1. (Adapted from problem 1.5 in the textbook)
Say we had a "black box," which takes two numbers as input and outputs
their sum. See Figure 1.10a in the Textbook or the following figure. Say we
had another box capable of multiplying two numbers together. See figure
1.10b. We can connect these boxes together to calculate p * (m + n). See
Figure 1.10c. Assume we have an unlimited number of these boxes. Show
how to connect them together to calculate:

a. axtb

-
- 4

ax

|

ax+b

b. The average of the four input numbers w, x, y, and z

z 14

-—
-—
-
[S—

W+ X y+z

wH+Xx+y+z

|

wH+x+y+z
4

c. a?+ 2ab + b? (can you do it with one add box and one multiply
box?)

-
-

a+b

|

a'+2ab+b°

d. a® (can you do it using only 3 multiply boxes?)

mls.’

2. (2.3)
a. Assume that there are about 400 students in your class. If every
student is to be assigned a unique bit pattern, what is the minimum
number of bits required to do this?

9

b. How many more students can be admitted to the class without
requiring additional bits for each student's unique bit pattern?

112
3. (Adapted from 2.13)
Without changing their values, convert the following 2's complement binary

numbers into 8-bit 2's complement numbers.
a. 010110

0001 0110
b. 1101

1111 1101
c. 1111111000

11111000

d. 01

00000001

4. (Adapted from 2.17)
Compute the following. Assume each operand is a 2's complement binary

number.
a. 01 +1011

1100

b. 11 + 01010101
01010100

c. 0101 + 110
0011

d. 01+10
11

5. Without changing their values, convert the following 8-bit 2's complement
binary numbers into decimal numbers.
a. 01010101

85
b. 10001101
-115
c. 10000000
-128
d. 11111111
-1

. Express the value 0.3 in the 32-bit floating point format that we discussed
in class today. Feel free to only show fraction bits [22:15], rather than all
the fraction bits, [22:0]. Notation: The symbol [22:15] signifies all 8 bits
from bit 22 to bit 15.

001111101 00110011

. Convert the following floating point representation to its decimal
equivalent:

1 10000010 10101001100000000000000
-13 19/64
. Add the two hexadecimal 2's complement integers below:

x90A
+ x4123
F90A + 4123 = 3A2D

. (Adapted from 2.50)
Perform the following logical operations. Express your answers in
hexadecimal notation.

a. XABCD OR x9876

xBBFF

b. x1234 XOR x1234

x0000

c. XFEED AND (NOT(xBEEF))
x4000

10.(2.54)

Fill in the truth table for the equations given. The first line is done as an
example.

Q1 = NOT (NOT(X) OR (X AND Y AND 2))
Q2 = NOT ((Y OR Z) AND (X AND Y AND 2))

X Y Z | Q1 Q2

PR P RP|O| OO

R Rr|lO|lO|FR,| R, Oof O

Rl o|lrRr| Ol R|O| R

ol Rr|Rr|R|O| OO
PR RP|RP| R

11.(2.51)
What is the hexadecimal representation of the following numbers?
a. 25,675
x644B

b. 675.625 (i.e. 6752), in the IEEE 754 floating point standard

x4428E800

c. The ASCII string: Hello
x48656C6C6F

1. What is the smallest positive normalized number that can be
represented using the IEEE Floating Point standard?
2/ (-126)

0 00000001 000000...000

What about the smallest positive integer that can NOT be

represented using IEEE Floating Point standard?

2. What is the largest positive number that can be represented in a 32 bit
2's complement scheme?
2,147,483,647

01111...111

a. (Adapted from 3.17) Draw a transistor-level diagram for a three-
input NAND gate and a three-input NOR gate. Do this by
extending the designs from following Figures 3.5a and
3.8a(NAND). (Figures can also be found in the book on pages
63 & 65 respectively).

) 1”}\4”7 N OR, jaft&

A% c | out A ﬁ.—qq_

o o 0 | B 4”:'

0o 0 | 0 J

v | o© o C | out
o o 0 ‘

| o % o — ’
oo 0 ﬁ

O R o V|V
| 0

® 3 L\Pmﬁ' MAND I}aafe/

AR c | owt
c 0o 0O]

T
RGAME IRaREY iCl
o I |
e i A {maEh ot
EEN AR —j
[I s

b. Replace the transistors in your diagrams from part (a) with either
a wire or no wire to reflect the circuit’s operation when the
following inputs are applied:

A=1,B=0,C=0

[A
o B
0 c 0
_T[G___
[A Ol
4 gt
02 ;
===

c. The transistor circuit shown below produces the accompanying
truth table. The inputs to some of the gates of the transistors are
not specified. Also, the outputs for some of the input
combinations of the truth table are not specified. Complete both
specifications. i.e., all transistors will have their gates properly
labeled with either A, B, or C, and all rows of the truth table will
have a 0 or 1 specified as the output.

E % BH:J 4[AlB|c|ouT
2 0|00 1

ﬁ# 0(0[1] 1
ouT 0l110 1

o111

+ »1]0]0] 1

H 110[1] 0
1{1]0] o

1{1]1] o

Figure 1

4. Shown below are several logical identities with one item missing in
each. X represents the case where it can be replaced by either a 0 or a
1 and the identity will still hold. Your job: Fill in the blanks with either a
0,1, or X.

For example, in part a, the missing item is X. ThatisOOR0=0and 0
OR1=1.

a. OORX=__
X

b. 1TORX=___
1

c. OANDX=___
0

d. TANDX=___
X

e. __ XORX=X
0

f. XXORX=___
0

5. (3.25)
Logic circuit 1 in Figure 3.36 (page 87 of the book) has inputs A, B, C.
Logic circuit 2 in Figure 3.37 (page 87 of the book) has inputs A and B.
Both logic circuits have an output D. There is a fundamental difference
between the behavioral characteristics of these two circuits. What is
it? Hint: What happens when the voltage at input A goes from0to 1 in
both circuits?

