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课程信息

大数据分析中的算法
侧重数值代数和最优化算法

课程代码：00136720 (本科生），00100863（本研合）

教师信息：文再文，wenzw@pku.edu.cn,微信：wendoublewen

助教信息：李天佑，陈铖

上课地点：二教401

上课时间：每周周一3-4节(10:10am - 12:00am)，双周周
四1-2节(8:00am - 9:50am)

课程主页:
http://bicmr.pku.edu.cn/~wenzw/bigdata2024.html
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参考资料

class notes, and reference books or papers
“Convex optimization”, Stephen Boyd and Lieven Vandenberghe

“Numerical Optimization”, Jorge Nocedal and Stephen Wright,
Springer

“Optimization Theory and Methods”, Wenyu Sun, Ya-Xiang Yuan

刘浩洋,户将,李勇锋，文再文，最优化：建模、算法与理论,高教
出版社，ISBN：9787040550351

文再文课题组，大数据分析中的算法



5/41

课程计划

侧重数值代数和最优化的模型与算法

线性规划，半定规划

压缩感知和稀疏优化基本理论和算法

低秩矩阵恢复的基本理论和算法

Optimal transport

整数规划

随机优化算法

随机特征值算法

相位恢复

强化学习(reinforcement learning)
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课程信息

教学方式：课堂讲授

成绩评定办法：

迟交一天(24小时）打折10%，不接受晚交4天的作业和项目（任何
时候理由都不接受）

大作业，包括习题和程序：40%

期中考试：30%

课程项目：30%

作业要求：i)计算题要求写出必要的推算步骤，证明题要写出关键
推理和论证。数值试验题应该同时提交书面报告和程序，其中书面
报告有详细的推导和数值结果及分析。ii)可以同学间讨论或者找助
教答疑，但不允许在讨论中直接抄袭，应该过后自己独立完成。iii)
严禁从其他学生，从互联网，从往年的答案，其它课程等等任何途
径直接抄袭。iv)如果有讨论或从其它任何途径取得帮助，请列出
来源。

请谨慎选课
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机器学习：监督学习简介

机器学习，人工智能

计算机视觉，自然语言处理(ChatGPT）
围棋：AlphaGo, AlphaGo Zero

科学发现经常围绕建立函数关系：f : X → Y
蛋白质结构预测(Alphafold2): X: 蛋白质序列; Y: 三维结构
深度势能: X: 分子结构; Y: 原子势能

挑战: f 非常高维、高度非线性，只有它的很少量已知的知识或者
计算非常昂贵

机遇:我们有很多的数据:

{(xi, yi) | xi ∈ X, yi ∈ Y, 1 ≤ i ≤ N}.

机器学习是构造 f̂ ≈ f 的强大工具
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监督学习中典型问题形式

机器学习构造f̂ 的典型方式：f̂ = h(x, θ)

min
θ∈W

1
N

N∑
i=1

∥x⊤i θ − yi∥2
2 + µφ(θ) 线性回归

min
θ∈W

1
N

N∑
i=1

log(1 + exp(−yix⊤i θ)) + µφ(θ) 逻辑回归

min
θ∈W

1
N

N∑
i=1

ℓ(h(xi, θ), yi) + µφ(θ) 一般形式

(xi, yi)是给定的数据对，yi 是数据xi对应的标签

ℓi(·): 度量模型拟合数据点i的程度(避免拟合不足)
φ(θ): 避免过拟合的正则项: ∥θ∥2

2 或者∥θ∥1等等

h(x, θ): 线性函数、决策树/森林或者由深度神经网络构造的模型



10/41

机器学习：表达能力，泛化，优化

ground truth: ϑ∗
D = argmin

ϑ∈Ĥ
E[ℓ(h(x, θ), y)]

optimal hypothesis: θ∗D = argmin
θ∈H

E[ℓ(h(x, θ), y)]

empirical optimal hypothesis: θ∗S = argmin
θ∈H

1
N

∑N
i=1 ℓ(h(xi, θ), yi)

returned hypothesis: θ̄
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机器学习与优化

美国三院院士Michael Jordan教授国际数学家大会一小时报告

我们时代的一个很大挑战是统计推理
和计算的平衡。大部分数据分析有时
间限制，他们经常被嵌入到某个控制
问题里。

最优化为这个努力提供了计算模型，
给出了算法和深刻的理解。

现代大规模统计给优化带来了新的挑
战：百万量级变量/函数项，抽样问
题，非凸，置信区间，并行/分布式平
台等等



12/41

机器学习与优化

“Statistics and the Oncoming AI Revolution”

What has made ML so successful? What
are the disciplines supporting ML and
providing a good basis to understand the
challenges, open problems, and limitations
of the current techniques?
1) basic statistical tools: linear models,
generalized linear models, logistic
regression, cross validation, overfitting . . .
2) probability theory and probabilistic
modeling.
How about engineering disciplines?
Clearly, progress in
optimization—particularly in convex
optimization—has fueled ML algorithms
for the last two decades.

美国科学院院
士Emmanuel
Candès
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通用最优化模型和算法

最优化问题一般可以描述为

min f (x),

s.t. x ∈ X

按照目标函数和约束函数的形式来分：
线性规划/非线性规划、凸优化/非凸优化、非光滑优化、半定规
划、锥规划、整数规划、无导数优化、几何优化、稀疏优化、低
秩矩阵优化、张量优化、鲁棒优化、全局优化、组合优化、网络
规划、随机优化、动态规划、带微分方程约束优化、微分流形约
束优化、分布式优化等

具体应用涵盖：
运筹学、供应链管理、物流管理、资产管理、统计学习、压缩感
知、最优运输、信号处理、图像处理、机器学习、强化学习、模
式识别、金融工程、电力系统等领域
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稀疏优化

(ℓ0)

{
min
x∈Rn

∥x∥0,

s.t. Ax = b.
(ℓ2)

{
min
x∈Rn

∥x∥2,

s.t. Ax = b.
(ℓ1)

{
min
x∈Rn

∥x∥1,

s.t. Ax = b.

其中∥x∥0是指x中非零元素的个数．由于∥x∥0是不连续的函数，且
取值只可能是整数，ℓ0问题实际上是NP难的，求解起来非常困
难．

若定义ℓ1范数：∥x∥1 =
∑n

i=1 |xi|，我们得到了另一个形式上非常
相似的问题，又称ℓ1范数优化问题，基追踪问题

ℓ2范数：∥x∥2 =
(∑n

i=1 x2
i
)1/2
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稀疏优化

在MATLAB环境里构造A, u和b：

1 m = 128; n = 256;
2 A = randn(m, n);
3 u = sprandn(n, 1, 0.1);
4 b = A * u;

构造一个128 × 256矩阵A，它的每个元素都服从高斯（Gauss）随机分
布．精确解u只有10%的元素非零，每一个非零元素也服从高斯分布
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(a) 精确解u
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(b) ℓ1问题的解
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(c) ℓ2问题的解

Figure:稀疏优化的例子
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低秩矩阵恢复

某视频网站提供了约48万用户对1万7千多部电影的上亿条评级数
据，希望对用户的电影评级进行预测，从而改进用户电影推荐系
统，为每个用户更有针对性地推荐影片．

显然每一个用户不可能看过所有的电影，每一部电影也不可能收
集到全部用户的评级．电影评级由用户打分1星到5星表示，记为
取值1~5的整数．我们将电影评级放在一个矩阵M中，矩阵M的
每一行表示不同用户，每一列表示不同电影．由于用户只对看过
的电影给出自己的评价，矩阵M中很多元素是未知的

电影1 电影2 电影3 电影4 ··· 电影n
用户1 4 ? ? 3 · · · ?
用户2 ? 2 4 ? · · · ?
用户3 3 ? ? ? · · · ?
用户4 2 ? 5 ? · · · ?

...
...

...
...

...
...

用户m ? 3 ? 4 · · · ?


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低秩矩阵恢复

令Ω 是矩阵M 中所有已知评级元素的下标的集合，则该问题可以
初步描述为构造一个矩阵X，使得在给定位置的元素等于已知评级
元素，即满足Xij = Mij, (i, j) ∈ Ω．

低秩矩阵恢复（low rank matrix completion）

min
X∈Rm×n

rank(X),

s.t. Xij = Mij, (i, j) ∈ Ω.

rank(X)正好是矩阵X所有非零奇异值的个数

矩阵X的核范数（nuclear norm）为矩阵所有奇异值的和，
即：∥X∥∗ =

∑
i σi(X):

min
X∈Rm×n

∥X∥∗,

s.t. Xij = Mij, (i, j) ∈ Ω.
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视频分离

将视频分成移动和静态的部分
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稀疏和低秩矩阵分离

给定矩阵M，我们想找到一个低秩矩阵W和稀疏矩阵E，使得

W + E = M.

非凸模型：
min

W,E∈Rm×n
rank(W) + µ∥E∥0,

s.t. W + E = M.

凸松弛：
min
W,E

∥W∥∗ + µ∥E∥1, s.t. W + E = M

鲁棒主成分分析
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卷积神经网络Convolutional neural network (CNN)

给定二维图像I ∈ Rn×n和卷积核K ∈ Rk×k，定义卷积操
作S = I ∗ K，它的元素是

Si,j = ⟨I(i : i + k − 1, j : j + k − 1),K⟩ ,
其中两个矩阵X,Y的内积是它们相应元素乘积之和

生成的结果S可以根据卷积核的维数、I的边界是否填充、卷积操
作时滑动的大小等相应变化．

1 2 2 1 2 1 1
0 0 0 1 2 0 0
2 0 1 2 0 1 1
2 1 1 0 1 0 1
1 0 2 0 1 2 2
1 2 1 0 1 0 2
0 2 2 1 1 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

6 5 6 7 4
3 3 6 1 5
7 3 4 6 4
5 5 4 1 7
7 4 6 4 4

S = I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure:卷积操作
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卷积神经网络Convolutional neural network (CNN)

LeCun等人开创性的建立了数字分类的神经网络。几家银行使用它来
识别支票上的手写数字。
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Schrödinger equation

The N-electron Schrödinger equation

HΨ = EΨ,

where H is the molecular Hamiltonian operator, Ψ is a N-electron
antisymmetric wave function.

Curse of dimensionality: computational work goes as 103N .

Kohn-Sham total energy minimization (Manifold Optimization):

min
X∗X=I

EKS(X) := Ekinetic(X) + Eion(X) + EHartree(X) + Exc(X),

where ∇EKS(X) = H(X)X.

Kohn-Sham equation:

H(X)X = XΛ, X∗X = I
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FermiNet: 特征值优化问题+深度神经网络+SGD

Minimizing the following Rayleigh quotient:

E0 = min
Ψ

E[Ψ ] =

∫
Ψ∗(r)ĤΨ(r)dr∫
Ψ∗(r)Ψ(r)dr

Variational Quantum Monte Carlo:

min
θ

L(θ) =
∫
Ψ∗
θ (r)ĤΨθ(r)dr∫
Ψ∗
θ (r)Ψθ(r)dr

=

∫ |Ψθ(r)|2∫
|Ψθ(r)|2dr

(
Ψ−1
θ (r)ĤΨθ(r)

)
dr

= EPθ(r) [EL(r)] =⇒ solved by SGD

Local Energy: EL(r) = Ψ−1
θ (r)ĤΨθ(r),

Probability distribution: Pθ(r) =
|Ψθ(r)|2∫
|Ψθ(r)|2dr
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铁路运行图的地位

致谢：北京交通大学乐逸祥教授团队
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开行方案



29/41

铁路运行图难点：速差、列车越行
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铁路运行图难点：高密度
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铁路运行图建模

难点：列车前后关系的确定，MILP
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铁路运行图建模

时空网络模型：
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宏观运行图建模：时空网络模型
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宏观运行图建模：时空网络模型
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宏观运行图建模：时空网络模型
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宏观运行图建模：目标函数

变量xaf 表示列车f是否在弧段a上运行:

xaf =

{
1 if列车f在弧段a上运行
0 o.w.



37/41

宏观运行图建模：流平衡约束
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宏观运行图建模：轨道占用约束
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宏观运行图建模：轨道占用约束
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宏观运行图建模：整体模型

References: Simultaneously re-optimizing timetables and platform
schedules under planned track maintenance for a high-speed railway
network, https://doi.org/10.1016/j.trc.2020.102823



41/41

课程项目

课程项目文件描述（持续更新）：
http://faculty.bicmr.pku.edu.cn/~wenzw/bigdata/
trainsch.pdf

（混合）整数规划建模: 从自然语言描述用大语言模型自动建模

调用Gurobi, Mosek或者SCIP等算法软件直接求解

基于ALM等连续优化算法+贪婪算法求解

实现AM系列算法求解

强化学习方法求解



Lecture: Introduction to LP, SDP and SOCP

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html
wenzw@pku.edu.cn

Acknowledgement: this slides is based on Prof. Farid Alizadeh lecture notes
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Outline

1 Linear Programming (LP)

2 Semidefinite Programming (SDP)

3 Second Order Cone Programming (SOCP)



3/43

Linear Programming (LP)

Primal

min
xi

c1x1 + . . .+ cnxn

s.t. a11x1 + . . .+ a1nxn = b1

. . .

am1x1 + . . .+ amnxn = bm

xi ≥ 0

Dual

max
yi

b1y1 + . . .+ bmym

s.t. a11y1 + . . .+ am1ym ≤ c1

. . .

a1ny1 + . . .+ amnym ≤ cn
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Linear Programming (LP)

more succinctly

Primal (P)

min
x

c⊤x

s.t. Ax = b

x ≥ 0

Dual (D)

max
y,s

b⊤y

s.t. A⊤y + s = c

s ≥ 0
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Problems with absolute values

min
∑

i

ci|xi|, assume c ≥ 0

s.t. Ax ≥ b

Reformulation 1:

min
∑

i

cizi

s.t. Ax ≥ b

|xi| ≤ zi

⇐⇒

min
∑

i

cizi

s.t. Ax ≥ b

− zi ≤ xi ≤ zi

Reformulation 2: xi = x+i − x−i , x+i , x−i ≥ 0. Then |xi| = x+i + x−i

min
∑

i

ci(x+i + x−i )

s.t. Ax+ − Ax− ≥ b, x+, x− ≥ 0
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LLM: GPT4
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LLM: GPT4



8/43

Problems with absolute values

data fitting:
min

x
∥Ax − b∥∞

min
x

∥Ax − b∥1

Compressive sensing

min ∥x∥1, s.t. Ax = b (LP)

min µ∥x∥1 +
1
2∥Ax − b∥2 (QP, SOCP)

min ∥Ax − b∥, s.t. ∥x∥1 ≤ 1
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An example of linear programming: 菜鸟



10/43

Optimal transport
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Optimal transport: LP

min
π∈Rm×n

m∑
i=1

n∑
j=1

cijπij

s.t.
n∑

j=1

πij = µi, ∀i = 1, . . . ,m,

m∑
i=1

πij = νi, ∀j = 1, . . . , n

π ≥ 0
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Weak duality

Suppose
x is feasible to (P)
(y, s) is feasible to (D)

Then

0 ≤ x⊤s because xisi ≥ 0

= x⊤(c − A⊤y)

= c⊤x − (Ax)⊤y

= c⊤x − b⊤y

= duality gap
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Key Properties of LP

Strong duality: If both Primal and Dual are feasible then at the
optimum

c⊤x = b⊤y ⇐⇒ x⊤s = 0

complementary slackness: This implies

x⊤s = x1s1 + . . .+ xnsn = 0 and therefore
xisi = 0
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complementarity

Putting together primal feasibility, dual feasibility and
complementarity together we get a square system of equations

Ax = b, x ≥ 0,

A⊤y + s = c, s ≥ 0,

xisi = 0 for i = 1, . . . , n

At least in principle this system determines the primal and dual
optimal values
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Outline

1 Linear Programming (LP)

2 Semidefinite Programming (SDP)

3 Second Order Cone Programming (SOCP)
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Semidefinite Programming (SDP)

X ⪰ Y means that the the symmetric matrix X − Y is positive
semidefinite

X is positive semidefinite

a⊤Xa ≥ 0 for all vector a ⇐⇒ X = B⊤B ⇐⇒

all eigenvalues of X is nonnegative
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SDP

For simplicity we deal with single variable SDP:
Primal (P)

min
X

⟨C,X⟩

s.t. ⟨A1,X⟩ = b1

. . .

⟨Am,X⟩ = bm

X ⪰ 0

Dual (D)

max
y,S

b⊤y

s.t.
∑

i

yiAi + S = C

S ⪰ 0

A single variable LP is trivial
But a single matrix SDP is as general as a multiple matrix
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Facts on matrix calcuation

If A,B ∈ Rm×n, then Tr(AB⊤) = Tr(B⊤A)

If U,V ∈ Sn and Q is orthogonal, then ⟨U,V⟩ =
〈
Q⊤UQ,Q⊤UQ

〉
If X ∈ Sn, then U = Q⊤ΛQ, where Q⊤Q = I and Λ is diagonal.

Matrix norms: ∥X∥F = ∥λ(X)∥2, ∥X∥2 = ∥λ(X)∥∞, λ(X) = diag(Λ)

X ⪰ 0 ⇐⇒ v⊤Xv ≥ for all v ∈ Rn ⇐⇒ λ(X) ≥ 0 ⇐⇒ X = B⊤B

The dual cone of Sn
+ is Sn

+

If X ⪰ 0, then Xii ≥ 0. If Xii = 0, then Xik = Xki = 0 for all k.

If X ⪰ 0, then PXP⊤ ⪰ 0 for any P of approriate dimensions

If X =

(
X11 X12
X⊤

12 X22

)
⪰ 0, then X11 ⪰ 0.

X ⪰ 0 iff every principal submatrix is positive semidefinite (psd).



19/43

Facts on matrix calcuation

Let U =

(
A B

B⊤ C

)
with A and C symmetric and A ≻ 0. Then

U ⪰ 0 ( or ≻ 0) ⇐⇒ C − B⊤A−1B ⪰ 0 ( or ≻ 0).

The matrix C − B⊤A−1B is the Schur complement of A in U:(
A B

B⊤ C

)
=

(
I 0

B⊤A−1 I

)(
A 0
0 C − B⊤A−1B

)(
I A−1B
0 I

)
If A ∈ Sn, then x⊤Ax =

〈
A, xx⊤

〉
If A ≻ 0, then ⟨A,B⟩ > 0 for every nonzero B ⪰ 0 and
{B ⪰ 0 | ⟨A,B⟩ ≤ β} is bounded for β > 0

If A,B ⪰ 0, then ⟨A,B⟩ = 0 iff AB = 0

A,B ∈ Sn, then A and B are commute iff AB is symmetric, iff A
and B can be simultaneously diagonalized
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Eigenvalue optimization

minimizing the largest eigenvalue λmax(A0 +
∑

i xiAi):

min λmax(A0 +
∑

i

xiAi)

can be expressed as an SDP

min z

s.t. zI −
∑

i

xiAi ⪰ A0

and its dual is

max ⟨A0,Y⟩
s.t. ⟨Ai,Y⟩ = k

⟨I,Y⟩ = 1

Y ⪰ 0

follows from
λmax(A) ≤ t ⇐⇒ A ⪯ tI
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Eigenvalue optimization

Let Ai ∈ Rm×n. Minimizing the 2-norm of A(x) = A0 +
∑

i xiAi:

min
x

∥A(x)∥2

can be expressed as an SDP

min
x,t

t

s.t.
(

tI A(x)
A(x)⊤ tI

)
⪰ 0

Constraint follows from

∥A∥2 ≤ t ⇐⇒ A⊤A ⪯ t2I, t ≥ 0

⇐⇒
(

tI A(x)
A(x)⊤ tI

)
⪰ 0
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Quadratically Constrained Quadratic Programming

Consider QCQP

min x⊤A0x + 2b⊤0 x + c0 assume Ai ∈ Sn

s.t. x⊤Aix + 2b⊤i x + ci ≤ 0, i = 1, . . . ,m

If A0 ≻ 0 and Ai = B⊤
i Bi, i = 1, . . . ,m, then it is a SOCP

If Ai ∈ Sn but may be indefinite

x⊤Aix + 2b⊤i x + ci =
〈

Ai, xx⊤
〉
+ 2b⊤i x + ci

The original problem is equivalent to

min TrA0X + 2b⊤0 x + c0

s.t. TrAiX + 2b⊤i x + ci ≤ 0, i = 1, . . . ,m

X = xx⊤
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QCQP

If Ai ∈ Sn but may be indefinite

x⊤Aix + 2b⊤i x + ci =

〈(
Ai bi

b⊤i ci

)
,

(
X x
x⊤ 1

)〉
:=

〈
Āi, X̄

〉
X̄ ⪰ 0 is equivalent to X ⪰ xx⊤

The SDP relaxation is

min TrĀ0X̄

s.t. TrĀiX̄ ≤ 0, i = 1, . . . ,m

X̄ ⪰ 0

Maxcut: max x⊤Wx, s.t. x2
i = 1

Phase retrieval: |a⊤i x| = bi, the value of a⊤i x is complex
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Max cut

For graph (V,E) and weights wij = wji ≥ 0, the maxcut problem is

(Q) max
x

1
2

∑
i<j

wij(1 − xixj), s.t. xi ∈ {−1, 1}

Relaxation:

(P) max
vi∈Rn

1
2

∑
i<j

wij(1 − v⊤i vj), s.t. ∥vi∥2 = 1

Equivalent SDP of (P):

(SDP) max
X∈Sn

1
2

∑
i<j

wij(1 − Xij), s.t. Xii = 1,X ⪰ 0
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Max cut: rounding procedure

Goemans and Williamson’s randomized approach
Solve (SDP) to obtain an optimal solution X. Compute the
decomposition X = V⊤V, where

V = [v1, v2, . . . , vn]

Generate a vector r uniformly distributed on the unit sphere, i.e.,
∥r∥2 = 1

Set

xi =

{
1 v⊤i r ≥ 0
−1 otherwise
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Max cut: theoretical results

Let W be the objective function value of x and E(W) be the
expected value. Then

E(W) =
1
π

∑
i<j

wij arccos(v⊤i vj)

Goemans and Williamson showed:

E(W) ≥ α
1
2

∑
i<j

wij(1 − v⊤i vj)

where
α = min

0≤θπ

2
π

θ

1 − cos θ
> 0.878

Let Z∗
(SDP) and Z∗

(Q) be the optimal values of (SDP) and (Q)

E(W) ≥ αZ∗
(SDP) ≥ αZ∗

(Q)
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Weak duality in SDP

Just as in LP
⟨X, S⟩ = ⟨C,X⟩ − b⊤y

Also if both X ⪰ 0 and S ⪰ 0 then

⟨X, S⟩ = Tr(XS1/2S1/2) = Tr(S1/2XS1/2) ≥ 0

because S1/2XS1/2 ⪰ 0

Thus
⟨X, S⟩ = ⟨C,X⟩ − b⊤y ≥ 0
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Complementarity Slackness Theorem

X ⪰ 0 and S ⪰ 0 and ⟨X, S⟩ = 0 implies

XS = 0

Proof:
⟨X, S⟩ = Tr(XS1/2S1/2) = Tr(S1/2XS1/2)

Thus Tr(S1/2XS1/2) = 0. Since S1/2XS1/2 ⪰ 0, then

S1/2XS1/2 = 0 =⇒ S1/2X1/2X1/2S1/2 = 0

X1/2S1/2 = 0 =⇒ XS = 0
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Equivalent complementarity slackness

For reasons to become clear later it is better to write
complementary slackness conditions as

XS + SX
2

= 0

It can be shown that if X ⪰ 0 and S ⪰ 0, then XS = 0 iff

XS + SX = 0
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Constraint Qualifications

Unlike LP we need some conditions for the optimal values of
Primal and Dual SDP to coincide

Here are two:
If there is primal-feasible X ≻ 0 (i.e. X is positive definite)
If there is dual-feasible S ≻ 0

When strong duality holds ⟨X, S⟩ = 0
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KKT Condition

Thus just like LP, the system of equations are

⟨Ai,X⟩ = bi, X ⪰ 0,∑
i

yiAi + S = C, S ⪰ 0,

X ◦ S = 0.

