
1. (Adapted from problem 1.5 in the textbook)

Say we had a "black box," which takes two numbers as input and outputs

their sum. See Figure 1.10a in the Textbook or the following figure. Say we

had another box capable of multiplying two numbers together. See figure

1.10b. We can connect these boxes together to calculate p * (m + n). See

Figure 1.10c. Assume we have an unlimited number of these boxes. Show

how to connect them together to calculate:

a. ax+b

b. The average of the four input numbers w, x, y, and z

c. a2 + 2ab + b2 (can you do it with one add box and one multiply

box?)

d. a6 (can you do it using only 3 multiply boxes?)

2. (2.3)

a. Assume that there are about 400 students in your class. If every

student is to be assigned a unique bit pattern, what is the minimum

number of bits required to do this?

9

b. How many more students can be admitted to the class without

requiring additional bits for each student's unique bit pattern?

112

3. (Adapted from 2.13)

Without changing their values, convert the following 2's complement binary

numbers into 8-bit 2's complement numbers.

a. 010110

0001 0110

b. 1101

1111 1101

c. 1111111000

11111000

d. 01

00000001

4. (Adapted from 2.17)

Compute the following. Assume each operand is a 2's complement binary

number.

a. 01 + 1011

1100

b. 11 + 01010101

01010100

c. 0101 + 110

0011

d. 01 + 10

11

5. Without changing their values, convert the following 8-bit 2's complement

binary numbers into decimal numbers.

a. 01010101

85

b. 10001101

-115

c. 10000000

-128

d. 11111111

-1

6. Express the value 0.3 in the 32-bit floating point format that we discussed

in class today. Feel free to only show fraction bits [22:15], rather than all

the fraction bits, [22:0]. Notation: The symbol [22:15] signifies all 8 bits

from bit 22 to bit 15.

0 01111101 00110011

7. Convert the following floating point representation to its decimal

equivalent:

1 10000010 10101001100000000000000

-13 19/64

8. Add the two hexadecimal 2’s complement integers below:

 x90A

 + x4123

F90A + 4123 = 3A2D

9. (Adapted from 2.50)

Perform the following logical operations. Express your answers in

hexadecimal notation.

a. xABCD OR x9876

xBBFF

b. x1234 XOR x1234

x0000

c. xFEED AND (NOT(xBEEF))

x4000

10. (2.54)

Fill in the truth table for the equations given. The first line is done as an

example.

Q1 = NOT (NOT(X) OR (X AND Y AND Z))

Q2 = NOT ((Y OR Z) AND (X AND Y AND Z))

X Y Z Q1 Q2

0 0 0 0 1

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 0

11. (2.51)

What is the hexadecimal representation of the following numbers?

a. 25,675

x644B

b. 675.625 (i.e. 675
5

8
), in the IEEE 754 floating point standard

 x4428E800

c. The ASCII string: Hello

 x48656C6C6F

1. What is the smallest positive normalized number that can be

represented using the IEEE Floating Point standard?

 2^(-126)

0 00000001 000000…000

What about the smallest positive integer that can NOT be

represented using IEEE Floating Point standard？

2. What is the largest positive number that can be represented in a 32 bit

2's complement scheme?

2,147,483,647

01111…111

3.

a. (Adapted from 3.17) Draw a transistor-level diagram for a three-

input NAND gate and a three-input NOR gate. Do this by

extending the designs from following Figures 3.5a and

3.8a(NAND). (Figures can also be found in the book on pages

63 & 65 respectively).

b. Replace the transistors in your diagrams from part (a) with either

a wire or no wire to reflect the circuit’s operation when the

following inputs are applied:

A = 1, B = 0, C = 0

c. The transistor circuit shown below produces the accompanying

truth table. The inputs to some of the gates of the transistors are

not specified. Also, the outputs for some of the input

combinations of the truth table are not specified. Complete both

specifications. i.e., all transistors will have their gates properly

labeled with either A, B, or C, and all rows of the truth table will

have a 0 or 1 specified as the output.

Figure 1

4. Shown below are several logical identities with one item missing in

each. X represents the case where it can be replaced by either a 0 or a

1 and the identity will still hold. Your job: Fill in the blanks with either a

0, 1, or X.

