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Lecture 1 Introduction ∗

Tiejun Li

1 Stochastics: why, what and where

There are still debates on whether the world is deterministic or stochastic. We take a

practical point of view on this problem. The reason why we utilize stochastics is as below:

1. The problem itself is stochastic (quantum mechanics).

2. Even the problem is deterministic in nature, the degrees of freedom is too huge to be

handled in a deterministic manner (statistical mechanics).

3. The considered problem is in deterministic form, but we utilize its equivalent stochastic

form to do computing (Monte Carlo methods).

The course will be composed of three parts:

1. Monte Carlo methods.

2. SDEs and their simulations.

3. Applications.

The main application area of Monte Carlo method:

Statistical Physics, Statistical inference, Mathematical finance, Data Science.

2 Monte Carlo concepts

Example 1. (Buffon test)

1. Parallel lines with distance a in the plane;

2. Tossing a needle of length l (l < a) randomly;

3. Intersection probability?
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Figure 1: Schematics for Buffon’s needle problem.

Solution. This is a geometric probability problem. The admissible set is

Ω := {0 ≤ x ≤ a

2
, 0 ≤ φ ≤ π}.

The set of intersection is

G = {x ≤ l

2
sinφ},

then the probability of intersection

P =
meas(G)

meas(Ω)
=
(∫ π

0

l

2
sinφdφ

)/(aπ
2

)
=

2l

aπ
,

thus

π =
2l

aP
.

Another choice (taking into account more symmetry):

Ω := {0 ≤ x ≤ a

2
, 0 ≤ φ ≤ π

2
}.

and

G = {x ≤ l

2
sinφ},

we also have

P =
2l

aπ
,

Example 2. (Monte Carlo integration) Numerically solve

I(f) =

∫ 1

0

f(x)dx.

1. Midpoint rule:

I
(1)
N (f) = h

N∑
i=1

f(xi), h =
1

N
, xi = (i+

1

2
)h
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Accuracy: O(h2).

2. Monte Carlo:

I
(2)
N (f) =

1

N

N∑
i=1

f(Xi), Xi ∼ i.i.d. U [0, 1]

one has EI(2)N (f) = I(f), and the mean square error

E|eN |2 = E(I
(2)
N (f)− I(f))2 = E

(
1

N

N∑
i=1

(f(Xi)− I(f))

)2

=
1

N2

N∑
i,j=1

E(f(Xi)− I(f))(f(Xj)− I(f))

=
1

N
E(f(Xi)− I(f))2 =

1

N
Var (f),

One obtains eN ∼
√

Var (f)
N
∼ O(h

1
2 ) — half order convergence. (How to generate Xi?)

The above derivations are independent of dimensions.

3. High dimensional case:

Ensemble average in statistical mechanics

〈A〉 =
1

Z

∫
R6N

A(x)e−βH(x)dx

where Z =
∫
R6N e

−βH(x)dx is partition function, β = (kBT )−1, kB is Boltzmann constant, T

is the absolute temperature, dx = dx1 · · · dxNdp1 · · · dpN , N is the number of particles.

Deterministic quadrature: 10 segments in each direction, totally 106N nodes!

Monte Carlo method is the only viable approach!

4. Estimate of computational effort:

Dimension — d, ] of quadrature points — N

Midpoint rule ∼ O(N− d
2 ), Monte Carlo ∼ O(N− 1

2 ).

If d > 4, Monte Carlo is better.

5. Brief summary:

The advantage of Monte Carlo:

• Half order convergence independent of dimensions;

• Parallel essentially;

• Versatile: If we can find a probabilistic interpretation of a problem, we can apply MC.

3



The disadvantage of Monte Carlo:

• Half order convergence (slow convergence);

• Noisy result.

3 Further applications

Example 3 (Randomized linear algebra). Compute the matrix product

C = AB,

where A ∈ Rm×n, B ∈ Rn×p, and assume n� 1.

When n is huge, which is possible in many applications in big data, the following ran-

domized matrix multiplication was proposed:

Given any probability distribution {pi}, where pi > 0 and
∑n

i=1 pi = 1, randomly pick

K columns with the imth column from A, L(m) and the imth row from B, R(m) according to

{pi}. Correspondingly define

L(m) =
1√
Kpim

A·,im , R(m) =
1√
Kpim

Bim,·, m = 1, . . . , K

then compute

C ≈
K∑
m=1

L(m)R(m). (1)

Does it work? Is it possible to generalize and improve it?

Example 4. (Bayesian methods in statistical learning) Sampling the posterior distribution

of the unknown parameters θ.

In statistics, we have large amount of sampling data, and we want to extract the param-

eters from some type of probabilistic model. Suppose we have the likelihood function

L(θ|x), θ ∈ Θ,

and the prior distribution of the parameter θ is π(θ), we would like to sample the posteriori

distribution of θ

π(θ|x) ∝ L(θ|x)π(θ)

or compute the expectation of the parameters. Usually θ is in a high dimensional space,

and π(θ|x) is only known up to a constant. We need the Monte Carlo sampling method

here.
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Example 5. (Simulated annealing for optimization) minxH(x), H(x) is an energy function.

1. If H(x) is convex, the problem is quite easy by steepest decent method

dx

dt
= −∇H

2. If H(x) is non-convex, the problem is complicate. The solution by steepest descent

will fall into a local minimum generally.

3. Introduce thermal noise
dx

dt
= −∇H + εẇ

ε ∼ temperature. Let ε→ 0 with suitable speed, one can achieve the global minimum.

Example 6. (Harmonic oscillator with random forcing) How to describe the noise mathe-

matically? (Potential U(x) = 1
2
kx2)

1. Conservative harmonic oscillator{
ẋ = v

mv̇ = −kx

2. Frictional harmonic oscillator (frictional coefficient γ){
ẋ = v

mv̇ = −γv − kx

3. White noise forcing (mesoscopic particles){
ẋ = v

mv̇ = −γv − kx+
√

2kBTγẇ

ẇ is the temporal white noise. How to define w?

Example 7. (First exit time) Connection with PDEs.

Solving the elliptic PDE {
∆u = 0 D

u = f ∂D

Traditional method: FEM, FD

u(x) = E
(
f(XτD)

)
where XτD is the first exit point form ∂D of the Brownian motion starting at x ∈ D.

One can compute the value of u at any point in Ω separately.

Example 8. (Particle system) Macroscopic behavior from microscopic movements
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1. Deterministic case(without interaction): Liouville equation.

dxi
dt

= b(xi) −→ ψt +∇ · (bψ) = 0

2. Stochastic case(without interaction): Fokker-Planck equation.

dxi
dt

= b(xi) + ẇi −→ ψt +∇ · (bψ) =
1

2
∆ψ

3. Stochastic case (with interaction): Mckean-Vlasov equation.

dxi
dt

=
1

N

N∑
j=1

b(xi − xj) + ẇi −→ ψt +∇ · (Uψ) =
1

2
∆ψ

where U =
∫
b(x− y)ψ(y)dy.

Example 9. (Chemical reaction kinetics) Stochastic simulation algorithm.

Traditional modeling of chemical reaction: reaction rate equation (RRE):

dx

dt
= a(x) (2)

where x is the concentration of the reactants, a is the reaction rate. In biological reactions,

the population of some species are very few. The concept concentration does not make any

sense there. The reaction also shows the random character. How to model the chemical

reaction kinetics?

Example 10. (DLA model) Fractal growth of crystallization. (See Fig. 2)

Figure 2: DLA model. Adapted from PRL 47(1981), 1400.

Example 11. (Complex fluids) Such as the suspensions, colloids and liquid crystals, etc.

How to describe the behavior of the fluids through describing the polymers?
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Flexible Rigid Semiflexible

Random flight

Additional angle potential

Figure 3: Schematics of flexible, semi-flexible and rigid polymers.

4 Course plan

The following topics will be covered in this course:

• Generation of pseudo random variables,

• Variance reduction methods,

• Simulated annealing and quasi-Monte Carlo,

• Large deviation principle,

• Metropolis algorithm (Markov chain Monte Carlo method),

• Multilevel sampling and kinetic MC,

• Wiener Process and its construction,

• Stochastic differential equations and Ito’s formula,

• Fokker-Planck equation and diffusion process,

• Numerical solution of SDEs,

• Path integral methods and Girsanov transformation,

• Applications in material science(rare events),

• Applications in biology,

• Applications in networks,

• Applications in fluids.

We will have 2 numerical projects which will account for 15 pts. The homeworks will

account for 15 pts, and the final exam will account for 70 pts.

5 Main references

• W.H. Press et al., Numerical Recipes: the Art of Scientific Computing, Cambridge

university press, Cambridge, 1986.
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• R.E. Caflish, Monte Carlo and Quasi-Monte Carlo methods, Acta Numerica, Vol. 7,

1-49, 1998.

• P. Glasserman, Monte Carlo methods in financial engineering, Springer-Verlag, New

York, 2003.

• C.P. Robert and G. Casella, Monte Carlo Statistical methods, Springer-Verlag, New

York, 2004.

• C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and Natural

Sciences, Springer-Varlag, Berlin, New York, 1983.

• B. Oksendal, Stochastic Differential Equations: an Introduction with Applications,

Springer-Verlag, Berlin Heidelberg New York, 2003(6th edition).

• I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, Springer-

Verlag, New York, 1991.

• P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,

Springer-Verlag, Berlin and Heidelberg, 1992.

6 Homeworks

• Discuss about the method (1). Why is it a valid method? How to characterize its

accuracy?

• Show that the midpoint rule has second order convergence if f ∈ C2[0, 1].

• Numerically testify the half order convergence of Monte Carlo integration for

I(f) =

∫ 1

0

sinxdx = E sinX

where X is uniformly distributed in [0, 1].
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Lecture 2 Random Variables ∗

Tiejun Li

1 A Crash Course on Basic Concepts

1.1 Discrete Examples

We will concentrate on the elementary and intuitive aspects of probability here. In the

discrete case, the function P (X) is called the probability mass function (pmf).

• Bernoulli distribution:

P (X) =

{
p, X = 1,

q, X = 0.

where p > 0, q > 0, p+ q = 1. The mean and variance are

EX = p,Var(X) = pq.

If p = q = 1
2
, it is the well-known fair-coin tossing game.

• Binomial distribution B(n, p):

n independent experiments of Bernoulli distribution Xk, X := X1 + . . .+Xn, then

P (X = k) = Ck
np

kqn−k.

The mean and variance are

EX = np,Var(X) = npq.

• Multinomial distribution M(p1, . . . , pr):

Multinomial distribution is a simple generalization of binomial distribution, in which

each trial results in exactly one of some fixed number r possible outcomes with prob-

ability p1, p2, . . . , pr, where

r∑
i=1

pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . , r,

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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and we have n independent trials. Let the random variables Xi indicate the number

of times the i-th outcome was observed over the n trials. X = (X1, . . . , Xr) follows a

multinomial distribution with parameters n and p, where p = (p1, . . . , pr).

The pmf of the multinomial distribution is:

P (X1 = x1, . . . , Xr = xr) =
n!

x1! · · ·xr!
px11 · · · pxrr , n = x1 + · · ·+ xr.

The mean, variance and covariance are

E(Xi) = npi, Var(Xi) = npi(1− pi), Cov(Xi, Xj) = −npipj (i 6= j).

• Poisson distribution:

The number X of radiated particles in a fixed time τ obeys

P (X = k) =
λk

k!
e−λ,

where λ is the average number of radiated particles each time. The mean and variance

are

EX = λ,Var(X) = λ.

Poisson distribution may be viewed as the limit of binomial distribution (the law of

rare events)

Ck
np

kqn−k −→ λk

k!
e−λ (n→∞, np = λ).

Poisson distribution can also describe the spatial distribution of randomly scattered

points. For example, Let A be a set in R2. XA(ω) be the number of points in A. If

the points are uniformly distributed on the plane, and suppose the scattering density

is λ (mean number of points per area), then XA has Poisson distribution

then

λ = area of A× number of points/area.

XA has Poisson distribution

P (XA = n) =
(λ ·meas(A))n

n!
e−λ·meas(A).

• Geometric probability.

Probability = Ratio of areas

Special case of continuous examples — uniform distribution.

Example 1. Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics.

Suppose there are n particles and N bins, where N > n.
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1. Given n bins, what is the probability that each bin has one particle? (Boson)

2. What is the probability that there exist n bins such that each bin has exactly one

particle? (Fermion, Pauli exclusion principle)

In statistical physics the classical particles are distinguishable. If they satisfy the Pauli

exclusion principle, then they are subject to Maxwell-Boltzmann statistis. The quantum

particles are indistinguishable. If they satisfy the Pauli exclusion principle, then they are

subject to Fermi-Dirac statistis (Fermions). If they do not satisfy the Pauli exclusion princi-

ple, then they are subject to Bose-Einstein statistis (Bosons). Distinguishable particles that

are subject to the exclusion principle do not occur in physics.

The whole picture is as follows:

Distinguishable balls (classical) Undistinguishable balls (quantum)

Without exclusion Nn (Maxwell-Boltzmann) Cn
N+n−1 (Bose-Einstein)

With exclusion P n
N Cn

N (Fermi-Dirac)

1.2 Continuous Examples

In continuous case, the function p(x) is called the probability density function (pdf).

• Uniform distribution U [0, 1]:

p(x) =

{
1 if x ∈ [0, 1]

0 otherwise

The mean and variance are

EX =
1

2
,Var(X) =

1

12
.

• Exponential distribution:(λ > 0)

p(x) =

{
0 if x < 0

λe−λx if x ≥ 0

The mean and variance are

EX =
1

λ
,Var(X) =

1

λ2
.

Waiting time for continuous time Markov process also has exponential distribution,

where λ is the rate of the process.
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• Normal distribution(Gaussian distribution)(N(0, 1)):

p(x) =
1√
2π
e−

x2

2

or more generally N(µ, σ)

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

where µ is the mean (expectation), σ2 is the variance.

High dimensional case (N(µ,Σ))

p(x) =
1

(2π)n/2(det Σ)1/2
e−(X−µ)TΣ−1(X−µ)

where µ is the mean, Σ is a symmetric positive definite matrix, which is the covariance

matrix of X. det Σ is the determinant of Σ. More general high dimensional normal

distribution is defined with characteristic functions g(t) = exp
(
iµ · t− 1

2
t′Σt

)
.

Remark 1. In 1D case, the normal distribution N(np, npq) may be viewed as the

limit of the Binomial distribution B(n, p) when n is large. This is the famous De

Moivre-Laplace limit theorem. It is a special case of the central limit theorem (CLT).

Notice that
B(n, p)− np
√
npq

−→ N(0, 1) as n→∞.

Remark 2. In 1D case, the normal distribution N(λ, λ) may be viewed as the limit

of the Poisson distribution Poisson(λ) when λ is large. Notice the simple fact that

the sum of two independent Poisson(λ) and Poisson(µ) is Poisson(λ + µ) (why?),

we can decompose Poisson(λ) into the sum of n i.i.d. Poisson(λ/n), we have

Poisson(λ)− λ√
λ

−→ N(0, 1) when λ is large.

1.3 Probability Space

• σ-algebra F

F is a collection of subsets of Ω:

1. Ω ∈ F ;

2. If A ∈ F , then Ā = Ω\A ∈ F ;

3. If A1, A2, · · · , An, · · · ∈ F , then
⋃∞
j=1Aj ∈ F .

Here (Ω,F) is called a measurable space.
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• Probability measure P

1. (Positive) ∀A ∈ F , P (A) ≥ 0;

2. (Countably additive) If A1, A2, · · · ∈ F , and they are disjoint, then P (
⋃∞
j=1 Aj) =∑∞

j=1 P (Aj);

3. (Normalization) P (Ω) = 1.

• Probability space — Triplet (Ω,F , P )

1. Random variable: a measurable function X : Ω→ R.

2. Distribution(or law): a probability measure µ on R defined for any set B ⊂ R by

µ(B) = Prob(X ∈ B) = P{ω ∈ Ω : X(ω) ∈ B}.

3. Probability density function(pdf): an integrable function p(x) on R such that for

any set B ⊂ R,

µ(B) =

∫
B

p(x)dx.

4. Mean (expectation):

Ef(X) =

∫
Ω

f(X(ω))P (dω) =

∫
R

f(x)dµ(x) =

∫
R

f(x)p(x)dx.

5. Variance:

Var(X) = E(X − EX)2 = EX2 − (EX)2.

6. p-th moment: E|X|p.

7. Covariance:

Cov(X, Y ) = E(X − EX)(Y − EY ).

8. Independence:

Ef(X)g(Y ) = Ef(X)Eg(Y ).

for all continuous functions f and g.

1.4 Notions of Convergence

Probability space (Ω,F , P ), {Xn} — a sequence of random variables, µn — the distir-

bution of Xn. X — another random variable with distribution µ.

Definition 1. (Almost sure convergence) Xn converges to X almost surely as n → ∞,

(Xn → X, a.s.) if

P{ω ∈ Ω, Xn(ω)→ X(ω)} = 1
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Definition 2. (Convergence in probability) Xn converges to X in probability if for any

ε > 0,

P{ω|Xn(ω)−X(ω)| > ε} → 0

as n→ +∞.

Definition 3. (Convergence in distribution) Xn converges to X in distribution (Xn
d−→ X)

(i.e. µn ⇀ µ or µn
d−→ µ, weak convergence), if for any bounded continuous function f

Ef(Xn)→ Ef(X)

Definition 4. (Convergence in Lp) If Xn, X ∈ Lp, and

E|Xn −X|p → 0.

If p = 1, that is convergence in mean; if p = 2, that is convergence in mean square.

Relation:

Almost sure convergence GGGBFGGG

subsequence
Converge in probability −→ Converge in distribution

⇑
Lp convergence

1.5 Conditional Expectation

Let X and Y be two discrete random variables with joint probability

p(i, j) = P(X = i, Y = j).

The conditional probability that X = i given that Y = j is given by

p(i|j) =
p(i, j)∑
i p(i, j)

=
p(i, j)

P(Y = j)

if
∑

i p(i, j) > 0 and conventionaly taken to be zero if
∑

i p(i, j) = 0. The natural definition

of the conditional expectation of f(X) given that Y = j is

E(f(X)|Y = j) =
∑
i

f(i)p(i|j). (1)

The axiomatic definition of the conditional expectation Z = E(X|G) is defined with

respect to a sub-σ-algebra G ⊂ F as follows.

Definition 5 (Conditional expectation). For any random variable X with E|X| < ∞, the

condition expectation Z of X given G is defined as
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(i) Z is a random variable which is measurable with respect to G;

(ii) for any set A ∈ G, ∫
A

Z(ω)P(dω) =

∫
A

X(ω)P(dω).

The existence of Z = E(X|G) comes from the Radon-Nikodym theorem by considering

the measure µ on G defined by µ(A) =
∫
A
X(ω)P(dω) (see [3]). One can easily find that µ

is absolutely continuous with respect to the measure P|G, the probability measure confined

in G. Thus Z exists and is unique up to the almost sure equivalence in P|G.

Theorem 1 (Properties of conditional expectation). Suppose X, Y are random variables

with E|X|,E|Y | <∞, a, b ∈ R. Then

(i) E(aX + bY |G) = aE(X|G) + bE(Y |G)

(ii) E(E(X|G)) = E(X)

(iii) E(X|G) = X, if X is G-measurable

(iv) E(X|G) = EX, if X is independent of G

(v) E(XY |G) = Y E(X|G), if Y is G-measurable

(vi) E(X|G) = E(E(X|G)|H) for the sub-σ-algebras G ⊂ H.

Lemma 1 (Conditional Jensen’s inequality). Let X be a random variable such that E|X| <
∞ and φ : R→ R is a convex function such that E|φ(X)| <∞. Then

E(φ(X)|G) ≥ φ(E(X|G)). (2)

The readers may be referred to [4] for the details of the proof.

For the conditional expectation of a random variable X with respect to another random

variable Y , it is natural to define it as

E(X|Y ) := E(X|G) (3)

where G is the σ-algebra Y −1(B) generated by Y .

To realize the equivalence between the abstract definition (3) and (1) when Y only takes

finitely discrete values, we suppose the following decomposition

Ω =
n⋃
j=1

Ωj

and Ωj = {ω : Y (ω) = j}. Then the σ-algebra G is simply the sets of all possible unions of

Ωj. The measurability of conditional expectation E(X|Y ) with respect to G means E(X|Y )
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takes constant on each Ωj, which exactly corresponds to E(X|Y = j) as we will see. By

definition, we have ∫
Ωj

E(X|Y )P(dω) =

∫
Ωj

X(ω)P(dω) (4)

which implies

E(X|Y ) =
1

P(Ωj)

∫
Ωj

X(ω)P(dω). (5)

This is exactly E(X|Y = j) in (1) when f(X) = X and X also takes discrete values.

The conditional expectation has the following important property as the optimal ap-

proximation in L2 norm among all of the Y -measurable functions.

Proposition 1. Let g(Y ) be any measurable function of Y , then

E(X − E(X|Y ))2 ≤ E(X − g(Y ))2. (6)

Proof. We have

E(X − g(Y ))2 = E(X − E(X|Y ))2 + E(E(X|Y )− g(Y ))2

+ 2E
[
(X − E(X|Y )(E(X|Y )− g(Y ))

]
.

and

E
[
(X − E(X|Y )(E(X|Y )− g(Y ))

]
=E
[
E
[
(X − E(X|Y )(E(X|Y )− g(Y ))|Y

]]
=E
[
(E(X|Y )− E(X|Y ))(E(X|Y )− g(Y ))

]
= 0

by properties (ii),(iii) and (v) in Theorem 1. The proof is done.

2 Characteristic Function

The characteristic function of a random variable X or its distribution µ is defined as

f(ξ) = EeiξX =

∫
R
eiξxµ(dx). (7)

Proposition 2. The characteristic function has the following properties:

1. ∀ξ ∈ R, |f(ξ)| ≤ 1, f(ξ) = f(−ξ), f(0) = 1;

2. f is uniformly continuous on R;

3. f (n)(0) = inEXn provided E|X|n <∞.
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Proof. The proof of statements 1 and 3 are straightforward. The second statement is valid

by
|f(ξ1)− f(ξ2)| = |E(eiξ1X − eiξ2X)| = |E(eiξ1X(1− ei(ξ2−ξ1)X))|

≤ E|1− ei(ξ2−ξ1)X |.

Dominated convergence theorem concludes the proof.

Example 2. The characteristic functions of some typical distributions are as below.

1. Bernoulli distribution: f(ξ) = q + peiξ.

2. Binomial distribution B(n, p): f(ξ) = (q + peiξ)n.

3. Poisson distribtion P(λ): f(ξ) = eλ(eiξ−1).

4. Exponential distribution Exp(λ): f(ξ) = (1− λ−1iξ)−1.

5. Normal distribution N(µ, σ2): f(ξ) = exp
(
iµξ − σ2ξ2

2

)
.

The following important theorem gives an explicit characterization of the weak con-

vergence of probability measures based on their characteristic functions, which is a key in

proving central limit theorem later.

Theorem 2 (Lévy’s continuity theorem). Let {µn}n∈N be a sequence of probability measures,

and {fn}n∈N be their corresponding characteristic functions. Assume that

1. fn converges everywhere on R to a limiting function f .

2. f is continuous at ξ = 0.

Then there exists a probability distribution µ such that µu
d→ µ. Moreover f is the charac-

teristic function of µ.

Conversely, if µn
d→ µ, where µ is some probability distribution then fn converges to f

uniformly in every finite interval, where f is the characteristic function of µ.

For a proof, see [4].

As in Fourier transforms, one can also define the inverse transform

ρ(x) =
1

2π

∫
R
e−iξxf(ξ)dξ.

An interesting question arises as to when this gives the density of a probability measure.

To answer this we define

9



Definition 6. A function f is called positive semi-definite if for any finite set of values

{ξ1, . . . , ξn}, n ∈ N, the matrix (f(ξi − ξj))ni,j=1 is positive semi-definite, i.e.∑
i,j

f(ξi − ξj)viv̄j ≥ 0, (8)

for any v1, . . . , vn ∈ C.

Theorem 3 (Bochner’s Theorem). A function f is the characteristic function of a proba-

bility measure if and only if it is a positive semi-definite and continuous at 0 with f(0) = 1.

Proof. We only gives the necessity part. Suppose f is a characteristic function, then

n∑
i,j=1

f(ξi − ξj)viv̄j =

∫
R

∣∣∣ n∑
i=1

vie
iξix
∣∣∣2µ(dx) ≥ 0. (9)

The sufficiency part is difficult and the readers may be referred to [4].

3 Generating function

For discrete R.V. taking integer values, the generating function has the central impor-

tance

G(x) =
∞∑
k=0

P (k)xk.

One immediately has the formula:

P (k) =
1

k!
G(k)(x)

∣∣∣
x=0

.

Definition 7. Define the convolution of two sequences {ak}, {bk} as {ck} = {ak} ∗ {bk},
the components are defined as

ck =
k∑
j=0

ajbk−j.

Theorem 4. Consider two independent R.V. X and Y with PMF

P (X = j) = aj, P (Y = k) = bk

and {ck} = {ak} ∗ {bk}. Suppose the generating functions are A(x), B(x) and C(x), respec-

tively, then the generating function of X + Y is C(x).

Some generating functions:

• Bernoulli distribution: G(x) = q + px.

• Binomial distribution: G(x) = (q + px)n.

• Poisson distribution: G(x) = e−λ+λx.

10



4 Moment Generating Function and Cumulants

The moment generating function of a random variable X is defined for all values of t by

M(t) = EetX =


∑
x

p(x)etx, X is discrete-valued∫
R
p(x)etxdx, X is continuous

(10)

provided that etX is integrable. It is obvious M(0) = 1.

Once M(t) can be defined, one can show M(t) ∈ C∞ in its domain and its relation to

the nth moments

M (n)(t) = E(XnetX) and µn := EXn = M (n)(0), n ∈ N. (11)

This gives

M(t) =
∞∑
n=0

µn
tn

n!
, (12)

which tells why M(t) is called the moment generating function.

Theorem 5. Denote MX(t),MY (t) and MX+Y (t) the moment generating functions of ran-

dom variables X, Y and X + Y , respectively. If X, Y are independent, we have

MX+Y (t) = MX(t)MY (t). (13)

The proof is straightforward.

The following moment generating functions of typical random variables can be obtained

by direct calculations.

(a) Binomial distribution: M(t) = (pet + 1− p)n.

(b) Poisson distribution: M(t) = exp[λ(et − 1)].

(c) Exponential distribution: M(t) = λ/(λ− t) for t < λ.

(d) Normal distribution N(µ, σ2): M(t) = exp
(
µt+ σ2t2

2

)
.

The cumulant generating function K(t) is defined based on M(t) by

K(t) = lnM(t) = lnEetX =
∞∑
n=1

κn
tn

n!
. (14)

With such definition, we have the cumulants κ0 = 0 and

κn = K(n)(0), n ∈ N. (15)

11



The moment generating function is not so powerful as the characteristic function since

the integrable condition is usually too strong for many random variables. Under similar

consideration, we can also define another type of cumulant generating function H(t) as

H(t) = lnEeitX =
∞∑
n=1

κn
(it)n

n!
.

All of the definitions above can be extended to random vectors without difficulty. In

this circumstance, we have

M(t) = Eet·X , t ∈ Rd

and correspondingly the moments

µk = E(Xk1
1 · · ·X

kd
d ) =

∂|k|M

∂tk11 · · · ∂t
kd
d

(0), k = (k1, . . . , kd) ∈ Nd,

where |k| :=
∑d

j=1 kj is the order of multi-index k. The relation between M(t) and µk is

simply

M(t) =
∞∑
k1=0

· · ·
∞∑

kd=0

µk
tk11 · · · t

kd
d

k1! · · · kd!
. (16)

The K(t), H(t) can be defined similarly, and the corresponding cumulants are defined by

κk =
∂|k|K

∂tk11 · · · ∂t
kd
d

(0), k = (k1, . . . , kd) ∈ Nd,

and

K(t) =
∞∑
k1=0

· · ·
∞∑

kd=0

κk
tk11 · · · t

kd
d

k1! · · · kd!
.

It is straightforward to verify the relations

µX = κX , µXY = κXY + µXµY ,

µXY Z = κXY Z + µXκY Z + µY κXZ + µZκXY + µXµY µZ ,

and so on. The general relation between µ and κ for scalar X is left as an exercise.

For the multi-variate normal distribution N(µ,Σ) we obtain

M(t) = exp
(
µ · t+

1

2
tTΣt

)
, K(t) = µ · t+

1

2
tTΣt. (17)

Note that only the cumulants κn with order n ≤ 2 survive for Gaussian distributions. This

property can be utilized to prove the useful Wick’s theorem (see Exercise 6).

The moment and cumulant generating functions have explicit meaning in statistical

physics, in which

Z(β) = Ee−βE, F (β) = −β−1 lnZ(β)
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are called partition function and Helmholtz free energy, respectively. Here β = (kBT )−1 is

the inverse temperature, which is just a physical constant. They can be connected to M

and K by

Z(β) = MX(−β), F (β) = −β−1KX(−β)

if X is taken as E, the energy of the system.

5 Borel-Cantelli Lemma

Let {An} be a sequence of events, An ∈ F . Define

lim sup
n→∞

(An) = {ω ∈ Ω, ω ∈ An infinitely often (i.o.)}

=
∞⋂
n=1

∞⋃
k=n

Ak

Lemma 2. (First Borel-Cantelli Lemma) If
∑∞

n=1 P (An) < +∞, then P (lim supn→∞An) =

P{ω : ω ∈ An, i.o.} = 0.

Proof. P{
⋂∞
n=1

⋃∞
k=nAk} ≤ P{

⋃∞
k=nAk} ≤

∑∞
k=n P (Ak) for any n, but the last term goes

to 0, as n→∞.

As an example of the application of this result, we prove

Lemma 3. Let {Xn} be a sequence of identically distributed (not necessarily independent)

random variables, such that E|Xn| < +∞. Then

lim
n→∞

Xn

n
= 0 a.s.

The proof of this relies on another useful fact.

Lemma 4. (Chebyshev Inequality) Let X be a random variable such that E|X|k < +∞, for

some integer k. Then

P{|X| > λ} ≤ 1

λk
E|X|k

for any positive constant λ.

Proof. For any λ > 0,

E|X|k =

∫ ∞
−∞
|x|kdµ ≥

∫
|X|≥λ

|X|kdµ

≥ λk
∫
|X|≥λ

dµ = λkP{|X| ≥ λ}.

13



Proof of Lemma 3. For any ε > 0, define

An = {ω ∈ Ω :

∣∣∣∣Xn(ω)

n

∣∣∣∣ > ε}∑
n

P (An) =
∑
n

P{|Xn| > nε}

=
∑
n

∑
k=n

P{kε < |Xn| < (k + 1)ε}

=
∑
k

kP{kε < |Xn| < (k + 1)ε}

≤ 1

ε
E|X| < +∞

Therefore if we define

Bε = {ω ∈ Ω, ω ∈ An i.o.}

then P (Bε) = 0. Let B =
⋃∞
n=1B 1

n
. Then P (B) = 0, and

lim
n→∞

Xn(ω)

n
= 0, if ω /∈ B.

Lemma 5. (Second Borel-Cantelli Lemma) If
∑∞

n=1 P (An) = +∞, and An are mutually

independent, then

P{ω ∈ Ω, ω ∈ An i.o.} = 1

6 Homeworks

• HW1. Prove the second Borel-Cantelli Lemma.

• HW2. Prove that if X ∼ P(λ), Y ∼ P(µ) and X is independent of Y , then X + Y ∼
P(λ+ µ).

• HW3. Suppose X ∼ P(λ), Y ∼ P(µ) are two independent Poisson random variables

and the sum X + Y = N is fixed. Then the conditional distribution of X (or Y ) is a

Binomial distribution with parameter n = N and p = λ/(λ+ µ) (or p = µ/(λ+ µ)).

• HW4. Prove the following statements:

1. (Memoryless property of exponential distribution) Suppose X ∼ E(λ), prove that

Prob(X > s+ t|X > s) = Prob(X > t) for all s, t > 0.

2. Let X be a random variable such that

Prob(X > s+ t) = Prob(X > s)Prob(X > t) for all s, t > 0,

prove that there exists λ > 0 such that X ∼ E(λ).

14



• HW5. (Wick’s theorem) For multi-variate Gaussian random variables (X1, X2, . . . , Xn)

with mean 0, utilize (17) and (16) to prove

E(X1X2 · · ·Xk) =

{ ∑∏
E(XiXj), k is even,

0, k is odd,

where the notation
∑∏

means summing of products over all possible partitions of

X1, . . . , Xk into pairs, e.g. for (X,Y,Z) is jointly Gaussian we obtain

E(X2Y 2Z2) =(EX2)(EY 2)(EZ2) + 2(EY Z)2EX2 + 2(EXY )2EZ2 + 2(EXZ)2EY 2

+ 8(EXY )(EY Z)(EXZ). (18)

Each term in (18) can be schematically mapped to some graph as below

(EXY )2EZ2 7−→ X Y Z , (EY Z)2EX2 7−→ X Y Z ,

(EXZ)2EY 2 7−→ X Y Z , (EX2)(EY 2)(EZ2) 7−→ X Y Z ,

(EXY )(EY Z)(EXZ) 7−→ X Y Z .

And the coefficient of each term is the combinatorial number for generating the corre-

sponding schematic combinations. This is essentially the so-called Feynman diagrams.

• HW6. Suppose that the events An are mutually independent with Prob(∪nAn) = 1

and Prob(An) < 1 for each n. Prove that Prob{An i.o.} = 1.

• HW7. Numerically investigate the limit process

Binomial −→ Poisson −→ Normal distribution

with MATLAB. Find the suitable parameter regime that the limit holds.
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Lecture 3 Generation of RVs ∗

Tiejun Li

1 Basic MC method

The MC method for integration is as follows:

I(f) =

∫
f(x)p(x)dx −→ IN(f) =

1

N

N∑
i=1

f(Xi), Xi ∼ p(x) i.i.d.

From the WLLN, IN(f)→ I(f) in probability.

Problem: How to generate the random variables Xi? (i = 1, . . . , N)

2 Generation of RVs

The first step to apply Monte Carlo method is to generate random variables. In computer

simulations the random variables are replaced with pseudo-random variables for the reason

of repeatability. We will show in the continued texts that the arbitrary distribution can

be generated based on the uniform distributions. Let us start with generating the uniform

distribution U [0, 1]. We recommend [4] for the codes to be used in practice.

2.1 Uniform distribution

The most commonly used pseudo-random number generator (PRNG) for U [0, 1] is based

on the linear congruential generator (LCG) and its different kinds of variants. It has the

following simple form

Xn+1 = aXn + b(mod m) (2.1)

where a, b and m are chosen natural numbers beforehand, and X0 is the seed. The obtained

sequence Xn/m is the desired pseudo-random number satisfies U [0, 1]. The period for a

typical sequence produced by the above recursion formula is defined as the length of the

repeating cycle. It is proven in [1] that

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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Theorem 2.1. The period of a LCG is m if and only if

(i) b and m are relatively prime;

(ii) every prime factor of m divides a− 1;

(iii) if m
∣∣4, then (a− 1)

∣∣4.

To achieve the goal of full period, a good choice in computer implementation is m = 2k,

a = 4c+ 1, and b is odd.

The LCG is also discussed when b = 0. In 1969, Lewis, Goodman and Miller proposed

the following pseudo-random number generator

Xn+1 = aXn (mod m),

with a = 75 = 16807,m = 231 − 1. This generator has passed all new theoretical tests in

subsequent years, and resulted in a lot of successful use. They called it “Minimal standard

generator” against which other generators should be judged. It is implemented in the

function ran0() in the book Numerical Recipes [4]. The period of ran0() is about 2.1×109.

With shuffling algorithm by combining sequences with different periods, a more powerful

pseudo-random number generator ran2() with period about 2.3× 1018 is constructed. The

authors claim that they will pay $1,000 for the first person who may convince them by

finding a statistical test that this generator fails in a nontrivial way!

More general LCG generators take the following form

Xn+1 = a0Xn + a1Xn−1 + · · ·+ ajXn−j + b (mod m).

These generators are characterized by the period τ , which in the best case can not proceed

mj+1 − 1. The length of τ depends on the choice of aj, b and m.

One important fact about the LCG is that it shows very poor distributions of s-tuples,

i.e. the vectors (Xn, Xn+1, . . . , Xn+s−1). In [2], Marsaglia proved the important fact

Theorem 2.2. The s-tuples (Xn, Xn+1, . . . , Xn+s−1) obtained via (2.1) lie on a maximum

of (s!m)
1
s equidistant parallel hyperplanes within the s-dimensional hypercube (0, 1)s.

When s is large, the deviation with respect to the uniform distribution is apparent.

Though the LCG has this drawback, it is still the most widely used pseudo random number

generator in practice. The nonlinear generators are also discussed to overcome this lim-

itation. Some very recent mathematical softwares adopt the so-called Mersenne Twister

generator, which avoids the linear congruential steps and has the period up to 219937− 1 [3].

We remark here that since the generation of RVs are essential for the success of the

algorithm, one must use the reliable RV generators from available well-accepted codes or

libraries!
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2.2 Statistical testing

It is very difficult to distinguish whether a given sequence is generated from deterministic

methods or stochastic methods. The practical way to handle this issue is to judge whether

it can pass the corresponding statistical testing if the sequence is assumed to be random.

That is the principle under which the pseudo-random number generator works. Below we

show some of the statistical testing strategies for uniform distribution U [0, 1]. One may be

referred to the book [1] or the document

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

maintained by the National Institute of Standards and Technology for more details on the

empirical tests for PRNG.

• Equi-distribution test: The interval (0, 1) is divided into K subintervals. The num-

ber Nj of points falling into the j-th interval is then determined from a sample

{X1, . . . , XN}. A χ2-test is performed where the expected number in each subinterval

is N/K.

• Serial test: Consider the s-vector

Xn = (Xn, Xn+1, . . . , Xn+s−1)

in s-dimensional space (s > 2). The s-hypercube is divided into rs equi-partitions

and the frequency of the samples falling in each sub-partition is measured. Similarly

a χ2-test is applied to the sample sequences.

• Run test: Consider a short sequence Xn−1 > Xn < Xn+1 > Xn+2 < Xn+3. We have a

run-up of length 1 followed by two run-ups of length 2 since it has 3 increasing sub-

sequences Xn−1|Xn, Xn+1 |Xn+2, Xn+3. For a sequence of pseudo-random numbers, we

can count the number of run-ups of length 1, length 2, . . . and denote them by R1, R2,

etc. It can be shown that {Rk} is normally distributed in large sample size. Various

statistical tests can be used to test such distributions.