It gives us a square system.
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Outline

1 Linear Programming (LP)

2 Semidefinite Programming (SDP)

3 Second Order Cone Programming (SOCP)
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Second Order Cone Programming (SOCP)

For simplicity we deal with single variable SOCP:
Primal (P)

min c⊤x

s.t. Ax = b

xQ ⪰ 0

Dual (D)

max b⊤y

s.t. A⊤y + s = c

sQ ⪰ 0

the vectors x, s, c are indexed from zero

If z = (z0, z1, . . . , zn)
⊤ and z̄ = (z1, . . . , zn)

⊤

zQ ≥ 0 ⇐⇒ z0 ≥ ∥z̄∥
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Illustration of SOC

Q = {z | z0 ≥ ∥z̄∥}
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Quadratic Programming (QP)

min q(x) = x⊤Qx + a⊤x + β assume Q ≻ 0,Q = Q⊤

s.t. Ax = b

x ≥ 0

q(x) = ∥ū∥2 + β − 1
4 a⊤Q−1a, where ū = Q1/2x + 1

2 Q−1/2a.

equivalent SOCP

min u0

s.t. ū = Q1/2x +
1
2

Q−1/2a

Ax = b

x ≥ 0, (u0, ū) ⪰Q 0
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Robust linear programming

the parameters in LP are often uncertain

min c⊤x

s.t. a⊤i x ≤ bi

There can be uncertainty in c, ai, b.

two common approaches to handling uncertainty (in ai, for simplicity)
deterministic model: constraints must hold for all ai ∈ Ei

min c⊤x

s.t. a⊤i x ≤ bi, for all ai ∈ Ei

stochastic model: ai is random variable; constraints must hold
with probability η

min c⊤x

s.t. prob(a⊤i x ≤ bi) ≥ η
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deterministic approach via SOCP

Choose an ellipsoid as Ei:

Ei = {āi + Piu | ∥u∥2 ≤ 1}, āi ∈ Rn,Pi ∈ Rn×n

Robust LP
min c⊤x

s.t. a⊤i x ≤ bi, for all ai ∈ Ei

is equivalent to the SOCP

min c⊤x

s.t. ā⊤i x + ∥P⊤
i x∥2 ≤ bi

since
sup

∥u∥2≤1
(āi + Piu)⊤x = ā⊤i x + ∥P⊤

i x∥2
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stochastic approach via SOCP

ai is Gaussian with mean āi, covariance Σi ( ai ∼ N (āi,Σi)

a⊤i x is Gaussian r.v. with mean ā⊤i x, variance x⊤Σix; hence

prob(a⊤i x ≤ bi) = Φ

(
bi − ā⊤i x
∥Σ1/2x∥2

)
where Φ(x) = (1/

√
2π)

∫ x
−∞ e−t2/2dt is CDF of N (0, 1)

robust LP
min c⊤x

s.t. prob(a⊤i x ≤ bi) ≥ η

is equivalent to the SOCP

min c⊤x

s.t. ā⊤i x +Φ−1(η)∥Σ1/2x∥2 ≤ bi



39/43

Weak Duality in SOCP

The single block SOCP is not as trivial as LP but it still can be
solved analytically

weak duality: Again as in LP and SDP

x⊤s = c⊤x − b⊤y = duality gap

If x, s ⪰Q 0, then

x⊤s = x0s0 + x̄⊤s̄

≥ ∥x̄∥ · ∥s̄∥+ x̄⊤s̄ since x, s ⪰Q 0

≥ |x̄⊤s̄|+ x̄⊤s̄ Cauchy-Schwartz inequality
≥ 0
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Complementary Slackness for SOCP

Given x ⪰Q 0, s ⪰Q 0 and x⊤s = 0. Assume x0 > 0 and s0 > 0

We have

(∗) x2
0 ≥

n∑
i=1

x2
i

(∗∗) s2
0 ≥

n∑
i=1

s2
i ⇐⇒ x2

0 ≥
n∑

i=1

s2
i x2

0

s2
0

(∗ ∗ ∗) x⊤s = 0 ⇐⇒ −x0s0 =
∑

i

xisi ⇐⇒ −2x2
0 =

n∑
i=1

2xisix0

s0

Adding (*), (**), (***), we get 0 ≥
∑n

i=1

(
xi +

six0
s0

)2

This implies
xis0 + x0si = 0, for i = 1, . . . , n
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Illustration of SOC

When x ⪰Q 0, s ⪰Q 0 are orthogonal both must be on the boundary in
such a way that their projection on the x1, . . . , xn plane is collinear
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Strong Duality

at the optimum
c⊤x = b⊤y ⇐⇒ x⊤s = 0

Like SDP constraint qualifications are required

If there is primal-feasible x ≻Q 0

If there is dual-feasible s ≻Q 0
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Complementary Slackness for SOCP

Thus again we have a square system

Ax = b, x ⪰Q 0,

A⊤y + s = c, s ⪰Q 0,

x⊤s = 0

x0si + s0xi = 0
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Lagrangian

standard form problem (not necessarily convex)

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p∗.
Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x)

weighted sum of objective and constraint functions

λi is the Lagrange multiplier associated with fi(x) ≤ 0

νi is the Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

Lagrange dual function: g : Rm × Rp → R

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
p∑

i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν
lower bound property: if λ ≥ 0, then g(λ, ν) ≤ p∗

Proof: If x̃ is feasible and λ ≥ 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D
L(x, λ, ν) = g(λ, ν).

minimizing over all feasible x̃ gives p∗ ≥ g(λ, ν).
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The dual problem

Lagrange dual problem
max g(λ, ν)

s.t. λ ≥ 0

finds best lower bound on p∗, obtained from Lagrange dual
function

a convex optimization problem; optimal value denoted d∗

λ, ν are dual feasible if λ ≥ 0, (λ, ν) ∈ domg

often simplified by making implicit constraint (λ, ν) ∈ domg
explicit
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Standard form LP

(P) min c>x

s.t. Ax = b

x ≥ 0

(D) max b>y

s.t. A>y + s = c

s ≥ 0

Lagrangian is

L(x, λ, ν) = c>x + ν>(Ax− b)− λ>x = −b>ν + (c + A>v− λ)>x

L is affine in x, hence

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−b>ν, A>ν − λ+ c = 0
−∞ otherwise

lower bound property: p∗ ≥ −b>v if A>v + c ≥ 0

Check the dual of (D)
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Inequality form LP

min c>x

s.t. Ax ≤ b

Lagrangian is

L(x, λ, ν) = c>x + ν>(Ax− b) = −b>ν + (c + A>v)>x

L is affine in x, hence

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−b>ν, A>ν + c = 0
−∞ otherwise

Dual problem
max b>v

s.t. A>v = c, v ≤ 0



7/33

Equality constrained norm minimization

min ‖x‖
s.t. Ax = b

max b>v

s.t. ‖A>v‖∗ ≤ 1

Dual function

g(ν) = inf
x
(‖x‖ − ν>Ax + b>ν) =

{
b>ν ‖A>ν‖∗ ≤ 1
−∞ otherwise,

where ‖v‖∗ = sup‖u‖≤1 u>v is the dual norm of ‖ · ‖
Proof: follows from infx(‖x‖ − y>x) = 0 if ‖y‖∗ ≤ 1, −∞ otherwise

if ‖y‖∗ ≤ 1, then ‖x‖ − y>x ≥ 0 for all x, with equality if x = 0

if ‖y‖∗ > 1, then choose x = tu, where ‖u‖ ≤ 1, u>y = ‖y‖∗ > 1:

‖x‖ − y>x = t(‖u‖ − ‖y‖∗)→ −∞ as t→∞

for all x, with equality if x = 0
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LP with box constraints

min c>x

s.t. Ax = b

− 1 ≤ x ≤ 1

max − b>v− 1>λ1 − 1>λ2

s.t. c + A>v + λ1 − λ2 = 0

λ1 ≥ 0, λ2 ≥ 0

reformulation with box constraints made implicit

min f0(x) =

{
c>x −1 ≤ x ≤ 1
∞ otherwise

s.t. Ax = b

Dual function

g(ν) = inf
−1≤x≤1

(c>x + ν>(Ax− b)) = −b>ν − ‖A>v + c‖1

Dual problem:
max
ν

−b>ν − ‖A>v + c‖1
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Lagrange dual and conjugate function

min f0(x)

s.t. Ax ≤ b

Cx = d

dual function

g(λ, ν) = inf
x∈domf0

(f0(x) + (A>λ+ C>v)>x− b>λ− d>ν)

= −f ∗(−A>λ− C>v)− b>λ− d>ν

recall definition of conjugate f ∗(y) = supx∈domf (y
>x− f (x))

simplifies derivation of dual if conjugate of f0 is known



10/33

Conjugate function

the conjugate of a function f is

f ∗(y) = sup
x∈dom f

(yTx− f (x))

f ∗ is closed and

convex even if f is not Fenchel’s inequality

f (x) + f (y) ≥ xTy ∀x, y

(extends inequality xTx/2 + yTy/2 ≥ xTy to non-quadratic convex f )
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Quadratic function

f (x) =
1
2

xTAx + bTx + c

strictly convex case (A � 0)

f ∗(y) =
1
2
(y− b)TA−1(y− b)− c

general convex case (A � 0)

f ∗(y) =
1
2
(y− b)TA†(y− b)− c, dom f ∗ = range(A) + b
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Negative entropy and negative logarithm

negative entropy

f (x) =
n∑

i=1

xi log xi f ∗(y) =
n∑

i=1

eyi−1

negative logarithm

f (x) = −
n∑

i=1

log xi f ∗(y) = −
n∑

i=1

log(−yi)− n

matrix logarithm

f (x) = − log detX (dom f = Sn
++) f ∗(Y) = − log det(−Y)− n
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Indicator function and norm

indicator of convex set C: conjugate is support function of C

f (x) =
{

0, x ∈ C
+∞, x 6∈ C

f ∗(y) = sup
x∈C

yTx

norm: conjugate is indicator of unit dual norm ball

f (x) = ||x|| f ∗(y) =
{

0, ||y||∗ ≤ 1
+∞, ||y||∗ > 1

(see next page)
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proof: recall the definition of dual norm:

||y||∗ = sup
||x||≤1

xTy

to evaluate f ∗(y) = supx(y
Tx− ||x||) we distinguish two cases

if ||y||∗ ≤ 1, then (by definition of dual norm)

yTx ≤ ||x|| ∀x

and equality holds if x = 0; therefore supx(y
Tx− ||x||) = 0

if ||y||∗ > 1, there exists an x with ||x|| ≤ 1, xTy > 1; then

f ∗(y) ≥ yT(tx)− ||tx|| = t(yTx− ||x||)

and r.h.s. goes to infinity if t→∞
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The second conjugate

f ∗∗(x) = sup
y∈dom f ∗

(xTy− f ∗(y))

f ∗∗(x) is closed and convex

from Fenchel’s inequality xTy− f ∗(y) ≤ f (x) for all y and x):

f ∗∗ ≤ f (x) ∀x

equivalently, epi f ⊆ epi f ∗∗ (for any f )

if f is closed and convex, then

f ∗∗(x) = f (x) ∀x

equivalently, epi f = epi f ∗∗ (if f is closed convex); proof on next
page
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Conjugates and subgradients

if f is closed and convex, then

y ∈ ∂f (x) ⇔ x ∈ ∂f ∗(x) ⇔ xTy = f (x) + f ∗(y)

proof: if y ∈ ∂f (x), then f ∗(y) = supu(y
Tu− f (u)) = yTx− f (x)

f ∗(v) = sup
u
(vTu− f (u)

≥ vTx− f (x)

= xT(v− y)− f (x) + yTx

= f ∗(y) + xT(v− y)

(1)

for all v; therefore, x is a subgradient of f ∗ at y (x ∈ ∂f ∗(y))
reverse implication x ∈ ∂f ∗(y)⇒ y ∈ ∂f (x) follows from f ∗∗ = f



17/33

Some calculus rules

separable sum

f (x1, x2) = g(x1) + h(x2) f ∗(y1, y2) = g∗(y1) + h∗(y2)

scalar multiplication: (for α > 0)

f (x) = αg(x) f ∗(y) = αg∗(y/α)

addition to affine function

f (x) = g(x) + aTx + b f ∗(y) = g∗(y− a)− b

infimal convolution

f (x) = inf
u+v=x

(g(u) + h(v)) f ∗(y) = g∗(y) + h∗(y)
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Duality and problem reformulations

equivalent formulations of a problem can lead to very different
duals

reformulating the primal problem can be useful when the dual is
difficult to derive, or uninteresting

Common reformulations
introduce new variables and equality constraints

make explicit constraints implicit or vice-versa

transform objective or constraint functions
e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

min f0(Ax + b)

dual function is constant: g = infx L(x) = infx f0(Ax + b) = p∗

we have strong duality, but dual is quite useless

reformulated problem and its dual

(P) min f0(y)

s.t. Ax + b = y

(D) max b>y− f ∗0 (ν)

s.t. A>ν = 0

dual functions follows from

g(ν) = inf
x,y

f0(y)− ν>y + ν>Ax + b>ν

=

{
−f ∗0 (ν) + b>ν, A>ν = 0
−∞ otherwise
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Norm approximation problem

min ‖Ax− b‖ ⇐⇒
min ‖y‖
s.t. Ax− b = y

can look up conjugate of ‖ · ‖, or derive dual directly

g(ν) = inf
x,y

‖y‖+ ν>y− ν>Ax + b>ν

=

{
b>ν + infy ‖y‖+ ν>y, A>ν = 0
−∞, otherwise

=

{
b>ν, A>ν = 0, ‖v‖∗ ≤ 1
−∞, otherwise

Dual problem is
max b>ν

s.t. A>ν = 0, ‖v‖∗ ≤ 1
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Weak and strong duality

weak duality: d∗ ≤ p∗

always holds (for convex and nonconvex problems)

can be used to find nontrivial lower bounds for difficult problems
for example, solving the maxcut SDP

strong duality: d∗ = p∗

does not hold in general

(usually) holds for convex problems

conditions that guarantee strong duality in convex problems are
called constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

If it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

also guarantees that the dual optimum is attained (if p∗ > −∞)
can be sharpened: e.g., can replace intD with relintD (interior
relative to affine hull); linear inequalities do not need to hold with
strict inequality, . . .
there exist many other types of constraint qualifications
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Complementary slackness

assume strong duality holds, x∗ is primal optimal, (λ∗, ν∗) is dual
feasible

f0(x∗) = g(λ∗, ν∗) = inf
x∈D

(
f0(x) +

m∑
i=1

λ∗i fi(x) +
p∑

i=1

ν∗i hi(x)

)

≤ f0(x∗) +
m∑

i=1

λ∗i fi(x∗) +
p∑

i=1

ν∗i hi(x∗)

≤ f0(x∗)

hence, the two inequalities hold with equality
x∗ minimizes L(x, λ∗, ν∗)

λ∗i fi(x∗) = 0 for i = 1, . . . ,m (known as complementary
slackness):

λ∗i > 0 =⇒ fi(x∗) = 0, fi(x∗) < 0 =⇒ λ∗i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem
with differentiable fi, hi):

1 primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

2 dual constraints: λ ≥ 0

3 complementary slackness: λifi(x) = 0, i = 1, . . . ,m

4 gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑

i=1

λi∇fi(x) +
p∑

i=1

νi∇hi(x) = 0

If strong duality holds and x, λ, ν are optimal, then they must satisfy
the KKT conditions
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KKT conditions for convex problem

If x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal
from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)
Hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:
x is optimal if and only if there exist λ, ν that satisfy KKT conditions

recall that Slater implies strong duality, and dual optimum is
attained

generalizes optimality condition ∇f0(x) = 0 for unconstrained
problem
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LP Duality

Strong duality: If a LP has an optimal solution, so does its dual, and
their objective fun. are equal.

PPPPPPPPdual
primal finite unbounded infeasible

finite
√

× ×
unbounded × ×

√

infeasible ×
√ √

If p∗ = −∞, then d∗ ≤ p∗ = −∞, hence dual is infeasible

If d∗ = +∞, then +∞ = d∗ ≤ p∗, hence primal is infeasible

min x1 + 2x2

s.t. x1 + x2 = 1

2x1 + 2x2 = 3

max p1 + 3p2

s.t. p1 + 2p2 = 1

p1 + 2p2 = 2
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Problems with generalized inequalities

min f0(x)

s.t. fi(x) �Ki 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

fi(x) � Ki means −fi(x) ∈ Ki.

Lagrangian: 〈·, ·〉Ki
inner product in Ki

L(x, λ1, . . . , λm, ν) = f0(x) +
m∑

i=1

〈λi, fi(x)〉Ki
+

p∑
i=1

νihi(x)

dual function

g(λ1, . . . , λm, ν) = inf
x∈D

L(x, λ1, . . . , λm, ν)
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lower bound property: if λi ∈ K∗i , then g(λ1, . . . , λm, ν) ≤ p∗

proof: If x̃ is feasible and λ �K∗
i

0, then

f0(x̃) ≥ f0(x̃) +
m∑

i=1

〈λi, fi(x̃)〉Ki
+

p∑
i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

minimizing over all feasible x̃ gives g(λ1, . . . , λm, ν) ≤ p∗.
Dual problem

max g(λ1, . . . , λm, ν)

s.t. λi �K∗
i

0, i = 1, . . . ,m

weak duality: p∗ ≥ d∗

strong duality: p∗ = d∗ for convex problem with constraint
qualification (for example, Slater’s: primal problem is strictly
feasible)
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Semidefinite program

primal SDP (Ai,C ∈ Sn )

min bTy

s.t. y1A1 + · · ·+ ymAm � C

Lagrange multiplier is matrix Z ∈ Sn

Lagrangian L(y,Z) = bTy + tr(Z(y1A1 + · · ·+ ymAm − C))

dual function

g(Z) = inf
y

L(y,Z) =

{
− tr(CZ) tr(AiZ) + bi = 0, i = 1, ...,m

−∞ otherwise

dual SDP
max − tr(CZ)

s.t. Z � 0, tr(AiZ) + bi = 0, i = 1, ...,m

p∗ = d∗ if primal SDP is strictly feasible (∃y with y1A1 + · · ·+ ymAm ≺ C)
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SDP Relaxtion of Maxcut

min x>Wx

s.t. x2
i = 1

=⇒
max − 1>ν

s.t. W + diag(ν) � 0
⇐⇒

min Tr(WX)

s.t. Xii = 1

X � 0

a nonconvex problem; feasible set contains 2n discrete points

interpretation: partition {1, . . . , n} in two sets; Wij is cost of
assigning i, j to the same set;; −Wij is cost of assigning to
different sets

dual function

g(ν) = inf
x

(
x>Wx +

∑
i

νi(x2
i − 1)

)
= inf

x
x>(W + diag(ν))x− 1>ν

=

{
−1>ν W + diag(ν) � 0
−∞ otherwise



31/33

SOCP/SDP Duality

(P) min c>x

s.t. Ax = b, xQ � 0

(D) max b>y

s.t. A>y + s = c, sQ � 0

(P) min 〈C,X〉
s.t. 〈A1,X〉 = b1

. . .

〈Am,X〉 = bm

X � 0

(D) max b>y

s.t.
∑

i

yiAi + S = C

S � 0

Strong duality
If p∗ > −∞, (P) is strictly feasible, then (D) is feasible and
p∗ = d∗

If d∗ < +∞, (D) is strictly feasible, then (P) is feasible and
p∗ = d∗

If (P) and (D) has strictly feasible solutions, then both have
optimal solutions.
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Failure of SOCP Duality

inf (1,−1, 0)x

s.t. (0, 0, 1)x = 1

xQ � 0

sup y

s.t. (0, 0, 1)>y + z = (1,−1, 0)>

zQ � 0

primal: min x0 − x1, s.t. x0 ≥
√

x2
1 + 1; It holds x0 − x1 > 0 and

x0 − x1 → 0 if x0 =
√

x2
1 + 1→∞. Hence, p∗ = 0, no finite

solution
dual: sup y s.t. 1 ≥

√
1 + y2. Hence, y = 0

p∗ = d∗ but primal is not attainable.
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Failure of SDP Duality

Consider

min

〈0 0 0
0 0 0
0 0 1

 ,X

〉

s.t.

〈1 0 0
0 0 0
0 0 0

 ,X

〉
= 0

〈0 1 0
0 0 0
1 0 2

 ,X

〉
= 2

X � 0

max 2y2

s.t.

1 0 0
0 0 0
0 0 0

 y1 +

0 1 0
0 0 0
1 0 2

 y2 �

0 0 0
0 0 0
0 0 1



primal: X∗ =

0 0 0
0 0 0
0 0 1

, p∗ = 1

dual: y∗ = (0, 0). Hence, d∗ = 0

Both problems have finite optimal values, but p∗ 6= d∗
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Standard form LP

(P) min c>x

s.t. Ax = b

x ≥ 0

(D) max b>y

s.t. A>y + s = c

s ≥ 0

KKT condition

Ax = b, x ≥ 0

A>y + s = c, s ≥ 0

xisi = 0 for i = 1, . . . , n

Strong duality: If a LP has an optimal solution, so does its dual,
and their objective fun. are equal.

