
Homework 01

1. (Adapted from problem 1.5 in the textbook)
Say we had a "black box," which takes two numbers as input and outputs their
sum. See Figure 1.10a in the Textbook or the following figure. Say we had
another box capable of multiplying two numbers together. See Figure 1.10b. We
can connect these boxes together to calculate p * (m + n). See Figure 1.10c.
Assume we have an unlimited number of these boxes. Show how to connect them
together to calculate:

a. ax+b
b. The average of the four input numbers w, x, y, and z
c. a2 + 2ab + b2 (can you do it with one add box and one multiply box?)
d. a6 (can you do it using only 3 multiply boxes?)

2. (2.3)
a. Assume that there are about 400 students in your class. If every student is

to be assigned a unique bit pattern, what is the minimum number of bits
required to do this?

b. How many more students can be admitted to the class without requiring
additional bits for each student's unique bit pattern?

3. (Adapted from 2.13)
Without changing their values, convert the following 2's complement binary
numbers into 8-bit 2's complement numbers.

a. 010110
b. 1101
c. 1111111000
d. 01

4. (Adapted from 2.17)
Compute the following. Assume each operand is a 2's complement binary number.

a. 01 + 1011
b. 11 + 01010101
c. 0101 + 110
d. 01 + 10

5. Convert the following 8-bit 2's complement binary numbers into decimal
numbers.

a. 01010101
b. 10001101
c. 10000000
d. 11111111

6. Express the value 0.3 in the 32-bit floating point format. Feel free to only show
fraction bits [22:15], rather than all the fraction bits, [22:0]. Notation: The symbol
[22:15] signifies all 8 bits from bit 22 to bit 15.

7. Convert the following floating point representation to its decimal equivalent:

1 10000010 10101001100000000000000

8. Add the two hexadecimal 2’s complement integers below:
 x90A
 + x4123

9. (Adapted from 2.50)
Perform the following logical operations. Express your answers in hexadecimal
notation.

a. xABCD OR x9876
b. x1234 XOR x1234
c. xFEED AND (NOT(xBEEF))

10. (2.54)
Fill in the truth table for the equations given. The first line is done as an example.

Q1 = NOT (NOT(X) OR (X AND Y AND Z))
Q2 = NOT ((Y OR Z) AND (X AND Y AND Z))

X Y Z Q1 Q2
0 0 0 0 1

11. (2.51)

What is the hexadecimal representation of the following numbers?
a. 25,675

b. 675.625 (i.e. 6755
8
), in the IEEE 754 floating point standard

c. The ASCII string: Hello

Homework02

1. What is the smallest positive normalized number that can be represented
using the IEEE Floating Point standard?

2. What is the largest positive number that can be represented in a 32 bit 2's
complement scheme?

3.

a. (Adapted from 3.17) Draw a transistor-level diagram for a three-input
NAND gate and a three-input NOR gate. Do this by extending the
designs from following Figures 3.5a and 3.8a(NAND). (Figures can
also be found in the book on pages 63 & 65 respectively).

Figure 3.5a Figure 3.8a

b. Replace the transistors in your diagrams from part (a) with either a wire
or no wire to reflect the circuit’s operation when the following inputs are
applied:

A = 1, B = 0, C = 0

c. The transistor circuit shown below (Figure 1) produces the
accompanying truth table. The inputs to some of the gates of the
transistors are not specified. Also, the outputs for some of the input
combinations of the truth table are not specified. Complete both
specifications. i.e., all transistors will have their gates properly labeled

with either A, B, or C, and all rows of the truth table will have a 0 or 1
specified as the output.

Figure 1

4. Shown below are several logical identities with one item missing in each. X
represents the case where it can be replaced by either a 0 or a 1 and the
identity will still hold. Your job: Fill in the blanks with either a 0, 1, or X.

For example, in part a, the missing item is X. That is 0 OR 0 = 0 and 0 OR
1 = 1.

a) 0 OR X = ___
b) 1 OR X = ___
c) 0 AND X = ___
d) 1 AND X = ___
e) __ XOR X = X
f) X XOR X = ___

5. (3.25)
Logic circuit 1 in Figure 3.39 (page 102 of the book) has inputs A, B, C.
Logic circuit 2 in Figure 3.40 (page 102 of the book) has inputs A and B.
Both logic circuits have an output D. There is a fundamental difference
between the behavioral characteristics of these two circuits. What is
it? Hint: What happens when the voltage at input A goes from 0 to 1 in
both circuits?