2.3 Inverse Transformation Method

The general random variables Y ∈ R can be generated from U [0, 1] in principle based

on the following well-known proposition.

Proposition 2.3 (Inverse Transformation Method). Suppose the distribution function of Y

is F (y), i.e. P(Y ≤ y) = F (y), which is strictly increasing. Xi ∼ U [0, 1], then Yi := F−1(Xi)

is the desired random variables.
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The geometric interpretation of the above proposition is clear from the following figure.

When there are two sharp peaks at Y = y1 and y2 in the pdf of Y , the corresponding

distribution function of Y will exhibit two sharp increase near y1 and y2. Thus the projection

of F (y) onto the vertical segment [0, 1] has large portions near F (y1) and F (y2). The inverse

transformation from U [0, 1] gives the desired distribution.

y
1
 

y
2
 

y 

p(y) 

y 

x 

F(y) 

y
1
 y

2
 

Figure 1: Left panel: The pdf of Y . Right panel: The distribution

function F (y).

Proof: If F (y) is strictly increasing, we have the following simple proof for any y ∈ R

P(Y ≤ y) = P(F−1(X) ≤ y) = P(X ≤ F (y)) = F (y).

When there are atoms in the distribution of Y or some parts have zero probability, the

distribution function F (y) is only non-decreasing and right continuous. In this case we

should define the generalized inverse F− of F as

F−(u) = inf{x : F (x) ≥ u}.

With this definition, we have for any u ∈ [0, 1] and for any x ∈ F−([0, 1]) (the real domain),

the generalizied inverse satisfies

F (F−(u)) ≥ u and F−(F (x)) ≤ x.

Thus

{(u, x) : F−(u) ≤ x} = {(u, x) : F (x) ≥ u}

and

P(F−(U) ≤ x) = P(U ≤ F (x)) = F (x).

Some straightforward applications of the inverse transformation method are as follows.

• Generation of U [a, b]:
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The distribution function

F (y) =
y − a
b− a

, y ∈ [a, b],

then F−1(x) = (b− a)x+ a, so we can take Xi ∼ U [0, 1], Yi = (b− a)Xi + a.

• Exponential distribution:

The distribution function

F (y) = 1− e−λy

then F−1(x) = − ln(1− x)/λ, x ∈ [0, 1], so we can take

Yi = −1

λ
lnXi, (i = 1, 2, . . .)

where Xi ∼ U [0, 1] since 1−Xi ∼ U [0, 1] also.

Now let us investigate the possibility of generating N(0, 1) via inverse transformation

method. We have

F (x) =

∫ x

−∞
p(y)dy =

1

2
+

1

2
erf
( x√

2

)
.

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the error function. So F−1(x) =

√
2erf−1(2x−1). It is difficult

to implement with this formula since it involves the solution of transcendental equations !

2.4 Box-Muller method for Gaussian RVs

A nice idea to generate Gaussian RVs is by the following Box-Muller method. The basic

approach is though measure transformation on a lifted high dimensional space. Consider

a two dimensional Gaussian distributed vector with independent components. With polar

coordinates x = r cos θ, y = r sin θ, we have

1

2π
e−

x21+x22
2 dx1dx2 =

( 1

2π
dθ
)
· (e−

r2

2 rdr).

So we transform the generation of a 2D Gaussian into the generation of Θ and R. Here

the measure 1/2πdθ corresponds to U [0, 2π] in θ space, and e−
r2

2 rdr corresponds to the

distribution in r-direction with F (r) =
∫ r
0
e−

s2

2 sds = 1−e− r2

2 . F−1(r) is easy to be obtained

and we obtain the method to generate Gaussian RV

Zi = Ri cos Θi,

where Ri =
√
−2 lnXi, Θi = 2πYi and Xi, Yi ∼ U [0, 1]i.i.d..
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Remark 2.4. Another approximately generating Gaussian random variable is by central

limit theorem

Xn =
√

12/N
( N∑
k=1

ξk −
N

2

)
where ξk ∼ U([0, 1]) i.i.d.. The CLT asserts that N = 12 is sufficiently large for many

purposes.

2.5 Composition of random variables

Some distributions can be obtained by the composition of simple random variables in-

stead of the direct application of the previous principles. Here are some examples.

• Sampling the hat pdf.

Suppose the pdf is

f(z) =

{
z, 0 < z < 1,

2− z, 1 ≤ z < 2.

It is interesting to observe that Z has the same distribution with X+Y , where X and

Y are i.i.d. with distribution U [0, 1]. This suggests that sampling Z can be obtained

by the summation of two uniform RVs ξ1 and ξ2.

• Sampling a random variable raised to a power.

Let X1, . . . , Xn be drawn i.i.d. from the CDF F1(x1), . . . , Fn(xn). If we set Z to be

the largest number among Xi, i.e.

Z = max{X1, . . . , Xn}. (2.2)

Then the CDF of Z will be F (z) =
∏n

i=1 Fi(z). Suppose we want to generate Z ∼
p(z) = nzn−1, where z ∈ [0, 1]. Then F (z) = zn and we can take Xi are U [0, 1] RVs in

(2.2).

• Sampling the mixture models.

Suppose the pdf

f(x) =
n∑
i=1

αigi(x), αi ≥ 0, gi(x) ≥ 0.

We can rewrite it as

f(x) =
n∑
i=1

βihi(x), βi = αi

∫
gi(x)dx, hi(x) =

gi(x)∫
gi(x)dx

,

so we have the relation ∫
hi(x)dx = 1,

n∑
i=1

βi = 1.
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The sampling of X can be obtained by first sample the index I according to the

distribution {βi}ni=1, and then sample X according to the pdf hI(x). The rationale

behind this is simply by the definition of conditional probability.

2.6 Acceptance-Rejection method

Though the inverse transformation method gives one approach to generate arbitrary

RVs in principle, we have found that it encounters difficulty in implementations if there is

no closed form inverse of the CDF. Next we present acceptance-rejection method, which is

another general methodology to sample arbitrary RVs.

The aim is to generate RV with density 0 ≤ p(x) ≤ d, a ≤ x ≤ b. The idea is to lift the

state space into a higher dimensional space as shown in Figure 2. Suppose we can sample

a uniformly distributed two dimensional random variable (X, Y ) in the shaded domain A,

where

A := {(x, y) : x ∈ [a, b], y ∈ [0, p(x)]}.

The pdf is χA(x, y) and its X-marginal distribution

pX(x) =

∫ p(x)

0

χA(x, y)dy =

∫ p(x)

0

1dy = p(x),

which is exactly the desired distribution. The uniform distribution in domain A can be easily

obtained by the inheritance from the uniform distribution in [a, b] × [0, d]. This naturally

leads to the Acceptance-Rejection algorithm

Algorithm 2.5 (Acceptance-Rejection method). Generate X ∼ p(x).

Step1. Generate Xi ∼ U [a, b].

Step2. Generate a decision-making RV Yi ∼ U [0, d].

Step3. If 0 ≤ Yi < p(Xi), accept; otherwise, reject.

Step4. Back to Step1.

For the unbounded random variables, we should introduce more general comparison

functions. We draw a curve f(x) which lies everywhere above the original distribution

density function p(x). This f(x) is called comparison function. Suppose we can generate

the uniform distribution in the two dimensional domain covered by f(x), we can apply the

acceptance-rejection strategy to reduce it to the uniform distribution in the domain covered

by p(x). Then the X-marginal distribution assures us the correct sampling. Now let us

consider the generation of uniform RVs with the support covered by f(x) in 2D.

Suppose we have ∫ ∞
−∞

f(x)dx = A
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Figure 2: Schematics of the Acceptance-Rejection method

and we have the concrete form for F−1(x), where

F (x) =

∫ x

−∞
f(x)dx.

Then we consider the decomposition of uniform measure in x ∈ (−∞,∞), y ∈ [0, f(x)]

1

A
f(x)dx

1

f(x)
dy.

This introduces a strategy for generating 2D uniform distribution by conditional sampling.

Algorithm 2.6 (Acceptance-Rejection method with general comparison function). Gener-

ate the unbounded X ∼ p(x).

Step1. Generate Xi = F−1(AZi), where Zi ∼ U([0, 1]);

Step2. Generate decision-making RV Yi ∼ U [0, f(Xi)];

Step3. If 0 ≤ Yi < p(Xi), accept; otherwise, reject;

Step4. Back to Step1.

For bell-shaped random variables, the commonly used comparison function is the Cauchy

distribution (or Lorentzian function) because of the slow decay when y is large

p(y) =
1

π(1 + y2)
.

One can check the first and second moments of the Cauchy distribution are both infinity

though the principal integral of p(y) is 0 because of symmetry. Since the standard deviation

typically characterize the width of the “shoulder” near the center, the infinite second moment

gives the reason why it is the usual candidate of comparison functions. Its inverse indefinite
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integral is jus the tangent function. The comparison function is often chosen as the rescaled

Cauchy function

f(x) =
c0

1 + (x− x0)2/a20
= c0p

(x− x0
a0

)
.

One can adjust the values of x0, a0 and c0 such that it is everywhere greater than p(x).

For the discrete random variables such as the Poisson and binomial distribution. one

can extend it into a continuous distribution. With Poisson distribution as an example, we

can extend it to R as

q(m) =
x[m]e−x

[m]!
,

where [m] represents the largest integer less than m. When x is large enough, we can take

Cauchy function as the comparison function.

3 Homeworks

HW1. Familiarize the following functions in MATLAB.

mean, median, min, max, cov, hist

HW2. How many ways can you give to sample U(S2), the uniform distribution on the

sphere surface S2. Implement them and make a comparison.

HW3. Derive the overall rejection probability of the Algorithm 2.6.

HW4. (Envelope Acceptance-Rejection) To generate the R.V. X ∼ p(x), we suppose

that there exist bounds gl(x) ≤ p(x) ≤ Mgm(x), where gm(x) is a pdf, M is a positive

constant and gl(x) ≥ 0 is a very simple function. Prove that the following algorithm

Step1: Generate X ∼ gm(x), U ∼ U [0, 1];

Step2: Accept X if U ≤ gl(X)/(Mgm(X));

Step3: Otherwise accept X if if U ≤ p(X)/(Mgm(X)).

generates X correctly and state its advantage compared with Algorithm 2.6.
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Lecture 4 Variance Reduction ∗

Tiejun Li

1 Necessity

The standard MC for computing I(f) =
∫ 1

0
f(x)dx is

IN(f) =
1

N

N∑
i=1

f(Xi), Xi ∼ i.i.d. U [0, 1].

The mean square error

E|eN |2 = E(IN(f)− I(f))2 =
1

N
Var (f), (1.1)

where

var(f) =

∫ 1

0

(f(x)− I(f))2dx.

If var(f)� 1, the accuracy will be very poor!

2 Variance reduction.

We see from (1.1) that there are two factors that affect the error of Monte Carlo method:

the sampling size N and the variance of f . N is clearly limited by the computational cost

we are willing to afford. But the variance can be manipulated in order to reduce the size of

the error.

The essence of variance reduction: to utilize some prior information about the integrand

and try to extract the part which can be efficiently and accurately estimated through other

ways.

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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2.1 Importance Sampling

Consider for example the numerical evaluation of
∫ 10

−10
e−

1
2
x2dx. Straightforward appli-

cation of (1.1) would give ∫ 10

−10

e−
1
2
x2dx ≈ 20

N

N∑
i=1

e−
1
2
X2

i ,

where {Xi}Ni=1 are i.i.d. random variables that are uniformly distributed on [−10, 10]. How-

ever notice that the integrand e−
1
2
x2 is an extremely non-uniform function, whose value is

very small (and hence will have little contribution to the integral) everywhere except a small

neighborhood of x = 0, most of the samples will be wasted in the region where the integrand

is small. In other words, the uniform distribution ignores the importance of the integrand

and thus the numerical quadrature is inefficient. The importance sampling embodies this

idea by utilizing special distributions, which is schematically shown in Figure 1.

p(x) 

f(x) 

0 1 a b 

Figure 1: Schematics of importance sampling

Now if instead the {Xi}’s are distributed, differentially, say with density function p(x),

then we can use the fact that∫
f(x)dx =

∫
f(x)

p(x)
p(x)dx = E

(f
p

(X)
)

= lim
N→∞

1

N

N∑
i=1

f(Xi)

p(Xi)

and approximate
∫
f(x)dx by

IpN(f) =
1

N

N∑
i=1

f(Xi)

p(Xi)
,

2



where X ∼ g(x). The error can be estimated in the same way as before, and we get

E(I(f)− IpN(f))2 =
1

N
var
(f
p

)
=

1

N

(∫ f 2(x)

p(x)
dx− I2(f)

)
.

The Cauchy-Schwartz inequality shows(∫ f(x)√
p(x)

√
p(x)dx

)2

≤
∫
f 2

p
dx

∫
p(x)dx

and the equality holds iff p(x) = cf(x). Now we get an ideal importance function

p(x) = Z−1f(x)

if f is nonnegative, where Z is the normalization factor Z =
∫
f(x)dx. In this case

I(f) = IpN(f).

This is not a miracle since all the necessary work has gone into computing Z which was our

original task.

Though the perfect importance function is a mission impossible, it shows the direction

toward which the sampled distribution should be constructed. For the example discussed

earlier, we can pick p(x) that behaves as e−
1
2
x2 and at the same time can be sampled with

a reasonable cost.

Now let us discuss a slight variant of above direct implementation of the importance

sampling [2]. Suppose we are interested in evaluating

I =

∫
f(x)π(x)dx,

we can proceed as the following steps.

• Draw X1, . . . , Xn i.i.d. from a distribution g(x).

• Calculate the importance weight

wj =
π(Xj)

g(Xj)
, for j = 1, 2, . . . , n.

• Approximate the expectation by

Î =

∑n
i=1 wif(Xi)∑n

i=1wi
. (2.1)

3



Note that the expectation of Î is not I, but we have by SLLN

Ĩ =
1

n

n∑
i=1

wif(Xi)→ µ and
1

n

n∑
i=1

wi → 1

as n → ∞. In this sense we call Î a biased estimator. A major advantage of using (2.1)

instead of Ĩ is that in using the former, we need only the ratio π(x)/g(x) up to a multiplicative

constant, which is a usual case in statistics; whereas in the latter, the ratio needs to be known

explicitly.

Example 2.1 (Toy example for importance sampling). Suppose we want to compute

I =

∫ ∫
X
f(x, y)dxdy,

where X = [−1, 1]× [−1, 1] and

f(x, y) = 0.5 exp
(
− 90(x− 0.5)2 − 45(y + 0.1)4

)
+ exp

(
− 45(x+ 0.4)2 − 60(y − 0.5)2

)
.

The integrand resembles some renormalized Gaussian mixture distribution except the

power 4 appearing in the first part for y variable. So the first step is to choose a suitable

“Gaussian” to approximate the first part suitably. Here we take the trial distribution

g(x, y) ∝ 0.5 exp
(
− 90(x− 0.5)2 − 10(y + 0.1)2

)
+ exp

(
− 45(x+ 0.4)2 − 60(y − 0.5)2

)
.

The reason that we take the number 10 before the y variable is as follows. Suppose we

approximate exp(−10) ≈ 0, then from 45y4 = 10 we have the support radius for y is

approximately r = (10/45)1/4. With kr2 = 10 we have k =
√

450 & O(10). A conservative

choice may be k = 10. With the constraint (x, y) ∈ X , it corresponds to a truncated mixture

of Gaussian distribution

0.46N

[(
0.5

−0.1

)
,

(
1

180
0

0 1
20

)]
+ 0.54N

[(
−0.4

0.5

)
,

(
1
90

0

0 1
120

)]
.

We can sample Xn from this Gaussian mixture and compute the importance weight as

wi =
f(Xi)

g(Xi)
· 1X (Xi).

One particular interesting specification of the importance sampling is the cross-entropy

method [4]. Now suppose we want to compute

I(f) =

∫
f(x)π(x)dx

4



We assume f ≥ 0. Then the perfect importance function will be µ(x) ∝ f(x)π(x) but unable

to sample in general. To compute a good sample average, one can assume a parameterized

pdf with the form µu(x) = µ(x;u) where u are the prescribed parameters. We choose u to

minimize the cross-entropy (or Kullback-Leibler “distance”, or relative entropy)

min
u
D(µ||µu) =

∫
µ(x) ln

µ(x)

µu(x)
dx.

Note the order matters here and it is important for the following derivations.

We have

D(µ||µu) =

∫
µ(x) lnµ(x)dx−

∫
µ(x) lnµu(x)dx

=

∫
µ(x) lnµ(x)dx− 1

I(f)

∫
f(x)π(x) lnµu(x)dx

So minimizing cross-entropy is equivalent to maximize F (x) =
∫
f(x)π(x) lnµu(x)dx. The

extremal point satisfies

∇F (x) =

∫
f(x)π(x)

µu(x)
∇uµ(x;u)dx = 0.

Solving this equation we obtain u∗, thus have a good candidate importance distribution µu∗ .

The above argument is very useful for estimating the rare events such as the the small

probability p = P(X ≥ γ) = E1{X≥γ}. We have the relative error√
Var(1{X≥γ})

I
=

√
1− p
p
� 1 when p� 1.

One should introduce a multileveled version of the cross-entropy method to relax this issue

with a step-by-step version.

2.2 Control Variates

Consider another form of I(f)

I(f) =

∫
f(x)dx =

∫
(f(x)− g(x))dx +

∫
g(x)dx.

The idea of control variates is quite simple. If g(x) is very similar to f(x), and I(g) is known

or can be obtained in a highly accurate manner, then var(f − g) < var(f), we will obtain

a variance reduced estimator of I(f). Similarly, an ideal control variates will be f itself,

but we don’t know I(f)! This is similar to the importance sampling. Though the perfect

control variates is not practical, it tells us the direction toward which the approximate

control variates should be constructed.

5



Another form of control variates is as follows. Suppose we have an unbiased estimator

U =
1

N

N∑
i=1

f(Xi)

for the integral I(f), and we have another statistic V with known expectation EV = µ.

Define a new static

Ũ = U + c(V − µ)

where c is to be determined. It is obvious that Ũ is also an unbiased estimator of I(f). We

have

Var(Ũ) = Var(U) + c2Var(V ) + 2cCov(U, V )

The optimal parameter for the minimization of the variance is

c∗ = −Cov(U, V )/Var(V ).

In this case

Var(Ũ∗) = (1− ρ2
U,V )Var(U)

where ρU,V is the correlation coefficient between U and V . So the more the introduced

estimator V correlates with U , the more accurate the result will be. The constant c∗ is

usually computed from simulations in practice, e.g.

C∗N = −
∑N

i=1(Ui − Ū)(Vi − V̄ )∑N
i=1(Vi − V̄ )2

.

There are also nonlinear version of control variates like

X̄ · EY
Ȳ

or X̄ exp(Ȳ − EY )

in estimating EX through X̄.

Example 2.2 (Toy example for control variates). Consider the following integral

I(f) =

∫ +∞

−∞

1√
2π

(1 + r)−1e−
x2

2 dx,

where r = eσx, σ � 1.

Notice that

(1 + r)−1 ≈ h(x) =

{
1, x ≤ 0,

0, x > 0,

we have

I(f) =
1√
2π

∫ +∞

−∞

(
(1 + r)−1 − h(x)

)
e−

x2

2 dx+
1

2
.

Here h(x) plays the role of control variates. Applying standard normal distribution can

reduce the variance more.
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2.3 Rao-Blackwellization

This method reflects a basic principle in Monte Carlo computation: One should carry

out analytical computation as much as possible. Indeed this principle is also embodied in

the idea of control variates. Suppose we have n independent samples X1, . . . ,Xn drawn

from pdf π(x) and we are interested in evaluating I =
∫
f(x)π(x)dx. A straightforward

estimator is

Î =
1

n

n∑
i=1

f(Xi).

Suppose that x can be decomposed into two parts (x(1),x(2)) and the conditional expectation

E(f(X)|x(2)) can be obtained analytically or in a highly accurate manner. We can define

another unbiased estimator of I as

Ĩ =
1

n

n∑
i=1

E(f(X)|X(2)
i ).

If the computational effort for obtaining the two estimates are similar, then Ĩ should be

preferred because of the variance identity [3]

var(f(X)) = var(E(f(X)|X(2))) + E(var(f(X)|X(2))), (2.2)

which implies that

var(Î) =
var(f(X))

m
≥ var(E(f(X)|X(2)))

m
= var(Ĩ).

The above procedure is called Rao-Blackwellization. The readers may be referred to [2] for

more details.

2.4 Antithetic Variables

Proposition 2.3. Suppose X ∼ U [0, 1], and f(x) is monotone, then

Cov(f(X), f(1−X)) ≤ 0.

Define

IN(f) =
1

2N

N∑
i=1

(f(Xi) + f(1−Xi)), Xi ∼ i.i.d. U [0, 1],

then

EIN = I(f), var(IN) =
1

2N
(var(f) + Cov(f(X), f(1−X))) ≤ 1

2N
var(f).

The variance is reduced!
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2.5 Stratified Sampling

Consider two numerical integration strategies:

1. Monte Carlo: I
(1)
N (f) = 1

N

∑N
i=1 f(Xi), Xi ∼ i.i.d. U [0, 1].

2. Midpoint rule: I
(2)
N (f) = 1

N

∑N
i=1 f(Yi), Yi = 1

2N
+ i−1

N
.

The error estimate:

|e(1)
N | ∼ O(

1√
N

), |e(2)
N | ∼ O(

1

N2
).

The comparison of accuracy:

Uniform > Quasi-random > Random.

To improve the accuracy, one applies

Uniform + Adaptive→ Moving Mesh.

Random + Adaptive→ Importance Sampling.

Idea: If we combine the uniform and random sample points, we obtain the stratified sam-

pling, and the accuracy will be improved.

Strategy: Divide Ω = [0, 1] into M equi-partitions

Ωk =
[k − 1

M
,
k

M

]
, k = 1, 2, . . . ,M.

Sample Nk = N/M points uniformly in Ωk, denoted as X
(k)
i , i = 1, . . . , Nk. Define

f̄(x) = f̄k = |Ωk|−1

∫
Ωk

f(x)dx = Ef(X(k)), x ∈ Ωk

and

IN =
1

N

M∑
k=1

Nk∑
i=1

f(X
(k)
i ), (2.3)

we have

EIN =
1

N

M∑
k=1

(Nk · f̄k) = I(f),

Var (IN) =
1

N2

∑
i,k

∑
j,l

E
[(
f(X

(k)
i )− f̄k)(f(X

(l)
j )− f̄l

)]
=

1

N2

M∑
k=1

(
Nk · |Ωk|−1

∫
Ωk

(f(x)− f̄k)2dx
)

=
1

N

∫
Ω

(f(x)− f̄(x))2dx.
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Proposition 2.4. Define

σs =
(∫

Ω

(f(x)− f̄(x))2dx
) 1

2
,

then

σs ≤ σ =
(∫

Ω

(f(x)− I(f))2dx
) 1

2
.

Proof. The quadratic function of c

g(c) =

∫
Ωk

(f(x)− c)2dx

takes minimum at c = f̄k, so we have

σ2
s =

∑
k

∫
Ωk

(f(x)− f̄k)2dx ≤
∑
k

∫
Ωk

(f(x)− I(f))2dx = σ2.

The variance is reduced!

The stratified sampling can be combined with importance sampling.

Let Ω =
⋃M
k=1 Ωk, take Nk points {X(k)

i }
Nk
i=1 in Ωk,

∑M
k=1Nk = N . Assume {X(k)

i }
Nk
i=1 ∼

i.i.d. p(k)(x) = p(x)/p̄k, x ∈ Ωk, and p̄k =
∫

Ωk
p(x)dx, then

IN =
M∑
k=1

p̄k
Nk

Nk∑
i=1

f(X
(k)
i ).

Define

f̄(x) = f̄k = Ef(X(k)) = p̄−1
k

∫
Ωk

f(x)p(x)dx, x ∈ Ωk,

we have

EIN =
M∑
k=1

∫
Ωk

f(x)p(x)dx = I(f),

Var (IN) =
M∑
k=1

p̄k
Nk

∫
Ωk

(f(x)− f̄k)2p(x)dx =
M∑
k=1

p̄k
Nk

σ2
k,

where σ2
k ,

∫
Ωk

(f(x)− f̄k)2p(x)dx.

Proposition 2.5. If the balance condition p̄k/Nk = 1
N

is satisfied, the variance is reduced.

In a nutshell, the stratified sampling can be described as

EY =
K∑
k=1

P(Y ∈ Ak)E(Y |Y ∈ Ak) =
K∑
k=1

pkE(Y |Y ∈ Ak)

=
K∑
k=1

nk
n
E(Y |Y ∈ Ak) ≈

1

n

K∑
k=1

nk∑
j=1

Ykj

9



where Ykj ∼ Y |Y ∈ Ak, and nk = npk which is enforced in the partition.

When the stratified sampling is applied to the realistic high dimensional problems, rather

than attempt to stratify all the dimensions, it is better to identify which variables (if any)

carry most of the variation of the integrand and stratify these. Significant reduction in the

variance can sometimes be achieved by stratifying a single dimension in a many-dimensional

integral.

3 Homeworks

• HW1. Prove the Proposition 2.3.

• HW2. Prove the identity (2.2).

• HW3. Prove that the relative entropy has the property that D(f ||g) ≥ 0 and

D(f ||g) = 0 if and only if f(x) = g(x) for distribution density f(x) and g(x). Here

we assume g(x) > 0 and take the convention that 0 ln 0 = 0.
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Lecture 5 Limit theorems ∗

Tiejun Li

1 Law of Large Numbers

Let {Xj}∞j=1 be a sequence of independently and identically distributed (abbreviated as i.i.d. in the

later text) random variables. Let η = EX1 and Sn the partial sum of Xj from 1 to n. The well-known law

of large numbers validates the intuitive characterization of the mathematical expectation: it is the limit of

empirical average when the sample size n goes to infinity. It is also the theoretical basis of the Monte Carlo

methods.

Theorem 1.1 (Weak law of large numbers (WLLN)). For i.i.d. random variables {Xj}∞j=1 with E|Xj | <∞,

we have
Sn
n
→ η in probability.

Proving the result under the stated assumption is quite involved. We will give a proof of the WLLN

under the stronger assumption that E|Xj |2 <∞.

Proof. Without loss of generality, we can assume η = 0. Using Chebyshev’s inequality, we have

P
{∣∣∣∣Snn

∣∣∣∣ > ε

}
≤ 1

ε2
E
∣∣∣∣Snn

∣∣∣∣2
for any ε > 0. Using independence, we have

E|Sn|2 =
n∑

i,j=1

E(XiXj) = nE|X1|2.

Hence

P
{∣∣∣∣Snn

∣∣∣∣ > ε

}
≤ 1

nε2
E|X1|2 → 0,

as n→∞.

Theorem 1.2 (Strong law of large numbers (SLLN)). For i.i.d. random variables {Xj}∞j=1 we have

Sn
n
→ η a.s.

if and only if E|Xj | <∞.

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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Proof. We will only give a proof of SLLN here under the stronger assumption that E|Xj |4 <∞. The proof

in the most general condition may be referred to [2].

Without loss of generality, we can assume η = 0. Using Chebyshev’s inequality, we obtain

P
{∣∣∣∣Snn

∣∣∣∣ > ε

}
≤ 1

ε4
E
∣∣∣∣Snn

∣∣∣∣4 .
Using independence, we get

E|Sn|4 =

n∑
i,j,k,l=1

E(XiXjXkXl) = nE|Xj |4 + 3n(n− 1)(E|Xj |2)2.

We have (E|Xj |2)2 ≤ E|Xj |4 <∞ by Hölder inequality. Hence

P
{∣∣∣∣Snn

∣∣∣∣ > ε

}
≤ C

n2ε4
.

Since the series 1/n2 is summable we get

P
{∣∣∣∣Snn

∣∣∣∣ > ε, i.o.

}
= 0

by Borel-Cantelli lemma. This implies that

Sn
n
→ 0 a.s.

and we are done.

Example 1.3 (Cauchy distribution). The following example shows that the law of large numbers does not

hold if the assumed condition is not satisfied. Consider the i.i.d. random variables {Xj}∞j=1 with Cauchy

distribution having probability density function

1

π(1 + x2)
, x ∈ R. (1.1)

We have EXj = 0 by symmetry and E|Xj | = ∞,E|Xj |2 = ∞. In this case, we can prove Sn/n always has

the same distribution as X1. Thus the weak and strong law of large numbers are both violated.

2 Central Limit Theorem

The following central limit theorem explains why the normal or normal-like distributions are so widely

observed in the nature.

Theorem 2.1 (Lindeberg-Lévy central limit theorem (CLT)). Let {Xj}∞j=1 be a sequence of i.i.d. random

variables. Assume that EX2
j <∞ and let σ2 = var(Xj). Then

Sn − nη√
nσ2

→ N(0, 1)

in the sense of distribution.
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Proof. Assume without loss of generality η = 0 and σ = 1, otherwise we can shift and rescale Xj . Let f be

the characteristic function of X1 and let gn be the characteristic function of Sn/
√
n. Then

gn(ξ) = EeiξSn/
√
n =

n∏
j=1

EeiξXj/
√
nσ2

=
n∏
j=1

f

(
ξ√
n

)
= fn

(
ξ√
n

)
.

Using Taylor expansion and the properties of characteristic functions we obtain

f

(
ξ√
n

)
= f(0) +

ξ√
n
f ′(0) +

1

2

(
ξ√
n

)2

f ′′(0) + o

(
1

n

)
= 1− ξ2

2n
+ o

(
1

n

)
Hence

gn(ξ) = f
(
ξ/
√
n
)n

=

(
1− ξ2

2n
+ o

(
1

n

))n
→ e−

1
2 ξ

2

as n→∞

for every ξ ∈ R1. This completes the proof by using Levy’s continuity theorem.

The central limit theorem is the theoretical basis for the assumption that additive noise can be modeled

by Gaussian noises. It also gives an estimate for the rate of convergence in the law of large numbers. Since

by CLT we have
Sn
n
− η ∼ σ√

n
.

The rate of convergence of Sn/n to η is O(n−
1
2 ). This is the reason why most Monte Carlo methods has a

rate of convergence of O(n−
1
2 ) where n is the sample size.

0

r

r

R

1

K

b

Figure 1: Schematics of the freely jointed chain.

Application in polymer physics. The central limit theorem is fundamental to understand the end-

to-end statistics for a polymer. The simplest model for flexible polymers is called the freely jointed chain,

in which a polymer consists of K units, each of length b0 and able to point in any direction independently

of each other (Figure 1). Denote the bond vectors as rk (k = 1, . . . ,K), which has i.i.d. distribution density

p(r) =
1

4πb20
δ(r − b0).

The end-to-end vector

R =
K∑
k=1

rk.
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From the central limit theorem, we have asymptotically

R ∼ N(0,Kb20I), K � 1.

Note that this Gaussian type approximation as K � 1 is independent of the choice of the bond vector

distribution. This model is called Gaussian chain in polymer physics.

Remark 2.2 (Stable laws). Theorem 2.1 requires that the variance of Xj be finite. For variables with

unbounded variances one can show the following. If there exists {an} and {bn} such that

P{an(Sn − bn) ≤ x} → G(x) as n→∞,

then the distribution G(x) is stable. For details see [3].

3 Laplace asymptotics

Laplace method is the basis of large deviation theory. It is widely used in many fields of applied

mathematics. We will only introduce the one-dimensional version of Laplace asymptotics in this section.

For more details, see [1].

Let us consider the Laplace integral

F (t) =

∫
R
eth(x)dx, t� 1

where h(x) ∈ C2(R), h(0) = 0 is the only global maximum such that

h(x) ≤ −b if |x| ≥ c

for positive reals b, c. Suppose h(x)→ −∞ fast enough as x→∞ to ensure the convergence of F for t = 1

and assume h
′′
(0) < 0, then the Laplace Lemma holds.

Lemma 3.1. (Laplace method) As t→∞, to leading order

F (t) ∼
√

2π(−th
′′
(0))−

1
2 .

Proof. If h(x) = h′′(0)x2/2, h
′′
(0) < 0, then∫

R
eth(x)dx =

√
2π(−th

′′
(0))−

1
2 .

In general, for any ε > 0, there exists δ > 0 such that for any |x| ≤ δ,

|h(x)− h
′′
(0)

2
x2| ≤ εx2.

It follows that∫
[−δ,δ]

exp
( tx2

2
(h′′(0)− 2ε)

)
dx ≤

∫
[−δ,δ]

exp
(
th(x)

)
dx ≤

∫
[−δ,δ]

exp
( tx2

2
(h′′(0) + 2ε)

)
dx.
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For this δ > 0, there exists η > 0 by assumptions such that

h(x) ≤ −η if |x| ≥ δ,

thus ∫
|x|≥δ

exp
(
th(x)

)
dx ≤ e−(t−1)η

∫
R
eh(x)dx ∼ O(e−αt), α > 0, for t > 1.

First consider the upper bound, we have∫
R

exp
(
th(x)

)
dx

≤
∫
R

exp
( tx2

2
(h′′(0) + 2ε)

)
dx−

∫
|x|≥δ

exp
( tx2

2
(h′′(0) + 2ε)

)
dx+O(e−αt)

=
√

2π
[
t(−h

′′
(0)− 2ε)

]− 1
2

+O(e−βt)

where β > 0. In fact, we ask ε < −h′′(0)/2 here.

The proof of lower bound is similar. By the arbitrary smallness of ε, we have

lim
t→∞

F (t)/
√

2π(−th
′′
(0))−

1
2 = 1,

which completes the proof.

The result is easily extended to the case where h(0) 6= 0. The term eth(0) will appear in the leading

order and another commonly used form ignoring the prefactor is the so-called saddle point approximation

lim
t→∞

1

t
logF (t) = sup

x∈R
h(x),

which is the typical form in large deviation theory and widely used in physics literature.

4 Cramér’s Theorem for Large Deviations

Let {Xj}nj=1 be a sequence of i.i.d. random variables and let η = EXj . The laws of large numbers says

that for any ε > 0, with probability close to 1, |Sn/n− η| < ε for large enough n; conversely if y 6= η, then

the probability that Sn/n is close to y goes to zero as n → ∞. Events of this type, i.e. {|Sn/n− y| < ε},
are called large deviation events compared with the small deviation events from the mean like the set

{|Sn/n− η| ≤ c/
√
n} in central limit theorem.

To estimate the precise rate at which P {|Sn/n− y| < ε} goes to zero, we assume here that the distribu-

tion µ of the Xj ’s have finite exponential moments. Let us define the moment generating function

M(λ) = EeλXj =

∫
R
eλxdµ(x) <∞, λ ∈ R,

the cumulant generating function

Λ(λ) = logM(λ) (4.1)

and the Legendre-Fenchel transform of Λ(λ) as

I(x) = sup
λ
{xλ− Λ(λ)}. (4.2)

Then we have the large deviation type theorem for the i.i.d. sums.
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Theorem 4.1 (Cramér’s Theorem). The distribution of the empirical average µn defined by

µn(Γ) = P {Sn/n ∈ Γ}

satisfies the large deviation principle:

(i) For any closed set F ∈ B

lim
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
I(x).

(ii) For any open set G ∈ B
lim
n→∞

1

n
logµn(G) ≥ − inf

x∈G
I(x).

I(x) is called the rate function.

For the so-called I-continuity set Γ, i.e. infx∈Γ◦ I(x) = infx∈Γ̄ I(x), this theorem suggests that roughly

µn(Γ) � exp

(
−n inf

x∈Γ
I(x)

)
.

Here we use the notation “�” instead of “≈” since the equivalence is in the logarithmic scale. Before the

proof, we need some results on the Legendre-Fenchel transform and some elementary properties of I(x).

Lemma 4.2. Suppose f(x) : Rd → R̄ = R ∪ {±∞} is a lower semicontinuous convex function. The

conjugate function F (y) of f(x) (Legendre-Fenchel transform) defined as

F (y) = sup
x
{(x, y)− f(x)}

has the following properties:

(i) F is also a lower semicontinuous convex function.

(ii) Fenchel inequality holds

(x, y) ≤ f(x) + F (y).

(iii) The conjugacy relation holds:

f(x) = sup
y
{(x, y)− F (y)}.

where we utilize the rule

α+∞ =∞, α−∞ = −∞ for α finite

α · ∞ =∞, α · (−∞) = −∞, for α > 0

0 · ∞ = 0 · (−∞) = 0, inf ∅ =∞, sup ∅ = −∞

The readers may be referred to [5, 6] for proof details.

Heuristic derivation of the rate function. Now we apply the Laplace asymptotics to explain

heuristically why the rate function takes the interesting form in (4.2). Suppose the Cramér’s theorem is

already correct, then roughly we have

µ(dx) ∝ exp(−nI(x))dx
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and thus by Laplace asymptotics

lim
n→∞

1

n
logEµn(exp(nΦ(x))) := lim

n→∞

1

n
log

∫
R

exp(nΦ(x))µn(dx) = sup
x
{Φ(x)− I(x)}. (4.3)

Now we take Φ(x) = λx then

Eµn(exp(nλx)) = E exp(λ

n∑
j=1

Xj) = [E exp(λXj ]
n

=
(
M(λ)

)n
.

The equation (4.3) leads to

Λ(λ) = sup
x
{λx− I(x)}.

By the conjugacy relation of Legendre-Fenchel transform, we obtain the rate function I(x) as shown in

(4.2).

Lemma 4.3. The rate function I(x) has the following properties:

(i) I(x) is convex and lower semicontinuous.

(ii) I(x) is non-negative and I(η) = 0.

(iii) I(x) is non-decreasing in [η,∞) and non-increasing in (−∞, η].

(iv) If x > η, I(x) = sup
λ>0
{λx− Λ(λ)}; If x < η, I(x) = sup

λ<0
{λx− Λ(λ)}.

Proof. (i) The convexity of Λ(λ) follows by Hölder’s inequality. For any 0 ≤ θ ≤ 1,

Λ(θλ1 + (1− θ)λ2) = logE
(

exp(θλ1Xj) exp((1− θ)λ2Xj)
)

≤ log
(

(E exp
(
λ1Xj)

)θ(E exp(λ2Xj)
)(1−θ))

= θΛ(λ1) + (1− θ)Λ(λ2)

Thus Λ(λ) is a convex function. The rest is a direct application of Lemma 4.2.