PPPPPPPPdual
primal finite unbounded infeasible

finite
√

× ×
unbounded × ×

√

infeasible ×
√ √
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Geometry of the feasible set

Assume that A ∈ Rm×n has full row rank. Let Ai be the ith
column of A:

A =
(
A1 A2 . . . An

)
A vector x is a basic feasible solution (BFS) if x is feasible and
there exists a subset B ⊂ {1, 2, . . . , n} such that

B contains exactly m indices
i /∈ B =⇒ xi = 0
The m× m submatrix B = [Ai]i∈B is nonsingular

B is called a basis and B is called the basis matrix

Properties:
If (P) has a nonempty feasible region, then there is at least one
basic feasible point;
If (P) has solutions, then at least one such solution is a basic
optimal point.
If (P) is feasible and bounded, then it has an optimal solution.
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If (P) has a nonempty feasible region, then there is at least one BFS;

Choose a feasible x with the minimal number (p) of nonzero xi:∑p
i=1 Aixi = b

Suppose that A1, . . . ,Ap are linearly dependent Ap =
∑p−1

i=1 ziAi.
Let x(ε) = x + ε(z1, . . . , zp−1,−1, 0, . . . , 0)> = x + εz. Then
Ax(ε) = b, xi(ε) > 0, i = 1, . . . , p, for ε sufficiently small. There
exists ε̄ such that xi(ε̄) = 0 for some i = 1, . . . , p. Contradiction to
the choice of x.

If p = m, done. Otherwise, choose m− p columns from among
Ap+1, . . . ,An to build up a set set of m linearly independent
vectors.
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Polyhedra, extreme points, vertex, BFS

A Polyhedra is a set that can be described in the form
{x ∈ Rn | Ax ≥ b}

Let P be a polyhedra. A vector x ∈ P is an extreme point if we
cannot find two vectors y, z ∈ P (both different from x) such that
x = λy + (1− λ)z for λ ∈ [0, 1]

Let P be a polyhedra. A vector x ∈ P is a vertex if there exists
some c such that c>x < c>y for all y ∈ P and y 6= x

Let P be a nonempty polyhedra. Let x ∈ P. The following
statements are equivalent: (i) x is vertex; (ii) x is an extreme
point; (iii) x is a BFS

A basis B is said to be degenerate if xi = 0 for some i ∈ B,
where x is the BFS corresponding to B. A linear program (P) is
said to be degenerate if it has at least one degenerate basis.
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Vertices of a three-dimensional polyhedron (indicated by ∗)
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The Simplex Method For LP

Basic Principle
Move from a BFS to its adjacent BFS unitil convergence (either
optimal or unbounded)

Let x be a BFS and B be the corresponding basis

Let N = {1, 2, . . . , n}\B, N = [Ai]i∈N , xB = [xi]i∈B and xN = [xi]i∈N

Since x is a BFS, then xN = 0 and Ax = BxB + NxN = b:

xB = B−1b

Find exactly one q ∈ N and exactly one p ∈ B such that

B+ = {q} ∪ (B\{p})
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Finding q ∈ N to enter the basis

Let x+ be the new BFS:

x+ =

(
x+B
x+N

)
, Ax+ = b =⇒ x+B = B−1b− B−1Nx+N

The cost at x+ is

c>x+ = c>B x+B + c>N x+N
= c>B B−1b− c>B B−1Nx+N + c>N x+N
= c>x + (c>N − c>B B−1N)x+N
= c>x +

∑
j∈N

(cj − c>B B−1Aj︸ ︷︷ ︸
sj

)x+j

sj is also called reduced cost. It is actually the dual slackness

If sj ≥ 0, ∀j ∈ N , then x is optimal as c>x+ ≥ c>x

Otherwise, find q such that sq < 0. Then c>x+ = c>x + sqx+q ≤ c>x
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Finding p ∈ B to exit the basis

What is x+: select q ∈ N and p ∈ B such that

x+B = B−1b− B−1Aqx+q , x+q ≥ 0, x+p = 0, x+j = 0, j ∈ N\{q}

Let u = B−1Aq. Then x+B = xB − ux+q
If u ≤ 0, then c>x+ = c>x + sqx+q → −∞ as x+q → +∞ and x+ is
feasible. (P) is unbounded

If ∃uk > 0, then find x+q and p such that

x+B = xB − ux+q ≥ 0, x+p = 0

Let p be the index corresponding to

x+q = min
i=1,...,m|ui>0

xB(i)
ui
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An iteration of the simplex method

Typically, we start from a BFS x and its associate basis B such that
xB = B−1b and xN = 0.

Solve y> = c>B B−1 and then the reduced costs sN = cN − N>y

If sN ≥ 0, x is optimal and stop; Else, choose q ∈ N with sq < 0.

Compute u = B−1Aq. If u ≤ 0, then (P) is unbounded and stop.

If ∃uk > 0, then find x+q = min
i=1,...,m|ui>0

xB(i)
ui

and use p to denote

the minimizing i. Set x+B = xB − ux+q .

Change B by adding q and removing the basic variable
corresponding to column p of B.
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Simplex iterates for a two-dimensional problem
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Finite Termination of the simplex method

Theorem
Suppose that the LP (P) is nondegenerate and bounded, the simplex
method terminates at a basic optimal point.

nondegenerate: xB > 0 and c>x is bounded

A strict reduction of c>x at each iteration

There are only a finite number of BFS since the number of
possible bases B is finite (there are only a finite number of ways
to choose a subset of m indices from {1, 2, . . . , n}), and since
each basis defines a single basic feasible point

Finite termination does not mean a polynomial-time algorithm
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Linear algebra in the simplex method

Given B−1, we need to compute B̄−1, where

B = [A1, . . . ,Am], B̄ := B+ = [A1, . . . ,Ap−1,Aq,Ap+1, . . . ,Am]

the cost of inversion B̄−1 from scratch is O(m3)

Since BB−1 = I, we have

B−1B̄ = [e1, . . . ep−1, u, ep+1, . . . , em]

=


1 u1

. . .
...

up
...

. . .
um 1

 ,

where ei is the ith column of I and u = B−1Aq
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Linear algebra in the simplex method

Apply a sequence of “elementary row operation”
For each j 6= p, we add the p-th row times − uj

up
to the jth row. This

replaces uj by zero.
We divide the pth row by up. This replaces up by one.

Qip = I + Dip, (Dip)jl =

{
− uj

up
, (j, l) = (i, p)

0, otherwise
, for i 6= p

Find Q such that QB−1B̄ = I. Computing B̄−1 needs only O(m2)

What if B−1 is computed by the LU factorization, i.e., B = LU?
L is is unit lower triangular, U is upper triangular.
Read section 13.4 in “Numerical Optimization”, Jorge Nocedal
and Stephen Wright,
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An iteration of the revised simplex method

Typically, we start from a BFS x and its associate basis B such that
xB = B−1b and xN = 0.

Solve y> = c>B B−1 and then the reduced costs sN = cN − N>y

If sN ≥ 0, x is optimal and stop; Else, choose q ∈ N with sq < 0.

Compute u = B−1Aq. If u ≤ 0, then (P) is unbounded and stop.

If ∃uk > 0, then find x+q = min
i=1,...,m|ui>0

xB(i)
ui

and use p to denote

the minimizing i. Set x+B = xB − ux+q .

Form the m× (m + 1) matrix [B−1 | u]. Add to each one of its rows
a multiple of the pth row to make the last column equal to the unit
vector ep. The first m columns of the result is the matrix B̄−1.
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Selection of the entering index (pivoting rule)

Reduced costs sN = cN − N>y, c>x+ = c>x + sqx+q
Dantzig: chooses q ∈ N such that sq is the most negative
component

Bland’s rule: choose the smallest j ∈ N such that sj < 0; out of
all variables xi that are tied in the test for choosing an exiting
variable, select the one with with the smallest value i.

Steepest-edge: choose q ∈ N such that c>ηq
‖ηq‖ is minimized, where

x+ =

(
x+B
x+N

)
=

(
xB

xN

)
+

(
−B−1Aq

eq

)
xq = x + ηqx+q

efficient computation of this rule is available
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Degenerate steps and cycling

Let q be the entering variable:

x+B = B−1b− B−1Aqx+q = xB − x+q u, where u = B−1Aq

Degenerate step: there exists i ∈ B such that xi = 0 and ui > 0.
Then x+i < 0 if x+q > 0. Hence, x+q = 0 and do the pivoting

Degenerate step may still be useful because they change the
basis B, and the updated B may be closer to the optimal basis.

cycling: after a number of successive degenerate steps, we may
return to an earlier basis B

Cycling has been observed frequently in the large LPs that arise
as relaxations of integer programming problems

Avoid cycling: Bland’s rule and Lexicographically pivoting rule
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Finding an initial BFS

The two-phase simplex method

(P) min c>x

s.t. Ax = b

x ≥ 0

(P0) f̃ = min z1 + z2 + . . .+ zm

s.t. Ax + z = b

x ≥ 0, z ≥ 0

A BFS to (P0): x = 0 and z = b

If x is feasible to (P), then (x, 0) is feasible to (P0)

If the optimal cost f̃ of (P0) is nonzero, then (P) is infeasible

If f̃ = 0, then its optimal solution must satisfies: z = 0 and x is
feasible to (P)

An optimal basis B to (P0) may contain some components of z
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Finding an initial BFS

(x, z) is optimal to (P0) with some components of z in the basis
Assume A1, . . . ,Ak are in the basis matrix with k < m. Then

B = [A1, . . . ,Ak | some columns of I]

B−1A = [e1, . . . , ek,B−1Ak+1, . . . ,B−1An]

Suppose that `th basic variable is an artificial variable

If the `th row of B−1A is zero, then g>A = 0>, where g> is the `th
row of B−1. If g>b 6= 0, (P) is infeasible. Otherwise, A has linearly
dependent rows. Remove the `th row.

There exists j such that the `th entry of B−1Aj is nonzero. Then Aj

is linearly independent to A1, . . . ,Ak. Perform elementary row
operation to replace B−1Aj to be the `th unit vector. Driving one
of z out of the basis
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The primal simplex method for LP

(P) min c>x

s.t. Ax = b

x ≥ 0

(D) max b>y

s.t. A>y + s = c

s ≥ 0

KKT condition

Ax = b, x ≥ 0

A>y + s = c, s ≥ 0

xisi = 0 for i = 1, . . . , n

The primal simplex method generates

xB = B−1b ≥ 0, xN = 0,

y = B−TcB,

sB = cB − B>y = 0, sN = cN − N>y?0
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The dual simplex method for LP

The dual simplex method generates

xB = B−1b?0, xN = 0,

y = B−TcB,

sB = cB − B>y = 0, sN = cN − N>y ≥ 0

If xB ≥ 0, then (x, y, s) is optimal

Otherwise, select q ∈ B such that xq < 0 to exit the basis,
select r ∈ N to enter the basis, i.e., s+r = 0

The update is of the form

s+B = sB + αeq obvious
y+ = y + αv requirement
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The dual simplex method for LP

What is v? Since A>y+ + s+ = c, it holds

s+B = cB − B>y+

=⇒ sB + αeq = cB − B>(y + αv) =⇒ eq = −B>v

The update of the dual objective function

b>y+ = b>y + αb>v

= b>y− αb>B−Teq

= b>y− αx>B eq

= b>y− αxq

Since xq < 0 and we maximize b>y+, we choose α as large as
possible, but require s+N ≥ 0
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The dual simplex method for LP

Let w = N>v = −N>B−Teq. Since Ay + s = c and A>y+ + s+ = c,
it holds

s+N = cN − N>y+ = sN − αN>v = sN − αw ≥ 0

The largest α is
α = min

j∈N ,wj>0

sj

wj
.

Let r be the index at which the minimum is achieved.

s+r = 0, wr = A>r v > 0

(D) is unbounded if w ≤ 0
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The dual simplex method for LP: update of x+

We have: BxB = b, x+q = 0, x+r = γ and Ax+ = b, i.e.,

Bx+B + γAr = b =⇒ x+B = B−1b− γB−1Ar,

where Bd = Ar. Then Ax+ = b gives

B(xB − γd) + γAr = b for any γ.

Since it is required x+q = 0, we set

γ =
xq

dq
, where dq = d>eq = A>r B−Teq = −A>r v = −wr < 0.

Therefore

x+i =


xi − γdi, for i ∈ B with i 6= q,
0, i = q,
0, i ∈ N with i 6= r,
γ, i = r
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An iteration of the dual simplex method

Typically, we start from a dual feasible (y, s) and its associate basis B
such that xB = B−1b and xN = 0.

If xB ≥ 0, then x is optimal and stop. Else, choose q such that
xq < 0.

Compute v = −B−Teq and w = N>v. If w ≤ 0, then (D) is
unbounded and stop.

If ∃wk > 0, then find α = min
j∈N ,wj>0

sj
wj

and use r to denote the

minimizing j. Set s+B = sB + αeq, s+N = sN − αw and y+ = y + αv.

Change B by adding r and removing the basic variable
corresponding to column q of B.
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Primal-Dual Methods for LP

(P) min c>x

s.t. Ax = b

x ≥ 0

(D) max b>y

s.t. A>y + s = c

s ≥ 0

KKT condition

Ax = b, x ≥ 0

A>y + s = c, s ≥ 0

xisi = 0 for i = 1, . . . , n

Perturbed system

Ax = b, x ≥ 0

A>y + s = c, s ≥ 0

xisi = σµ for i = 1, . . . , n



31/38

Newton’s method

Let (x, y, s) be the current estimate with (x, s) > 0

Let (∆x,∆y,∆s) be the search direction

Let µ = 1
n x>s and σ ∈ (0, 1). Hope to find

A(x + ∆x) = b

A>(y + ∆y) + s + ∆s = c

(xi + ∆xi)(si + ∆si) = σµ

dropping the nonlinaer term ∆xi∆si gives

A∆x = rp := b− Ax

A>∆y + ∆s = rd := c− A>y− s

xi∆si + ∆xisi = (rc)i := σµ− xisi
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Newton’s method

Let Lx = Diag(x) and Ls = Diag(s). The matrix form is:A 0 0
0 A> I
Ls 0 Lx

∆x
∆y
∆s

 =

rp

rd

rc


Solving this system we get

∆y = (AL−1
s LxA>)−1(rp + AL−1

s (Lxrd − rc))

∆s = rd − A>∆y

∆x = −L−1
s (Lx∆s− rc)

The matrix AL−1
s LxA> is symmetric and positive definite if A is full

rank
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The Primal-Dual Path-following Method

Given (x0, y0, s0) with (x0, s0) ≥ 0. A typical iteration is
Choose µ = (xk)>sk/n, σ ∈ (0, 1) and solve A 0 0

0 A> I
Lsk 0 Lxk

∆xk

∆yk

∆sk

 =

rk
p

rk
d

rk
c


Set

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk,∆yk,∆sk),

choosing αk such that (xk+1, sk+1) > 0

The choices of centering parameter σ and step length αk are crucial
to the performance of the method.
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The Central Path

The primal-dual feasible and strictly feasible sets:

F = {(x, y, s) | Ax = b,A>y + s = c, (x, s) ≥ 0}
Fo = {(x, y, s) | Ax = b,A>y + s = c, (x, s) > 0}

The central path is C = {(xτ , yτ , sτ ) | τ > 0}, where

Axτ = b, xτ > 0

A>yτ + sτ = c, sτ > 0

(xτ )i(sτ )i = τ for i = 1, . . . , n

Central path neighborhoods, for θ, γ ∈ [0, 1):

N2(θ) = {(x, y, s) ∈ Fo | ‖LxLse− µe‖2 ≤ θµ}
N−∞(γ) = {(x, y, s) ∈ Fo | xisi ≥ γµ}

Tyically, θ = 0.5 and γ = 10−3
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Central path, projected into space of primal variables x, showing a
typical neighborhood N
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The Long-Step Path-following Method

Given (x0, y0, s0) ∈ N−∞(γ). A typical iteration is
Choose µ = (xk)>sk/n, σ ∈ (0, 1) and solve A 0 0

0 A> I
Lsk 0 Lxk

∆xk

∆yk

∆sk

 =

rk
p

rk
d

rk
c


Set αk be the largest value of α ∈ [0, 1] such that
(xk+1, yk+1, sk+1) ∈ N−∞(γ) where

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk,∆yk,∆sk),
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Analysis of Primal-Dual Path-Following

1 If (x, y, s) ∈ N−∞(γ), then ‖∆x ◦∆s‖ ≤ 2−3/2(1 + 1/γ)nµ

2 The long-step path-following method yields

µk+1 ≤
(

1− δ

n

)
µk,

where δ = 23/2γ 1−γ
1+γσ(1− σ)

3 Given ε, γ ∈ (0, 1), suppose that the starting point
(x0, y0, s0) ∈ N−∞(γ). Then there exists K = O(nlog(1/ε)) such
that

µk ≤ εµ0, for all k ≥ K

Proof of 3:

log(µk+1) ≤ log

(
1− δ

n

)
+ log(µk)

log(1 + β) ≤ β, ∀β > −1
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Mathematical Formulation: LP Problem
General LP Problem:

min
x∈Rn

c⊤x

s.t. ℓc ≤ Ax ≤ uc

ℓv ≤ x ≤ uv

Deriving the Lagrangian:
▶ Introduce dual variables for constraints to form unconstrained problem
▶ Rewrite constraints: Ax − uc ≤ 0, ℓc − Ax ≤ 0, x − uv ≤ 0, ℓv − x ≤ 0
▶ Associate non-negative multipliers y−, y+, r−, r+ with each inequality

Lagrangian Function:

L(x , y−, y+, r−, r+) = c⊤x + (y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax) (1)
+ (r−)⊤(x − uv ) + (r+)⊤(ℓv − x) (2)

where all multipliers are non-negative
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Deriving the Dual Problem

Derivation: Group x terms and form the dual function

L(x , y−, y+, r−, r+) =x⊤(c + A⊤(y− − y+) + (r− − r+)) (3)
− (y−)⊤uc + (y+)⊤ℓc − (r−)⊤uv + (r+)⊤ℓv (4)

The minimum over x is −∞ unless c + A⊤(y− − y+) + (r− − r+) = 0

Dual Problem: Using substitutions y = y+ − y− and r = r+ − r−

max
y∈Rm,r∈Rn

− (y−)⊤uc + (y+)⊤ℓc − (r−)⊤uv + (r+)⊤ℓv

s.t. c − A⊤y = r
y−, y+, r−, r+ ≥ 0
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Dual Problem Formulation
Simplified notation: Define p(y ; ℓ, u) := u⊤y+ − ℓ⊤y− where y+ = max(y , 0) and
y− = max(−y , 0)

Rewriting the dual:

max
y∈Rm,r∈Rn

− p(−y ; ℓc , uc) − p(−r ; ℓv , uv )

s.t. c − A⊤y = r
y ∈ Y, r ∈ R

Dual feasible sets Y and R: Based on constraint types

Yi :=


{0} (ℓc)i = −∞, (uc)i = ∞ (unconstrained)
R− (ℓc)i = −∞, (uc)i ∈ R (upper bound)
R+ (ℓc)i ∈ R, (uc)i = ∞ (lower bound)
R otherwise (both upper and lower bounds)

Ri :=


{0} (ℓv )i = −∞, (uv )i = ∞
R− (ℓv )i = −∞, (uv )i ∈ R
R+ (ℓv )i ∈ R, (uv )i = ∞
R otherwise
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Saddle Point Formulation of LP
▶ Keeping the bounds on x , we obtain the Lagrangian function:

L(x , y−, y+) = c⊤x + (y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax)

▶ Using the notation y = y+ − y− and the function p(y ; ℓ, u) = u⊤y+ − ℓ⊤y−:

(y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax) = −((y−)⊤uc − (y+)⊤ℓc) + (y− − y+)⊤(Ax)
= −p(−y ; ℓc , uc) − y⊤(Ax)

▶ Then the saddle point problem is:

min
x

max
y

{c⊤x + y⊤(Ax) − p(−y ; ℓc , uc)} s.t. ℓv ≤ x ≤ uv

Final saddle point formulation:

min
x∈X

max
y∈Y

L(x , y) := c⊤x + y⊤Ax − p (y ; −uc , −ℓc)

where X := {x ∈ Rn : ℓv ≤ x ≤ uv }
5 / 29



Problems with Classical Solvers for Large-Scale LP

▶ Simplex Method:
▶ Iterations potentially exponential in problem size
▶ Poor parallelization on modern hardware

▶ Interior Point Methods (IPMs):
▶ Memory requirements: O(nnz(A)) for matrix factorization
▶ Often exceeds 1TB for problems with billions of nonzeros

▶ First-Order Methods:
▶ Low memory requirements
▶ Highly parallelizable matrix-vector operations
▶ But historically struggle with achieving high accuracy
▶ Small constraint violations can lead to significant errors
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First-Order Methods for LP

▶ State-of-the-art First-Order Method Solvers:
▶ SCS: ADMM-based solver with homogeneous self-dual embedding
▶ OSQP: ADMM-based for convex quadratic programming
▶ ECLIPSE: Gradient descent on smoothed dual formulation
▶ ABIP/ABIP+: Interior-point solvers using ADMM

▶ PDHG (Primal-Dual Hybrid Gradient) Advantages:
▶ Requires only matrix-vector products: Ax and A⊤y
▶ No matrix factorization or systems of equations
▶ Form of operator splitting (related to ADMM)
▶ Linear convergence for LP established in theory
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Generic Convex-Concave Saddle Point Problems

General Form:
min
x∈X

max
y∈Y

L(x , y) = ⟨Kx , y⟩ + g(x) − f ∗(y)

Key components:
▶ K : Linear operator (matrix) mapping primal to dual space
▶ g(x): Convex function (often includes constraints on x)
▶ f ∗(y): Convex conjugate of function f (handles dual constraints)

Convex Conjugate Definition: For any convex function f

f ∗(y) = sup
x

{⟨x , y⟩ − f (x)}

This transforms constraints into penalties in the optimization
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PDHG: Abstract Form

Primal-Dual Hybrid Gradient Algorithm:

xk+1 = proxτg(xk − τK ∗yk) (5)
yk+1 = proxσf ∗(yk + σK (2xk+1 − xk)) (6)

Proximal Operator: A generalization of projection

proxτg(z) = arg min
x

{
g(x) + 1

2τ
∥x − z∥2

}
Moreau Decomposition: Allows computing proximal operator of f ∗ using f

proxσf ∗(y) = y − σ · proxf /σ(y/σ)

This is crucial for implementing PDHG efficiently without explicitly forming the conjugate
function!
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Applying PDHG to LP Problems
For LP saddle point problem:

min
x∈X

max
y∈Y

L(x , y) := c⊤x + y⊤Ax − p (y ; −uc , −ℓc)

We identify:
▶ K = A (linear constraint matrix)
▶ g(x) = c⊤x + δX (x) (objective + variable bounds)
▶ f ∗(y) = p(y ; −uc , −ℓc) (constraint bounds)

Computing proximal operators:

proxτg(z) = projX (z − τc) (7)
proxσf ∗(y) = y − σ · proj[−uc ,−ℓc ](y/σ) (8)

where projections enforce the constraints efficiently
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PDHG Algorithm for LP

PDHG iterations for LP:

xk+1 = proj[ℓv ,uv ](xk − τ(c + A⊤yk)) (9)
ỹk+1 = yk + σA(2xk+1 − xk) (10)
yk+1 = ỹk+1 − σproj[−uc ,−ℓc ](ỹk+1/σ) (11)

