

© ¥R
FRERAE= N TR TS5 —

fEd (65)
BREFER, —REHECRIEL, SRS
ik QEFHIER, NAZADTES
KUEFHRY, LRIELHTES

WHE (693+24)

ARSI R, SEAMNLIS

FHEFGEMFIRERNS, BREDESERIN2S

FARE: FREER, ETRORFRESEMLY, RIAFIMEFOTUREH2H

~ —_ AY
) R
KK (489+10%)
ORIRELL, FNLKH
FE—RLRANFEE TR, BRI RACES TN
MHINSEE: LC-3L4mas. 1EI=R, &5
HEAMEZERFEANTLR M, HthEZFTROEML~21, el IR
%i% (20+204})

FRMNFEHR, WK, HHE1005
BEERTMREEE. H=E., 58, E4EEEE

6+6+2+48+10+20+20=1124}
PS: RRBITEIT1007FHZ1003 2R H %

O iR
HFEin)@
1. A RIFERIEE, PEZFHZH
2. R EIRBEKRAIPOF, B LEER A&/
AEARFES, AEHEREKHFFPDF
WAL EIEE latex, markdown 6 PDF

.MMM BIRBER, BERERKNMMREFMHERFS, BF
L=

G iR

L.

(Adapted from problem 1.5 in the textbook)
Say we had a "black box," which takes two numbers as input and outputs their
sum. See Figure 1.10a in the Textbook or the following figure. Say we had
another box capable of multiplying two numbers together. See Figure 1.10b. We
can connect these boxes together to calculate p * (m + n). See Figure 1.10c.
Assume we have an unlimited number of these boxes. Show how to connect them
together to calculate:

a. axtb

b. The average of the four input numbers w, X, y, and z

c. a%+ 2ab+ b% (can you do it with one add box and one multiply box?)

d. a°(can you do it using only 3 multiply boxes?)

G iR

2. (2.3)

a. Assume that there are about 400 students in your class. If every student is
to be assigned a unique bit pattern, what is the minimum number of bits
required to do this?

b. How many more students can be admitted to the class without requiring
additional bits for each student's unique bit pattern?

&
% 2"=b
) Y > 400 . Sl
2bzpy

21=138

X= ? 282554

ot least 7 bits
L) .77 500 = §)2- 4o =2

Il students can be Mmiffq{_

G iR

3. (Adapted from 2.13)

Without changing their values, convert the following 2's complement binary
numbers into 8-bit 2's complement numbers.

a. 010110

b. 1101

c. 1111111000
d. 01

ooojo |l 0
ol © 1111110}

Ity gpo0: 1111] 000
0]

0000b0 0 |

R PRIEOR-1/785F, BN11111F000000, 243K {15038 % B {H — 140In0000 1 BB PERT, 3
B BIALUR S H 45 R #13K 400000, (HRFEBHER —Adtfr, BT RA=4HMe, I
A1~ 17EH000001 2 fE 5 £ R0, MAZ100000, 7EH, HMbIEEFT, WML LEHDE
e, ZE{rbithhst B BRER,

Note in particular the representations for —1 and 0, thatis, 11111 and 00000.
When we add 00001 to the representation for —1, we do get 00000, but we also
generate a carry. That carry, however, does not influence the result. That is, the
correct result of adding 00001 to the representation for —1 is 0, not 100000.
Therefore, the carry is ignored. In fact, because the carry obtained by adding
00001 to 11111 is ignored, the carry can always be ignored when dealing with
2’s complement arithmetic.

G iR

4. (Adapted from 2.17)
Compute the following. Assume each operand is a 2's complement binary number.

a. 01+1011
b. 11+01010101 a. J%% e
c. 0101+ 110 60
d. 01+10 b olofolo] vlob]00
g
~G75oio0
ol |
111 0 N vy SR
— " ool
[ool]

G iR

5. Convert the following 8-bit 2's complement binary numbers into decimal

numbers. : g
olofofo| = Jur+2"e2
a. 01010101 =14 4Hb+ b
b. 10001101 2
c. 10000000 jovolial 1wl
d. 11111111 :»Cuzi Farat)
= - (e 1bt32tbE)
=~ (80+35)
= -g
{ 0000000
RN
[| 000000 |

2z ={ i)
=]

i, ERMNIS-bitRG S, DRI T HIEOFISA ER KR AT 154 U HIAMOFES 5 B
IR, MICFERATIS+I5+1=3IMBF, ROVGES- LA UARR=2/MGF, HBa, HT—BEE
1000028 2 5y KRB Y2 ?