(ii) Taking λ = 0, we obtain x · 0− Λ(0) = 0. Thus I(x) ≥ 0. On the other hand, we have

Λ(λ) = logE exp(λXj) ≥ log exp(λη) = λη

by Jensen’s inequality. This gives I(η) ≤ 0. Combing with I(x) ≥ 0 we get the result.

(iii) From the convexity of I(x) and it achieves minimum at x = η, we immediately obtain the desired

monotone property in (−∞, η] and [η,∞).

(iv) If x > η, then when λ ≤ 0

λx− Λ(λ) ≤ λη − Λ(λ) ≤ 0,

Thus the supremum is only achieved when λ > 0 by the non-negativity of I(x). Similar proof can be applied

to the case x < η.
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Proof of Theorem 4.1. Without loss of generality, we assume η = 0.

(i) Upper bound. Suppose x > 0, Jx := [x,∞). For λ > 0,

µn(Jx) =

∫ ∞
x

µn(dy) ≤ e−λx
∫ ∞
x

eλyµn(dy)

≤ e−λx
∫ ∞
−∞

eλyµn(dy) = e−λx
[
M(

λ

n
)
]n
.

Taking nλ instead of λ in the above equation, we obtain

1

n
logµn(Jx) ≤ −(λx− Λ(λ))

and accordingly
1

n
logµn(Jx) ≤ − sup

λ>0
{λx− Λ(λ)} = −I(x).

If x < 0, we can define J̃x = (−∞, x]. Similarly as above we get

1

n
logµn(J̃x) ≤ −I(x).

For a closed set F ∈ B, if 0 ∈ F , infx∈F I(x) = 0. Then the upper bound holds obviously. Otherwise, let

(x1, x2) is the maximal interval satisfying the condition (x1, x2) ∩ F = ∅ and 0 ∈ (x1, x2). So x1, x2 ∈ F ,

F ⊂ J̃x1
∪ Jx2

. From monotonicity of I(x) in (−∞, 0] and [0,∞), we obtain

lim
n→∞

1

n
logµn(F ) ≤ max

(
lim
n→∞

1

n
logµn(J̃x1

), lim
n→∞

1

n
logµn(Jx2

)

)
≤ −min(I(x1), I(x2)) = − inf

x∈F
I(x).

(ii) Lower bound. For any nonempty open set G, it is sufficient to prove that for any x ∈ G

lim
n→∞

1

n
logµn(G) ≥ −I(x).

Now fix x and assume I(x) <∞.

Case 1. If the supremum

I(x) = sup
λ
{λx− Λ(λ)}

can not be achieved, then x 6= 0. Suppose x > 0 and there exists λn →∞ such that

I(x) = lim
n→∞

(λnx− Λ(λn)).

We have ∫ x−0

−∞
exp(λn(y − x)µ(dy)→ 0 as n→∞.

by dominated convergence theorem. On the other hand

lim
n→∞

∫ ∞
x

exp(λn(y − x)µ(dy) = lim
n→∞

∫ ∞
−∞

exp(λn(y − x)µ(dy) = exp(−I(x)) <∞.

Thus µ((x,∞)) = 0 and

exp(−I(x)) = lim
n→∞

∫ ∞
x

exp(λn(y − x)µ(dy) = µ({x}).
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We have

µn(G) ≥ µn({x}) ≥ (µ({x}))n = exp(−nI(x))

and thus
1

n
logµn(G) ≥ −I(x).

Similar proof can be applied to the case x < a.

Case 2. Suppose that the supremum is attained at λ0 such that

I(x) = λ0x− Λ(λ0).

Then x = Λ′(λ0) = M ′(λ0)/M(λ0). Define a new probability measure as

µ̃(dy) =
1

M(λ0)
exp(λ0y)µ(dy).

It has the expectation ∫
R
yµ̃(dy) =

1

M(λ0)

∫
R
y exp(λ0y)µ(dy) =

M ′(λ0)

M(λ0)
= x.

If x ≥ 0, then λ0 ≥ 0. For sufficiently small δ > 0, we have (x− δ, x+ δ) ⊂ G,

µn(G) ≥ µn(x− δ, x+ δ)

=

∫{∣∣ 1
n

n∑
j=1

yj−x
∣∣<δ} µ(dy1) · · ·µ(dyn)

≥ exp(−nλ0(x+ δ))

∫{∣∣ 1
n

n∑
j=1

yj−x
∣∣<δ} exp(λ0y1) · · · exp(λ0yn)µ(dy1) · · ·µ(dyn)

= exp(−nλ0(x+ δ))M(λ0)n
∫{∣∣ 1

n

n∑
j=1

yj−x
∣∣<δ} µ̃(dy1) · · · µ̃(dyn).

By the WLLN, we have ∫{∣∣ 1
n

n∑
j=1

yj−x
∣∣<δ} µ̃(dy1) · · · µ̃(dyn)→ 1 as n→∞.

Thus

lim
n→∞

1

n
logµn(G) ≥ −λ0(x+ δ) + Λ(λ0) = −I(x)− λ0δ for all 0 < δ � 1.

Similar proof can be applied to the case x < a.

Example 4.4 (Cramér’s theorem applied to the Bernoulli distribution with parameter p (0 < p < 1)). We

have Λ(λ) = ln(peλ + q) where q = 1− p. The rate function

I(x) =

{
x log x

p + (1− x) ln 1−x
q , x ∈ [0, 1],

∞, otherwise.
(4.4)

Here we take the convention 0 log 0 = 0. It is obvious that I(x) ≥ 0, and I(x) achieves its global minimum 0

at x∗ = p. I(x) has important background in information theory. It is called relative entropy, or Kullback-

Leibler distance between two distributions µ and ν defined as follows

D(µ||ν) =

r∑
i=1

µi log
µi
νi
, (4.5)
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where µ = (µ1, µ2, . . . , µr), ν = (ν1, ν2, . . . , νr). In the previous case, we have r = 2, µ = (x, 1 − x) and

ν = (p, q), the underlying Bernoulli distribution.

Connections with statistical mechanics. There are intimate relations between the large deviation

theory and equilibrium statistical mechanics [4]. Now let us only consider the simplest case here. For the

Bernoulli trials with parameter p, we can obtain the rate function as (see Exercise 5)

I(x) = x ln
x

p
+ (1− x) ln

1− x
q

, x ∈ [0, 1]

which is also called the relative entropy. When p = 1/2 we have

I(x) = x lnx+ (1− x) ln(1− x) + ln 2, x ∈ [0, 1].

In this case, the rate function is exactly the negative Shannon entropy up to a constant ln 2. Below we will

show that it has direct connection to Boltzmann entropy in statistical mechanics.

Consider a system with n independent spins being up or down with equal probability 1/2. If it is up,

we label it as 1, and 0 otherwise. We define the set of microstates as

Ω = {ω : ω = (s1, s2, . . . , sn), si = 1 or 0}.

For each microstate ω, we define its mean energy as

hn(ω) =
1

n

n∑
i=1

si.

In thermodynamics, the entropy is a function of the macrostate energy. In statistical mechanics, Boltzmann

gives a clear mathematical definition of the entropy

S = kB lnW (4.6)

in the micro-canonical ensemble (the number of spins n and total energy hn = E are fixed in this set-up),

where kB is the Boltzmann constant, W is the number of the microstates corresponding to the fixed energy

E. Actually this formula is carved in Boltzmann’s tombstone. From large deviation theory we have

I(E) = lim
n→∞

− 1

n
lnP(hn ∈ [E,E + dE]),

where dE is an infinitesimal quantity and

I(E) = lim
n→∞

− 1

n
ln
W (hn ∈ [E,E + dE])

2n

= ln 2− 1

kB
lim
n→∞

1

n
Sn(E).

Taking the normalization of S in (4.6) with 1/n in the n→∞ limit, we obtain

kBI(E) = kB ln 2− S(E),

where S(E) is the Boltzmann entropy in statistical mechanics. So we have that the rate function is the

negative entropy (with factor 1/kB) up to an additive constant. This is a general statement.
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In the canonical ensemble in statistical mechanics (the number of spins n and the temperature T are

fixed in this set-up), let us investigate the physical meaning of Λ. The logarithmic moment generating

function of Hn(ω) = nhn(ω) with normalization 1/n is

Λ(λ) = lim
n→∞

1

n
lnEeλHn ,

where we take Hn instead of a single R.V. si since it admits more general interpretation. Take λ = −β =

−(kBT )−1, we have

Λ(−β) = lim
n→∞

1

n
ln(
∑
ω

e−βHn(ω))− ln 2.

Define the partition function

Zn(β) =
∑
ω

e−βHn(ω)

and free energy

Fn(β) = −β−1 lnZn(β),

we have

Λ(−β) = −β lim
n→∞

1

n
Fn(β)− ln 2 = −βF (β)− ln 2.

Thus the free energy F (β) is the negative logarithmic moment generating function up to a constant.

According to the large deviation theory we have

−βF (β)− ln 2 = sup
E
{−βE − ln 2 + k−1

B S(E)},

i.e.

F (β) = inf
E
{E − TS(E)}.

The infimum is achieved at the critical point E∗ such that

∂S(E)

∂E

∣∣∣
E=E∗

=
1

T
,

which is exactly a thermodynamic relation between S and T . Here E∗ is essentially the internal energy U .

Exercises

1. Denote Xj the i.i.d. U [0, 1] random variables. Prove that

lim
n→∞

n

X−1
1 + · · ·+X−1

n

, lim
n→∞

n
√
X1X2 · · ·Xn, lim

n→∞

√
X2

1 + · · ·X2
n

n

exit almost surely and find their values.

2. The central limit of i.i.d. random variables as the Gaussian distribution can be understood from the

following viewpoint. Denote X1, X2, . . . the i.i.d. random variables with mean 0. Suppose

Zn =
X1 + · · ·+Xn√

n

d→ X and Z2n =
X1 + · · ·+X2n√

2n

d→ X. (4.7)

Denote the characteristic function of X is f(ξ).
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(a) Prove that f(ξ) = f2(ξ/
√

2).

(b) Prove that f(ξ) is the characteristic function of a Gaussian random variable under the condition

f ∈ C2(R).

(c) Investigate the situation if the scaling 1/
√
n in (4.7) is replaced with 1/n. Prove that X cor-

responds to the Cauchy-Lorentz distribution under the symmetry condition f(ξ) = f(−ξ) or

f(ξ) ≡ 1.

(d) If the scaling 1/
√
n is replaced with 1/nα, what can we infer about the characteristic function

f(ξ) if we assume f(ξ) = f(−ξ)? What is the correct range of α?

3. Prove the assertion in the Example 1.3.

4. (Single-side Laplace lemma) Suppose that h(x) attains the only maximum at x = 0, h
′ ∈ C1(0,+∞), h

′
(0) <

0, h(x) < h(0) for x > 0. h(x)→ −∞ as x→∞, and
∫∞

0
eh(x)dx converges. To the leading order∫ ∞

0

eth(x)dx ∼ (−th
′
(0))−1eth(0)

as t→∞.

5. Compute I(x) for N(µ, σ2) and the exponential distribution with parameter λ > 0.
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Lecture 6 Markov Chains ∗

Tiejun Li

Markov process is one of the most important stochastic processes in application. Roughly speaking, A

Markov process is independent of the past, knowing the present state. In this lecture, we only consider the

finite state Markov chain. The readers may be refereed to [2] for further information.

1 Markov Chains

Example 1. (1D Random Walk) Let ξi are i.i.d. random variables such that ξi = ±1 with probability 1
2 ,

and let

Xn = ξ1 + ξ2 + . . .+ ξn

{Xn} represents a unconstrained unbiased random walk on Z, the set of integers. Given Xn = i, we have

P{Xn+1 = i± 1| Xn = i} =
1

2
,

P{Xn+1 = anything else| Xn = i} = 0.

We see that the distribution of Xn+1 depends only on the value of Xn.

The result above can be restated as the Markov property

P{Xn+1 = in+1| {Xm = im}nm=1} = P{Xn+1 = in+1| Xn = in},

and the sequence {Xn}∞n=1 is called a realization of a Markov process.

Example 2 (Ehrenfest’s diffusion model). An urn contains a mixture of red and black balls. At each time

1, 2, . . . a ball is picked at random from the urn and replaced by a ball of the other colour. The total number

of balls in the urn is therefore a constant N , say. Let the state Xn of the system at time n be the number

of black balls in the urn.

As will be stated below, the one-step transition matrix can be given as

P =



0 1 0 0 0 0
1
N 0 N−1

N 0 0 0

0 2
N 0 N−2

N 0 0

0 0
. . . 0

. . . 0

0 . . . 0 N−1
N 0 1

N

0 . . . 0 0 1 0


(1)

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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Example 3. (Finite state Markov chain) Suppose a Markov chain only takes a finite set of possible values,

without loss of generality, we let the state space be {1, 2, . . . , N}. Define the transition probabilities

p
(n)
jk = P{Xn+1 = k|Xn = j}

This uses the Markov property that the distribution of Xn+1 depends only on the value of Xn.

Proposition 1. (Chapman-Kolmogorov equation)

P (Xn = j|X0 = i) =
∑
k

P (Xn = j|Xm = k)P (Xm = k|X0 = i), 1 ≤ m ≤ n− 1.

Definition 1. (Time-stationary, or time homogeneous) A Markov chain is called stationary if pnjk is in-

dependent of n. From now on we will discuss only stationary Markov chains and let P = (pjk)Nj,k=1. P is

called the transition probability matrix(TPM).

Markov property implies that

P{X0 = i0, X1 = i1, . . . , Xn = in} = (µ0)i0pi0i1pi1i2 . . . pin−1in

where (µ0)i0 is defined by the intial distribution (µ0)i0 = P{X0 = i0}.

From this we get

P{Xn = in|X0 = i0} =
∑

i1,...,in−1

pi0i1pi1i2 . . . pin−1in

= (Pn)i0in

The last quantity denotes the (i0, in)-th entry of the matrix Pn.

P is also called a stochastic matrix, in the sense that

pij ≥ 0,

N∑
j=1

pij = 1.

Given the initial distribution of the Markov chain µ0, the distribution of Xn is then given by

µn = µ0P
n

Example 4. µn satisfies the recurrence relation µn = µn−1P . This equation can also be rewritten as

(µn)i = (µn−1)i(1−
∑
j 6=i

pij) +
∑
j 6=i

(µn−1)jpji.

The interpretation is clear.

The following two questions are of special interest.

• Is there an invariant distribution? π is called an invariant distribution if

π = πP

This is equivalent to say that there exists a nonnegative left eigenvector of P with eigenvalue equal to

1. Notice that 1 is always an eigenvalue of P since it always has the right eigenvector (1, . . . , 1)T .
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• When is the invariant distribution unique?

To answer these questions, it is useful to recall some general results on nonnegative matrices.

Definition 2. (Reducibility) If there exists a permutation matrix Q such that

QPQT =

(
A1 B

0 A2

)
then P is called reducible. Otherwise P is called irreducible.

Example 5. (Graph representation of Markov chains) Any Markov chain can be sketched by their graph

representation as in Figure 1. The arrows and real numbers show the transition probability of the Markov

1

2

3

1

1
1/2

1/2

1 2

3

1

1/2

1/2

1

Figure 1: Graph representation of Markov chains. Left panel: chain 1, right panel: chain 2.

chain. The TPM corresponds to left panel is

P =

 1 0 0
1
2 0 1

2

0 0 1

 ,
It’s quite clear that P is a reducible matrix, and it has two invariant distributions π1 = (1, 0, 0) and π2 =

(0, 0, 1).

The TPM corresponds to the right panel is

P =

 0 1 0
1
2 0 1

2

0 1 0

 .
It’s a irreducible matrix, and the only invariant distribution is π = ( 1

4 ,
1
2 ,

1
4 ).

The following theorem is a key answer for invariant distribution of a Markov chain

Theorem 1. (Perron-Frobenius) Let A be an irreducible nonnegative matrix, and let ρ(A) be its spectral

radius: ρ(A) = maxλ |λ|, where λ is an eigenvalue of A. Then,

1. There exists a positive right eigenvector x of A, such that

Ax = ρ(A)x

x = (x1, . . . , xN )T , xi > 0.

3



2. λ = ρ(A) is an eigenvalue of multiplicity 1.

Coming back to Markov chains, we obtain as a consequence of the Perron-Frobenius Theorem that

• If P is irreducible, then there exists exactly one invariant distribution.

• If P is reducible, then there are some cases that we can decompose the state space into ergodic

components for the Markov chain. On each component there exists a unique in variant distribution.

Arbitrary convex combinations of these invariant distributions on each component are invariant dis-

tributions for the whole chain. However in this case, the invariant distribution for the whole chain is

clearly not unique. One typical example may be as follows:

P =


0 1 0 0 0

0.5 0.5 0 0 0

0.3 0 0.4 0.3 0

0 0 0 0.5 0.5

0 0 0 0.5 0.5

 .
In this case, states 1, 2 and 4, 5 form two closed irreducible sub-chains, but P is reducible. There

are infinite many invariant distributions. But reducibility itself is not a sufficient condition for the

non-uniqueness of the invariant distribution, e.g.

P =


0 1 0 0 0

0.3 0.4 0.3 0 0

0.3 0 0.4 0.3 0

0 0 0 0.5 0.5

0 0 0 0.5 0.5

 .
Though the invariant distribution has some zero components which are related to the transience of

the states, it is unique.

Irreducibility is equivalent to the property that all nodes on the chain communicate, i.e. given any pair

(i, j) we have

pik1pk1k2 · · · pksj > 0,

for some (k1, k2, . . . , ks) (if there is only transition from i→ k1 → · · · → kj → j, we say that j is accessible

from i).

The following theorem gives the asymptotic states of a Markov chain

Theorem 2. Assume that for any pairs (i, j), there exists an s such that (P si,j) > 0 (irreducible). Then

1. There exists a unique invariant distribution π. π is strictly positive.

2. For any µ0,

πn = µ0P̄n → π exponentially fast as n→∞,

where

P̄n =
1

n

n∑
j=1

P j .

4



Remark 1. A stronger assumption is “primitive” which says that there exist an natural number s, such

that

(P s)ij > 0, for all i, j

and a stronger convergence theorem µn = µ0P
n → π can be obtained. A critical example is that

P =

[
0 1

1 0

]
,

which is called a periodic chain. Actually we have primitive ⇔ irreducible + aperiodic for finite Markov

chains.

Theorem 3. Assume that the Markov chain is primitive. Then for any initial distribution µ0

µn = µ0P
n → π exponentially fast as n→∞,

where π is the unique invariant distribution.

Proof. Given two distributions, µ0 and µ̃0, we define the total variation distance by

d(µ0, µ̃0) =
1

2

∑
i∈S
|µ0,i − µ̃0,i|.

Since

0 =
∑
i∈S

(µ0,i − µ̃0,i) =
∑
i∈S

(µ0,i − µ̃0,i)
+ −

∑
i∈S

(µ0,i − µ̃0,i)
−
,

where a+ = max(a, 0) and a− = max(−a, 0). We also have

d(µ0, µ̃0) =
1

2

∑
i∈S

(µ0,i − µ̃0,i)
+

+
1

2

∑
i∈S

(µ0,i − µ̃0,i)
−

=
∑
i∈S

(µ0,i − µ̃0,i)
+ ≤ 1.

Let µs = µ0P
s, µ̃s = µ̃0P

s and consider d(µs, µ̃s). We have

d(µs, µ̃s) =
∑
i∈S

[∑
j∈S

(
µ0,j(P

s)ji − µ̃0,j(P
s)ji

)]+

≤
∑
j∈S

(
µ0,j − µ̃0,j

)+ ∑
i∈B+

(P s)ji,

where B+ is the subset of indices where
∑
j∈S (µ0,j − µ̃0,j) (P s)ji > 0. We note that B+ cannot contain all

the elements of S, otherwise one must have (µ0P
s)i > (µ̃0P

s)i for all i, and∑
i∈S

(µ0P
s)i >

∑
i∈S

(µ̃0P
s)i,

which is impossible since both sides sum to 1. Therefore at least one element is missing in B+. By

assumption, there exists an s > 0 and α ∈ (0, 1) such that (P s)ij ≥ α for all pairs (i, j). Hence∑
i∈B+

(P s)ji ≤ (1− α) < 1. Therefore

d(µs, µ̃s) ≤ d(µ0, µ̃0)(1− α),

5



i.e. the Markov chain is contractive after every s steps. Similarly for any m ≥ 0

d(µn,µn+m) ≤ d(µn−sk,µn+m−sk)(1− α)k ≤ (1− α)k,

where k is the largest integer such that n − sk ≥ 0. If n is sufficiently large the right hand side can be

made arbitrarily small. Therefore the sequence {µn}∞n=0 is a Cauchy sequence. Hence it has to converge to

a limit π, which satisfies

π = lim
n→∞

µ0P
n+1 = lim

n→∞
(µ0P

n)P = πP .

Such a π satisfying such a property is also unique. For if there were two such distributions, π(1) and π(2),

then d(π(1),π(2)) = d(π(1)P s,π(2)P s) < d(π(1),π(2)). This implies d(π(1),π(2)) = 0, i.e π(1) = π(2).

Remark 2. We do not discuss the convergence speed here. But in fact it is exponential, which depends on

the spectral gap of the transition probability matrix P . The readers may be referred to [3, 4].

Theorem 4 (Ergodic theorem). let Xn be an irreducible, positive recurrent Markov chain with invariant

distribution π(x), and f be a bounded function, then

1

N

N∑
n=1

f(Xn)→ 〈f〉π, a.s.

1.1 Time Reversal

Theorem 5. Assume that the Markov chain {Xn}n≥0 admits a unique invariant distribution π and is also

initially distributed according to π. Denote by P its transition probability matrix. Define a new Markov

chain {Yn}0≤n≤N by Yn = XN−n where N ∈ N is fixed. Then {Yn}0≤n≤N is also an Markov chain with

invariant distribution π. Its transition probability matrix P̂ is given by

p̂ij =
πj
πi
pji. (2)

Proof. It is straightforward to check that P̂ is a stochastic matrix with an invariant distribution π. To

prove that {Yn} is Markov with transition probability matrix P̂ , it is enough to observe that

P(Y0 = i0, Y1 = i1, . . . , YN = iN ) = P(XN = i0, XN−1 = i1, . . . , X0 = iN )

= πiN piN iN−1
· · · pi1i0 = πi0 p̂i0i1 · · · p̂iN−1iN

for any i0, i1, . . . , iN .

A particularly important class of Markov chains are those that satisfy the condition of detailed balance

πipij = πjpji (3)

In this case, we have p̂ij = pij . We call the chain reversible. The reversible chain can be equipped with

variational structure and has nice spectral properties. Define the matrix

L = P − I

6



and correspondingly its action on any function f

(Lf)(i) =
∑
j∈S

pij(f(j)− f(i)).

Let L2
π be the space of square summable functions f endowed with the π-weighted scalar product

(f, g)π =
∑
i∈S

πif(i)g(i). (4)

Denote the Dirichlet form or energy of a function f by

D(f) =
∑
i,j∈S

πipij(f(j)− f(i))2.

One can show that D(f) = (f,−Lf)π. These formulations are particularly useful in potential theory for

Markov chains.

1.2 Hitting time distribution

Example 6. (Hitting time distribution of a Markov chain) Consider TPM of a 4-state Markov chain(1,2,3,4):

P =


1
4

1
2

1
4 0

1
3 0 1

3
1
3

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

 .
Define the first hitting time n∗ = inf{n| Xn = 3 or 4} and the hitting time probability q(m) = Prob{n∗ = m},
an interesting question is to ask how to obtain q(m). The idea is to modify the chain to a 3-state chain

P̃ =

 1
4

1
2

1
4

1
3 0 2

3

0 0 1

 .
then

1− (µn)3 =
∞∑

m=n+1

q(m),

hence

q(n) = (µn)3 − (µn−1)3 = µ0 · (P̃n − P̃n−1) ·

 0

0

1

 ,

2 Continuous time Markov chains

2.1 Poisson Process

Definition 3. (Poisson Process) Let X(t) be the number of calls received up to time t, and assume the

follows:

1. X(0) = 0;

7



2. X(t) has independent increments, i.e. for any 0 ≤ t1 < t2 < · · · < tn,

X(t2)−X(t1), X(t3)−X(t2), . . . , X(tn)−X(tn−1)

are independent;

3. for any t ≥ 0, s ≥ 0, we have the distribution of the increment X(t + s) − X(t) is independent of t

(time-homogeneous);

4. for any t ≥ 0, h > 0, we have

P{X(t+ h) = X(t) + 1| X(t)} = λh+ o(h),

P{X(t+ h) = X(t)|X(t)} = 1− λh+ o(h),

P{X(t+ h) ≥ X(t) + 2} = o(h),

where λ is called the rate.

Then X(t) is called a Poisson process.

Let pm(t) = P{X(t) = m}, then

p0(t+ h) = p0(t)p0(h) = p0(t)(1− λh) + o(h).

This gives
p0(t+ h)− p0(t)

h
= −λp0(t) + o(1).

As h→ 0, we obtain
dp0(t)

dt
= −λp0(t), p0(0) = 1.

The solution is given by

p0(t) = e−λt.

For m > 0, we have

pm(t+ h) = pm(t)p0(h) + pm−1(t)p1(h) +
m∑
i=2

pm−i(t)pi(h).

From the definition of Poisson process, we get

pm(t+ h) = pm(t)(1− λh) + pm−1(t)λh+ o(h).

Taking the limit as h→ 0, we get

dpm(t)

dt
= −λpm(t) + λpm−1(t)

Using the fact pm(0) = 0(m > 0), we get

pm(t) =
(λt)m

m!
e−λt

8



by induction method. This means that for any fixed t, the distribution of X(t) is Poisson with parameter

λt.

The waiting times can be obtained in the following way. Define

µt = P{Waiting time ≥ t},

then µ0 = 1, and it obeys µt − µt+h = µtλh+ o(h), thus µ′t = −λµt, we get

µt = e−λt.

i.e. The waiting times are i.i.d. exponentially distributed with rate λ.

2.2 Q-Process

Now let us turn to general continuous time Markov chains. We will restrict only on finite state space

case in this text. We define

pij(t) = Prob{X(t+ s) = j|X(s) = i}.

Here we also assumed the stationarity of the Markov chain, i.e. the right hand side is independent of s. By

definition we have

pij(t) ≥ 0,

N∑
j=1

pij(t) = 1.

In addition we require that

pii(h) = 1− λih+ o(h), λi > 0, (5)

pij(h) = λijh+ o(h), j 6= i. (6)

(5) is a statement about the regularity in time of the Markov chain; together with the obvious constraint

that pjj(0) = 1. (6) states that if the process is in state j at time t and a change occurs between t and

t+ h, the process must have jumped to some state i 6= j; λij is the rate of switching from state i to state j.

From the non-negativity and normalization condition of the probability, we have

λij ≥ 0,

N∑
j=1,j 6=i

λij = λi. (7)

The Markov property of the process requires the Chapman-Kolmogorov equation

pij(t+ s) =
N∑
k=1

pik(t)pkj(s). (8)

Using matrix notation P (t) = (pij(t)), we can express the Chapman-Kolmogorov relation as

P (t+ s) = P (t)P (s) = P (s)P (t).

Similarly, if we define

Q = lim
h→0+

h−1(P (h)− I), (9)

9



and denote Q = (qij), (5), (6) and (7) can be stated as

qii = −λi, qij = λij (i 6= j),
N∑
j=1

qij = 0.

Q is called the generator of the Markov chain.

Since
P (t+ h)− P (t)

h
=
P (h)− I

h
P (t)

as s→ 0+, we get
dP (t)

dt
= QP (t) = P (t)Q (10)

The solution of this equation is given by

P (t) = eQtP (0) = eQt,

since P (0) = I.

Next we discuss how the distribution of the Markov chain evolves in time. Let ν(t) be the distribution

of X(t). Then

νj(t+ dt) =
∑
i 6=j

νi(t)pij(dt) + νj(t)pjj(dt)

=
∑
i 6=j

νi(t)qijdt+ νj(t)(1 + qjjdt) + o(dt)

for infinitesimal dt. This gives
dν(t)

dt
= ν(t)Q, (11)

which is called the forward Kolmogorov equation for the distribution. Its solution can be given as

νj(t) =
N∑
i=1

νi(0)pij(t),

or, in matrix notation,

ν(t) = ν(0)eQt.

Similar as the Poisson process, we can consider the waiting time distribution for each state j,

µj(t) = Prob{τ ≥ t|X(0) = j}.

The same procedure as previous section leads to

dµj(t)

dt
= qjjµj(t), µj(0) = 1.

Thus the waiting time at state j is exponentially distributed with rate −qjj =
∑
k 6=j qjk. From the memo-

ryless property of exponential distribution, the waiting time can be counted from any starting point.

It is interesting to investigate the probability

p(θ, j|0, i)dθ := Prob{The jump time τ is in [θ, θ + dθ)

and X(τ) = j given X(0) = i}.

10



We have

p(θ, j|0, i)dθ =Prob{No jump occurs in [0, θ) given X(0) = i}

× Prob{One jump occurs from i to j in [θ, θ + dθ)}

=µi(θ)qijdθ = exp(qiiθ)qijdθ. (12)

Thus we obtain the marginal probability

Prob(X(τ) = j|X(0) = i) = p(j|0, i) = −qij
qii

=
qij∑
j 6=i qij

where τ is the waiting time. These results are particularly useful for the numerical simulation of the

trajectories of the Q-process.

Define the jump times of (Xt)t≥0

J0 = 0, Jn+1 = inf{t : t ≥ Jn, Xt 6= XJn}, n ∈ N

where we take the convention inf ∅ =∞, and holding times

Hn =

{
Jn − Jn−1, if Jn−1 <∞,
∞, otherwise.

for n = 1, 2, . . .. We define X∞ = XJn if Jn+1 =∞. Define the jump chain induced by Xt

Yn = XJn , n ∈ N.

From Strong Markov property and the derivation of p(θ, j|0, i), we know that the holding times H1, H2, . . .

are independent exponential random variables with parameters qY0
, qY1

, . . ., respectively, and the jump chain

Yn is a Markov chain with Q̃ as the transition probability matrix, where Q̃ = (q̃ij) defined as

q̃ij =

{
qij/qi, if i 6= j and qi > 0,

0, if i 6= j and qi = 0,
(13)

q̃ii =

{
0, if qi > 0,

1, if qi = 0.
(14)

It is called the jump matrix, and the corresponding Markov chain is called the embedded chain or jump

chain of the original Q-process.

It is natural to consider the invariant distribution for the Q-processes as in the discrete time Markov

chains. From the forward Kolmogorov equation (11), the invariant distribution must satisfy

πQ = 0, π · 1T = 1.

But to ensure the convergence ν(t)→ π, we need the following theorem on the finite state space.

Theorem 6 (Convergence to equilibrium). Suppose the matrix Q is irreducible with invariant distribution

π, then for all states i, j we have

pij(t)→ πj as t→∞.

11



Note that we do NOT need the primitive condition since in the continuous time case if qij > 0 we have

pij(t) ≥ Pi(J1 ≤ t, Y1 = j,H2 > t) =

∫ t

0

e−qiuqijdu · e−qjt =
qij
qi

(1− e−qit)e−qjt > 0.

Similarly we also have the ergodic theorem

Theorem 7 (Ergodic theorem). Suppose the matrix Q is irreducible with invariant distribution π, then for

any bounded function f we have
1

t

∫ t

0

f(X(s))ds→ 〈f〉π, a.s.

We should remark that the irreducibility condition is not enough to establish the above ergodic theorems

in the countable state space case. We need the so-called positive recurrent condition in both theorems.

3 Homeworks

• HW1. Discuss the invariant distribution of the Ehrenfest’s model.

• HW2. Rederive the distribution of Poisson process through characteristic function method.

• HW3. Let f be a function defined on the state space, and let

hi(t) = Eif(X(t)),

where Ei means the expectation with respect to initial state i. Derive an equation for h(t).

• HW4. Consider the following binomial process: we repeatedly throw an unfair coin with parameter p

(say, the proability that the HEAD appears) with time unit τ . If the HEAD appears, we denote it as

a jump. Then we let p, τ → 0 and consider the limiting process. In which regime you can intuitively

get the Poisson process with parameter λ?

• HW5. For the Poisson process, if the condition 3 is removed, and the rate λ depends on t. That is,

λ is replaced with λ(t) in conidtion 4, then what about pm(t) and the waiting time distribution µs

conditioned at the current time t?
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Lecture 7 Metropolis Algorithm ∗

Tiejun Li

1 Introduction

Metropolis algorithm is one of the Top10 algorithms in 20th century [1]. The aim is to compute the

thermodynamic quantities through ensemble average, such as〈
A
〉

=
∑
σ

A(σ)P (σ) (or

∫
S

A(σ)P (dσ)).

where σ represents all possible configurations, and

P (σ) =
1

Zβ
e−βH(σ) β = (kBT )−1.

H(σ) is the energy function Zβ =
∑
σ e
−βH(σ) is the partition function, β = (kBT )−1.

Intuitively, we could approximate
〈
A
〉

by

〈
A
〉
≈
〈
A
〉
N

:=
1

N

N∑
i=1

A(σi), (1)

where σi ∼ P (σ) i.i.d.

But the problem is how to generate σi!

2 Ising Model

Example 1. (1D Ising model) The magnetization of a ferromagnet may be described essentially by a spin

model as shown in Figure 1.

Figure 1: Sketch of 1D Ising model

The macroscopic magnetization H̄ can be obtained from ensemble average of all the possible microscopic

spin configurations in statistical physics. Consider one microscopic sate with M sites σ = (σ1, σ2, . . . , σM ),

σi = +1 or −1. If the i-th spin is ↑, then σi = +1; If the i-th spin is ↓, then σi = −1.

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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Physically the following quantities are of interest:

1. Hamiltonian:

H(σ) = −J
∑
<ij>

σiσj − h
∑
i

σi,

where σi = ±1, < ij > means to take sum w.r.t all neighboring spins |i− j| = 1, and h is the strength

of external magnetic field.

2. Free energy:

FM = −β−1 lnZM , fM =
1

M
FM

where ZM =
∑
σ exp{−βH(σ)} is the partition function.

3. Internal energy:

UM = 〈H(σ)〉 =
∑
σ

H(σ)
exp{−βH(σ)}

ZM
= −∂ lnZM

∂β
, (2)

Correspondingly define the internal energy per site: uM = 1
MUM .

4. Specific heat:

CM =
∂UM
∂T

= kBβ
2{〈H2(σ)〉 − 〈H(σ)〉2} = kBβ

2 ∂
2 lnZM
∂β2

. (3)

Correspondingly define the specific heat per site: cM = 1
MCM .

5. Magnetization:

GM =

〈∑
i

σi

〉
, gM =

1

M
GM

6. Magnetic susceptibility:

ΦM =
∂GM
∂h

= βVar(GM ), φM =
1

M
ΦM .

For 2D Ising model, if h = 0 and M → ∞, the second order phase transition exists for the internal

energy u when the temperature varies. If one takes J = 1, and the periodic boundary condition is assumed,

the critical temperature can be obtained exactly

kBTc = (βc)
−1 =

2

ln(1 +
√

2)
.

And there exists so called spontaneous magnetization for gM as M →∞, we have

0 < β < βc, g(β, h)→ g(β, 0) = 0 as h→ 0+,

g(β, h)→ g(β, 0) = 0 as h→ 0−,

β > βc, g(β, h)→ g(β,+) > 0 as h→ 0+,

g(β, h)→ g(β,−) = −g(β,+) < 0 as h→ 0− .

For refs, see [2, 3].

How to compute the approximate kBTc with computer?
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3 Metropolis Algorithm

1. Basic idea:

The central problem for standard MC(equation (1)) is that it is difficult to generate σi ∼ P (σ) i.i.d..

To overcome this difficulty, Metropolis algorithm takes an “iteration” procedure to produce these

random variables. This is very similar with finding a root of a nonlinear equation f(x) = 0. There

isn’t direct method to do this, but if one uses the iteration xk+1 = g(xk) such that x∗ = g(x∗) is one

root of the equation f(x) = 0, one approximate value of x∗ will be obtained.

Metropolis algorithm is also called Markov Chain Monte Carlo method. It sets up a Markov chain

by defining a suitable transition probability matrix P , such that the probability density 1
ZM

e−βH(σ)

is the only equilibrium distribution of this Markov Chain. If we define π the final Gibbs distribution,

then we need

πP = π.

The single step transition νn+1 = νnP satisfies similar contraction mapping property as the fixed

point iteration. One could obtain the Gibbs distribution from any initial state ν0. That’s the essence

of Metropolis algorithm!

2. Physical interpretation(a heuristic observation):

In statistical physics, the equations (2) and (3) are called ensemble average, which means that the

macroscopic state is an average result of all possible microscopic states. Suppose we image large

amount of gas molecules in a container, and they are in equilibrium, we can measure the temperature,

pressure etc. In the viewpoint of statistical physics, this system corresponds lots of microscopic

systems. This is shown schematically in Figure 2.

System 1 System 2 System m

T,u,p etc.

Macroscopic state

Ensemble

Microscopic states

Figure 2: Sketch of ensemble

Though system 1, 2 and system m are independent evolving systems, the probability distribution

anytime for all the m systems keeps the same. Metropolis algorithm takes the following viewpoint:

since the macroscopic quantity T, p, ρ is invariant all the time, and the systems are in a dynamic
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equilibrium, this means

Ensemble average = Time average,

i.e.

〈H(σ)〉 ≈ 1

N

N∑
i=1

H(σi) (4)

If we can find an appropriate collision rule for the molecules to sample the state sequence {σi}Ni=1, we

can simulate this process in computer, and find an approximate value of 〈H(σ)〉. This collision rule is

the setup of Markov Chain stated as before.

3. Mathematical description:

From the equilibrium condition πP = π, where

π(σ) =
1

ZM
exp{−βH(σ)},

the choice of matrix P is infinite. One must add more constraints to reduce the degrees of freedom.

Detailed Balance Condition(DBC):

π(σ)P (σ → σ′) = π(σ′)P (σ′ → σ).

Furthermore one has
P (σ → σ′)

P (σ′ → σ)
=
π(σ′)

π(σ)
= e−β∆H ,

where ∆H = H(σ′)−H(σ).

Intuitively, if ∆H > 0, set P (σ → σ′) = 1; else set P (σ → σ′) = e−β∆H . This choice satisfies the

DBC. But how about P (σ → σ′) = 1?

We lose a proposal process!