For example, in part a, the missing item is X. That is 0 OR 0 = 0 and 0

OR 1 = 1.

a. 0 OR X = ___

X

b. 1 OR X = ___

1

c. 0 AND X = ___

0

d. 1 AND X = ___

X

e. __ XOR X = X

0

f. X XOR X = ___

0

5. (3.25)

Logic circuit 1 in Figure 3.36 (page 87 of the book) has inputs A, B, C.

Logic circuit 2 in Figure 3.37 (page 87 of the book) has inputs A and B.

Both logic circuits have an output D. There is a fundamental difference

between the behavioral characteristics of these two circuits. What is

it? Hint: What happens when the voltage at input A goes from 0 to 1 in

both circuits?

Figure 3.36 is a 2-input mux, which combinational logic i.e., D is

the output of the circuit.

Figure 3.37 is a storage element, which stores the data value

previously stored in the latch.

6. (Adapted from 3.28)

(1) Fill in the truth table of 4-to-1 mux:

(2) Implement the 4-to-1 mux using only 2-to-1 muxes making sure to

properly connect all of the terminals. Remember that you will have 4

inputs (A, B, C, and D), 2 control signals (S1 and S0), and 1 output

(OUT).

 A B C D

 __|______|__ __|______|__

 \ 0 1 / \ 0 1 /

 _________/<------ S0 _________/<------ S0

 |_____________ _________|

 ___|_____|__

 \ 0 1 /

 ________/<------ S1

 |

 F

You require 3 muxes. First, the input are A and B and the select

line is S0. Second, inputs are C and D and the select line is also

S0. Third, is a mux where both its inputs are the outputs of the

first two muxes and select line is S1.

(3) Implement F = A XOR B using ONLY two 2-to-1 muxes. You are not

allowed to use a NOT gate (A' and B' are not available).

 1 0

 __|______|__

 \ 0 1 /

 _________/<------ B

 B |

 ___|_____|__

 \ 0 1 /

 ________/<------ A

 |

 F

7. (Adapted from 3.31)

Say the speed of a logic structure depends on the largest number of

logic gates through which any of the inputs must propagate to reach an

output. Assume that a NOT, an AND, and an OR gate all count as one

gate delay. For example, the propagation delay for a two-input decoder

shown in Figure 3.11 is 2 because some inputs propagate through two

gates.

a. What is the propagation delay for the two-input mux shown in

Figure 3.12 (page 68)?

3

b. What is the propagation delay for the 4-bit adder shown in

Figure 3.16 (page 71)?

12

c. Can you reduce the propagation delay for the circuit shown in

Figure 3 by implementing the equation in a different way? If so,

how?

Figure 3

You can construct a tree-like structure.

 E = ((A AND B) AND (C AND D)) AND E)

8. (3.32)

Recall that the adder was built with individual "slices" that produced a

sum bit and carryout bit based on the two operand bits A and B and the

carryin bit. We called such an element a full-adder. Suppose we have a

3-to-8 decoder and two six-input OR gates, as shown in Figure 3

below. Can we connect them so that we have a full-adder? If so,

please do. (Hint: If an input to an OR gate is not needed, we can simply

put an input 0 on it and it will have no effect on anything. For example,

see the figure below.)

Figure 3

9. We wish to design a controller for an elevator such that if you push a

button for a desired floor, the controller will output the floor number that

the elevator should go to. However, to deter lazy people from going up

or down one floor, if you push the button for the next floor (up or down),

the elevator will stay on its current floor. If you push the button for the

same floor that you're currently on, the controller will output the current

floor number. There are four floors in the building.

Your job:

a. Draw the state diagram of the elevator scheduling.

b. Construct a complete truth table for the elevator controller. It is

not necessary to draw the logic here; the truth table is sufficient.

Since there are four floors, you will need 2 bits to represent

a floor. Let the logic variable C[1:0] represent the current

floor, R[1:0] represent the requested floor, and D[1:0]

represent the floor the elevator should go to given a current

floor and a requested floor. Shown below is the truth table

for this combinational logic circuit.