Figure 3.36 is a 2-input mux, which combinational logic i.e., D is
the output of the circuit.

Figure 3.37 is a storage element, which stores the data value
previously stored in the latch.

6. (Adapted from 3.28)

(2) Fill in the truth table of 4-to-1 mux:

(7]
-
[7]
o
(7]
=
[72]
o

- b | b] bbb e b =] b | ad |t |t et | | | D IO IOIOICIDICIOIDIOIOICIOIDIO IS

el el el Gl el el el B £=1 =T [=1 (=1 [=]} [} Feu’} Pl B B B B B Bl B B (el Fen) Fen)l Fan)l Fanl Pl e) Kem) s -~
e el el el £=d [=J [=1 [B B P B [}) Pl Fenll B B B B [endl Fnl Fen) Fenll B B B B ol Fen) Kl Kem I v o)
e B [=1 (= B B P)l Pl B BN Ml Pl BN B Fenl Fen)l B BN Kl e)l B PR Fen) Fen)l SR B Fen)l Fen)l B BV P} Fenl [@]
=lOo|=|o|=|o|=|o=|o|=|o]|=|o|—m|o|=m o= |o|= o= |o|=m|o|=|o|=|o[=|o|0

sl lololololololo|o|= ===l ———|lolo|lo|o|lo|o|o|o |
alalalmlo|lo|lo|o=m|—|——|lolo|lolo|=|=|=|—m|lolo|c|Oo|=|=|=|—=|O|lC0|C|C|0W
=l=alolol=|—=|olol=|—=|olo|=|—|olo|=|—=|o|lo|=|=|o|o|=|—|c|o|=|—=|0|0|O
slo|lm oo |o]lm|o|m|o|—|ol- o= |om|o|lm|o|=m (o= |o|—m|o|m|o|—|o|0
=2 = = = =)
Q~[S~ S~ O~ O~ Q=[O O~~~ R~ SR|e
—

____x_;_,__x_;_;_;__A_,_;_;_,_,_;_;_,_;_;_;_A_,_A_;_,_,_;_;_,_‘
sl l=al=]=]l= === lm == m | lololo|lolo|o|o|lo|lo|o|o|lo|o|o|o|o

OQOICICICICICICICICIC|IC|ICIC|IC|ICICICIC(CICIC|ICICICICICI|IC|ICIQC|I0 |0 |0
=

(2) Implement the 4-to-1 mux using only 2-to-1 muxes making sure to
properly connect all of the terminals. Remember that you will have 4

inputs (A, B, C, and D), 2 control signals (S1 and S0), and 1 output
(ouT).

A B C D
| | | |
\0 1/ \0 1/
\ [<------ SO \ [<------ SO
I |
| l—
\' 0 1/
\ [<------ S1
|
F

You require 3 muxes. First, the input are A and B and the select
line is SO. Second, inputs are C and D and the select line is also
S0. Third, is a mux where both its inputs are the outputs of the
first two muxes and select line is S1.

(3) Implement F = A XOR B using ONLY two 2-to-1 muxes. You are not
allowed to use a NOT gate (A" and B' are not available).

1 0

\0 1/

7. (Adapted from 3.31)
Say the speed of a logic structure depends on the largest number of
logic gates through which any of the inputs must propagate to reach an

output. Assume that a NOT, an AND, and an OR gate all count as one
gate delay. For example, the propagation delay for a two-input decoder
shown in Figure 3.11 is 2 because some inputs propagate through two
gates.
a. What is the propagation delay for the two-input mux shown in
Figure 3.12 (page 68)?

3

b. What is the propagation delay for the 4-bit adder shown in
Figure 3.16 (page 71)?

12
c. Can you reduce the propagation delay for the circuit shown in

Figure 3 by implementing the equation in a different way? If so,
how?

[ow B o B v < B

m

Figure 3
You can construct a tree-like structure.

E = ((A AND B) AND (C AND D)) AND E)

8. (3.32)
Recall that the adder was built with individual "slices" that produced a
sum bit and carryout bit based on the two operand bits A and B and the
carryin bit. We called such an element a full-adder. Suppose we have a
3-t0-8 decoder and two six-input OR gates, as shown in Figure 3
below. Can we connect them so that we have a full-adder? If so,
please do. (Hint: If an input to an OR gate is not needed, we can simply
put an input 0 on it and it will have no effect on anything. For example,
see the figure below.)

Al
non
i1 = Ei

Bl —— DECODER

Figure 3

AlBiL O

Bl =1 DECODER

100 —

. We wish to design a controller for an elevator such that if you push a
button for a desired floor, the controller will output the floor number that
the elevator should go to. However, to deter lazy people from going up
or down one floor, if you push the button for the next floor (up or down),
the elevator will stay on its current floor. If you push the button for the
same floor that you're currently on, the controller will output the current
floor number. There are four floors in the building.

Your job:

a. Draw the state diagram of the elevator scheduling.

Ll

&j push | Preh 133
@ RE)
s

= ,msk n

@i'i? €D

ZEx Pl

. Construct a complete truth table for the elevator controller. It is
not necessary to draw the logic here; the truth table is sufficient.

Since there are four floors, you will need 2 bits to represent
afloor. Let the logic variable C[1:0] represent the current
floor, R[1:0] represent the requested floor, and D[1:0]
represent the floor the elevator should go to given a current
floor and a requested floor. Shown below is the truth table
for this combinational logic circuit.