In general, set

P (σ → σ′) = Q(σ → σ′)A(σ → σ′), σ′ 6= σ

and

P (σ → σ′) = 1−
∑
τ 6=σ

P (σ → τ), σ′ = σ

where Q(σ → σ′) is the choosing probability corresponds to Proposal Matrix, and A(σ → σ′) is

the acceptance probability corresponds to Decision Matrix. In many cases, we take Q(σ → σ′) =

Q(σ′ → σ), which is a symmetric matrix, and the following two decision strategies:

A. Metropolis algorithm:

A(σ → σ′) = min(1, e−β∆H).

B. Glauber dynamics:

A(σ → σ′) = (1 + eβ∆H)−1.
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Remark 1. The proposal matrix Q can also be unsymmetric, then the reversibility is realized in the

decision step, which is called Metropolis-Hastings algorithm in statistical learning theory.

Example 2. (2D Ising model - M ×M = M2 sites)

Step1 Generate a proposal σ′ from current state σ;

A. Equi-probability proposal:

Q(σ → σ′) =

{
1

Nt−1 σ 6= σ′

0 σ = σ′

where Nt = 2M
2

is the total number of microscopic states.

B. Single flip proposal(usually used):

Q(σ → σ′) =

{
1
M2 σ 6= σ′ only at one site

0 otherwise

Step2 Decide to accept or reject the proposal:

Compute ∆H(σ) = H(σ′)−H(σ). If ∆H < 0, accept; else, accept with probability e−β∆H .

4. Algorithm:

Algorithm 1. (Metropolis Algorithm)

Step1 Generate the proposal sate σ′ from state σn according to some strategy;

Step2 Define ∆H(σ) = H(σ′)−H(σ), compute

A(σ, σ′) = min
{

1,
π(σ′)

π(σ)

}
=

{
1 H(σ′) ≤ H(σ),

exp(−β∆H(σ)) otherwise;

Step3 Generate R.V. r ∼ U [0, 1];

Step4 If r ≤ A(σ, σ′), then σn+1 = σ′; else, σn+1 = σn, turn to Step1.

5. Theorems:

The proof of the theorems presented below can be found in [4].

Definition 1. The total variation of a vector is defined as

‖v‖ =
∑
i

|vi|.

This is the commonly known L1-norm in matrix theory.

Definition 2. If there is a natural number τ such that the transition probability matrix P satisfies

P τ > 0(where A > 0 means each element of A is greater than 0), this Markov chain is called primitive.
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Theorem 1. (Ergodic theorem for time-homogeneous Markov Chain)

There is only one invariant distribution π for a primitive Markov chain, and for any initial distribution

ν, one has

lim
n→+∞

‖νPn − π‖ = 0.

Theorem 2. (WLLN for time-homogeneous Markov Chain)

Suppose {ξi}i≥1 is a realization of a primitive Markov chain, then one has

Prob

(∣∣ 1
n

n∑
i=1

f(ξi)− 〈f〉π
∣∣ > ε

)
≤ C

nε2
,

where 〈f〉π means the expectation of f w.r.t. the probability π. C depends on R.V. f and Markov

chain P .

6. The improved Metropolis-type algorithm in different extensions such as the Swendsen-Wang algorithm,

parallel tempering etc. can be referred to [5].

4 Homeworks

• HW1. You want to compute ∫ 10

−10
e−x

2/adx∫ 10

−10
e−x2/bdx

,

where a, b are positive constants. Describe a Metropolis Monte Carlo algorithm which does the job;

use matlab to test it when a = 10, b = 12.

• HW2. Check the detailed balance condition for Metropolis and Glauber dynamics.

• HW3. Check the Markov chain setup by Metropolis and Glauber dynamics for Ising model are both

primitive.

References

[1] I. Beichl and F. Sullivan, The Metropolis algorithm, Computing in Science and Engineering 2(2000),

65-69.

[2] L. Onsager, Crystal Statistics. I. A Two Dimensional Model with an Order-Disorder Transition, Phys.

Rev. 65(1944), 117-149.

[3] C.N. Yang, The Spotaneous Magnetization of a Two-Dimensional Ising Model, Phys. Rev. 85(1952),

808-816.

[4] G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods, Springer-Verlag,

Berlin and New York, 1995.

[5] J.S. Liu, Monte Carlo strategies in scientific computing, Springer-Verlag, 2005.

6



Lecture 8 Multilevel sampling and KMC ∗

Tiejun Li

1 Swendsen-Wang algorithm

For the numerical computation of the Ising model, a commonly used approach is the Gibbs sampling to

flip single site at each step. However, this single-site update algorithm slows down rapidly once the tem-

perature is approaching or below the critical value T0, the so-called “critical slowing down”. Swendsen and

Wang [6] introduced a powerful clustering algorithm which together with an implementation modification

by Wolff [8], amost completely eliminates the critical slowing down. Below explanation to Swendsen-Wang

algorithm is from data augmentation viewpoint by Higdon [7].

We have the Gibbs distribution for Ising model

π(x) ∝ exp
{
βJ

∑
<i,j>

xixj

}
∝

∏
<i,j>

exp
{
βJ(1 + xixj)

}
.

Note that 1 +xixj is equal to either 0 or 2. Hence if we introduce an auxiliary variable u on each edge such

that

π(x,u) ∝
∏
<i,j>

I
[
0 ≤ uij ≤ exp{βJ(1 + xixj)}

]
.

Then the marginal distribution of x is the Gibbs distribution. And under this joint distribution, the

conditional distribution u|x is a product of uniform distributions with ranges depending on two neighboring

spins. Conversely, the conditional distribution x|u is: if uij > 1, then xi = xj ; otherwise there is no

constraint on xi’s. Thus u affects x only through the event I[uij > 1]. Based on the configuration u,

we cluster those lattice sites according to whether they have a mutual bond (uij > 1). We formulate the

following algorithm

Algorithm 1. Swendsen-Wang algorithm:

• Step 1. For a given configuration of the spins, form the bond variable by giving every edge of the lattice

< i, j >, between two “like spins” (xi = xj) a bond value of 1 with probability 1− exp(−2βJ), and a

bond value of 0 otherwise.

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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• Step 2. Conditional on the bond variable u, update the spin variable x by drawing from π(x|u),

which is uniform on all compatible spin configurations; that is, clusters are produced by connecting

neighboring sites with bond value 1. Each cluster is the flipped with probability 0.5.

2 The modification by Wolff

Wolff introduced a modification for the Swendsen-Wang algorithm, which, although both conceptually

and operationally simple, significantly outperforms the SW algorithm.

Algorithm 2. Wolff’s algorithm:

• Step 1. For a given configuration x, one randomly picks a site, say xi, and grow recursively from it a

“bonded set” C as follows:

– Check all the unchecked neighboring sites of a current set C(old); add a bond between a neighboring

site and C(old) the same way as in the Swendsen-Wang algorithm.

– Add those newly bonded neighboring sites to C(old) so as to form a new set C(new).

– Stop the recursion when there is no unchecked neighbor to add; name the final set C.

• Flip all the spins corresponding to the sites in set C to their opposites.

The only difference between Wolff’s algorithm and SW is that in each iteration, only one cluster is

constructed and all spins in that cluster are changed to their opposite value. This algorithm actually offers

a new insight which is different from the one based on the data augmentation. Suppose all of the states in

cluster C has spin +1 and it has m + n neighboring links among which m are linked with +1 spins and n

with −1 spins. We have the acceptance probability

Aold→new = min

{
1,
Qnew→oldπnew

Qold→newπold

}
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and
πnew

πold
=
eβJ(n−m)

eβJ(m−n)
= e2βJ(n−m),

Qnew→old

Qold→new
=
e−2βJn

e−2βJm
= e2βJ(m−n)

Thus these two probability cancel each other and the proposed change is accepted with probability one.

3 Simulated tempering

To sample the distribution

p(x) ∝ exp
(
− U(x)

T

)
or compute the ensemble average with the type

〈H〉 =

∫
H(x)

1

Z
exp

(
− U(x)

T

)
dx,

one usually apply the Metropolis-Hastings MCMC algorithm. But when the temperature T is very low,

that is, we have many high peaks in the pdf p(x), which may cause the acceptance probability small thus

decrease the mixing.

−8 −6 −4 −2 0 2 4 6 8 10

Low

temperature

−8 −6 −4 −2 0 2 4 6 8 10

High temperature

Figure 1: Sketch of the Gibbs distribution at low and high temperature.

In order to let a MCMC scheme move more freely in the sate space, Marinari and Parasi [4] and Geyer

and Thompson [3] proposed a data augmentation strategy to increase the mixing, which is called simulated

tempering. Algorithmically, their basic idea is to extend the state space x ∈ X into (x, i) ∈ X × I and

perform conditional sampling in this extended space. Physically, to approach the low temperature case,

they consider the pdf at the heated temperature, which can give high acceptance ratio for traversing the

state space X , and then jump in the different ensembles.

Mathematically, they let

I = {1, 2, . . . , L}, T1 < T2 < . . . < TL

and T1 = T , TL = Thigh. Then they ask the stationary distribution in the extended space as

πst(x, i) ∝ πi exp
(
− U(x)

Ti

)
,
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where πi is called pseudopriors which is set up a priori.

From this form, we know the conditional distribution

f(x|i) ∝ exp
(
− U(x)

Ti

)
which is the standard Gibbs distribution. The marginal distribution

f(i) ∝
∫
πi exp

(
− U(x)

Ti

)
dx = πiZi.

To make the transition in different ensembles more uniformly, the best choice for the parameter πi ∝ 1/Zi.

But in the computations, it is not feasible and only updated with the time.

To do the conditional sampling in the extended space, we list a mixture-type transition kernel here.

Algorithm 3 (Simulated tempering). Mixture type of the simulated tempering.

• Step 1. With the current state (xn, in) = (x, i), we draw u ∼ U [0, 1].

• Step 2. If u < α0, we let in+1 = i and let xn+1 be drawn from a MCMC transition Ti(x, xn+1) that

leaves f(x|i) invariant (this is also Metropolis-Hastings strategy).

• Step 3. If u > α0, we let xn+1 = x and propose a level transtion i → j, from a transition function

α(i, j), and let in+1 = j with probability

min
(

1,
πst(x, j)α(j, i)

πst(x, i)α(i, j)

)
.

Otherwise let in+1 = i.

A commonly used strategy for α(i, j) is the random walk proposal with reflecting barrier, that is,

α(i, i± 1) = 1/2, i = 2, . . . , L− 1

and α(1, 2) = α(L,L− 1) = 1.

The idea of simulated tempering is further generalized by Liu and Sabatti [5] into the so called “simulated

sintering” scheme.

4 Parallel tempering

The pararellel tempering is first proposed by Geyer [2] in 1991. Instead of augmenting X into X × I,

Geyer suggested directly dealing with the product space X1 × · · · ×XL, where the Xi are identical copies of

X , suppose

(x1, . . . , xL) ∈ X1 × · · · × XL,

we define the stationary distribution

πst(x1, . . . , xL) =
∏
i∈I

πi(xi)
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where πi(xi) = 1/Zi exp(−U(xi)/Ti) the Gibbs distribution at T = Ti. The parallel tempering is run on

all of the Xi. An “index swapping” operation is conducted in place of the temperature transition. The

algorithm is defined as follows:

Algorithm 4 (Parallel tempering algorithm). Mixture type transition kernel.

• Step 1: Let the current state be (x
(n)
1 , . . . , x

(n)
L ). Draw u ∼ U [0, 1].

• Step 2: If u ≤ α0, we conduct the parallel step. That is, we update each x
(n)
i to x

(n+1)
i via their

respective MCMCM scheme.

• Step 3: If u > α0, we conduct the swapping setp. That is, we randomly choose a neighboring pair, say

i and i+ 1, and propose “swapping” x
(n)
i and x

(n)
i+1. Accept this swap with probability

min

{
1,
πi(x

(n)
i+1)πi+1(x

(n)
i )

πi(x
(n)
i )πi+1(x

(n)
i+1)

}
.

In computations, T1 < T2 < . . . < TL, and it is very important to choose a proper number of temper-

ature levels. A rough guideline is to choose Ti such that( 1

Ti
− 1

Ti+1

)
|∆U | ≈ − log pa,

where |∆U | is the typical energy difference (e.g., the mean energy change under the target distribution)

and pa is the lower bound for the acceptance rate.

Remark 1. The rationale behind the choice of temperature Ti is to make the acceptance probability is

relatively large since

πi(x
(n)
i+1)πi+1(x

(n)
i )

πi(x
(n)
i )πi+1(x

(n)
i+1)

∼ exp

(
−
(

1

Ti
− 1

Ti+1

)
∆U

)
.

5 Kinetic Monte Carlo

Kinetic Monte Carlo is also called BKL algorithm [9]. It is widely used in simulating crystal growth.

• Drawbacks of standard MC:

At the metastable state σm, suppose the proposal state is σ′, then

r = e−β∆H , ∆H = H(σ′)−H(σm).

If r � 1, rejection occurred very often! The sample sequence will be like

σm, σm, . . . , σm, σnew . . . .

That’s very inefficient!

KMC aims to setup a rejection free algorithm.
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• Generation of new state:

Consider 2D Ising model: (ten-fold way in BKL algorithm)

For a given state σ, there are 10 kinds of flips(single flip proposal):

Class Spin
Number of spins up

(nearest neighbors)
1 ↑ 4

2 ↑ 3

3 ↑ 2

4 ↑ 1

5 ↑ 0

6 ↓ 4

7 ↓ 3

8 ↓ 2

9 ↓ 1

10 ↓ 0

Table 1: Classification of spins in the 10-fold way

There are 10 kinds of flipping probability Pj = min(1, exp(−β∆Hj)), j = 1, . . . , 10. Suppose there

are nj sites at j class j = 1, . . . , 10. Define

Qi =

i∑
j=1

njPj , i = 1, . . . , 10,

then the BKL algorithm is as follows:

Algorithm 5. (BKL Algorithm)

Step1 Generate R ∼ U [0, Q10);

Step2 Identify Qi−1 ≤ R < Qi, (Q0 = 0);

Step3 Randomly choose one site to flip in class i.

• Time increment between two flips:

Suppose on the average there is one attempted flip per lattice site in time τ (physical time), (# of

sites = N = M2) then

Q10

N
: Probability of flipping for a spin (only one) on a given attempt.

Note that the above procedure has homogenized the successful flipping probability to each site. We

have the successful flipping probability for one site in unit time

Q10

N

/
τ

N
=
Q10

τ
: Flip one spin unit time.

Define P (∆t) is the probability that no flip occurs before time ∆t has elapsed since the previous flip,

then

P (∆t)− P (∆t+ dt) = P (∆t) · Q10

τ
dt,
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so one has

P (∆t) = exp(−Q10∆t

τ
), P (0) = 1.

i.e. the time increment

∆t = − τ

Q10
lnR, R ∼ U [0, 1], 0 ≤ R ≤ 1.

Remark 2. Essence: The Markov chain in Metropolis algorithm is some skeleton of a continuous

time Q-process with Q-matrix

qij = 1Qij
Aij (1)

in KMC, where 1Qij
is defined as 1Qij

= 1 if Qij > 0 and 1Qij
= 0 otherwise. Aij is the acceptance

probability P shown above.

Remark 3. If one applies KMC to compute the ensemble average, the time increment occurs as a

weight for different states.

Remark 4. KMC can simulate the non-equilibrium process such as crystal growth, but the connection

between the process and the real physics is not clear!

6 Homeworks

1. Write down the transition kernel of simulated tempering method (transition probability matrix in the

case of discrete state Markov chain).

2. Write down the transition kernel of parallel tempering method (transition probability matrix in the

case of discrete state Markov chain).
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Lecture 9 Simulated Annealing and QMC ∗

Tiejun Li

1 Simulated Annealing

We already have very efficient algorithms for traditional convex programming. But how about the

non-convex programming problems, such as the following combinatorial optimization problem?

Example 1. (Traveling Salesman Problem) Suppose there are N cities and there exists one path (lij = lji)

for each two. Try to find a minimal path passing all the cities such that each city is passed and only passed

one time.

1

2

N

N−1

Figure 1: Traveling Salesman Problem

min
x∈X

H(x) =
N∑
i=1

lxixi+1
, xN+1 := x1.

X = {(x1, . . . , xN ), x1, . . . , xN is a per-

mutation of 1, 2, . . . , N}

The number of all the possible paths is N !
2 . It is a typical combinatorial explosion problem(NP problem).

This number increases exponentially with N , and there isn’t any rules for the function H(x). The traditional

algorithms are inapplicable here.

Example 2. (Image smoothing problem) Suppose there are J pixels for an image, and there are 256 colors

for each pixel. Any image can be represented as one element in

X = {(x1, . . . , xJ) : xi ∈ {0, 1, . . . , 255}}.

The smoothness of an image is defined as

H(x) = α
∑
<s,t>

(xs − xt)2, α > 0,

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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where < s, t > means the neighboring pixels in the lattice among x = (x1, . . . , xJ). Then define the compar-

ison function for images x and y where y is the reference image

H(x|y) = α
∑
<s,t>

(xs − xt)2 +
1

2σ2

∑
s

(xs − ys)2.

An image recovering problem for polluted y may be proposed as minimizing the following function:

min
x∈X

H(x|y).

The number of all the possible states is 256J ! Traditional algorithms are still inapplicable here!

Simulated annealing algorithm is one of the framework to handle this kind of non-convex global opti-

mization problem from stochastics recent years [3, 5]. While the effectivity is still under discussion.

1.1 Basic framework

For optimization problem

min
x∈X

H(x),

Define the global minimizers of H(x)

M = {x0 : H(x0) = min
x∈X

H(x)},

and introduce the parameter β > 0, define

Πβ(x) =
1

Zβ
e−βH(x), Zβ =

∑
x∈X

exp(−βH(x)),

then Πβ(x) is a probability distribution on X.

Theorem 1. Πβ(x) has the property

lim
β→+∞

Πβ(x) =

{
1
|M | if x ∈M,

0 else.

and if β is sufficiently large, then Πβ(x) is monotonely increasing as a function of β for any x ∈ M , and

Πβ(x) is monotonely decreasing as a function of β for any x /∈M .

Proof. Rewrite

Πβ(x) =
e−β(H(x)−m)∑

z:H(z)=m e
−β(H(z)−m) +

∑
z:H(z)>m e

−β(H(z)−m)

β→+∞−→

{
1
|M | , x ∈M,

0, x /∈M,

where m = minxH(x).

If x ∈M , we have

Πβ(x) =
1

|M |+
∑
z:H(z)>m e

−β(H(z)−m)
,
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then Πβ(x) monotonely increases with β increasing.

If x /∈M , we have

∂Πβ(x)

∂β
=

1

Z̃2
β

(
e−β(H(x)−m)(m−H(x))Z̃β − e−β(H(x)−m)

∑
z∈X

e−β(H(z)−m)(m−H(z))
)

=
1

Z̃2
β

(
e−β(H(x)−m)

[
(m−H(x))Z̃β −

∑
z∈X

e−β(H(z)−m)(m−H(z))
])
,

where

Z̃β ,
∑
z∈X

exp(−β(H(z)−m)).

Pay attention that

lim
β→+∞

[
(m−H(x))Z̃β −

∑
z∈X

e−β(H(z)−m)(m−H(z))
]

= |M |(m−H(x)) < 0,

The proof is completed.

Remark 1. The construction of Πβ(x) opens a new way to optimize H(x) via stochastics. Theorem 1

shows that if we can generate the random sequence with distribution Πβ(x), then the random numbers will

finally jump among the minimizers when β = +∞. This procedure is called annealing. It corresponds

to the physical crystallization. In physics, β corresponds to 1/T , where T is temperature. Global energy

minimization means a perfect crystal without defects. The observed crystals with defects in nature can be

understood as the local minimum state. In order to obtain a perfect crystal, one may image the following

process: The crystals will take the form of liquids in the high temperature, then one decreases the temperature

very slowly until the perfect crystal forms at the zero temperature. This is the basic idea of simulated

annealing.

The random number generation with distribution Πβ(x) can be created by Metropolis algorithm.

1.2 Theoretical results

Assuming the Metropolis sampler for simulated annealing is

P β(σ, σ′) =


G(x, y)π

β(y)
πβ(x)

, πβ(y) < πβ(x) and x 6= y,

G(x, y), πβ(y) ≥ πβ(x) and x 6= y,

1−
∑
z 6=x P

β(x, z) x = y.

where G(x, y) is the proposal matrix. It is symmetric as before.

In order to state the fundamental theorem of simulated annealing, we define the follows.

Definition 1. (Neighborhood system) The neighborhood system of x is defined as N(x) = {y ∈ X|x 6=
y,G(x, y) > 0}.

Definition 2. Given x and y, if there exists sequence x = u0, u1, . . ., uσ(x,y) = y such that uj+1 ∈ N(uj)

for any j = 0, 1, . . . , σ(x, y)−1, then we say that the states x and y communicate, where σ(x, y) is the length

of the shortest path along which x and y communicate.
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Definition 3. The maximal local increase of energy is defined as

∆ = max{H(y)−H(x) : x ∈ X, y ∈ N(x)}.

Theorem 2. (Fundamental theorem of simulated annealing) Suppose that X is a finite set, H(x) is a

nonconstant function, G(x, y) is a symmetric irreducible proposal matrix,

τ = max{σ(x, y) : x, y ∈ X}.

If the annealing procedure is chosen such that β(n) ≤ 1
τ∆ lnn, then for any initial distribution ν, we have

lim
n→+∞

‖νP β(1) · · ·P β(n) −Π∞‖ = 0.

The proof of the theorem may be refereed to [5].

Remark 2. Theorem 2 shows that the annealing rate must be slow enough such that β(n) ≤ 1
τ∆ lnn. It

is a very very slow rate because n ≥ exp(τ∆β(n)), we need n ∼ exp(N0) if β(n) = N0 � 1. This means

high accuracy needs exponential computing time, which is impossible for realistic computation. We should

take more rapid annealing rates such as β(n) ∼ p−n (p . 1) or others. Of course, it has no theoretical

foundations. The implementation details may be refereed to [2].

2 Quasi-Monte Carlo Method

The standard MC is of O( σ√
N

). In order to improve the accuracy, one has two choices

• Take N very large — Huge computational effort;

• Variance reduction techniques.

In the follows we will introduce the QMC to replace the pseudo-random sequence with quasi-random se-

quence. It improves the convergence rate to O((lnN)kN−1), where k depends on the space dimension.

Finally we will find that QMC is essentially a deterministic method which is very similar with MC. The

main contents may be refereed to [1].

2.1 Discrepancy

The concept of discrepancy is an estimate of the uniformity of the points. For N points {xn}Nn=1

belonging to the unit d-cube Id = [0, 1]d, define

RN (J) =
1

N
#{xn ∈ J} −m(J) (1)

for any set J ⊂ Id, where #{xn ∈ J} means the number of the points in set J , and m(J) is the measure of

J . Intuitively RN (J) is the difference between the exact volume and the random sampling estimate of the

volume.
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Definition 4. Define the whole set of rectangles in Id as

E = {J(x, y) : (0, 0, . . . , 0) ≤ x ≤ y ≤ (1, 1, . . . , 1)},

where x ≤ y means xi ≤ yi,i = 1, . . . , d, J(x, y) means the set of rectangles with the lower left node x and

the upper right node y. Define

E∗ = {J(0, y) : (0, 0, . . . , 0) ≤ y ≤ (1, 1, . . . , 1)}.

Definition 5. The L∞-discrepancy of a sequence {xn}Nn=1 is defined as

DN = sup
J∈E
|RN (J)|;

and the L2-discrepancy

TN =
(∫

(x,y)∈I2d,x≤y
RN (J(x, y))2dxdy

) 1
2

.

The Lp-discrepancy can be defined similarly. Specially we define the discrepancy

D∗N = sup
J∈E∗

|RN (J)|,

T ∗N =

(∫
Id
RN (J(0, x))2dx

) 1
2

.

2.2 Total variation

In 1D case, the total variation of a function is defined as the sum of the jumps:

V [f ] = sup
τ

∑
i

|f(xi+1)− f(xi)|,

where τ is taken to all the possible partitions of the domain. If f is differentiable, then

V [f ] =

∫ 1

0

|df | =
∫ 1

0

|f ′(x)|dx.

The total variation of function f in unit d-cube [0, 1]d is defined as

V [f ] =

∫
Id

∣∣∣ ∂df

∂x1 · · · ∂xd

∣∣∣dx1 · · · dxd +
d∑
i=1

V [f
(i)
1 ],

where f
(i)
1 is the restriction of f on the boundary xi = 1. It is a recursive definition of total variation.

Theorem 3. (Koksma-Hlawka) For any sequence {xn}Nn=1 ⊂ Id and the function f with bounded variation

in Id, the integration error E obeys the following inequality

E [f ] ≤ V [f ]D∗N ,

where E [f ] , |I[f ]− IN [f ]| = |
∫
Id
f(x)dx− 1

N

∑N
i=1 f(xi)|.
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Proof. We only present the intuitive proof here.

For the function f(x) which takes value 0 on the boundary of Id, define

R(x) = RN (J(0, x)),

then

dR(x) = { 1

N

N∑
i=1

δ(x− xi)− 1}dx,

where dR = ∂dR
∂x1···∂xd , dx = dx1 · · · dxd. δ(x− xi) is the Dirac-δ function centered at xi, then we have

E [f ] =
∣∣∣∫
Id
f(x)dx− 1

N

N∑
i=1

f(xi)
∣∣∣

=
∣∣∣∫
Id
{1− 1

N

N∑
i=1

δ(x− xi)}f(x)dx
∣∣∣

=
∣∣∣∫
Id
R(x)df(x)

∣∣∣
≤ (sup

x
R(x))

∫
Id
|df(x)| = D∗NV [f ].

Koksma-Hlawka theorem shows that the discretization error can be described by the total variation V [f ]

and the discrepancy for the sample points. QMC gives some special quasi random sequences which have

good discrepancy properties. It is a pure number theoretic result.

2.3 Quasi Monte Carlo integration

Definition 6. A sequence {xn}Nn=1 ⊂ Id is called quasi-random if

DN ≤ C(lnN)kN−1,

in which c and k are constants that are independent of N , but may depend on the dimension d.

What follows are some typical quasi random sequences:

• Van der Corput sequence(d = 1):

The generation of sequence {xi}Ni=1 is composed of two steps:

Step1. Write out n in base 2:

n =
(
amam−1 · · · a1a0

)
2
,

where (·)2 means in base 2, ai ∈ {0, 1} is the i-th bit of n;

Step2. Generate xn in base 2

xn =
(

0. a0a1 · · · am
)

2
.

• Halton sequence(d > 1):

Denote xn = (x1
n, x

2
n, . . . , x

d
n), where the k-th component xkn is obtained by two steps.
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Step1. Write out n in base pk. (where pk is the k-th prime number, e.g. p1 = 2, p2 = 3)

n =
(
akmka

k
mk−1 · · · ak1ak0

)
pk

;

Step2. Generate xkn in base pk:

xkn =
(
0. ak0a

k
1 · · · akmk

)
pk
.

The number theorists has proved

DN (Halton) ≤ Cd(lnN)dN−1.

Some other quasi random number sequences such as Sobol sequence, Faure sequence etc. may be refereed

to [4].

2.4 Limitations of QMC

QMC has the following limitations:

• QMC are designed for integration and are not directly applicable to simulations. This is because of

the correlations between the points of a quasi-random sequence.

• Because the theoretical basis of QMC is from Koksma-Hlawka theorem, and the generation style

of quasi-random numbers is very special, it is commonly applied to the integral in rectangle with

the form
∫
Id
f(x)dx. For the powerful Metropolis algorithm in statistical physics, how to design the

corresponding QMC version is an open problem.

• QMC is found to lose its effectiveness when the dimension of the integral becomes large. This can

be anticipated from the bound (lnN)dN−1 on discrepancy. For large dimension d, this bound is

dominated by the (lnN)d term unless N > 2d;

• QMS is found to lose its effectiveness if the integrand f is not smooth. The factor V [f ] in the

Koksma-Hlawka inequality is an indicator of this dependence.

All in all, QMC is suitable for the integration in which the space dimension is not so big, the integrand

f is relatively smooth. Though it has better convergence rate than Monte Carlo method, its applicability

is limited.

3 Homeworks

HW1. If we apply the argument in the simulated annealing to the continuous space case with smooth

energy V (x) and isolated minimizers, what can we say about the limit as β →∞?
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Lecture 10 Random Walk and Brownian motion ∗

Tiejun Li

1 1D Symmetric Random Walk

Example 1. (1D Random Walk) Suppose a particle suffers displacements along a straight line from the

origin, denote its position Xn ∈ Z. Let ξi are i.i.d. random moves such that ξi = ±1 with probability 1
2 , and

let

Xn = ξ1 + ξ2 + . . .+ ξn (i.e. X0 = 0)

{Xn} is called a unconstrained symmetric random walk on Z. Given Xn = i, we have

P{Xn+1 = i± 1| Xn = i} =
1

2
,

P{Xn+1 = anything else| Xn = i} = 0.

It is a typical example of the simplest Markov chains.

After taking N steps, the particle could be at any of the points

−N,−N + 2, . . . , . . . , N − 2, N.

1.1 Distribution of XN

One basic question is the probability W (m,N) = Prob{XN = m} that the particle arrives at the point

m after suffering N displacements.

It is not difficult to find that W (m,N) obeys binomial distribution

W (m,N) =
N !

(N+m
2 )!(N−m2 )!

(1

2

)N
,

and it is easy to note that m can be odd or even only according as N is odd or even.

The expectation position and mean square deviation are

EXN = 0, EX2
N = N,

then the root mean square displacement is
√
N .

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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Definition 1. (Diffusion coefficient) The 1D diffusion coefficient D is defined as

D =
〈(XN −X0)2〉

2N
.

It is assumed EXN = X0 here. In general continuous case, it is defined as

D = lim
t→∞

〈(Xt −X0)2〉
2dt

,

where d is the space dimension.

For this simplest random walk, D = 1
2 .

Next we consider the case N,m � 1, and m � N since we will rescale the process with the relation

x = ml, t = Nτ and l ∼ O(
√
τ), τ → 0. Thus m/N = x/t · τ/l→ 0. So only the range m� N matters. By

Stirling’s formula

log n! = (n+
1

2
) log n− n+

1

2
log 2π +O(n−1) (n→ +∞),

we have

logW (m,N) ≈ (N +
1

2
) logN − 1

2
(N +m+ 1) log

[N
2

(1 +
m

N
)
]

−1

2
(N −m+ 1) log

[N
2

(1− m

N
)
]
− 1

2
log 2π −N log 2.

Since m� N we have Taylor series expansion for x� 1

log(1 + x) = x− 1

2
x2 +O(x3),

thus

logW (m,N) ≈ −1

2
logN + log 2− 1

2
log 2π − m2

2N
+O

((m
N

)2)
.

In other words, one obtains the the asymptotic formula

W (m,N) ≈
( 2

πN

) 1
2

exp(−m
2

2N
).

An interesting thing is to take the continuum limit of random walk. Now suppose we rescale the random

walk with the spatial steplength l and the time spacing τ for each movement, we take the limit in the

following sense when considering the point (x, t)

N,m→∞, l, τ → 0, and Nτ = t, ml = x. (1)

To make the continuum limit physically reasonable, we also ask to fix the diffusion coefficient

D =
〈(XNτ −X0)2〉

2Nτ
=

l2

2τ

in the limit. Consider the intervals ∆x which are large compared with the length l, we have the probability

that y ∈ (x−∆x/2, x+ ∆x/2) for the continuous probability density W (x, t) satisfies

W (x, t)∆x ≈
∫ x+∆x/2

x−∆x/2

W (y, t)dy ≈
∑

m′∈{m,m±2,m±4,...}
m′l∈(x−∆x/2,x+∆x/2)

W (m′, N) ≈W (m,N)
∆x

2l
(x = ml)
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since m can take only even or odd values depending on whether N is even or odd. Combining the results

above one has

W (x, t)∆x =
1√

2πt l
2

τ

exp(− x2

2t l
2

τ

)∆x,

thus the limiting probability density at time t

W (x, t) =
1√

4πDt
exp(− x2

4Dt
).

1.2 Random walk with reflecting and absorbing Barriers

Case 1: A reflecting barrier at m = m1;

Suppose m1 > 0 We now ask the probability W (m,N ;m1) that the particle will arrive at m(≤ m1) after

N steps.

This problem may be solved very efficiently in the (m−N) plane in a neat way.

��
��
��

��
��
��

�
�
�

�
�
�

m
1

m
0

N

0

Paths not hitting m 1

1

2

N

N

1

2

Paths hitting m1

2m − m
1

Figure 1: Schematics of reflection principle.

From Fig. 1, the actual sample paths are shown with solid lines (including the reflected path), and the

paths crossing the barrier m1 in the unrestricted random walk case are shown with dashed lines. These

paths can be classified into two classes. One class only contains the paths not hitting m1 and finally reaching

m; the other class contains the paths hitting m1 before time N and finally reaching m1 or 2m1 −m. We

have the following two assertions on these paths:

• In the unrestricted random walk, all of the sample paths have equal probability 1/2N ;

• The probability of the reflected paths which hits m1 is equal to the sum of the probability of the

paths hitting m1 and reaching m and the paths reaching 2m1 −m. A simple argument to prove this

is to observe that the reflecting probability is 1 at the reflection point shown as points 1 and 2 in the
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figure. From 1 = 1/2 + 1/2, this decomposition actually decompose the paths into those go leftwards

and rightwards with equal probability, which corresponds to all the paths just stated.

• The number of the paths hitting m1 and hitting m finally is equal to that of the paths hitting 2m1−m
finally. This can be understood because these paths have to cross m1 and we can denote the final

hitting time as N2 as shown in the figure. So after N2, the paths go leftwards or rightwards with

mirror symmetry to hit m or 2m1 −m. Before N1, the paths can be either branch.

These assertions are called the reflection principle, which is the basis of the following calculations for

reflection and absorbing barrier problem.

So we have the following identity

Wr(m,N ;m1) = W (m,N) +W (2m1 −m,N).

If we take large N limit we have

Wr(m,N ;m1) ≈
( 2

πN

) 1
2 [

exp(−m
2

2N
+ exp(− (2m1 −m)2

2N

]
,

then passing to the continuum limit we have

Wr(x, t;x1) =
1√

4πDt

[
exp(− x2

4Dt
) + exp(− (2x1 − x)2

4Dt
)
]
, (2)

and we may note in this case
∂Wr

∂x

∣∣∣
x=x1

= 0.

with W is defined in (2).

Case 2: Absorbing wall at m = m1;

Similarly as before we easily deduce that

Wa(m,N ;m1) = W (m,N)−W (2m1 −m,N).

by reflection principle.

In the large N limit we have

Wa(m,N ;m1) ≈
( 2

πN

) 1
2 [

exp(−m
2

2N
)− exp(− (2m1 −m)2

2N
)
]
,

and the continuum limit is

Wa(x, t;x1) =
1√

4πDt

[
exp(− x2

4Dt
)− exp(− (2x1 − x)2

4Dt
)
]
, (3)

and we may note in this case

Wa(x, t;x1) = 0.

with Wa is defined in (3).

Define the first hitting probability a(m1, N) = Prob{XN = m1, and Xn < m1,∀n < N} that taking N

steps the particle will arrive at m1 without ever hitting m = m1 at any earlier step. Then we have

a(m1, N) =
1

2
Wa(m1 − 1, N − 1;m1) =

m1

N
W (m1, N)
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by the above formula and the relation W (m,N) = N
N+mW (m− 1, N − 1). In the large N limit we have

a(m1, N) ≈ m1

N

( 2

πN

) 1
2

exp(−m
2
1

2N
).

The continuous probability density a(m1, t) becomes

a(m1, t)∆t ≈ a(m1, N)
∆t

2τ
(t = Nτ)

In the continuum limit one obtains

a(x1, t) =
x1

t

1√
4πDt

exp(− x2
1

4Dt
).

We may note in this case

a(x1, t) = −D∂W
∂x

∣∣∣
x=x1

.

with W is defined in (3).

2 Arcsine law and the law of iterated logarithm

To simplify the notations, we define the first hitting time

σ2n = min{1 ≤ k ≤ 2n : Sk = 0}

and we define σ2n = +∞ if Sk 6= 0 for 1 ≤ k ≤ 2n. For 0 ≤ k ≤ n we define

u2k = P(S2k = 0), f2k = P(σ2n = 2k). (4)

It is clear that u2k = Ck2k · 2−2k. From the reflection principle, we have

f2k = 2
1

2
· 1

2k − 1
W (1, 2k − 1) =

1

2k
u2(k−1) = u2(k−1) − u2k. (5)

Now define P2k,2n be the probability that during the interval [0, 2n] the particle spends 2k units of time on

the positive side (We say that the particle is on the positive side in the interval [m− 1,m] if one, at least,

of the value Sm−1 and Sm is positive).

Lemma 1. Let u0 = 1 and 0 ≤ k ≤ n. Then

P2k,2n = u2k · u2n−2k. (6)

Proof. At first let us show that (6) holds for k = 0. Suppose we have a path with S2n = 0 and

min0≤k≤2nXk = −m, where m > 0. Denote l = min{k|Xk = −m}. We can map this path into a

path only in the positive side. Take a reflection of the path {Xk}0≤k≤l with respect to the axis t = l and

denote the new path by {X̃k}0≤k≤l such that X̃k = Xl−k. Concatenate X̃0 to the point (2n, 0) and translate

the left endpoint of the new path into the origin. With such manipulation, we get a path on the positive side

and the right endpoint is (2n, 2m). Conversely, for each path on the positive side with the right endpoint is

(2n, 2m), we take l = max{k|Xk = m}. We can cut the part beyond t = k, make a reflection with respect

5



t

(l,-m)

2n

t
2n

(2n,2m)

Figure 2: Schematics of construction from a path with S2n = 0 to a new path on the positive side.

to t = l, concatenate it to the left endpoint of the rest part and translate the whole path into the origin, we

then get a new path with S2n = 0. A special case is illustrate in Figure 2. The case for k = n is trivially

true by symmetry and the case k = 0.

