomputers
2025/2/24 17
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Today, computer is in everything!
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Today, computer is in everything!
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Vast infrastructure behind them:
from the small to the big

Scalable, Reliable,
Secure Services

Internet
Connectivity

Databases
Information Collection

Ay

Servers {1 Remote Storage
> Online Games
== Commerce
Routers
o

Sensor Nets

2025/2/24 20
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“Big ” vs. “Small” Computer

; — ! Smal |
i ,a!!.l ,,E 2 .[-’! \ @i . ® High performance
THE calculation
B High-performance
: n ‘ ! l . . communications
______________________________________ and I/0
. . Power
Personal mobile devices/smart terminal devices consumption
constraints
® The volume
constraint

Big

+ Capable of high-
performance data
processing more
than demand

* Reliability

Supercomputlng center (calculation)/data center (storage) requirement

2025/2/24 2




“Big " Computer Inside

B Data center: a "warehouse" supercomputer

Seismicaily-braced
Sarver Racks

Each data center covers an average of about 45,000
square meters and cost about $600 million to build
2025/2/24
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Sunway Taihulight

- June 2016, national supercomputing wuxi center
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Sunway Taihulight

- June 2016, national supercomputing wuxi center

Table 1: Sunway TaihulLight System Summary

cPU Shenwei-64

Developer NRCPC

Chip Fab CPU vendor is the Shanghai High Performance IC
Design Center

Instruction set Shenwei-64 Instruction Set (this is NOT related to the
DEC Alpha instruction set)

Node Processor cores 256 CPEs (computing processing elements) plus 4

MPEs (management processing elements)

Node Peak 3.06 TFlop/s

Performance

Clock Frequency 1.45 GHz

Process Technology N/A

Power 15.371 MW (average for the HPL run)
Peak Performance of

system 125.4 Pflop/s system in Wuxi
Targeted application HPC

Nodes 40,960

Total memory 1.31 PB

Cabinets 40

Nodes per cabinet 1024 Nodes

Cores per node 260 cores

Total system core

10,649,600
count

2025/2/24 26



How are "very large" computer systems built?
-Sunway Taihulight

m EEHRIR

® 1CPU, 2603HHH, RAXEAMBRET, ARABB+EME
m EEHHHR

® 4 BHWXRHELE, ACPU. BH K+ FAHE IH
mEEETR

® 64 THEHH, 256CPU, BHFXAHNRARMOHUTE

m ZEHIE (Cabinet)
® ABHMY R, 256 BFEMHR, 1024BKF & (CPU )

m BiES%
® 40 H N4, 160#8F &, 40960% &K, 10649, 600+ &4,
1.31PB

AR
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“Small ” Computer

H Personal mobile devices

2025/2/24
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“Small” Computer Inside

Processors i
|LTV:
+ | MIFTTROM Cortex
2 B Y
:‘"'T' o] [_ NEON ,4 Bluetoath
Timars Coflx-A%| | Cortex- Maki-400 Lco
A% CPU GPU ao N\ Inteefac opu
S coNge i
ROM L2 Cache | wifi 802.11
§ NIC301 AMBA AX| Interconnect —
=== T R4 CPU
crPU 1 s m DMA 3G Mad,
SORAM UAR -
) Audio | i Convoller || _ Flash SFl
- ; [ T f Cactex:
Cortex: icationsNge LF-DDR2 Uss Q16 M
CPY Processor MFSO PHY #| P
: . GPs
ower i *s
Management &
Toueh Sereen
NN TV MMC SDRAM NAND) Camera
SD Card PoP Flash
Touch | / (0]
Screen [ ] ARM Prysical 1P
I/0 ARM sythesizable 1P
Memory Implemented in 28 or 32nm stondond cels
2025/2/24
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Today’ s Dominant Target Systems

B Mobile (smartphone/tablet)
® >1 billion sold/year
® Market dominated by ARM-ISA-compatible general-
purpose processor in system-on-a-chip (SoC)
® Plus sea of custom accelerators (radio, image,
video, graphics, audio, motion, location, security,
etc.)

® Warehouse-Scale Computers (WSCs)
® 10,000,000’'s cores per warehouse
® Market dominated by x86-compatible server chips
® Dedicated apps, plus cloud hosting of virtual
machines
® Now seeing increasing use of GPUs, FPGAs, custom
hardware to accelerate workloads

B Embedded Computing
® Wired/wireless network infrastructure, printers
® Consumer TV/Music/Games/Automotive/Camera/MP3

® Internet of Things!
2025/2/24 31
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Why Take This Course?

B Foundational Goal
Deeply understand Intersects all aspects
of computing systems

B Preparatory/Complementary
® Algorithm and data structures
® Programming Language
® Compilers and Interpreters
® Operating Systems
® Digital Systems Organization and Design
® Mathematical Foundations of CS

H Fun!!!
® Who wouldn’t want to understand the magic?

2025/2/24 34



UCB EECS Bachelors Curriculum Overview

Calculus: Math 1A & 1B
Multi-variable Calculus: Math
53

A two course physics sequence:

Physics 7A/7B, or Physics
5A/5B/5BL

A natural science course with
lab from{Physics, Astronomy,
Biology, Chemistry, Earth and
Planetary Science, Integrative
Biology, Molecular and Cell
Biology, Physics or Plant and
Microbial Biology }

4 unit STEM elective from
{Astro, Chem, Data Sci, EPS, 1B,
Math, MCB, Physics, PMB, Stat,
or any Engin dept.}

(&

of Arts

EECS
Bachelor
of
Science

Lower Division CS Requirements

Math 1A (Calculus I) ,Math 1B (Calculus I1),Math54

CS 70 (Discrete Mathematics and Probability Theory)

CS 61A (Structure and Interpretation of Computer Programs)
CS 61B/BL (Data Structures)

CS 61C (Machine Structures)

Upper Division CS Requirements

20 Upper Division Units*

4 units of a Design Course from {CS 152, 160, 161, 162, 164, 169, 182, 184,
186/W186} or

{EE C128, 130, 140, 143, 192, EECS C106A/C106B, 149 (formerly EE/CS 149), 151
(formerly CS 150/EE 141)}

8 units upper-division CS courses

8 units upper division CS/EE/EECS courses' 2

7 units of Upper Division Technical Electives:

can be upper division CS/EE/EECS courses' 2

Lower Division EECS Requirements

CS 70 Discrete Mathematics and Probability Theory

EE 16A Designing Information Devices and Systems |

EE 16B Designing Information Devices and Systems Il

CS 61A (Structure and Interpretation of Computer Programs)
CS 61B/BL (Data Structures)

CS 61C (Machine Structures)

Upper Division EECS Requirements

EE C106A, C106B, C128, 130, 140, 143, C149, 192

CS C149, 160, 162, 164, 169, 182, 184, 186, W186

EECS 149, 151 and 151LA (must take both), 151 and 151LB (must take
both)

CS 161 will fulfill the design requirements for students who took the
class in Spring 2019 or later.




Stanford CS Bachelors Curriculum Overview

Mathematics
(26 units
minim

Science (11
units
minimum)

Technology in
Society (3-5
units

Engineering
Fundamentals
(23 units

Intro & Core

CS 1C. Introduction to
Computing at Stanford.
1 Unit.

M

Theory
® Mathematical Foundations of
Computing (€S103) (5 units)
® Introduction to Probability for
Computer Scientists (CS109) (5
units)

® Data Structures and
Algorithms (CS161) (5 units)

4

Systems

® Programming
Abstractions (CS106A,CS106
B or C5106X)
Principles of Computer
Systems (€S110) (5 units)
Computer Org ion and

Artificial Intelligence track(choose one)

Biocomputation track (choose one)

Computer Engineering track(choose one)

Graphics track (choose one)

Human-Computer Interaction track (choose one)

Information track (choose one)

Systems track (choose one)

Theory track (choose one)

Unspecialized track (choose one)

Systems (CS107)(5 units)

%

Individually Designed track




MIT EECS Bachelors Curriculum Overview

6-2. Electrical Engineering

and Computer Science

6-3. Computer Science and
Engineering

6-7. Computer Science and

Molecular Biology

6-14. Computer Science,

Economics and Data
Science
1

Intro: 1 of
{6.01,6.02,6.03,6.508}

Prog. Skills: 1 of
{6.0001,6.5080}

Math: 1 of {18.03,2.087}

Foundation: 3 of
{6.002,6.003,6.004,6.006,6
.007,6.008,6.009}

Header: 3 of

{6.011,6.012, ,6.013,6.014,
6.021,6.031,6.033, 6.034,
6.036, 6.045,6.046}

Other: 1 of {6.UAT,6.UAR},
AUS2,AUS2,EECS,EECS

Intro: 1 of
{6.01,6.02,6.03,6.508

Prog. Skills: 1 of
{6.0001,6.5080}

Math: 1 of 6.042

Foundation: 3 of
{6.004,6.009,6.006}

Header: 6.031,6.033, 1 of
{6.045,6.046}, 1 of {6.034,
6.036}

Other: 1 of {6.UAT,6.UAR},
AUS2,AUS2,EECS

Intro: (6.009 and 6.031),6.042)
[Note 4]

Intro Lab: 1 of {7.02J, 20.109,
20.129 [Note 14]}

Math Requirement(6.00 [Note
13] and 6.009)

Foundation Bio: 7.03, 7.05
Foundation CS: 6.006

Foundation Bio: 7.06
Foundation CS: 6.0046J

Bio and Computational Bio
Restricted Electives: 2 of

{1.5993, 6.047, 6.049, 6.503,
6.802J, 7.09, 18.418}

Other: 1 of {6.UAT,6.UAR}

Prog. Skills: 1 of {6.0001,
6.0002, 6.009}

Math: 18.06,6.041, 6.042,
14.30 or 18.600

Foundation EDS: 1 of
{14.01,14.03}, 14.32
Foundation CS:6.006, 6.036

Foundation EDS: 1 of
{14.05,14.18, 14.33}, 1 of
{6.207,6.207, 15.053},
Foundation CS: 6.046

Data Science Elective: 1
Economics Theory Elective: 1
Data Science or Theory
Elective: 1

Other: 1 of
{6.UAT,6.UAR,15.276}

«  Semester 1: Programming skifls, Diccrsts math

Semestor 4: Heador 41 Hosdor #2

Semestor 5: Haador #3, AUS 1)
Semester 6: AUS 2. Coiing 6 Bociive 11
LUAT o 6UAR 3 the escond Coxroe 6 shective

2025/2/24

Semester 2: Introduction to EECS, Fous
Semester 3: Foundation #2. Foundation #3
Semester 4: Haader #1, Header 42
Semester 5: Hoador #3, Header #4
Semester 6: AUS #1, AUS #2

B.UAT ot 6 UAR and the Ceurse 6 elective

on #2. Foundation #3
Semester 4: Hondes #1, Hoader ¥2
Somestor 5: Handor #3, Header #4

Semestor 6: AUS #1. AUS #2  [EIEFar BIIER

Sarmaster & Eectve #2. Ebctue 43

Somastor - amedists Ecoramics Networs nd Cpsezaen, Esctve 41

37




MIT EECS Bachelors Curriculum Overview

advanced undergraduate

requisites vary

students choose
three header
subjects, which
typically rely on a
foundation course
as a pre- reqmsne

students choose three
foundation subjects,
which build

on introductory matenal

Introductory subjects
introduce students to
the breadth of our
department, and teach
fundamental skills for
electrical engineering
and computer science

2025/2/24

build on header material; exacl pre

Advanced

The 6-2 curriculum builds primarily on the Physics Il and Calculus Il GIRs: not all courses require a GIR as a pre-requisite

Elect
5014

Iml Aigorithms and
Systems Computation *
6033 5045 ot 6040

“
- e

t
exact pre requisites vary; most EE
headers rely on at least one EE foundation

Elecmcn! Englncevlng sub[ecls

exact pre-requisites vary; most CS
headers rely on at least one CS foundation

10 EECS
601 o 6,02 or 6,03 or 6 08|

EECS sub)ects

o mem;l;n‘gxstlln
{N9e 6 145 4 (6,01 or 6.08))|
Computer Science sumect:

students must choose headers and foundations to span the breadth of EE, EECS, and CS'

1 of the headers and foundations, wo must be from EE. two from CS, and one from EECS
6045 and 6046 also require 6 042, ather as a direct pre-req or &5 a pre-req 10 6.006




CMU CS Bachelors Curriculum Overview

Computing @ Carnegie

Mellon

Humanities and Arts
(64 units)

15-128: Freshman Immigration
Course*

15-122: Principles of Imperative
Computation**

15-150: Principles of Functional

Programming

15-151: Mathematical
Foundations for Computer
Science***

15-210: Parallel and Sequential
Data Structures and Algorithms
15-213: Introduction to
Computer Systems

15-251: Great Ideas in
Theoretical Computer Science
15-451: Algorithm Design and
Analysis

a
concentrati
on within
SCS

a minor
outside of
SCS

Technical Communications Course (choose one)

Logics & Languages Elective (choose one)

% Software Systems Elective (choose one)
rtificial Intelligence Elective (choose one)
Domains Elective (choose one)

Computer Science Electives (choose two)

Mathematics & Probability (choose four)

Science and Engineering(choose four)

2025/2/24
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USTC CS Bachelors Curriculum Overview

Math.&Sci.

Mathematics
sequence

0
sequence

English
sequence

Politics
sequence

Physical
Education

Intro & Core

011044. Introduction to
Computing at USTC (1 Unit)

Theory(Intro)

® Discrete Mathematics(A,B,C,9 units,

® Data Structures (4 units)

® Fundamentals of Algorithms (3.5
units)

Systems(Intro)

® Fundamentals of Programming
(4 units)

® Introduction to Computer
Systems (4 units)

System(Core)

® Computer Organization and
Design
Principle and Design of
Operating System
Principles and Techniques of
Compilation
Computer Architecture

Track

Computer System Track

Computer Software and Theory Track

Compuer Application Track

Information Security Track

Individually Designed Track

2025/2/24




Textbooks in CS 61C at UCB

B Great Ideas in Computer

Architecture (Machine

Structures) :
m 30+ TAs ‘
m https://cs61c.org/fa21/ RISC-V°

® Computer Organization and
Design RISC-V Edition, 1lst

SECOND EDITION

ed. by David Patterson, and " THE
John Hennessy The Datacenteras « Compater
® The C Programming Language, CKN/S“\\ ki
2nd ed. by Brian Kernighan G/
and Dennis Ritchie PROGRAMMING
® The Datacenter as a — LANGUAGE
Computer by Luiz André NS MRTGHE |

Barroso and Urs Holzle,
freely available here



AR ERE

Introduction to
Computing
Systems: From Bits
& Gates to C/C++ &
Beyond

Yale N. Patt and
Sanjay J. Patel, June
2003, McGraw-Hill
Higher Education

2025/2/24

Hong An @CS of USTC

Computer.
Organization and
Design: The
Hardware/Softwa
re Interface,

David A Patterson,
John L. Hennessy,
5Sth edition.
Morgan Kaufmann
Publishers, Inc.,

42



S itBiNRFTIe
. ‘*@ @ é fﬁ, d,; A é Introduction to Computing Systems
( CS1002A.02)

Y E~

Chapter1 -2

Greatldeas in Computlng Systems

T e A e @) WD Gmwicas

tEAF LS KPR

School of Computer Science and Technology



Outline O ¢onzasxs

} Tech

Course and Crew

'

What's the difference between “Big" and
"Small"?

‘V

Why Take This Course?

Great Ideas in Computing Systems

What' s This Course All About ?

S Ear

Summary




RiEBR: ERTENRASHENEERE

BiRHs ERIERE

2
igiteen
AR
Capabilities & |
\ Tech Skills /4

EZERgitee Aqnizitee
(Ft2) (%519)

2025/2/24
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HIERRE LR (BRITENEIA ACM/IEEE&R7RIT2017
ZRABEIMIRL ST , FHEINMEIRE
i 1+ﬁ$$'57cm+%ﬂw¥f§ (tENHEES
e i AR E )
2006 2010 2012 2013 2017 2013\ 2019 2020 av;raj
0} FERRL IHERHSAFT = | (RN RS
BERMHEE" RS ZTiEIERRARESD)
Jeannette Wing (BLAE) 5% "IHENEL RSN ACM/IEEES A
ESFENTHE RS BFAR" REE #CC2020

JEFETERNRAERRE I FRENEHRIBMIRE, JREHSHRE

B9IKES. Eit, REEFIBYAEEE!
—ER32EEDavid Patterson
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Computational thinking -Jeannette M. Wing

® Computational thinking will be a fundamental skill used by everyone
in the world by the middle of the 21st Century.
® Just like reading, writing, and arithmetic.

® Incestuous: Computing and computers will enable the spread of
computational thinking.

® |n research: scientists, engineers, ..., historians, artists
® |n education: K-12 students and teachers, undergrads, ...

® Computational Thinking is the thought processes involved in
formulating a problem and expressing its solution in a way that a
computer—human or machine—can effectively carry out.

m Computational Thinking is what comes before any computing
technology—thought of by a human, knowing full well the power of
automation.

2025/2/24 5



ACMFNIEEE-CSITREMARLIFEF R MBCC2020
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B CC2020RFEMHEEE, BETIR. 8k, RIT=NFENGEEEIETR
. CC2020%3 3 EIHEN R E AR MmRTAIZNG,

B CC20203KE "it&" (computing)—iafERITENIRE. HHEIEZEE
BRAEMEITENENSGE—AE,; BERA "BES" (competency)
—TIRARAEITERBMBNEATSEE, HERENIR
(knowledge). #%gE(skills)f0Fa{T(dispositions) =73 HEIES:, (EFEME
RRTERETIERNA,

o ANRANIMBHESIR “THE" (know-what)4EE
o IRERIA T AR, 2MEIRY "RE" (know-how)4EE
® SITHIRKHTIRY "FHEAMA" (know-why)4ERE
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How to use the Sunway Taihulight to solve
complex problems?

B B2 NRAIE NRR, PEIEESCINEAISER




Great Ideas in Computing Systems in this
courses

B Great Idea #0: Great Idea from Ancient Chinese
Philosophy(Bits and Bytes)

B Great Idea #1: Computer is an Universal Computing
Device(Turing Machine Model)

B Great Idea #2: Stored program computer(Von
Neumann Model)

B Great Idea #3: Abstraction Helps Us Manage
Complexity(Layers of Representation/Interpretation)

B Great Idea #4: Software and Hardware Co-design



Great Ideas in Computing Systems in other
courses

B Great Idea #5: Computer Family ( IBM 360 )

B Great Idea #6: Principle of Locality (Memory
Hierarchy)

B Great Idea #7: Make the Common Case Fast
B Great Idea #8: RISC vs. CISC

B Great Idea #9: Moore’ s Law (Designing through
trends)

B Great Idea #10: Parallelism & Amdahl's law (which
limits it)
B Great Idea #11: Dependability via Redundancy

2025/2/24 11



Great Idea from Ancient Chinese Philosophy

Everything comes from being and being comes from
nothing.

AFRULETE BEFE  (BF-OHE)
//"\‘{

i L
&II " Hkan Kgen Kkan %xon | Zzhen ‘ L1 Xdor | #qidn

$ == == | == t = ¥ e E= S = ‘
=& #: 000 =it #: 001 =it #: 010 =k #: o1 ‘ =& #: 100 =it #: 101 =ig#: 10 —&#: 111 |
\\ , L ckite:o0 || taM:1 | t#M.2 || ti#:3 || hies:4 || ti#e:s || tae: ° A iee: 7
%
[~ &m | FR | b xh
t —— t —— — t —
=it #: 00 =##: 0 =id#: 10 ~##: 1
((%gé» | Feeo | EY a2 | #4i: 3
* FHAs 3
&ét‘: 1)(7 TO-uy. 1
& tik#: 1
igﬁ i‘twglw T
PR \H, 9.
JNEETIY
o
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Great Idea from Ancient Chinese Philosophy

B Binary Number

® The modern binary number

2025/2/24

system was studied in

Europe in the 16th and 17th
centuries by Thomas Harriot,
Juan Caramuel y Lobkowitz,

and Gottfried Leibniz.

Leibniz was specifically

inspired by the Chinese “I

Ching” .

28 Mzmorxes pe Acanemie Rovare
res Lincaices qu'on lui anribue. Elles revi toutes
ceue Arithménque; mais il fuffit de meurc ici ls Figure
de buiz Cova comme on I'appelle, qui paffe pour fonda-
menale, & dy joindre Iexplication qui = ifeflc
urvii qu'on remarque premierement qu'une ligne cn.
i figniio Poned 00 1, & fecondﬂnmgn@'uu
ligne brifée — — figaifie le zeto ou o.

5 S S = =

o |oco
= |oor

)
5
© 11 100 101 110 11t

C 2 3 t 5 6 7

Les Chinois ont perdu la fignification des Coua om
Lindations de Fohy:xpeu:-éue depuis plus dlun mille-
naire d'année ; & ils ont fait des Commendaires li-deffus,
oi ils ont cherché je ne fai quels fens loignés. De for
te quiil a flla que la vaaie explication leur vint maintc-
nant des Européens : voici comment. I n'y a gucres plus
de deux ans que jenvoyaiau R. P. Bouvet Jélgite , Fran-
§ois célébre, qui demeure & Pekin , ma maniere de comp-
tec par o & 1; & il 'en fillue pas davanuage poar lid
fite reconnoitre que €'eft Ia clof des Figures de Foky.
Ainfi m'écrivant le 14 Novewbre 1701, il m'a cavoyé la
grande Figuse de cc Prince Philofophe qui va i 64, &
e hiffe s licu de douter de la vécité de potre intorprés
fation; de forte qu'on pet dirc que ce Pere a déclufiré
VEnigme de Fohy i laide de cc que je lai aveis commu-
biawds Bt comme oes Figutes foat pen-bure le plus an-
cien monument de fcience qui foit au monde , ceite refi-
tation de leur feos , 3prés un fi grand intervalle de tems,
pacoitra d'augant plus curicufe.

Le confentement des Figures de Fohy & de ma Table
des Nombres, fe fait micux voir lorique dans la Table
on fuppléc les zcros initiaux , qui paroifent foperfios ,
i qui fervent micux marquer Ia péciode de la colon.

ne,
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Great Idea from Ancient Chinese Philosophy

Computer.
Organization and
Design: The
Hardware/Softwar
e Interface,

David A Patterson,
John L. Hennessy,

Is an abacus a computer? oth edition. Morgan

Kaufmann
Publishers, Inc.,
2017

2025/2/24 1



A computing tool that does not use electricity

m Abacus (27cE15004E, HA[E)

Abacus
China
c. 1970
Loan of Gwen and Gordon
Bell, B1643.01

Soroban

TR i difi dhifiD

Loan of Gw
Bell, B1655%.u.

Schoty

Russia

Early 20th century

Gift of Warren Yogi, 102

2025/2/24

Table abacus
(reproduction) and
jetons

Germany

17th century

Loan of Michael R.
Williams, L2003.3.2

Counting Frame
Early 20th century
Gift of Gwen and
Gordon Bell, B141.80

15



A computing tool that does not use electricity

m Sectors

2025/2/24

16



A computing tool that does not use electricity

m Slide Rules

Pickett circular slide =)
. rule
Slide rule Japan
us - c. 1955 ®
c. 1956 Loan of Gwen and
Gift of Lynn Yarbrough, X121.82 Gordon Bell,
B1657.01
Mannheim slide rule
France
c. 1860 —Em e sseen
Loan of Gwen and Gor¢ :
B203.82
Lord’s calculator
England
c. 1900

Fuller’s Rule Loan of Gwen and
us %‘ Gordon Bell,
1921 B123.80
Gift of University of

Illinois, X250.83A

2025/2/24 17,



Automatic computing equipment: from
mechanical computer to electronic computer

o

Charles Babbage,

1791-1871,England 42"

Turing(24)

1832,2002,2008 Turing Machine,
The Babbage Difference 1936

Engine, 17 years, 25,000

parts, 5ton, cost: £17,470

2025/2/24
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Charles Babbage (1791-1871): A Fallen Hero!

® Lucasian Professor of
Mathematics, Cambridge
University, 1828-1839

m A true “polymath” with
interests in many areas

B Frustrated by errors in
printed tables, wanted to
build machines to evaluate
and print accurate tables

m Inspired by earlier work
organizing human
“computers” to
methodically calculate
tables by hand

i

[Copyright expired and in public domain.
Image ined from Wikimedia C ]

2025/2/24 19



Babbage difference engine: the first mechanical

computer (1832)

2025/2/24

® 2002,2008

® The Babbage

® Difference Engine
® 17 years,

® 25,000 parts, 5ton
® cost: £17,470




Turing Machine

B Mathematical model of a device that can perform
any computation - Alan Turing (1937)

® ability to read/write symbols on an infinite “tape”
® state transitions, based on current state and symbol

mEvery computation can be performed by some
Turing machine. (7uring’ s thesis)

ab —» Tadd — atb

Turing machine that adds

ab —» TmuI — ab

(1912 6. 23-1954:6. 7)

Turing machine that multiplies

2025/2/24 21



Universal Turing Machine

B Turing described a Turing machine that could

implementall other Turing machines.
® inputs:data,plus a description of computation (Turing
machine)

T

add’ Tmul ’

U

a,b,c—» — c(ath)

Universal Turing Machine

m U is programmable - so is a computer!
® instructions are part of the input data
® a computer can emulate a Universal Turing Machine,
and vice versa
B Therefore, a computer is a universal computing
device!

2025/2/24 22



Bombe (1939)

B The bombe is an electro-
mechanical device used by the
British cryptologists to help
decipher German Enigma-
machine-encrypted secret
messages during World War 1.

B The initial design of the British
bombe was produced in 1939 at
the UK Government Code and
Cypher School (GC&CS) at
Bletchley Park by Alan Turing.

A wartime picture of a Bletchley Park Bombe

2025/2/24 23



Colossus- The world's first programmable,
electronic, digital computer (1943-1945)

B Colossus was a set of computers
developed by British codebreakers in the
years 1943-1945[1] to help in the
cryptanalysis of the Lorenz cipher.

B Colossus used thermionic valves
(vacuum tubes) to perform Boolean and
counting operations.

B Colossus is regarded as the world's first
programmable, electronic, digital
computer, although it was programmed by
switches and plugs and not by a stored
program.

B Colossus was designed by General Post
Office (GPO) research telephone
engineer Tommy Flowers at Bletchley
Park. Alan Turing's use of probability in
cryptanalysis contributed to its design.

B Turing's machine that helped decode A Colossus Mark 2 computer being operated by Wrens.
Enigma was the electromechanical
Bombe, not Colossus.

2025/2/24 Lecture 1 24



ENIAC - The first electronic computer ,1946

ENIAC(Electrical
Numerical Integrator
And Calculator)

17,468 vacuum tubes
Power 150kW
Weighed 30 tons
Occupied 1800 sq ft
- 8o feetlong
- 8.5 feet high
® Clock: 100kHz, About
5000 additions per
second
® RAM: ~230bytes, Could
1904, The world's store 20 numbers Could
first electron store 20 numbers in
tube was born at main memory
the hands of the ® IO: punched card

British physicist ® Cost about $500,000
Fleming

2025/2/24 25



ENIAC (1946)

B First electronic general-purpose computer
® Construction started in secret at UPenn Moore
School of Electrical Engineering during WWII to
calculate firing tables for US Army, designed by
Eckert and Mauchly
® Twelve 10-decimal-digit accumulators
® Had a conditional branch!
B Programmed by plugboard and switches, time
consuming!
B Purely electronic instruction fetch and execution, so
fast
® 10-digit x 10-digit multiply in 2.8ms (2000x faster
than Mark-1)
B As a result of speed, it was almost entirely 1/0 bound
B As a result of large number of tubes, it was often

broken (5 days was longest time between failures)

2025/2/24 26



Great Idea #1:
Computer is an Universal Computing Device

m All computers, given enough time and memory,
are capable of computing exactly the same things.

Laptops

AL PR

Supercomputers
2025/2/24 27,



How is ubiquitous computing done?
During the four years of undergraduate study,

which computer courses are relatively more basic and
must be mastered?

2025/2/24
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From Theory to Practice

B In theory, computer can compute anything that’ s

possible to compute
® given enough memory and time

B In practice, solving problems involves computing

under constraints.
® time
- weather forecast, next frame of animation, ...
® power
- cell phone, handheld video game, ...
® cost
- cell phone, automotive engine controller, ...

2025/2/24
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ENIAC

RE P =5 >

Changing the program could take days or weeks!
2025/2/24
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Great Idea #2
Von Neumann Model(Ffgf2FiTE4H1)

MEMORY

o

INPUT

Keyboard
Mouse
Scanner
Disk

[ |

ouTPUT

PROCESSING UNIT

Monitor
Printer

CONTROL UNIT

U

2025/2/24

Electronic Delay Storage Automatic
Calculator (EDSAC), University of Cambridge,

UK, 1949




FAilpvE L “REiZaY”

m RERXHEINEWEREETF
19585, LATRBFRIBEZFH
ITEEARER

B MAHFINMTEEAREER
FE: £TE
m ENEVHEHHEEE:
BIiEm
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® 19524, £FRHFZLNT =
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EEaaITEN: 1071181

WS ISR IS

mpE -8 EiRiHYE
AREFITEN

mpES—-a8ERITHHYD-
HREGIETEN

® EDVAC, ¥, 1945-1952

® EDSAC, %I[E, 1945-1949
® 1074L, FE, 1953-1959

m1960F1EHERI IR &

A (H&7KD-1)
m1970FHERI K TEESHE
m19745F RS

2025/2/24



EitEm. S5107HHHEIREUG

BigWRkRELT (%) SEEITEIER
BHIRIGE. 107HFHE, RS
RRGIOMAEEEABLRIEIE, i
M. BT, BRX. #FR. ERR
FEERBRESR.
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The USTCers’ outstanding contributions to the
Chinese computer

m 19594, 107it&# B 2002%F, 1S
m FESZE—&SBEEITHER 2 dhES-FEELITIER
ap=1]1 SRR

m ERiHH: SiEW m EigiHH: HEEE(867F)

R

ooooooooo

28agn,
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The invention of the transistor

Bell Labs lays the groundwork:

B 1945: Bell sets up lab in the hopes of developing
“solid state” components to replace existing
electromechanical systems. William Schockley,
John Bardeen, Walter Brattain: all solid-state
physicists. Focus on Si and Ge.

W 1951: Shockley develops junction transistor
which can be manufactured in quantity.

B 1954: The first transistor radio! Also, Tl makes
first silicon transistor (price $2.50)

B 1956: Bardeen, Shockley, Brattain receive Nobel
Prize.

2025/2/24 37,



Two major inventions of the microprocessor

chip

Stored program

+

Change the program
so that you can do all
kinds of tasks on the
same hardware

2025/2/24

Transistor technology

The device is
smaller and faster
than a vacuum
tube

38



First computer vs. First microprocessor chip

1946, ENIAC(Electrical 1971, Intel 4004
Numerical Integrator ~ 10 micron process,
And Calculator) NMOS-Only Logic

® 18000 vacuum tubes .

® 1500 relays After 25 vears - 2,300 trarf3|stors

® 174 KW y - 3x4 mm die

2 0o ) - ot

° 2800 9. fe. = Performance < 0.1 MIPS
ootprint

® Clock: 100kHz = 640 bytes of addressable

® RAM: ~230bytes Memory

® I0: punched card

2025/2/24



Thirty years after the first microprocessor chip
was born

1971, Intel 4004 2000, Intel Pentium IV
® 10 micron process ® Issues up to 5 uOPs per
® 2,300 transistors cycle
® 3x4 mm die After 30 years ® MMX, SSE, and SSE2
® 4-bit bus ® 0.18 micron process
® 640 bytes of ® 42 million transistors
addressable ® 217 mm die
Memory
® 750 KHz ® 64-bit bus
® 8KB D-cache, 12KB op

A trace cache (I-cache),
Performance improved 5000x: 256KB L2 cache

smaller, faster, cheaper

386 486 Pentium Pehtium Il Pentium 11l Pentium \%
(275K) (1180K) (3100K) (7500K) (24000K) (42000K)
2025/2/24 40




ASSU{AISEI IR S B RERARAY?

Application

EBEAK,
—STEEH!

thGHI5N,
Pln% &

HiERS
1+%*§;u ‘ : 4 paradigm:

Relationship mining
Anomaly datection

; |
; i
\ 4 (Big) data
| EIQ}EE ‘: 3" paradigm: : driven science
. 421 1+ & computational 1
Phy5|cs .::-ﬁﬂ-—?—‘ 1+ 27 paradigm: | | science \ o e
| W Model-based 1 {ﬂmulatmnsl : O z
- - 1* paradigm: 1 @ theoretical H i DO
- E= ® - geam = Empirical 8 science | . o | ¢ ®
== e rh =@ .- b 2 10 2
r ! |
o B coe. 2 fau=a-w} | [am e
1| onang | @ I Clustering
. | i
|
! .
|
i

= ‘o ; | l "_,::;V:ml Jl Molecular Dynamics
miglles SFew( : ' '
_—— = B0 &2 1600 1950 2000
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Great Idea #3: Abstraction helps us Manage
Complexity

USTC Courses

Application
Algorithm and Data Structure SR E/ R
Programming Language/Compiler RS/ mEEA SEE ]
Operating System/Virtual Machines BIEERF/ERMN BBz,
AERn
: KE
Microarchitecture VAR BIASE
Gates/Register-Tr.ansfe.r Le.vel (RTL) =25 giiﬂ%
Analog/Digital Circuits EEpVER R HEn=s
Electronic Devices e %,
Physics

MI-X i, (tENFEREEEMREXIET, BRIFE)
(EFR ARYHIER ARSI E R BN RER.

2025/2/24 42




Related Courses in UC Berkeley

Strong

L e L
: Graduate Computer

Architecture, Advanced
Topics

Prereqéisite

==

: Computer Architecture, Firs
: look at parallel architectures :

Basic computer
organization, first look at
pipelines + caches

EECS 151 EECS 251

Digital Design and Integrated VLSI Systems Design
Circuits, FPGAs :

2025/2/24 43



EECS151 Courses in UC Berkeley

Digital design is not a spectator sport! Learn by doing.

Pragramming Languages

Asm / Machine Lang
CSE1C

Instruction Set Arch
i Machine Organization i
FECS 151 |
| i
EE 141 i i
EE4Q Devices \
Transistor Physics
IC processing
2025/2/24

Deep Digital Design Experience

~
~

\

Fundamentals of Boolean Logic
Synchronous Circuits

Finite State Machines

Timing & Clocking

Device Technology & Implications
Controller Design

Arithmetic Units

Memories

Testing, Debugging

Hardware Architecture

Hardware Design Language (HDL)
Design Flow (CAD)

44



Abstraction to Simplify Hardware Design

Single die

———Wafer

Y ampa
Going up to 12” (30cm)

BH RS (CPURH, SOCHA, « « o

TIREBIER (ALU, FPU, S7E84E. . . )

e GEVSEVSRET. - )

CMOSH &

EiEE (MOSFET: PMOS/NMOS)

How do we put the devices into system?
2025/2/24
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Abstraction to Simplify System Design

100 Modules/ IC

Integrated Circuit Design
0.25M~20G Devices

o
1 a m
°l e

| Transistor Physical Layout ‘

PL A g b

Scheme for
Representing Information

2025/2/24

a T T
5 o =
. L_r—-{ o A | e
=i b s
1

(Transistor Level Design)

Circuit Level Design
(2~8 Devices/Gate)

1K~10K Cells/Module
(100K Devices)

Register Transfer Level (RTL) Design |

i

}]‘i ».;--ruu:su--

-3
(WA, E / E /A ﬁ A
I e oK —ngmer
Y
C. s Cour S

Register Transfer Level (RTL) Design
2~16 Gates/Cell
(16~64 Devices)

46



Abstraction to Simplify System Design

Personal Computer: Motherboard Circuit Design Integrated Circuit Design
Hardware & Software Design 10 ICs/ PCB 100 Modules/ IC
1~10PCBs/System 1~50G Devices 0.25M~20G Devices

MEMORY
x l ouTPUT
‘Monitor
PROCESSING UNIT Printer

LED

Disk

CONTROL UNIT

| Electronic System Level (ESL)Design |
2025/2/24 47



How do we get the electrons to do the work?

High Level Language
Program (e.g., C)

Compiler

Assembly Language
Program (e.g., MIPS)

Assembler |

Machine Language
Program (RISC-V)

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

2025/2/24

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw  $t0, 0($2
lw  $t1, 4(%$2
sw  $t1, 0(%$2

sw  $t0, 4(%$2

0000 1001 1100 0110
1010 1111 0101 1000
1100 0110 1010 1111
0101 1000 0000 1001

asa;
i.e., data or instr

48



Great Idea #4: Software and Hardware Co-
design

//\\\ Application
K E./J Algorithm & Data Structure
o ,

Language
Software
Hardware \ Machine Architecture, ISA
\\ Microarchiture
o Logic and IC
<ﬂ > Device
N v

Computer System: Layers of Abstraction
2025/2/24 49



Old Machine Structures

B Mainframe: IBM System/360

2025/2/24
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Old Machine Structures

Application (ex: browser)

r
Compiler System I C S
Software Assembler (Mac 0SX)
Instruction Set
Hardware Processor |Memory |1/0 system Architecture
Datapath & Control
v [}

| Circuit Design |

| transistors |

2025/2/24 51



New Machine Structures

m IBM Blue Gene

"
I
.
=
"
"
=

System

= 64 cabinets
Cabinet 65536 nodes
2 midplanes (131,072 CPUs)
1024 nodes (32x32x64)
16 compute cards (2,048 CPUs) A0 TFs
0-21/0 cards (8x8x16) 32718
32 nodes 2,957 TFls 12mw
FRU (field (64 CPUs) 512 GiB* DDR 2,500 sq.ft.
gl replaceable unit) (4x4x2) 1520 kW MTEF 6.16 Days
4 MiB* eDRAM 25mmx32mm 901180 GF/s
__ 2nodes (4 CPUs) 16 GiB* DDR
‘ (compare this with & 1983 ‘ (2x1x1)
Cray YMP/8 ot 27 GF/s) 2x%(2.8/5.6) GFls
" 2x512 MiB* DDR * hitp /iphysics. nist govicuwUnitsibinary him)
15W
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New Machine Structures:
From the Gate to the Cloud

Software Hardware
m Parallel Requests

Assigned to computer
e.g., Search “Katz”

B Parallel Threads
Assigned to core Leverage Parallelism &

e.g., Lookup, Ads  Achjeve High Performance
B Parallel Instructions

>1 instruction @ one time

e.g., 5 pipelined instructions

H Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Smart
Phone

Warehouse
Scale
Computer

Core

® Hardware Y struction Un|t(/)/ Sﬁ:t](c;;onal
Descriptions =N
o ] B B B
All gates functioning in parallel at hs .ﬁﬁ . /+By/£1+ }A2+ }A#
same time

. Cache Memory -~ ;
B Programming j

Logic Gates
D

g
2025/2/24 S e 53
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A Computer Architecture in a broad sense

1

e
Application
Programs

Libraries

3 Software
Operating System
—4 5 (6
Drivers Memory Scheduler
_ Manager . —
—(8 L 8) 3—) L 8  — ISA
Execution Hardware
‘ L)
10> 10 N Men:ctr.y
System Interconnect ransfation
(bus)
Tl b 2 Hardware
Controllers Controllers
i3 >
WO devices Main
and Memao
Networking ry

2025/2/24




ISA and ABI

m Interface at the top

® ABI (Application Binary Interface, MA —#HREEH)
® ISA (Instruction Set Architecture, A £k REH)
® C.P. API(Application Program Interface, MARFEH)

B ISA separates hardware from rest
m ABI separates processes from rest

Application Software

System Calls
| ]

Y ¥
Operating System |

Hardware

System ISA | UserlISA

SA

Application Software

System Calls

Operating System
System ISA

User ISA

Hardware

ABI



ATEEGRELARTE

Supercomputers Data Centers  Smartphones Ernpedded
Devices

DA
BaiddhsE

Business analytisgs AlphaGo
* Ad prediction

You(Ti)

Audio recognition

Image
analysis

‘ Automatic
Drugdesign translation Consumer

electronics
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ez P EA IR T SY SN 334 o

Application

Algorithm and Data Structure

Programming Language/Compiler

Operating System/Virtual Machines

But do we really need to charge them?

Microarchitecture

Can they work without battery?
Gates/Register-Transfer Level (RTL) '- B 5 ‘ d -..nw - 6 >} :
L ] P — s G <
Analog/Digital Circuits . 2 . I"*“'“} of Things ¢
= — hﬁ e R AT
Electronic Devices Hi - . '—“; p 6 o N
Physics & g T
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Neuromophic Neural Network  Large Graph Processing
umm\ /V
e D ©
T N

¥ oy

Computer Architecture Innovations

HeterogeneousGomiputing Efmerging Technology

| STT-RAM/ReRAM

TESLAP100  Cambricon #H%{2  Intel HARP | PCM/Memristor
GPU AsIC FPGA HP labs, 2012 3D Stacking
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Course and Crew

'

What's the difference between “Big" and
"Small"?

‘V

Why Take This Course?

Great Ideas in Computing Systems

What' s This Course All About ?

o - e

Summary




Text Book

B Introduction to computer
architecture(ISA)

® How is data represented?
i introduction
® What are the pieces of a fo computing " introductionfo
computer? @ ststems computing

fun v gues oyt
® How do computers work?
B Programming
® How do I "talk" directly to
the machine?-Assembly

language

¢ Hc_:w do I program in "C"?- Introduction to Computing
high level language (HLL) Systems: from bits and gates to

® Computer systems and C/C++and beyond(3nd
. edition),
computation

® How do simple HW/SW elements VYale N. Patt and Sanjay J. Patel

come together to realize , September 2019, McGraw-

complex computations? Hill Higher Education

2025/2/24



Text Book Components

m Part 1: Hardware(Chapter 1-4)
® Representing data, transistors, gates, digital
logic structures
® von Neumann machine model

m Part 2: Software: Assembly language(Chapter 5-10)
® Instructions, (structured) programming,
input/output, relationship to hardware

m Part 3: Software: C programming(Chapter11-19),
selected
® Syntax, operators, control structures, functions,
pointers, recursion, data structures, relationship
to assembly language
® Assume already familiar with programming (C)

2025/2/24



This Course Focus on

m Chapt 2 Bits, Data Types, and Operations

® How do we represent information using electrical signals?

m Chapt 3 Digital Logic Structures
® How do we build circuits to process information?
m Chapt 4, 5,6 Computer Machine Model, Processor and
Instruction Set
® How do we build a processor out of logic elements?
® What operations (instructions) will we implement?

m Chapt 7 Assembly Language Programming
® How do we use processor instructions to implement
algorithms?
® How do we write modular, reusable code? (subroutines)

® Chapt 8 Data Structures
® Chapt 9 1/0, Traps, and Interrupts

® How does a processor communicate with outside world?
® Chapt 11, C Implementation related to hardware

2025/2/24
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Background/Prerequisites

B Requirement
® background in programming (C)
® Assume you can program/debug in C

2025/2/24

8.8



Architecture continually changing

Applications suggest
how to improve
technology, provide
revenue to fund
development

Improved
technologies
make new
applications
possible

Applications

Technology

Cost of software
development makes
compatibility a major force
in market
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Abstraction Layers in Modern Systems

2025/2/24

Application

Algorithm and Data Structure

Programming Language/Compiler

Operating System/Virtual Machines

0 nt A o o A

Microarchitecture

Gates/Register-Transfer Level (RTL)

Analog/Digital Circuits

Electronic Devices

Physics
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Transformations Between Layers

How do we solve a problem using a computer?
A systematic sequence of transformations between layers of
abstraction.

Problem

Software Design:
choose algorithms and data structures

Algorithm

Programming:
use language to express design

Program

Compiling/Interpreting:
convert language to

Instr Set machine instructions

Architecture
2025/2/24



Deeper and Deeper...

Microarch

Circuits

Devices

2025/2/24

Processor Design:
choose structures to implement ISA

Logic/Circuit Design:
gates and low-level circuits to
implement computer components

Process Engineering & Fabrication:

develop and manufacture
lowest-level components

12



Descriptions of Each Level

B Problem Statement
® stated using "natural language”
® may be ambiguous, imprecise
B Algorithm
® step-by-step procedure, guaranteed to finish
® definiteness, effective computability, finiteness
B Program
® express the algorithm using a computer language
® high-level language, low-level language
B Instruction Set Architecture (ISA)

® specifies the set of instructions the computer can
perform

® data types, addressing mode
2025/2/24
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Descriptions of Each Level (cont.)