6. (Adapted from 3.28)

(1) Fill in the truth table of 4-to-1 mux:

(2) Implement the 4-to-1 mux using only 2-to-1 muxes making sure to
properly connect all of the terminals. Remember that you will have 4

inputs (A, B, C, and D), 2 control signals (S1 and S0), and 1 output
(OUT).

(3) Implement F = A XOR B using ONLY two 2-to-1 muxes. You are not
allowed to use a NOT gate (A' and B' are not available).

7. (Adapted from 3.31)
Say the speed of a logic structure depends on the largest number of logic
gates through which any of the inputs must propagate to reach an output.
Assume that a NOT, an AND, and an OR gate all count as one gate delay.
For example, the propagation delay for a two-input decoder shown in
Figure 3.11 is 2 because some inputs propagate through two gates.

a) What is the propagation delay for the two-input mux shown in Figure
3.12 (page 68)?

b) What is the propagation delay for the 4-bit adder shown in Figure 3.16
(page 71)?

c) Can you reduce the propagation delay for the circuit shown in Figure
2 by implementing the equation in a different way? If so, how?

Figure 2

8. (3.32)

Recall that the adder was built with individual "slices" that produced a sum
bit and carryout bit based on the two operand bits A and B and the carryin bit.
We called such an element a full-adder. Suppose we have a 3-to-8 decoder
and two six-input OR gates, as shown in Figure 3 below. Can we connect
them so that we have a full-adder? If so, please do. (Hint: If an input to an OR
gate is not needed, we can simply put an input 0 on it and it will have no effect
on anything. For example, see the figure below.)

Figure 3

9. We wish to design a controller for an elevator such that if you push a
button for a desired floor, the controller will output the floor number that the
elevator should go to. However, to deter lazy people from going up or
down one floor, if you push the button for the next floor (up or down), the
elevator will stay on its current floor. If you push the button for the same
floor that you're currently on, the controller will output the current floor
number. There are four floors in the building.

Your job:

a) Draw the state diagram of the elevator scheduling.

b) Construct a complete truth table for the elevator controller. It is not
necessary to draw the logic here; the truth table is sufficient.

Hint: What information does the controller need in order to output the
floor to go to?

Hint: How many input bits will that require.

Hint: How many output bits will the controller have to supply.

10. A logic circuit consisting of 6 gated D latches and 1 inverter is shown
below:

Figure 5

Figure 6

Let the state of the circuit be defined by the state of the 6 D latches.
Assume initially the state is 000000 and clk starts at the point labeled t0.

Question: What is the state after 50 cyles. How many cycles does it take
for a specific state to show up again?

11. Draw the transistor level circuit of a 2 input XOR gate

12. (Adapted from 3.36)

A comparator circuit has two 1-bit inputs, A and B, and three 1-bit outputs,
G (greater), E (equal), and L (less than). Refer to figures 3.43 and 3.44 on
page 106 in the book for this problem.

a. Draw the truth table for a 1-bit comparator.
b. Implement G, E and L for a 1-bit comparator using AND, OR, and NOT

gates.
c. Figure 3.44 performs one-bit comparisons of the corresponding bits of

two unsigned integer A[3:0] and B[3:0]. Using the 12 one-bit results of
these 4 one-bit comparators, construct a logic circuit to output a 1 if
unsigned integer A is larger than unsigned integer B (the logic circuit
should output 0 otherwise). The inputs to your logic circuit are the

outputs of the 4 one-bit comparators and should be labeled G[3], E[3],
L[3], G[2], E[2], L[2], ... L[0]. (Hint: You may not need to use all 12
inputs.)

13. One of Zhang San’s students is always late to meetings, so Zhang San
wants you to design an alarm clock to help his student be on time. Your
job is to design a logic circuit whose output Z is equal to 1 when the alarm
clock should go off. The circuit will receive four input variables (A, B, C, D)
that answer four different yes/no question (1=yes, 0=no):

A <= Is it going to be sunny today?
B <= Is it the weekend?
C <= Is it 7:00am?
D <= Is it 9:00am?

Zhang San wants the alarm clock to go off if it's sunny and it's either
7:00am or 9:00am. The alarm clock should go off if it's the weekend and
it's 9:00am. The alarm clock should also go off if it's not the weekend and
it's 7:00am. Write the truth table and draw a gate-level diagram that
performs this logic.