Then let us prove the following relation

u2k =
k∑
r=1

f2r · u2(k−r). (7)

Since {S2k = 0} ⊂ {σ2n ≤ 2k}, we have

{S2k = 0} = {S2k = 0} ∩ {σ2n ≤ 2k} =

k∑
r=1

{S2k = 0} ∩ {σ2n = 2r} (8)

Consequently

u2k = P(S2k = 0) =
k∑
r=1

P(S2k = 0, σ2n = 2r)

=
k∑
r=1

P(S2k = 0|σ2n = 2r)P(σ2n = 2r). (9)

But

P(S2k = 0|σ2n = 2r) = P(S2k = 0|S1 6= 0, . . . , S2r−1 6= 0, S2r = 0)

= P(S2r + (ξ2r+1 + · · ·+ ξ2k) = 0|S1 6= 0, . . . , S2r−1 6= 0, S2r = 0)

= P(S2r + (ξ2r+1 + · · ·+ ξ2k) = 0|S2r = 0)

= P(ξ2r+1 + · · ·+ ξ2k = 0) = P(S2(k−r) = 0). (10)

Combing (9) and (10) we obtain (7). To prove (6), we apply the induction method. Now let 1 ≤ k ≤ n− 1.

If the particle is on the positive side for exactly 2k instants, it must pass through zero. Let 2r be the time

of first passage through zero. There are two possibilities: either Sk ≥ 0, k ≤ 2r, or Sk ≤ 0, k ≤ 2r.

The number of paths of the first kind is

(22r · 1

2
f2r) · (22(n−r) · P2(k−r),2(n−r)) =

1

2
22nf2rP2(k−r),2(n−r).

The number of paths of the second kind is

1

2
22nf2rP2k,2(n−r).
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Consequently, for 1 ≤ k ≤ n− 1,

P2k,2n =
1

2

k∑
r=1

f2rP2(k−r),2(n−r) +
1

2

k∑
r=1

f2rP2k,2(n−r). (11)

Suppose that P2k,2m = u2k · u2m−2k holds for m = k, k + 1, . . . , n− 1. Then by (7) and (11) we have (How

is the induction applied here?)

P2k,2n =
1

2
u2n−2k

k∑
r=1

f2ru2k−2r +
1

2
u2k

k∑
r=1

f2ru2n−2k−2r

=
1

2
u2n−2ku2k +

1

2
u2ku2n−2k = u2ku2n−2k.

This completes the proof.

Now let γ(2n) be the number of time units that the particle spends on the positive axis in the interval

[0, 2n]. Then when x < 1,

P
{1

2
<
γ(2n)

2n
≤ x

}
=

∑
k,1/2<2k/2n≤x

P2k,2n.

Since

u2k ∼
1√
πk

by Stirling’s formula as k →∞, we have

P2k,2n ∼
1

π
√
k(n− k)

as k, n− k →∞.

Therefore ∑
{k,1/2<2k/2n≤x}

P2k,2n −
∑

k,1/2<2k/2n≤x

1

πn
·
[k
n

(
1− k

n

)]− 1
2 → 0, n→∞,

Whence ∑
{k,1/2<2k/2n≤x}

P2k,2n →
1

π

∫ x

1
2

dt√
t(1− t)

, n→∞.

From the symmetry, ∑
{k,2k/2n≤1/2}

P2k,2n →
1

2

and
1

π

∫ x

1
2

dt√
t(1− t)

=
2

π
arcsin

√
x− 1

2
.

Thus we have the following theorem:

Theorem 1 (Arcsine Law). The probability that the fraction of the time spent by the particle on the positive

side is at most x tends to 2
π arcsin

√
x: ∑
{k,k/n≤x}

P2k,2n →
2

π
arcsin

√
x.
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The following deep theorem is due to Hartman and Wintler (1941).

Theorem 2 (Law of Iterated Logarithm). Let ξ1, . . . , ξn are i.i.d. R.V. with Eξi = 0,Varξi = σ2 > 0, Then

P
{

lim sup
Sn√

2σ2n ln lnn
= 1
}

= 1.

Remark 1. Application of the above result to −ξi, one also obtains

P
{

lim inf
Sn√

2σ2n ln lnn
= −1

}
= 1.

3 Random Flights With Gaussian Displacements

In the general problem of random flights, the position R of the particle after N displacements is given

by

R =
N∑
i=1

ri,

where the ri = (r1
i , r

2
i , r

3
i )’s denote the different displacements. Assume the probability that the ith dis-

placement between ri and ri + dri is given by

τi(r
1
i , r

2
i , r

3
i )dr

1
i dr

2
i dr

3
i = τidri (i = 1, . . . , N).

Now we ask the probability WN (R)dR that the position of the particle after N displacements lies in the

interval R,R+ dR. The method presented in the following is originally devised by A.A. Markov.

It is a standard exercise to have

ŴN (R) =

∫
WN (R) exp(iρ ·R)dR =

N∏
i=1

∫
τi(ri) exp(iρ · ri)dri =

N∏
i=1

τ̂i(ri).

In the case of Gaussian distribution of random displacement ri, we have the pdf

τi(ri) =
1

(2πl2)
3
2

exp(−|ri|
2

2 l2
),

From the property of Fourier transform for Gaussian distribution, we have

WN (R) =
1

(2πNl2)
3
2

exp(− |R|
2

2Nl2
).

Suppose the time spacing is τ each time and define the diffusion coefficient as before

D = lim
t→0

〈(Xt −X0)2〉
2dt

=
3Nl2

6Nτ
=

l2

2τ
,

Then we have the continuum limit pdf for free Gaussian random flight

W (R, t) =
1

(4πDt)
3
2

exp
(
− |R|

2

4Dt

)
(t = Nτ).

Remark 2. Similar results for WN (R) holds for other distributions which can be refereed in [1]. These

results will be further clarified in next lecture on Brownian motion.

Question 1. How about more general reflecting and absorbing barrier problem in high dimensions?
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4 Einstein’s work on the theory of Brownian motion

In 1905, A. Einstein published a seminal paper on the theory of Brownian motion (he also publishes two

other seminal papers on Special Relativity and photoemission in this year). Two major points in Einstein’s

solution to Brownian motion are

(i) The motion is caused by the exceedingly frequent impacts on the pollen grain of the incessantly

moving molecules of liquid in which it is suspended;

(ii) The motion of these molecules is so complicated that its effect on the pollen grain can only be

described probabilistically in terms of exceedingly frequent statistically independent impacts.

His mathematical interpretation is as follows (1D version).

In a small time interval τ , the X-coordinates of an individual particle will increase by an amount ∆.

There will be a certain “frequency law” for ∆

dn = nφ(∆)d∆

where ∫ +∞

−∞
φ(∆)d∆ = 1, φ(−∆) = φ(∆),

and φ is only different from 0 for very small values of ∆.

Let f(x, t) be the number of particles per unit volume, then

f(x, t+ τ)dx =

∫ +∞

−∞
f(x−∆, t)dxφ(∆)d∆.

Since τ is small

f(x, t+ τ) = f(x, t) +
∂f

∂t
τ,

furthermore

f(x−∆, t) = f(x, t)−∆
∂f

∂x
+

∆2

2

∂2f

∂x2
+ · · · .

Thus

f(x, t) +
∂f

∂t
τ = f

∫ +∞

−∞
φ(∆)d∆ +

∂f

∂x

∫ +∞

−∞
∆φ(∆)d∆ +

∂2f

∂x2

∫ +∞

−∞

∆2

2
φ(∆)d∆ + · · · .

Set
1

τ

∫ +∞

−∞

∆2

2
φ(∆)d∆ = D

throwing h.o.t., we have
∂f

∂t
= D

∂2f

∂x2
.

His description contains very many of the major concepts which have been developed more and more

generally and rigorously since then, such as

(i) Chapman-Kolmogorov equation;

(ii) Fokker-Planck equation;

(iii) Kramers-Moyal expansion;

etc.

9



5 Homeworks

• HW1. Prove that the continuum limit pdf W (x, t) for free random walk satisfies the PDE
∂W

∂t
= D

∂2W

∂x2
, x ∈ R, t ≥ 0

W (x, t)
∣∣∣
t=0

= δ(x).

• HW2. Prove that the continuum limit pdf W (x, t) with reflecting barrier satisfies the PDE

∂W

∂t
= D

∂2W

∂x2
, x ≤ x1, t ≥ 0

W (x, t)
∣∣∣
t=0

= δ(x),

∂W

∂x
(x, t)

∣∣∣
x=x1

= 0.

• HW3. Prove that the continuum limit pdf W (x, t) with absorbing barrier satisfies the PDE

∂W

∂t
= D

∂2W

∂x2
, x ≤ x1, t ≥ 0

W (x, t)
∣∣∣
t=0

= δ(x),

W (x, t)
∣∣∣
x=x1

= 0.

• HW4 (optional). Give the detailed procedure for the induction in proving the Arcsine Law.
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Lecture 11 Stochastic Process and Brownian Motion ∗

Tiejun Li

1 Axiomatic Construction of Stochastic Process

Example 1.1. Consider the independent fair coin tossing process described by the sequence

X = (X1, X2, . . . , Xn, . . .) ∈ {0, 1}N,

where Xn = 0 or 1 if the nth output is ‘Tail’ (T) or ‘Head’ (H), respectively. Different trials

are assumed to be independent and P(Xn = 0) = P(Xn = 1) = 1/2.

Notice that for this process the number of all possible outputs is uncountable. One can

not define the probability of an event through summation of the probability of each atom

as the case of discrete random variables. In fact, if we define Ω = {H,T}N, the probability

of an atom ω = (ω1, ω2, . . . , ωn, . . .) ∈ {H,T}N is 0, i.e.

P(X1(ω) = k1, X2(ω) = k2, . . . , Xn(ω) = kn, . . .) = lim
n→∞

(1

2

)n
= 0, kj ∈ {0, 1}, j = 1, 2, . . .

and events like {Xn(ω) = 1} involve uncountably many atoms.

To set up a probability space (Ω,F ,P) for this process, it is natural to take Ω = {H,T}N

and the σ-algebra F as the smallest σ-algebra containing all events of the form:

C =
{
ω|ω ∈ Ω, (ωj)j=1:m ∈ Cm, Cm ⊂ {H,T}m

}
(1.1)

for any m ∈ N, i.e. the sets whose finite time projections are specified. These sets are called

cylinder sets, which is meaningful from the experimental observation point of view. The

probability measure P of an event of the form (1.1) is defined to be

P(C) =
1

2m
|C|.

Denote C the set of cylinder sets. One can easily show that C is an algebra which is only

closed under finite union/intersection operation. To extend the probability measure P from

C to F , we need to verify that P is countably additive on C.
∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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Lemma 1.2. If An ↓ A and An ∈ C is non-empty, then A is non-empty.

With Lemma 1.2, we obtain if An ↓ ∅, then P(An) ↓ 0, which is equivalent to the

countable additivity. From the extension theorem of measures, this probability measure P
is well-defined on F .

Proof of Lemma 1.2. Denote

An = {ω|(ω1, ω2, . . . , ωmn) ∈ Cn}

where ωk ∈ {H,T}. From the non-empty condition of An, there exists ωn ∈ An. Consider

ω1
1 ω2

1 ω3
1 · · ·

ω1
2 ω2

2 ω3
2 · · ·

ω1
3 ω2

3 ω3
3 · · ·

...
...

...
. . . ,

there exist infinite superscripts n1
k such that ω

n1
k

1 = H or T always in the 1st row. Similar

argument can be applied to the continued rows by an subsequence trick. Take the diagonal

indices and define nk := nkk and uk := ωnkk for k = 1, 2, . . .. Denote u = (u1, u2, . . .).

For any r, if k ≥ r, one has ωnkj = uj for 1 ≤ j ≤ r. For any n, if k ≥ n, then nk ≥ n,

and ωnk ∈ Ank ⊂ An. So (ωnk1 , ωnk2 , . . . , ωnkmn) ∈ Cn. Take k ≥ mn. We get ωnkj = uj for

1 ≤ j ≤ mn, i.e. u ∈ An for any n.

In summary, u ∈ A and we are done.

It is straightforward to check that for any cylinder set F ∈ {0, 1}N, the probability

P(X(ω) ∈ F ) coincides with the definition we made in Example 1.1 for independent coin

tossing process. We remark that the probability space (Ω,F ,P) is not uniquely defined.

Another natural way is to take Ω = {0, 1}N, F the smallest σ-algebra containing all cylinder

sets in Ω, and similar probability measure P on F . With this choice we have

Xn(ω) = ωn, ω ∈ Ω = {0, 1}N

which is called a coordinate process in the sense that Xn(ω) is just the nth coordinate of ω.

In general, a stochastic process is a parameterized random variables {Xt}t∈T defined on

a probability space (Ω,F ,P) taking values in R, the parameter set T can be N, [0,+∞) or

some finite interval. For any fixed t ∈ T, we have a random variable

Xt : Ω→ R ω � Xt(ω).

For any fixed ω ∈ Ω, we have a real-valued measurable function on T

X·(ω) : T→ R t� Xt(ω),
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which is called a trajectory or sample path of X. As a bi-variate function, a stochastic

process can also be viewed as a measurable function from Ω×T to R

(ω, t) � X(ω, t) := Xt(ω),

with the σ-algebra in Ω×T been chosen as F × T , and T is the Borel σ-algebra on T.

The largest probability space that one can take is the infinite product space Ω = RT,

i.e. Ω is the space of all real-valued functions on T. F can be taken as the infinite product

σ-algebra BT, which is the smallest σ-algebra containing all cylinder sets

C = {ω ∈ RT|(ω(t1), ω(t2), . . . , ω(tk)) ∈ A}, A ∈ Bk, ti ∈ T for i = 1, . . . , k,

where B,Bk is the Borel σ-algebra on R and Rk, respectively. When T = N and Xt only

takes values in {0, 1}, we are back to the setting of Example 1.1.

Finite dimensional distributions are particularly interesting for a stochastic process, since

they are the ones we can really observe. Let

µt1,...,tk(F1 × F2 × · · · × Fk) = P[Xt1 ∈ F1, . . . , Xtk ∈ Fk]

for all F1, F2, . . . , Fk ∈ B. µt1,...,tk is called the finite dimensional distributions of {Xt}t∈T at

the time slice (t1, . . . , tk), where ti ∈ T for i = 1, 2, . . . , k.

The following theorem of Kolmogorov states that an abstract probability space (Ω,F ,P)

can be established for a stochastic process X by knowing its all finite dimensional distribu-

tions with suitable consistency conditions.

Theorem 1.3 (Kolmogorov’s extension theorem). Assume that a family of finite dimen-

sional distributions {µt1,...,tk} satisfy the following two consistency conditions for arbitrary

sets of t1, t2, . . . , tk ∈ T, k ∈ N:

(i) For any permutation σ of {1, 2, . . . , k},

µtσ(1),...,tσ(k)(F1 × F2 × · · · × Fk) = µt1,...,tk(Fσ−1(1) × Fσ−1(2) × · · · × Fσ−1(k)).

(ii) For any m ∈ N,

µt1,...,tk(F1 × F2 × · · · × Fk) = µt1,...,tk,tk+1,...,tk+m(F1 × · · · × Fk × R× · · · × R).

Then there exists a probability space (Ω,F ,P) and a stochastic process {Xt}t∈T such that

µt1,...,tk(F1 × F2 × · · · × Fm) = P(Xt1 ∈ F1, Xt2 ∈ F2, . . . , Xtm ∈ Fm)

for any t1, t2, . . . , tm ∈ T, m ∈ N.

The proof the Kolmogorov extension theorem may be referred to [4, 5]. The advantage

of the Kolmogorov theorem is that it is very general. The problem is that the probability

space Ω is too big, so big that we can not say anything about features of paths on this space.

Therefore the real challenge is to define probability measures on smaller spaces.
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2 Filtration

The more we observe about a stochastic process, the more information we have at our

disposal. This gives rise to a family of increasingly larger σ-algebras, which we call the filtra-

tion associated with the stochastic process. The filtration is the main conceptual difference

between the random variables and and stochastic processes.

Definition 2.1 (Filtration). Given the probability space (Ω,F ,P), the filtration is a nonde-

creasing family of σ-algebras {Ft}t≥0 such that Fs ⊂ Ft ⊂ F for any 0 ≤ s < t.

A stochastic process {Xt} is called Ft-adapted if Xt is Ft-measurable, i.e. X−1t (B) ∈ Ft,
for any t ≥ 0 and B ∈ B. Given a stochastic process {Xt}, one can define the filtration

generated by this process by: FXt = σ(Xs, s ≤ t), which is the smallest σ-algebra such that

the {Xs}s≤t are measurable. FXt is the smallest filtration such that the process {Xt} is

adapted. The filtration FXt can be thought of as the information supplied by the process

up to time t. Taking again the independent coin tossing as the example and Ω = {H,T}N.

In this case, T = N and the filtration is {FXn }n≥0. When n = 0, the σ-algebra is trivial

FX0 = {∅,Ω},

which means that we do not know any information about the output of the coin tossing.

When n = 1, the σ-algebra is

FX1 = {∅,Ω, {H}, {T}}

since the first output gives either Head or Tail and we only know this information about

the first output. When n = 2, we have

FX2 = {∅,Ω, {H·}, {T ·}, {·H}, {·T}, {HH}, {HT}, {TH}, {TT}, . . .},

which contains all possible combinations of the outputs for the first two rounds of experi-

ments. Sets like

{HH · · ·T} or {HH · · ·H}

are not contained in FX0 , FX1 or FX2 since the first two outputs can not tell such information.

It is obvious that FXn becomes finer and finer as n increases.

3 Gaussian Process

In order to study Wiener process or Brownian motion (Brownian motion is also called

Wiener process because its first rigorous mathematical foundation was established by N.

Wiener in 1923 [11]), we will first introduce the Gaussian process on the continuous state

space R.
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Definition 3.1. A Gaussian process means that all of the finite dimensional distributions

µt1,...,tk are Gaussian for any t1, t2, . . . , tk ∈ T .

We know that any Gaussian vector X = (X1, X2, . . . , Xn)T is completely determined by

its first moment m = EX and second moment K = E(X −m)(X −m)T , where mi = EXi

and Kij = E(Xi −mi)(Xj −mj)
T . The corresponding pdf is

p(x) =
1

Z
e−

1
2
(x−m)TK−1(x−m)

if K is invertible, where Z is a normalization constant. For the general case, we need to

represent X via the characteristic function

Eeiξ·X = eiξ·m−
1
2
ξTKξ.

From the above interpretation, a Gaussian process is uniquely determined by the mean

function m(t) = EXt and the covariance function K(s, t) = E(Xs −m(s))(Xt −m(t)). We

have K(s, t) = K(t, s) by definition. If we consider the finite dimensional distribution at

the time slice (t1, t2, . . . , tn), then m(t) and K(s, t) give the first moment

M =
(
m(t1),m(t2), . . . ,m(tn)

)
and second moment

K =


K(t1, t1) K(t1, t2) · · · K(t1, tn)

K(t2, t1) K(t2, t2) · · · K(t2, tn)
...

...
. . .

...

K(tn, t1) K(tn, t2) · · · K(tn, tn)

 .
It is straightforward to observe that for any x = (x1, x2, . . . , xn) we have∑

i,j

K(ti, tj)xixj =
∑
i,j

E(Xti −m(ti))(Xtj −m(tj))xixj

= E
(∑

i

(Xti −m(ti))xi

)2
≥ 0.

Thus we may view m(t) as an infinite dimensional vector, and K(s, t) as an infinite di-

mensional positive semi-definite matrix. From the characteristic function point of view,

the Gaussian process X can be explained as a Gaussian random element in an infinite

dimensional space L2(T ) since we have at least formally in the current stage

Eei(ξ,X) = ei(ξ,m)− 1
2
(ξ,Kξ),

where (ξ,m) =
∫ b
a
ξ(t)m(t)dt is the inner-product in L2(T ), and (Kξ)(t) =

∫ b
a
K(t, s)ξ(s)ds

is the action of the kernel function K on the function ξ. Based on the Kolmogorov’s
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extension theorem, we can construct a Gaussian process X from a given mean function

m(t) and covariance function K(s, t).

The covariance function K is obviously symmetric, i.e. K(t, s) = K(s, t), by definition.

In addition, we have the semi-positivity of K in the following sense.

Theorem 3.2. Assume the Gaussian process (Xt)t∈[0,T ] possesses the regularity X ∈ L2
ωL

2
t

in the sense that X ∈ L2(Ω;L2[0, T ]), i.e.

E
∫ T

0

X2
t dt <∞.

We have m ∈ L2
t and the operator

Kf(s) :=

∫ T

0

K(s, t)f(t)dt, s ∈ [0, T ]

is a positive compact operator on L2
t .

Proof. The mean function m ∈ L2
t is obvious since∫ T

0

m2(t)dt =

∫ T

0

(EXt)
2dt ≤

∫ T

0

EX2
t dt <∞.

In addition, we have∫ T

0

∫ T

0

K2(s, t)dsdt =

∫ T

0

∫ T

0

(
E(Xt −m(t))(Xs −m(s))

)2
dsdt

≤
∫ T

0

∫ T

0

E(Xt −m(t))2E(Xs −m(s))2dsdt ≤
(∫ T

0

EX2
t dt
)2
,

which means K ∈ L2([0, T ]× [0, T ]). Thus K is a compact operator on L2
t (c.f. [6]).

It is easy to find that the adjoint operator of K is

K∗f(s) :=

∫ T

0

K(t, s)f(t)dt, s ∈ [0, T ].

From the symmetry of K(s, t), we know that K is self-adjoint.

To show the positivity of K, we have

(Kf, f) =

∫ T

0

∫ T

0

E(Xt −m(t))(Xs −m(s))f(t)f(s)dsdt

= E
(∫ T

0

(Xt −m(t))f(t)dt
)2
≥ 0.

The proof is completed.

6



The following important closure property for a collection of Gaussian random variables

will be used frequently in this chapter.

Theorem 3.3. Suppose X1, X2, . . . are a sequence of Gaussian random variables and Xn

converges to X in probability. Then X is also Gaussian.

Proof. Let us denote

mk = EXk, σ2
k = varXk.

Then by dominated convergence theorem we have

eiξmk−
1
2
σ2
kξ

2

= EeiξXk → EeiξX for any ξ ∈ R.

From the existence of the limit of the above equation, there are numbers m and σ2 such

that

m = limmk, σ2 = limσ2
k

and EeiξX = eiξm−
1
2
σ2ξ2 . The proof is completed.

4 Wiener Process

The rigorous mathematical definition of the Brownian motion, or the Wiener Process, is

defined as follows.

Definition 4.1. (Brownian motion) The one dimensional Brownian motion Wt is defined

as

1. It is a Gaussian process.

2. It has mean function m(t) = 0, and covariance function K(s, t) = s ∧ t = min(s, t).

3. With probability one, t 7→ Wt is continuous.

The m-dimensional Brownian motion Wt has the form Wt = (W 1
t ,W

2
t , . . . ,W

m
t ), where

each component W j
t is a Brownian motion and they are independent each other. The Brow-

nian motion (m-dimensional Brownian motion) is usually denoted as Wt or Bt (Wt or

Bt).

It is not difficult to prove that the above three conditions are equivalent to the following

definition.

1′. For any t0 < t1 < · · · < tn, the random variables Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1 are

independent.
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2′. For any s, t ≥ 0, Ws+t −Ws ∼ N(0, t).

3. With probability one, t 7→ Wt is continuous.

One straightforward implication of the second equivalent definition is that we can imme-

diately write down the joint probability distribution density for (Wt1 ,Wt2 , . . . ,Wtn) (t1 <

t2 < · · · < tn) as

pn(w1, w2, . . . , wn) =
1√
2πt1

e
− w2

1
2t1

1√
2π(t2 − t1)

e
− (w2−w1)

2

2(t2−t1) · · · 1√
2π(tn − tn−1)

e
− (wn−wn−1)

2

2(tn−tn−1) .

More compactly

pn(w1, w2, . . . , wn) =
1

Zn
exp(−In(w)),

where

In(w) =
1

2

n∑
j=1

(wj − wj−1
tj − tj−1

)2
(tj − tj−1), t0 := 0, w0 := 0,

Zn = (2π)
n
2

[
t1(t2 − t1) · · · (tn − tn−1)

] 1
2 .

This also explicitly shows the stationarity and Markovianity of the Brownian motion with

transition kernel function p(x, t|y, s)

P(Wt ∈ B|Ws = y) =

∫
B

1√
2π(t− s)

e−
(x−y)2
2(t−s) dx =

∫
B

p(x, t|y, s)dx

where s < t and B is a Borel set on R. The transition probability density p(x, t|y, s) satisfies

the stationarity p(x, t|y, s) = p(x− y, t− s|0, 0) and p(x, t|0, 0) satisfies the PDE

∂p

∂t
=

1

2

∂2p

∂x2
, p(x, 0|0, 0) = δ(x).

Now mathematically the first question is “Is there a process with these properties?”.

Though from Kolmogorov’s extension theorem we can construct a probability space on

(R[0,∞),R[0,∞)) by the consistency of the finite dimensional distributions, it is not straight-

forward that the condition 3 in Definition 4.1 must be satisfied automatically. In fact, if we

define the set

C = {ω|ω ∈ RT , ω is continuous on T}, (4.1)

we will show that C is not a measurable set in RT ! To understand this, one needs the

following theorem

Theorem 4.2. For any family of real functions Xt : Ω→ R, t ∈ T .

(i) If A ∈ σ{Xt, t ∈ T} and ω ∈ A, and if Xt(ω
′) = Xt(ω) for all t ∈ T , then we have

ω′ ∈ A.
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(ii) If A ∈ σ{Xt, t ∈ T}, then A ∈ σ{Xt, t ∈ S} for some countable subset S ⊂ T .

The proof of this theorem may be referred to [2]. To apply the above theorem, we take

T = [0,∞) and S a countable dense subset of T . We will have C ∈ RS if C ∈ RT by the

second statement. From the first statement, C should contain all functions which have the

same value with some f ∈ C on S. This should contain lots of discontinuous functions.

This contradicts with that C is the set of continuous functions.

To handle this issue, we need the concept “modification” of a process.

Definition 4.3 (Modification). Two processes X and X ′ defined on the same probability

space are said to be modifications of each other if for each t,

Xt = X ′t a.s.

They are called indistinguishable if for almost all ω

Xt(ω) = X ′t(ω) for every t.

It is clear that if X and X ′ are modifications of each other, they have the same finite

dimensional distribution. If X and X ′ are modifications of each other and are almost surely

continuous, they are indistinguishable.

Theorem 4.4 (Kolmogorov’s continuity theorem). A real-valued process X for which there

exist three strictly positive constants γ, β, C such that

E(|Xt −Xs|α) ≤ C|t− s|1+β

for any s, t ≥ 0, then there is a modification X̃ of X which is almost-surely continuous.

For Brownian motion, one has α = 4, β = 1, thus the condition of the above theorem is

satisfied and the continuity of Brownian motion can be ensured in the sense of modifications.

5 Homeworks

• HW1. Let {ξn}n∈N be a sequence of i.i.d. random variables taking values +1 with

probability 2
3

and −1 with probability 1
3
. Consider the (asymmetric) random walk on

Z defined as

Sn =
n∑
j=1

ξj.

We wish to construct a stochastic process Zt defined for t ∈ [0, 1] by appropriate

rescaling of Sn (similar to what we did to construct the Wiener process). That is we
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want to show that there exists α ∈ R such that the sequence of piecewise constant

functions (here bzc denotes the biggest integer smaller or equal to z ∈ R)

ZN
t =

SbNtc
Nα

converge as N → +∞ to some nontrivial Zt. What is the α you need to chose for this

to be the case? And what is Zt?

• HW2. Let Wt be a Wiener process. Compute

(a) EW 4
t .

(b) E(Wt −Ws +Wz)
2 (t, s, z ∈ [0, 1]).

• HW3. Let X ∈ Rn be a n-dimensional Gaussian R.V. with mean zero and covariance

matrix A (i.e. EXiXj = Aij). Suppose B is another strictly positive definite symmetric

n× n matrix. Compute

E exp(−1

2
XTBX).

• HW4. Prove the equivalence of the two definitions for Brownian motion.
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Lecture 12 Construction of BM and its properties ∗

Tiejun Li

1 Construction of Wiener Process

Below we will show three approaches to construct the Wiener process. Different forms

play different roles in different circumstances.

A. Construction from invariance principle

The first construction from the invariance principle embodies the idea of taking contin-

uum limit of symmetric random walk.

Theorem 1.1. (Invariance Principle) Suppose {ξi} are i.i.d. N(0, 1) random variables,

define Sn =
∑n

i=1 ξi and Xn
t as follows:

Xn
t =


sk√
n
, t =

k

n
,

(1− θ) sk√
n

+ θ
sk+1√
n
, t ∈

(
k

n
,
k + 1

n

)
, θ = nt− k,

then Xn ∈ C[0,∞) and

Xn d−→ W,

where
d→ is the weak convergence on the function space C[0,∞) to be defined below.

Before stating the sketch of the proof, let us consider a special case by taking

P (ξi) =

{
1/2, ξi = 1,

1/2, ξi = −1,

then Eξi = 0, varξi = 1. The state of Xn
t at the time tk = k/n is nothing but the

random walk considered before. The construction from invariance principle indicates that

the standard Brownian motion is just the rescaled limit of the random walk with spatial

scale l = 1/
√
n and time scale τ = 1/n. The relation l2/τ = 1 is exactly the regime

considered before. This approximation is the most common one in computations.

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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Proposition 1.2. The function space C[0,∞) equipped with the metric

ρ(x, y) =
∞∑
k=1

1

2k
(
‖x− y‖L∞([0,k]) ∧ 1

)
, x, y ∈ C[0,∞)

is a complete, separable metric space.

It is also natural to define the σ-algebra B(C[0,∞)) in space C[0,∞) through finite

dimensional cylinder sets

C = {ω ∈ C[0,∞)|(ω(t1), ω(t2), . . . , ω(tn)) ∈ A}, n ≥ 1, A ∈ Rn (1.1)

One can show B(C[0,∞)) is equivalent to the Borel σ-algebra generated by the open sets

in the metric space (C[0,∞), ρ).

Definition 1.3. A family of probability measures {Pn}∞n=1 on the metric space S with Borel

σ-algebra B(S) is said to converge weakly to another probability measure P on the same

space if and only if

lim
n→∞

∫
S

f(s)Pn(ds) = lim
n→∞

∫
S

f(s)P (ds)

for every bounded, continuous real-valued function f on S.

Definition 1.4. Let Xn be the random variables defined on the probability space (Ωn,Fn, Pn)

and X be defined on another probability space (Ω,F , P ). Both Xn and X take their values

on the metric space S equipped with the Borel σ-algebra B(S). The random variables {Xn}
are said to converge weakly to X if the corresponding distribution µn = Pn ◦X−1

n converges

weakly to µ = P ◦X−1. It is usually denoted as

Xn d−→ X.

The proof of the weak convergence in the invariance principle relies on the Prohorov’s

theorem on the weak compactness of the probability measures and the probabilistic type of

Arzela-Ascoli compactness theorem in space S = C[0,+∞). It is quite involved so we will

skip the detailed proof. The interested readers may be referred to [2].

The probability measure P∗ as the weak convergence limit of Pn ◦X−1
n on the space S =

C[0,∞) is called the Wiener measure and the probability space (C[0,∞),B(C[0,∞)), P∗)

is called the canonical probability space for Wiener process, under which the coordinate

mapping Wt(ω) = ω(t) is a standard Brownian motion.

Heuristic Check. Now we give a heuristic check for the validity of invariance principle

based on the central limit theorem for some discrete time. From the definition Sn =
∑n

i=1 ξi,

where {ξi} are i.i.d. N(0, 1) random variables, then by CLT

Sk√
n

=

√
k√
n
· Sk√

k

d−→ N(0, t), as k, n→∞ and t =
k

n
.
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The limit X of Xn is then a Gaussian process formally with X0 = 0 and

EXtXs ∼ EXn
t X

n
s

= EXn
t∧s(X

n
t∨s −Xn

t∧s +Xn
t∧s)

= E(Xn
t∧s)

2 + EXn
t∧s(X

n
t∨s −Xn

t∧s)

→ t ∧ s. for t = k/n, s = l/n and k, l, n→∞.

The last identity holds because of the independence between Xn
t∧s and Xn

t∨s −Xn
t∧s, and

E(Xn
t∧s −Xn

t∨s) = 0.

Heuristically the key point in the invariance principle is CLT when n, k is sufficiently

large. This implies the condition ξn ∼ i.i.d. N(0, 1) may be relaxed to ξn be i.i.d. with mean

0 and variance 1. The distribution of ξn is not important. That is why the theorem is called

“invanriance” principle.

A realization of Wiener process with finite N is shown in Fig. 1.

B. Construction from Karhunen-Loeve Expansion

The construction from Karhunen-Loeve expansion is based on the theory for Gaussian

random fields. It can be easily extended to the case of Brownian bridge or high dimensional

cases like the Brownian sheet etc [5].

Theorem 1.5. (Karhunen-Loeve expansion) Let Xt (t ∈ [0, 1]) be a Gaussian process with

mean function m(t) = 0 and continuous covariance function K(s, t). Consider the following

eigenvalue problem ∫ 1

0

K(s, t)φk(t)dt = λkφk(s), k = 1, 2, · · ·

where

∫ 1

0

φkφjdt = δkj. We have

Xt =
∞∑
k=1

αk
√
λkφk(t), (1.2)

in the sense that the series

XN
t =

N∑
k=1

αk
√
λkφk(t)→ Xt in L∞t L

2
P , (1.3)

i.e. we have

lim
N→∞

sup
t∈[0,1]

E|XN
t −Xt|2 = 0.

Here αk are i.i.d. N(0, 1) random variables.
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Proof. At first it is easy to find that the operator K : L2[0, 1]→ L2[0, 1] defined as

(Kφ)(s) :=

∫ 1

0

K(s, t)φ(t)dt

through the covariance kernel function is nonnegative, self-adjoint and compact from the

non-negativity, symmetry and continuity of K(s, t) on [0, 1]2 [3]. From the theory of func-

tional analysis, there are countable real eigenvalues, and 0 is the only possible accumulation

point. For each nonzero eigenvalue, the eigensubspace is finite dimensional. This verifies

the formal validity of the definition (1.2).

From Mercer’s theorem which states that the convergence

N∑
k=1

λkφk(s)φk(t)→ K(s, t), s, t ∈ [0, 1], N →∞

holds in absolute and uniform sense when K is continuous [6], we have for N > M

E|XN
t −XM

t |2 =
N∑

k=M+1

λkφ
2
k(t)→ 0

in the absolute and uniform sense when N,M →∞. This implies XN
t is a Cauchy sequence

in the Banach space L∞t L
2
P , thus the limit Xt exists and is unique in this space. For each

fixed t, the mean square convergence of the Gaussian random vector (XN
t1
, XN

t2
, . . . , XN

tm)

to (Xt1 , Xt2 , . . . , Xtm) implies the convergence in probability for any t1, t2, . . . , tm ∈ [0, 1].

Application of the Theorem ?? ensures that the limit Xt is indeed a Gaussian process. It is

not difficult to prove that

EXt = lim
N→∞

EXN
t = 0,

EXsXt = lim
N→∞

EXN
s X

N
t =

∞∑
k=1

λkφk(s)φk(t) = K(s, t)

by the convergence of XN to X in L∞t L
2
P . The proof is completed.

As an application of Karhunen-Loeve expansion to Brownian motion, one can obtain the

eigensystem {λk, φk(t)} as follows. We have∫ 1

0

(s ∧ t)φk(t)dt = λkφk(s)

and thus ∫ s

0

tφk(t)dt+

∫ 1

s

sφk(t)dt = λkφk(s). (1.4)

Taking differentiation with respect to s we obtain

λkφ
′
k(s) = sφk(s) +

∫ 1

s

sφk(t)dt− sφk(s) =

∫ 1

s

sφk(t)dt. (1.5)
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Differentiating once again gives a Sturm-Liouville problem

λkφ
′′
k(s) = −φk(s).

This naturally suggests λk 6= 0. Take s = 0 in (1.4), we obtain φk(0) = 0; take s = 1 in

(1.5), we have φ′k(1) = 0.

Solving this boundary value problem we obtain

λk =

(
(k − 1

2
)π

)−2

, φk(s) =
√

2 sin

(
(k − 1

2
)πs

)
, k = 1, 2, . . . .

Thus we get another representation of Brownian motion

Wt =
∞∑
k=1

αk

√
2

(k − 1
2
)π

sin

(
(k − 1

2
)πt

)
. (1.6)

It is easy to find that W0 = 0 with this representation. To understand why it is almost

surely continuous, we need the following theorem.

Theorem 1.6. For the Karhunen-Loeve expansion to the Gaussian random field Xt with

the same condition as in Theorem 1.5, if additionally∫ 1

0

(− lnu)1/2dp(u) <∞, (1.7)

where

p(u) := max{σ(s, t) : |s− t| ≤ |u|}

and

σ(s, t) =
∞∑
k=1

λk(φk(s)− φk(t))2 = K(s, s) +K(t, t)− 2K(s, t),

then XN
t converges to Xt uniformly for t ∈ [0, 1] with probability one, and thus X has

continuous trajectory almost surely.

The proof of this theorem may be referred to [1]. For the Wiener process, σ(s, t) =

t ∨ s− t ∧ s and p(u) = |u|, so the condition (1.7) is satisfied and we have the continuity of

the constructed Wt almost surely.

A realization with cutoff N = 1000 is shown in Fig. 1.

C. Construction from Haar basis

The construction below based on the Haar basis is originated from P. Lévy’s interpolation

method for Brownian motion. At first let us define the mother function

ψ(t) =


1, t ∈ [0, 1/2),

−1, t ∈ [1/2, 1),

0, otherwise.
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The multilevel Haar functions {H(n)
k } are defined as H

(0)
0 (t) = 1 and

H
(n)
k (t) = 2

n−1
2 ψ(2n−1t− k), n ≥ 1, k ∈ In := {0, 1, . . . , 2n−1 − 1}

for t ∈ [0, 1], where n is the level and we take the convention that I0 = {0}. It is a standard

result that the Haar system {H(n)
k } for n ∈ N and k ∈ In forms an orthonormal basis in

L2[0, 1] [7]. We have the following theorem.

Theorem 1.7. Let the random variables {α(n)
k } i.i.d. N(0, 1). Then

WN
t =

N∑
n=0

∑
k∈In

α
(n)
k

∫ t

0

H
(n)
k (s)ds −→ Wt, N →∞,

uniformly in t ∈ [0, 1] in the almost sure sense.