EMicroarchitecture
®detailed organization of a processor implementation
odifferent implementations of a single ISA

HmLogic Circuits
®combine basic operations to realize microarchitecture
®many different ways to implement a single function

(e.g., addition)

EDevices

®properties of materials, manufacturability

2025/2/24 14



Many Choices at Each Level

Solve a system of equations

Gaussian Jacobi

Red-black SOR AP . . Multigrid
elimination iteration
FORTRAN C C++ Java Tradeoffs:
cost
Sun SPARC Intel x86 IBM PowerPC performance
power
Pentium 4 COre2Duo  aApmp Athlon X2 (etc.)

Ripple-carry adder  Carry-lookahead adder

Static CMOS Dynamic cMos Nanomechanical

2025/2/24



Course Objectives

B Understand role & relationship of hardware and software
B Exposure to. ..
® Machine organization
® Assembly language programming
® C programming
B Understand how to build entire (slow) computing system
® Hardware and software
® You’ Il get achance in complementary courses

B Be distinguished from mere programmers

HENRE (BHERG. BFiZE, AFRE. BRESHRES
Lo BREEHRASHL BERR) BLBRSHBENSNE

2025/2/24
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Course Objectives

“Any sufficiently advanced technology is
indistinguishable from magic.”
Arthur C. Clarke, "Profiles of The Future” (Clarke's 3rd law)
B No magic: Computers should not be magic to computer scientists!
B Bottom UP: Start with what they “know”

® Computing systems from transistors on up
® The transistor as light switch
® Not quantum mechanics
B Choose a computer model that is simple
® Not about “design”, but about “insight” into all computers
As the genius said: simple, but still rich
Continually build on what you know
Continually raising the level of abstraction
Memorizing as little as absolutely necessary
Trying very hard to not introduce magic

You take, You enjoy!!!

2025/2/24 17,



Courses Contents

1. Overview

12. Transitionto C

13. Programming in C

8. Programming and Debugging

11. Subroutines, Calls, traps, interrupts
10. Physical /0

Assembly Language programming
Operations on bits, bytes (arithmetic, logical)
The LC-3 Instruction set architecture
The Von Neumann model

The finite state machine

Digital Logic

The transistor

WwhrpooNDdO

2025/2/24
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Computational model (Turing machine) vs.
Structural model (Von structure)

MEMORY
:

INPUT T l ouTPUT

Keyboard Monite
Tagdr Trul U weyboar PROCESSING UNIT Printer

Scanner LED

Disk 'w Disk

a,b,c c(a+b)

Universal Turing Machine ONTROL UM

2025/2/24 19



Computational model (Turing machine) vs.
Structural model (Von structure)

568 appendie . The Microarchiecture of the LG-3

Taddv Tmul ’ U m“}‘mo )

a,b,c—»| —» c(a+b)

i
MAR<ZEXTIR70])

/1
c?ﬁ//

Universal Turing Machine s / /( ﬁ] m;we)\\ T.@‘\:
Tor /W o m«.a..m X \ o]

& \CRMNAR]|
R

DRe0R Y

\.‘“_fﬁ_/

Tots Tots
Flgure C.2 A state machine for the LC-3
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Instruction Set Architecture (ISA) vs. Finite State
Machine

JMP
JSR
JSRR

NOT*
RET
RTI
ST
STI
STR
TRAP

reserved

15 14 13 12 11 10 9

A3 The Instruction Set

876543210

‘GOIN‘ lD‘RI ISN‘ o OP ‘ ISRZ‘
00]0" IDR' ISR’ 1 lr‘nm5 :
:01:01: :DR' 'Sﬂl‘ o 0‘0 J SR2
o (o [ o] b
| [P e ]
o | = [ ] | s ]
01'00' 1 T PC:CMS#‘IH T
0100 of oo BaseR l onu‘noo
ETARCTOECE O
o [ [ o o,
ey [ [ | - omel |
‘HIQO‘ IDR: - P(‘:c"s’as]‘ L
T | o | |
5 ‘000 Iﬂ“ y ‘OOD‘DUJI ;
: : VOW’ s T
el e
o [ m [ e
[Lon [on [ o] o ||
[ [ oo, [ poed [ ]
e [T

Flgure A2 Format of the entire LC-3 Instruction set. Note: + indicates Instructions that
modify condition codes
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568

To1e

To 18

To m

Flgure C.2

— m@c
fom.rcw

appendie . The Microarchiecture of the LG-3

MDR<-M{MAR]|
R
DR<-MDR
stcc )
Tots
A state machine for the LC-3

\\

//@.M.M — \\

DR<-MMAR]
b,

\
\

Tots

Tote

XTofses]
eticiReatontt

*0P2 may bs SR2 or SEXTfrms]
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Instruction Set Architecture (ISA) vs. Finite State
Machine

A3 The Instruction Set

1514131211109 8 7 6 5 4 3 2 1 0

+
ADD 0001 DR SRt |o| oo ‘ SR2
i T — T T
ADD 0004 DR SR [ 1 imms
" T — T T —
AND o101 DR sA1 |0 oo J SR2
4 T — T T
AND' 0101 DR SRl |1 imms.
BR | n[=]e ] [
JMP 000 ‘ BaseR [ 000000
JSR 0100 1 PCoffsett1
JSRR 0100 |0 00 | BaseR l 000000
+ T T T
LD oo DR PCoffsstd
Pl Pl P
& T — T
LDI 1010 DR 1 PCoffsetd
" —r—r — T T
LDR ot | on [ wen | T omaew
+ T
LEA 1110 R PCoffsetd
¥ T — T —r—r
NOT 1001 oR SR 111114
RET 000 111 000000
RTI 000000000000
ST SR PCoffsstd
STl SR PCoffsatd
STR [ o | ‘s [wen |  aes |
TRAP | 1111 ‘ 0000 ‘ trapvectd |
reserved 1101 [

Flgure A2 Format of the entire LC-3 Instruction set.
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modify condition codes

Note: + indicates Instructions that

568 appendie . The Microarchiecture of the LG-3

/ / (m(.m (nere

w\\
\

u.mﬁ«.wm

To 18

— m@c
fom.rcw

- ‘A Tote

XTofses]
eticiReatontt
*0P2 may bs SR2 or SEXTfrms]

Tots Tots
Flgure C.2 A state machine for the LC-3
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Computer microarchitecture vs. Finite State
Machine

570 appendly e The Microarchitecturs of the LC-3
568 appendie . The Microarchiecture of the LG-3

5| rea
M ALE
ko pec—|

3 |sA2 A1 | g
sR2—%o| our  QUT [+4SRI

Tor / /
// / /‘/ ‘\\
e==l==)\

DR<-MMAR]
L,

MOR<-M{MAR]|
R P10 PG 4 SEXTIoses)
PCiof1: PO + SEXTofian 1]
DR<-WDR
o

Tots Tots

Flgure C.2 A state machine for the LC-3
Figure C.3  The LG-3 data path
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Levels of Abstraction

Application Solve a system of equations I
Algorithm and Data Structure /’\
Gaussian Jacobi o
Programming Language/Compiler Red-black SOR elimination iteration Multigrid
Operating System/Virtual Machines
FORTRAN C C++ Java
O et A e o A m
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) /\\
pentium 4 C°T€2DU0  Avip Athion X2

Analog/Digital Circuits

Electronic Devices

Physics

2025/2/24
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Ripple-carry adder  Carry-lookahead adder

—

Static CMOS Dynamic cMos '\anomechanical I
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N-type MOS Transistor

BMOS = Metal Oxide Semiconductor

® two types: N-type and P-type
EN-type
® when Gate has positive voltage,

short circuit between #1 and #2
(switch closed)

® when Gate has zero voltage,
open circuit between #1 and #2

(switch open)
#1

Gate —I

GND

#2

Terminal #2 must be
connected to GND (0V).
2025/2/24
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P-type MOS Transistor

EP-type is complementary to N-type

® when Gate has positive voltage,
open circuit between #1 and #2
(switch open)

® when Gate has zero voltage, 1
short circuit between #1 and #2 (
(switch closed)

Gate =1

Gate =0

Terminal #1 must be
connected to +2.9V.
2025/2/24 26



Levels of Abstraction

Application

Solve a system of equations

Algorithm and Data Structure

Programming Language/Compiler

Operating System/Virtual Machines

Microarchitecture

Gates/Register-Transfer Level (RTL)

Analog/Digital Circuits

/Gausym

Red-black SOR elimination iteration Multigrid

FORTRAN C C++

I

Sun SPARC Intel x86

I

pentium 4 C°T€2DU0  Avip Athion X2

Java

IBM PowerPC

Electronic Devices

o

Ripple-carry adder  Carry-lookahead adder

Physics

2025/2/24
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Inverter (NOT Gate)

- 2.9V

In t— Out
Truth table
< 0oV /
In | Out In | Out In=1
ov]29V 0 1
29V ovVv 1 0

2025/2/24

[ In=0

P-type

— Qut=1

{_iN-type

P-type

— Out=0

N-type
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OR Gate

A——OIE— T

2

2025/2/24

A B| C
0O 0| O
0 1 1
1 0 1
1 1 1

Add inverter to NOR.
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AND Gate

A B| c
o o o
o 1| o
[: 1 0 o
1 1| 1
B— — C

A cl\—@( ]
—
—

Add inverter to NAND.
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Gates

OR
A— A— -
| e 5] R
AND
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Levels of Abstraction

. . Solve a system of equations I
Application Y q
Algorithm and Data Structure /’\
Gaussian Jacobi

Red-black SOR Multigrid

Programming Language/Compiler elimination iteration
Operating System/Virtual Machines
FORTRAN C C++ Java
O et A e o A m
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) /\\
pentium 4 C°T€2DU0  Avip Athion X2
Analog/Digital Circuits
Electronic Devices Ripple-carry adder  Carry-lookahead adder I

Physics

2025/2/24
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Basic Logical Structure

. B, . B, B J
A A A

Full ¢ Full  © Full ©. Full c|-0
Adder Adder Adder Adder

C. S C. S C. S C, S
Sy S. S, S,

e

;Lc‘v

e
|2

PR — iy Err— ) o — . e -

P L e

o BT T
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Levels of Abstraction

Application Solve a system of equations I
Algorithm and Data Structure /’\
Red-black SOR Gaussian Jacobi Multiarid
. . ea-blac imi i i i ultigri
Programming Language/Compiler elimination iteration 9
Operating System/Virtual Machines
FORTRAN C C++ Java
O et A e o A m
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) /N
pentium 4 C°T€2DU0  Avip Athion X2 I
Analog/Digital Circuits

Electronic Devices

Physics

2025/2/24
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LC-3 Data Path(Microarchitecture)

L: Control Unit

IDR1IMUX

a2 I R —

o
N

NEG FINITE

STATE

MACHINE
>

A Memory
Uunit

s EN,RW

INPUT

OUTPUT
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Levels of Abstraction

. . Solve a system of equations I
Application I 4 q
Algorithm and Data Structure /’\
Gaussian Jacobi o
Red-black SOR elimination iteration Multigrid

Programming Language/Compiler

Operating System/Virtual Machines ﬂ,\

FORTRAN C C++ Java
O - A - - A
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) \
pentium 4 C°T€2DU0  Avip Athion X2

Analog/Digital Circuits /\

Electronic Devices Ripple-carry adder  Carry-lookahead adder

Physics /\

Static CMOS Dynamic cMos '\anomechanical

2025/2/24 36,



LC-3 ISA Overview

iEEI$ES (Operate Instructions)

151413121110 9 8 7 6 5 4 3 2 1 0 HiEEzohis s
~op [EIER sr1 Y o[o] sr2 (Data Movement Instructions)
s} 0 0 0 1 SR1 Imm5
#15S (Load
A\oa 0 1 0 1 SR1 ju 0|0| SR2 m @( )
1514131211109 8 7 6 5 4 3 2 1 0

L\ 0 101 SR1 Imm5

LD l 0 1 O msl3s PCoffset9
Nfeamm 1 0 0 1 SR1 1|11|1

LDR I 11 O sl BaseR| PCoffset6

Reserved |5 BB

LDI I DR PCoffset9

{54324 (Control Instructions) LEA I DR PCoffset9

1514131211109 8 7 6 5 4 3 2 1 0

BR PCoffset9 RS (Store)

JSR 01001 PCoffsetll 1514131211109 8 7 6 5 4 3 2 1 0
sskrr | [FHEINE o o |Baser|o[o[o|o]o]o ST | GG SR PCoffset9

o

RTI WO OIOIO olololololo STR | [OEREREY SR BaseR| PCoffset6
SR

BN 0| 0| o[Baser|o|o|o]o]o|o ST | E[OfEE PCoffset9

IMP
Eo|0|o|1|1|1|o|0|o[0|0[o|
OIOIOlOI TrapVector8
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Class Organization

B Lectures
® Will not simply “cover” the material
® Will focus on the “hard stuff”
® Will not stand alone, instead build on reading

B Guest Lectures
® Turing Machine
® RISC-V
® Cambricon

B Discussion sessions
® Encouraged! (4 TAs, 4 discussion group, every week!)
® Okay: discuss meaning of problem, discuss

approaches
® Not okay: comparing answers, solving questions
together

2025/2/24 38



Class Organization

2025/2/24
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Class Organization

2025/2/24

Lecture 1
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Class Organization

B Three hours of lecture and an one-hour discussion
section per week.

B Problems Sets

B Labs - LC-3 Simulator /Assembler
® All labs start after two weeks

m Design Project - Honor class required
® Simulator /Assembler Design

B Exams:
® 1 Midterm + 1 Final

B Location
® Teaching Building Room 3B202

H Time
® 5(3,4,5): 9:45~12:10

® 60 hours + 40hours, 3+1credit
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Homework Assignments

B Problem Sets: 6 sets
® Problem solving
® Complete before each due date
® Can work ahead
® Great exam preparation!

2025/2/24
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Labs Assignments

®m Simple Programming Assignments
® Programming LC3 Assignmentsl: Programming In
machine language
® Programming Assignments2~5:Programming In LC3
assembly language
® Programming Assignments6:Assignments2~5 Programming
In C

m Challenging Course Projects
® IC3 Simulator/Assembler Design
— (Encouraged! Honor class required, Extra 10 points)

B See schedule for each lab due dates

2025/2/24 43



Exams & Grades

B Middle Exam 20%
® Final Exam: 20%

B Assignments : 48% +10%
® Problem Sets for every chapter: - 6% (BUT it will
affect your participation)
® 6 Programming Assignments: 48% for each program
® 1C3 Simulator/Assembler Design (Encouraged! Honor
class required, Extra 10 points)

m EPA: Effort, Participation and Altruism in discussion

section: 12%

® If you do not attend discussion, you can not
participate Exam; 12% 2> 0%

® If you don’t do the problems, you can not
participate well; 12% > 0%

B Encouraged! Extra 10 points > Secure 100 point

2025/2/24
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EPA vs. GPA

m Effort
® Attending prof and TA office hours, completing all
assignments, turning in HW, doing reading quizzes

m Participation
® Attending lecture
® You have 2 slip day tokens (NOT hour or min)
® Asking great questions in discussion and lecture
and making it more interactive

H Altruism

® Helping others in lab or on Piazza: Be Excellent to
Each Other

m EPA! points have the potential to bump students up
to the next grade level!
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Policy on Assignments and Independent Work

m ALL PROJECTS WILL BE DONE AND SUBMITTED
INDIVIDUALLY.

® With the exception of laboratories and assignments
that explicitly permit you to work in groups, all
homework and projects are to be YOUR work and your
work ALONE.

B You are encouraged to discuss your assignments with
other students, and extra credit will be assigned to
students who help others, particularly by answering
questions on Piazza, but we expect that what you
hand in is yours.

m It is NOT acceptable to copy (or even "start with")
solutions from other students or the Web
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Tips on How to Get a Good Grade

B The lecture material is not the most challenging part
of the course. You should be able to understand
everything as we go along.

m DO NOT fall behind in lecture and tell yourself you
“will figure it out later from the notes or books” .

®m Notes will be online after the lecture (usually the
night). Do assigned reading before the lecture.

m Ask questions in class and stay involved in the class -
that will help you understand.

B Discuss with TAs to check your understanding or to
ask questions.

m Complete all the homework problems - even the
difficult ones. The exams will test your depth of

knowledge.
2025/2/24 a7



Tips on How to Get a Good Grade

B You need to understand the material well enough to
apply it in new situations. You need to enroll in both
the lab and the course.

® Take the labs very seriously. They are an integral
part of the course.

® Choose your partner carefully. Your best friend
may not be the best choice!

® Most important : Be well organized and neat with
homework, labs, project. In lab, add complexity a
little bit at a time - always have a working
design.
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Academic Integrity (ZZARiE(S)

Do not post your work on public repositories
like github (private o.k.) --negative points
B The rule is simple

® Claiming another’s work as your own will ruin your
life
® See syllabus for details and examples

B Who will know?

® We will (inspection, similarity detectors, exams)
® Your friends will.. your parents will..
® You will

B Remember

® If you need to cheat now, you’ve got much bigger
problems

® Cheating is like going 150 MPH over speed limit
while drunk!

2026452424 An Hong CS USTC 4949
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Abstraction Layers in Modern Systems

2025/2/24

Application

Algorithm and Data Structure

Programming Language/Compiler

Operating System/Virtual Machines

0 nt A o o A

Microarchitecture

Gates/Register-Transfer Level (RTL)

Analog/Digital Circuits

Electronic Devices

Physics
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n How do we represent data in a computer?

n Integer Data Types
n 2' Complement Integers

n Binary-Decimal Conversion
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How do we represent data in a computer?
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How do we represent data in a computer?

Great Idea from Ancient Chinese Philosophy

All things come into being, all things come into nothing

ATRYETFH BETFE (BF-O+=)

== \s\g (B)
D N ARRERIY,
||I ® il A NS,

N — {g I\ENET.
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How do we represent data in a computer?

B At the lowest level, a computer is an electronic
machine.
® works by controlling the flow of electrons

m Easy to recognize two conditions:
® presence of a voltage - we’ll call this state “1”
® absence of a voltage — we’ll call this state “0”

B Could base state on value of voltage, but control and

detection circuits more complex.
® compare turning on a light switch to measuring or
regulating voltage

m We' |l see examples of these circuits in the next
chapter.
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Simple Switch Circuit

Switch open:
® No current through

circuit
gGD? ® Light is off
oV .. is +2.9V
l +  Switch closed:
® Short circuit across
2 . 9V Vo ut switch

® Current flows
® Light is on
oV .. is OV

Switch-based circuits can easily represent two states:

on/off, open/closed, voltage/no voltage.
2025/2/24



Computer is a binary digital system.

Digital system: Binary (base two) system:
+ finite number of symbols * has two states: 0 and 1
Digital Values -» s lllegal L |
1 I I ‘ |
I 1 I ‘ 1
Analog Values » 0 0.5 2.4 2.9 Volts

m Basic unit of information is the binary digit, or bit.

Values with more than two states require multiple bits.

®A collection of two bits has four possible states:
00, 01, 10, 11

®A collection of three bits has eight possible states:
ooo, o001, o010, 011, 100, 101, 110, 111

®A collection of n bits has 2" possible states.

2025/2/24 8



Data input: Analog — Digital

B Real world is analog!

B To import analog
information, we must do

two things
® Sample
— E.g., for a CD, every 44,100 ths
of a second, we ask a music
signal how loud it is.
® Quantize
— For every one of these samples,
we figure out where, on a 16-bit
(65,536 tic-mark) “y

Original analog signal

Signal discretized in time
(Sampled)

Signal discretized in time
and quantized in amplitude

Digital representation
of a signal




N-type MOS Transistor

BMOS = Metal Oxide Semiconductor

® two types: N-type and P-type
EN-type

® when Gate has positive voltage,
short circuit between #1 and #2

(switch closed)

® when Gate has zero voltage,
open circuit between #1 and #2
(switch open)

#1

Gate —|

GND

Terminal #2 must be

connected to GND (0V).
2025/2/24

Gate =1

Gate =0

#1

#2
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P-type MOS Transistor

mP-type is complementary to N-type

® when Gate has positive voltage,
open circuit between #1 and #2

(switch open) #1
® when Gate has zero voltage, 1
short circuit between #1 and #2
(switch closed) (
#2

Gate =1

Gate =0

Terminal #1 must be
connected to +2.9V.
2025/2/24 1



Logic Gates

B Use switch behavior of MOS transistors
to implement logical functions: AND, OR, NOT.
m Digital symbols:
® recall that we assign a range of analog voltages to
each digital (logic) symbol

Digital Values -» B lllegal SETY
I 1 I ‘ 1
I 1 t ‘

1
Analog Values » 0 0.5 2.4 2.9 Volts

® assignment of voltage ranges depends on
electrical properties of transistors being used
— typical values for "1": +5V, +3.3V, +2.9V, +1.1V
— for purposes of illustration, we'll use +2.9V

2025/2/24 12



Within the Computer: Everything is a Number.

= Numbers within the

Computer 0 0000

® Base 10 #s: 01 1 01 0001

Dec (1mal ) 02 2 02 0010

~ Digits: 03 3 03 0011

0,1,2,3,4,5,6,7,8,9 04 4 04 0100

® Base 2 {#s: 05 5 05 0101

Bin(ary) 06 6 06 0110

— Digits: 0,2 07 7 07 0111

® Base 8 #s: Oct(al) 08 8 10 1000

- DigitS: 9,1,2,3,4,5,6,7 09 9 1 1001

® Base 16 #s: 10 A 12 1010

Hex (adecimal) 1 B 13 1011

— Digits: 12 C 14 1100

0/%,2,3,4:5,6,7,8,9,A,8, 13 D 15 1101
C,D,E,F

14 E 16 1110

15 F 17 1111



Hexadecimal Notation

mit is often convenient to write binary (base-2) numbers
as hexadecimal (base-16) numbers instead.

® fewer digits -- four bits per hex digit
® less error prone -- easy to corrupt long string of
l’s and 0's

Binary Hex | Decimal Binary Hex | Decimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

2025/2/24 14
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Converting from Binary to Hexadecimal

mEvery four bits is a hex digit.
® start grouping from right-hand side

011101010001111010011010111

O

3 A 8 F 4 D 7

2025/2/24 18



Converting from Binary to Hexadecimal

mEvery four bits is a hex digit.
® start grouping from right-hand side

This is not a new machine representation,
just a convenient way to write the number.

2025/2/24 17



Within the Computer: Everything is a Number.

B Which base do we use?

#include

int main() {
const int N = 1234;

printf("Decimal: %d\n", N);
printf("Hex: \n", N);
printf("Octal: n", N);
printf(", eral (not ipported by a omj ers):\n");

printf("ox4 | ex)\n", 0x4d2);
printf("0b10011010010 i (binary)\n", 0b10011010010)
printf("02322 i (octal, prefix zero)\n", 02322);




Within the Computer: Everything is a Number.

m Bit(Blnary digiT)
® 1Bits=2things;
® 2Bits=4things;
® 4Bits=16things;
® 8Bits=256things

m Byte
® 1Byte=8Bits
® A byte is 8 bits

B But numbers usually stored with a fixed size
® 8-bit bytes;
® 16-bit half words;
® 32-bit words;
® 64-bit double words, .
® And there are really only two primitive "numbers":
0 and 1 is a "bit"



BIG IDEA: Bits can represent anything!!!

m Characters?
® 26 letters = 5 bits (25 = 32)
® upper/lower case + punctuation = 7 bits (in
8) ( “AscII”)
® standard code to cover all the world’s languages =
8,16,32 bits ( “Unicode” ) www.unicode.com

m Logical values?
® 0 - False, 1 - True

B colors?
® Ex: Red(00) ,Green(01) ,Blue(11)

B locations / addresses?
B commands?

MEMORIZE: N bits & at most 2N things



What kinds of data do we need to represent?

E Kinds of data

®Numbers - signed, unsigned, integers, floating
point, complex, rational, irrational, ..

®Text - characters, strings, ..
®Logical - true, false

®Images - pixels, colors, shapes, ..
®Sound

®Video — a series of images
®Instructions

o

m Data type: representation and operations within the
computer

We’ Il start with numbers...

2025/2/24



. How do we represent data in a computer?

n Integer Data Types
. 2’ Complement Integers

. Binary-Decimal Conversion




S

m Z#: (Quipu) HEska
m 7=ith: EISEENNNERTE
m [3E: 161t

® Non-positional notation
® Could represent a number (“5”) with a string of
ones (“11111”) problems?



Unsigned Integers

B Weighted positional notation
® like decimal numbers: “329”
® “3” is worth 300, because of its position, while
“9” is only worth 9

most v ¥ least
329 significant 101 significant
/ 1\ VA BN
102 10! 100 22 21 20
| 3x100 + 2x10 + 9x1 = 329 | | 1x4 +0x2 + 1x1 =5 |

2025/2/24 24



Unsigned Integers (cont.)

BAn n-bit unsigned integer represents 27 values:
from 0 to 27-1.

22 21 20

0 0 O 0
0 0 1 1
0 1 0O 2
0 1 1 3
1 0 O 4
1 0 1 5
1 1 0O 6
1 1 1 7

2025/2/24
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Unsigned Binary Arithmetic

mBase-2 addition - just like base-10!
® add from right to left, propagating carry

carry

N YN
10010 10010 1111
+_ 1001 +_ 1011 + 1
11011 11101 10000
10111
+_ 111

Subtraction, multiplication, division,...

2025/2/24
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Unsigned Integers (cont.)

0000 0000 0000 0000 0000 0000 0000 0000w = Oten
0000 0000 0000 0000 0000 0000 0000 0001 two = Tten
0000 0000 0000 0000 0000 0000 0000 0010wmio = 24en

0111 11111111 1111 1111 1111 11171 110140 = 2,147,483,64546n
0111 11111111 1111 1111 1111 11171 111040 = 2,147,483,6464en
0111 1111 1111 1111 1111 11171 1111 11110 = 2,147,483,647 e
1000 0000 0000 0000 0000 0000 0000 00004y, = 2,147,483,6484en
1000 0000 0000 0000 0000 0000 0000 00014y = 2,147,483,649,
1000 0000 0000 0000 0000 0000 0000 00104y, = 2,147,483,6504,

111111171 117171 11171 1111 1111 1111 110740 = 4,294,967,2934¢,
11111111 1111 11171 1111 1111 1111 111040 = 4,294,967,294¢,,
11111111 1111 11171 11171 1111 1111 11110 = 4,294,967,2954¢,



Signed Integers

® With n bits, we have 2" distinct values.
® assign about half to positive integers
(1 through 271-1)
and about half to negative (- 2" '+1 through -1)
® that leaves two values: one for 0, and one extra
m Positive integers
® just like unsigned - zero in Most Significant (MS)
bit
00101 = 5
®m Negative integers
® signed-magnitude - set MS bit to show negative,
other bits are the same as unsigned

10101 = -5

® 1’s complement - flip every bit to represent
negative
11010 = -5

® in either case, MS bit indicates sign: O=positive,

2025224 =negative 28



Three representations of signed integers

Representation Signed 1's Representation Signed 1’s
Magnitude ~ Complement Magnitude Complement
0 0 100 00 —0 —15
1 1 100 0 1 —1 —14
2 2 100 10 —2 —13
3 3 100 1 1 —3 —12
4 4 1010 0 —4 —11
5 5 1010 1 —5 —10
6 6 10110 —6 —9
7 7 101 11 —7 —8
8 8 11000 —8 —7
9 9 11001 =9 —6
10 10 110 10 —10 —5
1 1 110 1 1 —11 —4
12 12 1110 0 —12 —3
13 13 111 0 1 —13 —2
14 14 11110 —14 —1
15 15 111 1 1 —15 —0
Signed Magnitude: 1’s Complement:
5 -5=-10 5-5=-0
00101 (5) 00101 (5)
+ 10101 (=5) + 11010 (=5)
11010 (-10) 11111 (-0)

2025/2/24 29



. How do we represent data in a computer?

. Integer Data Types
n 2' Complement Integers

. Binary-Decimal Conversion




2' s Complement Representation

m If number is positive or zero,
® normal binary representation, zeroes in upper bit(s)

m If number is negative,
® start with positive number
® flip every bit (i.e., take the 1's complement)
® then add one

EmThis representation makes the hardware simple!

00101 (5) €§ 01001 (9)

11010 (1’s comp) (1’s comp)
+ 1 + 1
11011 (-5) (-9)

2025/2/24 31



2’ s Complement

B Problems with signed-magnitude and 1’ s
complement
® two representations of zero (+0 and -0)
® arithmetic circuits are complex
— How to add two signed-magnitude numbers?
* eg.,try2+(-3)
—How to add two 1’ s complement numbers?
* eg.,tryd+(-3)
m 2's complement representation developed to make
circuits easy for arithmetic.
® for each positive number (X), assign value to its
negative (-X), such that X + (-X) = 0 with “normal”
addition, ignoring carry out

00101 (5) 01001 (9)
+ 11011 (-5) + (-9)
00000 (0) 00000 (0)

2025/2/24 32



2's Complement Shortcut

m To take the 2's complement of a number:

® copy bits from right to left until (and including)
the first “1”

® flip remaining bits to the left

011010000 011010000

100101111 (1’s comp) (flip) (copy)
+ 1

100110000 100110000

2025/2/24 33



2's Complement Signed Integers

m MS bit is sign bit - it has weight -27-7.
®m Range of an n-bit number: -2"-1 through 21 - 1.
® The most negative number (-2""!) has no positive

counterpart.

_23 22 21 20 _23 22 21 20

0O 0 0 O 0 1 0 0 O -8
0O 0 0 1 1 1 0 0 1 -7
0O 0 1 O 2 1 0 1 O -6
0O 0 1 1 3 1 0 1 1 -5
0O 1 0 O 4 1 1 0 O -4
0O 1 0 1 5 1 1 0 1 -3
0O 1 1 O 6 1 1 1 O -2
0O 1 1 1 7 1 1 1 1 -1

2025/2/24
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Three representations of signed integers

Representation Signed 1's 2's Representation Signed 1’s 2’s
Magnitude = Complement Complement Magnitude Complement Complement
0 0 0 100 00 —0 —15 —16
1 1 1 100 0 1 —1 —14 —15
2 2 2 100 1 0 —2 —13 —14
3 3 3 100 1 1 —3 —12 —13
4 4 4 1010 0 —4 —11 —12
5 5 5 1010 1 —5 —10 —11
6 6 6 101 10 —6 —9 —10
7 7 7 101 1 1 —7 —8 —9
8 8 8 110 0 0 —8 —7 —8
9 9 9 110 0 1 —9 —6 —7
10 10 10 110 10 —10 —5 —6
1 1 11 110 1 1 —11 —4 —5
12 12 12 1110 0 —12 —3 —4
13 13 13 111 0 1 —13 —2 —3
14 14 14 11110 —14 —1 —2
15 15 15 111 1 1 —15 —0 —1
Signed Magnitude: 1’s Complement: 2’s Complement:
5 -5=-10 5-5=-0 5-5=0
00101 (5) 00101 (5) 00101 (5)
+ 10101 {-5) + 11010 (-5) +11011 (-5)
11010 (-10) 11111 (-0) 00000 (0)
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2's C

omplement

Sig

n Bit

“10p00 0000 0000 0000 0000 0000 0000 0000k, = Oten

0000 0000 0000 0000 0000 0000 0000 0001 wo = Tten
0DO0 0000 0000 0000 0000 0000 0000 00104we = 2ten

o171 11111111 1111 1111 1111 1111 110140 = 2,147,483,645¢¢,,
of11 11111111 1111 1111 11171 1111 111040 = 2,147,483,646ten
op11 11111111 1111 11171 1111 11171 1111, = 2,147,483,647 4,

D00 0000 0000 0000 0000 0000 0000 0000we = —2,147,483,648:en
D00 0000 0000 0000 0000 0000 0000 0001 4yo =—2,147,483,647 +en
D00 0000 0000 0000 0000 0000 0000 00104y = —2,147,483,646en

—_ =k

11111111111 11111111 11171 11171 110740 = —Sten

1
M11 11111111 1111 1111 1111 1111 111000 = —2ten
M1 11111111 11111111 1111 11171 117140 = =Tien



Q&A

B Suppose we had a 5-bit word. What integers can be
represented in 2's complement?

A. -32~+431
B. 0~+31

C. -16~+15
D. -15~+16

B Suppose we had a 8-bit word. What integers can be
represented in 2's complement?

B Suppose we had a 16-bit word. What integers can be
represented in 2's complement?

B Suppose we had a 32-bit word. What integers can be
represented in 2's complement?



Q&A

B Suppose we had a 5-bit word. What integers can be
represented in 2's complement?

A. -32~+431
B. 0~+31

Lc. -16~+15 |
D. -15~+16

B Suppose we had a 8-bit word. What integers can be
represented in 2's complement?

B Suppose we had a 16-bit word. What integers can be
represented in 2's complement?

B Suppose we had a 32-bit word. What integers can be
represented in 2's complement?



. How do we represent data in a computer?

. Integer Data Types
. 2’ Complement Integers

n Binary-Decimal Conversion




Converting Binary (2’ s complement) to
Decimal

1. If leading bit is one, take 2's
complement to get a positive number.

2. Add powers of 2 that have “1” in the
corresponding bit positions.

3. If the original number was negative,
add a minus sign.

X = 01101000,
= 26425423 = 64+32+8
=104

ten

© O o LA WN K CJ o]

[ary
o

Assuming 8-bit 2’s complement numbers.

2025/2/24
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16
32
64
128
256
512
1024
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More Examples

X = 00100111,
= 25422421420 = 32444241
= 39

ten

X = 11100110
-X = 00011010
= 24423421 = 16+8+2

= 26ten

X=-26

two

ten

Assuming 8-bit 2’s complement numbers.

2025/2/24
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[ary
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2n

16
32
64
128
256
512
1024




Converting Decimal to Binary (2° s C)

First Method: Division

1. Divide by 2 - the remainder is the least significant
bit.

2. Keep dividing by 2 until answer is zero,
writing remainders from right to left.

3. Append a zero as the MS bit; if the original number
is negative, take 2's complement.

X = 104, 104/2 = 52 r0 bit 0
52/2 = 26 r0 bit 1
26/2 = 13 r0 bit 2
13/2 = 6 rl bit 3
6/2 = 3 r0 bit 4
3/2 = 1rl bith
X =01101000,,, 1/2 = 0 rl bit 6

2025/2/24 42



Converting Decimal to Binary (2° s C)

Second Method: Subtract Powers of Two
Change to positive decimal number.

1.
2.

3.

v A

Subtract the largest power of two
less than or equal to number.

Put an 1 in the corresponding bit position.

Keep subtracting until result is 0.

. Append a 0 as MS bit;
if original was negative, take 2's complement

n

s W N P O

%
7

X = 104 1

ten

X = 01101000

two

04 - 64
40 - 32
8 - 8

40 bit 6

8
0

bit 5
bit 3

8
9

10

2025/2/24

2n

32
64
128
256
512
1024
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Signed and Unsigned Integers

m C, C++, and Java have signed integers, e.g., 7, -255
® int x, y, z;

m C, C++ also have unsigned integers, which are used
for addresses

m 32-bit word can represent 232 binary numbers

®m Unsigned integers in 32 bit word represent 0 to 232-1
(4,294,967,295)
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Operations: Arithmetic and Logical

B Recall: a data type includes representation and
operations. We now have a good representation for
signed integers, so let’ s look at some arithmetic

operations:

® Addition

® Subtraction

® Sign Extension

m We' Il also look at overflow conditions for addition.

®m Multiplication, division, etc., can be built from these
basic operations.

B Logical operations are also useful:
® AND
® OR
® NOT



2’ s Complement Signed Integers

m MS bit is sign bit - it has weight -27-7.
®m Range of an n-bit number: -2"-1 through 21 - 1.
® The most negative number (-2""!) has no positive

counterpart.

_23 22 21 20 _23 22 21 20

0O 0 0 O 0 1 0 0 O -8
0O 0 0 1 1 1 0 0 1 -7
0O 0 1 O 2 1 0 1 O -6
0O 0 1 1 3 1 0 1 1 -5
0O 1 0 O 4 1 1 0 O -4
0O 1 0 1 5 1 1 0 1 -3
0O 1 1 O 6 1 1 1 O -2
0O 1 1 1 7 1 1 1 1 -1




Addition

As we’ ve discussed, 2° s complement addition is just
binary addition.

® assume all integers have the same number of bits

® ignore carry out

® for now, assume that sum fits in n-bit 2’'s complement
representation

01101000 (104) 11110110 (-10)
+ 11110000 (-16) + (-9)
01011000 (88) (-19)

Assuming 8-bit 2’s complement numbers.



Subtraction

Negate subtrahend (2nd number) and add.
® assume all integers have the same number of bits
®ignore carry out

® for now, assume that the difference fits in n-bit 2’s
complement representation

01101000 (104) 11110110 (-10)

- 00010000 (16) + (-9)
01101000(104) 11110110 (-10)

+ 11110000 (-16) + 9)
01011000 (88) (-1)

Assuming 8-bit 2’s complement numbers.



Sign Extension

To add two numbers, we must represent them
with the same number of bits.

If we just pad with zeroes on the left:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not-4)

Instead, replicate the most significant bit -- the sign

bit: . .
4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still -4)



Overflow

m Recall the represent range of n-bit 2 complement
Signed Integers

® For an n-bit number:
_2n-1 ~ 2n-1 - 1

®m Can we use n-bit 2° complement to represent a

value larger than 21-1? Or a value smaller than -2-1
?



Overflow

mif operands are too big, then sum cannot be
represented as an n-bit 2’ s complement number.

01000 (8) 11000 (-8)
+.01001 (9) +10111 (-9)
10001 (-15) 01111 (+15)

mWe have overflow if:
® signs of both operands are the same, and
® the sign of sum is different.



Overflow

mAnother test -- easy for hardware:

® The carry into most significant bit is not equal to
the carry out

01000 (8) 11000 (-8)

+.01001 (9) +10111 (-9)
10001 (-15) 01111 (+15)
Y/ AVAV)
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Logical Operations

mOperations on logical TRUE or FALSE
® two states -- takes one bit to represent:
® TRUE=1, FALSE=0
mView n-bit number as a collection of nlogical values

® operation applied to each bit independently
® Bitwise operation

A B| AANDB A B|AORB A| NOTA
0 0] o0 0 0] 0o 0] 1
01| o0 01| 1 1| o
10l o0 10| 1
11| 1 11| 1




Examples of Logical Operations

AND

® useful for clearing bits, bitmask 11000101
—AND with zero =0 AND__00001111
—AND with one = no change 00000101

Inclusive OR 11000101

® useful for setting bits OR 00001111
—OR with zero = no change 11001111
—OR withone=1

NOT NOT_ 11000101
00111010

® unary operation -- one argument
® flips every bit



Examples of Logical Operations

Exclusive-OR (XOR)

® The output of XOR is 1 if one (but not both) of the two sources is 1.

The output of XOR is O if both sources are 1 or if neither source is
1.

A B | XOR 11000101
0 0} 0 XOR__ 00001111
0 1)1 11001010
1 0 1
1 1 0




DeMorgan’ s Laws

B There are two well-known relationships between AND
functions and OR functions, known as DeMorgan’ s

Laws.
(a)

A-=vor] FaNDF_ - TEDE
-j'AND A AND B A AND B
5 —={NoT]% >
b = —
0 1 4 T _
s i o N PR AAND B =AORB
5 ! =[N0t % ot
(c)
A B|A B|AANDB |A AND B
0 o1 1 1 ‘ 0
0 11 0 0 1
1 0(0 1 0 1
1 110 0 0 1
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Fractions: Fixed-Point

mHow can we represent fractions?

® Use a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”

@ 2’s complement addition and subtraction still work.
—if binary points are aligned
21=05

22=0.25
2%=0.125

Loooxlc»m.booml—\o|3

00101000.101 (40.625)
+_11111110.110 (-1.25)
00100111.011 (39.375)

=
o

No new operations -- same as integer arithmetic. ‘




Very Large and Very Small Data

The LC-3 use the 16-bit 2° s complement data type,

One bit to identify positive or negative, 15bits to
represent the magnitude of the value. We can express
values:

- 215 through 275 -1
(- 32768 through 32767)

How can we represent
very large and very small data?



Very Large and Very Small Data

Large values: 6.023 x 1023 — requires 79 bits
Small values: 6.626 x 10-3* — requires >110 bits

How can we represent
very large and very small data?



Very Large and Very Small: Floating-Point

Large values: 6.023 x 1023 — requires 79 bits
Small values: 6.626 x 10-3* — requires >110 bits

Use equivalent of “scientific notation” : F x 2F
Need to represent F (fraction), E (exponent), and sign.

IEEE 754 Floating-Point Standard (32-bits):

lb 8b 23b

S |Exponent Fraction




Normalized Form

N = (=1)° x 1.fraction x 22127 | < exponent < 254
exponent : 0b0000 0000 < exponent < Ob1111 1111

Single-precision IEEE floating point number:
101111110 10000000000000000000000

1 ! f

sign exponent fraction

® Signis1 — numberis negative.

® Exponent field, unsigned integer, excess code, biased
representations: 01111110 =126 (decimal).

® Fraction is .100000000000... = .5 (decimal).

Value = -1.5 x 2(126-127) = .1,5 x 2-1 = -0.75.



Floating Point Example

m Example 2.13

] 6% represented in the floating point data type

m Example 2.14

m Example 2.15

2025/2/24 22



Very Small: Floating-Point

N = (=1)° x 1.fraction x 29P"e=127 1 < exponent < 254
exponent : 0b0000 0000 < exponent < Obl1111 1111

B The smallest number that can be represented in
normalized form is

N = 1.00000000000000000000000 x 2-126



Very Small: subnormal numbers

N = (=1)° x 0.fraction x 27'*, exponent = 0

B The largest subnormal number is
N=011111111111111111111111 x 2-126
B The smallest subnormal number is
N = 0.00000000000000000000001 x 2-126
= 2-23X2-126=2-149

B Example
0 00000000 00001000000000000000000
2-5 X 2-126 = 2-131



Infinities

Normalized From
N = (=1)° x l.fraction x 2°%ren~127 " 1 < exponent < 254
Subnormal numbers :

N = (=1)° x 0.fraction x 27'%, exponent = 0

B So, what if the exponent is equal to 1111 _1111?

® If the exponent field contains 1111 1111, we use
the floating point data type to represent various
things, among them the notion of infinity.

® Infinity is represented by the exponent field
containing all 1ls and the fraction field containing
all Os.

® We represent positive infinity if the sign bit is 0
and negative infinity if the sign bit is 1



Floating-Point Operations

B Question
O®Will the regular 2’'s complement arithmetic
work for Floating Point numbers?

® (Hint: In decimal, how do we compute 3.07 x
1012 + 9.11 x 108?)



