Computer Projects: Applied Stochastic Analysis

Tiejun Li

There are 2 computer projects. The final project reports must be carefully written with LATEX to include the following points:

- The detailed setup of the problem.
- The procedure you take to do the computation and analysis of the numerical results.
- The issues you encounter and how you overcome.
- Possible discussion about the results and further thinking.

Please submit the hardcopy/e-copy to our TA. The reports could be composed in either Chinese or English.

1. Metropolis algorithm: Potts model.

Problem. Apply the Monte Carlo simulations to study the phase transition behavior of the 2D Potts model on the $N \times N$ square lattice with periodic boundary condition. The Hamiltonian of the q-state Potts model is defined as

$$H(\sigma) = -J \sum_{\langle i,j \rangle} \delta_{\sigma_i \sigma_j} - h \sum_i \sigma_i, \quad i = 1, 2 \dots, N^2$$

where $\sigma_i = 1, 2, ..., q$, $\delta_{\sigma_i \sigma_j} = 1$ if $\sigma_i = \sigma_j$ and 0 otherwise. Take q = 3 or q = 10 as concrete examples to explore the following problems.

(a) Take J = 1, $k_B = 1$ and h = 0. Plot the internal energy u

$$u = \frac{U}{N^2}$$
 where $U = \langle H \rangle = \frac{1}{Z} \sum_{\sigma} H(\sigma) \exp(-\beta H(\sigma))$

and the specific heat

$$c = \frac{C}{N^2}$$
 where $C = k_B \beta^2 \operatorname{Var}(H)$

as the function of temperature T, where $\beta = (k_B T)^{-1}$ and $Z = \sum_{\sigma} \exp(-\beta H(\sigma))$ is the partition function. Identify the critical temperature T_* of the phase transition when N is sufficiently large.

(b) For different temperature T, plot the magnetization

$$m = \frac{M}{N^2}$$
 where $M = \left\langle \sum_i \sigma_i \right\rangle$

as the function of h. Can you say something from these plots?

(c) Define the spatial correlation function

$$C(i,j) = \langle \sigma_i \sigma_j \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle$$

and the correlation length ξ as the characteristic length that $\Gamma(k) = C(i, j)|_{|i-j|=k}$ decays to 0. One can approximate $\Gamma(k)$ by computing the average

$$\Gamma(k) \approx \frac{1}{4N^2} \sum_{i} \sum_{j \in S_i} C(i, j),$$

where i is taken with respect to the whole N^2 lattice points, and the set

 $S_i = \{j | i - j = \pm(k, 0) \text{ or } \pm(0, k)\},\$

the constant 4 in $\Gamma(k)$ is from four points $j \in S_i$. (The above approximation can be similarly extended to the average with respect to all point pairs with distance k.) The correlation length can then be defined through

$$\Gamma(k) \propto \Gamma_0 \exp(-k/\xi), \qquad k \gg 1$$

Study the correlation length ξ as the function of T when h = 0.

(d) When h = 0, investigate the behavior of c and ξ around the critical temperature T_* if we assume the limiting behavior

$$c \sim c_0 \epsilon^{-\gamma}$$
 and $\xi \sim \xi_0 \epsilon^{-\delta}$,

where $\epsilon = |1 - T/T_*|$. That is, you need to numerically find the scaling exponents γ and δ through the linear fitting to the log-log plot of the obtained points in ϵ -c or ϵ - ξ space.

- (e) (*optional*) Study the above problems in the 3D case.
- 2. Exit time: Numerical SDEs

Denote the pdfs

$$p_+(x,y) = \mathcal{N}((+1,0), I_2), \ p_-(x,y) = \mathcal{N}((-1,0), I_2).$$

Define $p(x,y) = (p_+(x,y) + p_-(x,y))/2$, and the potential $V(x,y) := -\ln p(x,y)$. Consider the SDEs

$$d\boldsymbol{X}_t = -\nabla V(\boldsymbol{X}_t)dt + \sqrt{2\epsilon d\boldsymbol{W}_t}$$

where $\boldsymbol{X}_t := (X_t, Y_t)$ and \boldsymbol{W}_t is the standard Wiener process in \mathbb{R}^2 .

(a) For a fixed ϵ , compute the quantity $T(\epsilon, \mathbf{x}_0) = \mathbb{E}^{\mathbf{x}_0} \tau_b^{\epsilon}$ through the simulation of the above SDEs, where $\mathbf{x}_0 = (1, 0)$, and the stopping time

$$\tau_{b}^{\epsilon} := \inf\{t \ge 0 : X_{t} = 0\}.$$

- (b) Investigate the function $T(\epsilon, \mathbf{x}_0)$ numerically for different ϵ when ϵ is varied from large to small. What can you infer from these results?
- (c) Investigate the function $T(\epsilon, \mathbf{x}_0)$ numerically for different \mathbf{x}_0 . What can you infer from these results?