Key benefits:
▶ Only requires matrix-vector products (Ax and A⊤y)
▶ Projections computed element-wise (highly parallelizable)
▶ No matrix factorization or linear systems to solve
▶ Memory-efficient for very large-scale problems
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Convergence Theory for PDHG on LP
Step Size Parameterization:
▶ τ = η/ω and σ = ωη with η ∈ (0, ∞), ω ∈ (0, ∞)

▶ Convergence guaranteed when η < 1/∥A∥2

▶ ω: primal weight, controls scaling between primal and dual iterates

Special Norm for Convergence Analysis:

∥z∥ω :=

√
ω∥x∥2

2 + ∥y∥2
2

ω

for z = (x , y) - Used in convergence theory, restart criteria, and primal-dual balance

Linear convergence: Under certain conditions, PDHG converges linearly for LP:

∥zk − z∗∥ω ≤ C(1 − γ)k

where γ ∈ (0, 1) depends on problem structure
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Main Algorithm

Algorithm PDLP (Main Structure)
1: Input: Initial solution z0,0

2: Initialize outer loop counter n← 0, total iterations k ← 0
3: Initialize step size η̂0,0 ← 1/∥A∥∞, primal weight ω0 ← InitializePrimalWeight
4: repeat
5: t ← 0 {Inner restart loop counter}
6: repeat
7: zn,t+1, ηn,t+1, η̂n,t+1 ← AdaptiveStepOfPDHG(zn,t , ωn, η̂n,t , k)
8: z̄n,t+1 ← 1∑t+1

i=1
ηn,i

∑t+1
i=1 ηn,i zn,i {Step-size weighted average}

9: zn,t+1
c ← GetRestartCandidate(zn,t+1, z̄n,t+1, zn,0)

10: t ← t + 1, k ← k + 1
11: until restart or termination criteria holds
12: restart the outer loop: zn+1,0 ← zn,t

c , n← n + 1
13: ωn ← PrimalWeightUpdate(zn,0, zn−1,0, ωn−1)
14: until termination criteria holds
15: Output: zn,0
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PDLP Key Improvements Overview

▶ Adaptive step sizes: Dynamic adjustment based on convergence conditions

▶ Restart strategies: Reset algorithm when progress slows

▶ Primal weight updates: Balance progress in primal and dual spaces

▶ Special Norm for Convergence Analysis:

∥z∥ω :=

√
ω∥x∥2

2 + ∥y∥2
2

ω

for z = (x , y) - Used in convergence theory, restart criteria, and primal-dual balance
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Adaptive Step Size

Traditional PDHG: Fixed step size η = 1
∥A∥2

▶ Overly pessimistic

▶ Requires estimation of ∥A∥2

PDLP Approach: Adaptive step size based on convergence condition
▶ Calculate maximum allowable step size:

η̄ = ∥zk+1 − zk∥2
ω

2(yk+1 − yk)⊤A(xk+1 − xk)

▶ This ensures the iteration remains convergent
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Adaptive Step Size Algorithm

Algorithm One step of PDHG with adaptive step size
1: function AdaptiveStepOfPDHG(zn,t , ωn, η̂n,t , k)
2: (x , y)← zn,t , η ← η̂n,t

3: for i = 1, . . . ,∞ do
4: x ′ ← projX (x − η

ωn (c − A⊤y))
5: y ′ ← y − A(2x ′ − x)− ηωnproj[ℓc ,uc ]

(
(ηωn)−1y − A(2x ′ − x)

)
6: η̄ ← ∥(x′−x,y′−y)∥2

ωn
2(y′−y)⊤A(x′−x)

7: η′ ← min
(

(1− (k + 1)−0.3)η̄, (1 + (k + 1)−0.6)η
)

8: if η ≤ η̄ then
9: return (x ′, y ′), η, η′

10: end if
11: η ← η′

12: end for

Key Properties:
▶ Guarantee convergence: Only accept step if η ≤ η̄

▶ Aggressive adaptation: Next step size η′ can grow up to factor of (1 + (k + 1)−0.6)
▶ Conservative decay: If step rejected, reduce by approximately factor (1 − (k + 1)−0.3)
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Normalized Duality Gap and Adaptive Restarts

Normalized Duality Gap Definition:

ρn
r (z) := 1

r max
∥ẑ−z∥ω≤r

{L(x , ŷ) − L(x̂ , y)}

where L(x , y) = c⊤x + y⊤Ax − p(y ; −uc , −ℓc) is the Lagrangian.

Key Properties:
▶ Always finite (bounded by search radius)

▶ Zero if and only if solution is optimal

▶ Provides a meaningful measure of progress toward optimality

Notation: µn(z , zref) := ρn
∥z−zref∥ωn (z), where zref is a user-chosen reference point (typically

start of current restart)
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Adaptive Restart Criteria
PDLP Parameters:

βnecessary = 0.9, βsufficient = 0.1, βartificial = 0.5

Restart triggered when any of these criteria hold:
▶ Sufficient decay:

µn(zn,t+1
c , zn,0) ≤ βsufficientµn(zn,0, zn−1,0)

Guarantees linear convergence on LP problems

▶ Necessary decay + no progress:

µn(zn,t+1
c , zn,0) ≤ βnecessaryµn(zn,0, zn−1,0)

and µn(zn,t+1
c , zn,0) > µn(zn,t

c , zn,0)

Detects when progress begins to stall

▶ Long inner loop: t ≥ βartificialk
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Restart Mechanism - Implementation Details

Restart Candidate Selection:

GetRestartCandidate(zn,t+1, z̄n,t+1, zn,0) =
{

zn,t+1 if µn(zn,t+1, zn,0) < µn(z̄n,t+1, zn,0)
z̄n,t+1 otherwise

Implementation Note:
▶ Restart criteria evaluated every 64 iterations to reduce overhead

▶ Makes minimal impact on total iteration count

▶ Running averages z̄n,t+1 weighted by step sizes
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Primal Weight Updates
Motivation: Balance progress in primal and dual spaces
▶ For optimal convergence, we want equal progress in both spaces:

∥(xn,t − x∗, 0)∥ωn = ∥(0, yn,t − y∗)∥ωn

▶ This yields the ideal primal weight:

ωn = ∥yn,t − y∗∥2
∥xn,t − x∗∥2

Implementation:
▶ Estimate using consecutive iterates:

∆n
x = ∥xn,0 − xn−1,0∥2, ∆n

y = ∥yn,0 − yn−1,0∥2

▶ Apply log-scale exponential smoothing:

ωn = exp
(

θ log
(∆n

y
∆n

x

)
+ (1 − θ) log(ωn−1)

)
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Primal Weight Update Algorithm

Algorithm Primal weight update
1: function PrimalWeightUpdate(zn,0, zn−1,0, ωn−1)
2: ∆n

x = ∥xn,0 − xn−1,0∥2, ∆n
y = ∥yn,0 − yn−1,0∥2

3: if ∆n
x > ε0 and ∆n

y > ε0 then

4: return exp
(

θ log
(

∆n
y

∆n
x

)
+ (1− θ) log(ωn−1)

)
5: else
6: return ωn−1

7: end if

Key innovation: Updates only occur after restarts
▶ Allows larger weight changes without causing instability

▶ Focuses on balancing distance traveled rather than residuals

▶ Significantly improves performance compared to per-iteration updates
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GPU vs. CPU Architecture

CPU Design:
▶ Few cores (16-64) with deep pipelines

▶ Optimized for sequential processing

▶ Sophisticated branch prediction

▶ Limited memory bandwidth (100-200
GB/sec)

GPU Design:
▶ Thousands of cores (7296 on NVIDIA

H100)

▶ Single Instruction Multiple Data (SIMD)

▶ Optimized for parallel computation

▶ Very high memory bandwidth (2 TB/sec)

Why GPUs for LP?
▶ Previous attempts failed with simplex/IPM methods

▶ First-order methods like PDHG rely on matrix-vector operations

▶ PDLP’s core operations highly parallelizable

22 / 29



GPU Thread Hierarchy and Execution Model
Thread Hierarchy:
▶ Thread: Basic execution unit

▶ Warp: 32 threads executing in lockstep

▶ Block: Group of threads with shared memory

▶ Grid: Collection of blocks executing same
kernel

Implications for PDLP:
▶ Matrix-vector operations highly parallelizable

▶ Each thread can process individual vector
elements

▶ Challenge: Reducing CPU-GPU
communication overhead
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cuPDLP.jl: Design Principles

Minimizing CPU-GPU Communication:
▶ Initial transfer: Problem instance from CPU

to GPU

▶ Final transfer: Solution from GPU to CPU

▶ All iterations computed entirely on GPU

Implementation Framework:
▶ Implemented in Julia using CUDA.jl

▶ Custom CUDA kernels for PDHG updates

▶ cuSPARSE library for sparse matrix operations

Read

Preconditioning

Return

Restarted PDHG 

Evaluate 
progress metric 

Solution

LP instance

Scaled LP

Solution

CPU

GPU

Infeasibility 
detection 
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Key Acceleration Points

Matrix and Vector Operations:
▶ Sparse matrix stored in Compressed Sparse Row (CSR) format

▶ Matrix-vector multiplication via cuSPARSE library

▶ Custom CUDA kernels for vector operations and projections

▶ One thread per vector element for maximum throughput

KKT-Based Restart Scheme:
▶ Original PDLP: Trust-region algorithm for normalized duality gap

▶ Sequential nature - poor fit for GPU architecture

▶ cuPDLP.jl innovation: KKT error-based restart
▶ Highly parallelizable computation
▶ Maintains convergence properties
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KKT-Based Restart Details
KKT Error Definition:

KKTω(z) =

√
ω2

∥∥∥∥(
Ax − b

[h − Gx ]+
)∥∥∥∥2

2
+ 1

ω2 ∥c − K⊤y − λ∥2
2 + (q⊤y + l⊤λ+ − u⊤λ− − c⊤x)2

Restart Candidate Selection:

zn,t+1
c =

{
zn,t+1 if KKTωn(zn,t+1) < KKTωn(z̄n,t+1)
z̄n,t+1 otherwise

Restart Conditions: Algorithm restarts if any of these holds:
▶ Sufficient decay: KKTωn(zn,t+1

c ) ≤ 0.2 · KKTωn(zn,0)

▶ Necessary decay + no progress: KKTωn(zn,t+1
c ) ≤ 0.8 · KKTωn(zn,0) and no

improvement

▶ Long inner loop: Iteration count exceeds threshold
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Primal and Dual Updates on GPU

Primal Update CUDA Kernel:
▶ Input: xk , yk , c, A, τ , lower/upper bounds

▶ Parallel operations:
▶ Matrix-vector product: A⊤yk (via cuSPARSE)
▶ Vector addition: c − A⊤yk

▶ Projection onto bounds: projX (xk − τ(c − A⊤yk))

Dual Update CUDA Kernel:
▶ Input: xk+1, xk , yk , A, σ, constraint bounds

▶ Parallel operations:
▶ Extrapolation: 2xk+1 − xk

▶ Matrix-vector product: A(2xk+1 − xk) (via cuSPARSE)
▶ Projection onto bounds for constraint relaxation
▶ Final dual update computation
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Performance vs. Gurobi: Moderate Accuracy (10−4)

Small (269) Medium (94) Large (20) Total (383)
Count Time Count Time Count Time Count Time

cuPDLP.jl 266 8.61 92 14.80 19 111.19 377 12.02
Primal simplex 268 12.56 69 188.81 11 3145.49 348 39.81
Dual simplex 268 8.75 84 66.67 15 591.63 367 21.75

Barrier 268 5.30 88 45.01 18 415.78 374 14.92

Key Observations:
▶ cuPDLP.jl solves 377/383 instances (98.4%)

▶ Clear advantage on medium and large instances:
▶ 3x faster than simplex on medium instances
▶ 3.7x faster than barrier on large instances

▶ Especially strong for problems with complex structures
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Performance vs. CPU PDLP

Small (269) Medium (94) Large (20) Total (383)
Count Time Count Time Count Time Count Time

cuPDLP.jl 266 8.61 92 14.80 19 111.19 377 12.02
FirstOrderLp.jl 253 35.94 82 155.67 12 2002.21 347 66.67

PDLP (1 thread) 256 22.69 85 98.38 15 1622.91 356 43.81
PDLP (4 threads) 260 24.03 91 42.94 15 736.20 366 34.57
PDLP (16 threads) 238 104.72 84 142.79 15 946.24 337 127.49

GPU Speedup vs. CPU:
▶ vs. FirstOrderLp.jl: 4x on small, 10x on medium, 18x on large instances

▶ vs. PDLP with 4 threads: 2.9x overall speedup

▶ Solved 30 more instances than FirstOrderLp.jl at tolerance 10−4

▶ Speedup increases with problem size
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Introduction to Compressed Sensing
Sparse Recovery Guarantees

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Emmanuel Candes’ and Prof. Wotao Yin’s
lecture notes
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Underdetermined systems of linear equations

x ∈ Rn,A ∈ Rm×n, b ∈ Rm

When fewer equations than unknowns
Fundamental theorem of algebra says that we cannot find x

In general, this is absolutely correct
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Special structure

If unknown is assumed to be
sparse

low-rank
then one can often find solutions to these problems by convex
optimization
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Compressive Sensing

http://bicmr.pku.edu.cn/~wenzw/courses/sparse_l1_example.m

Find the sparest solution
Given n=256, m=128.
A = randn(m,n); u = sprandn(n, 1, 0.1); b = A*u;

50 100 150 200 250
-3

-2

-1

0

1

2

3

{
min

x
‖x‖0

s.t. Ax = b

(a) `0-minimization

50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

{
min

x
‖x‖2

s.t. Ax = b

(b) `2-minimization

50 100 150 200 250
-3

-2

-1

0

1

2

3

{
min

x
‖x‖1

s.t. Ax = b

(c) `1-minimization
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Linear programming formulation

`0 minimization
min ‖x‖0
s.t. Ax = b

Combinatorially hard

`1 minimization
min ‖x‖1
s.t. Ax = b

Linear program

minimize
∑

i |xi|
subject to Ax = b

is equivalent to
minimize

∑
i ti

subject to Ax = b
−ti ≤ xi ≤ ti

with variables x, t ∈ Rn

x?is a solution ⇐⇒ (x?, t? = |x?|) is a solution
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Compressed sensing

Name coined by David Donoho
Has become a label for sparse signal recovery
But really one instance of underdetermined problems

Informs analysis of underdetermined problems
Changes viewpoint about underdetermined problems
Starting point of a general burst of activity in

information theory
signal processing
statistics
some areas of computer science
...

Inspired new areas of research, e. g. low-rank matrix recovery
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Sparsity in signal processing

Implication: can discard small coefficients without much perceptual
loss
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Sparsity and wavelet "compression"

Take a mega-pixel image
Compute 1, 000, 000 wavelet coefficients
Set to zero all but the 25, 000 largest coefficients
Invert the wavelet transform

This principle underlies modern lossy coders
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Comparison

Sparse representation = good compression
Why? Because there are fewer things to send/store

x Sample Compress Transmit /
Store

Receive Decompress x̂

Traditional

Compressive sensing

x Compressive sensing

(senses less, faster)

Transmit /
Store

Receive Reconstruction x̂
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Restricted isometries: C. and Tao (04)

Definition (Restricted isometry constants)
For each k = 1, 2, . . . , δk is the smallest scalar such that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2

for all k-sparse x

Note slight change of normalization
When δk is not too large, condition says that all m× k
submatrices are well conditioned (sparse subsets of columns are
not too far from orthonormal)



11/47

Interlude: when does sparse recovery make sense?

x is s-sparse: ‖x‖0 ≤ s
can we recover x from Ax = b?

Perhaps possible if sparse vectors lie
away from null space of A

Yes if any 2s columns of A are linearly
independent
If x1, x2 s-sparse such that Ax1 = Ax2 = b
A(x1 − x2) = 0⇒ x1 − x2 = 0⇔ x1 = x2
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Interlude: when does sparse recovery make sense?

x is s-sparse: ‖x‖0 ≤ s
can we recover x from Ax = b?

Perhaps possible if sparse vectors lie
away from null space of A

In general, No if A has 2s linearly depen-
dent columns
h 6= 0 is 2s-sparse with Ah = 0
h = x1 − x2 x1, x2 both s-sparse
Ah = 0⇔ Ax1 = Ax2 and x1 6= x2



13/47

Equivalent view of restricted isometry property

δ2k is the smallest scalar such that

(1− δ2k)‖x1 − x2‖2
2 ≤ ‖Ax1 − Ax2‖2

2 ≤ (1 + δ2k)‖x1 − x2‖2
2

for all k-sparse vectors x1, x2.

The positive lower bounds is that which really matters
If lower bound does not hold, then we may have x1 and x2 both
sparse and with disjoint supports, obeying

Ax1 = Ax2

Lower bound guarantees that distinct sparse signals cannot be
mapped too closely (analogy with codes)
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With a picture

For all k-sparse x1 and x2

1− δ2k ≤
‖Ax1 − Ax2‖2

2

‖x1 − x2‖2
2
≤ 1 + δ2k
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Characterization of `1 solutions

Underdetermined system: A ∈ Rm×n,m < n

min
x∈Rn
‖x‖1 s.t. Ax = b

x is solution iff

‖x + h‖1 ≥ ‖x‖1 ∀h ∈ Rn s.t. Ah = 0

Notations: x supported on T = {i : xi 6= 0}

‖x + h‖1 =
∑
i∈T

|xi + hi|+
∑
i∈Tc

|hi|

≥
∑
i∈T

|xi|+
∑
i∈T

sgn(xi)hi +
∑
i∈Tc

|hi|

because |xi + hi| ≥ |xi|+ sgn(xi)hi

Necessay and sufficient condition for `1 recovery
For all h ∈ null(A) ∑

i∈T

sgn(xi)hi ≤
∑
i∈Tc

|hi|
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Why is this necessary? If there is h ∈ null(A) with∑
i∈T

sgn(xi)hi >
∑
i∈Tc

|hi|

then
‖x− h‖1 < ‖x‖1.

Proof: There exists a small enough t such that

|xi − thi| =


xi − thi = xi − tsgn(xi)hi if xi > 0
−(xi − thi) = −xi − tsgn(xi)hi if xi < 0
t|hi| otherwise

Then
‖x− th‖1 = ‖x‖1 − t

∑
i∈T

sgn(xi)hi + t
∑
i∈Tc

|hi| < ‖x‖1
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Characterization via KKT conditions

min
x∈Rn

f (x) s.t. Ax = b

f convex and differentiable Lagrangian
L(x, λ) = f (x) + 〈λ, b− Ax〉

Ax = 0 if and only if x is orthogonal to each of the row vectors of A.

KKT condition
x is solution iff x is feasible and ∃λ ∈ Rm s.t.

∇xL(x, λ) = 0 = ∇f (x)− A>λ

Geometric interpretation: ∇f (x)⊥null(A).
When f is not differentiable, condition becomes: x feasible and
∃λ ∈ Rm s.t.

A>λ is a subgradient of f at x
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Subgradient

Definition
u is a subgradient of convex f at x0 if for all x

f (x) ≥ f (x0) + u · (x− x0)

if f is differentiable at x0, the only subgradient is ∇f (x0)

Subgradients of f (t) = |t|, t ∈ R{
{subgradients} = {sgn(t)} t 6= 0
{subgradients} = [−1, 1] t = 0

Subgradients of f (x) = ‖x‖1, x ∈ Rn:
u ∈ ∂‖x‖1 (u is a subgradient) iff{

ui = sgn(xi) xi 6= 0
|ui| ≤ 1 xi = 0



19/47

Optimality conditions II

Given A ∈ Rm×n and b ∈ Rm.

(P) min
x∈Rn
‖x‖1 s.t. Ax = b

The dual problem is

max
λ

λ>b, s.t. ‖A>λ‖∞ ≤ 1

x optimal solution iff x is feasible and there exists u = A>λ(u⊥null(A))
with {

ui = sgn(xi) xi 6= 0 (i ∈ T)

|ui| ≤ 1 xi = 0 (i ∈ Tc)

If in addition
|ui| < 1 when xi = 0
AT has full column rank (implies by RIP )

Then x is the unique solution. We will call such a u or λ a dual
certificate.
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Uniqueness

Notation
xT : restriction of x to indices in T

AT : submatrix with column indices in T

If supp(x) ⊆ T,
Ax = ATxT .

Let h ∈ null(A). Since u⊥null(A), we have∑
i∈T

sgn(xi)hi =
∑
i∈T

uihi = 〈u, h〉 −
∑
i∈Tc

uihi

= −
∑
i∈Tc

uihi <
∑
i∈Tc

|hi|

unless hTc 6= 0. Now if hTc = 0, then since AT has full column rank,

Ah = AThT = 0⇒ hT = 0⇒ h = 0

In conclusion, for any h ∈ null(A), ‖x + h‖1 > ‖x‖1 unless h 6= 0
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Sufficient conditions

T = supp(x) and AT has full column rank (A>T AT invertible)
sgn(xT) is the sign sequence of x on T and set

λ = AT(A>T AT)−1sgn(xT) and u := A>λ

if |ui| ≤ 1 for all i ∈ Tc, then x is solution
if |ui| < 1 for all i ∈ Tc, then x is the unique solution

Why?
ui = sgn(xi) if i ∈ T, since

uT = A>T AT(A>T AT)−1sgn(xT) = sgn(xT)

ui = A>i λ if i /∈ T.
So u is a valid dual certificate
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RIP

RIP: For each k = 1, 2, . . . , δk is the smallest scalar such that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2

for all k-sparse x

Define the constant θS,S′ such that :〈
ATc,AT′c′

〉
≤ θS,S′‖c‖‖c′‖

holds for all disjoint sets T,T ′ of cardinality |T| ≤ S and |T ′| ≤ S′,

For all S and S′, we have

θS,S′ ≤ δS+S′ ≤ δS,S′ + max{δS, δS′}
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Why this dual certificate? Why |ui| < 1 for all i ∈ Tc?

Let S ≥ 1 be such that δS + θS,S′ + θS,2S < 1. Then there exits a
vector λ such that λ>Aj = sgn(xj) for all j ∈ T and for all j /∈ T:

|uj| = |λ>Aj| ≤
θS,S′

(1− δS − θS,2S)
√

S
‖sgn(x)‖ ≤

θS,S′

(1− δS − θS,2S)
< 1

Assume S ≥ 1 such that δS + θS,S′ + θS,2S < 1. Let x be a real
vector supported on T such that |T| ≤ S. Let b = Ax. Then x is a
unique minimizer to (P).