Text: ASCII Characters

ASCIIl: Maps 128 characters to 7-bit code.
® both printable and non-printable (ESC, DEL, ...) characters

00 nul{10 dle[/20 sp|(30 O |40 @ |50 P |60 "~ (70 p
01 soh|11dcl{21 ! (31 1 |41 A |51 Q|61 a |71 g
02 stx|12dc2|22 " |32 2 (42 B (52 R |62 b |72 r
03 etx|13 dc3|23 # (33 3 (43 C (53 S (63 c |73 s
04 eot|14 dc4|{24 $ |34 4 (44 D (54 T |64 d |74 t
05 enq|15 nak|25 % (35 5|45 E |55 U |65 e (75 u
06 ack|16 syn|26 & (36 6 |46 F |56 V |66 f (76 Vv
07 bel|17 etb|27 ' (37 7 |47 G |57 W |67 g |77 w
08 bs|18 can|28 ( |38 8 (48 H (58 X (68 h |78 x
09 ht|19 em|29 ) (39 9 |49 I |59 Y |69 i (79 y
Oa nl|lasubj2a * ([3a : (4a J (5a Z2 (6a j |7a z
Ob vt|lbesc/2b + [3b ; ([4b K |5b [ |6b k |7b {
Oc np|lc fs|2c , [3c < |4c L |5¢ \ |6c 1 |7c |
0d cr|ld gs|{2d - |(3d =(4d M |5d ] |6d m |7d }
Oe so|le rs|2e . |3e > |4e N |S5e ~ |6e n |7e ~
Of si|lf us|2f / |3f ? |4f O |5f _ |6f o |7fdel




ASCIl (American Standard Code for Information
Interchange)

Dee [ Hex | Cher | Dec | Mex | Char | Dee | Hex | Char | Dee | Hex | Char

0 ] ML 3 20 | (space)| B4 40 B % 60

1 1 SOK 33 21 | 85 a1 A ot 61 a
2 2 STH 3 22 - 66 2 B £ 62 b
3 3 ETX 35 23 # 67 43 C 9 63 c
4 @ EOT 36 24 § 68 a4 b 100 64 a
5 5 a] 3t 25 % 63 45 E 101 65 e
] 6 MK 38 o & i 5 ¥ 102 66 £
i T EEL 38 21 ’ T a7 6 103 &7 e
8 8 BS 40 28 C T2 45 H 104 8 b
9 ] HT 41 28 ) T3 48 I 105 ] i
10 04 LF 4@ E * T % I 106 13 3
11 il v 43 28 + s a8 i3 107 [ k
12 oo R 44 o . L a L 108 6C 1
13 il R 45 20 - T an ] 109 &0 "
14 [il3 so 48 28 L] 4E kil 110 6E n
15 oF st 47 2F / 3 4F 0 111 6F o
16 10 SLE 48 30 ] a0 S0 P 112 0 P
17 11 Cs1 43 31 1 81 51 ] 113 2 aQ
13 12 Iz 50 £ z 52 52 R 114 2 3
19 13 3 s1 33 3 Es) 53 s 115 5] s
20 14 o4 52 3 4 8 54 T 116 T4 [
21 15 HAK 53 kS s 55 = v ur [ u
2 16 i 54 3 6 a8 56 v 116 ® v
23 17 ETE 55 3 T a1 =7 W 119 L "
24 18 CAN 58 38 8 88 =8 X 120 8 x
25 19 BN 57 39 9 83 s T 121 79 ¥
28 14 SIB 58 N a0 Sk z 122 Th z
21 18 ESC 53 3B a1 5B L 123 B 1
28 ic s 60 Es < a2 sC \ 124 i |
29 10 65 61 an = 93 21 1 125 ) 1
a0 18 BS 62 3E > 94 SE - 126 TE -
31 1F s 63 3F 7 9 SF _ 127 T IEL




ASCII £3

ASCIT%
( American Standard Code for Information Interchange FH#rHi{s BAZHMRAH )
ASCITE B FHF ASCITAVFAE
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Interesting Properties of ASCIl Code

B What is the relationship between a decimal digit ('0’,
1%, ...) and its ASCII code?
® “30h”

B What is the difference between an upper-case letter
(‘A’, 'B', ...) and its lower-case equivalent (‘a’, 'b’, ...)?
® “20h”

B Given two ASCII characters, how do we tell which
comes first in alphabetical order?

m Are 128 characters enough?
(http://www.unicode.orqg/

’ No new operations - integer arithmetic and logic.




Other Data Types

B Text strings
® sequence of characters, terminated with NULL (0)
® typically, no hardware support

B Image
® array of pixels
— monochrome: one bit (1/o = black/white)
— color: red, green, blue (RGB) components (e.g., 8 bits each)
— other properties: transparency
® hardware support:

— typically none, in general-purpose processors
— MMX -- multiple 8-bit operations on 32-bit word

® Sound
® sequence of fixed-point numbers

Within the Computer: Everything is a Number.



LC-3 Data Types

B Some data types are supported directly by the
instruction set architecture.
m For LC-3, there is only one supported data type:
® 16-bit 2’s complement signed integer
® Operations: ADD, AND, NOT
m Other data types are supported by interpreting
16-bit values as logical, text, fixed-point, etc.,
in the software that we write.



Outline

n Operations on Bits: Arithmetic and Logical

n Other Representation




Summary

B Everything in a computer is a number, in fact only 0
and 1.

m Integers are interpreted by adhering to fixed length

B Negative numbers are represented with 2’ s
complement

m Overflows can be detected utilizing the carry bit

m We will get into some more representations later
when we talk about floating point

m Signed Magnitude & Biased representations are
needed in floating point for specific uses

® Not going to talk about ‘1" s complement’ , itsa
joke that nobody uses
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Review

B Great Idea #0: Great Idea from Ancient Chinese
Philosophy(Bits and Bytes)

B How do we represent data in a computer?
® Bits: 0/1
® Data type: representation and operations within the
computer
— Integer Data Types
* Unsigned Integers
e 2'Complement Integers
— Fixed-Point Data Types
— Floating-Point Data Types
— Text - characters, strings, ***
— Images - pixels, colors, shapes, ***
— Sound
— Instructions
® Arithmetic and Logical Operations
® Binary-Decimal Conversion

2025/2/24



Today

EMicroprocessors contain millions of transistors
@ Intel Core 2 Duo: 291 million
® AMD Barcelona: 463 million
® IBM Power6: 790 million

ETransistor: Building Block of Computers
® L ogically, each transistor acts as a switch

ECombined to implement logic functions
® AND, OR, NOT

2025/2/24



Approach: Bottom Up

1K~10K Cells/Module
(100K Devices)

100 Modules/ IC
0.25M~20G Devices

| Integrated Circuit Design \ | Register Transfer Level (RTL) Design |

{ pr, You are Here. T

a
51 L

el

HOSFET Suug

2.9V

- J Gate —] %

| Transistor Physical Layout ‘

PL A g b

‘ Scheme for ‘ Circuit Level Design ‘

A A 2

s Cou S

Register Transfer Level (RTL) Design
2~16 Gates/Cell
(16~64 Devices)

Representing Information (Transistor Level Design)
(2~8 Devices/Gate)

2025/2/24



Great Idea #3: Abstraction Helps Us Manage

Complexity

Application

Algorithm and Data Structure

Programming Language/Compiler

Operating System/Virtual Machines

Microarchitecture

Gates/Register-Transfer Level (RTL)

Analog/Digital Circuits

Electronic Devices

Physics

Solve a system of equations

/Gausym

Red-black SOR elimination iteration Multigrid

FORTRAN C C++

I

Sun SPARC Intel x86

I

Pentium 4 Core 2 Duo AM

/N

Java

IBM PowerPC

D Athlon X2

Ripple-carry adder  Carry-lookahead adder

—

2025/2/24
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Static CMOS Dynamic CMOS

Nanomechanical




Great Idea #4: Software and Hardware Co-
design

//\\\ Application
K E./J Algorithm & Data Structure
o ,

Language
Software
Hardware \ Machine Architecture, ISA
[ 4 \\ Microarchitecture
: / .
L Logic and IC Now, You
o are Here.
( Devi
\ﬂ > vice
N &

Computer System: Layers of Abstraction
2025/2/24
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Vacuum tubes used as switches

Switch open:

® No current through
circuit

=

Vv ® Light is off
OV .. is +2.9V

2.9V

Switch closed:

® Short circuit across
switch

® Current flows
® Light is on
OV .. is OV

Switch-based circuits can easily represent two states:

on/off, open/closed, voltage/no voltage.
2025/2/24 10



Vacuum tubes used as switches made electronic

e electronic computing possible for
short mean time to failure of tubes
m was that valves—which, like
b filament—could never be used
by were unreliable, and in a large
short a time".Tommy Flowers, who
fl that, so long as valves were
erate reliably for very long periods,
on a reduced current”. In 1934
| installation using over 3,000 tubes
a tube failed, it was possible to
bthers going, thereby reducing the
d; this installation was accepted by
e exchanges). Flowers was also a
(compared to electromechanical
brk confirmed that tube unreliability
hlly believed; the 1946 ENIAC, with
hich took 15 minutes to locate) on
of the tubes was a factor, and the
 Second World War lowered the
ar Colossus was instrumental in
, development continued with tube-
omputers ENIAC and Whirlwi
commercially available electronic
le commercially.
included the Jaincomp series of
strument Company of Bethesda,
p-B employed just 300 such tubes
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The invention of the transistor

Bell Labs lays the groundwork

B 1945: Bell sets up lab in the hopes of
developing “solid state” components to
replace existing electromechanical systems.
William Shockley, John Bardeen, Walter
Brattain: all solid-state physicists. Focus on Si
and Ge.

B 1947: The Invention of the First Transistor-
the point-contact transistor

B 1951: Shockley develops junction transistor
which can be manufactured in quantity.

B 1954: The first transistor radio! Also, Tl
makes first silicon transistor (price $2.50)

B 1956: Bardeen, Shockley, Brattain receive
Nobel Prize.

2025/2/24 12



A transistor under a microscope

B http://www.zhihu.com/question/26998618
® How is it possible to have tens of millions of
rtransisrtp_rs in a chip?

14 nm 2™ Generation
Tri-gate Transistor

& v S5 Tadintel 14%*.;;%%

2025/2/24 - B 13




Microprocessors contain millions of transistors

Broadwell

2025/2/24



Microprocessors contain millions of transistors

Haswell GT3
4c

Haswell GT2
4c

AMD Vishera
8C

Intel Sandy
Bridge 4C

Intel Lynnfield
4ac

2025/2/24

Manufacturing Cores
Process

22nm 4
22nm 4
32nm 8
32nm 4
45nm 4

GT3

GT2

MN/A

GTZ2

NIA

Transistor
Count

(Schematic)

1.4B

1.2B

995M

774AM

Die Size

264mm?
(est)

177mm?

3156mm?

216mm?

296mm?

15



Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.
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Data source: Wikipedia (hitps:/en wikipedia.org/wiki/Transistor_count)

The data visualization Is avallable at OQurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.
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Transistor as a switch

Switch open:
® No current through
circuit
® Light is off
OV .. is +2.9V

Switch closed:

® Short circuit across
switch

® Current flows
B asE ® Light is on
oV .. is OV

Switch-based circuits can easily represent two states:

on/off, open/closed, voltage/no voltage.
2025/2/24 17



How does MOSFET work?

m [i%Z] MOSFETEM{IT{ERY,FZ. EIE IFEMI

(baidu.com)

Sp-- 2

but the flowsefielectronstisTopposite to it, that is, from source to drain

B8 FRUMIEIEAERAY, BDNBIRREmTR

2025/2/124 | ecture 1
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N-type MOS Transistor

@ (b) f ) ©
Drain
1.2-volt %
battery
Gate { (power Gate # [
supply) Gate{

Source L

B When the gate is supplied with 1.29 volts, the
transistor acts like a piece of wire, completing the
circuit and causing the bulb to glow.

B When the gate is supplied with 0 volts, the transistor
acts like an open circuit, breaking the circuit, and
causing the bulb to not glow.

2025/2/24 19



N-type MOS Transistor

BMOS = Metal Oxide Semiconductor

® two types: N-type and P-type

EN-type metal-oxide-semiconductor (NMOS)

EN-type
® when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)

® when Gate has zero voltage,
open circuit between #1 and #2

(switch open) #]

Gate —|

GND

#2

Terminal #2 must be
connected to GND (0V).
2025/2/24

Gate =1

Gate =0

#1

#2

20



P-type MOS Transistor

EmP-type metal-oxide-semiconductor (PMOS)
mP-type is complementary to N-type

® when Gate has positive voltage, #1
open circuit between #1 and #2 1
(switch open)

® when Gate has zero voltage, (

short circuit between #1 and #2
(switch closed)

Gate =1

Gate =0

Terminal #1 must be
connected to +2.9V.
2025/2/24
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Approach: Bottom Up

100 Modules/ IC 1K~10K Cells/Module

| Integrated Circuit Design [ | Register Transfer Level (RTL) Design
0.25M~20G Devices (100K Devices)

}
1 Now, You are Here.

2.9V

- J Gate —] %

| Transistor Physical Layout ‘

MO 3% Y v 74 Clk ﬂmg'm’
1 1 o
o o13'0.7M: - : Cu s
‘ Scheme for Circuit Level Design Register Transfer Level (RTL) Design
2~16 Gates/Cell
(16~64 Devices)

Representing Information (Transistor Level Design)
(2~8 Devices/Gate)

2025/2/24



Great Idea #3: Abstraction Helps Us Manage

Complexity

. . Solve a system of equations I
Application I 4 q
Algorithm and Data Structure /’\

Gaussian Jacobi

Red-black SOR Multigrid

Programming Language/Compiler elimination iteration
Operating System/Virtual Machines
FORTRAN C C++ Java
O et A e A m
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) /\\
pentium 4 C°T€2DU0  Avip Athion X2
Analog/Digital Circuits
Electronic Devices H Ripple-carry adder  Carry-lookahead adder I

Physics

2025/2/24

Static CMOS Dynamic cMos '\anomechanical
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Great Idea #4: Software and Hardware Co-
design

//\\\ Application
K E./J Algorithm & Data Structure
o ,

Language

Software
Hardware \ Machine Architecture, ISA

2 =

A \\ Microarchitecture

\// Logic and 6 Now, You

are Here.
> Device

Computer System: Layers of Abstraction
2025/2/24 25



Logic Gates

m Use switch behavior of MOS transistors
to implement logical functions: AND, OR, NOT.

m Digital symbols:
® recall that we assign a range of analog voltages to
each digital (logic) symbol

Digital Values » 0" | llegal T
; i ——
Analog Values » 0 0.5 2.4 2.9 Volts
® assignment of voltage ranges depends on
electrical properties of transistors being used

2025/2/24 26



CMOS Circuit

BCMOS: Complementary MOS

mUses both N-type and P-type
MOS transistors
® P-type
— Attached to + voltage

— Pulls output voltage UP when input is
zero

® N-type
— Attached to GND

— Pulls output voltage DOWN when input
is one
m For all inputs, make sure that output is
either connected to GND or to +,but
not both!

2025/2/24

+2.9V #

# output

input
Gate —o|

: # output #
input

Gate —|

27,



Inverter (NOT Gate)

2.9V -
i P-type
In Out [n=0 — Out=1
} . iN-type
<
oV
Truth table
/ {_!P-type
In | Out In | Out In=1 L Out=0
oVv| 29V 0 1 -
29v| ov 1| o 4 Netype

2025/2/24
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The process of fabrication of a CMOS inverter

m Simplified process of fabrication
of a CMOS inverter on p-type
substrate in semiconductor
microfabrication.

NMOS PMOS

1. Grow field oxide 5. Grow gate oxide 9. Grow nitride

o =l — [~ == P — —
ptype substrate ptype substrate \“LJ Whm&
2. Etch oxide for pMOSFET 6. Deposit polysilicon 10. Etch nitride
[ iy | — = =

ptype substrate ptype substrate \nwell ) ptype substrate

3. Diffuse n-well 7. Etch polysilicon and oxide 11 Deposit mefal

o !' [ =] = l = [ =

ptype substrate L EaTaeTEs 1l R e

4. Etch oxide for n(MOSFET 8. Implant sources and drains_ 12. Etch metal

= 1 [ ‘.

e et ) =

prtype substrate prtype substrate ptype substrate




NOR Gate

INPUT OUTPUT

_| A B C
(] 0 1
(] 1 0
1 (] 0
1 1 0

Note: Serial structure on top, parallel on bottom.
2025/2/24 30



OR Gate

A——OIE—

[

2025/2/24

INPUT
A

- -0 O

- O = O W

OUTPUT
C

[ e N =]

Add inverter to NOR.

31



NAND Gate (AND-NOT)

A=0 |iP P

B=1— ] C=1
——— N
N
v
INPUT OUTPUT

A B C
0 0

0 1 1

1 0 1

1 1 0

Note: Parallel structure on top, serial on bottom.
2025/2/24



Example: NAND gate in physical layout

NAND gate in CMOS logic e
vdd

AL o | i

Qout
|

A
METALL N DIFFUSION
84[ POLY P DIFFUSION

[l conmact N-WELL
e The physical layout of a NAND circuit. The larger regions of N-
Vss

type diffusion and P-type diffusion are part of the transistors.
The two smaller regions on the left are taps to prevent latchup.



AND Gate

d
-
—

2025/2/24

INPUT
A

- -0 O

- O = O W

OUTPUT
C

- O O ©

Add inverter to NAND.

34




Practice 1

Implement a 3-input NOR gate with CMOS.

2025/2/24

35



Basic Gates

B From Now on......Gates

® Covered transistors mostly so that you know
exist

® Note: “Logic Gate” not related to “Gate” of
transistors

® Will study implementation in terms of gates
® Circuits that implement Boolean functions

A
B :E} A+B
OR NOR
A
B:j::%_AB
AND

NAND

they

MOSFET

B More complicated gates from transistors possible
® XOR, Multiple-input AND-OR-Invert (AOI) gates

2025/2/24



More than 2 Inputs?

® AND/OR can take any number of inputs.
® AND = 1 if all inputs are 1.
O®OR =1 if any input is 1.
® Similar for NAND/NOR.
® Can implement with multiple two-input gates,
or with single CMOS circuit.

A
B ABC
c

2025/2/24
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Visual Shorthand for Multi-bit Gates

B Use a cross-hatch mark to group wires
calculate the AND of a pair of 4-bit

® Example:

numbers
® A3 is “high-order” or “most-significant” bit
® If “A” is 1000, then A; =1, A, =0, A, =0, A, =0

2025/2/24

A,

= Out,

—Out,

= 0ut,

- Out,

DOUOUU

=

4 4
. —\—!D_\_ out
4
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Shorthand for Inverting Signals

® Invert a signal by adding either
® A circle or an “inversion bubble” before/after a
gate
® A “bar” over the letter

AANDB =) —[>o—} m) 29

O

il
v

2025/2/24 39



Logical Completeness

® AND, OR, NOT can implement ANY truth table

A B C|D A B C

0O 0 0| O

0O 0 1] 0 1. AND combinations

thatyield a "1" in the

0 1 0]1] Al uth table.

0O 1 1| 0

1 0 0] O
|:1 0 1 :|1 2. OR the results

1 1 0ol o of the AND gates.
1 1 1] 0
D

2025/2/24 40



Logical Completeness

® AND, OR, NOT can implement ANY truth table

A B G, i ABC,
0 0o o0f{o0
1. AND combinations
—

: 0 0 11 : ’ Q_ that yield a "1" in the

0o 1 011 \L truth table

o 1 1{o0
{1 0 o]1] s

1 0 1{0 \A -

1 1 olo 2. OR the results

N of the AND gates

Lt 11 l—H )

2025/2/24 41



DeMorgan's Law

Converting AND to OR (with some help from NOT)

Consider the following gate:

“AANDEB = AORB
@D
AB(A B|AB|AB
0oo0|l1 1| 1 0
01|1 of o0 1
10/0 1| 0 1
1 1/0 o O 1

Same as A OR B!

2025/2/24

To convert AND to OR
(or vice versa),
invert inputs and output.

A AND B = AORB
“AANDB = AORT

- @D

Why might this be useful?



Practice 2

 » O O
OHI—\O|n

= O B+ O

2025/2/24
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N-type MOS Transistor

BMOS = Metal Oxide Semiconductor

® two types: N-type and P-type
EN-type
® when Gate has positive voltage,

short circuit between #1 and #2
(switch closed)

® when Gate has zero voltage,
open circuit between #1 and #2

(switch open)
#1

Gate —I

GND

#2

Terminal #2 must be
connected to GND (0V).
2025/2/24

Gate =1

Gate =0

#1

#2



P-type MOS Transistor

EP-type is complementary to N-type

® when Gate has positive voltage,
open circuit between #1 and #2
(switch open)

® when Gate has zero voltage, 1
short circuit between #1 and #2 (
(switch closed)

Gate =1

Gate =0

Terminal #1 must be
connected to +2.9V.
2025/2/24 46



Gates

OR
A— A— -
| e 5] R
AND

2025/2/24 Lecture 1 47,
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Review

ETransistor: Building Block of Computers
® Logically, each transistor acts as a switch

ECombined to implement logic functions
® AND, OR, NOT
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N-type MOS Transistor

BMOS = Metal Oxide Semiconductor
® two types: N-type and P-type
EN-type
® when Gate has positive voltage,

short circuit between #1 and #2
(switch closed)

® when Gate has zero voltage,

open circuit between #1 and #2
(switch open)

Gate =1

Terminal #2 must be
connected to GND (0V).

2025/2/24
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P-type MOS Transistor

EP-type is complementary to N-type

® when Gate has positive voltage,
open circuit between #1 and #2
(switch open)

® when Gate has zero voltage,
short circuit between #1 and #2
(switch closed)

Terminal #1 must be
connected to +2.9V.

2025/2/24
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Today: Building Functions from Logic Gates

B We've already seen how to implement truth tables
using AND, OR, and NOT -- an example of
combinational logic.

m Combinational Logic Circuit

® output depends only on the current inputs
® stateless

m Sequential Logic Circuit

® output depends on the sequence of inputs (past and
present)

® stores information (state) from past inputs
m We'll first look at some useful combinational circuits,

then show how to use sequential circuits to store
information.
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Approach: Bottom Up Now, You are Here.

| Integrated Circuit Design ‘ | Register Transfer Level (RTL) Design |
100 Modules/ IC
0.25M~-20G Devices And Here.

at P
5] e D
= P -45_]

T s

2.9V

- J Gate —] %

| Transistor Physical Layout ‘

3 o U AW

= -‘__‘_—‘I r'—c 3 | L‘l. } .—kf o ﬂkegmer
A - \/

PRSP 1 I X 3

Register Transfer Level (RTL) Design
2~16 Gates/Cell
(16~64 Devices)

Representing Information (Transistor Level Design)

‘ Scheme for Circuit Level Design
(2~8 Devices/Gate)
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Great Idea #3: Abstraction Helps Us Manage

Complexity

Application Solve a system of equations I
Algorithm and Data Structure /’\
Gaussian Jacobi o
Programming Language/Compiler Red-black SOR elimination iteration Multigrid
Operating System/Virtual Machines
FORTRAN C C++ Java
O et A e A m
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) /\\
pentium 4 C°T€2DU0  Avip Athion X2
Analog/Digital Circuits
Electronic Devices Ripple-carry adder  Carry-lookahead adder I

Physics

2025/2/24
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Great Idea #4: Software and Hardware Co-
design

//\\\ Application
K E./J Algorithm & Data Structure
o ,

Language
Software
Hardware \ Machine Architecture, ISA
A \\ Microarchitecture
LA Logic and IC Now. You
are Here.
> Device

Computer System: Layers of Abstraction
2025/2/24 11
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Decoder How many transistors?

Eninputs, 27 outputs
® exactly one output is 1 for each possible input pattern

A

1, if AB=00
B

Y

2-bit
decoder

1, if AB=01

1, ifAB=10

1, if AB=11

sl
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Multiplexer (MUX)

mn-bit selector and 27 inputs, one output
® output equals one of the inputs, depending on selector

A B C D

w ABCD
——

A, if S=00
. B,ifS=01

iy A-to-1 MUX
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Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

A B
I ]
C
‘I’ Q |
Coul (= ; Carrit\nH
Aq—\—b 1
ST
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Four-bit Adder

A, B, A, B, A, B, A, B,
| | [ | | | |
A B A B A B A B
Full ¢ Full ¢ Full ¢ Full c¢[—0
Adder Adder Adder Adder
C S C S C S C S

2025/2/24



Adder/Subtractor - Approach #1

Adder Subtracter
Carryln

Carryln

A
16 S s
B A+B
B A-B
CarryOut
1% Adder/Subtracter
Add/Sub
A _\" 16 :l
\ .
16 E ' 1 T
RN e —— S
> 16
16
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Adder/Subtracter - Approach #2

Adder Subtracter
Carryln
1
18 Carryln
A 16
S A
16 S
B
B
CarryOut
Adder/Subtracter
1
Add/Sub “
1? Carryln
A=Y > 16
16 v
B —\'K 16 > S

2025/2/24 18



The Programmable Logic Array (PLA)

Connections

D_
D_
}
D_
= :>_
_ﬂ}
i=hba %}Z
= :>_

Aj B; G ‘ Cin S;
0 0 0 0 0
0 0 1 0 1
0] 1 0 0] 1
0] 1 1 1 0]
1 0 0 0 1
1 0 1 1 0
y 1 0 1 0]
1 1 1 1 1

The truth table for a one-bit adder.

A

B

<




Incrementer

B Let’ s create an incrementer
® Input: A (as a 16-bit 2’'s complement integer)
® Output: A+l (also as a 16-bit 2’'s complement
integer)
m Approach #1 (impractical):
® Use PLA-like techniques to implement circuit

® Problem: 2% or 65536 rows, 16 output columns
® In theory, possible; in practice, intractable

B Approach#2 (pragmatic):
® Create an l-bit incrementer circut
® Replicate it 16 times

2025/2/24 20



One-bit Incrementer

B Implement a single-column of incrementer

An Cin A Cin S Cout
0 O 0 O
O 0 1 1 0
! 1 0 1 0
- S 1 1 |0 1
 a®
Carryln,
) —C =
E out Am"\—’ +1 _\_.SH
CarryQut,

2025/2/24 21
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Combinational vs. Sequential

mCombinational Circuit
® always gives the same output for a given set of
inputs
—ex: adder always generates sum and carry,
regardless of previous inputs
mSequential Circuit
® stores information
® output depends on stored information (state) plus
input
—so0 agiven input might produce different outputs,
depending on the stored information
® example: ticket counter
—advances when you push the button
— output depends on previous state
® useful for building “memory” elements and “state
machines”
2025/2/24
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R-S Latch: Simple Storage Element

B Risused to “reset” or “clear” the element - set it
to zero.

H S is used to

" n

the element - set it to one.

set

m If both R and S are one, out could be either zero or

one.
® “quiescent” state -- holds its previous value
® note: if a is 1, b is 0, and vice versa

2025/2/24



Clearing the R-S latch

ESuppose we start with output = 1, then change R to
zero.

Output changes to zero.
\ s —H
B_L

Then set R=1 to “store” value in quiescent state.

2025/2/24 25



Setting the R-S Latch

ESuppose we start with output = 0, then change S to
zero.

Output changes to one.
\ S
B 0

Then set S=1 to “store” value in quiescent state.

2025/2/24 26



R-S Latch Summary

R=S=1

® hold current value in latch
S=1andR => 0,

® setvalueto 0
R=1and S =>0

®setvalueto 1

R=S=0
® both outputs equal one
® final state determined by electrical properties of gates
® Don’t do it!

2025/2/24 27



Gated D-Latch

BTwo inputs: D (data) and WE (write enable)
® when WE =1, latch is set to value of D
-S=NOT(D),R=D
® when WE = 0, latch holds previous value
-S=R=1

D ) S
out

WE

2025/2/24
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Register

B A register stores a multi-bit value.

® We use a collection of D-latches, all controlled by

a common WE.

® When WE=1, n-bit value D is written to register.

D, D, D, D,
|

Q, Q, Q Q

SR

2025/2/24
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Representing Multi-bit Values

B Number bits from right (0) to left (n-1)
® just a convention -- could be left to right, but
must be consistent

m Use brackets to denote range:
D[l:r] denotes bit | to bit r, from /eft to right

15 0
A= 0101001101010101

d |

A[14:9] = 101001 A[2:0] = 101

B May also see A<14:9>,
especially in hardware block diagrams.

2025/2/24
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Memory

ENow that we know how to store bits, we can build a
memory - a logical k X m array of stored bits.

-
Address Space: Con
ber of locations k=2
numboer o locations v
(usually a power of 2) .
N
Addressability: —

number of bits per location
(e.g., byte-addressable)

m bits

2025/2/24
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22 x 3 Memory

’ word select ‘ ’ word WE ‘
A[1:0] Dy[2] D;[1] D;[0]
e / Z [ inputois |
write L ‘|: D
enable

e
address _I:
decoder L_|

output bits

mux —>

2025/2/24
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Reading location 3 in our 22-by-3-bit memory.

A[1:0] D,[2] D[] Dy[0]
11
[e)
WE HHLO L—
[e} L—0Of

Em R

o=

i

I

[e]
= Sy

s
.
s

[P
ol

5
|
°T
| T
[

ISR

=

[

O_‘ﬁﬂ_ P FOJ_‘CIAGJ
iy

el T
O

A=

WE = 0O

1 1
D[2] D1 D[O]



More Memory Details

B This is a not the way actual memory is implemented.
® fewer transistors, much more dense,
relies on electrical properties

m But the logical structure is very similar.
® address decoder
® word select line
® word write enable

® Two basic kinds of RAM (Random Access Memory)
® Static RAM (SRAM)
— fast, not very dense (bitcell is a latch)
® Dynamic RAM (DRAM)
— slower but denser, bit storage must be periodically refreshed
— each bitcell is a capacitor (like a leaky bucket) that decays

2025/2/24 Also, non-volatile memories: ROM, PROM, flash, J a1




SRAM Memory

we [ l
Lol

\Write word line

Fead Address Decoder
Memory Read Address

)
I
2

=l

°
<
S
2
2
o
=
5]
=

Write Address Decoder

O
0
L1

Read bitlines

m
Memory Data Out
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Basic Logical Structure

S :D_L.fm:m
j:) 1,IAB=01
:D—l,lﬂb‘ﬂ
ﬂ 1,011
2
A, B A, B, A, B, A, B
|| [ || | |
A B A B A
Full Full ¢ Full ¢ Full
Adder Adder Adder Adder
Cu S Cu 8 Cu S
Cui S: S, S
D. D, D,
| | | |
WE y 1 T
3 Q. Q, Q,
2025/2/24
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Review

m We' ve touched on basic digital logic
® Transistors
® Gates
® Storage (latches, flip-flops, register, memory)

B Built some simple logical circuits
® adder, subtracter, adder/subtracter, Incrementer
® Counter (consisting of register and incrementer)

2025/2/24



Basic Logical Structure

1, irAE=01 )
1,ifAB="C
#
B.#8=01
C.if8=10
1, 14B=11 0, its=1f
S
. By . B, v B o
A A A WE
Ful ¢ Full o Full ¢ Full c|-0 out
Adder Adder Adder Adder R
C. C. C.,
y
VE|

;Lc‘v

e
5
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Today

B A computer as a (simple?) state machine
® State machines
® Hard-coded traffic sign state machine
® Programmable traffic sign state machine

2025/2/24



Approach: Bottom Up Now, You are Here.

il

| Integrated Circuit Design Register Transfer Level (RTL) Design |
100 Modules/ IC
0.25M~-20G Devices And Here.

| Transistor Physical Layout ‘

7 <G 9 \ (AN,
e .l—_'*_.{ e i | e T/—lkd —kf

- W ]

‘1 O 0o~ v 5} 1 a0 \/

°c o1 9-1000‘.": 1 = ! Cou S
Register Transfer Level (RTL) Design

2~16 Gates/Cell
(16~64 Devices)

Representing Information (Transistor Level Design)

‘ Scheme for Circuit Level Design
(2~8 Devices/Gate)
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Great Idea #3: Abstraction Helps Us Manage

Complexity

Application

Solve a system of equations

Algorithm and Data Structure

Programming Language/Compiler

Operating System/Virtual Machines

Microarchitecture

Gates/Register-Transfer Level (RTL)

Analog/Digital Circuits

/Gausym

Red-black SOR elimination iteration Multigrid

FORTRAN C C++

I

Sun SPARC Intel x86

I

Pentium 4 Core 2 Duo AM

Java

IBM PowerPC

D Athlon X2

Electronic Devices

Ripple-carry adder  Carry-lookahead adder

Physics

2025/2/24
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Great Idea #4: Software and Hardware Co-
design

//\\\ Application
K E./J Algorithm & Data Structure
o ,

Language
Software
Hardware \ Machine Architecture, ISA
A \\ Microarchitecture
LA Logic and IC Now. You
are Here.
> Device

Computer System: Layers of Abstraction
2025/2/24



Outline O ¢onzasxs

} Tech

n Review

n Sequential Logic Circuits

n From Logic to Data Path

n Summary




State Machine

Another type of sequential circuit
® Combines combinational logic with storage

® “Remembers” state, and changes output (and state)
based on inputs and current state

State Machine

Inputs Combinational Outputs

Logic Circuit

Storage
Elements

2025/2/24
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Combinational vs. Sequential

Two types of “combination” locks

(-4184)

Combinational

Success depends only on
the values, not the order in
which they are set.

Sequential

Success depends on
the sequence of values
(e.g, R-13, L-22, R-3).

2025/2/24



State

The state of a system is a snapshot of all the relevant
elements of the system at the moment the snapshot is
taken.

Examples:

® The state of a basketball game can be represented by the
scoreboard.

—Number of points, time remaining, possession, etc.

® The state of a tic-tac-toe game can be represented by the
placement of X’s and O’s on the board.

2025/2/24 13



State of Sequential Lock

Our lock example has four different states,
labelled A-D:

A: The lock is not open,
and no relevant operations have been performed.

B: The lock is not open,
and the user has completed the R-13 operation.

C: The lock is not open,
and the user has completed R-13, followed by L-22.

D: The lock is open.

2025/2/24 14



State Diagram

Shows states and actions that cause a transition
between states.

other than
R-13

2025/2/24



Finite State Machine

A description of a system with the following
components:

. A finite number of states

A finite number of external inputs

A finite number of external outputs

An explicit specification of all state transitions

An explicit specification of what causes each
external output value.

A WwN S

Often described by a state diagram.
® Inputs may cause state transitions.

® Outputs are associated with each state (or with each transition).

2025/2/24 16



Implementing a Finite State Machine

Combinational logic
® Determine outputs and next state.

Storage elements
® Maintain state representation.

State Machine

Inputs Combinational Outputs

Logic Circuit

Storage
Elements

Clock ——

2025/2/24



The Clock

Frequently, a clock circuit triggers transition from
one state to the next.

“ 177

“ on |
One i time—

Cycle

At the beginning of each clock cycle, state machine
makes a transition, based on the current state and the
external inputs.

® Not always required. In lock example, the input itself triggers a
transition.

2025/2/24 18



Storage: Master-Slave Flipflop

A pair of gated D-latches,
to isolate next state from current state.

To

Combinational
Logic Circuit

Latch B

From
[T Combinational
Logic Circuit

{Latch A

During 15t phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2" phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

2025/2/24



Storage

Each master-slave flipflop stores one state bit.

The number of storage elements (flipflops) needed
is determined by the number of states
(and the representation of each state).

Examples:
® Sequential lock
—Four states - two bits
® Basketball scoreboard
—7 bits for each score, 5 bits for minutes, 6 bits for
seconds,
1 bit for possession arrow, 1 bit for half, -

2025/2/24
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Complete Example

A blinking traffic sign
® No lights on
®1&2o0n
01,2 3 &40n
01 2 3,4,&50n

® (repeat as long as switch
is turned on)

2025/2/24
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Traffic Sign State Diagram

State bit S;

1
00

0,1

11

All on

Switch off

S

tate bit S

1 \ 1-4 on

Jossppa  TTANSItion on each clock cycle.

Switch on

Outputs




Traffic Sign State Diagram: State 00

2025/2/24

00)
All off

3

0,1

11,

0

All on

Transition on each clock cycle.

1

01

1,2 on
1

10

1-4 on

23



Traffic Sign State Diagram: State 01

2025/2/24

0,1

11,

All on

Transition on each clock cycle.

1

1-4 on

24,



Traffic Sign State Diagram: State 10

® 9 ®
00 o1) °°
All off o \.1.20n
A 1
0,1 0
11), 10
All on 1 \ 1-40on

Jossppa  TTANSItion on each clock cycle. ”e



Traffic Sign State Diagram: State 11

® 9 °
00 o1) °°
All off o \.1.20n
A 1
0,1 0
1), 10
All on 1 \1-40on

Jossppa  TTANSItion on each clock cycle. ”e



Traffic Sign State Diagram: State 00

2025/2/24

00)
All off

3

0,1

11,

0

All on

Transition on each clock cycle.

1

01

1,2 on
1

10

1-4 on

27,



Traffic Sign Truth Tables

Outputs Next State: S;’S,’
(depend only on state: S;S,) (depend on state and input)
Lights 1 and 2 T Switch
Lights 3 and 4 In Sl SO Sl’ SO’
(nghts .0 X X 0 0
S, So|lz Y X 1 0 o|0 1
0O 0|0 O O 1 0 1|1 o
0O 1|11 0 O 1 1 0|1 1
1 01 1 o0 1 1 1(0 O
1 111 1 1 _
Whenever In=0, next state is 00.

2025/2/24




Traffic Sign Logic

2025/2/24

Clock

Storage Element Q |

Master-slave
flipflop

Storage Element 1
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From Logic to Data Path

The data path of a computer is all the logic used to
process information.

® See the data path of the LC-3 on next slide.
Combinational Logic

® Decoders -- convert instructions into control signals

® Multiplexers -- select inputs and outputs

® ALU (Arithmetic and Logic Unit) -- operations on data
Sequential Logic

® State machine -- coordinate control signals and data movement

® Registers and latches -- storage elements

2025/2/24 31



LC-3 Data Path Overview (Microarchitecture)

A Memory
Uunit

SEXT
%@7 MH FINITE
e MACHINE
LD.IR—>

I<1— LD.MAR

|

1 B SR2MU.
-
| a

Al
>

OUTPUT

32
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Summary

BMOS transistors are used as switches to implement
logic functions.

® N-type: connect to GND, turn on (with 1) to pull down to 0

® P-type: connect to +2.9V, turn on (with 0) to pull upto 1
mBasic gates: NOT, NOR, NAND

® | ogic functions are usually expressed with AND, OR, and NOT
mProperties of logic gates

® Completeness

—can implement any truth table with AND, OR, NOT
® DeMorgan's Law

—convert AND to OR by inverting inputs and output

2025/2/24 24



Summary

m We' ve touched on basic digital logic
® Transistors
® Gates
® Storage (latches, flip-flops, memory)
® State machines

B Built some simple circuits
® adder, subtracter, adder/subtracter, Incrementer
® Counter (consisting of register and incrementer)
® Hard-coded traffic sign state machine
® Programmable traffic sign state machine

m Up next: a computer as a (simple?) state machine

2025/2/24
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LC-3 Data Path

SR1

MEMORY

2025/2/24
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Next Time

m Topic
® The von Neumann Model

m Readings
® Chapter 4.0 - 4.2

2025/2/24
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Review

BMOS transistors are used as switches to implement
logic functions.

® N-type: connect to GND, turn on (with 1) to pull down to 0

® P-type: connect to +2.9V, turn on (with 0) to pull upto 1
mBasic gates: NOT, NOR, NAND

® | ogic functions are usually expressed with AND, OR, and NOT
mProperties of logic gates

® Completeness

—can implement any truth table with AND, OR, NOT
® DeMorgan's Law

—convert AND to OR by inverting inputs and output

2025/2/24



Review

m We' ve touched on basic digital logic
® Transistors
® Gates
® Storage (latches, flip-flops, memory)
® State machines

B Built some simple circuits
® adder, subtracter, adder/subtracter, Incrementer
® Counter (consisting of register and incrementer)
® Hard-coded traffic sign state machine
® Programmable traffic sign state machine

m Up next: a computer as a state machine

2025/2/24



Bottom up approach

i

Full Adder |

1K~10K Cells/Module
(100K Devices)

100 Modules/ IC
0.25M~20G Devices

Integrated Circuit Design ‘ | Register Transfer Level (RTL) Design |

‘ Transistor Physical Layout ‘

pL NS Pt b

‘ Scheme for ‘ Circuit Level Design ‘

2 5 f
e i I oot ck Register
e VIR VAR S
[ s Cout S
Register Transfer Level (RTL) Design
2~16 Gates/Cell

(16~64 Devices)

Representing Information (Transistor Level Design)

2~8 Devices/Gat
2025/2/24 ( evices/Gate) } -




Today

B Great Idea #2: Stored program computer(Von

Neumann Model--A Machine Structure

® Basic Components for a machine

® The LC-3: An Example of von Neumann Machine
® Instruction Processing

2025/2/24



Bottom up approach

Motherboard Circuit Design
10 ICs/ PCB
1~50G Devices

Integrated Circuit Design
100 Modules/ IC
0.25M~20G Devices

Personal Computer:
Hardware & Software Design
1~10PCBs/System

ouTPUT
Monitor

PROCESSING UNIT Printer

LED

Disk

CONTROL UNIT

| Electronic System Level (ESL)Design | | Now. You are Here
b b
8
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Great Idea #3: Abstraction Helps Us Manage
Complexity

. . Solve a system of equations
Application I 4 q
Algorithm and Data Structure /’\
Gaussian Jacobi o
Red-black SOR elimination iteration Multigrid

Programming Language/Compiler

Operating System/Virtual Machines

FORTRAN C C++ Java
on Set A e e (ISA /\\
|
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) \
pentium 4 C°T€2DU0  Avip Athion X2

Analog/Digital Circuits /\

Electronic Devices Ripple-carry adder  Carry-lookahead adder

Physics /\

Static CMOS Dynamic cMos '\anomechanical
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Great Idea #4: Software and Hardware Co-
design

//\\\ Application
K E./J Algorithm & Data Structure
o ,

Language

Software
Hardware Machine Architecture, ISA
/ \
< ’ Microarchitecture
Logic and IC Now, You
o are Here.
( Devi
\‘E > vice
b

Computer System: Layers of Abstraction
2025/2/24 10
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ENIAC - The first electronic computer ,1946%F

b= o e \" =)
M e T -
L I e
j y » i .
\ ) o X
- “ N o
i ¢ e N 3
| B el
e - e
A 5 S ¢ .
* 'y X
~ J
- 4032

Programmed by plugboard and

. . e
202512124 switches, time consuming!
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ENIAC - The first electronic computer ,1946%F

»

Changing the program could take days!
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The Origin of the Stored Program Computer

1946: ENIAC
® Presper Eckert and John Mauchly -- first
general electronic computer.
® Hard-wired program -- settings of dials and
switches.

1944: Beginnings of EDVAC(Electronic Discrete Variable
Automatic Computer)

® John von Neumann joined ENIAC team and proposed
a stored program computer called EDVAC

John von Neumann, 1945:John von Neumann
c. 1955

Credit: Computer
History Museum

® John von Neumann wrote "First Draft of a Report
on the EDVAC" in which he outlined the
architecture of a stored-program computer.

The basic structure proposed in the draft became known as the
“von Neumann machine” (or model).
® a memory, containing instructions and data

® a processing unit, for performing arithmetic and logical operations
® a control unit, for interpreting instructions

2025/2/24 15



The Stored Program Computer Architecture
(von Neumann Machine Architecture or Model)

Control Bus Input Memory Output
Devices Programs & Data Devices
Data & Adrress Bus Y — T
Data Address
Register Register
MEMORY I
NPUT ] oUTPUT Central Processing Unit
[ PROCESSING UNIT e
el Dl A B Registers
Arithmetic Logic Unit Temporary
Memory
CONTROL UNIT
i
Control Unit
Program Instruction
Counter Register
2025/2/24
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The Stored Program Computer

Maurice Vincent
Wilkes

ey

M g fi ) i 7 Electronic storage of
”“: : o B programming information and
: ' data eliminated the need for
the more clumsy methods of
programming, such as
punched paper tape — a
concept that has
characterized mainstream

computer development since
EDSAC 1945
University of Cambridge ’

UK, 1949

2025/2/24 17



Two major inventions of the microprocessor

chip

Stored program

+

Change the program
so that you can do all
kinds of tasks on the
same hardware

2025/2/24

Transistor technology

The device is
smaller and faster
than a vacuum
tube
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von Neumann Model

MEMORY

Y

INPUT

Keyboard
Mouse
Scanner
Disk

PROCESSING UNIT

OuUTPUT

Monitor
Printer
LED
Disk

2025/2/24
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LC-3 Data Path FWDMEAMOPHEXHSI—I

Control Unit \ Processing

Unit

Memory |
U n it | | INPUT OUTPUT




Memory

k x m array of stored bits (k is usually 2")

Address
® unigue (n-bit) identifier of location

Contents
® m-bit value stored in location

Basic Operations:

LOAD
® read a value from a memory location

STORE
® write a value to a memory location

2025/2/24

0000
0001
0010
0011
0100
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0110
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Interface to Memory

How does processing unit get data to/from memory?

MAR: Memory Address Register
MDR: Memory Data Register

NENCBY~

MR (NBR

To read a location (A):
l. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
3. Read the data from MDR.

To write a value (X) to a location (A):
l. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.

3. Send a “write” signal to the memory.

2025/2/24
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Processing Unit

Functional Units
FPROESSENA INIT
® ALU = Arithmetic and Logic Unit

® could have many functional units. @

some of them special-purpose

(multiply, square root, ..)
® 1.C-3 performs ADD, AND, NOT

Registers
® Small, temporary storage
® Operands and results of functional units
® 1.C-3 has eight register (RO, .., R7)

Word Size

® number of bits normally processed by ALU in one
instruction

® also width of registers
®LC-3 is 16 bits
2025/2/24 24



Input and Output

W Devices for getting data into and
out of computer memory

B Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

INPUT

Keyboard
Mouse
Scanner
Disk

OUTPUT

Monitor
Printer
LED
Disk

® I.C-3 supports keyboard (input) and console (output)

® keyboard: data register (KBDR) and status register

(KBSR)

® console: data register (CRTDR) and status register

(CRTSR)

® frame buffer: memory-mapped pixels

B Some devices provide both input and output

® disk, network

B Program that controls access to a device is usually

called a driver.
2025/2/24
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Control Unit

B Orchestrates execution of the program

CONTROL UNIT

e [R]

B Instruction Register (IR) contains the current
instruction.