C1 C0 R1 R0 | D1 D0

0 0 0 0 | 0 0

0 0 0 1 | 0 0

0 0 1 0 | 1 0

0 0 1 1 | 1 1

0 1 0 0 | 0 1

0 1 0 1 | 0 1

0 1 1 0 | 0 1

0 1 1 1 | 1 1

1 0 0 0 | 0 0

1 0 0 1 | 1 0

1 0 1 0 | 1 0

1 0 1 1 | 1 0

1 1 0 0 | 0 0

1 1 0 1 | 0 1

1 1 1 0 | 1 1

1 1 1 1 | 1 1

10.

A logic circuit consisting of 6 gated D latches and 1 inverter is shown

below:

Figure 5

Figure 6

Let the state of the circuit be defined by the state of the 6 D latches.

Assume initially the state is 000000 and clk starts at the point labeled

t0.

Question: What is the state after 50 cyles. How many cycles does it

take for a specific state to show up again?

Every 6 clock cycles a pattern repeats. A and B represent the first

half and the second half of each clock cycle respectively.

Cycle1 A: 000000

Cycle1 B: 100000

Cycle2 A: 110000

Cycle2 B: 111000

Cycle3 A: 111100

Cycle3 B: 111110

Cycle4 A: 111111

Cycle4 B: 011111

Cycle5 A: 001111

Cycle5 B: 000111

Cycle6 A: 000011

Cycle6 B: 000001

Cycle7 A: 000000

Because 50 = 6*8+2 after 50 cycles the state will be the same as

after 2 cycles. It will be in state 111000 after 50 cycles

11.

Draw the transistor level circuit of a 2 input XOR gate

12. (Adapted from 3.36)

A comparator circuit has two 1-bit inputs, A and B, and three 1-bit

outputs, G (greater), E (equal), and L (less than). Refer to figures 3.43

and 3.44 on page 106 in the book for this problem..

a. Draw the truth table for a 1-bit comparator.

A B G E L

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

b. Implement G, E and L for a 1-bit comparator using AND, OR,

and NOT gates.

G = AB' , L = A'B , E = A'B' + AB

c. Figure 3.44 performs one-bit comparisons of the corresponding

bits of two unsigned integer A[3:0] and B[3:0]. Using the 12

one-bit results of these 4 one-bit comparators, construct a logic

circuit to output a 1 if unsigned integer A is larger than unsigned

integer B (the logic circuit should output 0 otherwise). The inputs

to your logic circuit are the outputs of the 4 one-bit comparators

and should be labeled G[3], E[3], L[3], G[2], E[2], L[2], ... L[0].

(Hint: You may not need to use all 12 inputs.)

Y = G[3] + E[3]G[2] + E[3]E[2]G[1] + E[3]E[2]E[1]G[0]

13. One of Zhang San's students is always late to meetings, so Professor

Zhang San wants you to design an alarm clock to help his student be

on time. Your job is to design a logic circuit whose output Z is equal to

1 when the alarm clock should go off. The circuit will receive four input

variables (A, B, C, D) that answer four different yes/no question (1=yes,

0=no):

A <= Is it going to be sunny today?

B <= Is it the weekend?

C <= Is it 7:00am?

D <= Is it 9:00am?

Zhang San wants the alarm clock to go off if it's sunny and it's either

7:00am or 9:00am. The alarm clock should go off if it's the weekend and it's

9:00am. The alarm clock should also go off if it's not the weekend and it's

7:00am. Write the truth table and draw a gate-level diagram that performs

this logic.

A B C D | ALARM

0 0 0 0 | 0

0 0 0 1 | 0

0 0 1 0 | 1

0 0 1 1 | x

0 1 0 0 | 0

0 1 0 1 | 1

0 1 1 0 | 0

0 1 1 1 | x

1 0 0 0 | 0

1 0 0 1 | 1

1 0 1 0 | 1

1 0 1 1 | x

1 1 0 0 | 0

1 1 0 1 | 1

1 1 1 0 | 1

1 1 1 1 | x

14. Prove that NAND is logically complete.

NOT: A NAND A => NOT A

AND: (A NAND B) NAND (A NAND B) = NOT (A NAND B) => A AND

B

OR: NOT(NOT(A) AND NOT(B)) => A OR B

1. We want to make a state machine for the scoreboard of the Texas
vs. Oklahoma Football game. The following information is required
to determine the state of the game:

1) Score: 0 to 99 points for each team

2) Down: 1, 2, 3, or 4

3) Yards to gain: 0 to 99

4) Quarter: 1, 2, 3, 4

5) Yardline: any number from Home 0 to Home 49, Visitor 0 to
Visitor 49, 50

6) Possesion: Home, Visitor

7) Time remaining: any number from 0:00 to 15:00, where m:s
(minutes, seconds)

(a) What is the minimum number of bits that we need to use to
store the state required?