A direct check on the finite terms approximation shows

EWN
t =

N∑
n=0

∑
k∈In

Eα(n)
k

∫ t

0

H
(n)
k (s)ds = 0,

and

EWN
t W

N
s =

N∑
n,m=0

∑
k∈In,l∈Im

E(α
(n)
k α

(m)
l )

∫ t

0

H
(n)
k (τ)dτ

∫ s

0

H
(m)
l (τ)dτ

=
N∑
n=0

∑
k∈In

∫ t

0

H
(n)
k (τ)dτ

∫ s

0

H
(n)
k (τ)dτ

=
N∑
n=0

∑
k∈In

∫ 1

0

H
(n)
k (τ)χ[0,t](τ)dτ

∫ 1

0

H
(n)
k (τ)χ[0,s](τ)dτ

→
∫ 1

0

χ[0,t]χ[0,s](τ)dτ = t ∧ s. (1.8)

where χ[0,t](τ) is the indicator function on [0, t]. Here the last convergence in the above

equations is due to Parseval’s identity because {H(n)
k } is an orthonormal basis. Below we

give the rigorous proof.

Proof. At first, we show WN
t uniformly converges to some continuous function Wt in the

almost sure sense. We have the following tail estimate for any Gaussian distributed random

variable ξ ∼ N(0, 1).

P(|ξ| > x) =

√
2

π

∫ ∞
x

e−
y2

2 dy ≤
√

2

π

∫ ∞
x

y

x
e−

y2

2 dy =

√
2

π

e−
x2

2

x
, x > 0.
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Define an = maxk∈In α
(n)
k , then we obtain

P(an > n) = P

(⋃
k∈In

α
(n)
k > n

)
≤ 2n−1

√
2

π

e−
n2

2

n
, n ≥ 1.

From
∑∞

n=1 2n−1
√

2
π
e−

n2

2

n
< ∞, the Borel-Cantelli lemma implies that there exists a set Ω̃

with P(Ω̃) = 1 such that for any ω ∈ Ω̃ there is a N(ω) satisfying am(ω) ≤ m for any

m ≥ N(ω). In this case∣∣∣∣∣∣
∞∑

m=N(ω)

∑
k∈Im

α
(m)
k

∫ t

0

H
(m)
k (s)ds

∣∣∣∣∣∣ ≤
∞∑

m=N(ω)

m
∑
k∈Im

∫ t

0

H
(m)
k (s)ds ≤

∞∑
m=N(ω)

m2−
m+1

2 <∞,

which shows the uniform convergence of WN
t to a continuous function Wt in the almost sure

sense.

Now we prove Wt is indeed the standard Brownian motion. From the uniform conver-

gence of WN
t with respect to t in a almost sure sense, the limit Wt is indeed a Gaussian

process from Theorem ??. From the initial condition W0 = 0 and the covariance function

relation (1.8), we obtain a new representation of the Wiener process Wt.

A realization with finite cutoff is shown in Fig. 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

Haar basis 

Invariance principle 

Karhunen−Loeve 

Figure 1: Numerical constructions of Brownian motion

Example 1.8. Compute the expectation

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)
.

Solution. Note that it is not straightforward to compute this expectation since the inte-

grand involves the whole Wiener path, i.e. a Wiener functional. From the Karhunen-Loeve
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expansion, ∫ 1

0

W 2
t dt =

∫ 1

0

∑
k,l

√
λkλlαkαlφk(t)φl(t)dt

=
∑
k

∫ 1

0

λkα
2
kφ

2
k(t)dt =

∑
k

λkα
2
k.

Then

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

= E
(∏

k

exp(−1

2
λkα

2
k)
)

=
∏
k

E exp(−1

2
λkα

2
k).

From the identity

E exp(−1

2
λkα

2
k) =

∫ +∞

−∞

1√
2π
e−

x2

2 · e−
1
2
λkx

2

dx =

√
1

1 + λk

we obtain

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

=
∏
k

√
1

1 + λk
:= M,

where

M−2 =
∞∏
k=1

(
1 +

4

(2k − 1)2π2

)
.

From the identities for infinite product series we have

cosh(x) =
∞∏
n=1

(
1 +

4x2

(2n− 1)2π2

)
,

where cosh(x) = (ex + e−x)/2. Thus

M = (cosh(1))−
1
2 =

√
2e

1 + e2
.

2 Properties of Wiener path

In this section, we investigate some basic properties and the regularity of the Wiener

path.

Theorem 2.1 (Basic properties). Suppose Wt is a standard Brownian motion, then

1. Time-homogeneity: For any s > 0, Wt+s −Ws, t ≥ 0, is a Brownian motion;

2. Symmetry: The process −Wt, t ≥ 0, is a Brownian motion;
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3. Scaling: For every c > 0, the process cWt/c2, t ≥ 0, is a Brownian motion;

4. Time-inversion: The process X defined by X0 = 0, Xt = tW1/t for t > 0, is a Brownian

motion.

The proof of these properties are left as exercise. Specially, the scaling property 3 has

important implication for the dimensional analysis involving Brownian motion, which states

Wkt ∼
√
kWt, Ẇkt ∼

1√
k
Ẇt, (2.1)

where Ẇt means the formal derivative of Wt with respect to t as discussed later. Note that

for a standard smooth function f(t) with the change of variable t = kτ , we have the relation

df

dt
(kτ) =

1

k

df

dτ
(kτ), (2.2)

instead of (2.1).

Now let us investigate the regularity of the Brownian motion. The total variation of a

specific path of the process X on [a, b] is defined as

V (X(ω); [a, b]) = sup
∆

∑
k

|Xtk+1
(ω)−Xtk(ω)|,

where ∆ = ∪k[tk, tk+1] is any fixed subdivision of [a, b]. The discrete quadratic variation of

X on [0, t] with subdivision ∆ is defined as

Q∆
t =

∑
k

|Xtk+1
(ω)−Xtk(ω)|2.

If for any t and any sequence ∆n of subdivisions of [0, t] such that |∆n| goes to zero, there

exists a finite process 〈X,X〉 such that

Q∆n
t → 〈X,X〉t in Probability as n→∞,

then 〈X,X〉 is called the quadratic variation process of X. It is obvious that 〈X,X〉 is

increasing. The definition can be straightforwardly extended to the case on the interval

[a, b] as

Q∆n

[a,b] → 〈X,X〉b − 〈X,X〉a as n→∞.

Proposition 2.2. For any t and subdivision ∆ of [0, t], we have for Wiener process W

E(Q∆
t − t)2 = 2

∑
k

(tk+1 − tk)2, (2.3)

thus we get

Q∆
t −→ t in L2(P) as |∆| → 0

and 〈W,W 〉t = t a.s.
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The proof of Proposition 2.2 is straightforward and left as an exercise. This result is

sometimes formally stated as dW 2
t = dt.

Theorem 2.3 (Unbounded variation of the Wiener path). The Wiener paths are a.s. of

infinite variations on any interval.

Proof. Suppose the probability space is (Ω,F ,P). Based on (2.3) and the subsequence

argument, there is a set Ω0 ⊂ Ω such that P(Ω0) = 1, and there exits a subsequence of the

subdivisions, still denoted as ∆n, such that for any rational pair p < q,

Q∆n

[p,q] → q − p, on Ω0.

Now for any rational interval [p, q], we have

q − p←
∑
k

(Wtk+1
−Wtk)2 ≤ sup

k
|Wtk+1

−Wtk | · V (W (ω), [p, q]).

From the uniformly continuity of W on [p, q], supk |Wtk+1
−Wtk | → 0, thus we complete the

proof.

The following result shows the Brownian motion has very curious smoothness.

Theorem 2.4 (Smoothness of the Wiener path). Consider the Wiener process on the prob-

ability space (Ω,F ,P). Define Ωα the set of functions that are Hölder continuous with

exponent α (0 < α < 1)

Ωα =

{
f ∈ C[0, 1], sup

0≤s,t≤1

|f(t)− f(s)|
|t− s|α

<∞
}
.

Then if 0 ≤ α < 1
2
, P(Wt ∈ Ωα) = 1; if α ≥ 1

2
, P(Wt ∈ Ωα) = 0.

The proof of Theorem 2.4 relies on the following generalized Kolmogorov’s continuity

theorem, which can be referred to [5].

Theorem 2.5. Let Xt (t ∈ [0, 1]d) be a Banach-valued process for which there exist three

strictly positive constants γ, c, ε such that

E(|Xt −Xs|γ) ≤ c|t− s|d+ε,

then there is a modification X̃ of X such that

E
(

sup
s 6=t

(|X̃t − X̃s|/|t− s|α)
)γ

<∞

for every α ∈ [0, ε/γ). In particular, the paths of X̃ are Hölder continuous of order α.
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Proof of Theorem 2.4. When α < 1/2, according to the generalized Kolmogorov conti-

nuity theorem and the following identity for 1D Gaussian R.V.

E|Bt|2p = Ctp

for any p ∈ N, we have ε/γ = (p− 1)/2p = 1/2− 1/2p. Thus for α < 1/2, P(Wt ∈ Ωα) = 1.

When α > 1/2, if there exists rational interval [p, q] such that |Wt −Ws| ≤ c|t− s|α for

any p ≤ s, t ≤ q then by Proposition 2.2

q−p←
∑
k

(Wtk+1
−Wtk)2 ≤ c2

∑
k

|tk+1−tk|2α−1|tk+1−tk| ≤ c2(q−p) sup
k
|tk+1−tk|2α−1 → 0,

which is a contradiction.

For the critical case α = 1/2, one should apply the deep theorem on Lévy’s modulus of

continuity. The readers may be referred to [5].

From Fig. 1 we may observe the Brownian path is always fluctuating and it is a very

noisy curve. Theorem 2.3 and 2.4 tell us that each trajectory is continuous and nowhere

differentiable and it has unbounded variation in any finite interval! All of these results show

the Brownian motion is a very subtle and strange mathematical object.

The following theorem due to A. Khinchin, characterizes the local behavior of Wt when

t goes to zero.

Theorem 2.6 (Local law of the iterated logarithm). For the standard Brownian motion,

we have

P
(

lim sup
t→0

Wt√
−2t ln ln t

= 1
)

= 1.

Correspondingly

P
(

lim inf
t→0

Wt√
−2t ln ln t

= −1
)

= 1.

For the long time behavior of the Brownian motion, we have the following type of strong

law of large numbers.

Theorem 2.7 (Strong Law of Large Numbers). For the standard Brownian motion, we

have

lim
t→∞

Wt

t
= 0, a.s.

The readers may be referred to [2, 4, 5] for more properties of Brownian motion.

3 Homeworks

• HW1. (Scaling invariance of Wiener Process) Let Wt be a Wiener process. Show

that

Xt =

{
0 if t = 0

tW1/t if t ∈ (0, 1]
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Yt =
1√
c
Wct, t > 0, c > 0

Zt = W (T )−W (T − t), 0 < t ≤ T.

are all Wiener processes in the sense that they have the same finite dimensional dis-

tributions.

• HW2. Prove Proposition 2.2 and if we set the points tk = k2−nt, k = 0, 1, . . . , 2n

and consider the discrete quadrative variation of Brownian motion in [0, t], prove the

following sharpening of the Proposition 2.2.

lim
n→∞

YN(t, ω)→ t, a.s.

• HW3. Prove that C[0,∞) is a complete, separable metric space with the metric

defined as

d(x, y) =
∞∑
n=1

1

2n

(
‖x− y‖L∞[0,n] ∧ 1

)
• HW4. Prove that that given 0 ≤ s < t, Ws = x, Wt = y, then the conditional

distribution

W s+t
2
|Ws = x,Wt = y ∼ N

(x+ y

2
,
t− s

4

)
.
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Lecture 13 SDE and Ito’s formula ∗

Tiejun Li

1 White noise

In physics literature, the physicists usually use the stochastic differential equations

(SDEs) like

Ẋt = b(Xt, t) + σ(Xt, t)Ẇt, X|t=0 = X0, (1.1)

where Ẇt is called the temporal Gaussian white noise, which is the formal derivative of the

Brownian motion Wt with respect to time. Its formal definition is that it is a Gaussian

process with mean and covariance functions as

m(t) = E(Ẇt) = 0, K(s, t) = E(ẆsẆt) = δ(t− s).

It can be formally understood as

m(t) =
d

dt
E(Wt) = 0, K(s, t) =

∂2

∂s∂t
E(WsWt) =

∂2

∂s∂t
(s ∧ t) = δ(t− s).

The name white noise comes from its power spectral density (PSD) S(ω) defined as the

Fourier transform of its autocorrelation function R(t) = E(Ẇ0Ẇt) = δ(t), thus S(ω) =

(̂δ(t)) = 1 which corresponds to a flat constant at all frequencies ω. We call it white as an

analogy to the frequency spectrum of white light. If the frequency spectrum of the noise is

not flat, it is called colored noise. From practical point view, the white noise is not physical

since it requires infinite energy

E =

∫ ∞
−∞

S(ω)dω =∞.

From the regularity theory of the Brownian motion, the function Ẇ is meaningless since

Wt has less than half order smoothness. In fact, it is not a traditional function but a

distribution [1]. However, the rigorous mathematical foundation of the white noise calculus

can be also established [2]. But we will only introduce the Itô’s classical way to establish

the well-posedness of the stochastic differential equations.

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China

1



Mathematically, the SDEs (1.1) are often denoted as

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, (1.2)

to avoid the ambiguity of the white noise, where Wt is the standard Wiener process. Xt may

be viewed as a process induced by Wt. If there is no term σ(Xt, t)dWt, it is a deterministic

ODEs. The effect of b(Xt, t) is to drive the mean position of the system, while the effect of

σ(Xt, t)dWt is to diffuse around the mean position which we will see later. To make sense

of (1.2), one natural way is to define Xt through its integral form

Xt = X0 +

∫ t

0

b(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs. (1.3)

We will show the first mathematical issue is how to define the integral
∫ t

0
σ(Xs, s)dWs

involving Brownian motion.

2 Itô integral

First suppose Xt is continuous with respect to time t. For a fixed sample ω, we borrow

the idea for defining the Riemann-Stieljes integral to make the definition∫ t

0

σ(Xs, s)dWs = lim
|∆|→0

∑
j

σ(Xj, t
∗
j)
(
Wtj+1

−Wtj

)
,

where ∆ is a subdivision of [0, t], Xj is the function value Xt∗j
and t∗j is chosen from the

interval [tj, tj+1]. One critical issue about the above definition is that it depends on the

choice of t∗j when we are handling Wt, which has unbounded variation in any interval almost

surely.

To have a sense on this, consider the Riemann-Stieltjes integral to
∫ b
a
f(t)dg(t), where f

and g are all assumed continuous. So∫ b

a

f(t)dg(t) ≈
∑
j

fj

(
g(tj+1)− g(tj)

)
. (2.1)

If one takes another value for fj in [tj, tj+1] under the same subdivision, then∫ b

a

f(t)dg(t) ≈
∑
j

f̃j

(
g(tj+1)− g(tj)

)
.

If g(t) has bounded total variation, we subtract the right hand side of the above two defi-

nitions and obtain∣∣∣∑
j

(fj − f̃j)
(
g(tj+1)− g(tj)

)∣∣∣ ≤ max
j
|fj − f̃j|

∑
j

∣∣∣g(tj+1)− g(tj)
∣∣∣

≤ max
j
|fj − f̃j|V (g; [a, b])→ 0
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as |∆| → 0 by the uniform continuity of f on [a, b]. Thus we get a well-defined definition

which is independent of the choice of reference point in the approximation. If g(t) = Wt(ω),

let us see what will happen in this case.

Example 2.1. Different choices for the stochastic integral
∫ T

0
WtdWt.

Choice 1: Leftmost endpoint integral.∫ T

0

WtdWt ≈
∑
j

Wtj(Wtj+1
−Wtj) := ILN .

Choice 2: Rightmost endpoint integral.∫ T

0

WtdWt ≈
∑
j

Wtj+1
(Wtj+1

−Wtj) := IRN .

Choice 3: Midpoint integral.∫ T

0

WtdWt ≈
∑
j

Wt
j+1

2

(Wtj+1
−Wtj) := IMN .

Without looking into the exact pathwise result for the three choices, we have the following

identities from the statistical average sense.

E(ILN) =
∑
j

EWtjE(Wtj+1
−Wtj) = 0,

E(IRN) =
∑
j

[
E(Wtj+1

−Wtj)
2 + EWtjE(Wtj+1

−Wtj)
]

=
∑
j

∆tj = T,

E(IMN ) = E
[∑

j

Wt
j+1

2

(Wtj+1
−Wt

j+1
2

) +
∑
j

Wt
j+1

2

(Wt
j+1

2

−Wtj)
]

=
∑
j

E(Wt
j+1

2

−Wtj)
2 =

∑
j

(tj+ 1
2
− tj) =

T

2
.

The reason is that the Brownian motion has unbounded variations for any finite interval.

The example above also shows that we should take special attention to stochastic integrals.

One important remark on the definition of stochastic integrals like (2.1) is that it can

not be defined for arbitrary continuous functions f , otherwise the function g must have

bounded variations on compacts [9]. To overcome this issue, one rescue is to restrict the

integrands to be a special class of functions, the adapted processes. That is the key point

of the well-known Itô integral to be introduced below.

The first stochastic integral which is studied rigorously in the history is Itô’s leftmost

endpoint integral [4], which is named Itô integral from then on. It turns out that the differ-

ent choices of the reference point correspond to different consistent definitions of stochastic
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integrals under suitable conditions, but they can be connected by some simple transforma-

tion rules (See [9], Theorem 30 in Chapter 5). To understand Itô’s definition for stochastic

integral, we take the filtration generated by standard Wiener process as FWt (we also assume

all of the sets of measure zero has been contained in FWt ). The construction of Itô integral

takes the leftmost endpoint approximation∫ T

0

f(t, ω)dWt ≈
∑
j

ftj(Wtj+1
−Wtj).

Mathematically, to understand Itô integral, we need the concept simple function which takes

the form

f(t, ω) =
n∑
j=1

ej(ω)χ[tj ,tj+1)(t), (2.2)

where ej(ω) is FWtj -measurable and χ[tj ,tj+1)(t) is the indicator function on [tj, tj+1). It is

natural to define ∫ T

0

f(t, ω)dWt =
∑
j

ej(ω)(Wtj+1
−Wtj) (2.3)

for this choice of simple functions.

Lemma 2.2. For any S ≤ T , the stochastic integral for the simple functions satisfies

(1) E
(∫ T

S

f(t, ω)dWt

)
= 0, (2.4)

(2) (Itô isometry) E
(∫ T

S

f(t, ω)dWt

)2

= E
(∫ T

S

f 2(t, ω)dt

)
. (2.5)

Proof. The first property is straightforward by the independence between ∆Wj := Wtj+1
−

Wtj and ej(ω) and ∆Wj ∼ N(0, tj+1 − tj). For the second property we have

E
(∫ T

S

f(t, ω)dWt

)2

= E
(∑

j

ej∆Wj

)2

= E
(∑

j,k

ejek∆Wj∆Wk

)
= E

(∑
j

e2
j∆W

2
j + 2

∑
j<k

ejek∆Wj∆Wk

)
=
∑
j

Ee2
j · E∆W 2

j +
∑
j<k

E(fjfk∆Wj) · E(∆Wk)

=
∑
j

Ee2
j∆tj = E

(∫ T

S

f 2(t, ω)dt

)
.

where the last third identity holds because of the independence between ∆Wk and ejek∆Wj

for j < k.

Now for f(t, ω) which belongs to the class of functions V [S, T ] defined as
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(i) f is B([0,∞))×F -measurable as a function from (t, ω) to R,

(ii) f(t, ω) is FWt -adapted,

(iii) f ∈ L2
PL

2
t , that is E

(∫ T
S
f 2(t, ω)dt

)
<∞,

we have the approximation property through simple functions φn(t, ω)

E
(∫ T

S

(f(t, ω)− φn(t, ω))2dt

)
→ 0, (2.6)

i.e. φn → f in L2
PL

2
t (c.f. [5, 8]). With this setup, we can define the Itô integral as∫ T

S

f(t, ω)dWt = lim
n→∞

∫ T

S

φn(t, ω)dWt in L2
P . (2.7)

From (2.5),
∫ T
S
φn(t, ω)dWt is in L2

P for any simple function φn(t, ω). Furthermore we have

E
(∫ T

S

φndWt −
∫ T

S

φmdWt

)2

= E
(∫ T

S

(φn − φm)2dt

)
. (2.8)

From (2.6), the approximation sequence {φn} is a Cauchy sequence in L2
P (Ω;L2

t [S, T ]). This

implies {
∫ T
S
φndWt} is also a Cauchy sequence in L2

P . From the completeness of L2
P (Ω), it

has a unique limit and we define it as ∫ T

S

f(t, ω)dWt

in the definition (2.7). The independence on the choice of the approximating sequence {φn}
is left as an exercise.

As a natural extension of Lemma 2.2, we have

Theorem 2.3. For f ∈ V [S, T ], the Itô integral satisfies

(1) E
(∫ T

S

f(t, ω)dWt

)
= 0, (2.9)

(2) (Itô isometry) E
(∫ T

S

f(t, ω)dWt

)2

= E
(∫ T

S

f 2(t, ω)dt

)
. (2.10)

Proof. Based on Lemma 2.2, we have∣∣∣∣E(∫ T

S

f(t, ω)dWt

)∣∣∣∣ =

∣∣∣∣E(∫ T

S

f(t, ω)dWt −
∫ T

S

φn(t, ω)dWt

)∣∣∣∣
≤ E

(∫ T

S

f(t, ω)dWt −
∫ T

S

φn(t, ω)dWt

)2

→ 0
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by Hölder’s inequality and the definition (2.7).

It is a standard result that if Xn → X in a Hilbert space H, then |Xn| → |X| and thus

|Xn|2 → |X|2, where | · | is the correspoding norm in Hilbert space H. So we have

E
(∫ T

S

φn(t, ω)dWt

)2

→ E
(∫ T

S

f(t, ω)dWt

)2

in L2
P (Ω)

and

E
(∫ T

S

φ2
n(t, ω)dt

)
→ E

(∫ T

S

f 2(t, ω)dt

)
in L2

P (Ω;L2
t [S, T ])

From the Itô isometry for simple functions, we obtain (2.10) immediately.

The following properties can be proved for the Itô integral easily.

Proposition 2.4. For f, g ∈ V [S, T ] and U ∈ [S, T ], we have

(i)
∫ T
S
fdWt =

∫ U
S
fdWt +

∫ T
U
fdWt a.s..

(ii)
∫ T
S

(f + cg)dWt =
∫ T
S
fdWt + c

∫ T
S
gdWt (c is a constant) a.s..

(iii)
∫ T
S
fdWt is FWt -measurable.

Furthermore, we have the regularity of the path of the process defined via Itô integral,

whose proof may be referred to [5, 8, 10].

Lemma 2.5. For f ∈ V [0, T ], Xt :=
∫ t

0
f(s, ω)dWs has continuous trajectories in the almost

sure sense.

We remark that the class of functions V [0, T ] to make sense of the Itô integral and keep

the above properties can be weakened by replacing the conditions (ii) and (iii) in V [0, T ] as

(ii)’ f is Ft-adapted, where {Ft} is a filtration such that Wt is a Ft-martingale.

(iii)’
∫ T

0
f 2(s, ω)ds <∞ almost surely.

The readers may be referred to [5, 8, 10] for more details. With this weaker setup, one can

define the multi-dimensional Ito integral∫ T

0

σ(t, ω) · dWt,

where Wt is an m-dimensional Wiener process, and σ ∈ Rn×m is FW
t -adapted. To compute

their expectation, We have the similar property as the Ito isometry

E
(∫ T

S

σ(t, ω)dW j
t

)
= 0, E

(∫ T

S

σ(t, ω)dW j
t

)2

= E
(∫ T

S

σ2(t, ω)dt

)
, ∀j.

6



and especially the cross product expectation

E
(∫ T

S

σ1(t, ω)dW i
t ·
∫ T

S

σ2(t, ω)dW j
t

)
= 0, ∀i 6= j,

E
(∫ T

S

σ1(t, ω)dW j
t

∫ T

S

σ2(t, ω)dW j
t

)
= E

(∫ T

S

σ1(t, ω)σ2(t, ω)dt

)
, ∀j.

Example 2.6. With Itô integral we have∫ t

0

WsdWs =
W 2
t

2
− t

2
. (2.11)

Proof. From the definition of Itô integral∫ t

0

WsdWs ≈
∑
j

Wtj(Wtj+1
−Wtj) =

∑
j

2WtjWtj+1
− 2W 2

tj

2

=
∑
j

W 2
tj+1
−W 2

tj

2
−
∑
j

W 2
tj+1
− 2Wtj+1

Wtj +W 2
tj

2

=
W 2
t

2
− 1

2

∑
j

(Wtj+1
−Wtj)

2 → W 2
t

2
− t

2
,

where the last limit is due to the fact 〈W,W 〉t = t in Proposition ??.

3 Itô’s formula

Let’s take the differential form of the identity (2.11), then we have

dW 2
t = 2WtdWt + dt.

Note that it is different from the traditional Newton-Leibnitz calculus which suggests dW 2
t =

2WtdWt with chain rule. This exactly manifests the specialty of Itô calculus to be introduced

in this section. To further understand the previous specific example, we consider a more

general situation.

Proposition 3.1. For any bounded and continuous function f(t, ω) in t,

∑
j

f(t∗j , ω)(Wtj+1
−Wtj)

2 →
∫ t

0

f(s, ω)ds, for any t∗j ∈ [tj, tj+1]

in probability when the subdivision size goes to zero.
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Proof. Straightforward calculation shows

E

(∑
j

f(tj)∆W
2
tj
−
∑
j

f(tj)∆tj

)2

= E

(∑
j,k

f(tj)f(tk)(∆W
2
tj
−∆tj)(∆W

2
tk
−∆tk)

)

= E

(∑
j

f 2(tj) · E
(

(∆W 2
tj
−∆tj)

2|Ftj
))

= 2
∑
j

Ef 2(tj)∆t
2
j → 0.

At the same time, we have

|
∑
j

(f(t∗j)− f(tj))∆W
2
tj
| ≤ sup

j
|f(t∗j)− f(tj)| ·

∑
j

∆W 2
tj
.

The first term on the right hand side goes to zero almost surely because of the uniform

continuity of f on [0, t], and the second term converges to the quadratic variation of Wt in

probability. Combining the results above leads to the desired conclusion.

It is exactly this reason that we simply denoted it as

dW 2
t = dt

for calculations. The Itô’s formula to be introduced below gives this a rigorous foundation.

Now let us consider the Itô process defined as

Xt = X0 +

∫ t

0

b(s, ω)ds+

∫ t

0

σ(s, ω)dWs,

which is usually denoted as

dXt = b(t, ω)dt+ σ(t, ω)dWt, Xt|t=0 = X0 (3.1)

for functions

σ ∈ W [0, T ], b is Ft-adapted and

∫ T

0

|b(t, ω)|dt <∞ a.s.

We have the following important result, whose rigorous proof can be referred to [3, 5].

Theorem 3.2 (1D Itô’s formula). If Xt is an Itô process as in Equation (3.1), Yt = f(Xt)

where f is a twice differentiable function. Then Yt is also an Itô process and

dYt = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2,

where the rule of simplification is dt2 = 0, dtdWt = dWtdt = 0 and (dWt)
2 = dt, i.e.

(dXt)
2 = (bdt+ σdWt)

2 = b2dt2 + 2bσdtdWt + σ2(dWt)
2 = σ2dt.

Thus finally

dYt =

(
b(t, ω)f ′(Xt) +

1

2
σ2(t, ω)f ′′(Xt)

)
dt+ σ(t, ω)f ′(Xt)dWt.
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Sketch of Proof. We will only consider the situation that f, f ′ and f ′′ are bounded and

continuous here. At first, if b and σ are simple functions, we have

Yt − Y0 =
∑
j

(f(Xtj+1
)− f(Xtj)) =

∑
j

(
f ′(Xtj)∆Xtj +

1

2
f ′′(Xtj)∆X

2
tj

+Rj

)
,

where ∆Xtj = Xtj+1
−Xtj and Rj = o(|∆Xtj |2). Without loss of generality we assume the

discontinuity of the step functions are embedded in the current subdivision grid points. We

obtain ∑
j

f ′(Xtj)∆Xtj =
∑
j

f ′(Xtj)b(tj)∆tj +
∑
j

f ′(Xtj)σ(tj)∆Wtj

→
∫ t

0

b(s)f ′(Xs)ds+

∫ t

0

σ(s)f ′(Xs)dWs

and ∑
j

f ′′(Xtj)∆X
2
tj

=
∑
j

f ′′(Xtj)
(
b2(tj)∆t

2
j + 2b(tj)σ(tj)∆tj∆Wtj + σ2(tj)∆W

2
tj

)
.

We have

|
∑
j

f ′′(Xtj)b
2(tj)∆t

2
j | ≤ K

∑
j

∆t2j ≤ KT sup
j

∆tj → 0,

|
∑
j

f ′′(Xtj)b(tj)σ(tj)∆tj∆Wtj | ≤ K
∑
j

|∆tj∆Wtj | ≤ KT sup
j
|∆Wtj | → 0

as the subdivision size goes to zero, where K is the bound of b, σ and f ′′. From Proposition

3.1, we get ∑
j

f ′′(Xtj)σ
2(tj)∆W

2
tj
→
∫ t

0

σ2(s)f ′′(Xs)ds in L2
P .

The general situation can be done by taking approximation through simple functions.

The above result can be generalized to multidimensional case as

Theorem 3.3 (Multidimensional Ito formula). If dXt = b(t, ω)dt + σ(t, ω) · dWt, where

Xt ∈ Rn, σ ∈ Rn×m, W ∈ Rm. Define Yt = f(Xt), where f is a twice differentiable

function. Then

dYt = ∇f(Xt) · dXt +
1

2
(dXt)

T · ∇2f(Xt) · (dXt),

where the rule of simplification is dt2 = 0, dtdW i
t = dW i

t dt = dW i
t dW

j
t = 0 (i 6= j),

(dW i
t )

2 = dt. That is

(dXt)
T · ∇2f(Xt) · (dXt) =

∑
l,k,i,j

dW l
tσil∂

2
ijfσjkdW

k
t

=
∑
k,i,j

σikσjk∂
2
ijfdt = σσT : ∇2fdt,

9



where A : B =
∑

ij aijbji is the twice contraction for second order tensors. Finally

dYt = (b · ∇f +
1

2
σσT : ∇2f)dt+∇f · σ · dWt.

Example 3.4. Integration by part∫ t

0

sdWs = tWt −
∫ t

0

Wsds. (3.2)

Proof. Define f(x, y) = xy, Xt = t, Yt = Wt, then from multidimensional Itô’s formula

df(Xt, Yt) = XtdYt + YtdXt + dXtdYt.

With the rule dtdWt = 0, we obtain d(tWt) = tdWt +Wtdt and the result follows.

Example 3.5. Iterated Itô integrals∫ t

0

dWt1

∫ t1

0

dWt2 . . .

∫ tn−1

0

dWtn =
1

n!
t
n
2 hn

(
Wt√
t

)
, (3.3)

where hn(x) is the n-th order Hermite polynomial

hn(x) = (−1)ne
1
2
x2 d

n

dxn

(
e−

1
2
x2
)
.

Proof. It is easy to verify that ∫ t

0

WsdWs =
t

2!
h2

(
Wt√
t

)
,

where h2(x) = x2− 1 is the second order Hermite polynomial. In the same fashion, we have∫ t

0

(∫ s

0

WudWu

)
dWs =

1

2

∫ t

0

(W 2
s − s)dWs.

Using Itô’s formula, we have ∫ t

0

W 2
s dWs =

1

3
W 3
t −

∫ t

0

Wsds.

Hence, using (3.2) we obtain∫ t

0

(∫ s

0

WudWu)dWs =
1

6
W 3
t −

1

2
tWt =

1

3!
t
3
2h3

(
Wt√
t

)
,

where h3(x) = x3− 3x is the third order Hermite polynomial. The general case is left as an

exercise.
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4 SDE

4.1 Wellposed-ness

With the help of Itô’s integral, we can establish the classical well-posedness result for

the stochastic differential equations

dXt = b(Xt, t)dt+ σ(Xt, t) · dWt, (4.1)

through Picard-type iterations.

Theorem 4.1. Let X ∈ Rn,W ∈ Rm. Suppose the coefficients b ∈ Rn,σ ∈ Rn×m satisfy

global Lipschitz and linear growth conditions as

|b(x, t)− b(y, t)|+ |σ(x, t)− σ(y, t)| ≤ K|x− y|, (4.2)

|b(x, t)|2 + |σ(x, t)|2 ≤ K(1 + |x|2) (4.3)

for any x,y ∈ Rn, t ∈ [0, T ], where K is a positive constant and | · | means the Frobenius

norm, that is

|b|2 :=
∑
i

b2
i , |σ|2 :=

∑
i,j

σ2
ij.

Assume the initial value X0 = ξ is a random variable which is independent of FW
∞ and

satisfies E|ξ|2 <∞. Then (4.1) has a unique t-continuous solution Xt ∈ V [0, T ].

The proof can be referred to [5].

4.2 Diffusion process

The SDEs driven by Wiener processes is the typical Markov process which is also called

the diffusion processes in stochastic analysis. Mathematically, the diffusion process is de-

fined for a Markov process {Xt} with continuous trajectory and its transition density

p(x, t|y, s) (t ≥ s) satisfies the following conditions for any ε > 0:

lim
t→s

1

t− s

∫
|x−y|<ε

(x− y)p(x, t|y, s)dx = b(y, s) +O(ε), (4.4)

lim
t→s

1

t− s

∫
|x−y|<ε

(x− y)(x− y)Tp(x, t|y, s)dx = a(y, s) +O(ε), (4.5)

where b(y, s) is called the drift of the considered diffusion process and a(y, s) is called

the diffusion matrix at time s and position y. The conditions (4.4) and (4.5) can also be

represented as

lim
t→s

1

t− s
Ey,s(Xt − y) = b(y, s), (4.6)
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lim
t→s

1

t− s
Ey,s(Xt − y)(Xt − y) = a(y, s). (4.7)

It is easy to find that the diffusion matrix a = σσT in (4.1).

4.3 Simple SDEs

Example 4.2 (Ornstein-Uhlenbeck process).

dXt = −γXtdt+ σdWt. (4.8)

The Ornstein-Uhlenbeck process (OU process) has fundamental importance in statistical

physics since it serves as the simplest model for many complex diffusion dynamics.

Solution. The equation above is equivalent to

dXt + γXtdt = σdWt. (4.9)

By applying Ito’s formula to eγtXt, we get

d(eγtXt) = γeγtXtdt+ eγtdXt.

Integrating from 0 to t we have

eγtXt −X0 =

∫ t

0

(γeγsXsds+ eγsdXs).

Timing eγt to both sides of (4.9) and taking integration, we get

eγtXt −X0 =

∫ t

0

σeγsdWs.

Thus the solution

Xt = e−γtX0 + σ

∫ t

0

e−γ(t−s)dWs.

If we define Qt :=
∫ t

0
e−γ(t−s)dWs, then it is not difficult to know that Qt is a Gaussion

process with

EQt = 0, EQ2
t =

∫ t

0

Ee−2γ(t−s)ds =
1

2γ
(1− e−2γt).

From this result we can observe that Xt is also a Gaussian process if X0 is Gaussian, and

the limit behavior of Xt is

Xt
d−→ N

(
0,
σ2

2γ

)
, (t→ +∞).

This equation is called the SDE with additive noise since the coefficient of dWt term is just

a constant.
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Example 4.3 (Geometric Brownian motion).

dNt = rNtdt+ αNtdWt, r, α > 0. (4.10)

This model has strong background in mathematical finance, in which Nt represents the asset

price, r is the interest rate and α is called the volatility.

Solution. Divide Nt to both sides we have dNt/Nt = rdt+αdWt. In deterministic calculus

1/NtdNt = d(logNt), so we apply Ito’s formula to logNt, then

d(logNt) =
1

Nt

dNt −
1

2N2
t

(dNt)
2

=
1

Nt

dNt −
1

2N2
t

α2N2
t dt

=
1

Nt

dNt −
α2

2
dt.

Substitute the equation of dNt we get

d(logNt) = (r − α2

2
)dt+ αdWt.

Integrate from 0 to t to both sides

logNt − logN0 = (r − α2

2
)t+ αWt,

Nt = N0 exp

{
(r − α2

2
)t+ αWt

}
.

This equation is called the SDE with multiplicative noise since the coefficient of dWt term

depends on Nt.

4.4 Brownian motion: revisited

Example 4.4 (Langevin equation). Mathematically a mesoscopic particle obeys the follow-

ing well-known Langevin equation by Newton’s Second Law{
dXt = Vtdt,

mdVt =
(
− γVt −∇V (Xt)

)
dt+

√
2σdWt,

where γ is frictional coefficient, V (X) is external potential, Wt is standard Wiener process,

and σ is the strength of fluctuating force.

This example is used to show that the strength of fluctuating force must be related

to the frictional coefficient in a physical setup. In principle the fluctuating force must be

independent of external potential. In the case that the external force is zero, we have

mdVt = −γVtdt+
√

2σdWt.
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This is exactly an Ornstein-Uhlenbeck process for Vt. In the limit t→∞, we have

〈1
2
mV 2〉 =

3σ

2γ
.

From equilibrium thermodynamics, the average kinetic energy must obey the rule

〈1
2
mV 2〉 =

3kBT

2
.

Thus we obtain the well-known fluctuation-dissipation relation:

σ = kBTγ.

It can be proved that in this case the diffusion coefficient

D := lim
t→∞

〈(Xt −X0)2〉
6t

=
kBT

γ
(4.11)

which is called Einstein’s relation.

For more general forms of fluctuation-dissipation relation, the readers may be referred

to [7].

Example 4.5 (Brownian dynamics). In the high γ case, the velocity Vt will always stay at

an equilibrium Gaussian distribution, which means formally we can take dVt = 0. Then the

Langevin equation is approximated by

dXt = −1

γ
∇V (Xt)dt+

√
2kBT

γ
dWt,

which is called Brownian dynamics or Smoluchowski approximation. A mathematically rig-

orous derivation of Brownian dynamics from Langevin equations may be referred to [6] and

the references therein.

5 Stratonovich integral

Another very important definition of the stochastic integral is the so-called Stratonovich

(or Fisk-Stratonovich) integral which is defined as the limit of the following approximation∫ T

0

f(t, ω) ◦ dWt ≈
∑
j

f(tj) + f(tj+1)

2
(Wtj+1

−Wtj).