Figure 7

14. Prove that NAND is logically complete

Homework03

1. We want to make a state machine for the scoreboard of the Texas

vs. Oklahoma Football game. The following information is required

to determine the state of the game:

1) Score: 0 to 99 points for each team

2) Down: 1, 2, 3, or 4

3) Yards to gain: 0 to 99

4) Quarter: 1, 2, 3, 4

5) Yardline: any number from Home 0 to Home 49, Visitor 0 to

Visitor 49, 50

6) Possesion: Home, Visitor

7) Time remaining: any number from 0:00 to 15:00, where m:s

(minutes, seconds)

(a) What is the minimum number of bits that we need to use to

store the state required?

(b) Suppose we make a separate logic circuit for each of the seven

elements on the scoreboard, how many bits would it then take

to store the state of the scoreboard?

(c) Why might the method of part b be a better way to specify the

state than the method of part a?

2. Shown below is a partially completed state diagram of a finite

state machine that takes an input string of H (heads) ant T (tails)

and produces an output of 1 every time the string HTHH occurs.

Figure 4

a. Complete the state diagram of the finite state machine that will

do this for any input sequence of any length

b. If this state machine is implemented with a sequential logic

circuit how many state variables will be needed?

3. (3.37)

If a particular computer has 8 byte addressability and a 8 bit

address space, how many bytes of memory does that computer

have?

4. (3.33)

Using Figure 3.21 on page 78 in the book, the diagram of the, 22-

by-3-bit memory.

a. To read from the third memory location, what must the values

of A[1:0] and WE be?

b. To change the number of locations in the memory from 4 to 60,

how many address lines would be needed? What would the

addressability of the memory be after this change was made?

c. Suppose the width (in bits) of the program counter is the

minimum number of bits needed to address all 60 locations in

our memory from part (b). How many additional memory

locations could be added to this memory without having to alter

the width of the program counter?

5. The figure below is a diagram of a 22-by-16-bit memory, similar in

implementation to the memory of Figure 3.21 in the textbook. Note

that in this figure, every memory cell represents 4 bits of storage

instead of 1 bit of storage. This can be accomplished by using 4

Gated-D Latches for each memory cell instead of using a single

Gated-D Latch. The hex digit inside each memory cell represents

what that cell is storing prior to this problem.

Figure 3: 22-by-16 bit memory

a. What is the address space of this memory?

b. What is the addressability of this memory?

c. What is the total size in bytes of this memory?

d. This memory is accessed during four consecutive clock cycles.

The following table lists the values of some important

variables just before the end of the cycle for each access.

Each row in the table corresponds to a memory access. The

read/write column indicates the type of access: whether the

access is reading memory or writing to memory. Complete the

missing entries in the table.

WE A[1:0] Di[15:0] D[15:0] Read/Write

0 01 xFADE

1 10 xDEAD

 xBEEF x0123 Read

 11 xFEED Write

6. (4.8)

Suppose a 32-bit instruction has the following format:

OPCODE DR SR1 SR2 UNUSED

If there are 255 opcodes and 120 registers, and every register is

available as a source or destination for every opcode,

a. What is the minimum number of bits required to represent

the OPCODE?

b. What is the minimum number of bits required to represent the

Destination Register (DR)?

c. What is the maximum number of UNUSED bits in the instruction

encoding?

7. A State Diagam

We wish to invent a two-person game, which we will call XandY

that can be played on the computer. Your job in this problem is

contribute a piece of the solution.

The game is played with the computer and a deck of cards. Each

card has on it one of four values (X, Y, Z, and N). Each player in turn

gets five attempts to accumulate points. We call each attempt a

round. After player A finishes his five rounds, it is player B's turn. Play

continues until one of the players accumulates 100 points. Your job

today is to ONLY design a finite state machine to keep track of the

STATE of the current round. Each round starts in the intial state,

where X=0 and Y=0. Cards from the deck are turned over one by

one. Each card transitions the round from its current state to its next

state, until the round terminates, at which point we'll start a new

round in the initial state.

The transistions are as follows:

X: The number of X's is incremented, producing a new state for

the round.

Y: The number of Y's is incremented, producing a new state for

the round.

Z: If the number of X's is less than 2, the number of X's is

incremented, producing a new state for the round. If the number of

X's is 2, the state of the current round does not change.

N: Other information on the card gives the number of points

accumulated. N also terminates the current round.

Important rule: If the number of X's or Y's reaches a count of 3,

the current round is terminated and another round is started. When a

round starts, its state is X=0, Y=0.

Hint: Since the number of X's and Y's specify the state of the

current round, how many possible states are needed to describe the

state of the current round.