C1COR1RO|D1DO

PRPPRPPPPPPOOOOOOOO
PFRPRPPOOOORRPRERPERLROOOO
PP OORPFRPROORRFRPROORER OO
POPRPRORPRORFRPRORPRORORORO
°
PRPPRPOO0OO0OO0OORRRRERRPROOO

10.
A logic circuit consisting of 6 gated D latches and 1 inverter is shown
below:

I ——

gated gated gated gated gated gated
D D D D D D
T T T T T T
clk clk clk clk ol elk
Figure 5

_I_Ll_l_l__l_l_l__l_l_ﬂ_ﬁ -

T oyelel coyole2 oycle3 et

t=0

Figure 6

Let the state of the circuit be defined by the state of the 6 D latches.
Assume initially the state is 000000 and clk starts at the point labeled
t0.

Question: What is the state after 50 cyles. How many cycles does it
take for a specific state to show up again?

Every 6 clock cycles a pattern repeats. A and B represent the first
half and the second half of each clock cycle respectively.

Cyclel A: 000000
Cyclel B: 100000
Cycle2 A: 110000
Cycle2 B: 111000
Cycle3 A: 111100
Cycle3 B: 111110
Cycled A: 111111
Cycle4 B: 011111
Cycle5 A: 001111
Cycle5 B: 000111
Cycle6 A: 000011
Cycle6 B: 000001

Cycle7 A: 000000

Because 50 = 6*8+2 after 50 cycles the state will be the same as
after 2 cycles. It will be in state 111000 after 50 cycles

11.

Draw the transistor level circuit of a 2 input XOR gate

AB +AB = XOR(A, B)

1 M

12.(Adapted from 3.36)
A comparator circuit has two 1-bit inputs, A and B, and three 1-bit
outputs, G (greater), E (equal), and L (less than). Refer to figures 3.43
and 3.44 on page 106 in the book for this problem..

a. Draw the truth table for a 1-bit comparator.

A|IB|G|E]|L

b. Implement G, E and L for a 1-bit comparator using AND, OR,
and NOT gates.

G=AB',L=AB,E=AB'+AB
c. Figure 3.44 performs one-bit comparisons of the corresponding

bits of two unsigned integer A[3:0] and B[3:0]. Using the 12
one-bit results of these 4 one-bit comparators, construct a logic

circuit to output a 1 if unsigned integer A is larger than unsigned
integer B (the logic circuit should output O otherwise). The inputs
to your logic circuit are the outputs of the 4 one-bit comparators
and should be labeled G[3], E[3], L[3], G[2], E[2], L[2], ... L[O].
(Hint: You may not need to use all 12 inputs.)

Y = G[3] + E[3]G[2] + E[3]E[2]G[1] + E[3]E[2]E[1]G[0]

A[3] -
B3] g
Al2] G

E
o - 5>
Al1] €
BI1] :

:‘;)_

A[0]
B[0] :

13.0ne of Zhang San's students is always late to meetings, so Professor
Zhang San wants you to design an alarm clock to help his student be
on time. Your job is to design a logic circuit whose output Z is equal to
1 when the alarm clock should go off. The circuit will receive four input
variables (A, B, C, D) that answer four different yes/no question (1=yes,
0=no):
A <= s it going to be sunny today?
B <= Is it the weekend?
C <=lsit 7:00am?
D <=Is it 9:00am?

Zhang San wants the alarm clock to go off if it's sunny and it's either
7:00am or 9:00am. The alarm clock should go off if it's the weekend and it's
9:00am. The alarm clock should also go off if it's not the weekend and it's
7:00am. Write the truth table and draw a gate-level diagram that performs
this logic.

A B C D |ALARM

PFRPRPRRPRRPRRPPPRPOOOOOOOO

PRPPRPRPO0OO0OO0COORRRLRERLROOOO

PP OORPFPOORRPROORREROO

PORPRORORPROFRORORORO
o

14.Prove that NAND is logically complete.
NOT: A NAND A => NOT A
AND: (A NAND B) NAND (A NAND B) = NOT (A NAND B) => A AND
B

OR: NOT(NOT(A) AND NOT(B)) => A OR B

1. We want to make a state machine for the scoreboard of the Texas
vs. Oklahoma Football game. The following information is required
to determine the state of the game:

1) Score: 0 to 99 points for each team

N

Down: 1, 2, 3,0r 4

~ W

)
)
) Yards to gain: 0 to 99
) Quarter: 1, 2, 3,4

)

5) Yardline: any number from Home 0 to Home 49, Visitor 0 to

Visitor 49, 50
6) Possesion: Home, Visitor

7) Time remaining: any number from 0:00 to 15:00, where m:s
(minutes, seconds)

(a) What is the minimum number of bits that we need to use to
store the state required?

(100*100)*4*100*4*101*2*901 = 2912032000000.
241 < 2912032000000 < 2742 so we need 42 bits

(b) Suppose we make a separate logic circuit for each of the seven
elements on the scoreboard, how many bits would it then take
to store the state of the scoreboard?

1) 7 x 2 bits
2) 2 bits
3) 7 bits
4) 2 bits
5) 7 bits

6) 1 bit
7) 4 bits for minutes 6 bits for seconds
Total 43 bits

(c) Why might the method of part b be a better way to specify the
state than the method of part a?

The assignments in (b) are easier to decode

2. Shown below is a partially completed state diagram of a finite
state machine that takes an input string of H (heads) ant T (tails)
and produces an output of 1 every time the string HTHH occurs.

a) Complete the state diagram of the finite state machine that will
do this for any input sequence of any length

For example.

if theinput stringiss H H H H H T H H T H H H H H T H H T
the output wouldbe: 0 0 0 0 0 0 0 1 0 0 1 0 O O O O 1 O.

Note that the 8" coin toss () is part of two HTHIH sequences.

b) If this state machine is implemented with a sequential logic circuit

how many state variables will be needed?