(100*100)*4*100*4*101*2*901 = 2912032000000.

2^41 < 2912032000000 < 2^42 so we need 42 bits

(b) Suppose we make a separate logic circuit for each of the seven
elements on the scoreboard, how many bits would it then take
to store the state of the scoreboard?

1) 7 x 2 bits

2) 2 bits

3) 7 bits

4) 2 bits

5) 7 bits

6) 1 bit

7) 4 bits for minutes 6 bits for seconds

Total 43 bits

(c) Why might the method of part b be a better way to specify the
state than the method of part a?

The assignments in (b) are easier to decode

2. Shown below is a partially completed state diagram of a finite
state machine that takes an input string of H (heads) ant T (tails)
and produces an output of 1 every time the string HTHH occurs.

a) Complete the state diagram of the finite state machine that will
do this for any input sequence of any length

Figure
4

b) If this state machine is implemented with a sequential logic circuit

how many state variables will be needed?

3 bits

3. (3.37)

If a particular computer has 8 byte addressability and a 8 bit
address space, how many bytes of memory does that computer
have?

Number of byes = address space x adressability. 2^8 x

2^3 = 2^11 = 2048 bytes

4. (3.33)

Using Figure 3.21 on page 78 in the book, the diagram of the, 22-
by-3-bit memory.

a. To read from the third memory location, what must the values
of A[1:0] and WE be?

To read from the third location A[1:0] should be 10, to read from
memory the WE bit should be 0. To write to memory the WE bit must be 1.

b. To change the number of locations in the memory from 4 to 60,
how many address lines would be needed? What would the
addressability of the memory be after this change was made?

To address 60 locations you need 6 bits of address line, which means your
MAR is 6 bits . However since we did not change the number of bits
stored at each location the addressability is still 3 bits

c. Suppose the width (in bits) of the program counter is the
minimum number of bits needed to address all 60 locations in
our memory from part (b). How many additional memory
locations could be added to this memory without having to alter
the width of the program counter?

You need 6 bits for part b, which can address 64 different locations so you
could add 4 more locations and not have to increase the width of the
program counter.

5. The figure below is a diagram of a 22-by-16-bit memory, similar in
implementation to the memory of Figure 3.21 in the textbook. Note
that in this figure, every memory cell represents 4 bits of storage
instead of 1 bit of storage. This can be accomplished by using 4
Gated-D Latches for each memory cell instead of using a single
Gated-D Latch. The hex digit inside each memory cell represents
what that cell is storing prior to this problem.

Figure 3: 22-by-16 bit memory

a. What is the address space of this memory?

22=4 memory locations.

b. What is the addressability of this memory?

16 bits.

c. What is the total size in bytes of this memory?

8 bytes.

d. This memory is accessed during four consecutive clock cycles.
The following table lists the values of some important
variables just before the end of the cycle for each access.
Each row in the table corresponds to a memory access. The
read/write column indicates the type of access: whether the
access is reading memory or writing to memory. Complete the
missing entries in the table.

WE A[1:0] Di[15:0] D[15:0] Read/Write

0 01 xFADE x4567 Read

1 10 xDEAD xDEAD Write

0 00 xBEEF x0123 Read

1 11 xFEED xFEED Write

6. (4.8)
Suppose a 32-bit instruction has the following format:

OPCODE DR SR1 SR2 UNUSED

If there are 255 opcodes and 120 registers, and every register is
available as a source or destination for every opcode,

a. What is the minimum number of bits required to represent
the OPCODE?

255 opcode, 8 bits are required to represent the OPCODE

b. What is the minimum number of bits required to represent the
Destination Register (DR)?

120 registers, 7 bits to represent the DR

c. What is the maximum number of UNUSED bits in the instruction
encoding?