B Program Counter (PC) contains the address of the next
instruction to be executed.
B Control unit:

® reads an instruction from memory
— the instruction’ s address is in the PC

® interprets the instruction, generating signals
that tell the other components what to do
— an instruction may take many machine cycles to complete

2025/2/24 26



Instruction Processing (State Transtion)

2025/2/24

!

Fetch instruction from memory

|

Decode instruction

}

Evaluate address

}

Fetch operands from memory

}

Execute operation

!

Store result




Instruction

B The instruction is the fundamental unit of work.
B Specifies two things:
® opcode: operation to be performed
® operands: data/locations to be used for operation

B An instruction is encoded as a sequence of bits.
(Just like data!)

® Often, but not always, instructions have a fixed length,
such as 16 or 32 bits.

® Control unit interprets instruction:

generates sequence of control signals to carry out
operation.

® Operation is either executed completely, or not at all.

B A computer’s instructions and their formats is known as its
Instruction Set Architecture (ISA).

® Persistent ISA invented by UW grad Gene Amdahl (IBM
360)

2025/2/24 28



Example: LC-3 ADD Instruction

LC-3 has 16-bit instructions.
® Each instruction has a four-bit opcode, bits [15:12].

LC-3 has eight registers (R0O-R7) for temporary storage.

® Sources and destination of ADD are registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. ADD Dst | Srcl |00

OSrc2‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0001110010000110

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

2025/2/24 29



Example: LC-3 LDR Instruction

Load instruction -- reads data from memory

Base + offset mode:
® add offset to base register -- result is memory
address

® load from memory address into destination register
15 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1 0
LDR. | Dst. | Base | Offset ‘
15 14 13 12 11 10 S 8 7 6 5 4 3 2

s 1 0
0110010011000110

“Add the value 6 to the contents of R3 to form a
memory address. Load the contents stored in
that address to R2.”

2025/2/24 30



Instruction Processing: FETCH

B Load next instruction (at address stored in PC)
from memory into Instruction Register (IR).
® Load contents of PC into MAR.
® Send “read” signal to memory.
® Read contents of MDR, store in IR.
B Then increment PC, so that it points to

the next instruction in sequence.
® PC becomes PC+1.

=

15 14 13 12 11 10
| app Dst

9 8 71 6

v Src2

14 13 12 11 10

1000111

2025/2/24
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Instruction Processing: DECODE

B First identify the opcode.
®In LC-3, this is always the first four bits
of instruction.
®A 4-to-16 decoder asserts a control line
corresponding to the desired opcode.

B Depending on opcode, identify other operands
from the remaining bits.
® Example:

—for ADD, last three bits is source operand #2
—for LDR, last six bits is offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| app Dst | Srcl 0|0 0] src2
14 13 12 11 10 9 8 7 6 5 4 3 2 yli 0
’0 00111001000 110

2025/2/24
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Instruction Processing: EVALUATE ADDRESS

B For instructions that require memory access,
compute address used for access.
B Examples:
® add offset to base register (as in LDR)
® add offset to PC (or to part of PC)
® add offset to zero

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ ADD | Dst | Srcl |0/0 O] Src2‘
15 14 13 12 11 10 9 8 7 6 5 4 3 0
0001110010000 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LDR Dst Base Offset ‘

15 14 13 12 11 10

5 8 7 6.
01100100110

2025/2/24
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Instruction Processing: FETCH OPERANDS

B Obtain source operands needed to
perform operation.

B Examples:
® read data from register file (ADD)
® load data from memory (LDR)

- ] EA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ ADD | Dst | Srcl |0/0 O] Src2‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00011100100/00110]
15 14 13 12 11 10 S 8 7 6 5 4 3 2 1 0 EX
‘ LDR Dst Base Offset ‘ 1
15 14 13 12 11 10 S 8 7 6 5 4 3 2 i 0 S
0110010011000110| I

2025/2/24 34



Instruction Processing: EXECUTE

Perform the operation,
using the source operands.

Examples:

® send operands to ALU and assert ADD signal

® do nothing (e.g., for loads and stores)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o‘

’ ADD | Dst | Srcl 0|0 O{ Src2

15 14 13 12 131 10

0001

] S 8 7 6 5 4 3
110010000110

15 14 13 12 11 10 S 8 7 6 5 4 3 2 1 0
| LDR Dst | Base

Offset
15 14 13 12 11 10 S 8 7 6 5 4 3 2 1 0
0110010011000110|

2025/2/24
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Instruction Processing: STORE

B Write results to destination. (register or
memory)

B Examples:

® result of ADD is placed in destination register

® result of memory load is placed in destination
register

® for store instruction, data is stored to memory
—write address to MAR, data to MDR
—assert WRITE signal to memory

15 14 13 12 11 10 9 8 7 6 5

| app | Dst | srcl |0]

o
w
)
=
o

o
o
5]
[}
Q
[\

15 14 13 12 11 10

9 8 1 6. 5 .
000111001000

O w
.,_.‘
=
o

2025/2/24



Changing the Sequence of Instructions

B In the FETCH phase, we incremented the Program
Counter by 1.

B What if we don’t want to always execute the instruction
that follows this one?

® examples: loop, if-then-else, function call
B Need special instructions that change the contents of the

PC.

B These are called jumps and branches.
® jumps are unconditional -- they always change the PC
® branches are conditional -- they change the PC only

if some condition is true (e.g., the contents of a
register is zero)

2025/2/24 37



Example: LC-3 JMP Instruction

B Set the PC to the value contained in aregister. This

becomes the address of the next instruction to fetch.

15 14 13 12 11 10 9 8 7 6 S5 4

JMP |0 0 0] Base |0

o
o w
o w®
o
o

15 14 13 12 11 10 9 8 7 6 5 4

11000000110

o
o w
o~
o
o

“l oad the contents of R3 into the PC.”

2025/2/24

38



Driving Force: The Clock

The clock is a signal that keeps the control unit moving.
® At each clock “tick,” control unit moves to the next
machine cycle -- may be next instruction or next
phase of current instruction.
Clock generator circuit:
® Based on crystal oscillator

® Generates regular sequence of “0” and “1” logic
levels

®Clock cycle (or machine cycle) -- rising edge to
rising edge

“ 1n
“On |
Machine time—
Cycle

2025/2/24 39



Control Unit State Diagram

B The control unit is a state machine. Here is part of a
simplified state diagram for the LC-3:

MAR « PC

PC « PC + 1
N

v
7~ ~
MDR « M[MAR]

}_
Jor

Decode
IR[15:12]

—Y

IR <~ MDR

2025/2/24

e

A more complete state diagram is in Appendix C.
It will be more understandable after Chapter 5.
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Stopping the Clock

Control unit will repeat instruction processing sequence
as long as clock is running.

@ |f not processing instructions from your application,
then it is processing instructions from the Operating System (OS).

® The OS is a special program that manages processor
and other resources.

To stop the computer:
® AND the clock generator signal with ZERO
® when control unit stops seeing the CLOCK signal, it stops processing

Clock CLOCK
Generator
L | S Q
R

RUN

2025/2/24
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Von Neumann Model

MEMORY

Y

INPUT

Keyboard
Mouse
Scanner
Disk

PROCESSING UNIT

OuUTPUT

Monitor
Printer
LED
Disk
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Instruction Processing Summary

B Instructions look just like data -- it’s all interpretation.
B Three basic kinds of instructions:

® computational instructions (ADD, AND, ..)

® data movement instructions (LD, ST, ..)

® control instructions (JMP, BRnz, ..)

B Six basic phases of instruction processing:
® not all phases are needed by every instruction
® phases may take variable number of machine cycles

rmDHEAMOPHEXHSI_I

2025/2/24
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LC-3 Data Path

<

LC-3 Data Path  —* - }
ol o]
3 “V zyaLu,\ EI | zd
Combinational ‘ y S % e [
Logic T

-

Storage

State Machine JL he J{
waon »i’w‘n"j [ e o

CSE 240 ‘h%

MEMEN AW
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Approach: Bottom Up

1K~10K Cells/Module

100 Modules/ IC
(100K Devices)

Register Transfer Level (RTL) Design |
0.25M~20G Devices

| Integrated Circuit Design ‘

w GND Gate Level Design

‘T—{

V. I

| ﬂ

~—
THO-
© o1 ‘21 - 5 Cou S

Register Transfer Level (RTL) Design

2~16 Gates/Cell
(16~64 Devices)

Representing Information (Transistor Level Design)

‘ Scheme for Circuit Level Design
(2~8 Devices/Gate)
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Approach: Bottom Up | Now, You are Here.

Personal Computer: Motherboard Circuit Design Integrated Circuit Design
Hardware & Software Design 10 ICs/ PCB 100 Modules/ IC

1~10PCBs/System 1~50G Devices 0.25M~20G Devices

MEMORY

x l ouTPUT
Monitor

PROCESSING UNIT Printer

LED

Disk

CONTROL UNIT

| Electronic System Level (ESL)Design |

2025/2/24



Great Idea #2 Von Neumann Structure
(Architecture Model)

MEMORY

MAR MDR

F

A 4

INPUT

Keyboard
Mouse
Scanner
Disk

OuUTPUT

PROCESSING UNIT

Monitor
Printer
LED
Disk

CONTROL UNIT

(ke [R]
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Great Idea #1 Turing Machine
(Computational Model)

MEMORY

A 4

INPUT

Keyboard
Mouse
Scanner
Disk

PROCESSING UNIT

OuUTPUT

Monitor
Printer
LED
Disk

CONTROL UNIT

=) (=
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Great Idea #1 Turing Machine
(Computataional Model)

Tadd’ Tmul
U

a,b,c c(a+b)

Universal Turing Machine

2025/2/24
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Fetch instruction from memory

!

Decode instruction

!

Evaluate address

|

Fetch operands from memory

}

Execute operation

|

Store result
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Instruction Processing: State Transtion

S

2025/2/24

[

Fetch instruction from memory

!

Decode instruction

!

Evaluate address

|

Fetch operands from memory

}

Execute operation

|

Store result
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Instruction Processing: Finite State Automata

2025/2/24
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The Microarchitecture of the Lc-

BEN<—R[11]& N +IR(10] & Z +IR[9] & P
R[15:12]

: /7]
cC Loy o
To 18
stCC__
To |e‘>i
To 18 .
3 13 i
CM; ~PC+offd MAR«‘.—PCMB
R7.

To1s

R7<-PC
0R(11]
o

1

2 =
C MOR<-MMAR]) (MDR<-M[MAR]
s -

To 18

To 18

Bioffs : Bass + SEXT[offsets]
PCoffs : PC + SEXTioffsets]
PCroffi1 ; PC + SEXTloflsstt 1]

To1s Tots

Flgure C.2 A state machine for the LC-3




Today rmDHEAMOPHEXHSFI

® We are going to learn how to:
® compute with values in registers
® [oad data from memory to registers
® store data from registers to memory

MEMORY

INPUT | OUTPUT
Keyboard Monitor
Mouse : PROCESSING UNIT Printer
Scanner : LED
Disk

CONTROL UNIT

2025/2/24 11




How do we get the electrons to do the work?

High Level Language
Program (e.g., C)

Compiler

Assembly Language
Program (e.g., MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
vlk+1] = temp;

Now, You
are Here.

Anything can be represented
as a number,
i.e., data or instructions

000 10011100 01101010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110
1100 01101010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

ALUOP[0:3] <= InstReg[9:11] & MASK

Logic Circuit Description
(Circuit Schematic Diagrams)

2025/2/24




Great Idea #4: Software and Hardware Co-
design

//\\\ Application
K E./J Algorithm & Data Structure
o ,

Language
Software
Hardware Machine Architecture, ISA
v \
< ’ Microarchitecture
Logic and IC Now, You
o are Here.
( Device
\‘E > Vi
N & o

Computer System: Layers of Abstraction
2025/2/24 13



Great Idea #3: Abstraction Helps Us Manage
Complexity

. . Solve a system of equations
Application I 4 q
Algorithm and Data Structure /’\
Gaussian Jacobi o
Red-black SOR elimination iteration Multigrid

Programming Language/Compiler

Operating System/Virtual Machines ﬂ\

FORTRAN Java
O e A e e A /\\
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) /\\
pentium 4 C°T€2DU0  Avip Athion X2

Analog/Digital Circuits

Electronic Devices Ripple-carry adder  Carry-lookahead adder

Physics /\

Static CMOS Dynamic cMos '\anomechanical

2025/2/24 14
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Instruction Set Architecture

ISA = All of the programmer-visible components
and operations of the computer

® memory organization
— address space -- how may locations can be addressed?
— addressability -- how many bits per location?
® register set
— how many? what size? how are they used?
® instruction set
— opcodes
— datatypes
— addressing modes

ISA provides all information needed for someone that wants to
write a program in machine language (or translate from a high-
level language to machine language).

2025/2/24 18



LC-3 Overview: Memory and Registers

Memory
® address space: 216 locations(16-bit addresses)
@ addressability: 16 bits

Registers
® temporary storage, accessed in a single machine cycle
—accessing memory generally takes longer than a single cycle
® cight general-purpose registers: RO - R7
—each 16 bits wide
—how many bits to uniquely identify a register?
® other registers

—not directly addressable, but used by (and affected by)
instructions

—PC (program counter), condition codes

2025/2/24 17



LC-3 Overview: Memory Map

0x0000

Trap Vector Table
0x00FF
0x0100

Interrupt Vector Table
0x01FF

0x0200

Operating System
and Supervisor Stack

0x2FFF
0x3000
Program Text

[€====x PC

Global data section

[e=—= R4(Global pointer)

Heap (for dynamically
allocated memory)

}
I

Run-time stack
OxFDFF

0xXFE00 Device Register
OXFFFF Addresses

2025/2/24

[€-==== R6 (stack pointer)
&= R5 (frame pointer)

Functionl

Function2

Function3

€

€

€

R6

R5
R6

R5

R6

R5



LC-3 Overview: Instruction Set

Opcodes
® 15 opcodes
® Operate instructions: ADD, AND, NOT
® Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
® Control instructions: BR, JSR/JSRR, JMP(RET), RTI, TRAP

® some opcodes(ADD, AND, NOT; LD, LDI, LDR, LEA) set/clear
condition codes, based on result:

—N =negative, Z = zero, P = positive (> 0)
Data Types
® 16-bit 2’s complement integer
Addressing Modes
® How is the location of an operand specified?
® non-memory addresses: immediate, register
® memory addresses: PC-relative, indirect, base+offset

2025/2/24 19



LC-3 ISA Overview

iEEI$ES (Operate Instructions)

151413121110 9 8 7 6 5 4 3 2 1 0 HiEEzohis s
~op [EIER sr1 Y o[o] sr2 (Data Movement Instructions)
s} 0 0 0 1 SR1 Imm5
#15S (Load
A\oa 0 1 0 1 SR1 ju 0|0| SR2 m @( )
1514131211109 8 7 6 5 4 3 2 1 0

L\ 0 101 SR1 Imm5

LD l 0 1 O msl3s PCoffset9
Nfeamm 1 0 0 1 SR1 1|11|1

LDR I 11 O sl BaseR| PCoffset6

Reserved |5 BB

LDI I DR PCoffset9

{54324 (Control Instructions) LEA I DR PCoffset9

1514131211109 8 7 6 5 4 3 2 1 0

BR PCofisetd | RS (Store)

JSR PCoffsetll 151413121110 9 8 7 6 5 4 3 2 1 0

o

JSRR | [HEMGII) 0 | 0|BaseR|0[0|0|0|0|0 ST 001 1SS PCoffsety
OIOIO ololo olo STR 0111 BaseR| PCoffset6

o

STI 101 1S PCoffset9

MRNRROON 0 (0 (0|BaseR|0({0(0|0[00

IMP 0
o|0[0|1|1|1|o[0|o|0[0|0|
OIOlOIOI TrapVector8 l

2025/2/24
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Operate Instructions

Only three operations: ADD, AND, NOT

Source and destination operands are registers
® These instructions do not reference memory.

® ADD and AND can use “immediate” mode,
where one operand is hard-wired into the instruction.

Will show dataflow diagram with each instruction.

® illustrates when and where data moves to accomplish the desired
operation

2025/2/24 22



LC-3 ISA Operate Instructions

ADD
ADD
AND
AND
NOT

0001
0001
0101
0101
1001

Reserved [l B0 Nk E

2U”LolZ] 24

543210

Jolo] sr2

Imm5

0 0|0| SR2

Imm5

111

as)



Operate Instructions Overview

151413121110 9 8 7 6

ADD

AND

AND

NOT

Reserved

2025/2/24 24



LC-3 Data Path e i BV Ed ST SR

Control Unit \ Processing

Unit

Memory
Unit | |




NOT (Register)

15 14 13 12 11 10 9 8 7 ©

g 7 e 5 4 3 2 1
NOT [1 0 0 1| pst | sre |1 1111 1

Register File

Dst

A

Src 1

Note: Src and Dst
could be the same register.

2025/2/24
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NOT (Register): r’m 0 f e bt or bt Xl s I‘|

Gaterc — /N

16
[MART]<i— Lowne



NOT (Register): r’m 0 f e bt or bt Xl s I‘|

T
Bk PCMUX L
16

LD.MDR MDR MAR

16
M|o,EN—(>¢ MEMORY 4—/|
L'— <—MEM.EN,RW

16




NOT (Register): r’m 0 f e bt or bt Xl s I‘|

LD.|R—(>
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



NOT (Register): ) EA oP EX S

FINITE
STATE
MACHINE

\/ GateALU




NOT (Register): BN sl

REG
FILE

SR2 SR1
ouT ouT

FINITE
STATE

MACHINE
IR
>

\/ GateALU



NOT (Register): Pl PP T

REG
FILE

SR2 SR1
ouT ouT

FINITE
STATE

MACHINE
IR
>

>N/ GateALU



NOT (Register): g BN g BEel BN agiee

116

REG
FILE

SR2 SR1
ouT ouT

FINITE
STATE

MACHINE

IR

>N/ GateALU



NOT (Register): NOT R3, R5

15 14 13 12 11 10 & & 7 &

5 5 4 3 2 1
NOT [1 0 0 1| pst | sre |11 111 1

Register File

R3 |of2]o[2[o[o[olo[1]1]1]2]o[ololo

R5 [1]oa]of[][2]o[o[ofofa]a[1]x

O @

ALU
NOT
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ADD/AND (Register)

this zero means “register mode”

15 14 13 12 11 10 ¢ 8 7 &) l 4 3 2 1 0
ADD [0 0 0 1] DstlSrcllOlO 0| sre2 |
15 14 13 12 11 10 ¢ 7 6 5 4 1

AND [0 1 0 1] Dst | Src1|0|0 o| Src2|

Register File

— Src2
Dst

ADD/AND

2025/2/24
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ADD/AND (Register) [l oelvorplods b

>/\

16
<}— LD.MAR



ADD/AND (Register) [l oelvorplods b

tore—>fITFe ]
% PCMUX L
16

LOMER MDR [ wAR |

16
Mlo,EN—Dﬁ MEMORY 4—/i
K <l—MEM.EN,R,W

16




ADD/AND (Register) [l oelvorplods b

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



ADD/AND (Register) D or BN ex MR s

REG
FILE
LD.REG —>]

SR2 SR1
OUT __ OuT

FINITE
STATE

MACHINE

LR

>N/ GateALU



AND (Register): AND R3, R5, R1

15 14 13 12 11 10 & 7

1 0

AND [0 1 0 1| bst | srel |o|o o| srez

Register File

reo[afafa]2]ofololofololofof2]dlo

0101 DA oRlRI

IR R3 |oJo[1]o[1]o[olofofolofolo[1]oo

1Jo[[of[[2]z]o]o]ofofa[]]2

Bit[5]= 0

2025/2/24
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ADD/AND (Immediate)

this one means “immediate mode”

15 14 12 12 11 10 ¢ 8 7 l 4 3 2 1 0
ADD |0 0 0 1| Dst | Srcl |1| Imm5 |
15 14 12 12 11 10 ¢ g 7 o 5 4 3 2 1 0

AND [0 1 0 1] pst | Srel |1] Tmms |
Register File

Dst

Note: Immediate field is
sign-extended.

Srel

IR[4:0] Sext

1 ADD/AND

I

Instruction Reg
2025/2/24 41




ADD/AND (Immediate) Bl 2=kt ol <

>/\

16
<}— LD.MAR



ADD/AND (Immediate) Bl 2=kt ol <

tore—>fITFe ]
% PCMUX L
16

LOMER MDR [ wAR |

16
Mlo,EN—Dﬁ MEMORY 4—/i
K <l—MEM.EN,R,W

16




ADD/AND (Immediate) Bl 2=kt ol <

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



REG
FILE
LD.REG —>|

SR2 SR1
ouT ouT

[4:0] FINITE
SEXT STATE

R MACHINE

>N/ GateALU



ADD (Immediate) ADD R1, R5, #-2

15 14 13 12 11 10 9 g8 7 c 5 1 3 2 1 0
ADD [0 0 0 1| Dst | Srcl [1| Tmms |

Register File
RO
r1 o[o[o[olo[ofofo]oololofof2[dlo
R2
1000 375 ARG e

R4

IR[4:0]=11110 rs |dlofolololololofofolololofafafo
R6

1111111111110 @ @ ®
N 4

Bit[5]=1

IR[4:0] = # -2

R5=#6 ALU
Rl=#4 ADD

2025/2/24



Using Operate Instructions

With only ADD, AND, NOT...

® How do we subtract?

® How do we OR?

® How do we copy from one register to another?

® How do we initialize a register to zero?

2025/2/24
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LC-3 Operate Instructions and Data Path

n Summary




Great Idea #4: Software and Hardware Co-design

e Application
// N\
K ) Algorithm & Data Structure
N : Language
Software

Hardware x

Microarchitecture

Now, You

Logic and IC are Here.
Device
ﬂ How do we get the electrons to do the work?

2025/2/24 49



How do we get the electrons to do the work?

High Level Language
Program (e.g., C)

Compiler

Assembly Language
Program (e.g., MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
vlk+1] = temp;

Now, You
are Here.

Anything can be represented
as a number,
i.e., data or instructions

000 10011100 01101010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110
1100 01101010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

ALUOP[0:3] <= InstReg[9:11] & MASK

Logic Circuit Description
(Circuit Schematic Diagrams)

2025/2/24
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Operate Instructions

151413121110 9 8 7 6

ADD

AND

AND

NOT

Reserved

2025/2/24 51



LC-3 Data Path e i BV Ed ST SR

Control Unit \ Processing

Unit

Memory
Unit | |




LC-3 Data Path After Operate Instruction

fe

REG
FILE

SR2 SR1
ouT ouT

FINITE
STATE
MACHINE

>N/ GateALU

LD.MDR MDR MAR |<— LD.MAR

16
Mlo,EN—Dﬁ MEMORY 4—/i

o [<—MEM.ENR,W 53




Next Lecture: Data Movement Instructions

LDR
LDI
LEA

EES

1514131211109 8 7 6 5 4 3 2 1 0

0 01 O DR PCoffset9
0 1 1 DR BaseR PCoffset6
1 0 1 DR PCoffset9
1 1 DR PCoffset9
FHES

151413121110 9 8 7 6 5 4 3 2 1 O
0 0 11 SR PCoffset9
0 1 1 1 SR BaseR PCoffset6

0 11 SR PCoffset9

2025/2/24
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Reading

m 5.3 Data Movement Instructions

2025/2/24
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Great Idea #3 : Abstraction

Application

Solve a system of equations

Algorithm and Data Structure

Programming Language/Compiler

Operating System/Virtual Machines

Microarchitecture

Gates/Register-Transfer Level (RTL)

/Gausym

Analog/Digital Circuits

Red-black SOR elimination iteration Multigrid
FORTRAN C C++ Java
A\
Sun SPARC Intel x86 IBM PowerPC
/N
Pentium 4 C°T€2PUC  AvD Athlon X2

Electronic Devices

Physics

2025/2/24

Ripple-carry adder  Carry-lookahead adder

N

Static CMOS Dynamic CMOS

Nanomechanical



LC-3 ISA Operate Instructions

ADD
ADD
AND
AND
NOT

0001
0001
0101
0101
1001

Reserved [l B0 Nk E

2U”LolZ] 24

543210

Jolo] sr2

Imm5

0 0|0| SR2

Imm5

111




LC-3 Data Path After Operate Instruction

REG
FILE
LD.REG —>|

SR2 SR1
ouT ouT

[4:0] FINITE
SEXT STATE

R MACHINE

>N/ GateALU



Today rmDMEAMOPHEXHSFI

® We are going to learn how to:
® |oad data from memory to registers
@ store data from registers to memory

MEMORY

INPUT | ) OUTPUT
Keyboard Monitor
Mouse : PROCESSING UNIT Printer
Scanner : LED

Disk Disk

CONTROL UNIT

2025/2/24 7




Review

_ .

n LC-3 PC-Relative Load/Store

L LC-3 Indirect, Base+offset Load/Store

L Summary




Today rmDHEAMOPHEXHSFI

® We are going to learn how to:
® compute with values in registers
® [oad data from memory to registers
® store data from registers to memory

MEMORY

INPUT | OUTPUT
Keyboard Monitor
Mouse : PROCESSING UNIT Printer
Scanner : LED
Disk

CONTROL UNIT

2025/2/24 9




LC-3 Overview: Memory Map

0x0000

Trap Vector Table
0x00FF
0x0100

Interrupt Vector Table
0x01FF

0x0200

Operating System
and Supervisor Stack

0x2FFF
0x3000
Program Text

[€====x PC

Global data section

[e=—= R4(Global pointer)

Heap (for dynamically
allocated memory)

}
I

Run-time stack
OxFDFF

0xXFE00 Device Register
OXFFFF Addresses

2025/2/24

[€-==== R6 (stack pointer)
&= R5 (frame pointer)

Functionl

Function2

Function3

€

€

€

R6

R5
R6

R5

R6

R5



Data Movement Instructions

LDR
LDI
LEA

0 010
0

1
10

1
1
11

=

0 0
0 1

1
1
1

0

1
1
1

EES
151413121110 9 8 7 6 5 4 3 2 1 0

DR PCoffset9

DR BaseR PCoffset6

DR PCoffset9

DR PCoffset9
FHES

51413121110 9 8 7 6

54 3 210

SR PCoffset9
SR BaseR PCoffset6
SR PCoffset9

2025/2/24
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Data Movement Instructions

Load -- read data from memory to register
® L D: PC-relative mode
® | DR: base+offset mode
® L DI: indirect mode

Store -- write data from register to memory
® ST: PC-relative mode
® STR: base+offset mode
® STI: indirect mode

Load effective address -- compute address,
save in register

® LEA: immediate mode
® does not access memory

2025/2/24 12



PC-Relative Addressing Mode

Want to specify address directly in the instruction
® But an address is 16 bits, and so is an instruction!

® After subtracting 4 bits for opcode and 3 bits for register, we
have 9 bits available for address.

Solution:
® Use the 9 bits as a signed offset from the current PC.

9 bits: - 256 < offset < +255
Can form any address X, such that:PC-256 < X <PC +255

Remember that PC is incremented as part of the FETCH phase;
This is done before the EVALUATE ADDRESS stage.

2025/2/24 13



LD (PC-Relative) LD DR, PCoffset9

15 14 13 12 11 10 o 8 % & 5 4 3 2 1 0O

LD [0 0 1 0| Dst | PCoffset?9 |
PC Register File Memory
[ 1 —

€

Sext ¢
1 TIR[8:0] i/‘7
+

Instruction Reg LD 3
¥
MAR 2
—= &
MDR

2025/2/24 14



LD (PC-Relative) : LD R1, x1AF

Memory

s, oo

15 14 13 12 11 10 ¢ 7 6 5 4 3 2 1 @
LD [0 0 1 o] pst PCoffset9
Register File
RO
pe fooloollolloiloizofl —r2 oolofofolofofofofololofo]1]ofx
R2
.0 103 RACARIARG Ro
R4
IR[8:0=110101111 | (D) @ RS
R6
R7
1111111110101 = XFFAF X4019
PC  =x4018 @ @ ®
PC+1 = x4019 x3FC8
X3FCB —

X4019 + xFFAF = x3FC8

2025/2/24
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LD (PC-Relative) rm N e Ny |_|

>/\

16
<}— LD.MAR



LD (PC-Relative) rm o |l Eafsl or paEx ]l s |_|

orc—>{IFe]
W% PCMUX il
16

LO-MDR MBR [wAr ]

16
Mlo,EN—Dﬁ MEMORY 4—/i
E <l—MEM.EN,R,W

16




LD (PC-Relative) rm o |l Eafsl or paEx ]l s |_|

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



LD (PC-Relative) 2| OF |- EX | s

ADDRIMUX




LD (PC-Relative)

LD.MDR

MIO.EN—>

R eV o T

MDR

16

MEMORY

MAR

4_/[16

[<F—MEM.ENRW




LD (PC-Relative) |—4 F }l o pof e s or |l Ex

116

REG
FILE

LD.REG —>|

SR2 SR1
OUT _ OouT

FINITE
STATE

wr—> IR MACHINE

GateMDR—>/\
&




ST (PC-Relative) ST SR, PCoffset9

15 14 13 12 11 10 o 8 % & 5 4 3 2 1 0O

ST [0 0 1 1] src | PCoffsetd |

PC Register File Memory
L 1

Src
(1
®
Sext
1 [IR[8:0]

Instruction Reg

2025/2/24 22



ST (PC-Relative) [l lods s o

>/\

16
<}— LD.MAR



ST (PC-Relative) [l lods s o

T
Y PCMUX L
16

LD.MDR MDR MAR

16
Mlo,EN—Dﬁ MEMORY 4—/i
L'— <}F—MEM.ENRW

16




ST (PC-Relative) [l lods s o

w.r—>[ IR
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



ST (PC-Relative) 0 g -~ ol Ed Sl

ADDRIMUX




ST (PC-Relative) o=
116

REG
FILE

GateMARMUX —L>

SR2  SR1
our  out[F SR

ADDRIMUX

LD.MDR

MIO.EN—>




ST (PC-Relative)

LD.MDR

ﬁ F | b} ea | op | ] X

MDR

MEMORY

MAR

4_/[16

[<F—MEM.ENRW




Outline © ez Lixg

nd Technolo

L Review

L LC-3 PC-Relative Load/Store

n LC-3 Indirect, Base+offset Load/Store

L Summary




Indirect Addressing Mode

With PC-relative mode, can only address data
within 256 words of the instruction.
® What about the rest of memory?

Solution #1:

® Read address from memory location,
then load/store to that address.

First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for load/store.

2025/2/24 30



LDI (Indirect) LDI DR, PCoffset9

15 14 13 12 11 10 & & 7 & 5 4 3 2 1 0O

LDI [1 0 1 o] Dst | PCoffset9
PC Register File Memory
[ ] S

:1

Sext
1 1IR[8:0]
e '—i?j
+

Instruction Reg 2

2025/2/24 31



LDI (Indirect) : LDI R1, x1AF

15 14 13 12 11 10 9 2 7 6 5 4 3 2 1 0
LDI (1 0 1 o] bpst PCoffset?
Register File Memory
RO
pC oltfoflololofolofoffafzfool —R [afafafaf[o[a]afafaa]o]]a]s
R2
11 01 0[S FIFA RS AR 22 %2100 [t fafafu]afafa[u]aa]a
IR[8:0]=110101111 ® R5
E? aeca,JofdfiJofolofoftJololofololofolo]
1111111110101111 = XFFAF x4019
PC  =x4018 @ @ ®
PC+1 = x4019 x3FC8
— |
X4019 + XFFAF = X3FC8 B ercseio 4 F—
MAR
— %2100/ #-1 | +} ®
2025/2/24 vor 1 32



LDI (Indirect) L e o el b

>/\

16
<}— LD.MAR



LDI (Indirect) r'm D |+ EA Jo{ 0P |l EX }l s I_I

tDMDR MDR [ wAR |

16
Mlo,EN—Dﬁ MEMORY 4—/i
K <l—MEM.EN,R,W

16




LDI (Indirect)

I_.m D | Ea jl op [ Ex | s I_I




LDI (Indirect) m

ADDRIMUX




LDI (Indirect)

LD.MDR

MIO.EN—>

SR S - e

MDR

16

MEMORY

MAR

4_/[16

[<F—MEM.ENRW




LDI (Indirect) OPMEXH s I—l

GateMDR —T>/\ 16
tomor—>{ MDR ] MAR |<\— D.MAR

MEMORY




LDI (Indirect)

LD.MDR

MIO.EN—>

SR S - e

MDR

16

MEMORY

MAR

4_/[16

[<F—MEM.ENRW




LDI (Indirect) |—4 F s 0 | Eajs{or J Ex

116

REG
FILE

LD.REG —>]

SR2 SR1
OUT _ OouT

FINITE
STATE

MACHINE
LR}
>

GateMDR—L>/\
&




STI (Indirect) STI SR, PCoffset9

15 14 13 12 11 10 & & 7 & 5 4 3 2 1 0O

STI |10 1 1| src | PCoffset9
PC Register File Memory
[ ] -

:1

Sext
1 1IR[8:0]
ST '—i?j
+

Instruction Reg 2
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STI (Indirect) r’m 0 f e bt or bt Xl s I‘|

>/\

16
[MART]<i— Lowne



STI (Indirect) r’m 0 f e bt or bt Xl s I‘|

LD.MDR MDR MAR

16
M|o,EN—(>¢ MEMORY 4—/|
L'— <—MEM.EN,RW

16




STI (Indirect)

I_.m D | Ea jl op [ Ex | s I_I




STI (Indirect) ﬁ_.ﬁ_.ﬁ_l

ADDRIMUX




STI (Indirect) i BB RSN g P

LD.MDR MDR MAR

16
Mlo,EN—Dﬁ MEMORY 4—/i
L'— <}F—MEM.ENRW

16




STI (Indirect) OPI—AExl—A s s-l

GateMDR —>/\ »

to.mor—>{ MDR | [ MAR |<+— pomar



STI (Indirect) P il

GateMARMUX —L>

REG
FILE

SR2 SR1 2
ouT OUT| ™73 SR1

ADDRIMUX

LD.MDR

MIO.EN—>




STI (Indirect) |—4 F {0 Jf Ea }of 0P | Ex

LOMPR MDR [ wAR |

Jle
MEMORY

<l—MEM.EN,R,W




Base + Offset Addressing Mode

With PC-relative mode, can only address data
within 256 words of the instruction.
® What about the rest of memory?

Solution #2:
® Use a register to generate a full 16-bit address.

4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are used

as a signed offset.

® Offset is sign-extended before adding to base register.

2025/2/24
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LDR (Base+Offset) LDR DR, BaseR, offset6

15 14 13 12 11 10 & 8 7 & 5 4 3 2 1 0
LDR|0 11 0| Dst IBasel offseté6 |

Register File Memory

> Dst

(1

Sext —
IR[5:0]

Instruction Reg

2025/2/24 51



LDR (Base+Offset) : LD R1, R3, x1D

15 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1 0
LDR |O 11 0| Dst | Base[ offseté6

Register File Memory
RO
—r2 [o[ofofofoofolololfafolo]a]of|
R2
. EERTBRBHG e SOOI
R4
R[5:01=011101 |(D RS
R6
SEXT R7 2362, ojofojofojojoojofofofofofafof
0000000000011101 = X1D 2345
A B
+
@ @ ®
PC  =x4018
PC+1 = x4019 x2362
¥2362 —
x1D + x2345 = x2362 MAR
— #5 ®

2025/2/24 MDR 52



LDR (Base+Offset) I—vm D | Ea jl op [ Ex | s I_I

>/\

16
<}— LD.MAR



LDR (Base+Offset) I—vm D | Ea jl op [ Ex | s I_I

orc—>{IFe]
W% PCMUX il
16

LO-MDR MBR [wAr ]

16
Mlo,EN—Dﬁ MEMORY 4—/i
E <l—MEM.EN,R,W

16




LDR (Base+Offset) I—vm D | Ea jl op [ Ex | s I_I

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



LDR (Base+Offset) m

GateMARMUX —L>

REG
FILE

SR2 SR1
ouT ouT

<],34 SR1

ADDR2MUX ADDRIMUX 6




LDR (Base+Offset)

LD.MDR

MIO.EN—>

SR eV o ST

MDR

16

MEMORY

MAR

4_/[16

[<F—MEM.ENRW




LDR (Base+Offset) ﬁ F | b} Ea || op | EX

REG
FILE

LD.REG —>]

SR2 SR1
OUT _ OouT

FINITE
STATE

MACHINE
LR}
>

GateMDR—L>/\
&




STR (Base+Offset) STR SR, BaseR, offset6

15 14 13 12 11 10 & & 7 5 4 3 2 1 0

STR|0 11 1| Src | Basel offset6 |

Register File Memory

Src

1

Sext —
IR[5:0]

Instruction Reg

2025/2/24 59



STR (Base+Offset) Ml eborlods s o

>/\

16
<}— LD.MAR



STR (Base+Offset) Ml eborlods s o

T
Y PCMUX L
16

LD.MDR MDR MAR

16
Mlo,EN—Dﬁ MEMORY 4—/i
L'— <}F—MEM.ENRW

16




STR (Base+Offset) Ml eborlods s o

w.r—>[ IR
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



STR (Base+Offset)

) EA oP EX s

GateMARMUX —L>

ADDR2MUX

ADDRIMUX

REG
FILE

SR2
ouT

SR1
ouT

<],34 SR1




STR (Base+Offset) |‘4 il

REG
FILE

SR2  SRL
our  out[F SR

ADDR2MUX ADDRIMUX

LD.MDR

MIO.EN—>
[




STR (Base+Offset) |"L e e ] e

MDR MAR

Jm
MEMORY

[<F—MEM.ENRW




Load Effective Address

Computes address like PC-relative (PC plus signed
offset) and stores the result into a register.

Note: The addressis stored in the register,
not the contents of the memory location.
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LEA (Immediate) LD DR, PCoffset9

15 14 13 12 11 10 9 8§ 7 6 5 4 3 2 1 O
LEA (1 1 1 o] pst | PCoffset?
PC Register File
|
> Dst

a

Sext
1 |IR8:0] @
:g o4

Instruction Reg

2025/2/24



LEA (Immediate): LEA R1, x1AF

15 14 13 12 11 10 & &8 7 & 5 4 3 2 1 0
LEA (1 1 1 o] pst | PCoffset
Register File
RO
pe fooloollolloiloizofl R1 |ofo[11]afa][1]a]o[x]1]1]olo]o
R2
. [EREHHEFEGE ra
R4
IR[8:0=110101111 | (D) @ RS
R6
R7

1111111110101111 = xFFAF x4019

PC =x4018 @
PC+1 =x4019 x3FC8

X4019 + xFFAF = x3FC8

2025/2/24
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LEA (Immediate) I—»ﬂ—# b J=] A | 0P | X Jl s |_I

>/\

16
<}— LD.MAR



LEA (Immediate) I—»ﬂ—# b J=] A | 0P | X Jl s |_I

tore—>fTRE ]
% PCMUX L
16

LOMER MDR [ wAR |

16
Mlo,EN—Dﬁ MEMORY 4—/i
K <l—MEM.EN,R,W

16




LEA (Immediate) I—»ﬂ—# b J=] A | 0P | X Jl s |_I

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



LEA (Immediate)

ADDRIMUX

FINITE
STATE

MACHINE
Lo R—> IR
>




Example

Address Instruction Comments
x30F6 1110 1111 1 R1 « PC - 3 = x30F4
x30F7 000 1 0001 0 R2 « R1+ 14 = x3102
x30F8 00 1 1 0111 1 mf?%Fj]]:fgzlc;;
x30F9 010 1 0010 0 R2 <0
x30FA 0 0 0 1 0010 1 R2<R2+5=5
x30FB 0 11 1 0001 0 mgfolz‘ﬁ]:sm”-e-
R3 « M[M[PC-9]]
x30FC 1 0 1 0 1111 1 Zm{)“(’gggr‘”
=5

2025/2/24
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Today: Data Movement Instructions

LDR
LDI
LEA

0 010
0

1
10

1
1
11

=

0 0
0 1

1
1
1

0

1
1
1

EES
151413121110 9 8 7 6 5 4 3 2 1 0

DR PCoffset9

DR BaseR PCoffset6

DR PCoffset9

DR PCoffset9
FHES

51413121110 9 8 7 6

54 3 210

SR PCoffset9
SR BaseR PCoffset6
SR PCoffset9

2025/2/24
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LC-3 Data Path After Operate Instruction

fe

REG
FILE

SR2 SR1
ouT ouT

FINITE
STATE
MACHINE

>N/ GateALU

LD.MDR MDR MAR |<— LD.MAR

16
Mlo,EN—Dﬁ MEMORY 4—/i

6 [<—MEM.ENR,W 76




LC-3 Data Path After Load/Store Instruction

16

GatePC 16
GateMARMUX —L>
LD.PC PC DR <>
3 REG
A P FILE
e LD.REG —>1
16 16 16 16
SR2  SR1| 4
SR2—D>| ourout [ SRL
ADDRIMUX o 6
16 A
5:0 6
20 2T NEE ADD/AND ‘:'
— SEXT A 2 A
wr—>[ R} LOGIC 16
16 16 RUN GateALU
GateMDR —> 16
16
LD.MDR MDR MAR |<— LD.MAR
16
MIO.EN—> MEMORY 4—/i INPUT OUTPUT
4 1

[<F—MEM.ENRW

77



Next Lecture: Control Instructions

151413121110 9 8 7 6 5 4 3 2

BR 0 0O 0O O EiNwaN: PCoffset9

JSR 01 0 0 1 PCoffsetll

JSRR (ORI RORRREON O | O | BaseR (0|0 |0|O

RTI 1 0 0 O NENENRRRNINNINNORNCRNINN

JMP (RENENORRON O |0 0| BaseR (00|00

RET (RENEORRON 0 (0 0|1(1(1({0|0|0]|O0

TRAP 1 1 1 1 geEECENENe TrapVector8

2025/2/24
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Great Idea #3: Abstraction Helps Us Manage
Complexity

. . Solve a system of equations
Application I 4 q
Algorithm and Data Structure /’\
Gaussian Jacobi o
Red-black SOR elimination iteration Multigrid

Programming Language/Compiler

Operating System/Virtual Machines ﬂ\

FORTRAN Java
O e A e e A /\\
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) /\\
pentium 4 C°T€2DU0  Avip Athion X2

Analog/Digital Circuits

Electronic Devices Ripple-carry adder  Carry-lookahead adder

Physics /\

Static CMOS Dynamic cMos '\anomechanical

2025/2/24 A



LC-3 ISA Overview

1514131211109 8 7 6 5 4 3 2 1 0

2ol 0 0 0 1 0 0|0| SR2 ﬁﬁﬂﬂﬁﬁ@
s>} 0 0 0 1 Imm5
B#iES
A\l 0 1 0 1 0 olo| SR2
151413121110 9 8 7 6 5 4 3 2 1 0

AN} 0 1 0 1 Imm5

LD l 0 1 0 bl PCoffset9
\eJpm 1 0 0 1 111

LDR I 11 O sl BaseR| PCoffset6

Reserved |5 BB
LDI I DR PCoffset9
LEA I DR PCoffset9

FHES

151413121110 9 8 7 6 5 4 3 2 1 0

ST 00 1 1SN PCoffset9

STR 0111 BaseR| PCoffset6

SR
STI 101 1SN PCoffset9

2025/2/24



LC-3 Data Path After Load/Store Instruction

16

GatePC 16
GateMARMUX —L>
LD.PC PC DR <>
3 REG
A P FILE
e LD.REG —>1
16 16 16 16
SR2  SR1| 4
SR2—D>| ourout [ SRL
ADDRIMUX o 6
16 A
5:0 6
20 2T NEE ADD/AND ‘:'
— SEXT A 2 A
wr—>[ R} LOGIC 16
16 16 RUN GateALU
GateMDR —> 16
16
LD.MDR MDR MAR |<— LD.MAR
16
MIO.EN—> MEMORY 4—/i INPUT OUTPUT
4 1

[<F—MEM.ENRW




Today rmDMEAMOPHEXHSFI

® We are going to learn how to:

® Used to alter the sequence of instructions (by changing the
Program Counter)

MEMORY
INPUT | T l OUTPUT
Keyboard Monitor
Mouse : PROCESSING UNIT Printer
Scanner : LED

Disk Disk

CONTROL UNIT

2025/2/24 7
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Control Instructions

Conditional Branch

® branch is taken if a specified condition is true
—signed offset is added to PC to yield new PC
® clse, the branch is not taken
— PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
® always changes the PC

TRAP

® changes PC to the address of an OS “service routine”
® routine will return control to the next instruction (after TRAP)

2025/2/24



LC-3 ISA Overview

=HES

1514131211109 8 7 6 5 4 3 2 1 0

BR PCoffsetd

ISR PCoffsetll

JSRR OOBaseROOOOOO

RTI Wo o|o[o]o[o]o[o]o]o
avp | FEEMEI o |o|o [Baser|o[o0o]o0o]0

o|0|o|1|1|1|o|o|o[0|0[0|

0 I 0 I 0 I 0 I TrapVector8 l

o

2U”LolZ] 24



Control Instructions

151413121110 9 8 7 6 5 4 3 2

BR 0 0O 0O O EiNwaN: PCoffset9

JSR 01 0 0 1 PCoffsetll

JSRR (O NORINORON O | O| BaseR (00 |0|O

RTI 1 0 0 O NENENRRRNINNINNORNCRNINN

JMP (RENENORRON O |0 0| BaseR (00|00

RET (RENEORRON 0 (0 0|1(1(1({0|0|0]|O0

TRAP 1 1 1 1 geEECENENe TrapVector8

2025/2/24



Condition Codes

LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
® Based on the last instruction that altered a register

2025/2/24 12
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Conditional Branch Instruction

Branch specifies one or more condition codes.
If the specified bit is set, the branch is taken.