3 bits

3. (3.37)

If a particular computer has 8 byte addressability and a 8 bit
address space, how many bytes of memory does that computer
have?

Number of byes = address space x adressability. 278 x
2”3 = 21 = 2048 bytes

4. (3.33)

Using Figure 3.21 on page 78 in the book, the diagram of the, 22-
by-3-bit memory.

a. To read from the third memory location, what must the values
of A[1:0] and WE be?

To read from the third location A[1:0] should be 10, to read from
memory the wg bit should be 0. To write to memory the WE bit must be 1.

b. To change the number of locations in the memory from 4 to 60,
how many address lines would be needed? What would the
addressability of the memory be after this change was made?

To address 60 locations you need 6 bits of address line, which means your
MAR is 6 bits . However since we did not change the number of bits
stored at each location the addressability is still 3 bits

c. Suppose the width (in bits) of the program counter is the
minimum number of bits needed to address all 60 locations in
our memory from part (b). How many additional memory
locations could be added to this memory without having to alter
the width of the program counter?

You need 6 bits for part b, which can address 64 different locations so you
could add 4 more locations and not have to increase the width of the
program counter.

5. The figure below is a diagram of a 22-by-16-bit memory, similar in
implementation to the memory of Figure 3.21 in the textbook. Note
that in this figure, every memory cell represents 4 bits of storage
instead of 1 bit of storage. This can be accomplished by using 4
Gated-D Latches for each memory cell instead of using a single
Gated-D Latch. The hex digit inside each memory cell represents
what that cell is storing prior to this problem.

A[1:0]
2} D/[15:12] D/[11:8] D,[7:4] D,[3:0]
®weD
WE
4 4 4 4 4 4 4 4
¢ x0 1 x1 — x2 | X3
" weD
WE
— x4 4 | x5 4 | x6 4 — x7 4
e D
WE
L] x8 4 ks x9 4] XA 4 L 1] xB 4
2 leD
WE
| o] xC L | xD £ | -] xE == |] xF 4
11 10 01 00 11 10 01 00 11 10 01 00 11 10 01 00
A[1:0] A[1:0] A[1:0] A[1:0]
a 4 2] 7
D[15:12] D[11:8] D[7:4] D[3:0]

Figure 3: 22-by-16 bit memory

a. What is the address space of this memory?

22=4 memory locations.

b. What is the addressability of this memory?
16 bits.

c. What is the total size in bytes of this memory?

8 bytes.

d. This memory is accessed during four consecutive clock cycles.
The following table lists the values of some important
variables just before the end of the cycle for each access.
Each row in the table corresponds to a memory access. The
read/write column indicates the type of access: whether the
access is reading memory or writing to memory. Complete the
missing entries in the table.

WE A[1:0] Di[15:0] D[15:0] Read/Write
0 01 xFADE x4567 Read
1 10 xDEAD xDEAD Write
0 00 XBEEF %0123 Read
1 11 xFEED xFEED Write

6. (4.8)
Suppose a 32-bit instruction has the following format:

OPCODE | DR | SR1 | SR2 | UNUSED

If there are 255 opcodes and 120 registers, and every register is
available as a source or destination for every opcode,

a. What is the minimum number of bits required to represent
the OPCODE?

255 opcode, 8 bits are required to represent the OPCODE

b. What is the minimum number of bits required to represent the
Destination Register (DR)?

120 registers, 7 bits to represent the DR

c. What is the maximum number of UNUSED bits in the instruction
encoding?

3 registers and 1 opcode, 3x7 + 8 = 29 bits. So there are 3 ununsed bits
7. A State Diagam

We wish to invent a two-person game, which we will call XandY
that can be played on the computer. Your job in this problem is
contribute a piece of the solution.

The game is played with the computer and a deck of cards. Each
card has on it one of four values (X, Y, Z, and N). Each player in turn
gets five attempts to accumulate points. We call each attempt a
round. After player A finishes his five rounds, it is player B's turn. Play
continues until one of the players accumulates 100 points. Your job
today is to ONLY design a finite state machine to keep track of the
STATE of the current round. Each round starts in the intial state,
where X=0 and Y=0. Cards from the deck are turned over one by
one. Each card transitions the round from its current state to its next
state, until the round terminates, at which point we'll start a new
round in the initial state.

The transistions are as follows:

X: The number of X's is incremented, producing a new state for
the round.

Y: The number of Y's is incremented, producing a new state for
the round.

Z: If the number of X's is less than 2, the number of X's is
incremented, producing a new state for the round. If the number of
X's is 2, the state of the current round does not change.

N: Other information on the card gives the number of points
accumulated. N also terminates the current round.

Important rule: If the number of X's or Y's reaches a count of 3,
the current round is terminated and another round is started. When a
round starts, its state is X=0, Y=0.

Hint: Since the number of X's and Y's specify the state of the
current round, how many possible states are needed to describe the
state of the current round.

Hint: A state cannot have X=3, because then the round would be
finished, and we would have started a *new* current round.

On the diagram below, label each state. For each state draw an
arrow showing the transition to the next state that would occur for
each of the four inputs. (We have provided sixteen states. You will
not need all of them. Use only as many as you need).

Note, we did not specify outputs for these states. Therefore, your
state machine will not include outputs. It will only include states and
transistions represented by inputs.

include states and transistions represented by inputs,

A A “f)"" ” oF <loles @"24 X
12 aur sk & ot <3
Nva) SPANS .1 :
H "(\v\‘.'\r) R \
A

1:’ *)] [«\‘\"k‘.J

,
2
%
2 \ (/
C oA — -
¥ 12l — i
o’ 2 -

O\OYO O

e Livrsibhom B \ N, X
N4 LT \
D™
8. Trying Out Flip-Flops

The we introduced in class is shown below.
MASTER SLAVE

input—__— D Q D Q output

WE — WE

CLK

Note that the input value is visible at the output after the clock
transitions from 0 to 1. Shown below is a circuit constructed with
three of these flipflops.