3 registers and 1 opcode, 3x7 + 8 = 29 bits. So there are 3 ununsed bits

7. A State Diagam

We wish to invent a two-person game, which we will call XandY
that can be played on the computer. Your job in this problem is
contribute a piece of the solution.

The game is played with the computer and a deck of cards. Each
card has on it one of four values (X, Y, Z, and N). Each player in turn
gets five attempts to accumulate points. We call each attempt a
round. After player A finishes his five rounds, it is player B's turn. Play
continues until one of the players accumulates 100 points. Your job
today is to ONLY design a finite state machine to keep track of the
STATE of the current round. Each round starts in the intial state,
where X=0 and Y=0. Cards from the deck are turned over one by
one. Each card transitions the round from its current state to its next
state, until the round terminates, at which point we'll start a new
round in the initial state.

The transistions are as follows:

X: The number of X's is incremented, producing a new state for
the round.

Y: The number of Y's is incremented, producing a new state for
the round.

Z: If the number of X's is less than 2, the number of X's is
incremented, producing a new state for the round. If the number of
X's is 2, the state of the current round does not change.

N: Other information on the card gives the number of points
accumulated. N also terminates the current round.

Important rule: If the number of X's or Y's reaches a count of 3,
the current round is terminated and another round is started. When a
round starts, its state is X=0, Y=0.

Hint: Since the number of X's and Y's specify the state of the
current round, how many possible states are needed to describe the
state of the current round.

Hint: A state cannot have X=3, because then the round would be
finished, and we would have started a *new* current round.

On the diagram below, label each state. For each state draw an
arrow showing the transition to the next state that would occur for
each of the four inputs. (We have provided sixteen states. You will
not need all of them. Use only as many as you need).

Note, we did not specify outputs for these states. Therefore, your
state machine will not include outputs. It will only include states and
transistions represented by inputs.

8. Trying Out Flip-Flops

The we introduced in class is shown below.

Note that the input value is visible at the output after the clock
transitions from 0 to 1. Shown below is a circuit constructed with
three of these flipflops.

Your job: Fill in the entries for D2, D1, D0 for each of clock cycles
shown: (In Cycle 0, all three flip-flops hold the value 0)

Homework04

1. What does the following program do (in 20 words or fewer):

0101 100 100 1 00000

1001 000 001 111111

0001 000 000 1 00001

0001 000 000 000 010

0000 011 000000001

0001 100 100 1 00001

1111 0000 0010 0101

R2<R1 R4=1

R2>=R1 R4=0

2. What does the following program do (in 20 words or fewer):

0101 000 000 1 00000

0101 101 001 1 00001

0000 010 000000001

0001 000 000 1 00001

1111 0000 0010 0101

R5 is even R0=0

R5 is odd R0=1

3. (Adapted from 5.31) The following diagram shows a snapshot of the 8

registers of the LC-3 before and after the instruction at location x1000

is executed. Fill in the bits of the instruction at location x1000.

Register Before After

R0 x0000 x0000

R1 x1111 x1111

R2 x2222 x2222

R3 x3333 x3333

R4 x4444 x4444

R5 x5555 xFFF8

R6 x6666 x6666

R7 x7777 x7777

Memory Location Value

x1000 0001 _101 000 1 11000__

4. The memory locations x3000 to x3007 contain the values as shown in

the table below. Assume the memory contents below are loaded into

the simulator and the PC has been set to point to location x3000.

Assume that a breakpoint has been placed to the left of the HALT

instruction (i.e. at location x3006 which contains 1111 0000 0010

0101). Assume that before the program is run, each of the 8 registers

has the value x0000 and the NZP bits are 010.

Memory Location Value

x3000 0101000000100000

x3001 0001000000100101

x3002 0010001000000100

x3003 0001000000000000

x3004 0001001001111111

x3005 0000001111111101

x3006 1111000000100101

x3007 0000000000000100

a. In no more than 15 words, summarize what this program will do

when the Run button is pushed in the simulator.

Hint: What relationship is there between the value loaded from

memory and the final value in R0 after the program has

completed?

5 is put in R0 and shifted left the value at location x3007 times

b. What are the contents of the PC, the 8 general purpose

registers (R0-R7), and the N, Z, and P condition code registers

after the program completes?