Hint: A state cannot have X=3, because then the round would be

finished, and we would have started a *new* current round.

On the diagram below, label each state. For each state draw an

arrow showing the transition to the next state that would occur for

each of the four inputs. (We have provided sixteen states. You will

not need all of them. Use only as many as you need).

Note, we did not specify outputs for these states. Therefore, your

state machine will not include outputs. It will only include states and

transistions represented by inputs.

8. Trying Out Flip-Flops

The Master-Slave flipflop we introduced in class is shown below.

Note that the input value is visible at the output after the clock

transitions from 0 to 1. Shown below is a circuit constructed with

three of these flipflops.

Your job: Fill in the entries for D2, D1, D0 for each of clock cycles

shown: (In Cycle 0, all three flip-flops hold the value 0)

In 10 words or less, what is this circuit doing?

Homework04

1. What does the following program do (in 20 words or fewer):

0101 100 100 1 00000

1001 000 001 111111

0001 000 000 1 00001

0001 000 000 000 010

0000 011 000000001

0001 100 100 1 00001

1111 0000 0010 0101

2. What does the following program do (in 20 words or fewer):

0101 000 000 1 00000

0101 101 001 1 00001

0000 010 000000001

0001 000 000 1 00001

1111 0000 0010 0101

3. (Adapted from 5.31) The following diagram shows a snapshot of the 8

registers of the LC-3 before and after the instruction at location x1000

is executed. Fill in the bits of the instruction at location x1000.

Register Before After

R0 x0000 x0000

R1 x1111 x1111

R2 x2222 x2222

R3 x3333 x3333

R4 x4444 x4444

R5 x5555 xFFF8

R6 x6666 x6666

R7 x7777 x7777

Memory Location Value

x1000 0001 ________________________

4. The memory locations x3000 to x3007 contain the values as shown in

the table below. Assume the memory contents below are loaded into

the simulator and the PC has been set to point to location x3000.

Assume that a breakpoint has been placed to the left of the HALT

instruction (i.e. at location x3006 which contains 1111 0000 0010

0101). Assume that before the program is run, each of the 8 registers

has the value x0000 and the NZP bits are 010.

Memory Location Value

x3000 0101000000100000

x3001 0001000000100101

x3002 0010001000000100

x3003 0001000000000000

x3004 0001001001111111

x3005 0000001111111101

x3006 1111000000100101

x3007 0000000000000100

a. In no more than 15 words, summarize what this program will do

when the Run button is pushed in the simulator.

Hint: What relationship is there between the value loaded from

memory and the final value in R0 after the program has

completed?

b. What are the contents of the PC, the 8 general purpose

registers (R0-R7), and the N, Z, and P condition code registers

after the program completes?

c. What is the total number of CPU clock cycles that this program

will take to execute until it reaches the breakpoint?

Note: You should refer to the state machine (pg 702) to

determine how many cycles an instruction takes. Assume each

state that access memory takes 5 cycles to complete and every

other state takes 1 cycle to execute. States that check for ACV

also take 1 cycle to execute

5. What does the following program do (in 15 words or fewer)? The PC is

initially at x3000. (Assume that before the program is run,R0 has the

value x0000.)

Memory Location Value

x3000 0001 000 000 1 10000

x3001 0010 001 011111110

x3002 0000 010 000000100

x3003 0000 011 000000001

x3004 0001 000 000 1 00001

x3005 0001 001 001 000 001

x3006 0000 111 111111011

X3007 1001 000 000 111111

X3008 0001 000 000 1 00001

x3009 1111 0000 0010 0101

6. Prior to executing the following program, memory locations x3100

through x4000 are initialized to random values, exactly one of which is

negative. The following program finds the address of the negative

value, and stores that address into memory location x3050. Two

instructions are missing. Fill in the missing instructions to complete the

program. The PC is initially at x3000.

Memory Location Value

x3000 1110 000 011111111

x3001

x3002

x3003 0001 000 000 1 00001

x3004 0000 111 111111100

x3005 0011 000 001001010

x3006 1111 0000 0010 0101

7. The LC-3 has just finished executing a large program. A careful

examination of each clock cycle reveals that the number of executed

store instructions (ST, STR, and STI) is greater than the number of

executed load instructions (LD, LDR, and LDI). However, the number

of memory write accesses is less than the number of memory read

accesses, excluding instruction fetches. How can that be? Be sure to

specify which instructions may account for the discrepancy

8. We would like to have an instruction that does nothing. Many ISAs

actually have an opcode devote to doing nothing. It’s usually called

NOP, for NO OPERATION. The instruction is fetched, decoded, and

executed. The execution phase is to do nothing! Which of the following

three instructions could be used for NOP and have the program still

work correctly?

a) 0001 001 001 1 00000

b) 0000 111 000000001

c) 0000 000 000000000

 What does the instruction(s) couldn’t be used for NOP do that other

do not do?