MS flip-flop

L

D Q
MS flip—flop

WE

D1

MS flip—flop

D2

Your job: Fill in the entries for D2, D1, DO for each of clock cycles
shown: (In Cycle 0, all three flip-flops hold the value 0)

Counter

cycleO | cyclel | cycle2 | cycle3 | cycle4 | cycle5| cycle6| cycle? .
\\"'\\'u'*s on fosiyy
[s s e s Y Y A Y OO N)

g

B0 (\ \ \ ol ©| © [¢
i \nerks O Positive

DI 0 \ \ @) [e) \ \ e \ @:s & of Do

poj 0 | o \ o \ o | |- vecks on

A '[7 /‘ Posirive edge "
W " / (..\ec_l(
ges in bold
In 10 words or less, what is this circuit doing?
DL)D|) Do ot S PN J\Ccfc 1‘\‘%

Homework04

1. What does the following program do (in 20 words or fewer):

2.

0101 100 100 1 00000
1001 000 001 111111
0001 000 000 1 00001
0001 000 000 000 010
0000 011 000000001

0001 100 100 1 00001
1111 0000 0010 0101

R2<R1 R4=1

R2>=R1 R4=0

What does the following program do (in 20 words or fewer):

0101 000 000 1 00000

0101 101 001 1 00001

0000 010 000000001

0001 000 000 1 00001

1111 0000 0010 0101

R5 is even R0O=0

R5 is odd RO=1

(Adapted from 5.31) The following diagram shows a snapshot of the 8
registers of the LC-3 before and after the instruction at location x1000
is executed. Fill in the bits of the instruction at location x1000.

Register Before After

RO x0000 x0000
R1 x1111 x1111
R2 X2222 xX2222
R3 x3333 x3333
R4 x4444 x4444

R5 x5555 XFFF8

R6 X6666 X6666

R7 x7777 xX7777
Memory Location Value

x1000

0001 101000111000

4. The memory locations x3000 to x3007 contain the values as shown in
the table below. Assume the memory contents below are loaded into
the simulator and the PC has been set to point to location x3000.
Assume that a breakpoint has been placed to the left of the HALT
instruction (i.e. at location x3006 which contains 1111 0000 0010
0101). Assume that before the program is run, each of the 8 registers
has the value x0000 and the NZP bits are 010.

Memory Location Value
x3000 0101000000100000
x3001 0001000000100101
%3002 0010001000000100
%3003 0001000000000000
%3004 0001001001111111
%3005 0000001111111101
%3006 1111000000100101
%3007 0000000000000100

a.

In no more than 15 words, summarize what this program will do
when the Run button is pushed in the simulator.

Hint: What relationship is there between the value loaded from
memory and the final value in RO after the program has
completed?

5is put in RO and shifted left the value at location x3007 times

What are the contents of the PC, the 8 general purpose
registers (R0O-R7), and the N, Z, and P condition code registers
after the program completes?

PC x3006
RO x0050
R1 x0000
R2 x0000
R3 x0000
R4 x0000
R5 x0000
R6 x0000
R7 x0000
N O

Z1

PO

What is the total number of CPU clock cycles that this program
will take to execute until it reaches the breakpoint?

Note: You should refer to the state machine (pg 702) to
determine how many cycles an instruction takes. Assume each
state that access memory takes 5 cycles to complete and every
other state takes 1 cycle to execute. States that check for ACV
also take 1 cycle to execute

Memory number Total Cycles
)) Cycles takes to _
Locatio Value Instruction of times for
exectue once _)
n executed instruction
010100000010000
X3000 0 AND 10 1 10
000100000010010
X3001 1 ADD 10 1 10
001000100000010
X3002 0 LD 17 1 17
000100000000000
X3003 0 ADD 10 4 40
000100100111111
X3004 1 ADD 10 4 40
3times
000000111111110 10 if not taken taken 1
X3005 Branch)) 43
1 11 if taken time not
taken

Total Cycles 10+10+17+40+40+43 = 160

5. What does the following program do (in 15 words or fewer)? The PC is
initially at x3000. (Assume that before the program is run,R0 has the
value x0000.)

Memory Location

Value

x3000 0001 000 000 1 10000
x3001 0010 001 011111110
x3002 0000 010 000000100

x3003

0000 011 000000001

%3004 0001 000 000 1 00001
x3005 0001 001 001 000 001
x3006 0000 111 111111011

X3007 1001 000 000 111111
X3008 0001 000 000 1 00001
x3009 1111 0000 0010 0101

Counts the number of bits that are set to 0 in the word at x3100

. Prior to executing the following program, memory locations x3100
through x4000 are initialized to random values, exactly one of which is
negative. The following program finds the address of the negative
value, and stores that address into memory location x3050. Two
instructions are missing. Fill in the missing instructions to complete the
program. The PC is initially at x3000.

Memory Location Value
%3000 1110 000 011111111
%3001 0110 001 000 000000
%3002 0000 100 000000010
x3003 0001 000 000 1 00001
%3004 0000 111 111111100
x3005 0011 000 001001010

x3006 1111 0000 0010 0101

7. The LC-3 has just finished executing a large program. A careful
examination of each clock cycle reveals that the number of executed
store instructions (ST, STR, and STI) is greater than the number of
executed load instructions (LD, LDR, and LDI). However, the number
of memory write accesses is less than the number of memory read
accesses, excluding instruction fetches. How can that be? Be sure to
specify which instructions may account for the discrepancy

A large number of LDI instructions (two read accesses) and STI instructions
(one read access and one write access) could account for this discrepancy.