Note that we use the special notation ◦ for stochastic integral to distinguish the Ito and

Stratonovich integrals. As one can follow the similar way as in the definition for the Ito
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integral, we can also establish a consistent stochastic calculus based on the Stratonovich

integral. It turns out that If Xt satisfies the SDE

dXt = b(Xt, t)dt+ σ(Xt, t) ◦ dWt (5.1)

in the Stratonovich sense, then Xt satisfies the modified Ito SDE

dXt =
(
b(Xt, t) +

1

2
∂xσσ(Xt, t)

)
dt+ σ(Xt, t)dWt. (5.2)

To understand this, we assume the solution Xt of the Stratonovich SDE satisfies

dXt = α(Xt, t)dt+ β(Xt, t)dWt. (5.3)

Then by the definition of the Stratonovich integral∫ t

0

σ(Xs, s) ◦ dWs ≈
∑
j

1

2
(σ(Xtj , tj) + σ(Xtj+1

, tj+1))(Wtj+1
−Wtj).

From (5.3) we have

Xtj+1
= Xtj + α(Xtj , tj)∆tj + β(Xtj , tj)∆Wtj + h.o.t.,

and thus∑
j

σ(Xtj+1
, tj+1)∆Wtj =

∑
j

(
σ(Xtj , tj)∆Wtj + ∂tσ(Xtj , tj)∆tj∆Wtj

+ ∂xσα(Xtj , tj)∆tj∆Wtj + ∂xσβ(Xtj , tj)∆W
2
tj

+ h.o.t.
)

→
∫ t

0

σ(Xs, s)dWs +

∫ t

0

∂xσβ(Xs, s)ds

from the fact dW 2
t = dt. Summarizing the above results we obtain that Xt satisfies

dXt =
(
b(Xt, t) +

1

2
∂xσβ(Xt, t)

)
dt+ σ(Xt, t)dWt. (5.4)

To make (5.3) and (5.3) consistent, we take

β(x, t) = σ(x, t), α(x, t) = b(x, t) +
1

2
∂xσσ(x, t).

In the high dimensions, one can derive similarly

dXt =
(
b(Xt, t) +

1

2
∇xσ : σ(Xt, t)

)
dt+ σ(Xt, t) · dWt (5.5)

where (∇xσ : σ)i :=
∑

jk ∂kσijσkj in the index notation if X satisfies

dXt = b(Xt, t)dt+ σ(Xt, t) ◦ dWt. (5.6)
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With this connection, we can check that the Stratonovich integral satisfies the Newton-

Leibnitz chain rule

df(Xt) = f ′(Xt) ◦ dXt = f ′(Xt)b(Xt, t)dt+ f ′(Xt)σ(Xt, t) ◦ dWt

and its corresponding multi-dimensional form is

df(Xt) = ∇f(Xt) ◦ dXt = ∇f(Xt) · b(Xt, t)dt+∇f(Xt) · σ(Xt, t) ◦ dWt.

We finally remark here that the Ito isometry and mean zero property no longer hold for the

Stratonovich integral, which can be easily observed from (5.2).

One reason that the Stratonovich interpretation is important is due to the following

Wong-Zakai type theorem. The motivation is to intuitively understand the SDE (1.2) in the

pathwise sense, i.e. for each fixed realization ω of Wt, we want to solve Xt by treating W·(ω)

like a deterministic forcing term. But the issue is that the ordinary differential equation

can not be solved in the classical case because of the rough property of the path of the

Brownian motion. Since the C1 functions on [0, T ] are dense in C[0, T ], so if we regularize

the Brownian motion path from the following way

Wm → W in L∞[0, T ] norm as m→∞,

where Wm ∈ C1[0, T ], the differential equation

dXm
t = b(Xm

t , t)dt+ σ(Xm
t , t)dW

m
t

can be solved in the classical sense. We denote the solution as Xm
t . Then it can be proved

that

Xm → X in L∞[0, T ] norm, m→∞, a.s.

and the limit Xt is precisely the Stratonovich solution of the SDE (see [11, 12] for more

details).

Now a rationale for why Stratonovich interpretation is useful in physics may be as fol-

lows. In realistic situations, the noise term Ẇ in (1.1) is usually not “white” but a smoothed

colored noise since the idealistic white noise must be supplied with infinite energy from ex-

ternal environment. This smoothed colored noise exactly corresponds to some regularization

of the white noise, which falls into the regime in the Wong-Zakai type smoothing argument.

Homeworks

1. Prove that with midpoint approximation∫ t

0

WsdWs ≈
∑
j

Wt
j+1

2

(Wtj+1
−Wtj)→

W 2
t

2
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and the rightmost approximation∫ t

0

WsdWs ≈
∑
j

Wtj+1
(Wtj+1

−Wtj)→
W 2
t

2
+
t

2

in L2
P (Ω) as |∆| → 0.

2. Prove the relation (3.3) through the following steps:

(a) Prove that the Hermite polynomials satisfy

∞∑
n=0

un

n!
hn(x) = exp

(
ux− u2

2

)
and

∞∑
n=0

un

n!
Hn(x, a) = exp

(
ux− au2

2

)
,

where Hn(x, a) = an/2hn(x/
√
a) (a > 0) and Hn(x, 0) = xn.

(b) Prove that(
1

2

∂2

∂x2
+

∂

∂a

)
Hn(x, a) = 0 and

∂

∂x
Hn(x, a) = nHn−1(x, a).

(c) Prove the relation (3.3) through Itô’s formula.

3. Solving the SDE

(a) dXt = −Xt/(1 + t)dt+ 1/(1 + t)dWt with initial X0 = 0.

(b) dXt = −Xtdt+ e−tdWt with initial X0.

4. For the multidimensional OU process

dXt = AXtdt+ σ · dWt,

derive the relations that the stationary mean and covariance matrix should satisfy.

5. Prove that if one takes the right-most endpoint integral (backward stochastic integral)

like ∫ T

0

f(t, ω) ∗ dWt ≈
∑
j

f(tj+1)(Wtj+1
−Wtj).

Then the SDE defined as

dXt = b(Xt, t)dt+ σ(Xt, t) ∗ dWt (5.7)

can be related to the Ito SDE as

dXt =
(
b(Xt, t) + ∂xσσ(Xt, t)

)
dt+ σ(Xt, t)dWt.
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Lecture 14 Connections with PDE ∗

Tiejun Li

1 Liouville equation

Consider N non-interacting particles moving according to the following deterministic

ODEs
dX i

t

dt
= b(X i

t), X i
t

∣∣
t=0

= X i
0, i = 1, 2, . . . , N. (1.1)

An interesting question is to ask what the transition rule for the distribution of these particles

is in macroscopic viewpoint, that is, to describe its distributive law when the number of

particles N goes to infinity. To investigate this, it is natural to consider its empirical

distribution at time t at first

µN(x, t) =
1

N

N∑
i=1

δ(x−X i
t),

where δ(·) is the Dirac’s δ-function. We have for any compactly supported smooth function

φ(x) ∈ C∞c (Rd)

d

dt
(µN , φ) =

1

N

N∑
i=1

d

dt

∫
Rd

δ(x−X i
t)φ(x)dx

=
1

N

N∑
i=1

d

dt
φ(X i

t) =
1

N

N∑
i=1

∇xφ(X i
t) · b(X i

t)

=
(
µN , b · ∇xφ(x)

)
,

where the notation (f , g) :=
∫
Rd f(x) ·g(x)dx is the inner product of functions. Denote the

space of probability measures on Rd as M(Rd). Now let us suppose the initial distribution

µN(x, 0) :=
1

N

N∑
i=1

δ(x−X i
0)
∗→ µ0(x) ∈M(Rd) as N →∞

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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in the sense that (µN , φ) → (µ, φ) for any φ ∈ C∞c (Rd). One can establish the limit

µN(x, t)
∗→ µ(x, t) and indeed µ satisfies

d

dt
(µ, φ) = (µ, b · ∇xφ(x)), µ(x, 0) = µ0(x).

If we assume the probability measure µ has density ψ(x, t) ∈ C1(Rd× [0, T ]), then we obtain

the following hyperbolic equation after integration by parts

∂tψ +∇x · (bψ) = 0.

If the drift vector b satisfies ∇x · b = 0, we get

∂tψ + b(x) · ∇xψ = 0.

This is called the Liouville equation which is well-known in classical mechanics. The orbit

of the equation
dx

dt
= b(x)

is called the characteristics of the above hyperbolic PDE.

2 Fokker-Planck equation

If the deterministic equation (1.1) is replaced with the following SDEs

dXt = b(Xt, t)dt+ σ(Xt, t) · dWt, (2.1)

the same question on the probability distribution of X may be asked. To simplify the

discussion, we assume the transition probability density function exists and is defined as

(t ≥ s)

p(x, t|y, s)dx = P{Xt ∈ [x,x+ dx)|Xs = y}.

For any function f ∈ C∞c (Rd), the Ito formula gives

df(Xt) = ∇f(Xt) · dXt +
1

2
(dXt)

T · ∇2f(Xt) · (dXt)

= (b · ∇f +
1

2
σσT : ∇2f)dt+∇f · σ · dWt.

Integrating both sides from s to t we get

f(Xt)− f(Xs) =

∫ t

s

∇f(Xτ ) · {b(Xτ , τ)dτ + σ(Xτ , τ)dWτ}

+
1

2

∫ t

s

∑
i,j

∂2ijf(Xτ )aij(Xτ , τ)dτ,
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where the diffusion matrix a(x, t) = σ(x, t)σT (x, t). Now taking expectation on both sides

and utilizing the initial condition Xs = y, we have

Ef(Xt)− f(y) = E
∫ t

s

Lf(Xτ , τ)dτ, (2.2)

where the operator L is defined as

Lf(x, t) = b(x, t) · ∇f(x) +
1

2

∑
i,j

aij(x, t)∂
2
ijf(x). (2.3)

In the language of transition pdf p(x, t|y, s), we have∫
Rd

f(x)p(x, t|y, s)dx− f(y) =

∫ t

s

∫
Rd

Lf(x, τ)p(x, τ |y, s)dxdτ.

This is exactly the definition of the weak solution of the PDE with respect to t and x

∂tp = L∗xp(x, t|y, s), p(x, t|y, s)|t=s = δ(x− y), t ≥ s, (2.4)

in the sense of distribution, where the operator L∗ is the formal adjoint of L defined through

(Lf, g)L2 = (f,L∗g)L2 .

The concrete form of L∗ reads

L∗f(x, t) = −∇x · (b(x, t)f(x)) +
1

2
∇2

x : (a(x, t)f(x)), (2.5)

where∇2
x : (af) =

∑
ij ∂ij(aijf). Indeed by assuming the solution p(x, t|y, s) ∈ C2,1(Rd, [0, T ]),

which means p is C2 in x-variable and C1 in t-variable, we can directly obtain the PDE

(2.4) through integration by parts. For the rigorous proof about the connection between

the SDEs and above PDE, the readers may be referred to [?].

The Equation (2.4) is well-known as the Kolmogorov’s forward equation, or the Fokker-

Planck equation in physics. The “forward” means it is for the forward time variable t > s

and its corresponding space variable x. When we consider the equation for the backward

time variable s < t and y, we will call it backward equation, which will be considered in

Section 4. The transition pdf p(x, t|y, s) is simply the fundamental solution of this operator.

By analogy with the deterministic case, the SDE (2.1) may be regarded as the “stochastic

characteristics” of the parabolic equation (2.4). This viewpoint will be found to be very

useful in many situations.

We finally remark that the joint distribution p(x, t;y, s) and the distribution density

p(x, t) starting from some initial distribution both satisfy the forward Kolmogorov type

equation with respect to x and t. The reason is straightforward since the derivation from

p(x, t|y, s) to p(x, t;y, s) or p(x, t) is simply by timing p(y, s) and integrating with respect

to y.
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Example 2.1 (Brownian motion). The SDE reads

dXt = dWt, X0 = 0.

So the Fokker-Planck equation is

∂tp =
1

2
∆p, p(x, 0) = δ(x). (2.6)

It is well-known from PDE that its unique solution is the heat kernal

p(x, t) =
1√
2πt

exp
(
− x

2

2t

)
,

which is exactly the pdf of N(0, tI). The PDE (2.6) gives another characterization of the

Brownian motion.

Example 2.2 (Brownian dynamics). The SDE reads

dXt = −1

γ
∇V (Xt)dt+

√
2kBT

γ
dWt. (2.7)

So the Fokker-Planck equation is

∂tp−∇ ·
(1

γ
∇V (x)p

)
=
kBT

γ
∆p = D∆p, (2.8)

where D = kBT/γ is the diffusion coefficient. Note that this also gives another understand-

ing about the Einstein’s relation in (??).

Alternatively (2.8) can be derived from the following recipe. Define the free energy

associated with the pdf p as

F(p) =

∫
Rd

(
kBTp(x) ln p(x) + V (x)p(x)

)
dx, (2.9)

where the first term kB
∫
Rd p(x) ln p(x)dx corresponds to the negative entropy −S in ther-

modynamics, and the second term
∫
Rd V (x)p(x)dx is the internal energy U . The chemical

potential µ is then given by

µ =
δF
δp

= kBT (1 + ln p(x)) + V (x).

The current density is defined as

j(x) := p(x)u(x) (2.10)

with the velocity field u(x) given by the Fick’s Law

u(x) =
1

γ
f = −1

γ
∇µ,
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where f = −∇µ is the force field. Then the Smoluchowski’s equation (2.8) is a consequence

of the continuity equation

∂tp+∇ · j = 0.

This approach via deterministic PDE to describe the Brownian dynamics is more common

in physics.

Finally we want to mention that if the underlying stochastic dynamics is a Stratonovich

SDE, we will have its transition pdf satisfies the following type of PDE

∂tp+∇x · (bp) =
1

2
∇x · (σ · ∇x · (σp)), (2.11)

where ∇x · (σ ·∇x · (σp)) = ∂i(σik∂j(σjkp)). If the underlying stochastic dynamics is defined

through the backward stochastic integral,

dXt = b(x, t)dt+ σ(x, t) ∗ dWt,

then p(x, t) satisfies

∂tp+ ∂i

[
(bi + ∂kσijσkj)p

]
=

1

2
∂ij : (σikσjkp), (2.12)

where the Einstein summation convention is assumed. In the one-dimensional case, it can

be simplified to

∂tp+ ∂x(bp) =
1

2
∂x(σ

2∂xp). (2.13)

The proof is straightforward and left as an exercise.

3 Boundary Condition

Many stochastic problems occur in a bounded domain, in which case the boundary

conditions are needed. To pose suitable boundary conditions in different situations, we

need to understand the probability current j(x, t) = b(x, t)p(x, t)− 1/2∇x · (a(x, t)p(x, t))

in the Fokker-Planck equation

∂tp(x, t) +∇x · j(x, t) = 0 (3.1)

more intuitively at first. To do this, let us investigate the role of probability flux between

regions R1 and R2 separated by a boundary S12 (see Fig. 1).

Consider the probability transfer from region R1 to R2 during the time t to t + δt, we

have

P1→2 =

∫
R2

dx

∫
R1

dyp(x, t+ δt;y, t),
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R1 R2n

S12

S1
S2

Figure 1: Probability flux across a boundary

and with the similar reason the probability transfer from region R2 to R1 has the form

P2→1 =

∫
R1

dx

∫
R2

dyp(x, t+ δt;y, t).

Thus the net probability flow rate from R2 to R1 is

J2→1 = lim
δt→0

(P2→1 − P1→2)/δt.

With the equality ∫
R2

dx

∫
R1

dyp(x, t;y, t) = 0,

we obtain

J2→1 =

∫
R1

dx

∫
R2

dy∂tp(x, t;y, s = t)−
∫
R2

dx

∫
R1

dy∂tp(x, t;y, s = t)

=

∫
R2

dx∇x · j(x, t;R1, t)−
∫
R1

dx∇x · j(x, t;R2, t)

=

∫
S12

dSn · (j(x, t;R1, t) + j(x, t;R2, t)),

where j(x, t;R1, t) :=
∫
R1
dyj(x, t;y, t), n is the normal pointing from R2 to R1. The

last equality is obtained by divergence theorem and the fact that j(x, t;R2, t) = 0 when

x ∈ S1 and j(x, t;R1, t) = 0 when x ∈ S2. From the fact that x ∈ R1 ∪ R2 we have

j(x, t) =
∫
Rd dyj(x, t;y, t) = j(x, t;R1, t) + j(x, t;R2, t) and thus

J2→1 =

∫
S12

dSn · j(x, t).

Recalling the probability flux defined as

Jnij = µn,ipij − µn,jpji

from state i to state j at time n in a discrete time Markov chain and

Jij(t) = µi(t)pij − µj(t)pji

6



for a continuous time Markov chain, we have that n · j(x, t) is exactly the continuous space

version of Jij(t) along a specific direction n.

Three commonly used boundary conditions are as follows. It will be instructive for the

readers to compare them with the boundary conditions for the Wiener process.

Reflecting barrier. In the microscopic sense, the reflecting barrier means that the particles

will be reflected once it hits the boundary ∂D. Thus there will be no probability flux across

∂D and the reflecting boundary condition has the form

n · j(x, t) = 0 x ∈ ∂D. (3.2)

Note that in this case the total probability is conserved since

d

dt

∫
D

p(x, t)dx = −
∫
D

∇x · j(x, t)dx

= −
∫
∂D

n · j(x, t)dS = 0.

Absorbing barrier. In the microscopic sense, the absorbing barrier means that the parti-

cles will be absorbed (or removed) once it hits the boundary ∂D. Thus the probability on

the boundary ∂D will be zero. The absorbing boundary condition is

p(x, t) = 0 x ∈ ∂D. (3.3)

The total probability is no longer conserved in this case.

Periodic boundary condition. In the periodic case with period Lj in the xj-direction

for j = 1, . . . , d, the boundary condition is

p(xj + Lj, t) = p(xj, t), j = 1, 2, . . . , d.

4 Backward equation

Now let us consider the equation for the transition pdf p(x, t|y, s) with respect to variable

y and s. Suppose Xt satisfies (2.1). For any given f(x) ∈ C∞c (Rd), we define

u(y, s) = Ey,sf(Xt) =

∫
Rd

f(x)p(x, t|y, s)dx, s ≤ t.

Assume that p(x, t|y, s) is C1 in s and C2 in y, then we have

du(Xτ , τ) = (∂τu+ Lu)(Xτ , τ)dτ +∇u · σ · dWτ

by Ito formula. Taking expectation we obtain

lim
t→s

1

t− s
(Ey,su(Xt, t)− u(y, s)) = lim

t→s

1

t− s

∫ t

s

Ey,s(∂τu+ Lu)(Xτ , τ)dτ

= ∂su(y, s) + Lu(y, s).

7



On the other hand it is obvious that

Ey,su(Xt, t) = Ey,sf(Xt) = u(y, s)

and thus

∂su(y, s) + Lu(y, s) = 0.

From the arbitrariness of f , we obtain

∂sp(x, t|y, s) + Lyp(x, t|y, s) = 0, p(x, t|y, t) = δ(x− y), s < t. (4.1)

This is the well-know Kolmogorov backward equation for the transition density since the

time variable s goes backward.

5 Invariant distribution and detailed balance

Consider the Fokker-Planck equation (3.1) for describing the evolution of the probability

density. It is interesting to study the case when the system achieves a steady state: that is,

the pdf is independent of the time, if the system admits such a solution. This situation is

only meaningful when the drift b and diffusion coefficient σ does not depend on t. In this

case, the process {Xt} is a time-homogeneous Markov process since the transition rule only

depends on the states other than the time. The steady state pdf satisfies the following PDE

∇x · (b(x)ps(x)) =
1

2
∇2

x : (a(x) ps(x)) (5.1)

with suitable boundary conditions. This ps(x) is called the stationary distribution or in-

variant distribution of the considered system.

Specially for the Langevin equation (2.7), the invariant distribution satisfies

∇ · js(x) = 0,

where js is defined in (2.10). In particular, we are interested in the equilibrium solution

with a stronger condition js = 0, i.e. the detailed balance condition in the continuous case,

which implies the chemical potential

µ = constant.

It is not difficult to deduce the following well-known Gibbs distribution for the equilibrium

ps(x) =
1

Z
exp

(
− V (x)

kBT

)
(5.2)

as long as the normalization constant

Z =

∫
Rd

e
−V (x)

kBT dx (5.3)

is finite.
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6 Further topics on Diffusion Processes

All of the discussions in this section are considered for the time-homogeneous SDEs

dXt = b(Xt)dt+ σ(Xt) · dWt. (6.1)

where b and σ are independent of time t. This time-homogeneity implies that the transla-

tional invariance of time for its transition kernel p(·, t|y, s) (see pp. 110 in [2])

p(A, t+ s|y, s) = p(A, t|y, 0), s, t ≥ 0

for any y ∈ Rd and A ∈ B(Rd), where

p(A, t|y, s) := Ey,s1A(Xt) =

∫
A

p(dx, t|y, s).

6.1 Semigroup and backward Equation

Define the operator Tt on any function f ∈ C0(Rd) as

Ttf(x) = Exf(Xt) =

∫
Rd

f(z)p(dz, t|x, 0).

Then we have T0f(x) = f(x) and the following semigroup property for any t, s ≥ 0

Tt ◦ Tsf(x) = Ex(EXtf(Xs))

=

∫
p(dy, t|x, 0)

∫
f(z)p(dz, s|y, 0)

=

∫
f(z)

∫
p(dz, s+ t|y, t)p(dy, t|x, 0)

= Ex(f(Xt+s)) = Tt+sf(x).

Under the condition that b and σ are bounded and Lipschitz, one can further show Tt :

C0(Rd)→ C0(Rd) and it is strongly continuous (Theorem 18.11 in [1]) in the sense that

lim
t→0+

‖Ttf − f‖∞ = 0, for any f ∈ C0(Rd).

Tt is called Feller semigroup in the literature. With this setup, we can utilize the tools from

semigroup theory to study Tt [3].

Definition 6.1. The infinitesimal generator A of Tt is defined as

Af(x) = lim
t→0+

Exf(Xt)− f(x)

t
,

where f ∈ D(A) := {f ∈ C0(Rd) such that the limit exists}.
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For f ∈ C2
c (Rd) ⊂ D(A) we have

Af(x) = Lf(x) = b(x) · ∇f(x) +
1

2
(σσT ) : ∇2f(x).

from Ito formula (2.2). We will show that u(x, t) = Exf(Xt) satisfies the backward equation

for f ∈ C2
c (Rd)

∂tu = Au(x), u|t=0 = f(x). (6.2)

Proof. At first it is not difficult to observe that u(x, t) is differentiable with respect to t

from Ito’s formula and the condition f ∈ C2
c (Rd). For any fixed t > 0, define g(x) = u(x, t).

Then we have

Ag(x) = lim
s→0+

1

s

(
Exg(Xs)− g(x)

)
= lim

s→0+

1

s

(
ExEXsf(Xt)− Exf(Xt)

)
= lim

s→0+

1

s

(
Exf(Xt+s)− Exf(Xt)

)
= lim

s→0+

1

s
(u(x, t+ s)− u(x, t)) = ∂tu(x, t).

This means u(·, t) ∈ D(A) and the proof is complete.

The readers can also derive the equation (6.2) from (4.1) if the transition pdf exists.

6.2 Feynman-Kac Formula

Theorem 6.2. (Feynman-Kac Formula) Let f ∈ C2
0(Rd) and q ∈ C(Rd). Assume that q is

lower bounded, then

v(x, t) = Ex
(

exp(

∫ t

0

q(Xs)ds)f(Xt)
)

satisfies the PDE

∂tv = Av + qv, v|t=0 = f(x). (6.3)

Intuitive explanation: In the absence of Brownian motion, the SDE becomes

dXt

dt
= b(Xt), X0 = x

and the PDE becomes

∂tv = b · ∇v + qv, v|t=0 = f(x).

The method of characteristics gives us

v(x, t) = exp(

∫ t

0

q(Xs)ds)f(Xt).
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Figure 2: Schematics of Feynmann-Kac formula.

The Feynmann-Kac formula tells us the solution of that parabolic PDE (6.3) can be repre-

sented by the ensemble of solution for the ODEs with stochastic characteristics originated

from x.

Proof. Let Yt = f(Xt), Zt = exp(
∫ t
0
q(Xs)ds), define v(x, t) = Ex(YtZt). With the similar

reason as the previous section, we have v(x, t) is differentiable with respect to t and

1

s

(
Exv(Xs, t)− v(x, t)

)
=

1

s

(
ExEXsZtf(Xt)− ExZtf(Xt)

)
=

1

s

(
Ex exp(

∫ t

0

q(Xr+s)dr)f(Xt+s)− ExZtf(Xt)
)

=
1

s
Ex
(

exp(−
∫ s

0

q(Xr)dr)Zt+sf(Xt+s)− Ztf(Xt)
)

=
1

s
Ex
(
Zt+sf(Xt+s)− Ztf(Xt)

)
+

1

s
Ex
(
Zt+sf(Xt+s)(exp(−

∫ s

0

q(Xr)dr)− 1)
)

→ ∂tv − q(x)v(x, t) as s→ 0.

The left hand side is Av(x, t) by definition. The proof is complete.

6.3 First exit time

Theorem 6.3. Suppose D ⊂ Rd is a bounded open set and the boundary ∂D is of C2 type.

The coefficients b,σ of the SDEs satisfy the Lipschitz condition on D̄ and the diffusion

matrix a is coercive which is defined as∑
i,j

aij(x)ξiξj ≥ K|ξ|2 for x ∈ D, ξ ∈ Rd, K > 0.
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Then for f ∈ C(∂D), the solution of PDE

Au = 0 in D, u = f(x) on ∂D

can be represented as

u(x) = Ex
(
f(XτD)

)
,

where τD is the first exit time from domain D defined as

τD := inf
t
{t ≥ 0,Xt /∈ D}

and thus XτD is the first exit point. Specially, if Au = ∆u, then u(x) = Ex
(
f(WτD)

)
.

Heuristic proof. From PDE theory, one has the solution u ∈ C2(D)∩C(D̄) (c.f. Chapter

6 in [?]). So we can apply the Ito’s formula to u(Xt) and take expectation

Exu(XτD)− u(x) = Ex

∫ τD

0

Au(Xt)dt = 0. (6.4)

Thus

u(x) = Exu(XτD) = Ex
(
f(XτD)

)
.

Note that in the above derivations we naively take the expectation of the stochastic

integral term to be zero. But this is not true in general because τD is a random time. In

fact, it is the result of the following useful Dynkin’s formula.

Lemma 6.4 (Dynkin’s formula). Let f ∈ C2
0(Rd). Suppose τ is a stopping time with

Exτ <∞, then

Exf(Xτ ) = f(x) + Ex

∫ τ

0

Au(Xt)dt.

To prove ExτD < ∞, we define an auxiliary function h(x) = −A exp(λx1). Then for

sufficiently large A, λ > 0 we have

Ah(x) =
∑
ij

aij(x)∂ijh(x) +
∑
i

bi(x)∂ih(x) ≤ −1, x ∈ D.

By Itô’s formula

Exh(XτD∧T )− h(x) = Ex

∫ τD∧T

0

Ah(Xs)ds ≤ −Ex(τD ∧ T )

for any fixed T > 0. Since |h(x)| ≤ C for x ∈ D, we have

Ex(τD ∧ T ) ≤ 2C.

Taking T →∞ and using the monotone convergence theorem we obtain Ex(τD) ≤ 2C.
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Homeworks

1. Derive the equations (2.11) and (2.12).

2. Derive the detailed balance condition for the multidimensional OU process:

dXt = BXtdt+ σdWt

if the invariant distribution has mean 0 and covariance matrix Σ.
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Lecture 16 Numerical SDEs: Basics ∗

Tiejun Li

1 Schemes

As most of the SDEs can not be solved in analytical form, we should appeal to numerical

computations for practical purpose. Below we illustrate the basic idea of constructing the

numerical schemes for solving the SDEs

dXt = b(Xt)dt+ σ(Xt)dWt. (1.1)

Most of the ideas can be extended to the multidimensional SDEs with coefficients involving

t explicitly.

With Ito’s formula, we define

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2 = (L1f)(Xt)dt+ (L2f)(Xt)dWt, (1.2)

where

(L1f)(x) = b(x)f ′(x) +
1

2
σ2(x)f ′′(x), (L2f)(x) = σ(x)f ′(x).

Taking integral from tn to tn+1 to both sides of (1.1), and taking f(x) = b(x) and σ(x), we

have

Xtn+1 =Xtn +

∫ tn+1

tn

b(Xs)ds+

∫ tn+1

tn

σ(Xs)dWs

=Xtn + b(Xtn)δtn + σ(Xtn)(Wtn+1 −Wtn) (1.3)

+

∫ tn+1

tn

dWs

∫ s

tn

(L2σ)(Xτ )dWτ (1.4)

+

∫ tn+1

tn

dWs

∫ s

tn

(L1σ)(Xτ )dτ +

∫ tn+1

tn

ds

∫ s

tn

(L2b)(Xτ )dWτ (1.5)

+

∫ tn+1

tn

ds

∫ s

tn

(L1b)(Xτ )dτ, (1.6)

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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where δtn = tn+1− tn. The above procedure can be further carried on by replacing Lib(Xτ ),

Liσ(Xτ ) as Lib(Xt), Liσ(Xt) and getting higher order iterative integrals correspondingly.

The obtained series is usually called Itô-Taylor expansion for SDEs. It is not difficult to

find that each term in the Ito-Taylor expansion has the form

Ii(g) =

∫ tn+1

tn

dW i1
s1

∫ s1

tn

dW i2
s2
· · ·
∫ sk−1

tn

dW ik
sk
g(Xsk)

with some k ∈ {1, 2, . . .}. Here the characteristic index of the integral i = (i1, i2, . . . , ik)

and ij ∈ {0, 1} for j = 1, 2, . . . , k. The integrand g is the action of some compositions of

operators L1 and L2 on function b or σ. We take the convention W 0
t := t and W 1

t := Wt for

the ease of notation. This set-up can be extended to the system driven by multidimensional

Brownian easily.

Now similar with solving deterministic ODEs, we truncate the Ito-Taylor series to dif-

ferent orders to obtain different schemes. For example, if we only keep terms until (1.3),

then we have

(1) Euler-Maruyama scheme

Xn+1 = Xn + b(Xn)δtn + σ(Xn)δWn, (1.7)

where δWn ∼ N(0, δtn). The Euler-Maruyama scheme is the most commonly used numerical

scheme for its simplicity.

From the basic intuition dWt ∼
√
dt, we have that roughly (1.8)∼ O(δt), (1.5)∼ O(δt3/2)

and (1.6)∼ O(δt2). By extracting the leading order term (1.8), we obtain∫ tn+1

tn

dWs

∫ s

tn

(L2σ)(Xτ )dWτ ≈ (L2σ)(Xtn)

∫ tn+1

tn

dWs

∫ s

tn

dWτ

=
1

2
(L2σ)(Xtn)[(δWn)2 − δtn].

Substitute this into the Ito-Taylor expansion we obtain the well-known Milstein scheme.

(2) Milstein scheme

Xn+1 =Xn + b(Xn)δtn + σ(Xn)δWn +
1

2
(σσ′)(Xn)[(δWn)2 − δtn]. (1.8)

We should remark that although Milstein scheme is more accurate than the Euler-

Maruyama scheme in some sense, it is only practical for the SDEs driven by single Wiener

process. That is because the explicit characterization∫ tn+1

tn

∫ s

tn

dWsdWτ =
1

2
[(δWn)2 − δtn]

2



is only valid in one dimensional case. In multi-dimensions, when i 6= j it is impossible to

get an explicit sampling form of ∫ tn+1

tn

∫ s

tn

dW i
sdW

j
τ ,

where W i
t ,W

j
t are independent Wiener processes. Though some strategies are proposed to

approximate the above random variables, they are not so common in practical applications.

The readers may be refereed to [1] for more details.

Although Milstein scheme is more accurate, it is not so popular in practice for the term

σ′(Xt) may be too complicate to compute even in 1D case. To overcome this issue, one can

take the following type of schemes by borrowing the idea from Runge-Kutta method for

solving ODEs.

(3) Runge-Kutta scheme

X̂n =Xn + σ(Xn)
√
δtn,

Xn+1 =Xn + b(Xn)δtn + σ(Xn)δWn

+
1

2

1√
δtn

[σ(X̂n)− σ(Xn)][(δWn)2 − δtn]. (1.9)

If we formally take higher order Itô-Taylor expansion, specifically applying formula (1.2) to

(L1b)(Xτ ), (L2b)(Xτ ), (L1σ)(Xτ ), (L2σ)(Xτ )

and dropping higher order terms, we have the following higher order scheme.

(4) Higher order scheme

Xn+1 =Xn + bδtn + σδWtn +
1

2
σσ′{(δWn)2 − δtn}

+ σb′∆Zn +
1

2
(bb′ +

1

2
σ2b′′)δt2n

+ (bσ′ +
1

2
σ2σ′′)(δWnδtn − δZn)

+
1

2
σ
[
σσ′′ + (σ′)2

][1

3
(δWn)2 − δtn

]
δWn, (1.10)

where

∆Zn :=

∫ tn+1

tn

∫ s

tn

dWτds

is a Gaussian R.V. satisfying E(∆Zn) = 0, E((∆Zn)2) = δt3n/3,E(δZnδWn) = δt2n/2.

The convergence of the discretized solution of SDEs has two senses according to the

needs of realistic applications. They are called strong convergence and weak convergence,

respectively. Define {Xδt
t } a numerical solution of SDEs with maximal stepsize δt, Xt is the

exact solution, then we have the following definition.
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Definition 1.1 (Convergence of numerical solutions). We have the following two typical

concepts of convergence for the numerical solution of SDEs.

(1) Strong convergence (mean-square convergence) If

max
0≤t≤T

E|Xδt
t −Xt|2 ≤ C(∆t)2α,

where C is a constant independent of δt, then we call {X∆t
t } strongly converges, or converges

in the mean-square sense, to Xt with order α.

(2) Weak convergence (convergence w.r.t. expectation) If

max
0≤t≤T

|Ef(Xδt
t )− Ef(Xt)| ≤ Cf (δt)

β,

for any f ∈ C∞b (Rn), where Cf is a constant independent of δt but may depend on f , then

we call {Xδt
t } weakly converges to Xt with order β.

A straightforward result about the convergence order is below.

Proposition 1.2. When the considered function f in the weak convergence has the property

‖f ′‖∞ ≤ K, we have β ≥ α.

Proof. By the mean value theorem and the Hölder’s inequality, we obtain

|Ef(Xδt
t )− Ef(Xt)| ≤ E|f(Xδt

t )− f(Xt)| ≤ KE|Xδt
t −Xt| ≤ K(E|Xδt

t −Xt|2)
1
2 .

The above proposition gives a rationale why the former is called strong convergence

compared with the other one in some sense. Before introducing the convergence analysis,

let us state the main theorem about the convergence of numerical schemes

Theorem 1.3 (Convergence order). Define the length of the multi-index i = (i1, i2, . . . , ik)

as

l(i) := k, n(i) := {the number of zeros in i}.

and the set of indices

Sα =

{
i| l(i) + n(i) ≤ 2α or l(i) = n(i) = α +

1

2

}
for α ∈

{
1

2
, 1,

3

2
, · · ·

}
,

Wβ = {i|l(i) ≤ β} for β ∈ {1, 2, 3, · · · }.

Then with mild smoothness conditions on b, σ and the function f in weak approximation,

the scheme derived by truncating the Ito-Taylor expansion up to all indices with i ∈ Sα has

strong order α; the scheme derived by truncating the Ito-Taylor expansion up to terms with

i ∈ Wβ has weak order β.

The proof and detailed requirements about the smoothness conditions on b, σ and f may

be found in [1] (Theorems 10.6.3 and 14.5.1). Applying this theorem to the constructed

schemes in this section, we have Table 1.
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Strong order Weak order

Euler-Maruyama 1/2 1

Milstein 1 1

Scheme (1.9) 1 1

Scheme (1.10) 2 2

Table 1: The convergence order of some numerical schemes for SDE.

2 Strong convergence

We will analyze the mean-square convergence of the Euler-Maruyama scheme under the

assumption that b(x) satisfies global Lipschitz and linear grow condition with constant L

and σ = 1, i.e. the additive noise case.

Now suppose the SDE takes the form

dXt = b(Xt)dt+ dWt (2.1)

with the Euler-Maruyama discretization

Xn+1 = Xn + b(Xn)δtn + δWn. (2.2)

Introduce the “linear stochastic” interpolation of Xn as

dX̄t = b(Xn)dt+ dWt, t ∈ [tn, tn+1).

where the driving term Wt is assumed to be the same as that in continuous form. Then

X̄tn = Xn and we have the so called “discrete Ito formula” for f ∈ C2(R)

df(X̄t) = f ′(X̄t)dX̄t +
1

2
f ′′(X̄t)(dX̄t)

2,

i.e.

f(X̄t) = f(Xn) +

∫ t

tn

[
f ′(X̄s)b(Xn) +

1

2
f ′′(X̄s)

]
ds+

∫ t

tn

f ′(X̄s)dWs, t ∈ [tn, tn+1).

Lemma 2.1. Let δt = maxn δtn. We have the following bounds for Xt

sup
t≤T

E|Xt|2 ≤ K1(T ), sup
t∈[tn,tn+1)

E|Xt −Xtn|2 ≤ K2(T )δt,

where the constant K1(T ) depends on T , L and E|X0|2, and K2(T ) depends on L, δt and

K1(T ).
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Proof. Applying Ito formula to |Xt|2, we have

d|Xt|2 = 2Xt · (b(Xt) + dWt) + dt.

Integrating from 0 to t and taking expectation we have

E|Xt|2 = E|X0|2 + 2E
∫ t

0

Xs · b(Xs)ds+ 2E
∫ t

0

XsdWs + t.

Taking advantage of (??) for the Ito integral and the inequality 2ab ≤ a2 + b2, we obtain

E|Xt|2 ≤ E|X0|2 + T +

∫ t

0

E|Xs|2ds+ L

∫ t

0

(1 + E|Xs|2)ds.

The Gronwall inequality gives

sup
t≤T

E|Xt|2 ≤ (E|X0|2 + T + LT ) exp((L+ 1)T ).

For the second inequality, we have from SDE

Xt −Xtn =

∫ t

tn

b(Xs)ds+ (Wt −Wtn).

Squaring both sides and taking expectation we get

E|Xt −Xtn|2 ≤ 2E
(∫ t

tn

b(Xs)ds

)2

+ 2δt.

From Hölder’s inequality we obtain

E|Xt −Xtn|2 ≤ 2Lδt

∫ t

tn

(1 + E|Xs|2)ds+ 2δt ≤ 2Lδt2(1 +K1(T )) + 2δt, t ∈ [tn, tn+1).

Proposition 2.2 (Half order mean-square convergence). The Euler-Maruyama scheme is

of strong order 1/2.