9. The LC-3 does not have an opcode for the logical function OR. The

four instruction sequence below performs the OR of the contents of

register 1 and register 2 and puts the result in register 3. Fill in the two

missing instructions so that the four instruction sequence will do the

job.

1) 1001 100 001 111111

2)

3) 0101 110 100 000 101

4)

Homework06
1. The following program is supposed to print the number 5 on the screen. It does not work.

Why? Answer in no more than ten words, please.

2.The following LC-3 program is assembled and then executed. There are no assemble time or
run-time errors. What is the output of this program? Assume all registers are initialized to 0 before
the program executes.

3.The following nonsense program is assembled and executed.

 .ORIG x3000

 JSR A

 OUT ;TRAP x21

 BRnzp DONE

A AND R0,R0,#0

 ADD R0,R0,#5

 JSR B

 RET

DONE HALT

ASCII .FILL x0030

B LD R1,ASCII

 ADD R0,R0,R1

 RET

 .END

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 .ORIG x3000

 ST R0, #6 ; x3007

 LEA R0, LABEL

 TRAP x22

 TRAP x25

LABEL .STRINGZ "FUNKY"

LABEL2 .STRINGZ "HELLO WORLD"

 .END

1

2

3

4

5

6

7

8

How many times is the loop executed? When the program halts, what is the value in R3? (If you
do not want to the arithmetic, it is okay to answer this with a mathematical expression.)

4.The program below, when complete, should print the following to the monitor:

 ABCFGH

Insert instructions at (a)–(d) that will complete the program.

 .ORIG x4000

 LD R2,BOBO

 LD R3,SAM

AGAIN ADD R3,R3,R2

 ADD R2,R2,#-1

 BRnzp SAM

BOBO .STRINGZ "Why are you asking me this?"

SAM BRnp AGAIN

 TRAP x25

 .BLKW 5

JOE .FILL x7777

 .END

1

2

3

4

5

6

7

8

9

10

11

12

 .ORIG x3000

 LEA R1, TESTOUT

BACK_1 LDR R0, R1, #0

 BRz NEXT_1

 TRAP x21

 ------------ (a)

 BRnzp BACK_1

 ;

NEXT_1 LEA R1, TESTOUT

BACK_2 LDR R0, R1, #0

 BRz NEXT_2

 JSR SUB_1

 ADD R1, R1, #1

 BRnzp BACK_2

 ;

NEXT_2 ------------ (b)

 ;

SUB_1 ------------ (c)

K LDI R2, DSR

 ------------ (d)

 STI R0, DDR

 RET

DSR .FILL xFE04

DDR .FILL xFE06

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

5.Shown below is a partially constructed program. The program asks the user his/her name and
stores the sentence “Hello, name” as a string starting from the memory location indicated by the
symbol HELLO. The program then outputs that sentence to the screen. The program assumes that
the user has finished entering his/her name when he/she presses the Enter key, whose ASCII code is
x0A. The name is restricted to be not more than 25 characters.

Assuming that the user enters Onur followed by a carriage return when prompted to enter
his/her name, the output of the program looks exactly like:
 Please enter your name: Onur
 Hello, Onur

Insert instructions at (a)–(d) that will complete the program.

TESTOUT .STRINGZ "ABC"

 .END

25

26

 .ORIG x3000

 LEA R1,HELLO

AGAIN LDR R2,R1,#0

 BRz NEXT

 ADD R1,R1,#1

 BR AGAIN

NEXT LEA R0,PROMPT

 TRAP x22 ; PUTS

 ------------ (a)

AGAIN2 TRAP x20 ; GETC

 TRAP x21 ; OUT

 ADD R2,R0,R3

 BRz CONT

 ------------ (b)

 ------------ (c)

 BR AGAIN2

CONT AND R2,R2,#0

 ------------ (d)

 LEA R0, HELLO

 TRAP x22 ; PUTS

 TRAP x25 ; HALT

NEGENTER .FILL xFFF6 ; -xoA

PROMPT .STRINGZ "Please enter your name: "

HELLO .STRINGZ "Hello, "

 .BLKW #25

 .END

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

	1
	2
	3
	4
	5
	6