8. We would like to have an instruction that does nothing. Many ISAs
actually have an opcode devote to doing nothing. It's usually called
NOP, for NO OPERATION. The instruction is fetched, decoded, and
executed. The execution phase is to do nothing! Which of the following
three instructions could be used for NOP and have the program still
work correctly?

a) 0001 001 001 1 00000

b) 0000 111 000000001

c) 0000 000 000000000

What does the instruction(s) couldn’t be used for NOP do that other

do not do?

a) Add R1, R1, #0 => differs from a NOP in that it sets the CC'’s.

b) BRnzp #1 => Unconditionally branches to one after the next
address in the PC. Therefore no, this instruction is not the same as
NOP.

c) Branch that is never taken. Yes same as NOP.

9. The LC-3 does not have an opcode for the logical function OR. The
four instruction sequence below performs the OR of the contents of
register 1 and register 2 and puts the result in register 3. Fill in the two
missing instructions so that the four instruction sequence will do the
job.

1) 1001100001 111111
2) 1001101010111111
3) 0101 110 100 000 101

4) 1001 011110111111

Chapter 7&8

1. consider the following program written in LC-3 assembly language:

.ORIG x3000
AND R5, R5, #0
LEA RO, ARRAY
LD R1, N
LDRR2, RO, #0
NOT R2, R2
ADD R2, R2, #1

LOOP LDR R3, RO, #0
ADD R3, R3, R2
BRnp DONE
ADD RO, RO, #1
ADD R1, R1, #-1
BRp LOOP
ADD R5, RS5, #1

DONE ST R5, OUTPUT
HALT

ARRAY .BLKW #20

N FILL #20

OUTPUT .BLKW #1
.END

What must be the case for 1 to be stored in OUTPUT? Answer in 15 words or fewer.

When all elements in array are same.

2.An Aggie tried to write a recursive subroutine which, when given an integer n,
return the sum of the first n positive integers. For example, for n =4, the

subroutine returns 10 (i.e., 1 + 2 + 3 + 4). The subroutine takes the argument n in
RO and returns the sum in RO.

0 N o U W N

10
11
12
13

Unfortunately, the recursive subroutine does not work.

SUM

ADD
STR
ADD
STR
ADD
ADD
JSR
ADD
LDR
ADD
LDR
ADD
RET

fewer.And modify the program to make it work.

There is no base case.

OW 0 N & U b W N =

R T
w N = O

—
IS

SUM

NEXT

ADD
STR
ADD
STR
ADD
ADD

R6,
R7,
R6,
R1,
R1,
RO,
SUM
RO,
R1,
R6,
R7,
R6,

R6,
R7,
R6,
R1,
R1,
RO,

R6,
R6,
R6,
R6,
RO,
RO,

RO,
R6,
R6,
R6,
R6,

#-1
#0
#-1
#0
#0
#-1

R1
#0
#1
#0
#1

What is the problem? Explain in 15 words or

R6,
R6,
R6,
R6,
RO,
RO,

BRnz NEXT

JSR
ADD
LDR
ADD
LDR
ADD
RET

SUM
RO,
R1,
R6,
R7,
R6,

RO,
R6,
R6,
R6,
R6,

#-1
#0
#-1
#0
#0
#-1

R1
#0
#1
#0
#1

3.Memory locations x5000 to x5FFF contain 2's complement integers. What does
the following program do?

1 .ORIG x3000

2 LD RI1, ARRAY
3 LD R2, LENGTH
4 AND R3, R3, #0

5 AGAIN LDR RO, R1, #0
6 AND RO, RO, #1
7 BRz SKIP

8 ADD R3, R3, #1
9 SKIP ADD R1, R1, #1
10 ADD R2, R2, #-1
11 BRp AGAIN

12 HALT

13 ARRAY .FILL x5000

14 LENGTH .FILL x1000

15 .END

Please write your answer in the box below. Your answer must contain at most 15 words. Any words
after the first 15 will NOT be considered in grading this problem.

count the number of odd numbers in the array.

4.1t is easier to identify borders between cities on a map if a adjacent cities are
colored with the different colors. For example, in a map of Texas, one would not
color Austin and Pflugerville with the same color, since dong so would obscure
the border bewteen the two cities.

Shown below is the recursive subroutine EXAMINE. EXAMINE examines the data
structure representing a map to see if any pair of adjacent cities have the same
color. Each node in the data structure contains the city’s color and the addresses
of the cities it borders. If no pair of adjacent cities have the same color, EXAMINE
returns the value 0 in R1. If at least one pair of adjacent cities have the same
color, EXAMINE returns the value 1 in R1. The main program supplies the address
of a node representing one of the cities in RO before executing JSR EXAMINE.

.ORIG x4000
EXAMINE ADD R6, R6, #-1
STR RO, R6, #0
ADD R6, R6, #-1
STR R2, R6, #0
ADD R6, R6, #-1
STR R3, R6, #0
ADD R6, R6, #-1
STR R7, R6, #0

o ~N O U1 s W N

=
= O

AND R1, R1, #0 ; Initialize output R1 to 0
LDR R7, RO, #0
BRn RESTORE ; Skip this node if it has already been visited