Read Lemma 2.1 and Lemma 2.2 in “E. Candes and T. Tao.
Decoding by linear programming. IEEE Transactions on
Information Theory, 51:4203–4215, 2005”.
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General setup

x not necessarily sparse
observe b = Ax
recover by `1 minimization

min ‖x̂‖1 s. t. Ax̂ = b

Interested in comparing performance with sparsest approximation xs:

xs = arg min
‖z‖0≤s

‖x− z‖

xs: s-sparse
s-largest entries of x are the nonzero entries of xs
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General signal recovery

Theorem (Noiseless recovery (C., Romberg and
Taoa))

If δ2s <
√

2− 1 = 0.414 . . ., `1 recovery
obeys

‖x̂− x‖2 . ‖x− xs‖1/
√

s

‖x̂− x‖1 . ‖x− xs‖1

Deterministic (nothing is random)
Universal (applies to all x)

Exact if x is s-sparse
Otherwise, essentially reconstructs the s largest entries of x

Powerful if s is close to m
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General signal recovery from noisy data

Inaccurate measurements: z error term (stochastic or deterministic)

b = Ax + z, with ‖z‖2 ≤ ε

Recovery via the LASSO: `1 minimization with relaxed constraints

min ‖x̂‖1 s. t. ‖Ax̂− b‖2 ≤ ε

Theorem (C., Romberg and Tao)

Assume δ2s <
√

2− 1, then

‖x̂− x‖2 .
‖x− xs‖1√

s
+ ε = approx.error + measurement error

(numerical constants hidden in . are explicit)

When ε = 0 (no noise), earlier result
Says when we can solve underdetermined systems of equations
accurately
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Proof of noisy recovery result

Let h = x̂− x. Since x̂ and x are feasible, we obtain

‖Ah‖2 ≤ ‖Ax̂− b‖2 + ‖b− Ax‖2 ≤ 2ε

The RIP gives

| 〈AhT ,Ah〉 | ≤ ‖AhT‖2‖Ah‖2 ≤ 2ε
√

1 + δ2s‖hT‖2.

Hence,

‖h‖2 ≤ C0
‖x− xs‖1√

s
+ C1

| 〈AhT ,Ah〉 |
‖hT‖2

lemma 4

≤ C0
‖x− xs‖1√

s
+ C12ε

√
1 + δ2s
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Preliminaries: Lemma 1

Let Σk = {x ∈ Rn | x has k nonzero components}
1 If u ∈ Σk, then ‖u‖1/

√
k ≤ ‖u‖2 ≤

√
k‖u‖∞.

Proof: ‖u‖1 = | 〈u, sgn(u)〉 | ≤ ‖u‖2‖sgn(u)‖2.

2 Let u, v be orthogonal vectors. Then ‖u‖2 + ‖v‖2 ≤
√

2‖u + v‖2.
Proof: Apply the first statement with w = (‖u‖2, ‖v‖2)>

3 Let A satisfies RIP of order 2k. then for any x, x′ ∈ Σk with disjoint
supports

| < Ax,Ax′ > | ≤ δs+s′‖x‖2‖x′‖2

Proof: Suppose x and x′ are unit vectors as above. Then
‖x + x′‖2

2 = 2, ‖x− x′‖2
2 = 2 due to the disjoint supports. The RIP

gives
2(1− δs+s′) ≤ ‖Ax± Ax′‖2

2 ≤ 2(1 + δs+s′)

Parallelogram identity

| < Ax,Ax′ > | = 1
4

∣∣‖Ax + Ax′‖2
2 − ‖Ax− Ax′‖2

2
∣∣ ≤ δs+s′
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Preliminaries: Lemma 2

1 Let T0 be any subset {1, 2, . . . , n} such that |T0| ≤ s. For any
u ∈ Rn, define T1 as the index set corresponding to the s entries
of uTc

0
with largest magnitude, T2 as indices of the next s largest

coefficients, and so on. Then∑
j≥2

‖uTj‖2 ≤
‖uTc

0
‖1√
s

Proof: We begin by observing that for j ≥ 2,

‖uTj‖∞ ≤
‖uTj−1‖1

s

since the Tj sort u to have decreasing magnitude. Using Lemma
1.1, we have∑

j≥2

‖uTj‖2 ≤
√

s
∑
j≥2

‖Tj‖∞ ≤
∑
j≥1

‖uTj‖1√
s

=
‖uTc

0
‖1√
s
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Preliminaries: Lemma 3

Let A satisfies the RIP with order 2s. Let T0 be any subset
{1, 2, . . . , n} such that |T0| ≤ s and h ∈ Rn be given. Define T1 as
the index set corresponding to the s entries of hTc

0
with largest

magnitude, and set T = T0 ∪ T1.Then

‖hT‖2 ≤ α
‖hTc

0
‖1√
s

+ β
| 〈AhT ,Ah〉 |
‖hT‖2

where α =
√

2δ2s
1−δ2s

and β = 1
1−δ2s

Proof: Since hT ∈ Σ2s, the RIP gives

(1− δ2s)‖hT‖2
2 ≤ ‖AhT‖2

2.
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Continue: Proof Lemma 3

Define Tj as Lemma 2. Since AhT = Ah−
∑

j≥2 AhTj , we have

(1− δ2s)‖hT‖2
2 ≤ ‖AhT‖2

2 =< AhT ,Ah > − < AhT ,
∑
j≥2

AhTj >

Lemma 1.3 gives

| < AhTi ,AhTj > | ≤ δ2s‖AhT‖2‖Ah‖2

Note that ‖hT0‖2 + ‖hT1‖2 ≤
√

2‖hT‖2, we have

| < AhT ,
∑
j≥2

AhTj > | = |
∑
j≥2

< AhT0 ,AhTj > +
∑
j≥2

< AhT1 ,AhTj > |

≤ δ2s(‖hT0‖2 + ‖hT1‖2)
∑
j≥2

‖hTj‖2 ≤
√

2δ2s‖hT‖2

∑
j≥2

‖hTj‖2

≤
√

2δ2s‖hT‖2
‖uTc

0
‖1√
s
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Preliminaries: Lemma 4

Let A satisfies the RIP with order 2s with δ2s <
√

2− 1. Let x, x̂ be
given and define h = x̂− x. Let T0 denote the index set
corresponding to the s entries of x with largest magnitude. Define
T1 be the index set corresponding to the s entries of hTc

0
. Set

T = T0 ∪ T1. If ‖x̂‖1 ≤ ‖x‖1. Then

‖h‖2 ≤ C0
‖x− xs‖1√

s
+ C1

| 〈AhT ,Ah〉 |
‖hT‖2

where C0 = 2 1−(1−
√

2)δ2s

1−(1+
√

2)δ2s
and C1 = 2

1−(1+
√

2)δ2s

Proof: Note that h = hT + hTc , then ‖h‖2 ≤ ‖hT‖2 + ‖hTc‖2. Let Tj be
defined similarly as Lemma 2, then we have

‖hTc‖2 = ‖
∑
j≥2

hTj‖2 ≤
∑
j≥2

‖hTj‖2 ≤
‖hTc

0
‖1√
s
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Continue: Proof Lemma 4

Since ‖x̂‖1 ≤ ‖x‖1, we obtain

‖x‖1 ≥ ‖xT0 + hT0‖1 + ‖xTc
0

+ hTc
0
‖1 ≥ ‖xT0‖1 − ‖hT0‖1 + ‖hTc

0
‖1 − ‖xTc

0
‖1.

Rearranging and again applying the triangle inequality

‖hTc
0
‖1 ≤ ‖x‖1−‖xT0‖1 + ‖hT0‖1 + ‖xTc

0
‖1 ≤ ‖x− xT0‖1 + ‖hT0‖1 + ‖xTc

0
‖1.

Hence, we have ‖hTc
0
‖1 ≤ ‖hT0‖1 + 2‖x− xs‖1. Therefore,

‖hTc‖2 ≤
‖hT0‖1 + 2‖x− xs‖1√

s
≤ ‖hT0‖2 +

2‖x− xs‖1√
s

.

Since ‖hT0‖2 ≤ ‖hT‖2, we have

‖h‖2 ≤ 2‖hT‖2 +
2‖x− xs‖1√

s
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Continue: Proof Lemma 4

Lemma 3 gives

‖hT‖2 ≤ α
‖hTc

0
‖1√
s

+ β
| 〈AhT ,Ah〉 |
‖hT‖2

≤ α
‖hT0‖1 + 2‖x− xs‖1√

s
+ β
| 〈AhT ,Ah〉 |
‖hT‖2

≤ α‖hT0‖2 + 2α
‖x− xs‖1√

s
+ β
| 〈AhT ,Ah〉 |
‖hT‖2

Using ‖hT0‖2 ≤ ‖hT‖2 gives

(1− α)‖hT‖2 ≤ 2α
‖x− xs‖1√

s
+ β
| 〈AhT ,Ah〉 |
‖hT‖2

.

Dividing by 1− α gives

‖h‖2 ≤
(

4α
1− α

+ 2
)
‖x− xs‖1√

s
+

2β
1− α

| 〈AhT ,Ah〉 |
‖hT‖2
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Spark

First questions for finding the sparsest solution to Ax = b

Can sparsest solution be unique? Under what conditions?

Given a sparse x, how to verify whether it is actually the sparsest
one?

Definition (Donoho and Elad 2003)
The spark of a given matrix A is the smallest number of columns from
A that are linearly dependent, written as spark(A).

rank(A) is the largest number of columns from A that are linearly
independent. In general, spark(A) 6= rank(A) + 1; except for many
randomly generated matrices.

Rank is easy to compute, but spark needs a combinatorial search.
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Spark

Theorem (Gorodnitsky and Rao 1997 )
If Ax = b has a solution x obeying ‖x‖0 < spark(A)/2, then x is the
sparsest solution.

Proof idea: if there is a solution y to Ax = b and x− y 6= 0, then
A(x− y) = 0 and thus

‖x‖0 + ‖y‖0 ≥ ‖x− y‖0 ≥ spark(A),

or ‖y‖0 ≥ spark(A)− ‖x‖0 > spark(A)/2 > ‖x‖0

The result does not mean this x can be efficiently found
numerically.

For many random matrices A ∈ Rm×n, the result means that if an
algorithm returns x satisfying ‖x‖0 < (m + 1)/2, then x is optimal
with probability 1.

What to do when spark(A) is difficult to obtain?
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General Recovery - Spark

Rank is easy to compute, but spark needs a combinatorial
search.

However, for matrix with entries in general positions, spark(A) =
rank(A)+1.

For example, if matrix A ∈ Rm×n (m < n) has entries
Aij ∼ N (0, 1), then rank(A) = m = spark(A)− 1 with probability 1.

In general, any full rank matrix A ∈ Rm×n (m < n), any m + 1
columns of A is linearly dependent, so

spark(A) ≤ m + 1 = rank(A) + 1
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Coherence

Definition (Mallat and Zhang 1993 )
The (mutual) coherence of a given matrix A is the largest absolute
normalized inner product between different columns from A. Suppose
A = [a1, a2, . . . , an]. The mutual coherence of A is given by

µ(A) = max
k,j,k 6=j

|a>k aj|
‖ak‖2 · ‖aj‖2

It characterizes the dependence between columns of A
For unitary matrices, µ(A) = 0
For recovery problems, we desire a small µ(A) as it is similar to
unitary matrices.
For A = [Ψ,Φ] where Φ and Ψ are n× n unitary, it holds
n−1/2 ≤ µ(A) ≤ 1. Note µ(A) = n−1/2 is achieved with [I,
Fourier], [I, Hadamard]. ( |a>k aj| = 1, ‖aj‖ =

√
n)

if A ∈ Rm×n where n > m, then µ(A) ≥ m−1/2
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Coherence

Theorem (Donoho and Elad 2003)

spark(A) ≥ 1 + µ−1(A)

Proof Sketch
Ā← A with columns normalized to unit 2-norm

p← spark(A)

B← a p× p minor of Ā>Ā

|Bii| = 1 and
∑

j 6=i |Bij| ≤ (p− 1)µ(A)

Suppose p < 1 +µ−1(A)⇒ 1 > (p− 1)µ(A)⇒ |Bii| >
∑

j 6=i |Bij|, ∀i

Then B � 0 (Gershgorin circle theorem)⇒ spark(A) > p.
Contradiction.
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Coherence-base guarantee

Corollary
If Ax = b has a solution x obeying ‖x‖0 < (1 + µ−1(A))/2, then x is the
unique sparsest solution.

Compare with the previous

Theorem (Gorodnitsky and Rao 1997 )
If Ax = b has a solution x obeying ‖x‖0 < spark(A)/2, then x is the
sparsest solution.

For A ∈ Rm×n where m < n, (1 + µ−1(A)) is at most 1 +
√

m but
spark can be 1 + m. spark is more useful.

Assume Ax = b has a solution with ‖x‖0 = k < spark(A)/2. It will
be the unique `0 minimizer. Will it be the `1 minimizer as well?
Not necessarily. However, ‖x‖0 < (1 + µ−1(A))/2 is a sufficient
condition.



41/47

Coherence-based `0 = `1

Theorem (Donoho and Elad 2003, Gribonval and Nielsen 2003)
If A has normalized columns and Ax = b has a solution x satisfying
‖x‖0 ≤ (1 + µ−1(A))/2, then x is the unique minimizer with respect to
both `0 and `1.

Proof Sketch
Previously we know x is the unique `0 minimizer; let S := supp(x)

Suppose y is the `1 minimizer but not x; we study h := y− x

h must satisfy Ah = 0 and ‖h‖1 < 2‖hS‖1 since
0 > ‖y‖1 − ‖x‖1 =

∑
i∈Sc |yi|+

∑
i∈S(|yi| − |xi|) ≥

‖hSc‖1 −
∑

i∈S |yi − xi| = ‖hSc‖1 − ‖hS‖1

A>Ah = 0⇒ |hj| ≤ (1 + µ(A))−1µ(A)‖h‖1, ∀j. (Expand A>A and
use ‖h‖1 =

∑
k 6=j |hk|+ |hj|)

the last two points together contradict the assumption
Result bottom line: allow ‖x‖0 up to O(

√
m) for exact recovery
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The null space of A

Definition: ‖x‖p = (
∑

i |xi|p)1/p

Lemma: Let 0 < p ≤ 1. If ‖(y− x)Sc‖p > ‖(y− x)S‖p, then
‖x‖p < ‖y‖p.
Proof: Let h = y− x.
‖y‖p

p = ‖x + h‖p
p = ‖xS + hS‖p

p + ‖hSc‖p
p =

‖x‖p
p + (‖hSc‖p

p − ‖hS‖p
p) + (‖xS + hS‖p

p − ‖xS‖p
p + ‖hS‖p

p))
The last term is nonnegative for 0 < p ≤ 1. Hence, a sufficient
condition is ‖hSc‖p

p > ‖hS‖p
p.

If the condition holds for 0 < p ≤ 1, it also holds for q ∈ (0, p].

Definition (null space property NSP(k, γ)). Every nonzero
h ∈ N (A) satisfies ‖hS‖1 < γ‖hSc‖1 for all index sets S with |S| ≤ k.



43/47

The null space of A

Theorem (Donoho and Huo 2001, Gribonval and Nielsen 2003)
min ‖x‖1, s.t. Ax = b uniquely recovers all k-sparse vectors xo from
measurements b = Axo if and only if A satisfies NSP(k, 1).

Proof:
Sufficiency: Pick any k-sparse vector xo. Let S := supp(xo). For
any non-zero h ∈ N (A), we have A(xo + h) = Axo = b and

‖x0 + h‖1 = ‖xo
S + hS‖1 + ‖hSc‖1

≥ ‖xo
S‖1 − ‖hS‖1 + ‖hSc‖1

= ‖xo
S‖1 − (‖hS‖1 − ‖hSc‖1)

Necessity. The inequality holds with equality if
sgn(xo

S) = −sgn(hS) and hS has a sufficiently small scale.
Therefore, basis pursuit to uniquely recovers all k-sparse vectors
xo, NSP(k, 1) is also necessary.
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The null space of A

Another sufficient condition (Zhang [2008]) for ‖x‖1 < ‖y‖1 is

‖x‖0 <
1
4

(
‖y− x‖1

‖y− x‖2

)2

Proof:

‖hS‖1 ≤
√
|S|‖hS‖2 ≤

√
|S|‖h‖2 =

√
‖x‖0‖h‖2.

Then, the above inequality and the sufficient condition gives
‖y− x‖1 > 2‖(y− x)S‖1 which is ‖(y− x)Sc‖1 > ‖(y− x)S‖1.

Theorem (Zhang, 2008)
min ‖x‖1, s.t. Ax = b recovers x uniquely if

‖x‖0 < min

{
1
4

(
‖h‖1

‖h‖2

)2

, h ∈ N (A)\{0}

}
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The null space of A

1 ≤ ‖v‖1
‖v‖2
≤
√

n, ∀v ∈ Rn \ {0}
Garnaev and Gluskin established that for any natural number
p < n, there exist p-dimensional subspaces Vp ⊂ Rn in which

‖v‖1

‖v‖2
≥ C

√
n− p√

log(n/(n− p))
,∀v ∈ Vp \ {0},

vectors in the null space of A will satisfy, with high probability, the
Garnaev and Gluskin inequality for Vp = Null(A) and p = n− m.
for a random Gaussian matrix A, x̄ will uniquely solve `1-min with
high probability whenever

‖x̄‖0 <
C2

4
m

log(n/m)
.
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Formal equivalence

Suppose there is an s-sparse solution to Ax = b

δ2s < 1 solution to combinatorial optimization (min `0) is unique
δ2s < 0.414 solution to LP relaxation is unique and the same

Comments:
RIP needs a matrix to be properly scaled

the tight RIP constant of a given matrix A is difficult to compute

the result is universal for all s-sparse

∃ tighter conditions (see next slide)

all methods (including `0) require δ2s < 1 for universal recovery;
every s-sparse x is unique if δ2s < 1

the requirement can be satisfied by certain A (e.g., whose
entries are i.i.d samples following a subgaussian distribution)
and lead to exact recovery for ‖x‖0 = O(m/log(m/k)).
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More Comments

(Foucart-Lai) If δ2s+2 < 1, then ∃ a sufficiently small p so that `p

minimization is guaranteed to recovery any s-sparse x

(Candes) δ2s <
√

2− 1 is sufficient

(Foucart-Lai) δ2s < 2(3−
√

2)/7 ∼ 0.4531 is sufficient

RIP gives κ(AS) ≤
√

(1 + δs)/(1− δs), ∀|S| ≤ k. so
δ2s < 2(3−

√
2)/7 gives κ(AS) ≤ 1.7, ∀|S| ≤ 2m, very

well-conditioned.

(Mo-Li) δ2s < 0.493 is sufficient

(Cai-Wang-Xu) δ2s < 0.307 is sufficient

(Cai-Zhang) δ2s < 1/3 is sufficient and necessary for universal `1
recovery
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Outline

Proximal gradient method

Accelerated gradient method

Alternating direction methods of Multipliers (ADMM)

Linearized Alternating direction methods of Multipliers

Greedy methods

Algorithm unrolling
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ℓ1-regularized least square problem

Consider
min ψµ(x) := µ∥x∥1 +

1
2
∥Ax− b∥2

2

Approaches:
Interior point method: l1_ls
Spectral gradient method: GPSR
Fixed-point continuation method: FPC
Active set method: FPC_AS
Alternating direction augmented Lagrangian method
Nesterov’s optimal first-order method
many others
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Subgradient

recall basic inequality for convex differentiable f :

f (y) ≥ f (x) +∇f (x)⊤(y− x).

g is a subgradient of a convex function f at x ∈ domf if

f (y) ≥ f (x) + g⊤(y− x),∀y ∈ domf .

g2, g3 are subgradients at x2, g1 is a subgradient at x1.
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Optimality conditions — unconstrained

x∗ minimizes f (x) if and only

0 ∈ ∂f (x∗)

Proof: by definition

f (y) ≥ f (x∗) + 0⊤(y− x∗) for all y ⇐⇒ 0 ∈ ∂f (x∗).
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Optimality conditions — constrained

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m.

From Lagrange duality: if strong duality holds, then x∗, λ∗ are
primal, dual optimal if and only if

x∗ is primal feasible

λ∗ ≥ 0

complementary: λ∗i fi(x∗) = 0 for i = 1, . . . ,m

x∗ is a minimizer of min L(x, λ∗) = f0(x) +
∑

i λ
∗
i fi(x), i.e.,

0 ∈ ∂xL(x, λ∗) = ∂f0(x∗) +
∑

i

λ∗i ∂fi(x∗)
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Proximal Gradient Method

Let f (x) = 1
2∥Ax− b∥2

2. The gradient ∇f (x) = A⊤(Ax− b). Consider

min ψµ(x) := µ∥x∥1 + f (x).