® PC-relative addressing:
target address is made by adding signed offset (IR[8:0])
to current PC.

® Note: PC has already been incremented by FETCH stage.

® Note: Target must be within 256 words of BR instruction.

If the branch is not taken, the next sequential
instruction is executed.

2025/2/24
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BR (PC-Relative)

15 14 13 12 11 10 9 7 [CHE] 4 3 2 1 0
BRlO 00 0|n|z|p| PCoffset9 |
IR[1L:9]
IR[_| -

IR[8:0] PCl

taken =]“yes”
PCMUX
@

What happens if bits [11:9] are all zero?
What happens if bits [11:9] are all one?

2025/2/24
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BR (PC-Relative): BR, x4101

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BRlO 00 0|n|z|p| PCoffset9 |
IR[11:9]
KRR [T e PEHRFLHREEHEC
IR[8:0] = xD9 @ @
SEXT
|:'—|®
0000 0000 1101 1001 = x00D9 0100 0001 0000 0001=x4101
t+_7
PC =x4027
PC+1 = x4028
@)
taken = “yes” X028 +x00D9 =
PCMUX
@)

What happens if bits [11:9] are all zero?

. . 5
2025/2/24 What happens if bits [11:9] are all one

16



BR (PC-Relative) rm o |l Eafsl or paEx ]l s |_|

>/\

16
<}— LD.MAR



BR (PC-Relative) rm o |l Eafsl or paEx ]l s |_|

orc—>{IFe]
W% PCMUX il
16

LO-MDR MBR [wAr ]

16
Mlo,EN—Dﬁ MEMORY 4—/i
E <l—MEM.EN,R,W

16




BR (PC-Relative) rm o |l Eafsl or paEx ]l s |_|

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



BR (PC-Relative) o o cn A ISy S

FINITE
STATE
MACHINE




BR (PC-Relative) e

ADDR2MUX

FINITE
STATE
MACHINE




BR (PC-Relative)

B Check

BR
BR
BR
BR
BR
BR
BR
® BR

m Set

nzp

n

z

p

nz

np

zp

x4101
x4101
x4101
x4101
x4101
x4101
x4101
x4101

; if(n=1or z=1orp=1), JMP x4101
; if (n=1)

; if (z=1)

i if (p=1)

; if(n=1orz=1)

; if (n=1orp=1)

; if (z=1orp=1)

; PC=PC+1

® If DR <0, set N=1 and Z=0 and P=0
® |[f DR = 0, set N=0 and Z=1 and P=0
® If DR > 0, set N=0 and Z=0 and P=1

2025/2/24



Using Branch Instructions

Compute sum of 12 integers.

Numbers start at location x3100. Ei
Program starts at location x3000. R2
R3
R4
The use of a counter RS
R6
R1 « x3100 R7
R3 « 0
R2 « 12
R4 <« M[R1]
NO R3 <« R3+R4
Rl « RI1+1
R2 « R2-1
YES

Two Method for Loop Control
® The use of a counter
® The use of a sentinel

2025/2/24

Register File Memory
%3100
12 x3000
0
temp Program
x3009
X300A
PC
x3100 Number 1
Data
x310B Number 12
x310C
23




Sample Program(The use of a counter)

Address Instruction Comments
x3000 1 1100010111111 1 1 R1e x3100(PC+OXFF);LEA
%3001 01 0101101110000 0R3«O0AND

x3002 01 0101001010000 0R2«0AND

x3003 0001010010101 10 0R2¢12ADD

x3004 0 00 00100000001 0 1 ifzgoto(PC+5)=x300A;BR
%3005 0110100001000 0 O O Loadnextvalue toR4; LDR
x3006 00 0101101100010 0R3«R3+R4ADD
x3007 0 0010010011000 0 1 incrementR1(pointer); ADD
X3008 0 0010100101111 1 1 DecrementR2(counter); ADD
x3009 00 0011111111101 O Goto(PC-6)=x3004;BR

2025/2/24 24



Using Branch Instructions

Compute sum of 12 integers.
Numbers start at location x3100.

Program starts at location x3000.

The use of a sentinel

R1 « x3100
R3 « 0
R4 « M[R1]

NO

2025/2/24

R3 <« R3+R4
Rl <« R1+1
R4 « M[R1]

I

A special character used to indicate
the end of a sequence

is often called a sentinel.

®  Useful when you don’t know
ahead of time how many times to
execute a loop.

25



Using Branch Instructions

Compute sum of 12 integers.

Numbers start at location x3100. 22

Program starts at location x3000. ;

R3
R4
The use of a sentinel R5
R6
R1 « x3100 R7
R3 « 0
R4 < M[R1]
R3 <« R3+R4
o Rl « R1+1
R4 « M[R1]
YES ;

2025/2/24

Register File Memory
%3100
12 x3000
0
temp Program
x3009
X300A
PC
x3100 Number 1
Data
x310B Number 12
x310C -1
26




Sample Program(The use of a sentinel)

Address Instruction Comments
x3000 1 1100010111111 1 1 Rl (PC+OXFF)=x3100;LEA
%x3001 01 0101101110000 0R3«O0AND

x3002 011 010000100000 0 R4MRIL;LDR
X3003 0 0001000O0O0OO0OOO0OT1O0 O IfN,goto(PC+4)=X3008; BR
X3004 000101101100010 OR3«R3+R4ADD
X3005 00010010011 00001R1eRL+1ADD
X3006 011 010000100000 0 R4e«MRIL;LDR
x3007 00 0011111111101 1 Goto(PC-5)=x3003;BR

2025/2/24 27



Using Branch Instructions(Code Optimization)

Compute sum of 12 integers.
Numbers start at location x3100.

Program starts at location x3000.

Rl <« x3100 Rl « x3100
R3 « 0 R3 « 0
R4 <« M[R1]
&
R4 « M[R1]

R3 <« R3+R4

R4=-17 W Rl « RI1+1 -
R4 « M[R1]
R3 « R3+R4

vES Rl « R1+1

YES ‘7

2025/2/24
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Sample Program

Address Instruction Comments
x3000 111 0001011111111 R1e¢ (PC+OxFF)=x3100
x3001 0101011011100000R3¢0

x3002 011 010000100000 0R4«MR]

X3003 00001000O0O0O0OO0OO0GO 011 IfN,goto(PC+3)=X3007
X3004 0001011011000100R3«R3+R4
X3005 0001001001100001RLeRL*1
x3006 000011111111 101 1 Goto(PC5)=x3002

2025/2/24

29



Outline O ¢onzasxs

} Tech

Review

LC-3 Control Instructions Overview

Conditional Branch Instruction and Loop
Control Example

Jump & TRAP Instruction

Summary

CEEBEE




JMP (Register)

Jump is an unconditional branch -- a/lways taken.
® Target address is the contents of aregister.
® Allows any target address.

15 14 13 12 11 10 &5 7 6 5 1 3 2 1
JMP |1 1oo|ooo\Base\ooooo

PC Register File

;— Base

2025/2/24 31



JMP (Register) r'm D |>{EA | 0 foi Ex || s I—I

>/\

16
<}— LD.MAR



JMP (Register) r'm D |>{EA | 0 foi Ex || s I—I

(opo—b{ITEGT]
W% PCMUX il
16

LO-MDR MBR [wAr ]

16
Mlo,EN—Dﬁ MEMORY 4—/i
E <l—MEM.EN,R,W

16




JMP (Register) r'm D |>{EA | 0 foi Ex || s I—I

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



JMP R7(Register) WI—»’?\—"TFI

Lo.R—>{ IR




IMP R7(Register) 2o EH

REG
FILE

SR2 SR1
ouT ouT

<],34 SR1

16




TRAP

15 14 13 12 11 10 & € 5 4 3 2

1 0

TRAP [1 1 1 1|0 0 © 0| trapvect8

Calls a service routine, identified by 8-bit

vector.”

“trap

vector

routine

x23

input a character from the keyboard

x21

output a character to the monitor

x25

halt the program

Example:
TRAP x23

; Directs the operating system to execute the IN system call.

; The starting address of this system call is contained in
memory location x0023.

2025/2/24



TRAP

15 14 13 12 11 10 & € 5 4 3 2

TRAP [1 1 1 1|0 0 © 0| trapvect8

Calls a service routine, identified by 8-bit
vector.”,

“trap

vector

routine

x23

input a character from the keyboard

x21

output a character to the monitor

x25

halt the program

When routine is done,
PC is set to the instruction following TRAP.
(We’ Il talk about how this works later.)

2025/2/24



TRAP rmDMEAl_p‘OPMEXHS‘_I

>/\

16
[ MAR |<+— pomar



TRAP rmDMEAl_p‘OPMEXHSI_I

LD.MDR MDR MAR

16
Mlo,EN—Dﬁ MEMORY 4—/i
L'— <}F—MEM.ENRW

16




TRAP rmDMEAl_p‘OPMEXHS‘_I

w.r—>[ IR
16

GateMDR —>/\

to.mor—>{ MDR |



TRAP ) EA op L] Ex s

16

<}— LD.MAR



TRAP

F EA OP
>A fle
or T
REG
FILE
LD.REG —>|
SR2 SRl
ouT __ out




TRAP

GateMDR —>/\

16

mtm | o

MAR |<F— LD.MAR

4_/[16

[<F—MEM.ENRW
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LC-3 ISA

iEEI$ES (Operate Instructions)

151413121110 9 8 7 6 5 4 3 2 1 0 HiEEzohis s
~op [EIER sr1 Y o[o] sr2 (Data Movement Instructions)
s} 0 0 0 1 SR1 Imm5
#15S (Load
A\oa 0 1 0 1 SR1 ju 0|0| SR2 m @( )
1514131211109 8 7 6 5 4 3 2 1 0

L\ 0 101 SR1 Imm5

LD l 0 1 O msl3s PCoffset9
Nfeamm 1 0 0 1 SR1 1|11|1

LDR I 11 O sl BaseR| PCoffset6

Reserved |5 BB

LDI I DR PCoffset9

{54324 (Control Instructions) LEA I DR PCoffset9

1514131211109 8 7 6 5 4 3 2 1 0

BR PCoffset9 RS (Store)

JSR 01001 PCoffsetll 1514131211109 8 7 6 5 4 3 2 1 0
sskrr | [FHEINE o o |Baser|o[o[o|o]o]o ST | GG SR PCoffset9

o

RTI WO OIOIO olololololo STR | [OEREREY SR BaseR| PCoffset6
SR

BN 0| 0| o[Baser|o|o|o]o]o|o ST | E[OfEE PCoffset9

IMP
Eo|0|o|1|1|1|o|0|o[0|0[o|
OIOIOlOI TrapVector8

2025/2/24




LC-3 Data Path After Operate Instruction

fe

REG
FILE

SR2 SR1
ouT ouT

FINITE
STATE
MACHINE

>N/ GateALU

LD.MDR MDR MAR |<— LD.MAR

16
Mlo,EN—Dﬁ MEMORY 4—/i

6 [<—MEM.ENR,W 47




LC-3 Data Path After Load/Store Instruction

16

GatePC 16
GateMARMUX —L>
LD.PC PC DR <>
3 REG
A P FILE
e LD.REG —>1
16 16 16 16
SR2  SR1| 4
SR2—D>| ourout [ SRL
ADDRIMUX o 6
16 A
5:0 6
20 2T NEE ADD/AND ‘:'
— SEXT A 2 A
wr—>[ R} LOGIC 16
16 16 RUN GateALU
GateMDR —> 16
16
LD.MDR MDR MAR |<— LD.MAR
16
MIO.EN—> MEMORY 4—/i INPUT OUTPUT
4 1

[<F—MEM.ENRW

48



LC-3 Data Path After Control Instruction

te

SR2
ouT

REG
FILE

SR1
ouT

FINITE
STATE
MACHINE

MEMORY

MAR |<F— LD.MAR

4_/[16

[<F—MEM.ENRW

=

\/ GateALU

INPUT

OUTPUT

49



LC-3 Data Path

L: Control Unit

IDR1IMUX

FINITE
STATE
MACHINE

Memory
Umnit

INPUT OUTPUT

50




@R EAE S

nd Technology of Ch

3 i LRGBS

Introduction to Computing Systems
( CS1002A.02)

.
' I

Chapter5-4

Tying It All Together

HEIHAFZEH KER

School of Computer Science and Technology



Outline O ¢onzasxs

} Tech

n Review

An Example: Counting Occurrences of a
L Character

ISA & Data Path Revisited

Summary
e




Control Instructions

151413121110 9 8 7 6 5 4 3 2

BR 0 0O 0O O EiNwaN: PCoffset9

JSR 01 0 0 1 PCoffsetll

JSRR (O NORINORON O | O| BaseR (00 |0|O

RTI 1 0 0 O NENENRRRNINNINNORNCRNINN

JMP (RENENORRON O |0 0| BaseR (00|00

RET (RENEORRON 0 (0 0|1(1(1({0|0|0]|O0

TRAP 1 1 1 1 geEECENENe TrapVector8

2025/2/24



Condition Codes

LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
® Based on the last instruction that altered a register

2025/2/24
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Counting the occurrences of a character in a file

mProgram begins at location x3000
mRead character from keyboard

mLoad each character from a “file”
® File is a sequence of memory locations

® Starting address of file is stored in the memory location
immediately after the program

mif file character equals input character, increment
counter

mEnd of file is indicated by a special ASCII value: EOT
(x04)

mAt the end, print the number of characters and halt

(assume there will be less than 10 occurrences of the
character)

2025/2/24 5]



Counting the occurrences of a character in a file

A special character used to indicate Memory
the end of a sequence 2000
is often called a sentinel. X3001
X
® Useful when you don’t know ahead of 43002
time how many times
to execute a loop.
Program
x3012 Xx9000
x3013 ASCII x30
x9000
x9001
Data
EOT=x04

2025/2/24 A,



Register and Memory

Register | egster Fle
x3000
RO: hold the character 2; count x3001
that is being counted R3 Xx9000 x3002
(typed from keyboard) R4 temp
R5

Rl: hold, in turn, each 23 Program
character that we get
from the file being
examined PC x3012

Y3013
R2: keep track of the
number of occurrences
R3: at first, Xx9000
M[x3012]=x9000 x9001

Data
R4: temp, checking R4=
R1-ASCII (EOT)

2025/2/24

Memory

%9000

ASCII x30

EOT=x04




Flow Chart

Count=0

(R2=0) Convert count to

ASCII character
(RO = x30, RO = R2 + R0)

A

Ptr = 1st file character
(R3 = M[x3012])

Print count
(TRAP x21)

Match?
(R1 7= RO)

Input char
from keybd
RO = (TRAP x23)

A 4
HALT
(TRAP x25)

A Incr Count

Load char from file (R2=R2+1)
(R1 = M[R3]) ‘

Load next char from file
(R3=R3 + 1, R1 = M[R3])

2025/2/24 9




Counting the occurrences of a character in a file

2025/2/24

.ORIG x3000
AND R2, R2, #0
LD R3, PTR
TRAP x23
LDRR1, R3, #0
TEST ADD R4, R1, #-4
BRz OUTPUT
NOT R1, R1
ADD R1, R1, #1
ADD R1, R1, RO
BRnp GETCHAR
ADD R2, R2, #1
GETCHAR ADD R3, R3, #1
LDR R1, R3, #0
BRnzp TEST
OUTPUT LD RO, AsCIl
ADD RO, RO, R2
TRAP x21

HALT
PTR  .FILL x9000
ASCIl FILL x30
.END

.ORIG X9000
-FILL x0031
.FILL x0032
.FILL x0031
.FILL x0033
.FILL x0043
-FILL x04
.END

.ORIG x3000
AND R2, R2, #@
LD R3, PTR
TRAP x23
LDR R1, R3, #0
TEST  ADD R4, R1, #-4
BRZ OUTPUT
NOT R1, R1
ADD R1, R1, #1
ADD R1, R1, R@
BRNp GETCHAR
ADD R2, R2, #1
GETCHAR ADD R3, R3, #1
LDR R1, R3, #0
BRNzp TEST
OUTPUT LD R@, ASCII
ADD R@, R@, R2
TRAP x21

HALT
PTR -FILL x9000
ASCIT JFILL x30
.END

.ORIG X900
LFILL x@0831
.FILL xee32
LFILL x@0831
LFILL x©033
LFILL x@043

10
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Program (1 of 2)

Address Instruction Comments
R2 «0 (counter)
x3000 01 01 010010100000 AND R2.R2, #0
R3 « M[x3012] (ptr)
x3001 001001100001 0000 LD RS, x3012 (LD R3, PTR)
Input to RO (TRAP x23)
x3002 11110000001 00011 TRAP 23 (GETC)
R1 « M[R3]
x3003 0110001011 000000 LDR RL R3. #0
R4 «R1 -4 (EOT)
x3004 0001100001111 100 ADD RARL #4
If Z, goto x300E
x3005 0000010000001 000 BRIX300E  (BRz OUTPUT)
R1 «NOTR1
x30061001001001111111NOTRLRl
Rl1«R1+1
x3007 0001001001 100001 ADD RLRLAL
R1 «R1+RO
X3008 0001001001000000ADDRLRLRO
%3009 0000101000000 001 [Norhaotoxsons

BRnp x300B (BRnp GETCHAR)

2025/2/24 12



Program (2 of 2)

Address Instruction Comments
x300A 0001010010100001 5%
x300B 0001011011100001 ;5%
%x300C 0110001011000000 e
X3000 0000111111110110 J2°07%
x300E 0010000000000100 et -
x300F 0001000000000010 """
%3010 1111000000100001 [707%
%3011 1111000000100101 T~
X3012 1001 000000000000 Somsresore
x3013 00 0000000011000 0 Ascixw(o

2025/2/24
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Great Idea #4: Software and Hardware Co-design

2Ty Application

// \
K ) Algorithm & Data Structure
N : Language
Software

Hardware x

Microarchiture

Now, You

Logic and IC are Here.
Device
ﬂ How do we get the electrons to do the work?

2025/2/24 15



How do we get the electrons to do the work?

High Level Language
Program (e.g., C)

Compiler

Assembly Language
Program (e.g., MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
vlk+1] = temp;

Now, You
are Here.

Anything can be represented
as a number,
i.e., data or instructions

000 10011100 01101010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110
1100 01101010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

ALUOP[0:3] <= InstReg[9:11] & MASK

Logic Circuit Description
(Circuit Schematic Diagrams)

2025/2/24
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Instruction Set Architecture (ISA)

B Computer’ s native operations called instructions.
m Job of a CPU (Central Processing Unit, aka Core):

execute instructions

® Instructions: CPU’s primitives operations

® Instructions performed one after another in sequence

® Each instruction does a small amount of work (a tiny
part of a larger program).

® Each instruction has an operation applied to
operands,and might be used change the sequence of
instruction.

B Instruction set architecture (ISA) specifies the set of
commands (instructions) a computer can execute

m Hardware registers provide a few very fast variables
for instructions to operate on

2025/2/24 17



Instruction Set Architecture (ISA)

B The instruction set defines all the valid instructions.

B CPUs belong to “families,” each implementing its
own set of instructions

B CPU’ s particular set of instructions implements an
Instruction Set Architecture (ISA)

B Examples:
® ARM,
® Intel x86
MIPS
RISC-V
IBM/Motorola PowerPC (old Mac)
Intel 1A64,

2025/2/24 18



evolution

o .
Instruction set architecture
CDC 6600
1963
1965
1970 IBM ASC 1968
IBM 801
1975 CRAY 1 1975
1976
1980 Berkeley RISC-1 7
_ 1981 Stan:os)rglePS ;
"’ ‘ ’I America
1985 ARM1,1985 MIPS | PA-RISC RT/PC 1985
ARM2  SPARC e 1986 986 1986
1987 1987 Y Digital PRISM
9#‘/‘ MIPS | 1988
ARM3 1989 s PA-RISC 1.1 Power-1
1990 1990 MIFS I i 1990 1990
SuperH Alpha
priveh SPARC o S 157 Power-2 PowerPC
004 IPS IV 1993 1993
1995 Thiimb ARMv4 1904
M32R 1995 1995 MIPS16 MIPS V Alphav3 PA-RISC2.0
1997 1996 1996 1996 1996

2000 -
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LC-3 ISA

1514131211109 8 7 6 5 4 3 2 1 0 &Eﬁﬂ];’g%

~op [EIER Jolo] sr2 (Data Movement Instructions)

P 0001 Imms

YN 0 101 Joo| srz AUES (Load)

1514131211109 8 7 6 5 4 3 2 1 0

AND  (IERIEY Imm5 D | DR PCoffset9

el 1001 Lt LDR | DR |BaseR| PCoffsets
Reserved [[RSRIVINE LDI I DR PCoffset9

{55184 (Control Instructions) e PN or PCoftsetd

1514131211109 8 7 6 5 4 3 2 1 0
BR |l n|z|p PCoffsetd #4184 (Store)

JSR 01001 PCoffsetll 151413121110 9 8 7 6 5 4 3 2 1 0

sskrr | [FHEINE o o |Baser|o[o[o|o]o]o ST ] PCoffsetd

o

SR
RTI WO OIOIO olololololo STR | [OEREREY SR BaseR| PCoffset6
SR

BN 0| 0| o[Baser|o|o|o]o]o|o ST | E[OfEE PCoffset9

IMP
mo|0|o|1|1|1|o|o|o[0|0[o|
OIOIOlOI TrapVector8

2025/2/24




Instruction Processing (state transtion)

2025/2/24

!

Fetch instruction from memory

|

Decode instruction

}

Evaluate address

}

Fetch operands from memory

}

Execute operation

!

Store result




Instruction Set Architecture (ISA) vs. Finite State
Automata

A3 The Instruction Set

T IInm "y 568 appendic e The Microarchitecture of the L0-3
+
ADD 0001 DR SRt |o| oo ‘ SR2
i T — T T
ADD 0004 DR SR [ 1 imms
" T — T T —
AND o101 DR sA1 |0 oo J SR2
4 T — T T
AND' 0101 DR SRl |1 imms.
BR | n[=]e ] [ |
JMP 000 ‘ BaseR [ 000000 |
JSR 0100 1 PCoffsett1
JSRR 0100 |0 00 | BaseR l 000000
. ! To
+ T T T
LD oo DR PCoffsstd
Pl Pl P
& T — T To1e
LDI 1010 DR | PCoffsetd o
" —r—r — T T \
LDR ot10 on | Bwek [ oteow | \ -
Fod AL ri et . ! . |
» T 15
LEA 1110 DR PCoffsetd ~
el A=y L i mm.?c.m um«pc“m)
¥ T — T —r—r
NOT 1001 or | sm i \ \
P il Pk B R —
RET 000 111 000000 FC<-WOR 4 EX
L e el P m
3 3 — — PO<-BaseR
RTI 000000000000 To 18 fpn(.rcma
ST . N ol <
e (ncrca) | (soncsr ) (s
STl SR PCoffsatd
STR [ Tom | ‘sa [ dwan | | o | | o)
s | T ‘ —r— ‘ B TR | - e P X
P it L IRy DRe0R Y
T T stcc ) W, (PR——
rasarved o1 [ 2oy b S o SOThne]
" . Tots o8
Figure A2 Format of the entire LC-3 instruction set. Note: + Indicates Instructions that
modify condition codes Flgure C.2 A state machine for the LC-3
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LC-3 Data Path

L: Control Unit

IDR1IMUX

FINITE
STATE
MACHINE

Memory
Umnit

INPUT OUTPUT
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LC-3 Data Path

FINITE
STATE
MACHINE

16

MIO.EN—> MEMORY

MAR |<F— LD.MAR

4_/[16

[<F—MEM.ENRW

>N/ GateALU

INPUT

OUTPUT
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Data Path Components

Global bus

® special set of wires that carry a 16-bit signal to many components

® inputs to the bus are “tri-state devices,” that only place a signal
on the bus when they are enabled

® only one (16-bit) signal should be enabled at any time
— control unit decides which signal “drives” the bus
® any number of components can read the bus
—register only captures bus data if it is write-enabled by the control unit
Memory
® Control and data registers for memory and 1/O devices
® memory: MAR, MDR (also control signal for read/write)

2025/2/24 25



Data Path Components

ALU

® Accepts inputs from register file
and from sign-extended bits from IR (immediate field).
® Output goes to bus.
— used by condition code logic, register file, memory

Register File
® Two read addresses (SR1, SR2), one write address (DR)
® Input from bus
—result of ALU operation or memory read
® Two 16-bit outputs
— used by ALU, PC, memory address
— data for store instructions passes through ALU

2025/2/24 26



Data Path Components

PC and PCMUX
® Three inputs to PC, controlled by PCMUX
1. PC+1 - FETCH stage
2. Address adder - BR, JMP
3. bus - TRAP (discussed later)

MAR and MARMUX

® Two inputs to MAR, controlled by MARMUX
1. Address adder - LD/ST, LDR/STR
2. Zero-extended IR[7:0] -- TRAP (discussed later)

2025/2/24 27



Data Path Components

Condition Code Logic
® L ooks at value on bus and generates N, Z, P signals

® Registers set only when control unit enables them (LD.CC)

— only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit - Finite State Machine
® On each machine cycle, changes control signals for next phase
of instruction processing
—who drives the bus? (GatePC, GateALU, %)
— which registers are write enabled? (LD.IR, LD.REG, ***)
— which operation should ALU perform? (ALUK)

® Logic includes decoder for opcode, etc.

2025/2/24 28



LC-3 Data Path

Filled arrow

= info to be processed.
Unfilled arrow

= control signal.

2025/2/24

GatsMARMUX /\-GatePC
16
MARNMUX '-DPC [
[}
Jo N 3, REG
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ZEXT ouUT _ ouT
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LC-3 Data Path

Filled arrow

= info to be processed.
Unfilled arrow

= control signal.
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Definition of computer architecture: classical
definition

.. the attributes of a [computing] system as seen by
the programmer, i.e. the conceptual structure and
functional behavior, as distinct from the organization of
the data flows and controls the logic design, and the
physical implementation.

— Amdahl, Blaaw, and Brooks, 1964

software

= instruction set --rr

_o\e/
7\
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Instruction Set Architecture: What does each cycle do?

2025/2/24

Stagel MM RETRHSES

Stage2: #aE M1 zN1E
Stage3: 3k 1FR1EH
Stage4: FFEEBHERIKTS

StageS: [EfFfiE R G F Rz EL

Stage6:HIE T—&EHITHIES

ZER

!

Instruction
Fetch

]

Instruction
Decode

|

Operand
Fetch

|

Result
Store

]

Next
Instruction

I
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Roadmap To Future Classes...

m Compilers
® All the processes in going from source code to assembly
m OS

® OS often needs a small amount of assembly for doing things the "high
level“ language doesn't support
— Such as accessing special resources
m Computer Architecture
® How to build the computer that supports the assembly
B Computer Security

® Exploit code ("shell code") is often in assembly and exploitation often
requires understanding the assembly language of the target.

2025/2/24 34
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Review: The Transistor & Basic Logical Structure

A B

. B, . B B J
A A B A B A B
Full ¢ Full  © Full ¢ Full c|-0
Adder Adder Adder Adder
C. 8 C. S C, S
S, S,

c. s
Cu S S,

jﬁ@n} 2
|| o

L‘Ltv

PSS oy —— = —

J_;‘)

||

D, D, D, D,
we—{ | - ] {
I
Q, Q, Q, Q, iD
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Review: Von Neumann Model

MEMORY

Y

INPUT

Keyboard
Mouse
Scanner
Disk

PROCESSING UNIT

OuUTPUT

Monitor
Printer
LED
Disk
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Review:Von Neumann Model

m So far, we’ ve learned how to:
® compute with values in registers
@ |oad data from memory to registers
® store data from registers to memory

MEMORY
MDR

INPUT | OUTPUT
Keyboard Monit:
Mouse : PROCESSING UNIT Printer
Scanner : LED

Disk

CONTROL UNIT
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Review: The ISA

A3 The Instruction Sat

1514131211109 8 7 6 5 4 3 2 1 0

+
ADD 0001 DR SRt [o]| oo SR2

i T — T T
ADD 0001 DR sR1 |1

+ T T T
AND oto1 DR SR1 |0

+ T — T
AND o101 DR sRi |1
BR 0000 n|z’p PCoffsetd
JMP 1100 000 BaseR | 000000 ‘
JSR 0100 1 PCoffsati1 ‘
JSRR 0100 0| 00 | BaseR | 000000 ‘

o T T T
LD o010 PCoffsstd

sl PR P

& T T T
LDI 1010 | PCoffsetd

” T T T T
LDR o110 DR BaseR | offsets

+ T
LEA 1110 DR PCoffsato

ool A= - i

+ T T —r
NOT 1001 SR 11111
RET 1100 000 111 000000
RTI 1000 000000000000
ST 0011 SR PCoffsato
STI 1011 sR PCoffsatd
STR o1 SR BaseR | offsets
TRAP 111 0000 | trapvects ‘
tasarved 1101 ‘

Flgure A.2  Format of the entire LC-3 Instruction set. Note: + Indicates Instructions that
modify condition codes.
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Review: The State Machine(Turing Machine

equivalent)

2025/2/24

568 appendicc The Microarchliacture of the LC-3

Tor
(bR<-sR1z0P2’

To e’

R7<-PC.
R

Tots

'
(MaR<zexmm7on|

( :r».mn(—u[mm;
F7<-PC )

2 3| s Tote
MAR«ADR) (mnac'um

NOTES.
Beofs :Bass + SEXT[ofets]
PG1ofls:PC + SEXTiofsets]
PCof11: PG + SEXTiofset 1]

=/ | *0P2 may be 5R2 or SEXTfrrms)

Tots Tote
Flgure C.2 A state machine for the LC-3
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Review: The Data Path(von Neumann Model)

570 appendlx = Tha Microarchitecture of the Lc-3

-

 GatsMARMUX -\,

s MARMUX\
e Ao

REG
FILE

sR2 SRt | g
OUT _ouT [+7SRt

i /A~ GatsiDR
lDMDR [MAR J—LD.MAR

Aﬁ” MIOEN

Figure C.3  The LC-3 data path
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A LC-3 Program

X4101 0101010010100000 X8001 00000000C01001100
X4102 0010011000010000 X8002 0000000001 001010
X4103 11110000001 00011 X8003 0000000001010001
X4104 0110001011000000 X8004 0000000001001100
X4105 0001100001111100 X8005 0000000001010110
X4106 0000010000001 000 X8006 000000O00CO0C1001001
X4107 1001001001111 111 X8007 0000000001000O0O0T1
X4108 0001001001100001 X8008 0000000001010011
X4109 0001001001000000 X8009 000000O0OO0CO1O010110
X410 0000101000000001 X800A 000000O0OO0COC1O0O0OO0CO0OO0O
X410B 0001010010100001 X800B 000000000C100000O0O
X410C 0001011011100001 X800C 00000000010000O00O0O0
X410D 0110001011000000 X800D ' 000000O0OO0CO1010110
X410E 0000111111110110 X800E 0000000001001001
X410F 001000000000O0O1O00O0 X800F 0000000001011000
X4110 0001 0000000O00COC1I0O X8010 000000O0O0CO0C1001100
X4101 1111000000100001 X8011 000000O0O0CO0C1O0O0O0CO0OO0O
X4102 1111000000100101 X8012 0000000001001 000
X4103 1 00000000000O0O0CO0C1 X8013 000000O00CO0C1001110
X4104 000000000O0O110000 X8014 000000O0OO0COC1000O0OO0O

X8015 00000000COCOOOCOC1IO0O0

X8016 000000000100000O00O

X8017 000000O00CO0C1011010

X8018 000000O00CO0COOOOC1IO00O0

2025/2/24
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Human-Readable Machine Language

m Computers like ones and zeros...
0001110010000110
B Humans like symbols...

ADD R6,R2,R6 , increment index reg.
or
C =a + b,
B Assembler is a program that turns symbols into
machine instructions.
® ISA-specific: close correspondence between symbols
and instruction set
—mnemonics for opcodes
— labels for memory locations
® additional operations for allocating storage and
initializing data

2025/2/24 12



Great Idea #4: Software and Hardware Co-
design

Gy . .

/ \ Application

K /J Algorithm & Data Structure | Now, You
\C ,

i

are Here.
Language

Software
Hardware \ Machine Architecture, ISA

/ ™

/4 \\ Microarchiture

P ). |

o Logic and IC
<ﬂ > Device
N v

Computer System: Layers of Abstraction
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Great Idea #3: Abstraction Helps Us Manage
Complexity

Application I Solve a system of equations I
Algorithm and Data Structure /’\
Gaussian Jacobi o
Programming Language/Compiler Red-black SOR elimination iteration Multigrid

Operating System/Virtual Machines ﬂ\

!
FORTRAN C C++ Java I
Instruction Set Architecture (ISA)
Microarchitecture Sun SPARC Intel x86 IBM PowerPC
Gates/Register-Transfer Level (RTL) /\\
pentium 4 C°T€2DU0  Avip Athion X2

Analog/Digital Circuits /\

Electronic Devices Ripple-carry adder  Carry-lookahead adder

Physics /\

Static CMOS Dynamic cMos '\anomechanical
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An Assembly Language Program

; Program to multiply a number by the constant 6

.ORIG x3050

LD R1, SIX

LD R2, NUMBER

AND R3, R3, #0 ; Clear R3. It will

; contain the product.

; The inner loop

AGAIN ADD R3, R3, R2

ADD Rl, R1, #-1 ; Rl keeps track of
BRp AGAIN ; the iteration.
' HALT

NUMBER .BLKW 1
SIX .FILL x0006

’

.END

2025/2/24
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LC-3 Assembly Language Syntax

m Each line of a program is one of the following:
® an instruction
® an assembler directive (or pseudo-op)

® a comment

m Whitespace (between symbols) and case are ignored.

a“u n

B Comments (beginning with “;” ) are also ignored.

B An instruction has the following format:

LABEL OPCODE OPERANDS COMMENTS
1 L

optional mandatory

2025/2/24 18



Opcodes and Operands

B Opcodes

® reserved symbols that correspond to LC-3
instructions

® listed in Appendix A
—ex: ADD, AND, LD, LDR, ...
m Operands
® registers -- specified by Rn, where n is the
register number
® numbers -- indicated by # (decimal) or x (hex)
® label -- symbolic name of memory location
® separated by comma

® number, order, and type correspond to instruction
format

—ex: ADD R1,R1,R3
ADD R1,R1,#3
LD R6,NUMBER
2025/2/24 BRz LOOP 17



Labels and Comments

m Label
® placed at the beginning of the line
® assigns a symbolic name to the address corresponding
to line
—ex:
LOOP  ADD R1,R1,#-1
BRp LOOP

B Comment

® anything after a semicolon is a comment

® ignored by assembler

® used by humans to document/understand programs

® tips for useful comments:
— avoid restating the obvious, as “decrement R1”
— provide additional insight, as in “accumulate product in R6”
— use comments to separate pieces of program

2025/2/24 18



Assembler Directives

B Pseudo-operations
® do not refer to operations executed by program
® used by assembler

® look like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with
value n

.STRINGZ |n-character |allocate n+1 locations,

string initialize w/characters and null

terminator

2025/2/24 19



Example

HELLO

.ORIG X3010

. STRINGZ

“ Hello, World!' “

2025/2/24

x3010:
x3011:
x3012:
x3013:
x3014:
x3015:
x3016:
x3017:
x3018:
x3019:
x301A:
x301B:
x301C:
x301D:

x0048
x0065
x006C
x006C
x006F
x002C
x0020
x0057
x006F
x0072
x006C
x0064
x0021
x0000

20



Trap Codes

m LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’ t have to remember

them.

Code |Equivalent |Description

HALT |TRAP x25 |Halt execution and print message to
console.

IN TRAP x23 |Print prompt on console,
read (and echo) one character from keybd.
Character stored in RO[7:0].

OUT |TRAP x21 |Write one character (in RO[7:0]) to console.

GETC |TRAP x20 |Read one character from keyboard.
Character stored in RO[7:0].

PUTS |TRAP x22 |Write null-terminated string to console.
Address of string is in RO.

2025/2/24



Style Guidelines

m Use the following style guidelines to improve the
readability and understandability of your programs:

1.

2.

[

Provide a program header, with author’s name, date,
etc.,and purpose of program.

Start labels, opcode, operands, and comments in
same column for each line. (Unless entire line is
a comment.)

.Use comments to explain what each register does.
.Give explanatory comment for most instructions.
.Use meaningful symbolic names.

* Mixed upper and lower case for readability.
+ ASCIltoBinary, InputRoutine, SaveR1

.Provide comments between program sections.
.Each line must fit on the page -- no wraparound or

truncations.
» Long statements split in aesthetically pleasing manner.

2025/2/24 22



Sample Program

B Count the occurrences of a character in a file.
Remember this?

Convert count to
ASCII character
(RO =x30, RO = R2 + R0)

Count=0
(R2=0)

l

Ptr = 1st file character
(R3 = M[x3012])

Print count
(TRAP x21)

Match?
(R1?=R0)

Input char
from keybd
(TRAP x23)

A 4

HALT
(TRAP x25)

Incr Count
(R2=R2+1)

Load next char from file
(R3=R3+ 1, R1 = M[R3])

]

2025/2/24 23

Load char from file
(R1=M[R3])
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Program (1 of 2)

Address Instruction Comments
R2 «0 (counter)
x3000 01 01 010010100000 AND R2.R2, #0
R3 « M[x3012] (ptr)
x3001 001001100001 0000 LD RS, x3012 (LD R3, PTR)
Input to RO (TRAP x23)
x3002 11110000001 00011 TRAP 23 (GETC)
R1 « M[R3]
x3003 0110001011 000000 LDR RL R3. #0
R4 «R1 -4 (EOT)
x3004 0001100001111 100 ADD RARL #4
If Z, goto x300E
x3005 0000010000001 000 BRIX300E  (BRz OUTPUT)
R1 «NOTR1
x30061001001001111111NOTRLRl
Rl1«R1+1
x3007 0001001001 100001 ADD RLRLAL
R1 «R1+RO
X3008 0001001001000000ADDRLRLRO
%3009 0000101000000 001 [Norhaotoxsons

BRnp x300B (BRnp GETCHAR)

2025/2/24 24



Program (2 of 2)

Address Instruction Comments
x300A 0001010010100001 5%
x300B 0001011011100001 ;5%
%x300C 0110001011000000 e
X3000 0000111111110110 J2°07%
x300E 0010000000000100 et -
x300F 0001000000000010 " "
%3010 1111000000100001 [707%
%3011 1111000000100101 T~
X3012 1001 000000000000 Somsresore
x3013 00 0000000011000 0 Ascixw(o

2025/2/24
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Char Count in Assembly Language (1 of 3)

01
02
03
04
05
06
07
08
09
(07:1
OB
oc
0D
OE
OF
10
11
12
13
14
15

’

’

Ne e Ne e Ne e Ne N N

Program to count occurrences of a character in a file.
Character to be input from the keyboard.

Result to be displayed on the monitor.

Program only works if no more than 9 occurrences are
found.

Initialization

.ORIG x3000

AND R2, R2, #0 ; R2 is counter, initially O
LD R3, PTR ; R3 is pointer to characters
GETC ; TRAP x23

; RO gets character input
LDR R1, R3, #0 ; Rl gets first character

Test character for end of file

’TEST ADD R4, R1, #-4 ; Test for EOT
; (ASCII x04)
BRz OUTPUT ; If done, prepare the output

2025/2/24 26



Char Count in Assembly Language (2 of 3)

16
17
18
19
1A
1B
1c
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B

; Test character

NOT RI1,
ADD R1,
NOT RI,
BRnp GETC
ADD R2,

’

for match. If a match, increment count.

R1

Rl, RO ; If match, Rl = xFFFF

R1 ; If match, R1 = x0000

HAR ; If no match, do not increment
R2, #1

; Get next character from file.

GETCHAR ADD R3,
LDR RI1,
BRnzp TEST

’

R3, #1 ; Point to next character.
R3, #0 ; Rl gets next char to test

; Output the count.

OUTPUT LD RO, ASCII

ADD RO,
ouT

HALT

2025/2/24

Load the ASCII template
Covert binary count to ASCII
TRAP x21

ASCII code in RO is displayed.
TRAP x25,Halt machine

RO, R2
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Char Count in Assembly Language (3 of 3)

2C ;

2D ; Storage for pointer and ASCII template
2E ;

2F ASCII .FILL x0030

30 PTR .FILL x9000

31 .END

2025/2/24
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Assembly Process

®m Convert assembly language file (.asm)

into an executable file (.obj) for the LC-3 simulator.

‘L‘::gu’“agz—ﬁ 1st Pass |—>|2nd Pass

Program \ /

B First Pass: Table
@ scan program file

® find all labels and calculate the corresponding addresses;
this is called the symbol table

B Second Pass:

® convert instructions to machine language, using information
from symbol table

2025/2/24
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First Pass: Constructing the Symbol Table

1. Find the .0ORIG statement,
which tells us the address of the first instruction.

» Initialize location counter (LC), which keeps track of the
current instruction.

2. For each non-empty line in the program:
a) If line contains a label, add label and LC to symbol table.
b) Increment LC.
— NOTE: If statement is .BLKW Or . STRINGZ,
increment LC by the number of words allocated.

3. Stop when .END statement is reached. Right?
®  NOTE: A line that contains only a comment is considered an empty

line.
2025/2/24



Practice

m Construct the symbol table for the program in Figure
7.2

Symbol Address

2025/2/24 32



Practice

m Construct the symbol table for the program in Figure

7.2
Symbol Address
TEST X3004
GETCHAR X300B
OUTPUT X300E
ASCII X3012
PTR X3013

2025/2/24 33



Second Pass: Generating Machine Language

B For each executable assembly language statement,
generate the corresponding machine language

instruction.
® If operand is a label, look up the address from the
symbol table.

B Potential problems:
® Improper number or type of arguments
—ex: NOT R1,#7
ADD R1,R2
ADD R3,R3,NUMBER
® Immediate argument too large
—ex: ADD R1,R2,#1023
® Address (associated with label) not on the same
page
— can’t use direct addressing mode

2025/2/24 34



Practi

ce

m Using the symbol table constructed earlier,
translate these statements into LC-3 machine

lang

uage.

B (Assume all addresses are on the current page.)

Statement

Machine Language

LD R3,PTR

ADD R4,R1,#-4

LDR R1,R3,#0

BRnp GETCHAR

2025/2/24
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LC-3 Assembler

m Using “assemble” (Unix) or LC3 Edit (Windows),
generates several different output files.

This one gets
loaded into the

simulator.
Hex
Listing
(.hex)
A
C::::;Z Ob_ject
Program Assembler > (Z"f)
(.asm) .obj

Listing
File
(Ist)

2025/2/24 36



Object File Format

B LC-3 object file contains

® Starting address (location where program must be loaded),
followed by...

® Machine instructions

m Example
® Beginning of “count character” object file looks like this:

0011000000000000 <——-ORIG %3000
0101010010100000 <+——AND R2, R2, #0
0010011000010100 <+——1LD R3, PTR
1111000000100011 < TRAP x23

2025/2/24 37



Multiple Object Files

®m An object file is not necessarily a complete program.
® system-provided library routines
® code blocks written by multiple developers

m For LC-3, can load multiple object files into memory,
then start executing at a desired address.

® system routines, such as keyboard input, are loaded
automatically

— loaded into “system memory,” below x1000

— by convention, user code should be loaded between
x3000 and xCFFF

® each object file includes a starting address
® be careful not to load overlapping object files

2025/2/24 38



Linking and Loading

B Loading is the process of copying an executable
image into memory.