PC x3006

R0 x0050

R1 x0000

R2 x0000

R3 x0000

R4 x0000

R5 x0000

R6 x0000

R7 x0000

N 0

Z 1

P 0

c. What is the total number of CPU clock cycles that this program

will take to execute until it reaches the breakpoint?

Note: You should refer to the state machine (pg 702) to

determine how many cycles an instruction takes. Assume each

state that access memory takes 5 cycles to complete and every

other state takes 1 cycle to execute. States that check for ACV

also take 1 cycle to execute

Memory

Locatio

n

Value Instruction
Cycles takes to

exectue once

number

of times

executed

Total Cycles

for

instruction

X3000
010100000010000

0
AND 10 1 10

X3001
000100000010010

1
ADD 10 1 10

X3002
001000100000010

0
LD 17 1 17

X3003
000100000000000

0
ADD 10 4 40

X3004
000100100111111

1
ADD 10 4 40

X3005
000000111111110

1
Branch

10 if not taken

11 if taken

3 times

taken 1

time not

taken

43

Total Cycles 10+10+17+40+40+43 = 160

5. What does the following program do (in 15 words or fewer)? The PC is

initially at x3000. (Assume that before the program is run,R0 has the

value x0000.)

Memory Location Value

x3000 0001 000 000 1 10000

x3001 0010 001 011111110

x3002 0000 010 000000100

x3003 0000 011 000000001

x3004 0001 000 000 1 00001

x3005 0001 001 001 000 001

x3006 0000 111 111111011

X3007 1001 000 000 111111

X3008 0001 000 000 1 00001

x3009 1111 0000 0010 0101

Counts the number of bits that are set to 0 in the word at x3100

6. Prior to executing the following program, memory locations x3100

through x4000 are initialized to random values, exactly one of which is

negative. The following program finds the address of the negative

value, and stores that address into memory location x3050. Two

instructions are missing. Fill in the missing instructions to complete the

program. The PC is initially at x3000.

Memory Location Value

x3000 1110 000 011111111

x3001 0110 001 000 000000

x3002 0000 100 000000010

x3003 0001 000 000 1 00001

x3004 0000 111 111111100

x3005 0011 000 001001010

x3006 1111 0000 0010 0101

7. The LC-3 has just finished executing a large program. A careful

examination of each clock cycle reveals that the number of executed

store instructions (ST, STR, and STI) is greater than the number of

executed load instructions (LD, LDR, and LDI). However, the number

of memory write accesses is less than the number of memory read

accesses, excluding instruction fetches. How can that be? Be sure to

specify which instructions may account for the discrepancy

A large number of LDI instructions (two read accesses) and STI instructions

(one read access and one write access) could account for this discrepancy.

8. We would like to have an instruction that does nothing. Many ISAs

actually have an opcode devote to doing nothing. It’s usually called

NOP, for NO OPERATION. The instruction is fetched, decoded, and

executed. The execution phase is to do nothing! Which of the following

three instructions could be used for NOP and have the program still

work correctly?

a) 0001 001 001 1 00000

b) 0000 111 000000001

c) 0000 000 000000000

 What does the instruction(s) couldn’t be used for NOP do that other

do not do?

a) Add R1, R1, #0 => differs from a NOP in that it sets the CC’s.

b) BRnzp #1 => Unconditionally branches to one after the next

address in the PC. Therefore no, this instruction is not the same as

NOP.

c) Branch that is never taken. Yes same as NOP.

9. The LC-3 does not have an opcode for the logical function OR. The

four instruction sequence below performs the OR of the contents of

register 1 and register 2 and puts the result in register 3. Fill in the two

missing instructions so that the four instruction sequence will do the

job.

1) 1001 100 001 111111

2) 1001 101 010 111111

3) 0101 110 100 000 101

4) 1001 011 110 111111

HW06_solution
1.The following program is supposed to print the number 5 on the screen. It does not work. Why?

Answer in no more than ten words, please.

Need to save R7 so 1st service routine can return. Second RET overwrites the first RET value.

2.The following LC-3 program is assembled and then executed. There are no assemble time or
run-time errors. What is the output of this program? Assume all registers are initialized to 0 before
the program executes.