Proof. From (2.1) we have

Xtn+1 = Xtn +

∫ tn+1

tn

b(Xt)dt+ δWn,

and the Equation (2.2) can be rewritten as

Xn+1 = Xn +

∫ tn+1

tn

b(Xn)dt+ δWn.

Define the error en+1 = Xtn+1 −Xn+1, then

en+1 = en +

∫ tn+1

tn

(b(Xt)− b(Xn))dt.

6



Squaring both sides and from the inequality 2ab ≤ a2δt+ b2/δt, we obtain

|en+1|2 = |en|2 +
[ ∫ tn+1

tn

(b(Xt)− b(Xn))dt
]2

+ 2en ·
[ ∫ tn+1

tn

(b(Xt)− b(Xn))dt
]

≤ |en|2(1 + δt) +

(
1 +

1

δt

)[∫ tn+1

tn

(b(Xt)− b(Xn))dt

]2

≤ |en|2(1 + δt) + L2(1 + δt)

∫ tn+1

tn

|Xt −Xn|2dt, (2.3)

where the last inequality is from Hölder’s inequality and Lipschitz condition.

From the inequality |Xt −Xn|2 ≤ 2|Xt −Xtn|2 + 2|Xtn −Xn|2 we have

E|en+1|2 ≤ E|en|2(1 + L1δt) + L2δt
2,

where L1 = 1+2L2(1+δt) and L2 = 2L2(1+δt)K2(T ) can be bounded by positive constants

independent of δt if δt is small.

The discrete Gronwall’s inequality then guarantees

E|en|2 ≤ E|e0|2(1 + L1δt)
n + L2δt

2 (1 + L1δt)
n − 1

L1δt
≤ L2

L1

(eL1T − 1)δt

if we assume e0 = 0. The proof is complete.

We want to remark here that in the considered additive noise case, the Euler-Maruyama

scheme is exactly the Milstein scheme since σ′σ = 0 and thus the last term in (1.8) dimin-

ishes! From Theorem 1.3, we can prove it is of strong order 1 in principle. It is indeed true

but the proof will be more tedious with higher smoothness condition on b. We leave the

proof as an exercise to the reader.

3 Weak Convergence

Now let us consider the weak convergence of the Euler-Maruyama scheme with the tools

from PDEs. We will only consider the 1D case with σ = 1 for simplicity. But the essential

part of the proof is the same for high dimensional case. The weak convergence is to analyze

the error

en = Ef(Xn)− Ef(Xtn)

for smooth function f . From the stated result in Theorem 1.3, we know that the Euler-

Maruyama scheme is of weak order 1. Before we go to the rigorous proof, let us give a more

transparent observation on this point by elementary deductions.

Suppose X0 = x, f is a smooth enough function. Formally in order to consider the weak

convergence of a numerical scheme to approximate Markov process Xt, we start from the

7



weak Ito-Taylor expansion

Exf(Xh) = f(x) +

∫ h

0

Af(Xt)dt ∼
∑
n=0

Anf(x)

n!
hn, (3.1)

where A is the infinitesimal generator of Xt and h is the time stepsize. Correspondingly for

the numerical solution XN
t , we have

Exf(XN
h ) = f(x) +

∫ h

0

Af(XN
t )dt ∼

∑
n=0

AnNf(x)

n!
hn, (3.2)

where AN is the infinitesimal generator of XN
t . To have an idea about the global weak

convergence order, we need to figure out the local weak truncation order at first.

Take the diffusion process as a specific example. Now

dXt = b(Xt)dt+ dWt

and the Euler-Maruyama scheme reads

Xn+1 = Xn + b(Xn)∆t+ ∆Wn.

Define the continuous extension of the numerical solution as

dXN
t = b(Xn)dt+ dWt, t ∈ [tn.tn+1).

We have the infinitesimal generator

Af(y) = b(y)f ′(y) +
1

2
f ′′(y)

and

A2f(y) = b(y)
[
b(y)f ′(y) +

1

2
f ′′(y)

]
+

1

2

[
b(y)f ′(y) +

1

2
f ′′(y)

]′′
.

Correspondingly for the numerical solution XN
t we have

ANf(y) = b(x)f ′(y) +
1

2
f ′′(y)

and

A2
Nf(y) = b(x)

[
b(x)f ′(y) +

1

2
f ′′(y)

]
+

1

2

[
b(x)f ′(y) +

1

2
f ′′(y)

]′′
,

where x is the initial condition. Now it is obvious that

Exf(XN
h )− Exf(Xh) = O(h2) (3.3)

and thus the weak local truncation error is of second order and we can expect that the

Euler-Maruyama scheme is of weak order 1. In fact if one can bound the expansion terms in

8



(3.1) and (3.2) up to corresponding order, the above formal derivations based on the local

error analysis can be made rigorous.

It will become clear soon that the weak convergence analysis essentially relies on some

estimates about the solution of the backward equation. Let us first consider the partial

differential equation

∂tu(x, t) = Lu(x, t) = b(x)∂xu+
1

2
∂xxu, u(x, 0) = f(x). (3.4)

Define the notation Cm
P (Rd,R) the space of functions w ∈ Cm(Rd,R) for which all partial

derivatives up to order m have polynomial growth. More concretely, there exist a constant

K > 0, and m, p ∈ N such that

|∂jxw(x)| ≤ K(1 + |x|2p), ∀ |j| < m

for any x ∈ Rd, where j is a d-multi-index. Here we have d = 1 and we will simply denote

Cm
P (Rd,R) as Cm

P in later texts.

The following important lemma can be found in [1] (Theorem 4.8.6, pp. 153).

Lemma 3.1. Suppose that f ∈ C2β
P for some β ∈ {2, 3, . . .}, Xt is time-homogeneous and

b ∈ C2β
P with uniformly bounded derivatives. Then ∂u/∂t is continuous and

u(·, t) ∈ C2β
P , t ≤ T

for any fixed T <∞.

Theorem 3.2 (Weak convergence). Assume that b is Lipschitz and the conditions in Lemma

3.1 also hold for b and f , then the Euler-Maruyama scheme is of weak order 1 .

Proof. Define the backward operator

L̃ = ∂t + b(x)∂x +
1

2
∂xx,

and denote by v the solution of

L̃v = 0, t ∈ (0, tn) (3.5)

with the final condition v(x, tn) = f(x). It is straightforward that v(x, t) = u(x, tn − t) for

the solution u of (3.4).

By Itô’s formula we have

Ev(X0, 0) = Ev(Xtn , tn) = Ef(Xtn).

9



Hence

|en| = |Ef(Xn)− Ef(Xtn)|
= |Ev(Xn, tn)− Ev(X0, 0)|

=
∣∣∣E(∫ tn

0

(
∂tv(X̄s, s) + b(Xns)∂xv(X̄s, s) +

1

2
∂xxv(X̄s, s)− L̃v(X̄s, s)

)
ds
)∣∣∣,

where ns := {m|tm ≤ s < tm+1}, and X̄s is the continuous extension of Xn defined as

dX̄s = b(Xns)ds+ dWs, x ∈ [tm, tm+1).

With this definition, we obtain

|en| =
∣∣∣E(∫ tn

0

(
b(Xns)∂xv(X̄s, s)− b(X̄s)∂xv(s, X̄s)

)
ds
)∣∣∣

≤
∣∣∣E(∫ tn

0

(
b(Xns)∂xv(Xns , tns)− b(X̄s)∂xv(X̄s, s)

)
ds
)∣∣∣

+
∣∣∣E(∫ tn

0

b(Xns)
(
∂xv(X̄s, s)− ∂xv(Xns , tns)

)
ds
)∣∣∣

=
∣∣∣E∑

m

∫ tm+1

tm

(
b(Xm)∂xv(Xm, tm)− b(X̄s)∂xv(X̄s, s)

)
ds
∣∣∣

+
∣∣∣E∑

m

∫ tm+1

tm

b(Xm)
(
∂xv(X̄s, s)− ∂xv(Xm, tm)

)
ds
∣∣∣. (3.6)

Using Itô’s formula again, we have for any function g(x, t)

g(X̄t, t)− g(Xm, tm) =

∫ t

tm

[
∂tg(X̄s, s) + b(Xm)∂xg(X̄s, s) +

1

2
∂xxg(X̄s, s)

]
ds

+

∫ t

tm

∂xg(X̄s, s)dWs, t ∈ [tm, tm+1).

Using this with g = b∂xv and g = ∂xv in (3.6), we have the highest derivatives ∂xxxv, ∂xxb ∈
C2β
P as long as β ≥ 2. Notice that b(Xm) is independent of

∫ t
tm
∂xg(X̄s, s)dWs conditional

on Xm, together with the fact that E|Xm|2r and E|X̄t|2r ≤ C for any r ∈ N (Exercise 3), we

get

|en| ≤ C
∑
m

∆t2 ≤ C∆t,

which is the desired estimate.

Example 3.3 (Weak approximation). For the SDE

dXt = −1

2
Xtdt+ dWt, X0 = 0,

compute u = EX2
t |t=1 with the Euler-Maruyama scheme.
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Solution. The exact solution of u is

u = EX2
t |t=1 = 1− e−1 ≈ 0.632.

In order to compute the expectation numerically, we take the Euler-Maruyama scheme

Xn+1,k = (1− ∆t

2
)Xn,k +

√
∆t ·Rn,k, k = 1, 2, . . . , N,

where ∆t = 1/M , n = 0, 1, . . . ,M − 1 and Rn,k are i.i.d. N(0, 1) random variables. So the

approximate solution

uN,∆t =
1

N

N∑
k=1

(XM,k)
2.

We take M = 2000, and compute u with different sample size N as follows.

N 100 200 300 400 500 600

u 0.6586 0.6563 0.6785 0.6234 0.6407 0.6320

Error 0.0265 0.0242 0.0464 0.0087 0.0086 0.0001

Table 2: Weak approximation with Euler-Maruyama scheme

Homeworks

1. Give a sampling method for the random variables

∆Z1 :=

∫ tn+1

tn

∫ s

tn

dWτds, ∆Z2 :=

∫ tn+1

tn

∫ s

tn

dτdWs.

and ∆Wn.

2. Prove the Euler-Maruyama scheme is of strong order 1 for the SDE (2.1) with additive

noise and higher smoothness condition on b.

3. Prove that for the Euler-Maruyama scheme

E|Xn|2r, E|Xt|2r, E|X̄t|2r ≤ C

for t ≤ T , n ≤ N and any r ∈ N.
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Lecture 17 Numerical SDEs: Advanced topics ∗

Tiejun Li

1 Implicit scheme

To overcome the stiffness issue, one can also apply implicit schemes, e.g. simplest implicit

Euler:

Xn+1 = Xn + b(Xn+1)δtn + σ(Xn)δWn

or semi-implicit scheme

Xn+1 = Xn +
[
αb(Xn) + (1− α)b(Xn+1)

]
δtn + σ(Xn)δWn

for α ∈ (0, 1).

The fully implicit scheme is also considered but not very successful although one can

transform the Ito SDE form into right-most endpoint form at first. For example

Xn+1 = Xn +
[
b(Xn+1)− c(Xn+1)

]
δtn + σ(Xn+1)δWn

where

ci(x) =
∑
jk

∂σij
∂xk

σkj

is from the transformation. If b = 0, σ(x) = x, the above scheme implies

Xn+1 =
Xn

1− δWn

It is possible that 1− δWn = 0 and indeed E|Xn+1| =∞!

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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2 Extrapolation method

Talay and Tubaro proposed the following extrapolation method based on the error ex-

pansion:

e(δ) = Eg(Xδ
T )− Eg(XT ) = Cg,βδ

β + Cg,β+1δ
β+1

e

(
δ

2

)
= Eg(X

δ
2
T )− Eg(XT ) = Cg,β(

δ

2
)β + Cg,β+1(

δ

2
)β+1

2−βe(δ)− e(δ
2

) = Eg(Xδ
T )− Eg(XT ) = C̃g,β+1δ

β+1

See details in Stoch. Anal. Appl. 8 (1990), 483-509.

3 Multilevel Monte Carlo method

So far we only considered the bias error of the approximation, i.e. the error brought

by the time discretization. But a real approximation also involves Monte Carlo samplings.

Since 2008, M. Giles proposed the general framework of multilevel Monte Carlo methods for

SDEs [1], which approximates the expectation in an efficient way. This method stimulates

a lot of follow-up works in different fields [2].

We have already known that the Euler-Maruyama scheme is of weak order 1 in computing

YE = Ef(XT ) for the SDE

dXt = b(Xt)dt+ σ(Xt)dWt

on [0, T ]. In real computations, we take the weak approximator

Yh,N =
1

N

N∑
k=1

f(X(k)
n ), n = T/h ∈ N (3.1)

with stepsize h and N independent samples, where Xn is obtained by the Euler-Maruyama

scheme. The mean square error has the bias-variance decomposition

MSE = E(YE − Yh,N)2 ≤ 2|YE − Ef(Xn)|2 + 2E|Ef(Xn)− Yh,N |2

≤ C1h
2 + C2N

−1. (3.2)

by the weak order 1 convergence and Monte Carlo estimate.

The above computation has the cost C3Nh
−1. The cost-accuracy tradeoff

min
h,N

MSE subject to a given cost K = C3Nh
−1 � 1

gives the optimal choice

N ∼ O(Kh), h ∼ O(K− 1
3 ) and MSE ∼ O(K− 2

3 ). (3.3)
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This means that if we require the accuracy MSE ∼ O(ε2), we must have h ∼ O(ε), N ∼
O(ε−2) and thus the cost K ∼ O(ε−3). The multilevel Monte Carlo method achieves the

same accuracy with cost K ∼ O(ε−2(ln ε)2), which is a typical fast algorithm.

The construction of multilevel Monte Carlo method is as follows. Define the L-level

grids with time stepsize hl = M−lT for l = 0, 1, . . . , L. Denote by Fl = f(Xl,M l) the

approximation of f(XT ) at the level l, where Xl,M l is the approximation of XT with stepsize

hl. We have

EFL =
L∑
l=0

E(Fl − Fl−1) where F−1 := 0. (3.4)

Take Nl realizations for each summand in (3.4), and define

Yl =
1

Nl

Nl∑
k=1

(
F

(k)
l − F

(k)
l−1

)
, l = 0, 1, . . . , L.

Correspondingly define the final estimator

ŶL =
L∑
l=0

Yl. (3.5)

From Monte Carlo estimate we have var(Yl) = Vl/Nl, where Vl := var(Fl − Fl−1) for l =

0, 1, . . . , L. With independent sampling in (3.5), we get

var(ŶL) =
L∑
l=0

var(Yl) =
L∑
l=0

Vl
Nl

(3.6)

with computational cost

K ∼ O

(
L∑
l=0

Nlh
−1
l

)
.

The key point of multilevel Monte Carlo is that with the decomposition (3.4), the term

Fl − Fl−1 has smaller fluctuations, i.e. smaller variance, at higher levels provided that

the realizations of Fl − Fl−1 come from two discrete approximations with different time

stepsizes but same Brownian paths. This property suggests that we can use less Monte

Carlo simulations for higher levels, i.e. finer grids, but more simulations for lower levels, i.e.

coarser grids. This cost-accuracy tradeoff is the origin of the efficiency of multilevel Monte

Carlo method.

Now let us consider the minimization

min
Nl

var(ŶL) =
L∑
l=0

Vl
Nl

subject to the cost K =
L∑
l=0

Nlh
−1
l � 1.

3



This is generally a very difficult problem so we relax Nl to be continuous. Upon introducing

Lagrange multiplier we get the minimizer

Nl = λ
√
Vlhl, where λ = K

(
L∑
l=0

√
Vlh

−1
l

)−1

. (3.7)

From the strong and weak convergence result of Euler-Maruyama Scheme, we have

|E(Fl)− YE| = O(hl), E|XT −Xl,M l |2 = O(hl).

By assuming the Lipschitz continuity of f , we obtain

var(Fl − f(XT )) ≤ E|f(Xl,M l)− f(XT )|2 ≤ CE|XT −Xl,M l |2 = O(hl)

and thus

Vl = var(Fl − Fl−1) ≤ 2var(Fl − f(XT )) + 2var(Fl−1 − f(XT )) = O(hl)

since hl−1 = Mhl and M ∼ O(1).

For a given tolerance ε� 1, take

Nl = O(ε−2Lhl), (3.8)

according to the optimal choice (3.7), we get the variance estimate

var(ŶL) = O(ε2). (3.9)

from (3.6). Further take L = ln ε−1/ lnM , we have

hL = M−L = O(ε).

So the bias error

|EFL − YE| = O(hL) = O(ε). (3.10)

Combing (3.9) and (3.10), we obtain the overall mean square error

MSE = E(YE − ŶL)2 = O(ε2)

and the computational complexity

K =
L∑
l=0

Nlh
−1
l = O(ε−2L2) = O

(
ε−2(ln ε)2)

)
.

The optimal choice of M can be made by minimizing the prefactor in the estimate of the

computational cost [1].
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Lecture 18 Path integral ∗

Tiejun Li

1 Wiener Measure

The path integral, which can be dated to R. Feynman to construct a new formulation

to understand quantum mechanics [2], gives very powerful formal approach to deal with

the probability measures on path space and compute the expectation for some functionals

of Wiener paths. Briefly speaking, path integral is a formal infinite dimensional limit of

the considered stochastic process under finite dimensional approximations. Let us start

with the formal representation of the Wiener measure P∗ defined on the canonical space

(C[0, 1],B(C[0, 1])) for the standard Wiener process.

From the definition of Wiener process, we have the joint pdf for (Wt1 ,Wt2 , . . . ,Wtn)

pn(w1, w2, . . . , wn) =
1

Zn
exp(−In(w)),

where 0 < t1 < t2 < · · · < tn ≤ 1 and

Zn = (2π)
n
2

[
t1(t2 − t1) · · · (tn − tn−1)

] 1
2 ,

In(w) =
1

2

n∑
j=1

(wj − wj−1

tj − tj−1

)2

(tj − tj−1), t0 := 0, w0 := 0.

Now we take the formal limit as n→∞, we obtain

pndw1dw2 · · · dwn →
1

Z
exp(−I[w])δ(w0)Dw, (1.1)

where the δ-function δ(w0) is to fix w0 = 0, I[w] is called the action functional of the Wiener

process defined as

I[w] =
1

2

∫ 1

0

ẇt
2dt.

Dw is a shortcut for
∏

0≤t≤1 dwt, which is the formal volume element in the path space

C[0, 1]. Z is the normalization factor. For notations, we use the lowercase wt for dumb

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
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variables, but the uppercase Wt for the stochastic process. This convention will be taken in

this whole chapter.

To give a formal understanding on the Wiener measure (1.1), we note that

Zn =
(2π

n

)n
2 → 0

if tj − tj−1 = 1/n. At the same time we have
∫ 1

0
ẇt

2dt → +∞ because Wt is almost

surely “half order” differentiable. This means exp(−
∫ 1

0
ẇt

2dt) → 0 as the subdivision is

infinitely refined. These two infinitesimals balance each other in the limit process and leads

to a nontrivial limit which is the volume element in the path space C[0, 1]. With this

understanding,
1

Z
exp(−I[w])δ(w0) =

DP∗
Dw

may be thought of as the pdf of the Wiener process in the space C[0, 1]. The probability of

the event {W· ∈ A}, where A ∈ B(C[0, 1]), can be obtained as

P(W· ∈ A) =

∫
A

1

Z
exp(−I[w])δ(w0)Dw.

We should emphasize that this interpretation is purely formal and all of the results

induced by the path integral need to be reproved in rigorous mathematical language before

we want to use it as an theorem. One reason to understand it is only formal is that we

have no infinite dimensional Lebesgue measure [1]. To see this, let us consider an infinite

dimensional Hilbert space H with orthonormal basis {e1, e2, . . .}. Define the balls

Bn = B 1
2
(en) = {x|‖x− en‖ ≤ 1/2}, B = B2(0) = {x|‖x‖ ≤ 2}.

As a Lebesgue measure, it should be translation invariant and finite for bounded sets. If

the Lebesgue measure on H exists as µ(·), then we have

0 < µ(B1) = µ(B2) = · · · = µ(Bn) = · · · <∞, 0 < µ(B) <∞.

However from the disjointness of {Bn} and Bn ⊂ B for any n, we obtain

µ(B) ≥
∑
n

µ(Bn) =∞,

which is a contradiction! Thus the notation Dw is totally meaningless! But the glamor of

path integral is that it can give some extremely insightful results in a very efficient way.

That is why it is also useful for applied mathematicians.
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2 Expectation of a Wiener Functional

Example 2.1. Compute the expectation

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)
.

Solution. Note that it is not straightforward to compute this expectation since the inte-

grand involves the whole Wiener path, i.e. a Wiener functional. From the Karhunen-Loeve

expansion, ∫ 1

0

W 2
t dt =

∫ 1

0

∑
k,l

√
λkλlαkαlφk(t)φl(t)dt

=
∑
k

∫ 1

0

λkα
2
kφ

2
k(t)dt =

∑
k

λkα
2
k.

Then

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

= E
(∏

k

exp(−1

2
λkα

2
k)
)

=
∏
k

E exp(−1

2
λkα

2
k).

From the identity

E exp(−1

2
λkα

2
k) =

∫ +∞

−∞

1√
2π
e−

x2

2 · e−
1
2
λkx

2

dx =

√
1

1 + λk

we obtain

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

=
∏
k

√
1

1 + λk
:= M,

where

M−2 =
∞∏
k=1

(
1 +

4

(2k − 1)2π2

)
.

From the identities for infinite product series we have

cosh(x) =
∞∏
n=1

(
1 +

4x2

(2n− 1)2π2

)
,

where cosh(x) = (ex + e−x)/2. Thus

M = (cosh(1))−
1
2 =

√
2e

1 + e2
.

Here we show how to apply the path integral approach to compute the expectation of

this Wiener functional. The path integral approach to compute the expectation is composed

of the following two steps.
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Step 1. Discretize the problem into finite dimensions.

At first let us take finite dimensional approximation to the functional

exp

(
−1

2

∫ 1

0

W 2
t dt

)
≈ exp

(
− 1

2

n∑
j=1

W 2
tj

∆t
)

= exp

(
−1

2
∆tXTAX

)
,

where ∆t = tj − tj−1 for j = 1, 2, . . . , n, A = I, and X = (Wt1 ,Wt2 , · · · ,Wtn)T . Thus

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)
≈
∫
Rn

exp

(
−1

2
∆txTAx

)
· 1

Zn
exp

(
−1

2
∆txTBx

)
dx, (2.1)

where x = (x1, x2, . . . , xn), Zn = (2π)
n
2 (det(∆tB)−1)

1
2 , and

B =
1

∆t2


2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1

 .

From equation (2.1), we have

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)
≈ (2π)

n
2 (det(∆t(A+B))−1)

1
2

(2π)
n
2 (det(∆tB)−1)

1
2

=

(
det(B)

det(A+B)

) 1
2

=

( ∏
i λ

B
i∏

i λ
A+B
i

) 1
2

,

where λBi , λ
A+B
i are eigenvalues of B and A+B, respectively.

Step 2. Take the formal limit as n→∞.

If we take the formal limit as n → +∞, the matrix B will converge to the differential

operator B = −d2/dt2 with zero Dirichlet boundary condition at t = 0 and free Neumann

boundary condition at t = 1. Thus the eigenvalues of B corresponds to the following Sturm-

Liouville boundary value problem

−d
2u

dt2
= λu(t), u(0) = 0, u′(1) = 0.

With the observation ∫ 1

0

W 2
t dt = (AWt,Wt),

where A = I and (f, g) :=
∫ 1

0
fgdt, we have the formal path integral limit

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

=

∫
exp

(
− 1

2
(Awt, wt)

)
· 1

Z
exp

(
− 1

2
(Bwt, wt)

)
δ(w0)Dw
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where the operator Bu(t) := d2u/dt2 and

Z =

∫
exp

(
− 1

2
(Bwt, wt)

)
δ(w0)Dw.

Now we formally apply the Gaussian integrals in infinite dimensions to obtain

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

=
( detB

det(A+ B)

) 1
2
,

where detB, det (A+ B) mean the products of all eigenvalues for the following boundary

value problems: {
Bu = λu, or (A+ B)u = λu,

u(0) = 0, u′(1) = 0.

This yield the same result as before.

3 Girsanov Transformation

We have seen that the Wiener measure over [0, 1] can be formally expressed as

dµW = Z−1 exp

(
−1

2

∫ 1

0

ẇ2
t dt

)
δ(w0)Dw.

The solution of the SDE

dXt = b(Xt, t) + σ(Xt, t)dWt, X0 = 0.

can be viewed as a map between the Wiener path {Wt} and {Xt}:

{Wt}
Φ−→ {Xt}.

Consequently, the mapping Φ induces another measures on C[0, 1], which is nothing but the

distribution of {Xt}.
We now ask the question how the measure dµW changes under the mapping Φ? Let us

first consider the case when σ = 1 in one dimension. The more general conditions can be

derived in a similar way. We will perform the path integral through two steps as in the

previous section: that is, making discretization first and then taking the formal continuum

limit.

Step 1. Discretize the problem into finite dimensions.

With the Euler-Maruyama discretization, we obtain

Xtj+1
= Xtj + b(Xtj , tj)(tj+1 − tj) + (Wtj+1

−Wtj). (3.1)
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In matrix form we have

B ·


Xt1

Xt2
...

Xtn

−


b(Xt0 , t0)(t1 − t0)

b(Xt1 , t1)(t2 − t1)
...

b(Xtn−1 , tn−1)(tn − tn−1)

 = B ·


Wt1

Wt2
...

Wtn

 ,

where t0 = 0, Xt0 = 0, and the matrix B has the form

B =


1

−1 1
. . . . . .

. . . . . .

−1 1


n×n

.

The equation (3.1) indeed introduces a finite dimensional transformation Φn as

{Wt1 ,Wt2 , · · · ,Wtn}
Φn−→ {Xt1 , Xt2 , · · · , Xtn}.

With dumb variables representation for (3.1), we have

xj+1 = xj + b(xj, tj)(tj+1 − tj) + (wj+1 − wj), j = 0, . . . , n− 1 (3.2)

where w0 = 0 and x0 is fixed. It is not difficult to find that the Jacobian of the transformation

∂(w1, . . . , wn)

∂(x1, . . . , xn)
= 1. (3.3)

Suppose we want to compute the average 〈F [Xt]〉, then

〈F [Xt]〉 ≈ 〈F (Xt1 , Xt2 , · · · , Xtn)〉 = 〈G(Wt1 ,Wt2 , · · · ,Wtn)〉,

where G = F ◦ Φn. Furthermore with transformation of variables

〈F [Xt]〉 ≈
∫
G(w1, w2, · · · , wn)

1

Zn
exp(−In(w))dw1dw2 · · · dwn

=

∫
F (x1, x2, · · · , xn)

1

Zn
exp(−Ĩn(x))dx1dx2 · · · dxn, (3.4)

where the transformation holds because of (3.3), and Ĩn(x) = In ◦Φ−1
n (x) by definition (3.2)

Ĩn(x) =
1

2

n∑
j=1

(xj − xj−1

tj − tj−1

)2

(tj − tj−1) +
1

2

n∑
j=1

b2(xj−1, tj−1)(tj − tj−1)

−
n∑
j=1

(xj − xj−1) · b(xj−1, tj−1).
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Changing the dumb variables xi to wi, we obtain

〈F [Xt]〉 ≈
∫
F (w1, w2, · · · , wn)

1

Zn
exp(−In(w)) exp

(
− 1

2

n∑
j=1

b2(wj−1, tj−1)(tj − tj−1)
)

· exp
( n∑
j=1

b(wj−1, tj−1) · (wj − wj−1)
)
dw1dw2 · · · dwn

=
〈
F (Wt1 ,Wt2 , · · · ,Wtn) exp

(
− 1

2

n∑
j=1

b2(Wtj−1
, tj−1)(tj − tj−1)

)
· exp

( n∑
j=1

b(Wtj−1
, tj−1) · (Wtj −Wtj−1

)
)〉
.

Step 2. Take the formal limit as n→∞.

Now with the finite dimensional discretization, we can take formal continuum limit

〈F [Xt]〉 =
〈
F [Wt] exp

(
− 1

2

∫ 1

0

b2(Wt, t)dt+

∫ 1

0

b(Wt, t)dWt

)〉
. (3.5)

Since (3.5) is valid for arbitrary F , in mathematical language, this asserts that the distri-

bution µX is absolutely continuous with respect to µW , and

dµX
dµW

= exp
(
− 1

2

∫ 1

0

b2(Wt, t)dt+

∫ 1

0

b(Wt, t)dWt

)
.

The above derivations can be done directly with continuum version if one gets familiar

enough

〈F [Xt]〉 = 〈G[Wt]〉 (where G = F ◦ Φ)

=

∫
G[wt] ·

1

Z
exp

(
− 1

2

∫ 1

0

ẇ2
t dt
)
δ(w0)Dw

=

∫
F [xt] ·

1

Z
exp

(
− 1

2

∫ 1

0

ẋ2
tdt−

1

2

∫ 1

0

b2(xt, t)dt+

∫ 1

0

b(xt, t)ẋtdt
)
δ(x0)Dx

=

∫
F [wt] ·

1

Z
exp

(
− 1

2

∫ 1

0

ẇ2
t dt−

1

2

∫ 1

0

b2(wt, t)dt+

∫ 1

0

b(xt, t)ẇtdt
)
δ(w0)Dw

=
〈
F [Wt] exp

(
− 1

2

∫ 1

0

b2(Wt, t)dt+

∫ 1

0

b(Wt, t)dWt

)〉
.

A special case of this representation is the Cameron-Martin formula, for the transfor-

mation

Xt = Wt + φ(t) (3.6)

where φ is a smooth function. This can be obtained from SDE with b(Xt, t) = φ̇(t). In this

case, we get
dµX
dµW

= exp
(
− 1

2

∫ 1

0

φ̇2(t)dt+

∫ 1

0

φ̇(t)dWt

)
. (3.7)
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A slight generalization is the Girsanov formula. Consider two SDE’s:{
dXt = b(Xt, t)dt+ σ(Xt, t)dWt,

dYt = (b(Yt, t) + γ(t, ω))dt+ σ(Yt, t)dWt,

where X,Y , b,γ ∈ Rn, W ∈ Rm and σ ∈ Rn×m. Assume that X0 = Y0 = x. Then the

distributions of {Xt} and {Yt} over [0, 1] are absolutely continuous with respect to each

other. Moreover the Radon-Nikodym derivative is given by

dµY
dµX

[X.] = exp

(
−1

2

∫ 1

0

|φ(t, ω)|2dt+

∫ 1

0

φ(t, ω)dWt

)
, (3.8)

where φ is the solution of

σ(Xt, t)φ(t, ω) = γ(t, ω).

Mathematically, the above two results have another formulation whose idea can be ex-

plained as follows. Suppose we have n independent standard Gaussian random variables

Z1, Z2, . . . , Zn ∼ N(0, 1) on probability space (Ω,F , P ). Given a vector (µ1, µ2, . . . , µn) ∈
Rn, the new random variables with translation

Z̃k = Zk + µk, k = 1, 2 . . . , n

are no longer N(0, 1) distributed. But we can define another probability measure

P̃ (dω) = exp
(
−

n∑
k=1

µkZk(ω)− 1

2

n∑
k=1

µ2
k

)
P (dω).

Then we have

P̃
(
Z̃1 ∈ [z̃1, z̃1 + dz̃1), . . . , Z̃n ∈ [z̃n, z̃n + dz̃n)

)
= exp

(
−

n∑
k=1

µk(z̃k − µk)−
1

2

n∑
k=1

µ2
k

)
P
(
Z̃1 ∈ [z̃1, z̃1 + dz̃1), . . . , Z̃n ∈ [z̃n, z̃n + dz̃n)

)
= exp

(
−

n∑
k=1

µk(z̃k − µk)−
1

2

n∑
k=1

µ2
k

)
· (2π)−

n
2 exp

(
− 1

2

n∑
k=1

(z̃k − µk)2
)
dz̃1 · · · dz̃n

= (2π)−
n
2 exp

(
− 1

2

n∑
k=1

z̃2
k

)
dz̃1 · · · dz̃n.

This reveals that the variables {Z̃k}k=1,...,n are again independent N(0, 1) random variables

on space (Ω,F , P̃ ). If we take

Zk =
∆Wk√

∆tk
, Z̃k =

∆W̃k√
∆tk

, µk = φk
√

∆tk
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and take the formal limit as n → ∞, where ∆Wk = Wtk+1
−Wtk and Wt is the standard

Wiener process on (Ω,F , P ), we may claim that

W̃t = Wt +

∫ t

0

φ(s)ds

is again a standard Wiener process on (Ω,F , P̃ ) with

P̃ (dω) = exp
(
−
∫ t

0

φ(s)dWs −
1

2

∫ t

0

φ2(s)ds
)
P (dω). (3.9)

This claim is indeed true even for multidimensional case and the translation φ(t) can be

ω-dependent.

Theorem 3.1 (Girsanov theorem I). For Itô process

dW̃t = φ(t, ω)dt+ dWt, W̃0 = 0, (3.10)

where W ∈ Rd is a d-dimensional standard Wiener process on (Ω,F ,P). Define

Zt(ω) = exp
(
−
∫ t

0

φ(s, ω)dWs −
1

2

∫ t

0

φ2(s, ω)ds
)
. (3.11)

Assume φ(t, ω) satisfies Novikov’s condition

E exp
(1

2

∫ T

0

|φ|2(s, ω)ds
)
<∞, (3.12)

where T ≤ ∞ is a fixed constant. Define P̃ as

P̃(dω) = ZT (ω)P(dω), (3.13)

then we have W̃ is a d-dimensional Wiener process with respect to (Ω,FT , P̃) for t ≤ T .

The Novikov’s condition is to ensure the process Zt in (3.11) is an exponential martingale.

The rigorous proof of Theorem 3.1 may be referred to [3, 4]. The definition (3.11) does not

contradict (3.7). Indeed, they are consequences of each other. To see this, we note that for

any functional F〈
F [W̃t]

〉
P̃

=
〈
F [W̃t]ZT

〉
P

=
〈
F [W̃t] exp

(
−
∫ T

0

φ(s, ω)dW̃s +
1

2

∫ T

0

φ2(s, ω)ds
)〉

P

=
〈
F [Wt] exp

(
−
∫ T

0

φ(s, ω)dWs +
1

2

∫ T

0

φ2(s, ω)ds
)dµW̃

dµW

〉
P

=
〈
F [Wt]

〉
P
.
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It can also be verified by path integrals as follows

〈F [Wt]〉P =

∫
F [wt] ·

1

Z
exp

(
− 1

2

∫ T

0

ẇ2
t dt
)
δ(w0)Dw

=

∫
F [w̃t] ·

1

Z
exp

(
− 1

2

∫ T

0

˙̃w2
t dt
)
δ(w̃0)Dw̃

=

∫
F ◦ Φ[wt] ·

1

Z
exp

(
− 1

2

∫ T

0

ẇ2
t dt−

1

2

∫ T

0

φ2dt−
∫ T

0

φ(t)ẇtdt
)
δ(w0)Dw

=
〈
G[Wt] exp

(
− 1

2

∫ T

0

φ2(t)dt−
∫ T

0

φ(t)dWt

)〉
P

=
〈
F [W̃t] exp

(
− 1

2

∫ T

0

φ2(t)dt−
∫ T

0

φ(t)dWt

)〉
P

=
〈
F [W̃t]ZT

〉
P

=
〈
F [W̃t]

〉
P̃
.

Corresponding to (3.8), we have another form of Girsanov theorem.

Theorem 3.2 (Girsanov theorem II). For Itô processes X,Y satisfy{
dXt = b(Xt, t)dt+ σ(Xt, t)dWt, X0 = x,

dYt = (b(Yt, t) + γ(t, ω))dt+ σ(Yt, t)dWt, Y0 = x,

where X,Y , b,γ ∈ Rn, W ∈ Rm and σ ∈ Rn×m, and assume b and σ satisfy the usual

conditions in Theorem ??. Suppose there exists unique φ(t, ω) such that

σ(Xt, t)φ(t, ω) = γ(t, ω)

and the Novikov’s condition holds

E exp
(1

2

∫ T

0

|φ|2(s, ω)ds
)
<∞. (3.14)

Define W̃t, Zt and P̃ as in Theorem 3.1, then W̃ is a standard Wiener process under

(Ω,FT , P̃) and Y satisfies

dYt = b(Yt, t)dt+ σ(Yt, t)dW̃t, Y0 = x, t ≤ T.

Thus the law of Yt under P̃ is the same that of Xt under P for t ≤ T .

The readers may be referred to [3, 4] for proof details.

4 Feynman-Kac Formula: Revisited

Earlier we have known that the solution of PDE

∂tv =
1

2
∆v + q(x)v, v|t=0 = f(x)
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can be represented as

v(x, t) = Ex
(

exp
(∫ t

0

q(Ws)ds
)
f(Wt)

)
.

In path integral form

v(x, t) =

∫
δ(w0 − x)

1

Z
exp

(
−
∫ t

0

(1

2
ẇ2
s − q(ws)

)
ds
)
f(wt)Dw,

where the delta-function δ(w0 − x) is to shift the starting point of the Wiener process to x.

Feynmann-Kac formula originates from Feynmann’s interpretation of quantum mechanics,

namely that solution of linear Schrödinger equation

i~∂tψ = − ~2

2m
∆ψ + V (x)ψ, ψ|t=0 = ψ0(x) (4.1)

can be expressed formally as

ψ(x, t) =

∫
δ(w0 − x)

1

Z
exp

( i
~
I[w]

)
ψ0(wt)Dw, (4.2)

where I[·] is the Lagrangian defined as

I[w] =

∫ t

0

(m
2
ẇ2
s − V (ws)

)
ds.

Formally if we take

m = 1, ~ = −i

in (4.1) and (4.2), we exactly obtain the above formulation for Feynman-Kac problem!

Indeed, that is the real story on how Feynman-Kac formula is created.

Feynman’s formally expression is yet to be made rigorous. However, Kac’s reinterpre-

tation for the heat equation instead of Schrödinger’s equation can be readily proved. The

Feynman-Kac formula can also be generalized to the case when ∆ is replaced by more

general second order differential operator as we did in previous Chapter.

Homeworks

1. Derive the infinite dimensional characteristic function for Wiener process Wt〈
exp

(
i

∫ 1

0

ξ(t)dWt

)〉
= exp

(
− 1

2

∫ 1

0

|ξ|2dt
)
.
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