First-order approximation + proximal term:

xk+1 := argmin
x∈Rn

µ∥x∥1 + (∇f (xk))⊤(x− xk) +
1

2τ
∥x− xk∥2

2

= argmin
x∈Rn

µ∥x∥1 +
1

2τ
∥x− (xk − τ∇f (xk))∥2

2

= shrink(xk − τ∇f (xk), µτ)

gradient step: bring in candidates for nonzero components
shrinkage step: eliminate some of them by “soft” thresholding
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Shrinkage (soft thresholding)

shrink(y, ν) : = argmin
x∈R

ν∥x∥1 +
1
2
∥x− y∥2

2

= sgn(y)max(|y| − ν, 0)

=

{
y− νsgn(y), if |y| > ν

0, otherwise

Chambolle, Devore, Lee and Lucier
Figueirdo, Nowak and Wright
Elad, Matalon and Zibulevsky
Hales, Yin and Zhang
Darbon, Osher
Many others
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Proximal gradient method For General Problems

Consider the model

min F(x) := f (x) + h(x)

f (x) is convex, differentiable
h(x) is convex but may be nondifferentiable

General scheme: linearize f (x) and add a proximal term:

xk+1 := argmin
x∈Rn

h(x) + (∇f (xk))⊤(x− xk) +
1

2τ
∥x− xk∥2

2

= argmin
x∈Rn

τh(x) +
1
2
∥x− (xk − τ∇f (xk))∥2

2

= proxτh(x
k − τ∇f (xk))

Proximal Operator

proxh(y) := argmin
x

h(x) +
1
2
∥x− y∥2

2.
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Convergence of proximal gradient method

to minimize f + h, choose x0 and repeat

xk = proxtkh
(
xk−1 − t∇f (xk−1)

)
, k ≥ 1

assumptions
f convex with dom g = Rn; ∇f Lipschitz continuous with constant
L:

∥∇f (x)−∇f (y)∥2 ≤ L∥x− y∥2 ∀x, y

h is closed and convex (so that proxth is well defined)
optimal value F∗ is finite and attained at x∗ (not necessarily
unique)

convergence result: 1/k rate convergence with fixed step size
tk = 1/L
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Gradient map

Gt(x) =
1
t
(x− proxth(x− t∇f (x)))

Gt(x) is the negative ‘step’ in the proximal gradient update

x+ = proxth(x− t∇f (x))

= x− tGt(x)

Gt(x) is not a gradient or subgradient of F = g + h

from subgradient definition of prox-operator

Gt(x) ∈ ∂f (x) + ∂h(x− tGt(x))

Gt(x) = 0 if and only if x minimizes F(x) = f (x) + h(x)
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Consequences of Lipschitz assumption

recall upper bound (lecture on "gradient method") for convex f with
Lipschitz continuous gradient

f (y) ≤ f (x) +∇f (x)⊤(y− x) +
L
2
∥y− x∥2

2 ∀x, y

substitute y = x− tGt(x):

f (x− tGt(x)) ≤ f (x)− t∇f (x)⊤Gt(x) +
t2L
2
∥Gt(x)∥2

2

if 0 < t ≤ 1/L, then

f (x− tGt(x)) ≤ f (x)− t∇f (x)⊤Gt(x) +
t
2
∥Gt(x)∥2

2 (1)
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A global inequality

if the inequality (1) holds, then for all z,

F(x− tGt(x)) ≤ F(x) + Gt(x)⊤(x− z)− t
2
∥Gt(x)∥2

2 (2)

proof : (define v = Gt(x)−∇f (x))

F(x− tGt(x)) ≤ f (x)− t∇f (x)⊤Gt(x) +
t
2
∥Gt(x)∥2

2 + h(x− tGt(x))

≤ f (z) +∇f (x)⊤(x− z)− t∇f (x)⊤Gt(x) +
t
2
∥Gt(x)∥2

2

+ h(z) + v⊤(x− z− tGt(x))

= f (z) + h(z) + Gt(x)⊤(x− z)− t
2
∥Gt(x)∥2

2

line 2 follows from convexity of f and h, and v ∈ ∂h(x− tGt(x))
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Progress in one iteration

x+ = x− tGt(x)

inequality (2) with z = x shows the algorithm is a descent
method:

F(x+) ≤ F(x)− t
2
∥Gt(x)∥2

2

inequality (2) with z = x∗

F(x+)− F∗ ≤ Gt(x)⊤(x− x∗)− t
2
∥Gt(x)∥2

2

=
1
2t

(
∥x− x∗∥2

2 − ∥x− x∗ − tGt(x)∥2
2
)

=
1
2t

(
∥x− x∗∥2

2 − ∥x+ − x∗∥2
2
) (3)

(hence, ∥x+ − x∗∥2
2 ≤ ∥x− x∗∥2

2, i.e., distance to optimal set
decreases)
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Analysis for fixed step size

add inequalities (3) for x = xi−1, x+ = xi, t = ti = 1/L

k∑
i=1

(F(xi)− F∗) ≤ 1
2t

k∑
i=1

(
∥xi−1 − x∗∥2

2 − ∥xi − x∗∥2
2
)

=
1
2t

(
∥x0 − x∗∥2

2 − ∥xk − x∗∥2
2
)

≤ 1
2t
∥x0 − x∗∥2

2

since f (xi) is nonincreasing,

F(xk)− F∗ ≤ 1
k

k∑
i=1

(F(xi)− F∗) ≤ 1
2kt
∥x0 − x∗∥2

2

conclusion: reaches F(xk)− F∗ ≤ ϵ after O(1/ϵ) iterations
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Outline: Accelerated Gradient Method

Amir Beck and Marc Teboulle, A fast iterative shrinkage thresholding
algorithm for linear inverse problems
Paul Tseng, On accelerated proximal gradient methods for
convex-concave optimization
Paul Tseng, Approximation accuracy, gradient methods and error
bound for structured convex optimization
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FISTA: Accelerated proximal gradient

Consider the model

min F(x) := f (x) + h(x).

Given t = 1/L, y1 = x0 and γ1 = 1, compute:

xk = proxth(y
k − t∇f (yk))

γk+1 =
1 +

√
1 + 4γ2

k

2

yk+1 = xk +
γk − 1
γk+1

(xk − xk−1)

Complexity results:

F(xk)− F(x∗) ≤ 2L∥x0 − x∗∥2
2

(k + 1)2
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APG Variant 1

Acclerated proximal gradient (APG):
Set x−1 = x0 and θ−1 = θ0 = 1:

yk = xk + θk(θ
−1
k−1 − 1)(xk − xk−1)

xk+1 = proxth(y
k − t∇f (yk))

θk+1 =

√
θ4

k + 4θ2
k − θ2

k

2

Question: what is the difference between θk and γk? Show θk ≤ 2
k+2

for all k.
Complexity:

F(xk)− F(x∗) ≤ 4L
(k + 1)2 ∥x

∗ − x0∥2
2
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APG Variant 2

Another version of APG:

yk = (1− θk)xk + θkzk

zk+1 = proxth(z
k − t∇f (yk))

xk+1 = (1− θk)xk + θkzk+1

θk+1 =

√
θ4

k + 4θ2
k − θ2

k

2

yk is a convex combination of xk and zk,
xk+1 is a convex combination of xk and zk+1.

Complexity:

F(xk)− F(x∗) ≤ 4L
(k + 1)2 ∥x

∗ − z0∥2
2
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Outline: ADMM

Alternating direction augmented Lagrangian methods
Variable splitting method
Convergence for problems with two blocks of variables

References:
Wotao Yin, Stanley Osher, Donald Goldfarb, Jerome Darbon,
Bregman Iterative Algorithms for l1-Minimization with
Applications to Compressed Sensing
Junfeng Yang, Yin Zhang, Alternating direction algorithms for
l1-problems in Compressed Sensing
Tom Goldstein, Stanely Osher, The Split Bregman Method for
L1-Regularized Problems
B.S. He, H. Yang, S.L. Wang, Alternating Direction Method with
Self-Adaptive Penalty Parameters for Monotone Variational
Inequalities
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Basis pursuit problem

Primal: min ∥x∥1, s.t. Ax = b

Dual: max b⊤λ, s.t. ∥A⊤λ∥∞ ≤ 1

The dual problem is equivalent to

max b⊤λ, s.t. A⊤λ = s, ∥s∥∞ ≤ 1.



22/46

Augmented Lagrangian (Bregman) framework

Augmented Lagrangian function:

L(λ, s, x) := −b⊤λ+ x⊤(A⊤λ− s) +
1

2µ
∥A⊤λ− s∥2

Algorithmic framework
Compute λk+1 and sk+1 at k-th iteration

(DL) minλ,s L(λ, s, xk), s.t. ∥s∥∞ ≤ 1

Update the Lagrangian multiplier:
xk+1 = xk + A⊤λk+1−sk+1

µ

Pros and Cons:
Pros: rich theory, well understood and a lot of algorithms
Cons: L(λ, s, xk) is not separable in λ and s, and the subproblem
(DL) is difficult to minimize
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An alternating direction minimization scheme

Divide variables into different blocks according to their roles
Minimize the augmented Lagrangian function with respect to one
block at a time while all other blocks are fixed

ADMM

λk+1 = argmin
λ
L(λ, sk, xk)

sk+1 = argmin
s
L(λk+1, s, xk), s.t. ∥s∥∞ ≤ 1

xk+1 = xk +
A⊤λk+1 − sk+1

µ
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An alternating direction minimization scheme

Explicit solutions:

λk+1 = (AA⊤)−1 (µ(Axk − b) + Ask)
sk+1 = argmin ∥s− A⊤λk+1 − µxk∥2, s.t. ∥s∥∞ ≤ 1

= P[−1,1](A
⊤λk+1 + µxk)

xk+1 = xk +
A⊤λk+1 − sk+1

µ
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ADMM for BP-denoising

Primal:
min ∥x∥1, s.t. ∥Ax− b∥2 ≤ σ

which is equivalent to

min ∥x∥1, s.t. Ax− b + r = 0, ∥r∥2 ≤ σ

Lagrangian function:

L(x, r, λ) := ∥x∥1 − λ⊤(Ax− b + r) + π(∥r∥2 − σ)
= ∥x∥1 − (A⊤λ)⊤x + π∥r∥2 − λ⊤r + b⊤λ− πσ

Hence, the dual problem is:

max b⊤λ− πσ, s.t. ∥A⊤λ∥∞ ≤ 1, ∥λ∥2 ≤ π

which is equivalent to

max b⊤λ− σ∥λ∥2, s.t. ∥A⊤λ∥∞ ≤ 1
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ADMM for BP-denoising

The dual problem is equivalent to:

max b⊤λ− σ∥u∥2, s.t. A⊤λ = s, ∥s∥∞ ≤ 1, λ = u

Augmented Lagrangian function is:

L = −b⊤λ+σ∥u∥2+x⊤(A⊤λ−s)+
1

2µ
∥A⊤λ−s∥2+π⊤(λ−u)+

1
2µ
∥λ−u∥2

ADMM scheme:

λk+1 = argmin
λ

1
2µ
∥A⊤λ− sk∥2 + (Axk − b + πk)⊤λ+

1
2µ
∥λ− uk∥2,

uk+1 = argmin
u

σ∥u∥2 + (πk)⊤(λk+1 − u) +
1

2µ
∥λk+1 − u∥2,

sk+1 = argmin
s
∥s− A⊤λk+1 − µxk∥2, s.t. ∥s∥∞ ≤ 1

= P[−1,1](A
⊤λk+1 + µxk)

xk+1 = xk +
A⊤λk+1 − sk+1

µ
, πk+1 = πk +

1
µ
(λk+1 − uk+1)
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ADMM for ℓ1-regularized problem

Primal:
min µ∥x∥1 +

1
2
∥Ax− b∥2

2

which is equivalent to

min µ∥x∥1 +
1
2
∥r∥2

2, s.t. Ax− b = r.

Lagrangian function:

L(x, r, λ) := µ∥x∥1 +
1
2
∥r∥2

2 − λ⊤(Ax− b− r)

= µ∥x∥1 − (A⊤λ)⊤x +
1
2
∥r∥2

2 + λ⊤r + b⊤λ

Hence, the dual problem is:

max b⊤λ− 1
2
∥λ∥2, s.t. ∥A⊤λ∥∞ ≤ µ
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ADMM for ℓ1-regularized problem

The dual problem is equivalent to

max b⊤λ− 1
2
∥λ∥2, s.t. A⊤λ = s, ∥s∥∞ ≤ µ.

Augmented Lagrangian function is:

L(λ, s, x) := −b⊤λ+
1
2
∥λ∥2 + x⊤(A⊤λ− s) +

1
2µ
∥A⊤λ− s∥2

ADMM scheme:

λk+1 = (AA⊤ + µI)−1 (µ(Axk − b) + Ask)
sk+1 = argmin ∥s− A⊤λk+1 − µxk∥2, s.t. ∥s∥∞ ≤ µ

= P[−µ,µ](A
⊤λk+1 + µxk)

xk+1 = xk +
A⊤λk+1 − sk+1

µ
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YALL1

Derive ADMM for the following problems:

BP: minx∈Cn ∥Wx∥w,1, s.t. Ax = b

L1/L1: minx∈Cn ∥Wx∥w,1 +
1
ν
∥Ax− b∥1

L1/L2: minx∈Cn ∥Wx∥w,1 +
1

2ρ
∥Ax− b∥2

2

BP+: minx∈Rn ∥x∥w,1, s.t. Ax = b, x ≥ 0

L1/L1+: minx∈Rn ∥x∥w,1 +
1
ν
∥Ax− b∥1, s.t. x ≥ 0

L1/L2+: minx∈Rn ∥x∥w,1 +
1

2ρ
∥Ax− b∥2

2, s.t. x ≥ 0

ν, ρ ≥ 0, A ∈ Cm×n, b ∈ Cm,x ∈ Cn for the first three and x ∈ Rn for the
last three, W ∈ Cn×n is an unitary matrix serving as a sparsifying
basis, and ∥x∥w,1 :=

∑n
i=1 wi|xi|.



30/46

Variable splitting

Given A ∈ Rm×n, consider min f (x) + g(Ax), which is

min f (x) + g(y), s.t. Ax = y

Augmented Lagrangian function:

L(x, y, λ) = f (x) + g(y)− λ⊤(Ax− y) +
1

2µ
∥Ax− y∥2

2

ADMM

(Px) : xk+1 := argmin
x∈X

L(x, yk, λk),

(Py) : yk+1 := argmin
y∈Y

L(xk+1, y, λk),

(Pλ) : λk+1 := λk − γAxk+1 − yk+1

µ
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Variable splitting

split Bregman (Goldstein and Osher) for anisotropic TV:

min α∥Du∥1 + β∥Ψu∥1 +
1
2
∥Au− f∥2

2

Introduce y = Du and w = Ψu, obtain

min α∥y∥1 + β∥w∥1 +
1
2
∥Au− f∥2

2, s.t. y = Du, w = Ψu

Augmented Lagrangian function:

L := α∥y∥1 + β∥w∥1 +
1
2
∥Au − f∥2

2 − p⊤(Du − y) +
1

2µ
∥Du − y∥2

2

−q⊤(Ψu − w) +
1

2µ
∥Ψu − w∥2

2
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Variable splitting

The variable u can be otained by(
A⊤A +

1
µ
(D⊤D + I)

)
u = A⊤f +

1
µ
(D⊤y +Ψ⊤w) + D⊤p +Ψ⊤q

If A and D are diagonalizable by FFT, then the computational
cost is very cheap. For example, A = RF , both R and D are
circulant matrices.
Variables y and w:

y := S(Du− µp, αµ)

w := S(Ψu− µq, αµ)

apply a few iterations before updating the Lagrangian multipliers
p and q

Exercise: isotropic TV

min α∥Du∥2 + β∥Ψu∥1 +
1
2
∥Au− f∥2

2
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FTVd: Fast TV deconvolution

Wang-Yang-Yin-Zhang consider:

min
u

∑
∥Diu∥2 +

1
2µ
∥Ku− f∥2

2

Introducing w and quadratic penalty:

min
u,w

∑(
∥wi∥2 +

1
2β
∥wi − Diu∥2

2

)
+

1
2µ
∥Ku− f∥2

2

Alternating minimization:
For fixed u, {wi} can be solved by shrinkage at O(N)

For fixed {wi}, u can be solved by FFT at O(N logN)
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Outline: Linearized ADMM

Linearized Bregman and Bregmanized operator splitting
ADMM + proximal point method
Xiaoqun Zhang, Martin Burgerz, Stanley Osher, A unified
primal-dual algorithm framework based on Bregman iteration



35/46

Review of Bregman method

Consider BP:
min ∥x∥1, s.t. Ax = b

Bregman method:

Dpk

J (x, xk) := ∥x∥1 − ∥xk∥1 −
〈
pk, x− xk

〉
xk+1 := argminx µDpk

J (x, xk) + 1
2∥Ax− b∥2

2

pk+1 = pk + 1
µA⊤(b− Axk+1)

Augmented Lagrangian (updating multiplier or b):
xk+1 := argminx µ∥x∥1 +

1
2∥Ax− bk∥2

2

bk+1 = b + (bk − Axk+1)

They are equivalent, see Yin-Osher-Goldfarb-Darbon
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Linearized approaches

Linearized Bregman method:

xk+1 := argmin µDpk

J (x, xk) + (A⊤(Axk − b))⊤(x − xk) +
1
2δ

∥x − xk∥2
2,

pk+1 := pk − 1
µδ

(xk+1 − xk)− 1
µ

A⊤(Axk − b),

which is equivalent to

xk+1 := argmin µ∥x∥1 +
1
2δ

∥x − vk∥2
2

vk+1 := vk − δA⊤(Axk+1 − b)

Bregmanized operator splitting:

xk+1 := argmin µ∥x∥1 + (A⊤(Axk − bk))⊤(x − xk) +
1
2δ

∥x − xk∥2
2

bk+1 = b + (bk − Axk+1)

Are they equivalent?



36/46

Linearized approaches

Linearized Bregman method:

xk+1 := argmin µDpk

J (x, xk) + (A⊤(Axk − b))⊤(x − xk) +
1
2δ

∥x − xk∥2
2,

pk+1 := pk − 1
µδ

(xk+1 − xk)− 1
µ

A⊤(Axk − b),

which is equivalent to

xk+1 := S(vk, µδ)

vk+1 := vk − δA⊤(Axk+1 − b)
or

xk+1 := S(δA⊤bk, µδ)

bk+1 := b + (bk − Axk+1)

Bregmanized operator splitting:

xk+1 := S(xk − δ(A⊤(Axk − bk)), µδ) = S(δA⊤bk + xk − δA⊤Axk, µδ)

bk+1 = b + (bk − Axk+1)
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Linearized approaches

Linearized Bregman:
If the sequence xk converges and pk is bounded, then the limit of
xk is the unique solution of

min µ∥x∥1 +
1
2δ
∥x∥2

2 s.t. Ax = b.

For µ large enough, the limit solution solves BP.
Exact regularization if δ > δ̄

What about Bregmanized operator splitting?
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Primal ADMM for ℓ1-regularized problem

Primal: min µ∥x∥1 +
1
2∥Ax− b∥2

2 which is equivalent to

min µ∥x∥1 +
1
2
∥r∥2

2, s.t. Ax− b = r.

Augmented Lagrangian function:

L(x, r, λ) = µ∥x∥1 +
1
2
∥r∥2

2 − λ⊤(Ax− b− r) +
1
2δ
∥Ax− b− r∥2

2

ADMM scheme:

xk+1 = argmin
x

µ∥x∥1 +
1
2δ

∥Ax − b − rk − δλk∥2
2 original problem

rk+1 = argmin
r

1
2
∥r∥2

2 +
1
2δ

∥Axk+1 − b − r − δλk∥2
2

λk+1 = λk +
Axk+1 − b − rk+1

δ
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Primal ADMM for ℓ1-regularized problem

Primal: min µ∥x∥1 +
1
2∥Ax− b∥2

2 which is equivalent to

min µ∥x∥1 +
1
2
∥r∥2

2, s.t. Ax− b = r.

Augmented Lagrangian function:

L(x, r, λ) = µ∥x∥1 +
1
2
∥r∥2

2 − λ⊤(Ax− b− r) +
1
2δ
∥Ax− b− r∥2

2

ADMM scheme:

xk+1 = argmin
x

µ∥x∥1 + (gk)⊤(x − xk) +
1

2τ
∥x − xk∥2

2

rk+1 = argmin
r

1
2
∥r∥2

2 +
1
2δ

∥Axk+1 − b − r − δλk∥2
2

λk+1 = λk +
Axk+1 − b − rk+1

δ

Convergence of the linearized scheme?
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Outline: Greedy Methods

Orthogonal matching pursuit

CoSaOMP
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Orthogonal Matching Pursuit, OMP

gk = A⊤(Axk−1 − b)

xk = argminx{∥Ax− b∥2 : supp(x) ⊆ Sk}. 如果矩阵A满足相
关RIP条件，则A⊤

Sk ASk实际上是可逆的．则等价
于argminx{∥ASk xSk − b∥2 : supp(x) ⊆ Sk}. 显式解
为xSk = (A⊤

Sk ASk)−1A⊤
Sk b

Algorithm 1 OMP算法框架

1: 输入：A, b, x0 ∈ Rn,S0 = ⊘, k = 1,最大迭代次数kmax.
2: while k < kmax do
3: 计算rk = Axk−1 − b.
4: 计算gk = A⊤rk.
5: 计算Sk = Sk−1 ∪ argmaxi |gk

i |.
6: 计算xk = argminx{∥Ax− b∥2 : supp(x) ⊆ Sk}.
7: k← k + 1．
8: end while
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CoSaOMP

gk
2s = argmin{∥x− gk∥2 : ∥x∥0 ≤ 2s}是gk的2s-逼近

Algorithm 2 CoSaOMP算法框架

1: 输入：A, r0, x0 ∈ Rn,S0 = ⊘, k = 1,终止条件ε.
2: while ∥rk∥ ≤ ε do
3: 计算rk = Axk−1 − b.
4: 计算gk = A⊤rk.
5: 计算Sk = supp(xk−1) ∪ supp(gk

2s).
6: 计算c = argminx{∥Ax− b∥2 : supp(x) ⊆ Sk}.
7: 计算xk = cs.
8: k← k + 1.
9: end while
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Outline: Algorithm Unrolling

A Brief Introduction to Algorithm Unrolling

Learned ISTA
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Algorithm Unrolling (AU)

AU consists of two steps
Pick a classic iteration and unroll it to an Neural Network (NN)
Select a set of NN parameters to learn

LASSO example: assume b = Axtrue + noise; recover xtrue by

xlasso ← minimize
x

1
2
∥Ax− b∥2

2 + λ∥x∥1

Iterative soft-thresholding algorithm (ISTA):

xk+1 = ηλα
(
xk − αAT (

Axk − b
))

convergence requires a proper stepsize α or line search
the gradient-descent step reduces 1

2∥Ax− b∥2

the soft-thresholding step ηλα(·) reduces λ∥x∥1
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Unrolled ISTA

Introduce scalar θ = λα and matrices W1 = αAT and
W2 = I − αATA

Rewrite ISTA as
xk+1 = ηθ

(
W1b + W2xk)

Unrolling: introduce θk,Wk
1 ,W

k
2 , k = 0, 1, . . ., as free parameters

and re-define
xk+1 = ηθk

(
Wk

1b + Wk
2xk)

which resembles a DNN:

Once θk,Wk
1 ,W

k
2 are chosen, the algorithm is defined
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Train the Unrolled ISTA

Objective: Find θk,Wk
1 ,W

k
2 for k = 0, 1, . . ., such that the

algorithm converges quickly for LASSO instances with the same
matrix A.
Setup and Training:

Fix a random matrix A, generate sparse vectors xtrue
i with varying

supports, and compute bi = Axtrue
i + noisei. Form the training set

D = {(xtrue
i , bi)}.

Fix a small K > 0, and train the parameters {θk,Wk
1 ,W

k
2}K

k=0 using
SGD to minimize:

minimize
{θk,Wk

1 ,W
k
2}K

k=0

∑
(x∗,b)∈D

∥∥xK(b)− x∗
∥∥2

2 ,

where xK(b) is the K-layer output of the neural network.
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Performance of the Learned ISTA (LISTA)

After the NN is trained with K = 16, the test performance is pretty
good:

Figure: The trained unrolled ISTA is called Learned ISTA (LISTA)

LISTA is better than ISTA at any λ and using a theoretical stepsize



Lecture: Matrix Completion

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Jure Leskovec and Prof. Emmanuel
Candes’s lecture notes
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Recommendation systems

References:
http://bicmr.pku.edu.cn/~wenzw/bigdata/07-recsys1.pdf

http://bicmr.pku.edu.cn/~wenzw/bigdata/08-recsys2.pdf
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The Netflix Prize

Training data
100 million ratings, 480,000 users, 17,770 movies
6 years of data: 2000-2005

Test data
Last few ratings of each user (2.8 million)
Evaluation criterion: root mean squared error (RMSE):√∑

xi(rxi − r∗xi)
2: rxi and r∗xi are the predicted and true rating of x

on i
Netflix Cinematch RMSE: 0.9514

Competition
2700+ teams
$1 million prize for 10% improvement on Cinematch
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Netflix: evaluation
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Collaborative Filtering: weighted sum model

r̂xi = bxi +
∑

j∈N(i;x)

wij(rxj − bxj)

baseline estimate for rxi: bxi = µ+ bx + bi

µ: overall mean rating
bx: rating deviation of user x = (avg. rating of user x) - µ
bi: (avg. rating of movie i) - µ

We sum over all movies j that are similar to i and were rated by x

wij is the interpolation weight (some real number). We allow:∑
j∈N(i,x) wij ̸= 1

wij models interaction between pairs of movies (it does not
depend on user x)

N(i; x): set of movies rated by user x that are similar to movie i
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Finding weights wij?