® more sophisticated loaders are able to relocate
images to fit into available memory

® must readjust branch targets, load/store addresses

B Linking is the process of resolving symbols between
independent object files.
® suppose we define a symbol in one module, and want
to use it in another

® some notation,such as .EXTERNAL, is used to tell
assembler that a symbol is defined in another
module

® linker will search symbol tables of other modules
to resolve symbols and complete code generation
before loading

2025/2/24 39
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Summary: Assembly Language

High Level Language
Program (e.g., C)

Compiler

Assembly Language
Program (e.g., MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

_—w $tl 4&2}

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

2025/2/24

Lecture

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Now, You
are Here.

Anything can be represented
as a number,
i.e., data or instructions

sw $t1,0
sw  $t0, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 O110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

ALUOP[0:3] <= InstReg[9:11] & MASK




Memory map of the LC-3

0x0000

Trap Vector Table
0x00FF
0x0100

Interrupt Vector Table
0x01FF

0x0200

Operating System
and Supervisor Stack

0x2FFF
0x3000
Program Text

[€====x PC

Global data section

[e=—= R4(Global pointer)

Heap (for dynamically
allocated memory)

}
I

Run-time stack
OxFDFF

0xXFE00 Device Register
OXFFFF Addresses

2025/2/24

[€-==== R6 (stack pointer)
&= R5 (frame pointer)

Functionl

Function2

Function3

€

€

€

R6

R5
R6

R5

R6

R5

42
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Abstract Data Types: Data Structures

m Up to now, we have processed a single value
® an integer
® an ASCII character

B The information in the real world is far more complex
than simple, single numbers. We call these complex
items of information abstract data types, or more
colloquially data structures, E.g.

® a company’s organization chart
® a list of items arranged in alphabetical order

m In this chapter, we will study three abstract data
types:

® stacks
® queues
® and character strings

2025/2/24 3



Abstract Data Types: Data Structures

® We will write programs to solve problems that
require expressing information according to its
structure.

m Before we get to stacks, queues, and character
strings, however, we introduce a new concept that
will prove very useful in manipulating data structures:
subroutines, or what is also called functions.
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Subroutines

m A subroutine is a program fragment that. . .
® Resides in user space (i.e, not in O0S)
® Performs a well-defined task
® Is invoked (called) multiple times by a user program
® Returns control to the calling program when finished
m Virtues
® Reuse code without re-typing it (and debugging it!)

® Divide task into parts (or among multiple
programmers)

® Use vendor-supplied library of useful routines that
one software engineer writes a program that requires
such fragments and another software engineer writes
the fragments.

—math library
—square root, sine, and arctangent,etc.

2025/2/24 5



A simple illustration of a part of a program

START
Ll

Loop

L2

;
Input

L3

ST R1,SaveRl
ST R2,SaveR2
ST R3,SaveR3

line

Save registers needed
by this routine

LDI R3,DSR
BRzp L1
STI R2,DDR

Loop until monitor is ready
Move cursor to new clean line

LEA R1l,Prompt
LDR RO,R1,#0
BRz Input

Starting address of prompt string
Write the input prompt
End of prompt string

Loop until monitor is ready
Write next prompt character

ADD R1,R1,#1
BRnzp Loop

LDI R3,KBSR

Increment prompt pointer
Get next prompt character

BRzp Input ; Poll until a character is typed
; Load input character into RO

LDI R3,DSR

BRzp L3 ; Loop until monitor is ready

STI RO,DDR ; Echo input character

LDI R3,DSR

BRzp L4 Loop until monitor is ready

STI R2,DDR Move cursor to new clean line

‘LD RI;SaveRT
LD R2:SaveR2
LD R3,SaveR3

7
;
’
;

Restore registers
to original values

JMP R7 ; Do the program’s next task

2025/2/24



A simple illustration of a part of a program

21 ;

22 SaveRl .BLKW 1 ; Memory for registers saved
23 SaveR2 .BLKW 1

24 SaveR3 .BLKW 1

25 DSR .FILL xFEO04

26 DDR .FILL xFEO6

27 KBSR .FILL xFEOO

28 KBDR .FILL xFEO02

29 Newline .FILL x000A ; ASCII code for newline
2A Prompt .STRINGZ ‘‘Input a character>’’



The Call/Return Mechanism

“ CX ® 1@ |G
all —

. A
Y

v Return
Call —

- : @ |® |®
Call —

P

A W

w

(a) Without subroutines (b) With subroutines
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Control Instructions for Subroutines

151413121110 9 8 7 6 5 4 3 2

BR 0 0O 0O O EiNwaN: PCoffset9

JSR 01 0 0 1 PCoffsetll

JSRR (O NORINORON O | O| BaseR (00 |0|O

RTI 1 0 0 O NENENRRRNINNINNORNCRNINN

JMP (RENENORRON O |0 0| BaseR (00|00

RET (RENEORRON 0 (0 0|1(1(1({0|0|0]|O0

TRAP 1 1 1 1 geEECENENe TrapVector8
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JSR

1 14 7212 11 108 &8 7 & 5 4 3 2 1 0
JsR|0 10 0|1] PCoffsetll I
o ol Aext
v instruction
eI |0
Register Filz - .
2l [ |
A o
2
"3 SEXT
Rl
RS 16 L 16
RE M
=7 [[SL999900RRATE00T f4—
16
kA
ADLD = ."-‘.L.Jﬁ'
Just like JMP (but PC is saved in RT) K o
Why not just use TRAP? o/

MeE 240
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JSR (PC-Relative) Ul sl iods s o

>/\

16
<}— LD.MAR



JSR (PC-Relative) Ul sl iods s o

(opo—b{ITEGT]
W% PCMUX il
16

LO-MDR MBR [wAr ]

16
Mlo,EN—Dﬁ MEMORY 4—/i
E <l—MEM.EN,R,W

16




JSR (PC-Relative) Ul sl iods s o

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



JSR (PC_Relative) I"’THTP’HI_'
S\ fé

DR734>
REG
FILE
LD.REG —>|
SR2 SRl
ouT __ out




JSR (PC-Relative)

Lo R—> IR



JSRR

l this zero means ‘register mode™

15 14 13 12 11 109 8 7 5 4 2 2 1 0
JSRR [0 1 0 0]0]0 n|3aser4r:|n 0000

Register File

JSRR RS R1
IR [0 1oofofoofto1foo0000 R2

RS OOD00LO0OOLLO00

Mota: This is PC ol | ™.
et instruction e I 118

Virtues of JSRR? e @

2025/2/24 16




JSRR (Register) I—»ﬂ—# b ool A b 0 | Ex || |_I

>/\

16
<}— LD.MAR



JSRR (Register) I—»ﬂ—# b ool A b 0 | Ex || |_I

tore—>fTRE ]
% PCMUX L
16

tDMDR MDR [ wAR |

16
Mlo,EN—Dﬁ MEMORY 4—/i
K <l—MEM.EN,R,W

16




JSRR (Register) I—»ﬂ—# b ool A b 0 | Ex || |_I

Lo r—-TRT]
16

GateMDR —>/\

Lo.mMoR—>{ MDR_]



JSRR (Register) I"’THTP’HI_'
S\ fé

DR734>
REG
FILE
LD.REG —>|
SR2 SRl
ouT __ out




JSRR (Register) r—-a- -

REG
FILE

SR2 SR1
ouT ouT

<],34 SR1

16




RET instruction

B RET - return instruction
® How to return
—Place address in R7 in PC, Return the execution to
the last calling point.
® PC « (R7)

15141312 11 10 9 8 76 54 3 2 1 0

RET 1100|000(211j000000O0
(JMP R7)

2025/2/24 22



Example: Negate the value in RO

TwosComp NOT RO,RO ;f£lip bits
ADD RO,RO, #1 ;add one
RET

;return to caller

To call from a program

;need to compute R4 = R1-R3
ADD RO,R3,#0 ;copy R3 to RO
JSR TwosComp ;negate
ADD R4 ,R1,RO ;add to R1

2025/2/24
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Using Subroutines

B Programmer must know

® Address: or at least a label that will be bound to
its address

® Function: what it does

— NOTE: The programmer does not need to know how the subroutine
works, but what changes are visible in the machine’ s state after the
routine has run

® Arguments: what they are and where they are placed

® Return values: what they are and where they are
placed

2025/2/24 24



Passing Information To Subroutines

B Argument(s)

® Value passed in to a subroutine is called an
argument

® This is a value needed by the subroutine to do its
job
® Examples
— TwosComp: RO is number to be negated
— OUT: RO is character to be printed
— PUTS: RO is address of string to be printed
m How?

® In registers (simple, fast, but limited number)

® In memory (many, but awkward, expensive)
® Both

2025/2/24 25



Getting Values From Subroutines

B Return Values

® A value passed out of a subroutine is called a
return value

® This is the value that you called the subroutine to
compute

® Examples

— TwosComp: negated value is returned in RO
— GETC: character read from the keyboard is returned in RO

® How?
® Registers, memory, or both

® Single return value in register most common

2025/2/24 26



Saving and Restore Registers

B Like service routines, must save and restore registers
® Who saves what is part of the calling convention

B Generally use “callee-save” strategy, except for
return values
® Same as trap service routines

® Save anything that subroutine alters internally
that shouldn’t be visible when the subroutine
returns

® Restore incoming arguments to original values
(unless overwritten by return value)
B Remember

® You MUST save R7 if you call any other subroutine
or trap

® Otherwise, you won’t be able to return!

2025/2/24 27



Subroutine Template

01 SUB_NAME

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

2025/2/24

;Register Saving

ST RO,
ST R1,

ST R6,
ST R7,

SUB_RO
SUB_R1

SUB R6

SUB_R7;Return address

s*k*xCode***

;Register Restoring

LD RO,
1D R1,

LD R6,
1D R7,
RET

SUB_RO
SUB_R1

SUB_R6
SUB_R7

;Return address
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Review: The Call/Return Mechanism

(a) Without subroutines

2025/2/24

® G |G

Call

A

Return

Call

2 @ /@ |G

Call

(b) With subroutines



Review: Control Instructions for Subroutines

151413121110 9 8 7 6 5 4 3 2 1 O

BR 0 0O 0O O EiNwaN: PCoffset9

JSR 01 0 0 1 PCoffsetll

JSRR (ORI RORINORINON O | O| BaseR ([0|0|0|0|0|O0

RTI INBOBNORNON O 0| 0O|0O|0(0O|0O|O0O|0O]|0O|0]|O

JMP (RENNORRON O | 0O 0| BaseR ([0(0|0|0 |00

RET (RENENORRON 0 0/ 0|1(12/1(0(0|0]0|0]|O

TRAP 1 1 1 1 geEECENENe TrapVector8
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Review: Memory in Von Neumann Model

INPUT

Keyboard
Mouse
Scanner
Disk

MEMORY

A 4

PROCESSING UNIT

OuUTPUT

Monitor
Printer
LED
Disk

2025/2/24

CONTROL UNIT
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Review: Using Memory

B Memory
® Just a big “array”
® “Indexed” by address
® Accessed with loads and stores

m LD/LDR/LDI
® Read a word out of memory
® Use different addressing mode

m ST/STR/STI
® Place a word in memory
® Use different addressing mode

2025/2/24

Address

x0000
x0001
x0002
x0003
x0004

XFFFC
XFFFD
XFFFE
XFFFF

Memory

Value

x00AD

x5007

x0201

x0203

x3002

x5007

x0201

x0203

x3002




Review: Using Memory

H Problem

® What if the memory you want to access is far away?

® ILD/ST won’t work (PC-relative)
® ILDR/STR won’t work alone (need to get address in
register)

®m Solution:LDI/STI

® Place address of far away value nearby

® Load address, then load/store from that

xFEOD

.ORIG x30 L

LD R3, SOMELAB

LDR R2, R3, #0
-

“\ -

.
-,

SOMELAB .FILL XFE00 ™_

LORIG x3000

LDI R2, SOMELAB

SOMELRB .FILL xFEO0O

.

.

CSE 240

2025/2/24

.
.

%3020
%3021
x3022

xFEO00
xFEO1

x0000

xFEOO

x0000

x8000

x0000




Today: Memory Model for Function Calls

INPUT

Keyboard
Mouse
Scanner
Disk

MEMORY

PROCESSING UNIT

OuUTPUT

Monitor
Printer
LED
Disk

CONTROL UNIT

(ke [R]
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Problem

® How do we allocate memory during the execution of
a program written in C?

® Programs need memory for code and data such as
instructions, global and local variables, etc.

® Modern programming practices encourage many
(reusable) functions, callable from anywhere.

® Some memory can be statically allocated, since the
size and type is known at compile time.

® Some memory must be allocated dynamically, size and
type is unknown at compile time.

2025/2/24 11



Motivation

B Why is memory allocation important? Why not just
use a memory manager?

® Allocation affects the performance and memory usage
of every C, C++, Java program.

® Current systems do not have enough registers to
store everything that is required.

® Memory management is too slow and cumbersome to
solve the problem.

® Static allocation of memory resources is too
inflexible and inefficient, as we will see.

2025/2/24 12



Goals

B What do we care about?

® Fast program execution
Efficient memory usage
Avoid memory fragmentation
Maintain data locality
Allow recursive calls
Support parallel execution
Minimize resource allocation

Memory should never be allocated for functions that
are not executed.

2025/2/24 13



Memory Model in the LC-3

0x0000

Trap Vector Table
0x00FF
0x0100

Interrupt Vector Table
0x01FF

0x0200

Operating System
and Supervisor Stack

0x2FFF
0x3000
Program Text

[€====x PC

Global data section

[e=—= R4(Global pointer)

Heap (for dynamically
allocated memory)

}
I

Run-time stack
OxFDFF

0xXFE00 Device Register
OXFFFF Addresses

2025/2/24

[€-==== R6 (stack pointer)
&= R5 (frame pointer)

Functionl

Function2

Function3

€

€

€

R6

R5
R6

R5

R6

R5
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Stack: An Abstract Data Type

B An important abstraction that you will encounter in
many applications.

B The fundamental model for execution of C, Java,
Fortran, and many other languages.

m We will describe two uses of the stack:
® Evaluating arithmetic expressions

— Store intermediate results on stack instead of in
registers

® Function calls

— Store parameters, return values, return address,
dynamic link

— Interrupt-Driven I/O
— Store processor state for currently executing program

2025/2/24
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Stack Data Structure

m A LIFO (last-in first-out) storage structure

® The first thing you put in is the last thing you
take out

® The last thing you put in is the first thing you
take out

® This means of access is what defines a stack, not
the specific implementation.

B Two main operations
® PUSH: add an item to the stack
® POP: remove an item from the stack
m Error conditions:
® Underflow (try to pop from empty stack)
® Overflow (try to push onto full stack)

B A register (eg. R6) holds address of top of stack (TOS)

2025/2/24 17



A Physical Stack

H Coin holder

Initial State After After Three
One Push More Pushes

Last quarter in is the first quarter out (LIFO)

2025/2/24

After
One Pop

18



A Hardware Stack Implementation

B Data items move between registers

ey

1

1

1

1

1

Initial State

2025/2/24

<« TOP

#18

1t

1t

1t

1t

After

One Push

<+ TOP

#12

#5

#31

#18

1

After Three

<« TOP

More Pushes

#31

#18

1

1

1

After

Two Pops

<+ TOP

19



A Software Stack Implementation

m Data items don't move in memory, just our idea
about where TOP of the stack is

x3FFB 11111 x3FFB 117117 x3FFB 111 x3FFB 11000
x3FFC 1 x3FFC 1111 X3FFC 12 297 Xx3FFC 12
x3FFD 11111 x3FFD 117117 x3FFD 5 x3FFD 5
x3FFE 1t x3FFE 1 x3FFE 31 x3FFE 31 |4OF
x3FFF 111 x3FFF 18 |<°F  x3FFF 18 x3FFF 18
B
(a) Initial state (b) After one push (c) After three pushes (d) After two pops

By convention, R6 holds the Top of Stack (TOS) Pointer (SP)

2025/2/24 20



Basic Push and Pop Code

X3FFB | /1 ///1/ x3FFB 111 x3FFB | /11111 x3FFB 111111
X3FFC | 11111 X3FFC 11 x3FFC 12 197 x3FFC 12
X3FFD | /117111 x3FFD | /11111 X3FFD 5 x3FFD 5
X3FFE | ///71f x3FFE 11111 X3FFE 31 X3FFE 31 | Jop
X3FFF | 11171/ x3FFF 18 119" x3FFF 18 X3FFF 18
Bl
x4000 | R6 | xarrr |Re EEL [ arre |Re
(a) Initial state (b) After one push (c) After three pushes (d) After two pops

PUSH

ADD R6, R6, #-1 ; increment stack ptr

STR RO, R6, #0 ; store data(R0O) to TOS
POP

LDR RO, R6, #0 ; load data(RO) from TOS

ADD R6, R6, #1 ; decrement stack ptr

® Note: Stacks can grow in either direction (toward

higher address or toward lower addresses)
2025/2/24 21



Pop with Underflow Detection

m If we try to pop too many items off the stack,
an underflow condition occurs.

® Check for underflow by checking TOS before
removing data.

® Return status code in R5 (0 for success, 1 for

underflow)

POP LD R1l, EMPTY
ADD R2, R6, R1 ; Compare stack pointer
BRz UNDER ; with x4000
LDR RO, R6, #0 ; The actual ‘pop’
ADD R6, R6, #1 ; Adjust stack pointer
AND R5, R5, #0 ; Success: return R5 = 0
RET

UNDER AND R5, R5, #0 ; Underflow: return R5 =1
ADD R5, R5, #1
RET

EMPTY .FILL xC000 ; EMPTY = -x4000

2025/2/24 22



Push with Overflow Detection

m If we try to push too many items onto the stack,

an overflow condition occurs.
® Check for underflow by checking TOS before adding

data.
® Return status code in R5 (0 for success, 1 for
overflow)
PUSH LD R1l, MAX
ADD R2, R6, R1 ; Compare stack pointer
BRz OVER ; with MAX
ADD R6, R6, #-1 ; Adjust stack pointer
STR RO, R6, #0 ; The actual ‘push’
AND R5, R5, #0 ; Success: return R5 = 0
RET
OVER AND R5, R5, #0
ADD R5, R5, #1 ; Overflow: return R5 = 1
RET
MAX .FILL xC005 ; MAX = -x3FFB

2025/2/24

23




PUSH & POP in LC-3 - 1

01 ;

02 ; Subroutines for carrying out the PUSH and POP functions. This
03 ; program works with a stack consisting of memory locations x3FFF
04 ; through x3FFB. R6 is the stack pointer

05 ;

06 POP AND R5,R5,#0 ; R5 <-- success

07 ST R1,Savel ; Save registers that

08 ST R2,Save2 ; are needed by POP

090D ; LD R1,EMPTY ; EMPTY contains -x4000

0B ADD R2,R6,R1 ; Compare stack pointer to x4000
oc BRz fail exit ; Branch if stack is empty

OE LDR RO,R6,#0 ; The actual "pop"

OF ADD R6,R6,#1 ; Adjust stack pointer

10 BRnzp success_exit

11 ;

12 PUSH AND R5,R5,#0

13 ST R1,Savel ; Save registers that

14 ST R2,Save2 ; are needed by PUSH

15 LD R1,FULL ; FULL contains -x3FFB

16 ADD R2,R6,R1 ; Compare stack pointer to x3FFB
17 BRz fail exit ; Branch if stack is full

18 ;




PUSH & POP in LC-3 - 2

19 ADD R6,R6,#-1 ; Adjust stack pointer
1A STR RO,R6,#0 ; The actual "push"
1B success_exit

LD R2,Save2 ; Restore original

1c LD R1l,Savel ; register values
1D RET

1E ;

1F fail exit LD R2,Save2 ; Restore original
20 LD R1,Savel ; register values
21 ADD R5,R5,#1 ; R5 <-- failure
22 RET

23 ;

24 EMPTY .FILL xC000 ; EMPTY contains -x4000
25 FULL .FILL xC005 ; FULL contains -x3FFB
26 Savel .FILL x0000

27 Save2 .FILL x0000

2025/2/24 25




Arithmetic Using a Stack (p387, chapter 10.2)

minstead of registers, some ISA’s use a stack for source and
destination operations. The computer always pops and pushes
operands from the stack, and hence no addresses need to be specified
explicitly. Therefore, stack machines are sometimes referred to as zero-
address machines.
® Example: ADD instruction pops two numbers from the stack,
adds them, and pushes the result to the stack.
ADD vs. ADD RO,R1,R2

mEvaluating (A+B)+(C+D) using a stack:

X3FFB
gﬁ:: : X3FFC
ADD X3FFD
push C x3FFE
i;;h D X3FFF
MULTIPLY

pop result SP

2025/2/24 26



(25+17) x (3+2)

11111
11111
11111
11111
11111

(a) Before

x3FFB
x3FFC
x3FFD
x3FFE
X3FFF

Stack pointer

11111
11111
11111
11111
25 ,

x3FFB
x3FFC
x3FFD
x3FFE
x3FFF

Stack pointer

(b) After first push

11111
i il
/1111
17
25

x3FFE

x3FFB
x3FFC
Xx3FFD
x3FFE
X3FFF

Stack pointer

(c) After second push



(25+17) x (3+2)

1111

11111

11111
17
42

X3FFF

x3FFB
x3FFC
x3FFD
x3FFE
X3FFF

Stack pointer

(d) After first add

/111171
11111
11111
3
42

x3FFE

x3FFB
x3FFC
x3FFD
x3FFE
X3FFF

Stack pointer

(e) After third push

11111
11171
2
3
42

x3FFD

x3FFB
x3FFC
x3FFD
x3FFE
X3FFF

Stack pointer

(f) After fourth push



(25+17) x (3+2)

11111
11111
2
5
42

x3FFE

X3FFB
X3FFC
X3FFD
X3FFE
X3FFF

Stack pointer

(g) After second add

11111
11111
2
5
210

X3FFF

(h) After multiply

Xx3FFB
X3FFC
X3FFD
X3FFE
X3FFF

Stack pointer

/11111
/1111
2
5

210

(i) After pop

x3FFB
X3FFC
X3FFD
X3FFE
X3FFF

Stack pointer
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Function in C

B Smaller, simpler, subcomponent of program
B Provides abstraction
® hide low-level details

® give high-level structure to programmer, easier to
understand overall program flow

® enables separable, independent development

m C functions
® zero or multiple arguments passed in
® single result returned (optional)
® return value is always a particular type

B In other languages, called procedures, subroutines, ...
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Example of High-Level Structure

main ()

{
SetupBoard(); /* place pieces on board */
DetermineSides(); /* choose black/white */

/* Play game */ Structure of program is
e i evident, even without knowing
WhitesTurn() ; implementation.

BlacksTurn() ;
} while (NoOutcomeYet())
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Functions in C

®m Declaration (also called prototype)
int Factorial (int n);

/ N\ N\

type of name of types of all
return value function arguments

B Function call -- used in expression
a = x + Factorial(f + g);

I ‘ 1. evaluate arguments

‘ 2. execute function ‘

3. use return value in expression ‘

14-33



Function Definition

m State type, name, types Of arguments
® must match function declaration

® give name to each argument (doesn't have to match
declaration)

int Factorial (int n)
{
int i;
int result = 1;
for (i = 1; i <= n; i++)
result *= i;

return result; < gives control back to calling
} function and returns value
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Why Declaration?

B Since function definition also includes return and
argument types, why is declaration needed?

®m Use might be seen before definition.
® Compiler needs to know return and arg types and
number of arguments.
m Definition might be in a different file, written by a
different programmer.

® include a "header" file with function declarations
only

® compile separately, link together to make
executable
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Example

double ValueInDollars (double amount, double rate);
declaration

main ()

{

function call (invocation)

e o o /
dollars = ValuelInDollars (francs,

DOLLARS PER FRANC) ;
printf ("%$f francs equals %f dollars.\n",
francs, dollars);

definition
double ValueInDollars (double amount, double rate)
{

return amount * rate;

14-36



Storage Requirements

® Code must be stored in memory so that we can
execute the function.

B Parameters must be sent from the caller to the callee
so that the function receives them.

B Local variables for the function must be stored
somewhere, is one copy enough?

B Return address must be stored so that control can be
returned to the caller.

B Return values must be sent from the callee to the
caller, that’ s how results are returned.
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Function Call in C

m Consider the following code:

// main program

Int a = 10;
Int b = 20;
Int ¢ = foo(a,b);

Int foo(int x,int y)
{

Int z;

z= xX+y;

return z;

}

B What needs to be stored?

® Code, parameters, local/global variables, return

address/values

2025/2/24
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Possible Solution: Mixed Code and Data

B Function implementation:

foo BR foo_begin ;skip over data
foo_rv .BLKW 1 ;return value
foo_ra .BLKW 1 ;return address
foo_paramx .BLKW 1 ; 'x’ parameter
foo_paramy .BLKW 1 ; 'y’ parameter
foo_localz .BLKW 1 ; 'z’ local
foo_begin ST R7, foo_ra ;save return

1D R7, foo_ra ;restore return

RET

®m Can construct data section by appending foo

Corresponding to the option 1 in text book p.497
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Possible Solution: Mixed Code and Data

m Calling sequence

ST R1, foo_paramx ; Rl has ‘x’
ST R2, foo_paramy ; R2 has ‘y’
JSR foo ; Function call

1D R3, foo_rv R3 = return value

m Code generation is relatively simple.
B Few instructions are spent on moving data.

2025/2/24
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Possible Solution: Mixed Code and Data

m Advantages:
® Code and data are close together
® Conceptually easy to understand
® Minimjizes register usage for variables
® Data persists through life of program
m Disadvantages:
® Cannot handle recursion or parallel execution
® Code is vulnerable to self-modification

® Consumes resource for inactive functions

2025/2/24 41



Possible Solution: Separate Code and Data

B Memory allocation

foo_rv
foo_ra
foo_paramx
foo_paramy
foo_localz
bar rv
bar ra
bar paramw

.BLKW
.BLKW
.BLKW
.BLKW
.BLKW
.BLKW
.BLKW
.BLKW

1

RRERRRRRR

; foo
; foo
; foo
; foo
; foo
; bar
; bar
; bar

return value
return address
‘x’ parameter
‘y’ parameter
‘z’ local
return value
return address
‘w/ parameter

B Code for foo() and bar() are somewhere else
B Function code call is similar to mixed solution

2025/2/24



Possible Solution: Separate Code and Data

m Advantages:
® Code can be marked ‘read only’
® Conceptually easy to understand
® Early Fortran used this scheme
® Data persists through life of program

m Disadvantages:
® Cannot handle recursion or parallel execution

® Consumes resource for inactive functions

2025/2/24
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Real Solution: Run-time Stack

m Instead of allocating the space for local variables
statically (i.e., in a fixed place in memory), the space
is allocated once the function starts executing.

B When the function returns to the caller, its space is
reclaimed to be assigned later to another function.

B If the function is called from itself, the new invocation
of the function will get its own space that is distinct
from its other currently active invocations.
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Run-time Stack: Stack frame

m Each function has a memory template where it stores
its local variables, some bookkeeping information,
and its parameter variables .This template is called its
stack frame or activation record.

B Whenever a function is called, its stack frame will be
allocated somewhere in memory.

m Because the calling pattern of functions naturally
follows a stack-like pattern, this allocation and
deallocation will follow the pushes and pops of a
stack.
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Run-time Stack: stack-like nature of function calls

1 int main(void)

2 {

3 int a; Memory

4 int b;

5 f+—R6
6 : Volt

7 b = Watt(a); // main calls Watt first l_re [—RS
8 b = Volt(a, b); // then calls Volt Vatt . att

9 3 l—R6 =

10 mafn le—rs main main

11 int Watt(int a)

12 €
13 int w; (a) Run-time stack (b) When Watt executes (c) When Vo1t executes
14 t hen execution starts

15 3

16 w = Volt(w, 10); // Watt calls Volt

17

18 return w;

19
20 le—R6 l—R6
21 int Volt(int q; int r) Watt Volt
2 le—R5 . l+—RS
23 int k: matn mafn | oo matn
24 int m;
25
26 . After Vo1t completes () After Watt completes () When Volt executes
27 return k; 1145 Several snapshots of the run-time stack while the program outlined in
28 ) Figure 14.4 executes.

2025/2/24
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Run-time Stack: frame pointer & stack pointer

B We need some easy way to access
the data in each function’s stack
frame and also to manage the
pushing and popping of stack
frames.

B For this, we will use R5 and R6. R5
points to some internal location
within the stack frame at the top of
the stack—it may point to the base
of the local variables for the
currently executing function. We
call it the frame pointer (FP).

B R6 always points to the very top of
the stack. We call it the stack
pointer (SP).

2025/2/24

x0000

Memory

f+—R6
Volt a
l—re RS

Watt . Watt

le—re RS
main l_ps main main
XFEFF
(a) Run-time stack (b) When Watt executes (c) When Vo1t executes
when execution starts

f+—R6 —R6

Watt Volt
l—R5 R l—ps

mafn main g5 main

(d) After Vo1t completes

Figure 14.5

Figure 14.4 executes,

(e) After Watt completes

() When Volt executes

Several snapshots of the run-time stack while the program outlined in
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Run-time Stack: Stack frame

®m Consider what has to happen in a function call:
® Caller must pass parameters to the callee.
® Caller must transfer control to the callee.
® Caller need to allocate space for the return value.
[ ]

Caller need to save the return address.

Callee requires space for local variables.

Callee must return control to the caller.

® Callee need to save the frame pointer of the caller

B So, parameters, return value, return address, frame
pointer, and local variables are stored on the stack.
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Run-time Stack: Stack frame

x0000
R6 — Y
Local variables
R5 ——»| K

Watt's frame pointer Bookkeeping

info

stack frame points

Stack frame

to the base Of the Return address for Watt forVolt
local variables for SRR
the currently 8 OGAWOOIW). f i eiors
executing function. E o Y
W
main's frame pointer Siacii
ack frame
Return address formain forWatt

Return value tomain

a

XFFFF

Figure 14.7  The run-time stack after the stack frame for Vot is pushed onto the
stack.
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Run-time Stack: an example

%0000
n
k
Watt's frame pointer
Return address for Hatt ,mky';?';m
Retumn value to Hatt
q (value of W)
r B Tl N
RE ——- W
mafn's frame pointer
Retumn address for main
Return value to main
a
XFEFF
Figure 14.7  The run-time stack after the stack frame for Vot is pushed onto the
st
2025/2/24

1 Hatt:

2 .

3 AND RO, RO, #0

4 ADD RO, RO, #10

5 ADD R6, R6, #-1

6 STR RO, R6, #0

7
LDR RO, RS, #0
ADD R6, R6, #-1
STR RO, R6, #0
JSR Volt
LDR RO, R6, #0
STR RO, RS, #0
ADD R6. R6, #3

: ADD R6, R6, #-1

ADD R6, R6, #-1
STR R7, Re, #0
ADD R6, R6, #-1
STR RS, R6, #0
ADD RS, R6, #-1
ADD R6, R6, f#-2
LDR RO, RS, #0

32 STR RO, RS, #3

33

34

35 ADD R6, RS, #1

36

37 LDR RS, R6, #0

38 ADD R6. R, #1

39

40 LDR R7, R6, 0

41 ADD R6, R6, #1

42 RET

Figure 14.8

The LC:3 cade corresponding to a C function call.and roturn.

i RO<-0
;RO <- 10

: Push 10 onto stack

; Lload w

i Push w

: Load the return vaue

: we=Volt(w, 10);
: Pop return value and arguments

: Allocate spot for the return value
: Push R7 (Return address)

i Push RS (Caller's frame pointer)

: Set frame pointer for Voit
i Allocate memory for Volt's local variables

: Volt performs its work

i Load local variable k

: Write it in return value slot, which will always
: be at location RS + 3

: Pop local variables

: Pop the frame pointer

: Pop the return address

50




Run-time Stack: Stack frame

9244800 push
28db004 add
24dd020 sub
€3a0300c mov '
e50b3014 str ; Oxffffffec
e3a03017 mov
5003010 str 1
e59f304c ldr » ; 104c8 <main+0x70>
$ €50b300c str
out = add( s, x, vy, ; H €3a03001 mov
printf( , out); 5803008 str
" " 03 3203061 mov
s 5843004 str
e3ab3001 mov
e58d3000 str
e3a03001 mov
5152010 1dr
5161014 dr - i OxFfffffec
€51b000c
00010400 <add>: : ebfffds
10400 €52db004 i (str fp, [sp, #-4]! ; 5000008
10404 e28db000 ¥ 4 : €51b1008
10408: e24dd014 , Sp, H e5916014 rd, [pc, #20) ; 104cc <main+Ox74>
1040c¢: ©50b0008 r0, , # : ebffffas 102e0 <printf@plt>
10410 e50b100c 5 - : 23303000 r3, #0
10414: 25002010 . [fp, #- - £1a00003 o, r3
10418 5003014 g g ; OxFffffec : €24bd004
1041c e51b200c 2, -12] 1 : €8bd8B00
10420 5153010 ! . [fp, #- : 00010540
10424: 0822003 : : 00016554
10428: €51b3014 ; - oxfiffffec
1042c: 0822003
: 5953004 -
i?ﬁg 23333303 X Contents of section .rodata:
10438: ©59b3008 i 2 1053c 01000200 68656865 2c206861 68616861
i s9n2003 . 1054c 68612121 21210000 25640200
10440: e59b3080c -
10444 0823003
10448: 1200003
1044¢ e28bd000 sp, fp,
10450 24946004 (dr fp, [spl,
10454 el12fffle
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Run-time Stack: Stack frame

ooow.mo <nyadd>:

e52db004 ; (str fp, [sp, #-4]!)
10404, €28db000
10408: €24ddo0c
1040c: 5000008
e ctdi . 10410: 50b100c
#include <stdio.h> 10414 5162008
10418: 51b300c
dd d 1041c: 0823003
10420: 1200003
myadd ( CL ) 10424 €28bdego

return c+d; 10428: 49db004 ; (ldr fp, [spl, #4)

1042c: el2fffle

00010430 :
10430: 9244800 {fp, 1r}
10434: €28db004 fp, sp, #4
add( a, b) { 10438: €24dd008 sp, sp, #8
return myadd(a' b); 1043c €50b0008 0, [fp, #-8]
10440: €50b100c rl, [fp, #-12]
10444: 51b100c dr rl, [fp, #-12]
10448: e51b0008 1dr ro, [fp, #-8]
1044c: ebffffeb bl 10400 <myadd>
: 10450: €1a03000 mov 3, ro
main() { 10454: €1a00003 mov 0, r3
10458: €24bd004 sub sp, fp, #4
1045c: 8bd8800 pop {fp, pc}
X
00010460 <main>:
; 10460: 9244800 push  {fp, lr}
_ . 10464: 228db004 add fp, sp, #4
out = add(x, )’) H 10468: £24dd010 sub sp, sp, #16
2 1o ! . 1046c: 3a0300c mov r3, #12
printf(“%d\n", out); 10476: 503010 str 3. [fp, #-16]
c 10474: 3203017 mov r3, #23
return D' 10478: e50b300c str r3, [fp, #-12)
1047¢ e51b100c dr rl [fp, #-12]
10480: 5160010 dr [fp, #-16]
10484: ebffffe9 bl 10430 <add>
10488: 5060008 str r0, [fp, #-8]
1048c 5161008 r rl, [fp, #-8]
10490: e59f0010 1dr re, [pc, #16] ; 104a8 <main+0x48>
10494: ebffffol bl 102e0 <printf@plt>
10498: 3a03000 mov r3, #0
1049c: 21a00003 mov reg, r3
10420: €24bd00d sub sp, fp, #4

104a4: 8bd8800 pop {fp, pc}
2025/2/24 104a8: 0001051c <« [ b.woRdS) Ox00040Ficy
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1. Recursion

W Recursion is a mechanism for expressing a function in terms of itself.

® When used appropriately, the expressive power of recursion is going to save
us a lot of headaches

m Otherwise, it results in longer execution time and wasted energy

2025/2/24 3



Factorial: compute n!=n*(n-1)!, A BAD EXAMPLE

FACT ST R1, Savel ; Callee save R1
ADD R1,RO#-1 ; Testif R0O=1
BRz DONE } I RO=1, RO also contains (L)!, so we are done
ADD R1,R0,#0 ; saveninRi, to be used after we compute (n-1)!
ADD RO,Rl, #-1 ; Set RO to n-1, and then call FACT

B JSR FACT ; On RET, RO will contain (n-1)!
MUL RO,RO,Rl , Multiply n times (n-1)!, yielding n! in RO
DONE LD R1, Savel ; Callee restore R1
RET

Savel .BLKW 1

Figure 8.12 Flowchart for a recursive FACTORIAL subroutine.

Can it work properly?

2025/2/24 4



Expected execution flow Calling Program

\

A ISR FACT|—

I

‘ RO=(n-1)!

'
RO=—n*(n~-1)!

|

RO =n!

Figure 8.12  Flowchart for a recursive FACTORIAL subroutine.

Figure 8.13  Execution flow for recursive FACTORIAL subroutines.
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Factorial: compute n!=n*(n-1)!

FACT ST R1, Savel ; Callee save R1
ADD RL,RO#-1 ; Testif RO=1
BRz DONE ; If RO=1, RO also contains (1)!, so we are done Calling Program
ADD R1,RO#0 ; Save nin R1, to be used after we compute (n-1)!
ADD RO,R1, #-1 ; Set RO to n-1, and then call FACT

A ISR FACT

B JSR FACT ; On RET, RO will contain (n-1)! /
MUL RO,RO,R1  ; Multiply n times (n-1)!, yielding n! in RO

DONE LD R1, Savel ; Callee restore R1
RET

Savel .BLKW1

Problem 1
In Calling Program:

AJSRFACT. A+l1->
In #1:

BJSRFACT: B+1->R7

So, R7 =A+1 is wiped out by B+1, and the
execution can not return to A+1.

Figure 813 Execution flow
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Factorial: compute n!=n*(n-1)!

Calling Program ~ ———————
FACT  STR1, Savel ; Callee saves R1
ADD R1,RO,#-1 ;Testif RO=1
BRz DONE ; If RO=1, RO also contains (1)!, so we are done A JSR FACT|—
ADDRO,#O ; Save nin R1, to be used after we compute (n-1)!
ADD RO,R1, #-1 ; Set RO to n-1, and then call FACT
B JSR FACT ; On RET, RO will contain (n-1)!
MUL RO,R ; Multiply n times (n-1)!, yielding n! in RO
DONE LD R1, Savel ; Callee restores R1
RET
Savel .BLKW 1
RO = (n-2)!" ‘
Problem 2 o
In#1: RO = (n-3)! \ RO=n-3
ADD R1,R0,#0 stores the value n int
In #2:

RO=1

ADD R1,R0,#0 stores the value fi-1 into R1

So, #2 wipes out the value n that had been put in R1 by the code in #1.
when the instruction flow gets back to #1, where the value n is needed |
by the instruction MUL RO,RO,R1, it is no longer there.

RO=1!

Figure 8.13  Execution flow for rocursive FACTORIAL subroutines.
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Factorial: compute n!=n*(n-1)!

FACT

DONE

Savel

ST R1, Savel ; Callee saves R1
ADD R1,RO#-1 ; Testif RO=1
BRz DONE ; If RO=1, RO also contains (1)!, so we are doje
ADD R1,R0,#0 ; Save nin R1, to be used after we compute (h-1)!
ADD RO,R1, #1 ; SetROto n-1, and then call FACT

JSR FACT ; On RET, RO will contain (n-1)!
MUL RO,RO,R1  ; Multiply n times (n-1)!, yielding n! in RQ,
LD R1, Savel ; Callee restores R1
RET
.BLKW 1
Problem 3

In #1:
ST R1, Save ;. #1 saves R1 (n) to savel
In #2:

ST R1, Savel ; #2 saves R1 (n-1) to savel

So, after the JSR FACT instruction is executed, the first instruction of the
recursively called subroutine FACT (#2) will save that value to Savel,
wiping out the value that the main program (#1) had stored in R1 when it
called FACT.

2025/2/24

Calling Program

|RO=n
A ISR FACT

| Ro=nt

[Ro=n-1T

&

RO = (n-3} ‘ RO=0n-3

RO=1

.<i>

Figuro 813 Exocution flow for tocursivo FACTORIAL subroutines.



A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller' s R1 on the stack, so we can us

ADD R1,R0,#-1 ; 1f n=1, we are done since 1! = Solve
BRz NO_RECURSE

ADD R6,R6,#-1

ADD R6,R6,#-1

STRRO,R6,#0 ; Push n on the stack
[Solve
ADD RO,RO#-1  Form nETOBeM2
B JSR FACT
LDR R1,R6,#0 ; Pop n from the stack

ADD R6,R6,#1

ADD R6,R6,#1

NO_RECURSE LDRR1,R6#0 ;Pop caller’ sR1 backinto R1
ADD R6,R6,#1
RET

Calling Program

P1,Return address: R7 = A+1 is wiped out by B+1, and the execution can
not return to A+1.

P2, registers: #2 wipes out the value n that had been put in R1 by the code
in #1. when the instruction flow gets back to #1, where the value n is needed
by the instruction MUL RO,RO,R1, it is no longer there. i
P3,static memory address: The first instruction of the recursively caTIed
subroutine FACT (#2) will save that value to Savel, wiping out the value that
the main program (#1) had stored in R1 when it called FACT.

2025/2/24

RO = (n-3)!

RO=1

RO=1!

cution flow for rocursive FACTORIAL subroutines.

RO=n-2

\ RO=n-3

a. Contents of stack when
JSR FACT executes in #1

a. Contents of stack when
JSR FACT exccutes in #3

Sp —= n-2

B+l

n—2
n-1

_ B+l
n—|

n
A+l
CallersR1 ||




A new solution: using stack

FACT ADD R6,R6,#-1

STR R1,R6,#0 ; Push Caller' s R1 on the stack, so we can use R1.

ADD R1,R0,#-1
BRz NO_RECURSE

; If n=1, we are done since 1! = 1

Example:
R

ADD R6,R6,#-1
STR R7,R6,#0
ADD R6,R6,#-1
STR RO,R6,#0

ADD RO,RO,#-1
B JSR FACT

LDR R1,R6,#0

ADD R6,R6,#1

MUL RO,RO,R1 ; form n*(n-1)!

; Pop n from the stack

LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 backintoRT  Top
ADD R6,R6,#1
RET

R0=3, R1=2

2025/2/24
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller" s R1 on the stack, so we can use R1.

ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1
BRz NO_RECURSE

Example:
R

ADD R6,R6,#-1

STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1

STR RO,R6,#0 ~Push n oq the stack

ADD RO,R0,#-1 ; n>], argyment of JSR
B JSR FACT
LDR R1,R6,#0 ; Pop n from the
ADD R6,R6,#1
MUL RO,RO,R1 ; form n*(n-1)!
. . n-1=2 > RO,R1
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1
NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1

RET R1=2 R0=3

2025/2/24 Lecture 1



A new solution: using stack

FACT ADD R6,R6,#-1

STR R1,R6,#0 ; Push Caller" s R1 on the stack, so we can use R1.

ADD R1,R0,#-1
BRz NO_RECURSE

;1f n=1, we are done since 1! = 1

Example:

ADD R6,R6,#-1
STR R7,R6,#0 linkage onto stack
ADD R6,R6,#-1
STR RO,R6,#0 ; Push n on the sta
ADD RO,RO,#-1 ; Form n-1, argument of JS|
B JSR FACT
LDR R1,R6,#0 ; Pop n from the stack
ADD R6,R6,#1 Top > n-1=2
MUL RO,RO,R1 ; form n*(n-1)!
n-1=2 > RO,R1
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1
NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1 _
RET R1=2
2025/2/24 Lecture 1



A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller’ s R1 on the stack, so we can use R1.
ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1

BRz NO_RECURS

Example:
ADD R6,R6,#-1 R
STR R7,R6,#0
ADD R6,R6,#-1
STR RO,R6,#0

; Push return linkage o

ADD RO,RO,#-1
B JSR FACT

LDR R1,R6,#0 ; Pop n from the stack

ADD R6,R6,#1

MUL RO,RO,R1 ; form n*(n-1)!

; Form n-1, argument of JSR
R1=R0-1=1

. . RO=2
LDR R7,R6,#0 ; Pop return linkage into R7

ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1
RET
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller’ s R1 on the stack, so we can use R1.
ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1
BRz NO_RECURSE

Example:
ADD R6,R6,#-1 R
STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1
STR RO,R6,#0 TPush mon the stack
=1-> RO,R1

ADD RO,RO,#-1 7 Form n-T, argument of JSR

B JSR FACT
LDR R1,R6,#0 ; Pop n from the stack
ADD R6,R6,#1
MUL RO,RO,R1 ; form n*(n-1)!
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1
RET
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A new solution: using stack

FACT ADD R6,R6,#-1

STR R1,R6,#0 ; Push Caller’ s R1 on the stack, so we can use R1.