ROVERF - 1RF£L11], —2£11110, —3R11101, fKKk¥kHf. BF, RMKHA, -151
B £10001, nRH1000148460R1, MAEH10000, FBLL, WIRALUNRIES R, BRATTLALLEG
1000034 Bz A {H—16,

EESTEP, B B—"WHRHLC-3 (LCHELittle Computer) I RHL. LC-33RA
16-bitkhAB 5K, FEILLC-3RI%E R RTEE h M —32 768%+32 767 Z I AT A B .

Wenote that —1is 11111, =2is 11110, =3 is 11101, and so on. If we continue
this, we note that —15 is 10001. Note that, as in the case of the positive represen-
tations, as we sequence backwards from representations of —1 to —15, the ALU
is subtracting 00001 from each successive representation. Thus, it is convenient
to assign to 10000 the value —16; that is the value one gets by subtracting 00001
from 10001 (the representation for —15).

In Chapter 5 we will specify a computer that we affectionately have named
the LC-3 (for Little Computer 3). The LC-3 operates on 16-bit values. Therefore,
the 2’s complement integers that can be represented in the LC-3 are the integers
from —32,768 to +32,767.

1 8 | s 23

(S) #Eﬁz_ (exponent) RB¥ (fraction)

N=(-1yx1.2% x2 fe¥-127 L I<3IEF <254
E2-2 FafkR

Most ISAs today spebify more than one floating poin't data type. One of them,
usually called floar, consists of 32 bits, allocated as follows:
1 bit for the sign (positive or negative)
8 bits for the range (the exponent field)
23 bits for precision (the fraction field)

In most computers manufactured today, the format of the 32-bit floating point
data type is as shown in Figure 2.3.

 JEPVIEEN: ey PU—. ; —

’ S l exponent fraction

Figure 2.3 The 32-bit floating point data type.

G iR

6. Express the value 0.3 in the 32-bit floating point format that we discussed
in class today. Feel free to only show fraction bits [22:15], rather than all
the fraction bits, [22:0]. Notation: The symbol [22:15] signifies all 8 bits
from bit 22 to bit 15.

001111101 00110011

@ 0.3 =00 |oo| |oo]| [ve| Joo] == -

03%2 z0.b o
I

064 =|-2

0.2£2 = 0.4 o
042 =04 o
032 =16 r
0402 =12 [

apjesg 03 = I oo I¥l | ol £ 272

434 0
aﬁ)& 1ol (rrS—I)']:—x)
B 00 Joo] lvo] [w]

[z?:ld = OD| IOUI l

N,
”5)
O (%5
7. Convert the following floating point representation to its decimal
equivalent:
1 10000010 10101001100000000000000

-1319/64

We | &

T
Looowo [0 = 2+ 2 il 12 2’51’5775
l)%*l"ﬂ =3

%@ lolaloq;)aoVDV"" 0

K = 2« lelolooll

1ol . o)ool|

- L W
Betel #3742 M ”2”'5-‘17
R R E

413%-

G iR

8. Add the two hexadecimal 2's complement integers below:

x90A

+ x4123
F90A + 4123 = 3A2D

G iR

9. (Adapted from 2.50)
Perform the following logical operations. Express your answers in
hexadecimal notation.
a. xABCD OR x9876
xBBFF

b. x1234 XOR x1234

x0000

c. XFEED AND (NOT(xBEEF))

x4000

OREA %

10.(2.54)

Fill in the truth table for the equations given. The first line is done as an
example.

Q1 = NOT (NOT(X) OR (X AND Y AND Z))
Q2 = NOT ((Y OR Z) AND (X AND Y AND Z))

[x v z | a1 a2

b o o o 1

\ 0o o 1 0 1

\ o 1 o 0 1

\ 8 1 1 0 1

\ 1 0 o0 11

\ 1 9 1 11

\ 1 1 o0 1 T

\ 1 1 1 0 [)

OREA %

11.(2.51)
What is the hexadecimal representation of the following numbers?

a. 25,675
x644B

b. 675.625 (i.e. 6752), in the IEEE 754 floating point standard

x4428E800

c. The ASCII string: Hello
x48656C6C6F

G iR

1

8

23

(S)

#E&v (exponent)

2% (fraction)

|EEE754 0 297F m BB R TR A S R/NEDHE T/
R/NEBNXEZ D

N

b

?