Find wij such that they work well on known (user, item) ratings:

min
wij

F(w) :=
∑

x

bxi +
∑

j∈N(i;x)

wij(rxj − bxj)

− rxi

2

Unconstrained optimization: quadratic function

∇wijF(w) = 2
∑

x

bxi +
∑

k∈N(i;x)

wik(rxk − bxk)

− rxi

 (rxj−bxj) = 0

for j ∈ {N(i, x),∀i, x}

Equivalent to solving a system of linear equations?

Steepest gradient descent method: wk+1 = wk − τ∇F(w)

Conjugate gradient method
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Latent factor models

low rank factorization on Netflix data: R ≈ Q · PT

For now let’s assume we can approximate the rating matrix R as
a product of “thin” Q · PT

R has missing entries but let’s ignore that for now! Basically, we
will want the reconstruction error to be small on known ratings
and we don’t care about the values on the missing ones
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Ratings as products of factors

How to estimate the missing rating of user x for item i?

r̂xi = qi · pT
x =

∑
f

qif pxf ,

where qi is row i of Q and px is column x of PT
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Latent factor models

Minimize SSE on training data!

Use specialized methods to find P, Q such that r̂xi = qi · pT
x

min
P,Q

∑
(i,x)∈training

(rxi − qi · pT
x )

2

We don’t require cols of P, Q to be orthogonal/unit length

P, Q map users/movies to a latent space

Add regularization:

min
P,Q

∑
(i,x)∈training

(rxi − qi · pT
x )

2 + λ

[∑
x

∥px∥2
2 +

∑
i

∥qi∥2
2

]

λ is called regularization parameters
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Gradient descent method

min
P,Q

F(P,Q) :=
∑

(i,x)∈training
(rxi − qi · pT

x )
2 + λ

[∑
x

∥px∥2
2 +

∑
i

∥qi∥2
2

]

Gradient decent:
Initialize P and Q (using SVD, pretend missing ratings are 0)

Do gradient descent:
Pk+1 ← Pk − τ∇PF(Pk,Qk),
Qk+1 ← Qk − τ∇QF(Pk,Qk),
where (∇QF)if = −2

∑
x,i(rxi − qipT

x )pxf + 2λqif . Here qif is entry f
of row qi of matrix Q

Computing gradients is slow when the dimension is huge
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Stochastic gradient descent method

Observation: Letqif be entry f of row qi of matrix Q

(∇QF)if =
∑
x,i

(
−2(rxi − qipT

x )pxf + 2λqif
)
=

∑
x,i

∇QF(rxi)

(∇PF)xf =
∑
x,i

(
−2(rxi − qipT

x )qxf + 2λpif
)
=

∑
x,i

∇PF(rxi)

Stochastic gradient decent:
Instead of evaluating gradient over all ratings, evaluate it for each
individual rating and make a step

P← P− τ∇PF(rxi)
Q← Q− τ∇QF(rxi)

Need more steps but each step is computed much faster
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Latent factor models with biases

predicted models:
r̂xi = µ+ bx + bi + qi · pT

x

µ: overall mean rating, bx: Bias for user x, bi: Bias for movie i

New model:

min
P,Q,bx,bi

∑
(i,x)∈training

(rxi − (µ+ bx + bi + qi · pT
x ))

2

+λ

[∑
x

∥px∥2
2 +

∑
i

∥qi∥2
2 + ∥bx∥2

2 + ∥bi∥2
2

]

Both biases bx, bi as well as interactions qi, px are treated as
parameters (we estimate them)

Add time dependence to biases:

r̂xi = µ+ bx(t) + bi(t) + qi · pT
x
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Netflix: performance
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Netflix: performance
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General matrix completion
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Matrix completion

Matrix M ∈ Rn1×n2

Observe subset of entries
Can we guess the missing entries?
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Which algorithm ?

Hope: only one low-rank matrix consistent with the sampled entries

Recovery by minimum complexity

minimize rank(X)
subject to Xij = Mij, (i, j) ∈ Ω

Problem
This is NP-hard
Doubly exponential in n (?)
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SVD - Properties

Theorem: SVD
If A is a real m-by-n matrix, then there exits

U = [u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n

such that UTU = I, VTV = I and

UTAV = diag(σ1, . . . , σp) ∈ Rm×n, p = min(m, n),

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

Proof: Let V1 ∈ Rn×r has orthonormal columns, then exits
V2 ∈ Rn×(n−r) such that V = [V1,V2] is orthogonal.

Let x ∈ Rn and y ∈ Rm be unit 2-norm vectors: Ax = σy with
σ = ∥A∥2. Then exists V2 ∈ Rn×(n−1) and U2 ∈ Rm×(m−1) so
V = [x,V2] ∈ Rn×n and U = [y,U2] ∈ Rm×m are orthogonal.
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Then it can be proved that UTAV has the following structure

UTAV =

(
σ wT

0 B

)
≡ A1.

Since ∥∥∥∥A1

(
σ
w

)∥∥∥∥2

2
≥ (σ2 + wTw)2,

we have ∥A1∥2
2 ≥ (σ2 + wTw). But σ2 = ∥A∥2

2 = ∥A1∥2
2, and so we

must have w = 0. An induction gives the proof.
Properties:

AV = UΣ, ATU = VΣT : Avi = σui, ATui = σivi, i = 1, . . . , p.
rank(A) = r, null(A) = span{vr+1, . . . , vn}, ran(A) = span{u1, . . . , ur}
A =

∑r
i=1 σiuivT

i

∥A∥2
F = σ2

1 + . . .+ σ2
p, ∥A∥2 = σ1
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SVD - Best Low Rank Approximation

Theorem
Let the SVD of A ∈ Rm×n be given in Theorem: SVD. If
k < r = rank(A) and Ak =

∑k
i=1 σiuivT

i , then

min
rank(B)=k

∥A− B∥2 = ∥A− Ak∥2 = σk+1.

Proof: Since UTAkV = diag(σ1, . . . , σk, 0, . . . , 0) it follows that
rank(Ak) = k and UT(A− Ak)V = diag(0, . . . , 0, σk+1, . . . , σp).
Hence ∥A− Ak∥2 = σk+1.

Suppose rank(B) = k for some B ∈ Rm×n. We can find
orthonormal vectors x1, . . . , xn−k so null(B) = span{x1, . . . , xn−k}.
A dimension argument shows:

span{x1, . . . , xn−k} ∩ span{v1, . . . , vk+1} ≠ {0}
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Let z be a unit 2-norm vector in this intersection. Since Bz = 0
and

Az =
k+1∑
i=1

σi(vT
i z)ui,

we have

∥A− B∥2
2 ≥ ∥(A− B)z∥2

2 = ∥Az∥2
2 =

k+1∑
i=1

σ2
i (v

T
i z)2 ≥ σ2

k+1

Comments:
So zeroing small σi introduces less error

How many σs to keep? Rule of thumb: keep 80-90% of ’energy’
(=

∑
σ2

i )
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SVD - Complexity

To compute SVD: O(nm2) or O(n2m)

But:
Less work, if we just want singular values
or if we want first k singular vectors
or if the matrix is sparse

Implemented in linear algebra packages like
Dense matrix: LAPACK
Sparse Matrix: ARPACK, PROPACK
High Level Software packages: Matlab, SPlus, Mathematica ...
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Relation to Eigen-decomposition

SVD gives us A = UΣV⊤

Eigen-decomposition: A = XΛX⊤

A is symmetric
U,V,X are orthonormal
Λ,Σ are diagonal

AA⊤ = UΣΣ⊤U⊤

A⊤A = VΣΣ⊤V⊤

λi(A⊤A) = σ2
i (A)



24/52

Nuclear-norm minimization

Singular value decomposition

X =

r∑
k=1

σkukv∗k

{σk}: singular values, {uk}, {vk}: singular vectors
Nuclear norm (σi(X) is ith largest singular value of X)

∥X∥∗ =
n∑

i=1

σi(X)

Heuristic

minimize ∥X∥∗
subject to Xij = Mij, (i, j) ∈ Ω

Convex relaxation of the rank minimization program
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Connections with compressed sensing

General setup

Rank minimization

minimize rank(X)
subject to A(X) = b

Convex relaxation

minimize ∥X∥∗
subject to A(X) = b

Suppose X = diag(x), x ∈ Rn

rank(X) =
∑

i 1(xi ̸=0) = ∥x∥ℓ0

∥X∥∗ =
∑

i |xi| = ∥x∥ℓ1

Rank minimization

minimize ∥x∥ℓ0

subject to Ax = b

Convex relaxation

minimize ∥x∥ℓ1

subject to Ax = b

This is compressed sensing!
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SOCP/SDP Duality

(P) min c⊤x

s.t. Ax = b, xQ ⪰ 0

(D) max b⊤y

s.t. A⊤y + s = c, sQ ⪰ 0

(P) min ⟨C,X⟩
s.t. ⟨A1,X⟩ = b1

. . .

⟨Am,X⟩ = bm

X ⪰ 0

(D) max b⊤y

s.t.
∑

i

yiAi + S = C

S ⪰ 0

Strong duality
If p∗ > −∞, (P) is strictly feasible, then (D) is feasible and
p∗ = d∗

If d∗ < +∞, (D) is strictly feasible, then (P) is feasible and
p∗ = d∗

If (P) and (D) has strictly feasible solutions, then both have
optimal solutions.
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Semidefinite program

(D)
min − b⊤y

s.t. y1A1 + . . .+ ymAm ⪯ C

Ai,C ∈ Sk, multiplier is matrix X ∈ Sk

Lagrangian L(y,X) = −b⊤y + ⟨X, y1A1 + . . .+ ymAm − C⟩

dual function

g(X) = inf
y
L(y,X) =

{
−⟨C,X⟩ , ⟨Ai,X⟩ = bi

−∞ otherwise

The dual of (D) is
min ⟨C,X⟩
s.t. ⟨Ai,X⟩ = bi,X ⪰ 0

p∗ = d∗ if primal SDP is strictly feasible.
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Positive semidefinite unknown: SDP formulation

Suppose unknown matrix X is positive semidefinite

min
n∑

i=1

σi(X)

s.t. Xij = Mij (i, j) ∈ Ω

X ≽ 0

⇔
min trace(X)
s.t. Xij = Mij (i, j) ∈ Ω

X ≽ 0

Trace heuristic: Mesbahi & Papavassilopoulos (1997), Beck &
D’Andrea (1998)
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General SDP formulation

Let X ∈ Rm×n. For a given norm ∥ · ∥, the dual norm ∥ · ∥d is defined as

∥X∥d := sup{⟨X,Y⟩ : Y ∈ Rm×n, ∥Y∥ ≤ 1}

Nuclear norm and spectral norms are dual:

∥X∥ := σ1(X), ∥X∥∗ =
∑

i

σi(X).

(P)
max

Y
⟨X,Y⟩

s.t. ∥Y∥2 ≤ 1
⇔

max
Y

2⟨X,Y⟩

s.t.
[

Im Y
Y⊤ In

]
≽ 0

⇔

min
Z
−
〈

Z,
[

0 X
X⊤ 0

]〉
s.t. Z1 = Im

Z2 = In

Z =

[
Z1 Z3
Z⊤

3 Z2

]
⪰ 0
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General SDP formulation

The Lagrangian dual problem is:

max
W1,W2

min
Z⪰0

−
〈

Z,
[

0 X
X∗ 0

]〉
+ ⟨Z1 − Im,W1⟩+ ⟨Z2 − In,W2⟩

strong duality after a scaling of 1/2 and change of variables X to −X

(D)
minimize

1
2
(trace(W1) + trace(W2))

subject to
[

W1 X
X⊤ W2

]
≽ 0

Optimization variables: W1 ∈ Rn1×n1 ,W2 ∈ Rn2×n2 .

Proposition 2.1 in "Guaranteed Minimum-Rank Solutions of Linear
Matrix Equations via Nuclear Norm Minimization", Benjamin Recht,
Maryam Fazel, Pablo A. Parrilo
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General SDP formulation

Nuclear norm minimization

min ∥X∥∗
s.t. A(X) = b

⇐⇒
max b⊤y

s.t. ∥A∗(y)∥ ≤ 1

SDP Reformulation

min
1
2
(trace(W1) + trace(W2))

s.t. A(X) = b[
W1 X
X⊤ W2

]
≽ 0

⇐⇒
max b⊤y

s.t.
[

I A∗(y)
(A∗(y))⊤ I

]
≽ 0
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Matrix recovery

M =
2∑

k=1

σkuku∗k ,
u1 = (e1 + e2)/

√
2,

u2 = (e1 − e2)/
√

2

M =


∗ ∗ 0 . . . 0 0
∗ ∗ 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 0



Cannot be recovered from a small set of entries
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Rank-1 matrix M = xy∗

Mij = xiyj



× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×



If single row (or column) is not sampled→ recovery is not possible

What happens for almost all sampling sets?

Ω subset of m entries selected uniformly at random
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Matrix Rank Minimization

Given X ∈ Rm×n, A : Rm×n → Rp, b ∈ Rp, we consider
the matrix rank minimization problem:

min rank(X), s.t. A(X) = b

matrix completion problem:

min rank(X), s.t. Xij = Mij, (i, j) ∈ Ω

nuclear norm minimization:

min ∥X∥∗ s.t. A(X) = b

where ∥X∥∗ =
∑

i σi and σi = ith singular value of matrix X.
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Quadratic penalty framework

Unconstrained Nuclear Norm Minimization:

min F(X) := µ∥X∥∗ +
1
2
∥A(X)− b∥2

2.

Optimality condition:

0 ∈ µ∂∥X∗∥∗ +A∗(A(X∗)− b),

where ∂∥X∥∗ = {UV⊤ + W : U⊤W = 0,WV = 0, ∥W∥2 ≤ 1}.
Linearization approach (g is the gradient of 1

2∥A(X)− b∥2
2):

Xk+1 := argmin
X

µ∥X∥∗ +
〈
gk,X − Xk〉+ 1

2τ
∥X − Xk∥2

F

= argmin
X

µ∥X∥∗ +
1

2τ
∥X − (Xk − τgk)∥2

F
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Matrix Shrinkage Operator

For a matrix Y ∈ Rm×n, consider:

min
X∈Rm×n

ν∥X∥∗ +
1
2
∥X − Y∥2

F.

The optimal solution is:

X := S(Y, ν) = UDiag(s(σ, ν))V⊤,

SVD: Y = UDiag(σ)V⊤

Thresholding operator:

s(x, ν) := x̄, with x̄i =

{
xi − ν, if xi − ν > 0
0, o.w.
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Fixed Point Method (Proximal gradient method)

Fixed Point Iterative Scheme{
Yk = Xk − τA∗(A(Xk)− b)
Xk+1 = S(Yk, τµ).

Lemma: Matrix shrinkage operator is non-expansive. i.e.,

∥S(Y1, ν)− S(Y2, ν)∥F ≤ ∥Y1 − Y2∥F.

Complexity of the fixed point method:

F(Xk)− F(X∗) ≤
Lf ∥X0 − X∗∥2

2k
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Accelerated proximal gradient (APG) method

APG algorithm (t−1 = t0 = 1):

Yk = Xk +
tk−1 − 1

tk (Xk − Xk−1)

Gk = Yk − (τ k)−1A∗(A(Yk)− b)

Xk+1 = Sτ k(Gk), tk+1 =
1 +

√
1 + 4(tk)2

2

Complexity:

F(Xk)− F(X∗) ≤
2Lf ∥X0 − X∗∥2

(k + 1)2
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SVT

Linearized Bregman method:

Vk+1 := Vk − τA∗(A(Xk)− b)

Xk+1 := Sτµ(Vk+1)

Convergence to

min τ∥X∥∗ +
1
2
∥X∥2

F, s.t. A(X) = b
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Review of Bregman method

Consider the problem:

min ∥X∥∗, s.t. A(X) = b

Bregman method:
DPk

(X,Xk) := ∥X∥∗ − ∥Xk∥∗ −
〈
Pk,X − Xk

〉
Xk+1 := argminX µDPk

(X,Xk) + 1
2∥A(X)− b∥2

2

Pk+1 = Pk + 1
µA

⊤(b−A(Xk+1))

Augmented Lagrangian (updating multiplier or b):
Xk+1 := argminX µ∥X∥∗ + 1

2∥A(X)− bk∥2
2

bk+1 = b + (bk −A(Xk+1))

They are equivalent, see Yin-Osher-Goldfarb-Darbon
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Linearized approaches

Linearized Bregman method:

Xk+1 := argmin µDpk
(X,Xk) +

〈
A⊤(A(Xk)− b),X − Xk

〉
+

1
2δ

∥X − Xk∥2
F,

Pk+1 := Pk − 1
µδ

(Xk+1 − Xk)− 1
µ
A⊤(A(Xk)− b),

which is equivalent to

Xk+1 := argmin µ∥X∥∗ +
1
2δ

∥X − Vk∥2
F

Vk+1 := Vk − δA⊤(A(Xk+1)− b)

Bregmanized operator splitting:

Xk+1 := argmin µ∥X∥∗ +
〈
A⊤(A(Xk)− bk),X − Xk

〉
+

1
2δ

∥X − Xk∥2
F

bk+1 = b + (bk −A(Xk+1))

Are they equivalent?
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Linearized approaches

Linearized Bregman method:

Xk+1 := argmin µDpk
(X,Xk) +

〈
A⊤(A(Xk)− b),X − Xk

〉
+

1
2δ

∥X − Xk∥2
F,

Pk+1 := Pk − 1
µδ

(Xk+1 − Xk)− 1
µ
A⊤(A(Xk)− b),

which is equivalent to

Xk+1 := S(Vk, µδ)

Vk+1 := Vk − δA⊤(A(Xk+1)− b)
or

Xk+1 := S(δA⊤(bk), µδ)

bk+1 := b + (bk −A(Xk+1))

Bregmanized operator splitting:

Xk+1 := S(Xk − δ(A⊤(A(Xk)− bk)), µδ) = S(δA⊤(bk) + Xk − δA⊤(A(Xk)), µδ)

bk+1 = b + (bk −A(Xk+1))
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Low-rank factorization model

Finding a low-rank matrix W so that ∥PΩ(W −M)∥2
F or the

distance between W and {Z ∈ Rm×n,Zij = Mij,∀(i, j) ∈ Ω} is
minimized.
Any matrix W ∈ Rm×n with rank(W) ≤ K can be expressed as
W = XY where X ∈ Rm×K and Y ∈ RK×n.

New model

min
X,Y,Z

1
2
∥XY − Z∥2

F s.t. Zij = Mij, ∀(i, j) ∈ Ω

Advantage: SVD is no longer needed!
Related work: the solver OptSpace based on optimization on
manifold
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Nonlinear Gauss-Seidel scheme

First variant of alternating minimization:

X+ ← ZY† ≡ ZY⊤(YY⊤)†,

Y+ ← (X+)
†Z ≡ (X⊤

+X+)
†(X⊤

+Z),

Z+ ← X+Y+ + PΩ(M − X+Y+).

Let PA be the orthogonal projection onto the range space R(A)
X+Y+ =

(
X+(X⊤

+X+)
†X⊤

+

)
Z = PX+Z

One can verify that R(X+) = R(ZY⊤) .
X+Y+ = PZY⊤Z = ZY⊤(YZ⊤ZY⊤)†(YZ⊤)Z.

idea: modify X+ or Y+ to obtain the same product X+Y+
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Nonlinear Gauss-Seidel scheme

Second variant of alternating minimization:

X+ ← ZY⊤,

Y+ ← (X+)
†Z ≡ (X⊤

+X+)
†(X⊤

+Z),

Z+ ← X+Y+ + PΩ(M − X+Y+).

Third variant of alternating minimization: V = orth(ZY⊤)

X+ ← V,

Y+ ← V⊤Z,

Z+ ← X+Y+ + PΩ(M − X+Y+).
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Sparse and low-rank matrix separation

Given a matrix M, we want to find a low rank matrix W and a
sparse matrix E, so that W + E = M.
Convex approximation:

min
W,E
∥W∥∗ + µ∥E∥1, s.t. W + E = M

Robust PCA
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Video separation

Partition the video into moving and static parts
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ADMM

Convex approximation:

min
W,E
∥W∥∗ + µ∥E∥1, s.t. W + E = M

Augmented Lagrangian function:

L(W,E,Λ) := ∥W∥∗ + µ∥E∥1 + ⟨Λ,W + E −M⟩+ 1
2β
∥W + E −M∥2

F

Alternating direction Augmented Lagrangian method

W j+1 := argmin
W

L(W, Ej, Λj),

Ej+1 := argmin
E

L(W j+1, E, Λj),

Λj+1 := Λj +
γ

β
(W j+1 + Ej+1 −M).
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W-subproblem

Convex approximation:

W j+1 := argmin
W

L(W, Ej, Λj)

= argmin
W
∥W∥∗ +

1
2β

∥∥W −
(
M − Ej − βΛj)∥∥2

F

= Sβ(M − Ej − βΛj) := UDiag(sβ(σ))V⊤

SVD: M − Ej − βΛj = UDiag(σ)V⊤

Thresholding operator:

sν(x) := x̄, with x̄i =

{
xi − ν, if xi − ν > 0
0, o.w.
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E-subproblem

Convex approximation:

W j+1 := argmin
E

L(W j+1, E, Λj)

= argmin
E
∥E∥1 +

1
2βµ

∥∥E −
(
M −W j+1 − βΛj)∥∥2

F

= sβµ(M −W j+1 − βΛj)

sν(y) : = argmin
x∈R

ν∥x∥1 +
1
2
∥x− y∥2

2

=

{
y− νsgn(y), if |y| > ν

0, otherwise
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Low-rank factorization model for matrix separation

Consider the model

min
Z,S
∥S∥1 s.t. Z + S = D, rank(Z) ≤ K

Low-rank factorization: Z = UV

min
U,V,Z

∥Z − D∥1 s.t. UV − Z = 0

Only the entries Dij, (i, j) ∈ Ω, are given. PΩ(D) is the projection
of D onto Ω.