ADD R1,R0,#-1
BRz NO_RECURSE

e are done since 1! = 1

ADD R6,R6,#-1
STR R7,R6,#0 ; Push return linkage onto stack I _
ADD R6,R6,#-1 Top R1=R0-1=0
STR RO,R6,#0 ; Push n on the stack
RO=1

ADD RO,RO,#-1 ; Form n-1, argument of JSR

B JSR FACT
LDR R1,R6,#0 ; Pop n from the stack
ADD R6,R6,#1
MUL RO,RO,R1 ; form n*(n-1)!
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1
RET
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6,#0

ADD R1,R0,#-1
BRz NO_RECURSE

ADD R6,R6,#-1
STR R7,R6,#0
ADD R6,R6,#-1
STR RO,R6,#0

ADD RO,RO,#-1
B JSR FACT

LDR R1,R6,#0

ADD R6,R6,#1

MUL RO,RO,R1

LDR R7,R6,#0
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0
ADD R6,R6,#1
RET

2025/2/24

; Push Caller’ s R1 on the stack, so we can use R1.

;1fn=1, we are done since 1! = 1

Example:
R

; Push return linkage onto stack R1=1

; Push n on the stack _
Top RO=1

; Form n-1, argument of JSR
; Pop n from the stack
; form n*(n-

return linkage into R7

; Pop caller’ s R1 back into R1

Lecture 1



A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller’ s R1 on the stack, so we can use R1.
ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1
BRz NO_RECURSE

Example:
ADD R6,R6,#-1 R
STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1
STR RO,R6,#0 ; Push n on the stack
RO=1,R1=2

ADD RO,RO,#-1 ; Form n-1, argument of JSR

B JSR FACT Top
LDR R1,R6,#0 ; Poy
ADD R6,R6,#1
MUL RO,RO,R1 ; form n*(n-1)!
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1
RET
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller’ s R1 on the stack, so we can use R1.
ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1
BRz NO_RECURSE

Example:
ADD R6,R6,#-1 R
STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1
STR RO,R6,#0 ; Push n on the stack
R1=2

ADD RO,RO,#-1 ; Form n-1, argument of JSR

B JSR FACT Top 2> RO=RO*R1=1*2=2
LDR R1,R6,#0 ; Pop n from the stack
ADD R6,R6,#1
MUL RO,RO,R1 Tform n*(n-1)!
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1
RET
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller’ s R1 on the stack, so we can use R1.
ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1
BRz NO_RECURSE

Example:

ADD R6,R6,#-1 R
STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1
STR RO,R6,#0 ; Push n on the stack
ADD RO,RO,#-1 ; Form n-1, argument of JSR

B JSR FACT
LDR R1,R6,#0 ; Pop n from the stack
ADD R6,R6,#1

g Top 2>

MUL RORO,R1 ; form n*(n-1)! op
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1
RET

2025/2/24 Lecture 1
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller" s R1 on the stack, so we can use R1.

ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1
BRz NO_RECURSE

Example:
R

ADD R6,R6,#-1

STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1

STR RO,R6,#0 ; Push n on the stack

ADD RO,RO,#-1 ; Form n-1, argument of JSR
B JSR FACT

LDR R1,R6,#0 ; Pop n from the stack

ADD R6,R6,#1

MUL RO,RO,R1 ; form n*(n-1)!

RO=R0*R1=1*2=2

R1=2

LDR R7,R6,#0 ; Pop return linkage in
ADD R6,R6,#1
NO_RECURSE LDR R1,R6,#0 ; caller’ s R1 back into R1
ADD R6,R6,#1
RET
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller’ s R1 on the stack, so we can use R1.
ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1
BRz NO_RECURSE
Example:
ADD R6,R6,#-1 R
STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1
STR RO,R6,#0 ; Push n on the stack
ADD RO,RO,#-1 ; Form n-1, argument of JSR
B JSR FACT

LDR R1,R6,#0
ADD R6,R6,#1
MUL RO,RO,R1

; Pop n from the stack

LDR R7,R6,#0 ; Pop return linkage into

ADD R6,R6,#1
NO_RECURSE LDR R1,R6,#0 ; Pop caller’ s R1 back into R1
ADD R6,R6,#1
RET
2025/2/24 Lecture 1
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6#0 ; Push Caller’ s R1 on the stack, so we can use R1.
ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1
BRz NO_RECURSE
Example:
ADD R6,R6,#-1 R
STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1
STR RO,R6,#0 ; Push n on the stack
ADD RO,RO,#-1 ; Form n-1, argument of JSR
B JSR FACT RO=R0O*R1=1*2=2
LDR R1,R6,#0 ; Pop n from the stack
ADD R6,R6,#1
MUL RO,RO,R1 ; form n*(n-1)!
R1=3
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1
g RO=R0*R1=2*3=6
NO_RECURSE LDR R1,R6,#0 ;Pop caller sR1backintoR1 ~ 1°P >
ADD R6,R6,#1
RET
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A new solution: using stack

FACT ADD R6,R6,#-1

STR R1,R6#0 ; Push Caller’ s R1 on the stack, so we can use R1.

ADD R1,R0,#-1 ;1f n=1, we are done since 1! = 1

BRz NO_RECURSE

Example:

ADD R6,R6,#-1 R

STR R7,R6,#0 ; Push return linkage onto stack

ADD R6,R6,#-1

STR RO,R6,#0 ; Push n on the stack

ADD RO,RO,#-1 ; Form n-1, argument of JSR
B JSR FACT RO=RO*R1=1*2=2

LDR R1,R6,#0 ; Pop n from the stack

ADD R6,R6,#1

MUL RO,RO,R1 ; form n*(n-1)!

R1=3

LDR R7,R6,#0 ; Pop return linkage into R7

ADPIRGREI . RO=R0*R1=2*3=6
NO_RECURSE LDR R1,R6,#0 ; Pop . 1 back into R1

ADD R6,R6,#1

RET Top >

2025/2/24 2.
Lecture 1 f% ae



A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6,#0

ADD R1,R0,#-1

; Push Caller" s R1 on the stack, so we can use R1.

;1f n=1, we are done since 1! = 1

BRz NO_RECURSE

ADD R6,R6,#-1
STR R7,R6,#0
ADD R6,R6,#-1
STR RO,R6,#0

ADD RO,RO,#-1
B JSR FACT

LDR R1,R6,#0

ADD R6,R6,#1

MUL RO,RO,R1

LDR R7,R6,#0
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0
ADD R6,R6,#1
RET

2025/2/24

Example:
R

; Push return linkage onto stack
; Push n on the stack

; Form n-1, argument of JSR
RO=R0*R1=1*2=2
; Pop n from the stack

; form n*(n-1)!

R1=3
; Pop return linkage into R7

RO=R0*R1=2*3=6
ller’ s R1 back into R1
\ R1=old value
Top >
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A new solution: using stack

FACT ADD R6,R6,#-1
STR R1,R6,#0

ADD R1,R0,#-1
BRz NO_RECURSE

ADD R6,R6,#-1
STR R7,R6,#0
ADD R6,R6,#-1
STR RO,R6,#0

ADD RO,RO,#-1
B JSR FACT

LDR R1,R6,#0

ADD R6,R6,#1

MUL RO,RO,R1

LDR R7,R6,#0
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0
ADD R6,R6,#1
RET

; Push Caller" s R1 on the stack, so we can use R1.

;1f n=1, we are done since 1! = 1

Example:
R

; Push return linkage onto stack
; Push n on the stack

; Form n-1, argument of JSR
RO=R0*R1=1*2=2
; Pop n from the stack

; form n*(n-1)!

R1=3
; Pop return linkage into R7

. RO=R0*R1=2*3=6
; Pop caller’ s R1 back into R1

R1=old value

T
Return to calling program

2025/2/24
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Implementing FACT iteratively (without recursion)

FACT ST R1,SAVE R1

ADD R1,R0,#0 :R1=R0=n
ADD RO,RO, #-1 :RO=n-1
BRz DONE
AGAIN MUL R1,R1,R0 ; (N*(n-1))*(n-2)...
ADD RO,R0,#-1 ; RO gets next integer for MUL
BRnp AGAIN
DONE  ADD RO,R1,#0 ; Move n! to RO
LD R1,SAVE_R1
RET
SAVE R1.BLKW 1

2025/2/24 Lecture 1
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The Maze: a Good Example

Given a maze and a starting position within the | | Speciﬁcation of each cell
maze, write a program that determines whether or in the maze
not there is a way out of the maze from your starting . . .

® Bit[4]=1 if there is a door

posifion. ) to the outside world;
(:\:.’:lfu A maze can be any size, n by m. For example, Figure 8.20 illustrates a Bit[4]=0 if no door.
Bit[3]=1 if there is a door
to the cell to the north;
Bit[3]=0 if no door.
Bit[2]=1 if there is a door
to the cell to the east;
Bit[2]=0 if no door.
Bit[1]=1 if there is a door
to the cell to the south;
Bit[1]=0 if no door.
Bit[0]=1 if there is a door
to the cell to the west;
Bit[0]=0 if no door.

Figure 8.20  Example of a maze,
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Specification of the maze

00 .ORIG x5000
01 MAZE .FILL x0006 ; first row: indices 0 to 5

02 .FILL x0007

03 .FILL x0005

04 .FILL x0005 x5000 x5001 x5002 x5003 x5004 x5005
05 FILLx0003 | 0 ‘ \ f \

06 .FILL x0000 0 1

07 ; second row: indices 6 to 11 o1+ I o

08 .FILL x0008

09 FILL X000A //1’n 1
0A .FILL x0004 —

08B FILL x0003 10101
oc FILL x000C | L—
oD FILL x0015 ‘ T

OE ; third row: indices 12 to 17 /

OF FILL x0000 L I
10 FILL x000C

1 FILL x0001

12 FILL x000A = -+ a
13 FILL x0002

14 FILL x0002

2A END

Figure 8.22 Specification of the maze of Figure

8.20.
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The Maze: a searching algorithm
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Description of the Algorithm

a. From our cell, we ask if we can exit. If yes, we are done. We exit with R1=1.

b. If not, we put a breadcrumb in our cell. Our breadcrumb is bit [15] of the
word corresponding to our current cell. We set it to 1.

c. We ask two questions: Is there a door to the north, and have we never
visited the cell to the north before? If the answer to both is yes, we set the
address to the cell to the north, and JSR FIND_EXIT.

d. If the answer to either question is no, or if going north resulted in failure,
we ask: Is there a door to the east, and have we never visited that cell
before? If the answer to both is yes, we set the address to the address of the
cell to the east (by adding 1 to the address) and JSR FIND_EXIT.

e. If going east does not get us out, we repeat the question for south, and if
that does not work, then for west.

f. If we end up with no door to the west to a cell we have not visited, or if there
is a door and we haven’ t visited, but it results in failure, we are done. We
cannot exit the maze from our starting position. We set R1=0 and return.

2025/2/24 Lecture 1
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Recursive Subroutine to exit the Maze

‘ ADDRESS

|
1

" NORTH'
e

NO

oB~

)
BREADCRUMB

“NoB_
l l’vﬁs
]
[ Aooress | ADDRESS | [ appress | [ AvbRESS
: !
l '
0 < /Rll 0 P

Figure 8.23  Pictorlal
2025/2/24
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of the recursive

to exit the maze.
ecture 1
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; Recursive subroutine that determines if there is
path from current cell to the outside world.

; input: RO, current cell address
; output: R1, YES (1) or NO (0)

.ORIG x4000
01 FIND_EXIT ; save modified registers into the stack.
02  ADD R6, R6, #-1
03 STR R2, R6, #0 ; R2 holds the cell data of the caller
04  ADD R6, R6, #-1
05  STRR3, R6, #0 ; R3 holds the cell address of the caller
06  ADD R6, R6, #-1
07  STRR7,R6, #0 ; R7 holds the PC of the caller
08
09 ; Move cell address to R3, since we need to use RO
0A ; as the input to recursive subroutine calls.
0B ADD R3, RO, #0
oC
0D ; If the exit is in this cell, return YES
OE LDR R2, RO, #0 ; R2 now holds the current cell data
OF LD R7, EXIT_MASK ; EXIT_MASK .FILL x0010
10  AND R7, R2, R7
11 BRnp DONE YES
12
13 ; Put breadcrumb in the current cell.
14 LD R7, BREADCRUMB ; BREADCRUMB .FILL x8000
15  ADDR2, R2,R7
16 STRR2, RO, #0
17
2025/2/24

18 ; check the north cell for a path to exit
19 CHECK_NORTH LD R7, NORTH_MASK

1E
1F
20
21
22

AND R7, R2, R7

BRz CHECK_EAST ; If north is blocked, check east
LDR R7, R3, #-6

BRn CHECK_EAST ; If a breadcrumb in the north

;cell, check east. bit[15]=1, negative

ADD RO, R3, #-6

JSR FIND_EXIT ; Recursively check the north cell

ADD R1, R1, #0

BRp DONE_YES ; If a path from north cell found,

;return YES

23 ; check the north cell for a path to exit
24 CHECK_EAST LD R7, EAST_MASK

25
26

27
28

29
2A
2B
2C

Lecture 1

AND R7, R2, R7
BRz CHECK_SOUTH; If the way to east is
; blocked, check south
LDR R7, R3, #1
BRn CHECK_SOUTH ; If a breadcrumb in the
; east cell, check south
ADD RO, R3, #1
JSR FIND_EXIT ; Recursively check the east cell
ADD R1, R1, #0
BRp DONE_YES ; If a path from east cell found,
; return YES,



2E ; check the south cell for a path to exit
2F CHECK_SOUTH LD R7, SOUTH_MASK

30
31

32
33

34
35
36
37

38

AND R7, R2, R7

BRz CHECK_WEST ; If the way to south is blocked,
;check west

LDR R7, R3, #6

BRn CHECK_WEST ; If a breadcrumb in the south

;cell, check west

ADD RO, R3, #6

JSR FIND_EXIT ; Recursively check the south cell

ADD R1, R1, #0

BRp DONE _YES ; If a path from south cell found,

;return YES

39 ; check the west cell for a path to exit
3A CHECK_WEST LD R7, WEST_MASK

3B
3C

3D
3E

3F
40
41
42

AND R7, R2, R7

BRz DONE_NO ; If the way to west is blocked,
; return NO

LDR R7, R3, #-1

BRn DONE_NO ; If a breadcrumb in the west cell,
; return NO

ADD RO, R3, #-1

JSR FIND_EXIT ; Recursively check the west cell

ADD R1, R1, #0

BRp DONE _YES ; If a path from west cell found,

; return YES43

44 DONE_NO AND R1, R1, #0

45

2025/2/24

BR RESTORE

Lecture 1

46

47 DONE_YES AND R1, R1, #0

48 ADD R1, R1, #1

49

4A RESTORE ADD RO, R3, #0 ; restore RO from R3

4B ; restore the rest of the modified registers
;from the stack.

4C LDR R7, R6, #0
4D ADD R6, R6, #1
4E LDR R3, R6, #0
4F ADD R6, R6, #1
50 LDR R2, R6, #0
51 ADD R6, R6, #1
52 RET

53

54 BREADCRUMB .FILL x8000
55 EXIT_MASK .FILL x0010

56 NORTH_MASK .FILL x0008
57 EAST_ MASK  .FILL x0004
58 SOUTH_MASK .FILL x0002
59 WEST_MASK .FILL x0001
5A .END



2.The Queue

mDefinition of Queue

mBasic Operations

mWrap-Around

mDefinition of full and empty queue

mUnderflow/Overflow
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2.1 The Definition of Queue

B Queue
® A data structure with the property of “First in First out (FIFO)”;
® Front pointer for removing elements from the front of the queue; Rear

pointer for inserting into the rear of the queue.
® FRONT points to the location just in front of the first element in the queue;
REAR points to the location of the last element in the queue.

FRONT ==t

REAR ===

R3
R4

x8001

x8004

(a)

X B000

X800 1

X 8003

xEDD4

FRONT i

REAR =i

R3
R4

23

74

xB002

XB004

(b)

FRONT —=

REAR —=

R3
R4

45

X8002

xBO0S

(©)

X 8000

REAR sl

FRONT —&=

R3
R4

Figure 8.25 A queue allocated to memory locations x8000 to x8005.

2025/2/24
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x8002

XB000

(d)

x B000

X800 1

X 8003

x 5004
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2.2 Basic Operations

B Remove from Front

45 x8000 45 X8000
® FRONT points to the location just in  our —e 17 |soon 7 |xeoon
front of the first element in the 35 | [xeooz FRONT —=| 23 [ws002
queue; R3 stores the FRONT pointer; 2 "’0"» [[2 s
® First incrementing FRONT; then Rk —= L2 e —e- ([ “:
loading the value.
R4 _‘48(1)4 R4 -XE(IM
ADD R3,R3,#1
(a) (b)
LDR RO,R3,#0
W Insert at Rear a5 Jsooo oo
® First incrementing REAR; then R 7 oo
storing the value. R4 stores the FRONT ——p| 73 [W5002 FRONT —m | 23 [s8002
REAR pointer; 2| e » 2 [
REAR —— l 74 ‘ 500+ 74 x8004
s REAR —#=— 10 |fxs00s
ADD R4,R4,#1
R3 x8002 R3
STR RO,R4,#0
(b) (©)
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2.3 Wrap-Around

® Remove
;R3 stores FRONT pointer
LD R2, LAST
ADD R2,R3,R2
BRnp SKIP_1
LD R3,FIRST
BR SKIP_2
SKIP_1 ADD R3,R3,#1
SKIP_2 LDR RO,R3,#0
; RO gets the front of the queue
RET
LAST .FILL x7FFB
; LAST contains the negative of 8005
FIRST .FILL x8000

2025/2/24

m [nsert
;R4 stores REAR pointer

LD R2, LAST
ADD R2,R4,R2
BRnp SKIP_1
LD R4,FIRST
BR SKIP 2
SKIP_1 ADD R4,R4#1
SKIP_2 STR RO,R4,#0
; RO gets the front of the queue

RET
LAST .FILL 7FFB
; LAST contains the negative of 8005
FIRST .FILL x8000
4 x 8000
1 xB001
FRONT i 23 x 8002
o [fooos
REAR —=— 10 x8005
s

Lecture 1 (c)

REAR et 20

FRONT =t 23

=Y

x8001

xB004

R3 X8002
R4 X8000

(d)



2.4 Full and Empty Queue

B The queue are allowed to store only n-1 (why?) elements for a

queue with n locations.

B Full: FRONT=REAR+1 OR FRONT + n -1 =REAR

m Empty: FRONT=REAR

20

30

[S)

74
10

20
30
[ 23
2
74
10
R3 x8002
R4 x8001

(a) A full queue

Figure 8.26 A full queue and an empty queue.
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x8001

x8001

(b) An empty queue




2.5 Tests for Underflow, Overflow

H Test for underflow  FRONT =? REAR
AND R5,R5#0 ; Initialize R5 to O
R5=1: underflow
R5=0: normal NOT R2,R3
ADD R2,R2,#1 ; R2 contains negative of R3

R3: FRONT ADD R2,R2,R4
R4: REAR BRz UNDERFLOW ;R3 =R4

; code to remove the front of the ;queue and return
success.
RET
UNDERFLOW ADD R5,R5,#1
RET

H Test for overflow

® How?
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2.6 The Complete Story

00 ;Input: RO for item to be inserted, R3 is FRONT, R4 is REAR
01 ;Output: RO for item to be removed

02;

03 INSERT ST R1,SaveR1 ; Save register we need

04
05
06
07
08
09
0A

AND R5,R5#0 ; Set R5 to success code
; Initialization complete

LD R1,NEG_LAST

ADD R1,R1,R4 ; RT = REAR MINUS x8005

BRnp SKIP1 ; SKIP WRAP AROUND

0C SKIP2 NOT R1,R4

0D
OE
OF
10

LD R4,FIRST  ; WRAP AROUND, R4=x8000
BR SKIP2
0B SKIP1 ADD R4,R4,#1 ; NO WRAP AROUND, R4=R4+1
ADD R1,R1#1 ; R1= NEG REAR
ADD R1,R1,R3 ; R1= FRONT-REAR
BRz FULL
STRRO,R4#0 ; DO THE INSERT
BR DONE

11
12 FULL
13
14
15
16

LD R1,NEG_FIRST ; to decrement R4

ADD R1,R1,R4 ; R1 = REAR MINUS x8000

BRnp SKIP3

LD R4,LAST  ; UNDO WRAP AROUND, REAR=x8005
BR SKIP4

17 SKIP3 ADD R4,R4,#-1; NO WRAP AROUND, R4=R4-1

2025/2/24 Lecture 1

18 SKIP4
19
1A;

ADD R5,R5,#1 ; R5=FAILURE
BR DONE

1B REMOVE ST R1,SaveR1 ; Save register we need

AND R5,R5,#0 ; Set R5 to success code

1D ; Initialization complete

25

26

27 SKIP5

28 SKIP6

29

2A EMPTY
2B DONE

2C

2D FIRST

NOT R1,R4

ADD R1,R1,#1; R1= NEG REAR
ADD R1,R1,R3; R1= FRONT-REAR
BRz EMPTY

LD R1, NEG_LAST

ADD R1,R1,R3; R1= FRONT MINUS x8005
BRnp SKIP5

LD R3, FIRST ; R3=x8000

BR SKIP6

ADD R3,R3,#1; R3=R3+1

LDR RO,R3,#0 ; DO THE REMOVE
BR DONE

ADD R5,R5.#1 ; R5=FAILURE

LD R1,SaveR1 ; Restore register
RET

.FILL x8000

2E NEG_FIRST .FILL x8000

2F LAST

.FILL x8005

30 NEG_LAST .FILL x7FFB

31 SaveR1

BLKW 1
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3. Character Strings

m one-dimensional array of ASCII codes often followed by x0000 (null
character).

B Each location stores an ASCII codes of a character.

x5000 x0042

x0069

x006C

x006C

x0020

x004C

x0069

x006E

x0076

x0069
x006C

x006C

x0000

Figure 8.28  Character string representing the name “Bill Linvill."
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Example 1: Personnel Record

24000 | x6000 | _—» x6000 | x004A | x4508 | xO0AD —» xCAOB | x0036— > x8E25 | x0045
x4001 | x4508 | 600t xO006F x4509 | x006 XCA9C | x0031 X8E26 | x006E
x4002 | xCA9B | ——=6002 T XO006E X450A /6072 XCA9D | x0032 X8E27 x0067
sal ary  x4o03 | $84,000 x6003 |  x0065 x450B |/ x0079 XCA% | x0036 X8E28 x0069
X4004 4 x6004 | x0073 50C | x0000 XCA%F | x0035 X8E20 |  x006E
x4005 | x8E25 | ——=x6605 T x0000 XCAAD | x0034 X8E2A x0065
Mary

Jones XCAAL | x0036 X8E2B x0065
XCAA2 | x0032 X8E2C Xx0072
XCAA3 | x0031 X8E2D | x0000

Figure 8.29  Mary Jones’ personnel record. 012654621 Engineer

®m 6 words of sequential memory starting at x4000:

1. The first word contains the starting address of a character string containing the person’s last name.
The pointer in location x4000 is the address x6000. The six-word character string, starting at x6000,
contains the ASCII code for “Jones,” terminated with the null character.

2. The second word, at x4001, contains a pointer to the character string of the person’s first name, in this
case “Mary,” starting at location x4508.

3. The third word, at x4002, contains a pointer (XCA9B) to her nine-digit social security number, the
unique identifier for all persons working in the United States.

4. The fourth word, at x4003, contains her salary (in thousands of dollars).
5. The fifth word contains how long she has worked for the company.
6. The sixth word is a pointer (x8E25) to the character string identifying her job title, “Engineer.”
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Subroutine to compare two character strings

m Given social security number in example 1, how to look for the

salary?

STRCMP ST RO,SaveRO
ST R1,SaveR1
ST R2,SaveR2
ST R3,SaveR3
;RO points to 1st string, R1 points to 2nd string
AND R5,R5,#0 ; R5 <-- Match;
NEXTCHAR  LDR R2,R0,#0
; R2 contains character from 1st string
LDR R3,R1,#0
; R3 contains character from 2nd string
BRnp COMPARE
; String is not done, continue comparing
ADD R2,R2,#0
BRz DONE
; If both strings done, match found
COMPARE NOT R2,R2
ADD R2,R2,#1
; R2 contains negative of character
ADD R2,R2,R3
; Compare the 2 characters

2025/2/24 Lecture 1

BRnp FAIL ; Not equal, no match
ADD RO,RO,#1
ADD R1,R1,#1

BRnzp NEXTCHAR
; Move on to next pair of characters

FAIL ADD R5,R5,#1 ; R5 <-- No match

DONE LD RO,SaveRO
LD R1,SaveR1
LD R2,SaveR2
LD R3,SaveR3
RET

SaveRO .BLKW 1

SaveR1 .BLKW 1

SaveR2 .BLKW 1

SaveR3 .BLKW 1
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Example 2: Character String Containing an “Integer”

B Represent a long integer of any length by character strings, ensuring all
characters are within 0-9.

; Input: RO contains the starting address of the character string BAD ADD R5,R5,#1 ; R5 contains failure code
; Output: R5=0, success; R5=1, failure. SUCCESS LD R4,SaveR4 ; Restore registers
H LD R3,SaveR3
TEST_INTEGER LD R2,SaveR2

ST R1,SaveR1 LD R1,SaveR1
; Save registers needed by subroutine RET

ST R2,SaveR2

ST R3,SaveR3 ASCII_O .FILL xFFDO

ST R4,SaveR4 ASCII_9 .FILLXFFC7
; SaveR1 .BLKW 1

AND R5,R5,#0 ; Initialize success code to R5=0, success SaveR2 .BLKW 1

LD R2,ASCII_O ; R2=xFFDO, the negative of ASCII code x30 SaveR3 .BLKW 1

LD R3,ASCII_9 ; R3=xFFC7, the negative of ASCIl code x39 SaveR4 .BLKW 1

NEXT_CHAR LDR R1,R0,#0 ; Load next character

BRz SUCCESS ; if current character is null x0037
ADD R4,R1,R2 ;R1-0x30h

BRn BAD ; R1 is less than x30, not a decimal digit
ADD R4,R1,R3 ;R1-0x39h x0032
BRp BAD ; R1 is greater than x39, not a decimal digit |
ADD RO,R0,#1 ; Character good! Prepare for next character x0034
BR NEXT_CHAR <0035

x0039

x0000

Figure 8.31 A character string representing the integer
79,245, with one ASCII code per decimal digit.
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Review

m So far, we’ ve learned how to:
® compute with values in registers
@ |oad data from memory to registers
® store data from registers to memory

MEMORY
MDR

INPUT | OUTPUT
Keyboard Monit:
Mouse : PROCESSING UNIT Printer
Scanner : LED

Disk

CONTROL UNIT
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Today: I/0O in Von Neumann Model

MEMORY
INPUT | - OUTPUT
Keyboard Monitor
Mouse PROCESSING UNIT Printer
Scanner : LED
Disk Disk

CONTROL UNIT

(ke [R]
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Privilege and Priority

B Two very different concepts associated with
computer processing are privilege and priority.
® Privilege is all about the right to do something, such as execute a

particular instruction or access a particular memory location. Not
all computer programs have the right to execute all instructions.

® \We say a program is executing in Supervisor mode to indicate
privileged, or User mode to indicate unprivileged.

® Priority is all about the urgency of a program to execute.

—allows programs of greater urgency to interrupt programs of
lesser urgency.

® privilege and priority are two orthogonal notions
® They have nothing to do with each other.
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The Processor Status Register (PSR)

m Each program executing on the computer has
associated with it two very important registers.
® The Program Counter (PC)

® and the Processor Status Register (PSR) which contains the
privilege and priority assigned to that program.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| Pr | |  pPLn | IN[z] P | PSR
Priv Priority cond codes

® PSR[15]=0 means supervisor privilege, and PSR[15]=1 means
unprivileged.

® Bits [10:8] specify the priority level (PL) of the program. The
highest priority level is 7 (PL7), the lowest is PLO.

® The PSR also contains the current values of the condition codes

2025/2/24 8



Organization of Memory

B LC-3 has a 16-bit address 00000

0x00FF

Space 0%0100
® memory locations from x0000 to oxoirr
XFFFF. 0x0200

B Locations x0000 to x2FFF are

0x2FFF

privileged memory locations. oxsooo

® They contain the various data
structures and code of the
operating system.

® They require supervisor privilege
to access.

® They are referred to as system
space.

® The supervisor stack is
controlled by the operating OxEDEF

0xFE00
system. OXFFFF
2025/2/24
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Organization of Memory

B Locations x3000 to xFDFF are ™*°*°

. . 0x00FF
unpr|.V|Ieged memory 0x0100 System Space

locations. 0%01FF

. - . 0x0200
® Supervisor privilege is not

required to ac_cess these S ——
memory locations. OX2FFF

0x3000

SsP

AloJuay pabajinld

® All user programs and data use
this region of memory.

® The region is often referred to as
user space. User Space
® The user stack is controlled by
the user program and does not
require privilege to access. —— Usp

User Stack
OxXFDFF
OxFEOO

I/O Page
OxXFFFF
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Organization of Memory

B Addresses xFE0O to xFFFF do not  %*°°° o
correspond to memory locations  oxeos® %
® The last address of a memory oxorer System Space E
location is xFDFF. 0x0200 =
B The set of addresses from xFEOO to 2 ssp
XFFFF is usually referred to as the - 3
I/O page since most of the 0%3000 PC

addresses are used for identifying
registers that take part in input or
output functions.

User Space
B The set of addresses are part of P
privileged memory address space
and accessible only to programs
that have supervisor privilege. —— Usp
User Stack

OxFDFF
0xFE00

I/O Page
OxXFFFF

2025/2/24 11




Organization of Memory

For the two stacks, each has a 0x0000

stack pointer, Supervisor Stack 0xO00FF
Pointer (SSP) and User Stack ox0100
Pointer (USP), to indicate the top of geope0
the stack.

Since a program can only execute
in Supervisor mode or User mode  ox3000
at any one time, only one of the two
stacks is active at any one time.

Two registers, Saved_SSP and
Saved_USP, are provided to save
the SP not in use.

® When privilege changes, for example,
from Supervisor mode to User mode, the
SPis stored in Saved_SSP, and the SP
is loaded from Saved_USP.
OxFDFF
0xFEO0O

OXFFFF
2025/2/24
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Input / Output (1/0)

B Computer systems are useless unless they can
process information from outside of the computer
and output results outside of the computer

® But where does data in memory come from?
® And how does data get out of the system?

Hm |/0 is effective communication with the outside of
the computer

® |/O device itself communicates with outside world, e.g.,
keyboard takes input from user

® Computer needs to communicate with I/O device, e.g., computer
takes input from keyboard
B Communication through shared memory locations
® Processor and I/O can read/write those memory locations

® Sometimes, data in memory locations can be set/cleared
automatically (by hardware) depending on a read/write
2025/2/24 A



I/0: Connecting to the Outside World

m I/O Examples
® Keyboard/mouse input, video output on a standard computer
® Network input/output that enables web surfing

® Information from an engine of a car that a computer uses to
determine how to tune the engine (output from computer tunes
the engine)

® Requests for airline reservations and replies that service those
requests

2025/2/24 15



I/0: Connecting to the Outside World

m Types of 1/0 devices characterized by:
® behavior: input, output
— input: keyboard, motion detector, network interface
— output: display screen(monitor), printer, network interface
® datarate: how fast can data be transferred?
— keyboard: 100 bytes/sec
— disk: 60-120 MB/s
— network: 1 Mb/s - 100 Gb/s
® accessing mode:
— character device: no buffering is performed. E.g., keyboard
— block device: accessed through a cache, be random access. E.g., disk

2025/2/24
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1/0 Controller

m Control/Status Registers

® CPU tells device what to do -- write to control register

® CPU checks whether task is done -- read status register

B Data Registers
® CPU transfers data to/from device

CPU

4

>| Control/Status Qaphlcs Controller

>I Output Data |_> Electronics

B Device electronics
® performs actual operation
—pixels to screen, bits to/from disk, characters from
keyboard

2025/2/24
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LED, An ARM Example

VDD33V = o FFAEMR T ledXT 8 H R A
7 75 HIGP10O(general purpose input
) Axplo RN nlED 1 output)
1K
LED(RED)
N ron B Ep, B R E R 0 O
Llfnaem ¥ -NS3C2440/f)GPF4. GPF5. GPF6
Woze TE . wmi . SEESLED, BELHIEEE
[EDEED) GPIO [ H 8 F. 5P (1) BRAEE B3 7 (0)
{ alED 1 ELL‘EB - “ﬁ :L EINT4/GPF4
{_nlED 2 o e EINTS/GPFS
nLED 4 N E— == EINT6/GPF6
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LED, An ARM Example

B jBidS3C2440f9DataSheet AILIER], GPIOEXEEBF=/1"F7F
SREEIRE
® GPFCONEHIS1FeE, TEERSIGPIONINGE, TEGMA. M
FIFRBT=/\TheeE, B/ GPIOOBSFEEMMAISRIEE], 00: #A, 01
: G, 10: b, 10: {RE8.

* GPFDATRHIESTFE, TBREHCPIORERTFERESLT, o
1B, 1: B,

® GPFUP RigERZP LHAFBEANEFES, 0: NRELHEBME, 1: ®E

FHirspE.,
Register Address RW Description Reset Value
GPFCON 0x56000050 R/W | Configures the pins of port F 0x0
GPFDAT 0x56000054 ‘| RW |The data register for port F Undef.
GPFUP 0x56000058 |\ R/W Pull-up disable register for port F 0x000
Reserved 0x5600005¢ | '\ — - -

\

IO A1k

2025/2/24 https://www.cnblogs.com/tianhaoyuan/p/6472263.html 19



LED, An ARM Example

.text
.global start
_start:
LDR R0,=0x56000050 /*RO& &GPFCON */
MOV RT1,#0x00000400 /* R1< 0x00000400 */
STR RT1,[RO] /* 0x00000400>GPFCON, GPFCONAY
[11:105igE R 7T01 , BPRGPFS{4mHINGE */
LDR RO0,=0x56000054 /*RO< &GPFDAT */
MOV R1,#0x00000000 /* R1< 0x00000000 */
STR RT1,[RO] /* 0x00000000->GPFDAT , GPFDAT#HIH{ERFES/
MAIN_LOOP:
B MAIN LOOP

Question: ARM & /EBf£15 i GPIOM X & /78 1) ?

2025/2/24 https://www.cnblogs.com/tianhaoyuan/p/6472263.html 20



Some Basic Characteristics of 1/0

m All I/0 activity is controlled by instructions in the
computer’ s ISA. Does the ISA need special
instructions for dealing with 1/0?

® Memory-mapped vs. special instructions

B Does the 1/0O device execute at the same speed as the
computer, and if not, what manages the difference in
speeds?

® Asynchronous vs. synchronous

m Is the transfer of information between the computer
and the 1/0 device initiated by a program executing
in the computer, or is it initiated by the 1/0 device?

® CPU (polling) vs. device (interrupts)

2025/2/24 21



Memory-Mapped I/0 vs. Special 1/0 Instructions

An instruction that interacts with an input or output device
register must identify the particular input or output device
register with which it is interacting.
Special 1/0 Instructions
® These instructions typically allow data to be sent to an 1/O device or read
from an 1/O device.
® Coding: designate opcode(s) for I/O, register and operation encoded in
instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ IO ‘ Device ’ Op ‘
Memory-mapped 1I/0
® assign a memory address to each device register
® The advantage to this method is that every instruction which can access
memory can be used to manipulate an 1/0 device.
® In LC3, we can use data movement instructions (LD/ST) for control and
data transfer Memory /}/Keyboard Status Reg
0x FEOO ' Address space
mapped to
2025/2/24 1/0_device registers




LC-3

B Memory-mapped I/O (Table A.1)

Location |I/O Register Function

xFEOO Keyboard Status Reg (KBSR) rBeitcLli\i]eésaogngvzﬁgr;?;?ard has
xXFEOQ2 Keyboard Data Reg (KBDR) E’li;zgﬂ Eg;éfgrg?e last character
xFEQO4 Display Status Register (DSR) Siiééllg ;snz?ﬁe\;vzﬁgrdoer:/igcer;z?:iy o
xXFEO06 Display Data Register (DDR) dcizglr:;;rg\gig;z;?]_bits [7:0] will be

2025/2/24
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Asynchronous vs. Synchronous

m |/O events generally happen much slower than CPU cycles.
® [f: CPU 300MHz, 10clocks/character, 6characters/word
® Then: typing speed (300x106)/(10x6)=5x106words/s

® Synchronous

@ data supplied at a fixed, predictable rate, and CPU reads/writes
every X cycles. (Limitation?)

® Asynchronous

® |/O devices usually operate at speeds very different from that of a
microprocessor.

® To control processing in an asynchronous world requires some
protocol or handshaking mechanism.

—In the case of the keyboard, use a one-bit status register,

called aflag, to indicate if someone has or has not typed a
character.

® These flags are the simplest form of synchronization(?).
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Interrupt-Driven vs. Polling

B Who determines when the next data transfer occurs?
® CPU vs. I/O device

® Polling is explicitly looking/examining
® CPU keeps checking status register until
new data arrives OR device ready for next data
® “Are you there yet? Are you there yet? Are you there yet?”
B Interrupts is a nudge, knock on the door, loud noise,
which forces you to pay attention
® Device sends a special signal to CPU when
new data arrives OR device ready for next data

® CPU can be performing other tasks instead of polling device.
® “Wake me when you get there.”
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Example: Input from Keyboard

Location |I/O Register Function

Bit [15] is one when keyboard has

xFEOO Keyboard Status Reg (KBSR) | dive s new character.

Bits [7:0] contain the last character
typed on keyboard.

xXFE02 Keyboard Data Reg (KBDR)

B When a character is typed:
® its ASCII code is placed in bits [7:0] of KBDR (bits [15:8] are always zero)
® the “ready bit” (KBSR[15]) is set to one (who §ets?)

® keyboard is disabled -- any typed characters will be ignored
\

\ keyboard data
|15 8|7 \ 0\ KB\‘DR
ready bit —;TA 0| KBS\\R
® When KBDR is read: \‘\
® KBSR[15] is set to zero (who sets?), meaning no keyhoard keyis
pending "~.JElectronic circuits associated !

207528gyboard is enabled | with the keyboard :



Memory-mapped Operations

B How do we read ready bit?
LDI RO, KBSR

B How do we test whether the bit is one?
Negative, so BRn, or BRzp

B How do we read keyboard data?

LDI RO, KBDR
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Basic Input Routine

POLL ILDI RO, KBSR
BRzp POLL
LDI RO, KBDR

NO
Polling YES
KBSR .FILL xFEOO
read KBDR .FILL xFEO02
character

l
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Implementation of Memory-mapped 1/0

16

GateMDR Y o P 327, figure 9.8

16 16
16 16 6
b f MEM.R.W MIOENN . oiiiirevreerelheenes  ceevennnes

gouw T
o

iLD.DDR

A 4

——H DSR

MEMORY

MEM.EN 16 16 16

' W W N

» MIO.EN indicates whether a data movement from/to memory or I/O is to take place this
clock cycle.

*  MAR contains the address of the memory location or the memory-mapped address of an
I/O device register.

*  R.W indicates whether a load or a store is to take place.
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LDI (Indirect) r'm D |+ EA Jo{ 0P |l EX }l s I_I

>/\

16
<}— LD.MAR



LDI (Indirect) r'm D |+ EA Jo{ 0P |l EX }l s I_I

tDMDR MDR [ wAR |

16
Mlo,EN—Dﬁ MEMORY 4—/i
K <l—MEM.EN,R,W

16




LDI (Indirect)

I_.m D | Ea jl op [ Ex | s I_I




LDI (Indirect) m

ADDRIMUX




LDI (Indirect)

LD.MDR

MIO.EN—>

SR S - e

MDR

16

MEMORY

MAR

4_/[16

[<F—MEM.ENRW




LDI (Indirect) OPMEXH s I—l

GateMDR —T>/\ 16
tomor—>{ MDR ] MAR |<\— D.MAR

MEMORY




Memory-mapped I/0: LDI RO, KBSR

L A
INPUT
ADDR.CTL
LOGIC
KBSR

16
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Memory-mapped I/0: LDI RO, KBDR

MIOEN L ericcnreressnnnns
{INPUT
[ kBDR
ADDR.CTL H

LOGIC
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LDI (Indirect) |—4 F s 0 | Eajs{or J Ex

116

REG
FILE

LD.REG —>]

SR2 SR1
OUT _ OouT

FINITE
STATE

MACHINE
LR}
>

GateMDR—L>/\
&




Example: Output to Screen

B When Display device is ready to display another character:

® the “ready bit” (DSR[15]) is set to one, indicating that processor can
write a character for display

. e | output data
| | * | DDR

1514 0

ready bit——] | DSR

B When data is written to the Display data register:
® DSR[15] is automatically set to 0
® character in DDR[7:0] is displayed
® any other character data written to DDR is ignored (while DSR[15] is
zero)

Location |1/O Register Function

Bit [15] is one when device ready to

xFEQ04 Display Status Register (DSR) display another char on screen.

Character written to bits [7:0] will be

xXFEQ06 Display Data Register (DDR) E o Pt

2025/2/24
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Basic Output Routine

screen
ready?

NO

Polling YES

write
character

l

POLL

DSR
DDR

LDI R1, DSR
BRzp POLL
STI RO, DDR

.FILL xFEO4
.FILL xFEO06

the “ready bit” (DSR[15]) is set to one, indicating
that processor can write a character for display

2025/2/24




STI (Indirect) r’m 0 f e bt or bt Xl s I‘|

>/\

16
[MART]<i— Lowne



STI (Indirect) r’m 0 f e bt or bt Xl s I‘|

LD.MDR MDR MAR

16
M|o,EN—(>¢ MEMORY 4—/|
L'— <—MEM.EN,RW

16




STI (Indirect)

I_.m D | Ea jl op [ Ex | s I_I




STI (Indirect) m

ADDRIMUX




STI (Indirect) i el N g O

LD.MDR MDR MAR

16
Mlo,EN—Dﬁ MEMORY 4—/i
L'— <}F—MEM.ENRW

16




STI (Indirect) OPI—AExl—A s s-l

GateMDR —>/\ »

to.mor—>{ MDR | [ MAR |<+— pomar



STI (Indirect) e

GateMARMUX —L>

REG
FILE

SR2 SR1 2
ouT OUT| ™73 SR1

ADDRIMUX

LD.MDR

MIO.EN—>




Memory-mapped I/O: STT RO, DDR ?

GateMDR
LRMAR
16
MDR f"ﬁ_ 1 ©pe
6 MDR ¥ MEM.RW MIO.EN
I iouTPQT
MIO.EN i >{ ppRrR
> iLD.0DR
MEMORY i v
5 —>[ bsR
16
MEM.EN 16 16 16

rw Wy
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Keyboard Echo Routine

m Usually, input character is also printed to screen.

® User gets feedback on character typed
and knows its OK to type the next character.

POLL1 LDI RO, KBSR '
BRzp POLL1 NO

LDI RO, KBDR YES
POLL2 LDI R1l, DSR read
BRzp POLL2 character

STI RO, DDR

screen
ready?

KBSR .FILL xFEO0O

KBDR .FILL xFEO02 VES
DSR .FILL xFEO4 write
DDR .FILL xFEO06 character

|
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Today: CONTROL in Von Neumann Model

MEMORY

MAR MDR

INPUT

Keyboard
Mouse
Scanner
Disk

PROCESSING UNIT

ouTPUT

Monitor
Printer
LED
Disk

CONTROL UNIT
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Control Instructions for System Calls

151413121110 9 8 7 6 5 4 3 2

BR 0 0 0O O HiEFAN: PCoffset9

JSR 01 0 0 1 PCoffsetll

JSRR (ORI RORRREON O | O | BaseR (0|0 |0|O

RTI 1 0 0 O NENENRRRNINNINNORNCRNINN

JMP (RENENORRON O |0 0| BaseR (00|00

RET (RENEORRON 0 (0 0|1(1(1({0|0|0]|O0

TRAP 1 1 1 1 ESEECANeRNe] TrapVector8
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Today: CONTROL in LC-3 Data Path

116

REG
FILE

GateMARMUX—>/\

DR 74>3

SR1

17 . SR> i'ffT ot [ SRL
Control Unit
A IDRIMUX 16 6

= =

FINITE
STATE
MACHINE

\/ GateALU

- MAR |<F— LD.MAR
16
M|o,EN—(>¢ MEMORY <J INPUT OUTPUT
4 4

6 [<F—MEM.EN,RW 5
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System Calls

B Some operations require specialized knowledge and
protection

® Understanding IO device registers and how to use them poses a
challenge to most application programmers.