[=
w N

14

15 LD R7, BREADCRUMB

16 STR R7, RO, #0 ; Mark this node as visited
17 LDR R2, RO, #1 ; R2 = color of current node
18 ADD R3, RO, #2

19

20 AGAIN LDR RO, R3, #0 ; RO = neighbor node address
21 BRz RESTORE

22 LDR R7, RO, #1

23 NOT R7, R7 ; <-- Breakpoint here

24 ADD R7, R7, #1

25 ADD R7, R2, R7 ; Compare current color to neighbor’s color
26 BRz BAD

27 JSR EXAMINE ; Recursively examine the coloring of next neighbor
28 ADD R1, R1, #0

29 BRp RESTORE ; If neighbor returns R1=1, this node should return R1l=1
30 ADD R3, R3, #1

31 BR AGAIN ; Try next neighbor

32

33 BAD ADD R1, R1l, #1

34 RESTORE LDR R7, R6, #0

35 ADD R6, R6, #1

36 LDR R3, R6, #0

37 ADD R6, R6, #1

38 LDR R2, R6, #0

39 ADD R6, R6, #1

40 LDR RO, R6, #0

41 ADD R6, R6, #1

42 RET

43

44 BREADCRUMB .FILL x8000

45 .END

Your job is to construct the data structure representing a particular map. Before executing JSR
EXAMINE, RO is set to x6100 (the address of one of the nodes), and a breakpoint is set at x4012. The
table below shows relevant information collected each time the breakpoint was encountered during
the running of EXAMINE.

PC RO R2 R7

x4012 x6200 x0042 x0052
x4012 x6100 x0052 x0042
x4012 x6300 x0052 x0047
x4012 x6200 x0047 x0052
x4012 x6400 x0047 x0052
x4012 x6100 x0052 x0042
x4012 x6300 x0052 x0047
x4012 x6500 x0052 x0047
x4012 x6100 x0047 x0042
x4012 x6200 x0047 x0052
x4012 x6400 x0047 x0052
x4012 x6500 x0052 x0047
x4012 x6400 x0042 x0052
x4012 x6500 x0042 x0047

Construct the data structure for the particular map that corresponds to the relevant information
obtained from the break- points. Note: We are asking you to construct the data structure as it exists
AFTER the recursive subroutine has executed.

x6100

x6101

x6102

x6103

x6104

x6105

x6106

x6200

Xx6201

x6202

x6203

x6204

x6205

X6206

x8000

X0042

X6200

X6400

x6500

X0000

X8000

X0052

X6100

X6300

X6500

X0000

x6300

x6301

x6302

x6303

x6304

X6305

x6306

x6400

x6401

x6402

x6403

x6404

x6405

x6406

X8000

X0047

x6200

x6400

X0000

x8000

x0052

x6100

x6300

x6500

X0000

x6500

Xx6501

x6502

x6503

x6504

x6505

x6506

X8000

X0047

X6100

X6200

X6400

X0000

5. The following program, after you insert the two missing instructions, will
examine a list of positive integers stored in consecutive sequential memory

locations and store the smallest one in location x4000. The number of integers in
the list is contained in memory location x4001. The list itself starts at memory
location x4002. Assume the list is not empty (i.e., the contents of x4001 is not

zero.)

AGAIN

0 N o U1k W N

N R N T
s W N B O LV

.ORIG x3000

LDI
LD

LDR
ADD
BRz
ADD

LDR
NOT
ADD
ADD

BRnz

ADD

Rl, SIZE
R2, LISTPOINTER
RO, R2, #0

R1, R1, #-1
ALMOSTDONE
R2,R2,#1

R3,R2,#0
R4,R3
R4,R4,#1
R4,R0,R4
SKIP
RO,R3,#0

;Only one element in the list

15
16
17
18
19
20
21
22
23
24
25

SKIP

ALMOSTDONE

MIN
SIZE
LISTPOINTE

ADD R1,R1,#-1
BRp AGAIN

LD R5,MIN
STR RO,R5,#0
HALT

.FILL x4000
.FILL x4001

R .FILL x4002
.END

Your job: Insert the two the missing instructions.

6.Your job in this problem will be to add the missing instructions to a program
that detects palindromes. Recall a palin- drome is a string of characters that are
identical when read from left to right or from right to left. For example, racecar
and 112282211. In this program, we will have no spaces and no capital letters in
our input string - just a string of lower case letters.

The program will make use of both a stack and a queue. The subroutines for
accessing the stack and queue are shown below. Recall that elements are
PUSHed (added) and POPped (removed) from the stack. Elements are ENQUEUEd
(added) to the back of a queue, and DEQUEUEd (removed) from the front of the
queue.

0 ~N o U1 W N

N e R N e N
0 N o Uk W N B O VW

PUSH

POP

STACK

ENQUEUE

DEQUEUE

.ORIG x3050
ADD R6, R6, #-1
STR RO, R6, #0
RET

LDR RO, R6, #0
ADD R6, R6, #1
RET

.BLKW #20

.END

.ORIG x3080
ADD R5, R5, #1
STR RO, R5, #0
RET

LDR RO, R4, #0
ADD R4, R4, #1
RET

19 QUEUE .BLKW #20
20 .END

The program is carried out in two phases. Phase 1 enables a user to input a character string one
keyboard character at a time. The character string is terminated when the user types the enter key
(line feed). In Phase 1, the ASCII code of each character input is pushed on a stack, and its negative
value is inserted at the back of a queue. Inserting an element at the back of a queue we call
enqueuing.

In Phase 2, the characters on the stack and in the queue are examined by removing them, one by
one from their re- spective data structures (i.e., stack and queue). If the string is a palindrome, the
program stores a 1 in memory location RESULT. If not, the program stores a zero in memory location
RESULT. The PUSH and POP routines for the stack as well as the ENQUEUE and DEQUEUE routines for
the queue are shown below. You may assume the user never inputs more than 20 characters.

The program for detecting palindromes (with some instructions missing) .

Your job is to fill in the missing instructions.