EERTOERK,

B —EHORIEL,

Mi—E&A, B/\LIFTFEIE, HAR11111110R
254, WAmBEL27, 8127

RERMEEL, MR Rt INRE—L, Bk
2N0+2A-1+++2N-23=2-21-23

XA ANL27, EEAIER H2/127 = (2-2/-23),18
2/128-2/104

(2 = 2723) i 2127

1.0 * 27126

2.7.1.2 Infinities

We noted above that the floating point data type represented numbers expressed
in scientific notation in normalized form provided the exponent field does not
contain 00000000 or 11111111.

If the exponent field contains 11111111, we use the floating point data type to
represent various things, among them the notion of infinity. Infinity is represented
by the exponent field containing all 1s and the fraction field containing all Os. We
represent positive infinity if the sign bit is 0 and negative infinity if the sign bitis 1.

2.7.1.3 Subnormal Numbers
The smallest number that can be represented in normalized form is
N = 1.00000000000000000000000 x 2-!26

What about numbers smaller than 2~'?° but larger than 0? We call such num-
bers subnormal numbers because they cannot be represented in normalized form.
The largest subnormal number is

N=011111111111111111111111 x27'26
The smallest subnormal number is
N = 0.00000000000000000000001 x 27126 i e., 2723 x 2-126 which is 2714,

Note that the largest subnormal number is 2726 minus 2-'%°. Do you see why
that is the case?

et RHES ey
L s | =0 20
e=emin-1 f#0 0.6 x 25
Cmin = € = Canx - Lix2*
e=equtl f=0 3%
O] £#0 NaN

o>

CS1002A.02 BB K188

TERRE
2021 #

1. What is the smallest positive normalized number that can
be represented using the IEEE Floating Point standard?

< FREERR
lb__8b 23b

‘ S ‘Exponent‘ Fraction

* Normalized number:
* Exponent: [00000001, 11111110]

* Smallest positive normalized number
* S =0; E=00000001; F = 000000---000
e 2/\(-126)

s R##s ey
e=ena1 s E
e=equ1 o B

. 1.£x2°
e=egut1 = 5
= A NaN

DHa

What about the smallest positive integer that can NOT be
represented using IEEE Floating Point standard”?

« MAE
1.[23bits] x 27126~127

o Fe2KHH Y T a) EREKAL; FTIN20~ 22* HRRE R
- 23z iE

¢ 111+111— 111-+111000-
* ReeRTAS/NEER

+ 1.00..000(23/M0)1x 224

o BI224 4+ 1

3. Draw a transistor-level diagram for a three-input NAND
gate and a three-input NOR gate.

* OUT == 1, GNDAE |, +1518

| ouT

* OUT == 0, GND% |, + fNEB

i * OUTRBE R A GNDF1+

6. (2) Implement the 4-to-1 mux using only 2-to-1 muxes
making sure to properly connect all of the terminals.

- YRIERRR

6. (3) Implement F = A XOR B using ONLY two 2-to-1
muxes. You are not allowed to use a NOT gate

* XOR: AB + AB

e 2-1 mux SCIP XOR
*2-1mux: SA+SB

10. What is the state after 50 cyles. How many cycles does it take
for a specific state to show up again? initially the state is 000000

D S Cycle1 A: 000000
out
Cycle1 B: 100000
WE ==1out=D
T WE == 0. out Hold Cycle2 A: 110000
out Cycle2 B: 111000
R Cycle3 A: 111100

Cycle3 B: 111110
Cycle4 A: 111111
Cycle4 B: 011111
Cycle5 A: 001111
Cycle5 B: 000111
Cycle6 A: 000011
Cycle6 B: 000001

[i Cycle7 A: 000000

t=0

11. Draw the transistor level circuit of a 2 input XOR gate

—d, |
6 T maq
! ¢ i
—°|:r i qj B—d| L
Ly \;[‘/ = -
1 —iC

Thank Youl!

	1
	2