FUN

3.The following nonsense program is assembled and executed.

 .ORIG x3000

 JSR A

 OUT ;TRAP x21

 BRnzp DONE

A AND R0,R0,#0

 ADD R0,R0,#5

 JSR B

 RET

DONE HALT

ASCII .FILL x0030

B LD R1,ASCII

 ADD R0,R0,R1

 RET

 .END

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 .ORIG x3000

 ST R0, #6 ; x3007

 LEA R0, LABEL

 TRAP x22

 TRAP x25

LABEL .STRINGZ "FUNKY"

LABEL2 .STRINGZ "HELLO WORLD"

 .END

1

2

3

4

5

6

7

8

How many times is the loop executed? When the program halts, what is the value in R3? (If you
do not want to the arithmetic, it is okay to answer this with a mathematical expression.)

Work: BOBO is length 28 (27 + 1 for null) . BRnp AGAIN in binary is 0000 101 #-32 = 0000 101
1 1110 0000 = x0BE0 . R3 holds x0BE0 . R2 starts with the value of W which is x57 . R. The loop executes
57 times. The final value of R3 is x0BE0 + (x57 + x1) * x57 / x2 = x0BE0 + x0EF4 = x1AD4 or
#6868 . Note that x0BE0 is #3040 .

4.The program below, when complete, should print the following to the monitor:

 ABCFGH

Insert instructions at (a)–(d) that will complete the program.

 .ORIG x4000

 LD R2,BOBO

 LD R3,SAM

AGAIN ADD R3,R3,R2

 ADD R2,R2,#-1

 BRnzp SAM

BOBO .STRINGZ "Why are you asking me this?"

SAM BRnp AGAIN

 TRAP x25

 .BLKW 5

JOE .FILL x7777

 .END

1

2

3

4

5

6

7

8

9

10

11

12

 .ORIG x3000

 LEA R1, TESTOUT

BACK_1 LDR R0, R1, #0

 BRz NEXT_1

 TRAP x21

 ADD R1, R1, #1 ;(a)

 BRnzp BACK_1

 ;

NEXT_1 LEA R1, TESTOUT

BACK_2 LDR R0, R1, #0

 BRz NEXT_2

 JSR SUB_1

 ADD R1, R1, #1

 BRnzp BACK_2

 ;

NEXT_2 HALT ;(b)

 ;

SUB_1 ADD R0, R0, #5 ;(c)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

5.Shown below is a partially constructed program. The program asks the user his/her name and
stores the sentence “Hello, name” as a string starting from the memory location indicated by the
symbol HELLO. The program then outputs that sentence to the screen. The program assumes that
the user has finished entering his/her name when he/she presses the Enter key, whose ASCII code is
x0A. The name is restricted to be not more than 25 characters.

Assuming that the user enters Onur followed by a carriage return when prompted to enter
his/her name, the output of the program looks exactly like:
 Please enter your name: Onur
 Hello, Onur

Insert instructions at (a)–(d) that will complete the program.

K LDI R2, DSR

 BRzp K ;(d)

 STI R0, DDR

 RET

DSR .FILL xFE04

DDR .FILL xFE06

TESTOUT .STRINGZ "ABC"

 .END

19

20

21

22

23

24

25

26

 .ORIG x3000

 LEA R1,HELLO

AGAIN LDR R2,R1,#0

 BRz NEXT

 ADD R1,R1,#1

 BR AGAIN

NEXT LEA R0,PROMPT

 TRAP x22 ; PUTS

 LD R3 NEGENTER ;a

AGAIN2 TRAP x20 ; GETC

 TRAP x21 ; OUT

 ADD R2,R0,R3

 BRz CONT

 STR R0,R1,#0 ;b

 ADD R1,R1,#1 ;c

 BR AGAIN2

CONT AND R2,R2,#0

 STR R2,R1,#1 ;d

 LEA R0, HELLO

 TRAP x22 ; PUTS

 TRAP x25 ; HALT

NEGENTER .FILL xFFF6 ; -xoA

PROMPT .STRINGZ "Please enter your name: "

HELLO .STRINGZ "Hello, "

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 .BLKW #25

 .END

25

26

	1
	2
	3
	4
	5
	6