1 .ORIG X3000

2 LEA R4, QUEUE
3 LEA R5, QUEUE
4 ADD R5, R5, #-1
5 LEA R6, ENQUEUE ;Initialize SP
6 LD R1, ENTER
7 AND R3, R3, #0
8 i

9 LEA RO,PROMPT

10 TRAP x22

11 PHASEl] TRAP x20

12 ADD R2,RO,R1

13 BRz PHASE2

14 JSR PUSH

15 NOT RO,RO

16 ADD RO,RO,#1

17 JSR ENQUEUE

18 ADD R3, R3, #1
19 BRnzp PHASEl

20 o

21 PHASE2 JSR POP

22 ADD R1,R0,#0

23 JSR DEQUEUE

24 ADD R1, RO, R1
25 BRnp FALSE

26 ADD R3,R3,#-1

27 BRz TURE

28 BRnzp PHASE2

29 B

30 TRUE AND RO, RO, #0

31
32
38
34
35
36
37
38
39
40

FALSE

RESULT
ENTER
PROMPT

ADD RO, RO, #1

ST RO, RESULT

HALT

AND RO, RO, #0

ST RO, RESULT

HALT

.BLKW #1

.FILL x-0A

.STRING "Enter an input string"
.END

Final exam 1is coming!
The problems will be
long and smelly.
Are you ready?

E CURRzE.
...
..

More zombies approaching!

HWO06 solution

1.The following program is supposed to print the number 5 on the screen. It does not work. Why?
Answer in no more than ten words, please.

1 .ORIG x3000

2 JSR A

3 ouT ; TRAP x21
4 BRnzp DONE

5 A AND RO,RO, #0

6 ADD RO,RO,#5

7 JSR B

8 RET

9 DONE HALT
10 ASCII .FILL x0030

11 B LD R1,ASCII
12 ADD RO,RO,R1
13 RET
14 .END

Need to save R7 so 1st service routine can return. Second RET overwrites the first RET value.

2.The following LC-3 program is assembled and then executed. There are no assemble time or
run-time errors. What is the output of this program? Assume all registers are initialized to 0 before
the program executes.

1 .ORIG x3000
2 ST RO, #6 ; x3007
3 LEA RO, LABEL
4 TRAP x22
5 TRAP x25
6 LABEL .STRINGZ "FUNKY"
7 LABEL2 .STRINGZ "HELLO WORLD"
8 .END
FUN

3.The following nonsense program is assembled and executed.

.ORIG x4000
LD R2,BOBO
LD R3,SAM
AGAIN ADD R3,R3,R2
ADD R2,R2,#-1
BRnzp SAM
BOBO .STRINGZ "Why are you asking me this?"
SAM BRnp AGAIN
9 TRAP x25
10 .BLKW 5
11 JOE LFILL x7777
12 .END

0 N o U W N P

How many times is the loop executed? When the program halts, what is the value in R3? (If you
do not want to the arithmetic, it is okay to answer this with a mathematical expression.)

Work: BOBO is length 28 (27 + 1 for null).BRnp AGAIN in binary is 0000 101 #-32 = 0000 101
1 1110 0000 = x0BEO. R3 holds x0BEO. R2 starts with the value of W which is x57. R. The loop executes
57 times. The final value of R3 is x0BEO + (x57 + x1) * x57 / x2 = xOBEO + xOEF4 = x1AD4 Or
#6868. Note that x0BEO is #3040.

4.The program below, when complete, should print the following to the monitor:
ABCFGH

Insert instructions at (a)-(d) that will complete the program.

BRnzp BACK 1

1 .ORIG x3000

2 LEA R1, TESTOUT

3 BACK 1 LDR RO, R1, #0

4 BRz NEXT 1

5 TRAP x21

6 ADD R1, R1, #1 ;(a)
7

8

G
9 NEXT 1 LEA R1, TESTOUT
10 BACK 2 LDR RO, R1, #0

11 BRz NEXT_ 2

12 JSR SUB_1

13 ADD R1, R1, #1

14 BRnzp BACK 2

15 g

16 NEXT 2 HALT i (b)
17 g

18 SUB_1 ADD RO, RO, #5 ;(c)

19 | K LDI R2, DSR

20 BRzp K 7 (d)
21 STI RO, DDR

22 RET

23 DSR .FILL xXFE04

24 DDR .FILL xFEO06

25 TESTOUT .STRINGZ "ABC"

26 .END

5.Shown below is a partially constructed program. The program asks the user his/her name and
stores the sentence “Hello, name” as a string starting from the memory location indicated by the
symbol HELLO. The program then outputs that sentence to the screen. The program assumes that
the user has finished entering his/her name when he/she presses the Enter key, whose ASCII code is
X0A. The name is restricted to be not more than 25 characters.

Assuming that the user enters Onur followed by a carriage return when prompted to enter
his/her name, the output of the program looks exactly like:
Please enter your name: Onur
Hello, Onur

Insert instructions at (a)-(d) that will complete the program.

1 .ORIG x3000

2 LEA R1,HELLO

3 AGAIN LDR R2,R1,#0

4 BRz NEXT

5 ADD R1,R1,#1

6 BR AGAIN

7 NEXT LEA RO, PROMPT

8 TRAP x22 ; PUTS
9 LD R3 NEGENTER ;a
10 AGAIN2 TRAP x20 ;7 GETC
11 TRAP x21 ; OUT
12 ADD R2,R0,R3

13 BRz CONT

14 STR RO,R1,#0 ;b
15 ADD R1,R1,#1 IC
16 BR AGAIN2

17 CONT AND R2,R2,#0

18 STR R2,R1,#1 ;d
19 LEA RO, HELLO
20 TRAP x22 ; PUTS
21 TRAP x25 ; HALT
22 NEGENTER .FILL XxFFF6 ; —XOA
23 PROMPT .STRINGZ "Please enter your name: "

24 HELLO .STRINGZ "Hello, "

25
26

.BLKW #25
.END

	1
	2
	3
	4
	5
	6