® |/O registers are shared by many programs, and in general it is ill-
advised to give user programmers access to these registers.

B Solution: service routines or system calls
® Low-level, privileged operations performed by operating system

1. User program invokes system call

2. Operating system code:
Saves registers
Performs operation
Restores registers

3. Returns control to user program

2025/2/24 A,



LC-3 TRAP Mechanism

B Provides a set of service routines
® Part of operating system -- routines start at arbitrary addresses
@ Up to 256 routines

B Requires a table of starting addresses
® Stored in memory (x0000 through x00FF)
® Used to associate code with trap number
® Called Trap Vector Table (or System Control Block)

B Uses the TRAP instruction
® \When a user program wishes to have the operating system
execute a specific service routine on behalf of the user program,
and then return control to the user program
B Uses a linkage mechanism
@ For returning control to the user program
® Execution resumes immediately after the TRAP instruction

® Using the RTl instruction
2025/2/24 8



LC-3 TRAP Routines(service routines)

® GETC (TRAP x20)

x0000 TR RS A —Read a single character from keyboard.
(S 7D —The character is not echoed to the console.
: —ASCII copied into RO and RO[15:8] is cleared.
® OUT (TRAP x21)
x002Q x0400 48 —Write RO[7:0] to the console display.
x0021 x0430 ||32(14) ® PUTS (TRAP x22)
—Write a string of ASCII characters to the console
x0022 x0450 || 96 display. |
—String address in RO.
0023 x04A0 64(42) —Writing terminates with the occurrence of x0000
x0024 x04EQ @ IN (TRAP x23)
—Print a prompt on the screen and read a single
x0025 x0520 character from the keyboard.
—Character is echoed to the console. .
—ASCII copied into RO and R0O[15:8] is cleared.
X00FH ® HALT (TRAP x25)
The LC-3 Trap —CH(i)arl]ts%Teecutlon and print a message on the

Vector Table

2025/2/24 9



TRAP Instruction

15141312 11 10 9 8 76 543210
TRAP |1111]0000 trap vector

B Trap vector x0000

® |dentifies which service routine the user
program wants the operating system to
execute on its behalf

® 8-bit trap vector zero-extended to form

x0021  x0430

16-bit address, serves as index into table x0022 x0450

of service routine addresses x0023  Xx04A0
m Where to go x0024  X04EQ |
® Lookup starting address from table %0025  x0520 |

B Enabling return

® Push the address of next instruction

after TRAP together with the PSR to the X00FF

system stack (Poped by the RTI The LC-3 Trap

instruction) Vector Table
2025/2/24
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TRAP Mechanism Operation

User program Trap Vector Table
x0000
. x0023 | 0000 0100 1010 OOOO
A L -
-7 ’
. ,
X 4
57 x00FF e
-~ " ,/
1111 00000010 0011 F R4
<\ y
. | x04A0
\ .B
C \ Character input
\ service routine
1000 000000000000 RTI

|

4

2025/2/24 171



TRAP Mechanism Operation

OLD PSR=PSR;
If (PSR[15] == 1) {// called by a user program
Saved USP < RE6;
R6 € Saved SSP;
}
PSR[15]=0; // switch to supervisor mode
Push OLD PSR, PC+1 on the system stack
PC = mem[ZEXT(trapvect8)]; // set PC

2025/2/24



RTI instruction

B RTI instruction — Return from Trap or Interrupt

15141312 11 10 9 8 76 54 3 2 10

RTI 1000 000000000000

2025/2/24



RTI instruction

if (PSR[15] ==1) // user mode
/IRTI cannot called by user program
Initiate a privilege mode exception;
else
PC =mem|[R6]; // R6 is the SSP, PC is restored
R6 = R6+1;
OLD_PSR =mem|[R6]; // OLD_PSR is restored

R6 = R6+1; //system stack completes POP before saved PSR
/lis restored

PSR =0LD PSR ; //PSR is restored

if (PSR[15] ==1) // supervisor mode = user mode
saved SSP=R6;
R6=Saved USP;

2025/2/24 14



An example

.ORIG x3000
LD R2,TERM ; Load -7
LD R3,ASCII ; Load ASCII difference
AGAIN TRAP x23 ; Request keyboard input
ADD R1,R2,R0O ; Test for terminating
BRz EXIT ; character
ADD RO,R0O,R3 ; Change to lowercase
TRAP x21 ; Output to the monitor
BRnzp AGAIN ; ...and do it again!
TERM .FILL xFFC9 ; FFC9 is negative of ASCII 7
ASCII FILL x0020
EXIT TRAP x25 ; Halt
.END

2025/2/24 15
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Character Input Service Routine (IN, TRAP x23)

01 ; Service Routine for Keyboard Input

02 ;

03 .ORIG x04A0

04 START ST R1l,SaveRl ; Save the values in the registers
05 ST R2,SaveR2 ; that are used so that they

06 ST R3,SaveR3 ; can be restored before RTI

07 ;

08 LD R2,Newline ; Newline: ASCII code for newline
09 L1 LDI R3,DSR ; Check DDR -- is it free?

0A BRzp L1

0B STI R2,DDR ; Move cursor to new clean line
oc ;

0D LEA R1l,Prompt ; Prompt is starting address

OE ; of prompt string

1F Loop LDR RO,R1,#0 ; Get next prompt character

10 BRz Input ; Check for end of prompt string
11 L2 LDI R3,DSR ; Check DDR -- is it free?

12 BRzp L2

13 STI RO,DDR ; Write next char

14 ; prompt string

15 ADD R1,R1,#1 ; Increment prompt pointer

16 BRnzp Loop

17 ;

2025/2/24
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Character Input Service Routine (IN, TRAP x23)

18 Input LDI R3,KBSR ; Has a character been typed?

19 BRzp Input

1A LDI RO,KBDR ; Load it into RO

1B L3 LDI R3,DSR

1c BRzp L3

1D STI RO,DDR ; Echo input character

1E ; to the monitor

1F ;

20 L4 LDI R3,DSR

21 BRzp L4

22 STI R2,DDR ; Move cursor to new clean line
23 LD R1l,SaveRl ; Service routine done, restore
24 LD R2,SaveR2 ; original values in registers.
25 LD R3,SaveR3

26 RTI ; Return from Trap

27 ;

28 SaveRl .BLKW 1

29 SaveR2 .BLKW 1

2A SaveR3 .BLKW 1

2B DSR .FILL xFEO04

2C DDR .FILL xFEO0O6

2D KBSR .FILL xFEOO

2E KBDR .FILL xFE02

2F Newline .FILL x000A ; ASCII code for newline
30 Prompt .STRINGZ "Input a character>"

3]2025/2/24 -END



A String Output Service Routine (OUT, TRAP x21)

01 .ORIG x0420 ; System call starting address
02 ST R1, SaveRl ; Rl will be used to poll the DSR
03 ; hardware

04 ; Write the character

05 TryWrite LDI R1l, DSR ; Get status

06 BRzp TryWrite ; Bit 15 on says display is ready
07 WriteIt STI RO, DDR ; Write character

08

09; return from trap
OA Return LD R1l, SaveRl ; Restore registers

0B RTI ; Return from trap
0C DSR .FILL xFEO04 ; Address of display status register
0D DDR .FILL xXFEO6 ; Address of display data register

OE SaveRl .BLKW 1

OF .END

2025/2/24
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A String Output Service Routine (PUTS, TRAP x22)

05
06
07
08

oc
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1a
1B
1c
1D
1E
1F

2(%025/2/24

.ORIG x0460

ST RO, SaveRO ; Save registers that
ST R1l, SaveRl ; are needed by this
ST R3, SaveR3 ; trap service routine
0A ; Loop through each character in the array

Loop LDR R1l, RO, #0 ; Retrieve the character(s)
BRz Return ; If it is 0, done
L2 LDI R3,DSR
BRzp L2
STI R1, DDR ; Write the character
ADD RO, RO, #1 ; Increment pointer
BRnzp Loop ; Do it all over again
; Return from the request for service call
Return LD R3, SaveR3

LD R1l, SaveRl
LD RO, SaveRO

RTI

’

; Register locations
DSR .FILL xFEO4

DDR .FILL xXFEO6
SaveRO .FILL x0000
SaveRl .FILL x0000
SaveR3 .FILL x0000

.END

20



Halt the machine(HALT, TRAP x25)

01 .ORIG x0520 ; Where this routine resides
02 ST R1l, SaveRl ; Rl: a temp for MC register
03 ST RO, SaveRO ; RO is used as working space
04

05 ; print message that machine is halting
06

07 LD RO, ASCIINewLine ;out

08 TRAP x21

09 LEA RO, Message ;puts

0A TRAP x22

0B LD RO, ASCIINewLine ;out

oc TRAP x21

oD ;

OE ; clear bit 15 at xFFFE (Master Control Register, MCR )to
stop the machine.

oF ;

10 LDI R1l, MCR ; Load MC register into R1

11 LD RO, MASK ; RO = x7FFF

12 AND RO, R1, RO ; Mask to clear the top bit
13 STI RO, MCR ; Store RO into MC register

2025/2/24 21



Halt the machine(HALT, TRAP x25)

14 ;

15 ; return from HALT routine.

16 ; (how can this routine return if the machine is halted
above?)

17 ;

18 LD R1, SaveRl ; Restore registers
19 LD RO, SaveR0

1A RTI

1B ;

1C ; Some constants

1D ;

1E ASCIINewLine .FILL x000A

1F SaveRO .BLKW 1

20 SsaveRl .BLKW 1

21 Message .STRINGZ "Halting the machine."

22 MCR .FILL xFFFE ; Address of MCR

23 MASK .FILL x7FFF ; Mask to clear the top bit
24 .END

Clock @)

One _>, ,

machine
cycle

generator
12 volts
Clock O volts
S
R
Run

2025/2/24 Figure 4.5 The clock circuit and its control.



Using subroutines to implement (IN, TRAP x23)

01 .ORIG x04A0

02 START JSR SaveReg

03 LD R2,Newline

04 JSR WriteChar

05 LEA R1,PROMPT

06 ;

07 ;

08 Loop LDR R2,R1,#0 ; Get next prompt char
09 BRz Input

0A JSR WriteChar

OB ADD R1,R1,#1

oc BRnzp Loop

0D ;

1A WriteChar LDI R3,DSR

1B BRzp WriteChar

1c STI R2,DDR

1D RET ; JMP R7 terminates subroutine

1E DSR .FILL xFEO4
1F DDR .FILL xFEO6
20 ;

2025/2/24



Using Traps to implement (IN, TRAP x23)

> %0214 %0000 0 TOUT R1 .BLEW #1

» %0215 =000A 10 TIN R7 .BLEW #1

» x0216 %0033 Sl OS RO .BLKW #1

» x0217 =0000 0 0S_R1 .BLEW #1

» %0218 %0000 0 0S5 R2 .BLKW #1

» %0219 20000 0 OS R3 .BLEW #1

» x021A *000R 10 OS R7 .BLKW #1

p 20232 ®3FE2 16354 TRAP IN ST R7,TIN R7
» %0233 xEO3R -2134 LEA R(O,TRAP IN MSG
» x0234 xF022 -4062 PUTS

» %0235 xF020 -4064 GETC

» x0236 XF021 -4063 oUT

» x0237 x31DE 12766 ST R0O,0S RO

» %0238 %5020 20512 AND RO,R0,#0

» %0239 ®1022 4138 ADD RO,RO,#10

» x0232 xF021 -4063 ouT

» x023B =21DA 8666 LD R0,08 RO

» x023C x2FD8 12248 LD R7,TIN R7

» x023D x8000 -32768 RTI

2025/2/24 TRAP IN MSG .STRINGZ "\nInput a character> "



Data Type Conversion

m /0
® Keyboard input routines read ASCII characters
binary values)
® Console output routines write ASCII ('‘'s’ not

\\x73ll)
m Consider this program:

TRAP x23 ; input from keyboard
ADD Rl, RO, #0 ; move to Rl

TRAP x23 ; input from keyboard
ADD RO, R1l, RO ; add two inputs

TRAP x21 ; display result

TRAP x25 ; HALT

m User inputs ‘2° and ‘3’ -- what happens?

) 1

B Result displayed: ‘e
m Why?
® ASCII '2' (x32) + ASCII '3' (x33) = ASCII 'e'
(x65)
2025/2/24
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ASCII to Binary

m Single digit numbers are trivial (subtract x30)
®F.g., ‘7’ is ASCII x37, x37 - x30 = x7
® Input
® Assume we've read three ASCII digits
(e.g., "259") into a memory buffer
® How do we convert this to a numberwe can
use?
® Convert first character to digit (subtract
x30) and multiply by 100
® Convert second character to digit and
multiply by 10
® Convert third character to digit
® Add the three digits together

2025/2/24

x32 |2
x35 |'5
x39 |9
x0
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ASCII to Binary Conversion Algorithm

RO = start of str buff
R5 =0 (value)

—[R2= iR

RO pointer in string buffer
R2 character from memory
R5 current value

s .
e R

.

 R2=07

£ =07 >
™ -
. p
. P

.
\\I/

//

R2 = R2-x30
R5=R5x10
R5=R5+R2
RO =R0 + 1
I

El:

2025/2/24



Multiplication

B How can we multiply a number by

100?
® Approach 0

— Use the MUL instruction
® Approach 1

#0

Lookup table
in memory

#10

— Add <number> to itself 10 times

® Approach 2

— Add 10 to itself <number>times (better if

number < 10)
® Approach 3

— Look it up! Only practical if number of

multiplicands is small

2025/2/24
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#30

#40

#50

0x10
1x10
2x10
3x10
4x10
5x10



Code for Lookup Table

; multiply RO by 100, using lookup table

’

LEA R1l, Lookupl00 ; Rl = table base

ADD R1l, R1l, RO ; add index (RO)

LDR RO, R1l, #0 ; load from M[R1]
Lookupl00 .FILL #0 ; entry 0O

.FILL #100 ; entry 1

.FILL #200 ; entry 2

.FILL #300 ; entry 3

.FILL #400 ; entry 4

.FILL #500 ; entry 5

.FILL #600 ; entry 6

.FILL #700 ; entry 7

.FILL #800 ; entry 8

.FILL #900 ; entry 9

2025/2/24




Complete ASCII to Binary Conversion Code

m ASCII "259”
259

2025/2/24

to value

x32

x35

x39

x0

o+ ASCIIBUF
|5I
|gl

R1

30



Complete ASCII to Binary Conversion Code (1 of

3)

; Three-digit buffer at ASCIIBUF.

; Rl tells how many digits to convert.

; Put resulting decimal number in RO.

ASCIItoBinary AND
ADD
BRz

LD
LEA

RO, RO, #0
R1l, R1, #0
DoneAtoB

R3, NegZero
R2, ASCIIBUF
R2, R2, R1
R2, R2, #-1
R4, R2, #0
R4, R4, R3
RO, RO, R4

;clear result
;test # digits
;done if no digits

;R3 = -x30

;ptr to the first digit
;R2 =(R2)+(R1)

;points to ones digit

;load digit
;convert to number
;add ones contribution

2025/2/24




Complete ASCII to Binary Conversion Code(2 of
3)

ADD R1, R1, #-1 ;one less digit

BRz DoneAtoB ;done if zero

ADD R2, R2, #-1 ;points to tens digit
LDR R4, R2, #0 ;load ‘tens’ digit
ADD R4, R4, R3 ;convert to number

LEA R5, LookuplO ;multiply by 10
ADD R5, R5, R4
LDR R4, R5, #0

ADD RO, RO, R4 ;adds tens contribution to total
ADD R1, R1, #-1 ;one less digit

BRz DoneAtoB ;done if zero

ADD R2, R2, #-1 ;points to hundreds digit

LDR R4, R2, #0 ;load digit

ADD R4, R4, R3 ;convert to number

LEA R5, LookuplO00 ;multiply by 100
ADD R5, R5, R4
LDR R4, R5, #0

ADD RO, RO, R4 ;adds 100's contrib
20285/2/24 232




Complete ASCII to Binary Conversion Code(3 of
3)

DoneAtoB RET
NegZero .FILL xFFDO ;-x30
ASCIIBUF .BLKW 4
LookuplO .FILL #0

.FILL #10

.FILL #20
Lookupl00 .FILL #0

.FILL #100

.FILL #200

2025/2/24 33




Binary to ASCIl Conversion

m Converting a 2's complement binary value to
a three-digit decimal number
® Resulting characters can be output using OUT

m Instead of multiplying, we need to divide by 100
to get hundreds digit.

® Why wouldn't we use a lookup table for this
problem?

® Subtract 100 repeatedly from number to divide.

B First, check whether number is negative.

® Write sign character (+ or -) to buffer and make
positive.

2025/2/24 34



Binary to ASCIl Conversion Code (1 of 3)

; RO is between -999 and +999.
; Put sign character in ASCIIBUF, followed by three
; ASCII digit characters.

BinaryToASCII LEA
ADD
BRn
LD
STR
BR

NegSign LD
STR
NOT

Beginl00 LD
LD

Loopl00 ADD
BRn

BR

R1l, ASCIIBUF ;ptr to result string
RO, RO, #0 ;test sign of value
NegSign

R2, ASCIIplus ;store '+'

R2, R1, #0

Beginl00

R2, ASCIIneg ;store '-'

R2, R1, #0

RO, RO ;convert value to pos
RO, RO, #1

R2, ASCIIoffset

R3, NeglOO0

RO, RO, R3

End100

R2, R2, #1 ;add one to digit
Loopl00

2025/2/24
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Binary to ASCIl Conversion Code(2 of 3)

End100

Loopl0

Endl0

STR
LD
ADD

LD
LD
ADD
BRn
ADD
BR
STR
ADD

R2, R1, #1 ;store ASCII 100's digit
R3, Posl00
RO, RO, R3 ;restore last subtract

R2, ASCIIoffset

R3, NeglO

RO, RO, R3

Endl0

R2, R2, #1 ;add one to digit

Loopl0

R2, R1, #2 ;store ASCII 10's digit
RO, RO, #10 ;restore last subtract

R2, ASCIIoffset
R2, R2, RO ;convert one's digit
R2, R1, #3 ;store one's digit

2025/2/24
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Binary to ASCIl Conversion Code(3 of 3)

ASCIIplus .FILL
ASCIIneg .FILL
ASCITIoffset .FILL
Negl00 .FILL
Pos100 .FILL

NeglO .FILL

x002B
x002D
x0030
xXFFO9C
x0064
xXFFF6

;plus sign ASCII code
;neg sign ASCII code
;zero’s ASCII code
;=100

;100

;=10

2025/2/24
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What is Interrupt-Driven 1/0?

Program A is executing instruction n

Program A is executing instruction n+1
Program A is executing instruction n+2
Program A is executing instruction n+3
Program A is executing instruction n+4

2025/2/24




What is Interrupt-Driven 1/0?

Program A is executing instruction n
Program A is executing instruction n+1
Program A is executing instruction n+2
Interrupt!!!

Program A is executing instruction n+3

Program A is executing instruction n+4

2025/2/24




What is Interrupt-Driven 1/0?

Program A is executing instruction n

Program A is executing instruction n+l

Program A is executing instruction n+2

W dMNDNDMDNDMNDNDR R BRP

Interrupt signal is detected

Program A is put into suspended animation

PC is loaded with the starting address of Program B
Program B starts satisfying I/O device’s needs
Program B continues satisfying I/O device’s needs
Program B continues satisfying I/O device’s needs
Program B finishes satisfying I/O device’s needs
Program A is brought back to life

Program A is executing instruction n+3

Program A is executing instruction n+4

2025/2/24




Why Have Interrupt-Driven 1/0?

® Polling requires the processor to waste a lot of time
spinning its wheels, re-executing again and again the
LDI and BR instructions until the ready bit is set.

® With interrupt-driven I/0, none of that testing and
branching has to go on. Interrupt-driven 1/0 allows
the processor to spend its time doing what is
hopefully useful work, executing some other program
perhaps, until it is notified that some 1/0 device
needs attention.

2025/2/24 5]



Why Have Interrupt-Driven 1/0? An Example

Suppose we are asked to write a program that takes a sequence
of 100 characters typed on a keyboard and processes the
information contained in those 100 characters. We need to
perform this process on 1000 consecutive sequences.

® Assume the characters are typed at the rate of 80 words/minute, which
corresponds to one character every 0.125 seconds. So, It would take 100
-0.125 =12.5 seconds to get a 100-character sequence.

® Assume the processing of the 100-character sequence takes 12.49999
seconds.

Polling:
® time for one sequence: 12.5 + 12.49999 = 24.99999 seconds.
Interrupt-driven 1/0:

® Assume 0.0000001 seconds for each character typed, or 0.00001
seconds for the entire 100-character sequence.

® time for one sequence: 0.00001 + 12.49999 = 12.5 seconds.
For 1000 sequences:

® Polling vs. Interrupt-driven 1/0O = 6.94h vs. 3.47h
2025/2/24 7



Two Parts to interrupt-driven 1/0

H Part1. the mechanism that enables an I/O device to
interrupt the processor

m Part2. the mechanism that handles the interrupt
request.

CPU

© 1

2025/2/24



Part I: Causing the Interrupt to Occur

m Several things must be true for an I/0 device to
actually interrupt the program that is running:
C1. The I/O device must want service.
C2. The device must have the right to request the
service.
C3. The device request must be more urgent than what
the processor is currently doing.

m If all three elements are present, the processor stops
executing the program that is running and takes care

of the interrupt.
TITTIT}

=)
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Part I: Causing the Interrupt to Occur

® C1. The 1/0 device must want service.
® Keyboard: someone has typed a character

® Monitor: have successfully completed the display of the last
character )

2025/2/24 10



Part I: Causing the Interrupt to Occur

B C2. The device must have the right to request the
service: the interrupt enable bit

® the interrupt enable bit, which can be set or cleared by the
processor (usually by the operating system).
® In most I/O devices, this interrupt enable (IE) bit is part of the

device status register.

interrupt enable blt 151413

ready bit ———F} ]

0
| KBSR

}

interrupt enable bit
151413

interrupt signal
to processor

0

ready bit ——F}]

| DSR

}

2025/2/24
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Part I: Causing the Interrupt to Occur

m C3. The Urgency of the Request

® To interrupt the running program, the device must have a higher
priority than the program that is currently running.

® There may be many devices that want to interrupt the processor
at a specific time. To succeed, the device must have a higher
priority level than all other demands for use of the processor.

The Processor Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
]Prl PL INIZIP‘PSR

Priv Mode Priority Level Cond Codes

PL7 >PL6>...>PL0O

2025/2/24 12



Part I: Causing the Interrupt to Occur

B The INT signal: To stop the processor from continuing execution
of its currently running program and service an interrupt
request, the INT signal must be asserted.

® The interrupt request signals are input to a priority encoder, a
combinational logic structure that selects the highest priority request

from a” those asserted . PLO device PL1device PL7 device
1514 15_14_ |5‘|47
PL: Priority Level | [’ | \‘ ‘ o ﬁ‘

[ ] (] ‘

1 1

|y e |
Priority encoder
o INT «—p Device A Is
CPU Controller «=—p Device B :
INTV H DEVice C 2 B o—z— PL of current program

2025/2/24 13



Part I: Causing the Interrupt to Occur

B The test for INT

® Instead of always going from the last state of one instruction
cycle to the first state of the FETCH phase of the next instruction,
the next state depends on the INT signal.

® |f not asserted, continues with next instruction
® [f INT is asserted, then the next state is the first state of Part I,

handling the interrupt request. Cl

E
EA
X

interrupt
signal?

Part Il

o]

S

2025/2/24 14



Part ll: Handling the Interrupt Request

B Three stages
1. Initiate the interrupt
1: Interrupt signal is detected
1: Program A is put into suspended animation
1: PCis loaded with the starting address of Program B
2. Service the interrupt
2: Program B starts satisfying 1/0O device’s needs
2: Program B continues satisfying 1/0O device’s needs
2: Program B continues satisfying I/O device’s needs
2: Program B finishes satisfying 1/O device’s needs
3. Return from the interrupt
3: Program A is brought back to life

2025/2/24
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Part ll: Handling the Interrupt Request

m Stagel: Initiate the interrupt

® (1) save the state of the interrupted program so it can pick up
where it left off after the requirements of the interrupt have been
completed

— The state includes the contents of the memory locations that are part
of the program and the contents of all the general purpose registers.
It also includes the PC and PSR.

— Assume that the service routine will always save the contents of any
general purpose register that it needs before using it. The only state
information the LC-3 saves are the PC and PSR.

— The LC-3 saves this state information on the supervisor stack in the
same way the PC and PSR are saved when a TRAP instruction is
executed.

2025/2/24 18



Part ll: Handling the Interrupt Request

m Stagel: Initiate the interrupt

® (2) load the state of the higher priority interrupting program so it
can start satisfying its request.

— Interrupt service routines are similar to the trap service routines.
They are program fragments stored in system space.

— Most processors use the mechanism of vectored interrupts. The I/O
device transmits to the processor an eight-bit interrupt vector (INTV)
along with its interrupt request signal and its priority level.

— The Interrupt Vector Table consists of memory locations x0100 to
x01FF, each containing the starting address of an interrupt service
routine (ISR).

INT —p Devi

* Trap vector table : x0000 to xO0OFF Dew.ceA
CPU Controller ¢— Device B

Interrupt vector table: x0100 to xO1FF v Device C

—The PSR is loaded as follows:

Since no instructions in the service routine have yet executed, PSR[2:0] contains
no meaningful information. We arbitrarily load it initially with 010.

Since the interrupt service routine runs in privileged mode, PSR[15] is set to 0.
* PSR[10:8] is set to the priority level associated with the interrupt request.

2025/2/24 17



Part ll: Handling the Interrupt Request

B Stage2: Service the Interrupt

® The PC contains the starting address of the interrupt service
routine

® The service routine will execute, and the requirements of the 1/10
device will be serviced.

2025/2/24 18



Part ll: Handling the Interrupt Request

m Stage3: Return from the Interrupt
® The last instruction in every interrupt service routine is RTI,
return from trap or interrupt.
—RTI pops the PC and the PSR from the supervisor stack
and restoring them to their rightful places in the
processor.

—If the privilege level of the interrupted program is
unprivileged, the stack pointers must be adjusted, that
is, the Supervisor Stack Pointer saved, and the User
Stack Pointer loaded into R6.

—The PC is restored to the address of the instruction that
would have been executed next if the program had not
been interrupted.

2025/2/24 19



An Example (1)

B Suppose program A is executing when 1/0 device B, having a PL
higher than that of A, requests service.
B During the execution of the service routine for 1/0 device B, a
still more urgent device C requests service

x3000

x3006

x3010

2025/2/24

Program A

interrupt vector xF1: extended to x1F1

Service routine
for device B

interrupt vector xF2 : extended to x1F2

x6200

Service routine
for device C

AND

x6202 |

ADD

RTI

\

|

x6210

N

A

x6300

x6315

20



An Example (2)

|=— Saved.

SSP

PC x3006

(@

Program A
X3000

Service routine

for device B

Service routine

for device C

- x6200
AND 6202
x3007 |— R6 x3006| ADD V\
PSR of program A \ \‘
x3010 \\ ‘

\
\ RTI x6210 ‘

]

PC| x6200 \ B, \

(b)

1, the supervisor stack and the
PC before program A fetches

the instruction at x3006.

2, R6 is pointing to the current
contents of the user stack,
which are not shown!

2025/2/24

x6300

\ RTI

x6315

\

3, The INT signal (caused by an interrupt from
device B) is detected at the end of execution of

the instruction in x3006.

4, R6 - Saved_USP; Save_SSP - R6
5, PSR of program A = system stack
6, PC+1 > system stack

7, The interrupt vector associated with device B is

expanded to 16 bits x01F1, and the cont
x01F1 (x6200) is loaded into the PC.

ents of



An Example (3)

Program A
x3000
Service routine
for device B
x6203 ~— R6 - x6200 Service routine
- for device C
PSR for device B o o0 —
x3007 <— R6 x3007 x3006 | ADD ~—
PSR of program A PSR of program A \ \“
\
x3010 \
|
RTI x6210 \
T
__ PC x6300 \ )
Fe — _— \\\ RTI x6315
T
(b) © N/

8, The service routine for device B executes until a higher priority interrupt
is detected at the end of execution of the instruction at x6202.

9, The PSR of the service routine for B, which includes the condition codes
produced by the AND instruction at x6202, and the address x6203 (PC +1)
are pushed on the stack.

10, The interrupt vector associated with device C is expanded to 16 bits
(x01F2), and the contents of x01F2 (x6300) is loaded into the PC.
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An Example (4)

Program A
x3000
Service routine
x6203 ~— R6 %6203 for device B
. - 6200 S i
PSR for device B PSR for device B X el s
x3007 X3007 l«— RG AND x6202. x6300
3006 ADD
PSR of program A PSR of program A V\\
\ \
x3010 \\ ‘
\
\
PC x6300 pC ¥6203 \ RTI “ x6210 ‘
© = \ [rm x6315
T
(@ N

11, Assume the interrupt service routine for device C executes to
completion, finishing with the RTI instruction in x6315.

12, The supervisor stack is popped twice, restoring the PC to x6203 and the
PSR of the service routine for device B, including the condition codes
produced by the AND instruction in x6202.
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An Example (5)

Program A
x3000
Service routine
x6203 x6203 for device B
- 6200 Servie ti
PSR for device B PSR for device B b m‘i’é’iﬁéi”c'"e
x3007 ~— R6 x3007 AND x6202 X6300
3006 ADD V\
PSR of program A PSR of program A \
t=— Saved.SSP \ \
x3010 \\‘ ‘
\
\
PC %6203 PC x3007 \ RTI > 6210 \\
S \ Lrn x6315
(d) (e)

12, The interrupt service routine for device B resumes execution at x6203
and runs to completion, finishing with the RTl instruction in x6210.
13, The supervisor stack is popped twice, restoring the PC to x3007 and the

PSR of program A, including the condition codes produced by the ADD
instruction in x3006.

14, Finally, since program A is in User mode, the contents of R6 is stored in
Saved_SSP and R6 is loaded with the contents of Saved_USP.
15, Program A resumes execution with the instruction at x3007.

2025/2/24 24



Interrupts deal with more than 1/0 devices.

®m Any event that has a higher priority and is external to
the program that is running can interrupt the
computer.

® |t does so by supplying its INT signal, its INTV vector, and its
priority level.

® [f it is the highest priority event that wishes to interrupt the
computer, it does so in the same way that 1/0 devices do as
described above.
B Examples:

® timer interrupt interrupts the program that is running in order to
note the passage of a unit of time.

® The machine check interrupt calls attention to the fact that some
part of the computer system is not functioning properly.

2025/2/24 25



Polling Revisited

B Interrupt Mask
® \When set, a processor can ignore INT signal
B How to implement interrupt mask in LC3?

09

0A

0B

oc

0D POLL
OE

OF

10

11

12

1D INTMASK
1E PSR
1F DSR
20 DDR

2025/2/24

LDIR1, PSR
LD R2,INTMASK
AND R2,R1,R2 ; R1=original PSR, R2=PSR with interrupts disabled

STI R1,PSR ; enable interrupts (if they were enabled to begin)
STI R2,PSR ; disable interrupts

LDI R3,DSR

BRzp POLL ; Poll the DSR

STI RO,DDR ; Store the character into the DDR

STI R1,PSR ; Restore original PSR

.FILL xBFFF ; 1011 1111 1111 1111

.FILL xFFFC

.FILL xFEO4

.FILL xFE06

26
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Important parts

* Appendix A

* Exclude exception
* Appendix C

* Exclude exception



S
L3t)

About chapter 10

« Stack machines, Zero-address machine
* PPT8-2
* Chapter 10.2 .

* Simulate a calculator with LC-3 L

OpMult, which will pop
two values from the

Y 5 . No
(1) push 25 <« stack, multiply them, @
G push v /s and push the result
(3) add P p [es
(4) push 3 onto the stack. e o
(5) push 2 4
(6) add ’

(7) multiply ’
(8) pop E

Put back both Put back 1st POP

€

Figure 10.11  Flowchart for the OpMult subroutine.



About chapter 10

* Data Type Conversion
s PPT9-2
* Chapter 10.1



Appendix C :Microarchitecture of the LC-3

* Time is divided into clock cycles.

* The cycle time of a microprocessor
is the duration of a clock cycle.

¢ A common cycle time for a -

microprocessor today is 0.33 T R BEN
nanoseconds, which corresponds to 3 PSRIIS] §
1 ACV 40

billion clock cycle§ each second._ We | | Data Path

say that such a microprocessor is
operating at a frequency of 3 Control
gigahertz, or 3 GHz.

Memory, /O

* We say, “at each instant of time,” Contrl Signals
but we really mean during each
clock cycle. 0.COND, IRD)

Figure C.1  Microarchitecture of the LC-3, major components.




Appendix C :Microarchitecture of the LC-3

* The control signals needed in the “next”

clock cycle depend on the following:

* 1. The control signals that are present

during the current clock cycle.
2. The LC-3 instruction that is being
executed. RIIS:11]
3. The privilege mode of the program that is INT R
executing, and whether the processor has
the right to access a particular memory
location. [y
4. If that LC-3 instruction is a BR, whether
the conditions for the branch have been Control
met (i.e., the state of the relevant condition
codes).
5. Whether or not an external device is
requesting that the processor be
interrupted.
6. If a memory operation is in progress,
whether it is completing during this cycle.

Memory, /O

.

BEN
PSR[15]

ACY Data Path @

N —

(1, COND, IRD)

Figure C.1  Microarchitecture of the LC-3, major components.



Appendix C :Microarchitecture of the LC-3

1. J[5:0], COND[2:0], and IRD—ten bits of control
signals provided by the current clock cycle.

2. IR[15:12], which identifies the opcode, and
IR[11:11], which differentiates JSR from JSRR (i.e., the
a ﬁl)ressing mode for the target of the subroutine
call).

3. PSR[15], bit [15] of the Processor Status Register,
which indicates whether the current program is
executing with supervisor or user privileges,

4. ACV, a signal that informs the processor that a
rocess operating in User mode is trying to access a
ocation in privileged memory. ACV stands for Access

Control Violation. When asserted, it denies the
process access to the privileged memory location.

5. BEN to indicate whether or not a BR should be
taken.

6. INT to indicate that some external device of higher
priority than the executing process requests service.

7. R to indicate the end of a memory operation.

IR[15:11]

Memory, /O

INT R

BEN

PSR[15]
Acv

N —

Control

Data Path

(1, COND, IRD)

Figure C.1  Microarchitecture of the LC-3, major components.




About R

A flash memory chip

K9F2G08UOA-PCBO/PIBO

zzzzz

Fbonno

)
i

NnanannnnnnnnANANTn0NN

N AINIIONY b o cd bt 3 a2

20
b S S et
Bwao0®

00000

zzzzz

48-pin TSOP1
Standard Type
12mm x 20mm

5|

UL LREA A R LR AR RERTR UL RERRO

PIN DESCRIPTION
Pin Name. Pin Function
DATA INPUTS/OUTPUTS.

COMMAND LATCH ENABLE
o The CLE

F

E signal.

ADDRESS LATCH ENABLE
The ALE Adresses sre

fatched on the rising edge of WE wih ALE igh

CHIP ENABLE o

3 the Busy state, e
the deuice does ot return 1o standsy mode i program or erase operation

READ ENABLE
e scu 10 bus. Data i vald
REA afor

WRITE ENABLE
The WE Commands,

the IWE puise

WRITE PROTECT

W ransitons,

tpro
295 ganarator is reset when the WP pin is ackve ko

[Reaovisusy oureur
Whenion S

POWER
Ve s the power supply for devic.

vas GROUND

NO CONNECTION

| Lead s ot intermal conected

READY/BUSY OUTPUT

The R/B output indicates the status of the device
operation. When low, it indicates that a program, erase or
random read operation is in process and returns to high
state upon completion.




Appendix C :Microarchitecture of the LC-3

* During each clock cycle,

* 42 of these control signals
determine the processing of
information in the data path

* the other 10 control signals
combine with the 10 bits of
additional information to
determine which set of control
signals will be required in the next
clock cycle.

* These 52 control signals specify

the state of the control structure
of the LC-3 microarchitecture

Memory, /O

I ’ PSRI1S] |
ACY 7 D
N ata Path
N i 7

S
w,; [ f2
~ - ~
(, CONDTIRD) ==

Figure C.1  Microarchitecture of the LC-3, major components.




The state machine

* [INT]
* [ACV]

FigureC.7 LC.3 state machine showing interrupt control

o>



The state machine

* The state machine describes
what happens during each clock
cycle in which the computer is
running.

* Each state is active for exactly
one clock cycle before control
passes to the next state.

* Each node in the state machine
corresponds to the activity that
the processor carries out during
a single clock cycle.




The state machine

* the FETCH phase of the instruction
cycle i N
¢ In state 18, the MAR is loaded with
the address contained in PC, and the ¥
PC is incremented in reparation for
the FETCH of the next LC-3 instruction
after the current instruction finishes
its instruction cycle.

If the content of MAR specifies
privileged memory, and PSR[15] = 1,
indicating User mode, the access of
the instruction will not be allowed.
That would be an access control
violation, so ACV is set.

Finally, if there is no interrupt request
present (INT = 0), the flow passes to
state 33. Or else, the flow passes to
state 49.




The state machine

* the FETCH phase of the instruction cycle

* From state 33, control passes to state 60 if
the processor is trying to access privileged
memory while in User mode, or to state 28,
if the memory access is allowed, that is, if
there is no ACV violation.

In state 28, since the MAR contains the i
address of the instruction to be processed, “hat X =
this instruction is read from memory and sy L ffafeof e\

loaded into the MDR. Since this memory
access can take multiple cycles, this state
continues to execute until a ready signal
from the memory (R) is asserted, indicating
that the memory access has completed.
Thus, the MDR contains the valid contents
of the memory location specified by MAR.
The state machine then moves on to state
30, where the instruction is loaded into the
instruction re§ister (IR), completing the
fetch phase of the instruction cycle.




The state machine

* The state machine then moves
to state 32, where DECODE takes
place.

there are 16 arcs emanating from
state 32, each one corresponding
to bits [15:12] of the LC-3
instruction.

the arc from the last state of each
instruction cycle (i.e., the state
that completes the processing of
that LC-3 instruction) takes us to
state 18




The data path

* The data path consists of all

Soitoms _ Sorel s

components that actually process
the information during each clock
cycle—

* the functional units that operate
on the information,

* the registers that store
information at the end of one
cycle so it will be available for
further use in subsequent cycles,

* and the buses and wires that
carry information from one point

to another in the data path.



The data path

FRUEC3 Thelc: dst pen

« LD.PC (p134)

* In order for the PC to be, the finite
state machine must assert the
PCMUX select lines to choose the
output of the box labeled +1 and
must also assert the LD.PC signal to
load the output of the PCMUX into
the PC at the end of the current cycle.

* ALUK

* ALUK consists of two bits, it can have
one of four values. Which value it has
during any particular clock cycle
depends on whether the ALU is
required to ADD, AND, NOT, or simply
pass one of its inputs to the output
during that clock cycle (PASSA).



Additional logic required to provide control signals

IR[11:9] IR[11:9] —=|
1o I IR[S:6] = = SRI
1 aj 110 :l /
4
DRMUX SRIMUX

R
R[10] —=] \

BUS[I5] . PSR[15]
o] s~ Do}

@

Figure C.6  Additional logic required to provide control signals.



Instruction Cycle (chapter 4.3 & chapter 5.6)
————— including 6 phases, each phase requiring O or

2025/2/24

1

‘ Fetch instruction from memory |

!

‘ Decode instruction |

!

‘ Evaluate address |

!

‘ Fetch operands from memory |

!

‘ Execute operation |

‘ Store result |

I

3

ore

(%]

Hor{z{g{2 o -

teps.

18



NOT (Register)

Sy
S

15 14 13 12 11 10 & 8 7 6 5 4
NOT [1 0 0 1] Dst | sre 1 1
Register File
Dst

To49

2
:{ BEN<-IR[11] & N +IR[10] & Z + IR[9] &P |"
K
[IR[15:12]] [
AN
T T L)

A Not/

o1s 5
ﬁk —NOT(SR)
setCC
Tol



NOT (Register): Bl o e fior b x|l s |

GatePC — >/

State 18
GatePC = YES
LD.MAR = LOAD

16

—T [ MAR |<<— Lomar




NOT (Register): Bl o e fior b x|l s |

et 5BHF—B
State 28

LD.PC = LOAD
LD.MDR = LOAD
MIO.EN = YES
PCMUX=PC+1

MAR <- PC
PC<—PC+1
set ACV
\__[INT]
94
o
( acvy
.
oy
e LD.MDR MDR MAR
(__|MDR<-M)
=\ W 6
R Ry Mo EN—Dﬁ MEMORY 4J
fon =)
(1R <~ MDR |
£ [ J o [<— MEM.ENRW




NOT (Register): Bl o e fior b x|l s |

State 30
LD.IR = LOAD
GateMDR = YES

8

e ;
MAR <— PC 3
| PC<—PC + 14—
et ACV
|
vt wor—>TRT]
0] o=
3 6
(o) ) ®
/ R
/s GateMDR —>/\
0
= Lo wor — TR

~
(__|MDR<-M]
=2 ».
R Ry

& )

IR <— MDR |

% >

I

30



NOT (Register): Nl o Nl Y el

State 32
ALUK = NOT

.
_| BEN<-IR[11] & N +IR[10] & Z + R[9] &
L [R[15:12]]
7777 T T T 11

FINITE
STATE
MACHINE




NOT (Register): o el s |

$%p131-132

State machine &l 7 OP and S phases

REG
FILE
State 9 LDREG —{>]
SR1IMUX =IR[8:6] SR2  SRL
our__out
ALUK = NOT

LD.REG=LOAD
GateALU = YES
DRMUX = IR[11:9]
LD.CC = LOAD

o .

STATE

MACHINE

BN/ cateALu

e ) 2 g
(DR<-NOT(SR) )
(_ secC )

 BIOC
P
To18* /



Interrupt and RTI

* Interrupt

* State 18 is the only state in
which the processor checks
for interrupts

* State 45, switch stack
* State 41, write PSR
* State 52, write PC

e State 53, read new
instruction

Table‘Vector: concatenating Table and Vector

Table : 0x00, trap
0x01, interrupt

(1aR, sp<-sp + 1) \PSRIIS] <=0

B

2
« =%
fsr<-MDR)

MAR<-PC
PC<-PC+1
SACY
i)

(&)

.
T
(ire-ox)

. v

- v ot
MAR<-SP . EIBEN<IRI111&N + R10}6Z + wiojep)

PSRIIS) | I TIRI15:12]] e

s
"Smdjsk 5P

7R w7 7T TTT TN )
\ 771 RRRAN
L \ /r R RERRRR R (SP<-Saved_usp)
MDR<-M) ( S ~

- =
\ AR SP<— 571 w‘\/
AP S T
or<x0 | | PC<-Pos J
9 | MDR <— PSR MDR <— PSR DI R
L= 7 ~ ¢
( MDR <—PC-1 )

D
&

i 1 PSR[I5] <~ 0 ol T
- [PSRIIS]] ) o

®
( Jvpram) L
R\MDR< M/ [0 T,

«
(VAR SP<—sP-1)
v s \

Cr
o W )
p
[ SPesPE \‘” 1Acv] ”
PSRI15]] 4 (MAR<=Tble'Vector)
0
N
. ) e
(Saved_SsP<—SP. TMPR<M)
Notting | {SpeSaved usp) ®
i Y s v
i ] (Pe<—MDR
¢ )



- 3
MAR<-PC

e
TRAP and RTI i
oy 3
( [acv] i\
Chioney \\
* RTI (weoR) (e
- 7 = PSR[10:8] <— Priority
; ; (oo Y e s oz me Y | PRS0
* State 8, exception detection B e i e N . Tl N
T’ war// [ ] IR e SSP<SP
* State 8, 36, 38, restore PC s / Yr & o
-
/
* State 39, 40, 42, restore PSR =2\ / P
JeMDE) L s SR )
. (" Table <— x00 (Table <= x0T) o e )
* State 59, switch stack 1 o[iRam| | Ere ‘ :
MAR. SP<—SP + 1) \PSR[151<~0 ) PSR[15] <~ 0 £
;'_r* v ¢ [Pskisn ) (MDR<-PCc-1)
Vector <~ IR[7:0] BT N——
. w0 s FSRUIS <0 W s ]
s
é\sk«\mg <R‘<W 1
= il s
(_esraist ) +
0 B

Nothing

T

s s

Tk
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