New model

min
U,V,Z

∥PΩ(Z − D)∥1 s.t. UV − Z = 0

Advantage: SVD is no longer needed!
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ADMM

Consider:

min
U,V,Z

∥PΩ(Z − D)∥1 s.t. UV − Z = 0

Introduce the augmented Lagrangian function

Lβ(U,V,Z,Λ) = ∥PΩ(Z − D)∥1 + ⟨Λ,UV − Z⟩+ β

2
∥UV − Z∥2

F,

Alternating direction augmented Lagrangian framework (Bregman):

Uj+1 := arg min
U∈Rm×k

Lβ(U, V j, Zj, Λj),

V j+1 := arg min
V∈Rk×n

Lβ(Uj+1, V, Zj, Λj),

Zj+1 := arg min
Z∈Rm×n

Lβ(Uj+1, V j+1, Z, Λj),

Λj+1 := Λj + γβ(Uj+1V j+1 − Zj+1).
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ADMM subproblems

Let B = Z − Λ/β, then

U+ = BV⊤(VV⊤)† and V+ = (U⊤
+U+)

†U⊤
+B

Since U+V+ = U+(U⊤
+U+)

†U⊤
+B = PU+B, then:

Q := orth(BV⊤), U+ = Q and V+ = Q⊤B

Variable Z:

PΩ(Z+) = PΩ
(
S
(

U+V+ − D +
Λ

β
,

1
β

)
+ D

)
PΩc(Z+) = PΩc

(
U+V+ +

Λ

β

)



Optimal Transport

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Gabriel Peyré’s lecture notes
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A Geometric Motivation

Setting: Probability measures P(X ) on a metric space (X , dist).

distance between µ and ν:
µ = δx1 and ν = δy1

dist(µ, ν) = dist(x1, y1)

µ = 1
n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi

dist(µ, ν) = 1
n2

∑
ij dist(xi, yj)? or

dist(µ, ν) = minσ permutation
1
n

∑
i dist(xi, yσ(i))

What if µ, ν ∈ P(X )?
Goal: Build a metric on P(X ) with the geometry of (X , dist).
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Applications: comparing measures

������������������

! images, vision, graphics and machine learning, . . .

• Optimal transport

Optimal transport meanL
2
mean
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Applications: toward high-dimensional OT

��������������������������
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Kantorovitch’s Formulation

Discrete Optimal Transport
Input two discrete probability measures

α =
m∑

i=1

aiδxi , β =
n∑

j=1

bjδyj . (1)

X = {xi}i, Y = {xj}j: are given points clouds, xi, yi are vectors.
ai, bj : positive weights,

∑m
i=1 ai =

∑n
j=1 bj = 1.

Cij: costs, Cij = c(xi, yj) ≥ 0.

Couplings

U(α, β)
def
= {Π ∈ Rm×n

+ ; Π1n = a,Π⊤1m = b} (2)

is called the set of couplings with respect to α and β.
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Kantorovitch’s Formulation

Discrete Optimal Transport
In the optimal transport, we want to compute the following quantity
[Kantorovich 1942]

Optimal transport distance

L(α, β,C)
def
= min

∑
i,j

Ci,jΠi,j; Π ∈ U(a, b)

 . (3)
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Push Forward

Radon measures (α, β) on (X ,Y).
Transfer of measure by T : X → Y: push forward.
The measure T#α on Y is defined by

T#α(Y) = α(T−1(Y)), for all measurable Y ∈ Y. (4)

Equivalently, ∫
Y

g(y)dT#α(y)
def
=

∫
X

g(T(x))dα(x). (5)

Discrete measures: T#α =
∑

i αiδT(xi)

Smooth densities: dα = ρ(x)dx, dβ = ξ(x)dx.

T#α = β ⇐⇒ ρ(T(x))|det(∂T(x))| = ξ(x). (6)
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Monge problem

Monge problem seeks for a map that associates to each point xi

a single point yj, and which must push the mass of α toward the
mass of β, namely:

∀j, bj =
∑

i:T(xi)=yj

ai

Discrete case:

min
T

∑
i

c(xi,T(xi)), s.t. T#α = β

Arbitrary measures:

min
T

∫
X

c(x,T(x))dα(x), s.t. T#α = β
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Couplings between General Measures

Projectors:
PX : (x, y) ∈ X × Y → x ∈ X ,
PY : (x, y) ∈ X × Y → y ∈ Y.

(7)

Couplings between General Measures

U(α, β) def
= {π ∈ M+(X × Y);PX#π = α,PY#π = β}. (8)

is called the set of couplings with respect to α and β.
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Cases of Couplings

�������������������������

⇡

Discrete

⇡

Continuous

⇡

Semi-discrete

βββ

↵
↵ ↵

βββ↵ ↵ ↵
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More Examples

���������������������

β

↵

β

↵

⇡
β

↵

β

↵

⇡

β

↵

β

↵

⇡

↵

β

↵

⇡β
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Kantorovitch Problem for General Measures

Optimal transport distance between General Measures

L(α, β, c) def
= min

π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y). (9)

Probability interpretation:

min
(X,Y)

{E(X,Y)(c(X,Y)),X ∼ α,Y ∼ β}. (10)
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Wasserstein Distance

Metric Space X = Y.
Distance d(x, y) (nonegative, symmetric, identity, triangle inequality).
Cost c(x, y) = d(x, y)p, p ≥ 1.

Wasserstein Distance

Wp(α, β)
def
= L(α, β, dp)1/p. (11)

Theorem
Wp is a distance, and

Wp(αn, α) → 0 ⇐⇒ αn
weak→ α. (12)

Example

Wp(δx, δy) = d(x, y). (13)
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Dual form

Dual problem (discrete case)

max
w∈Rm,r∈Rn

w⊤a + r⊤b,

s.t. wi + rj ≤ Cij, ∀(i, j)
(14)

Relation between any primal and dual solutions:

Pij > 0 ⇒ wi + rj = Cij.
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Wasserstein barycenter

Define C def
= MXY , where (MXY)ij = d(xi, yi)

p. The Wasserstein
distance as

L(a, b,C)
def
= min

∑
i,j

Ci,jΠi,j; Π ∈ U(a, b)

 . (15)

Given a set of point clouds and their corresponding probability
vector {(Y i, bi)}, i = 1, . . . ,N.
Find a support X = {xi} with a probability vector a such that
(X, a) is the optimal solution of the following problem

min
X,a

N∑
k=1

λkL(a, bk,MXYk),

where
∑

k λk = 1 and λk ≥ 0.
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Applications: image color adaptation

Example: https://github.com/rflamary/POT/blob/
master/notebooks/plot_otda_color_images.ipynb

Given color image stored in the RGB format: I1, I2
# Converts an image to matrix (one pixel per line)
X1 = im2mat(I1), X2 = im2mat(I2)
# Take samples
Xs = X1[idx1, :], Xt = X2[idx2, :]
# Scatter plot of colors
pl.scatter(Xs[:, 0], Xs[:, 2], c=Xs)
# Sinkhorn Transport
ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)
ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
# prediction between images
transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
transp_Xt_sinkhorn = ot_sinkhorn.inverse_transform(Xt=X2)
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Applications: image color adaptation
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Applications: image color palette equalization

Optimal

transport

��������������������������������
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Applications: shape interpolation
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Applications: MRI Data Processing

�������������������������������������

L
2 barycenter

W
2

2
barycenter

Ground cost c = dM : geodesic on cortical surface M .
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Applications: word mover’s distance

normalized bag-of-words (nBOW), word travel cost (word2vec
distance), document distance Tijc(i, j), transportation problem

�������������������������

����������� dist(D1, D2) = W2(µ,⌫)

µ

⌫

������������
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Applications: word mover’s distance

min
Π≥0

∑
ij

Πijcij

s.t.
n∑

j=1

Πij = di

n∑
i=1

Πij = d′
j

xi: word2vec embedding
cij = ∥xi − xj∥2

if word i appears wi times in the document, we denote di =
wi∑

wj
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Distributional Robust Optimization (DRO)

stochastic optimization:

inf
β∈B

EP∗ [ℓ(β⊤X)],

where B is a convex set, ℓ is a loss function, EP∗ [·] represents the
expectation operator associated to the probability model P∗,
which describes the random element X.

The DRO model:

inf
β∈B

sup
P∈Uδ(P0)

EP[ℓ(β
⊤X)],

where Uδ(P0) is a so-called distributional uncertainty region
“centered” around some benchmark model, P0, which may be
data-driven (for example, an empirical distribution) andδ>0
parameterizes the sizeof the distributional uncertainty.

Wasserstein distance: Uδ(P0) = {P | W(P,P0) ≤ δ}.
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Discrete OT Review

Given an integer n ⩾ 1, we write Σn for the discrete probability simplex

Σn
def
=

{
a ∈ R+

n ;
n∑

i=1

ai = 1.

}
(16)

Given a ∈ Σm, b ∈ Σn, the Optimal Transport problem is to compute

L(a, b,C)
def
= min{

∑
i,j

Ci,jPi,j; s.t. P ∈ U(a, b)}. (17)

Where U(a, b) is the set of couplings between a and b.
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Entropy

The discrete entropy of a positive matrix P (
∑

ij Pij = 1) is defined as

H(P) def
= −

∑
i,j

Pi,j(log(Pi,j)− 1). (18)

For a positive vector u ∈ Σn, the entropy is defined analogously:

H(u) def
= −

∑
i

ui(log(ui)− 1). (19)

For two positive vector u, v ∈ Σn, the Kullback-Leibler divergence (or,
KL divergence) is defined to be

KL(u∥v) = −
n∑

i=1

ui log(
vi

ui
). (20)

The KL divergence is always non-negative: KL(u∥v) ≥ 0 (Jensen’s
inequality: E[f (g(X))] ≥ f (E[g(X)])).
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Entropic regularization

Given a ∈ Σm, b ∈ Σn and cost matrix C ∈ Rm×n
+ . The entropic

regularization of the transportation problem reads

Lε(a, b,C) = min
P∈U(a,b)

⟨P,C⟩ − εH(P). (21)

The case ε = 0 corresponds to the classic (linear) optimal
transport problem.
For ε > 0, problem (21) has an ε-strongly convex objective and
therefore admits a unique optimal solution P⋆

ε.

This is not (necessarily) true for ε = 0. But we have the following
proposition.
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Entropic regularization

Proposition
When ε→ 0, the unique solution Pε of (21) converges to the optimal
solution with maximal entropy within the set of all optimal solutions of
the unregularized transportation problem, namely,

Pε
ε→0→ argmaxP{H(P);P ∈ U(a, b), ⟨P,C⟩ = L0(a, b,C)} (22)

The above proposition motivates us to solve the problems in (21)
sequentially and then take ϵ→ 0.
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Entropic regularization

Proof
We consider a sequence (εℓ)ℓ such that εℓ → 0 and εℓ > 0. We
denote Pℓ = P⋆

εℓ
. Since U(a, b) is bounded, we can extract a

sequence (that we do not relabel for the sake of simplicity) such that
Pℓ → P⋆. Since U(a, b) is closed, P⋆ ∈ U(a, b). We consider any P
such that ⟨C,P⟩ = L0(a, b,C). By optimality of P and Pℓ for their
respective optimization problems (for ε = 0 and ε = εℓ), one has

0 ≤ ⟨C,Pℓ⟩ − ⟨C,P⟩ ≤ εℓ(H(Pℓ)− H(P)). (23)

Since H is continuous, taking the limit ℓ→ +∞ in this expression
shows that ⟨C,P⋆⟩ = ⟨C,P⟩. Furthermore, dividing by εℓ and taking
the limit shows that H(P) ⩽ H(P⋆). Now the result follows from the
strictly convexity of −H.
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Entropic regularization

By the concavity of entropy, for α > 0, we introduce the convex set

Uα(a, b)
def
= {P ∈ U(a, b)|KL(P∥ab⊤) ≤ α}
= {P ∈ U(a, b)|H(P) ≥ H(a) + H(b)− 1 − α}.

(24)

Definition: Sinkhorn Distance

dC,α(a, b)
def
= min

P∈Uα(a,b)
⟨C,P⟩. (25)

Proposition
For α ≥ 0, dC,α(a, b) is symmetric and satisfies all triangle inequalities.
Moreover, 1a̸=bdC,α(a, b) satisfies all three distance axioms.
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Entropic regularization

Proposition
For α large enough, the Sinkhorn distance dC,α is the transport
distance dC.

Proof.
Note that for any P ∈ U(a, b), we have

H(P) ≥ 1
2
(H(a) + H(b)), (26)

so for α ≥ 1
2(H(a) + H(b))− 1, we have

Uα(a, b) = U(a, b).
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Sinkhorn’s algorithm

For solving (21), consider its Lagrangian dual function

Lε
C(P,w, r) = ⟨C,P⟩ − εH(P) + w⊤(P1n − a) + r⊤(P⊤1m − b). (27)

Now let ∂Lε
C/∂Pij = 0, i.e.,

Pij = e−
cij+wi+rj

ε , (28)

so we can write

Pε = diag(e−
w
ε )e−

C
ε diag(e−

r
ε ). (29)

Note that
Pε1n = a, P⊤

ε 1m = b, (30)

we can then use Sinkhorn’s algorithm to find Pε!
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Sinkhorn’s algorithm

Let u = e−
w
ε , v = e−

r
ε and K = e−C/ε. We again state the KKT system

of (21):
Pε = diag(u)Kdiag(v),
a = diag(u)Kv,

b = diag(v)K⊤u.

(31)

Then the Sinkhorn’s algorithm amounts to alternating updates in the
form of

u(k+1) = diag(Kv(k))−1a,

v(k+1) = diag(K⊤u(k+1))−1b.
(32)
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Sinkhorn’s algorithm

Sinkhorn’s algorithm

1. Compute K = e−
C
ε .

2. Compute K̂ = diag(a−1)K.
3. Initial scale factor u ∈ Rm.
4. Iteratively update u:

u = 1./(K̂(b./(K⊤u))),

until reaches certain stopping criterion.
5. Compute

v = b./(K⊤u),

and eventually
Pε = diag(u)Kdiag(v).
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Sinkhorn-Newton method

The dual problem of (21) is

min
w,r

⟨a,w⟩+ ⟨b, r⟩+ ε⟨e−
w
ε ,Ke−

r
ε ⟩,

s.t. diag(e−
w
ε )Ke−

r
ε = a,

diag(e−
r
ε )K⊤e−

w
ε = b.

(33)

with w, r being the dual variables.
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Sinkhorn-Newton method

Let

F(w, r) =
(

diag(e−
w
ε )Ke−

r
ε − a

diag(e−
r
ε )K⊤e−

w
ε − b

)
. (34)

We want to find w, r such that F(w, r) = 0 so that

Pε = diag(e−
w
ε )e−

C
ε diag(e−

r
ε ). (35)

The Newton iteration is given by(
w(k+1)

r(k+1)

)
=

(
w(k)

r(k)

)
− J−1

F (w(k), r(k))F(w(k), r(k)), (36)

where

JF =
1
ε

(
diag(P1n) P

P⊤ diag(P⊤1m)

)
. (37)
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Sinkhorn-Newton method: Convergence

Proposition
For w ∈ Rm and r ∈ Rn, the Jacobian matrix JF(w, r) is symmetric
positive semidefinite, and its kernel is given by

ker(JF(w, r)) = span
{(

1m

−1n

)}
. (38)

Proof
JF is clearly symmetric. For arbitrary γ ∈ Rm and ϕ ∈ Rn, one has

(
γ⊤ ϕ⊤

)
JF

(
γ
ϕ

)
=

1
ε

∑
ij

Pij(γi + ϕj)
2 ≥ 0,

which holds with equality if and only if γi + ϕj = 0 for all i, j, leading us
to (38).
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Sinkhorn-Newton method: Convergence

Lemma
Let F : D → Rn be a continuously differentiable mapping with D ⊂ Rn open
and convex. Suppose that F(x) is invertible for each x ∈ D. Assume that the
following affine covariant Lipschitz condition holds

∥F′(x)−1(F′(y)− F′(x))(y − x)∥ ≤ ω∥y − x∥2 (39)

for x, y ∈ D. Let F(x) = 0 have a solution x∗. For the initial guess x(0) assume
that B(x∗, ∥x(0) − x∗∥) ⊂ D and that

ω∥x(0) − x∗∥ < 2.

Then the ordinary Newton iterates remain in the open ball B(x∗, ∥x(0) − x∗∥)
and converge to x∗ at an estimated quadratic rate

∥x(k+1) − x∗∥ ≤ ω

2
∥x(k) − x∗∥2. (40)

Moreover, the solution x∗ is unique in the open ball B(x∗, 2/ω).
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Sinkhorn-Newton method: Convergence

Proof
Denote e(k) = x(k) − x∗. Let us prove the lemma by induction:

∥e(k+1)∥ = ∥x(k) − (F′(x(k)))−1(F(x(k) − F(x∗))− x∗∥
= ∥e(k) − (F′(x(k)))−1(F(x(k) − F(x∗))∥
= ∥(F′(x(k)))−1((F(x∗)− F(x(k))) + F′(x(k))e(k))∥

= ∥(F′(x(k)))−1
∫ −1

s=0
(F′(x(k) + se(k))− F′(x(k)))e(k) ds∥

≤ ω∥
∫ −1

s=0
s ds∥e(k)∥2 =

ω

2
∥e(k)∥2 < ∥e(k)∥.

(41)

Also
ω∥e(k+1)∥ ≤ ω∥e(k)∥ < 2. (42)

For the uniqueness part, let x(0) = x∗∗ ̸= x∗ be a different solution,then
x(1) = x∗∗, then consider (40) when k = 0.
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Sinkhorn-Newton method: Convergence

Proposition

For any k ∈ N with P(k)
ε,ij > 0, the affine covariante Lipschitz condition

holds in the ℓ∞-norm for

ω ≤ (e
1
ε − 1)

(
1 + 2e

1
ε
max{∥P(k)

ε 1n∥∞, ∥(P(k)
ε )⊤1m∥∞}

minij P(k)
ε,ij

)
(43)

when ∥y − x∥∞ ≤ 1.

The proof for this proposition is tedious and therefore we refer the
interested readers to the paper [?].
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Relationship with Sinkhorn’s algorithm

Let u = e−
w
ε , v = e−

r
ε and K = e−C/ε. We again state the KKT system

of (21):
Pε = diag(u)Kdiag(v),
a = diag(u)Kv,

b = diag(v)K⊤u.

(44)

Then the Sinkhorn’s algorithm amounts to alternating updates in the
form of

u(k+1) = diag(Kv(k))−1a,

v(k+1) = diag(K⊤u(k+1))−1b.
(45)
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Relationship with Sinkhorn’s algorithm

Define

G(u, v) =
(

diag(u)Kv − a
diag(v)K⊤u − b

)
. (46)

Process analogously to the Sinkhorn-Newton method we just
discussed, note that

JG(u, v) =
(

diag(Kv) diag(u)K
diag(v)K⊤ diag(K⊤u)

)
. (47)

If we neglect the off-diagonal blocks above, i.e.,

ĴG(u, v) =
(

diag(Kv) 0
0 diag(K⊤u)

)
, (48)

and perform the Newton iteration(
u(k+1)

v(k+1)

)
=

(
u(k)

v(k)

)
− Ĵ−1

G (u(k), v(k))G(u(k), v(k)), (49)
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Relationship with Sinkhorn’s algorithm

We get
u(k+1) = diag(Kv(k))−1a,

v(k+1) = diag(K⊤u(k))−1b.
(50)

So the Sinkhorn’s algorithm simply approximates one Newton step by
neglecting the off-diagonal blocks and replacing u(k) by u(k+1).
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Outline

1 Problem Formulation

2 Applications

3 Entropic Regularization

4 Sinkhorn’s Algorithm

5 Sinkhorn-Newton method

6 Wasserstein barycenter
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Wasserstein barycenter

Define C def
= MXY , where (MXY)ij = d(xi, yi)

p. The Wasserstein
distance as

L(a, b,C)
def
= min

∑
i,j

Ci,jΠi,j; Π ∈ U(a, b)

 . (51)

Given a set of point clouds and their corresponding probability
vector {(Y i, bi)}, i = 1, . . . ,N.
Find a support X = {xi} with a probability vector a such that
(X, a) is the optimal solution of the following problem

min
X,a

ψ(a,X) =
N∑

k=1

λkL(a, bk,MXYk), s.t.
∑

i

ai = 1, a ≥ 0.

where
∑

k λk = 1 and λk ≥ 0.
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Differentiability of L(a, b,C) w.r.t. a

The primal problem:

L(a, b,C)
def
= min

Π

∑
i,j

Ci,jΠi,j s.t. Π1n = a,Π⊤1m = b,Π ≥ 0.

Let u∗ is the optimal dual vector of the dual problem:

max
u∈Rm,v∈Rn

u⊤a + v⊤b, s.t. ui + vj ≤ Cij, ∀(i, j)

Suppose L(a, b,C) is finite, the strong duality holds. Then u∗ is a
subgradient of L(a, b,C) w.r.t. a.
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Subgradient of optimal value function

define h(u, v) as the optimal value of convex problem

min f0(x)

s.t. fi(x) ≤ ui, i = 1, · · · ,m
Ax = b + v

(functions fi are convex; optimization variable is x)

weak result: suppose h(û, v̂) is finite, strong duality holds with the
dual

max inf
x

(
f0(x) +

∑
i

λi(fi(x)− ûi) + ν⊤(Ax − b − v̂)

)
s.t. λ ≥ 0

if λ̂, ν̂ are optimal dual variables (for r.h.s. û, v̂) then (λ̂, ν̂) ∈ ∂h(û, v̂)
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proof : by weak duality for problem with r.h.s. u, v

h(u, v) ≥ inf
x

(
f0(x) +

∑
i

λ̂i(fi(x − ui) + ν̂⊤(Ax − b − v)

)

= inf
x

(
f0(x) +

∑
i

λ̂i(fi(x − ûi) + ν̂⊤(Ax − b − v̂)

)
− λ̂⊤(u − û)− ν̂⊤(v − v̂)

= h(û, v̂)− λ̂⊤(u − û)− ν̂⊤(v − v̂)
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minimizing ψ(a,X) w.r.t a

For a fixed X, consider the problem

min
a

ψ(a,X) =
N∑

k=1

λkL(a, bk,MXYk), s.t.
∑

ai = 1, a ≥ 0

Let uk be the optimal dual variable of L(a, bk,MXYk) w.r.t. a. Then

g =
N∑

k=1

λkuk ∈ ∂aψ(a,X)

Let h(a) =
∑m

i=1 ai log ai. The associated Bregman divergence is

Dh(y, x) = h(y)− h(x)−∇h(x)T(y − x)

The mirror descent method is

aj+1 = argmin∑
ai=1,a≥0

{
gT(a − aj) +

1
α

Dh(a, aj)

}
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Minimizing ψ(a,X) w.r.t. X

Denote X = [x1, . . . , xm] and Y = [y1, . . . , yn].
Consider (MXY)ij = ∥xi − yi∥2

2. Let x = diag(X⊤X) and
y = diag(Y⊤Y). Then we have:

MXY = x1⊤n + 1⊤m y − 2X⊤Y ∈ Rm×n

Let Π be the optimal matrix corresponding to a

L(a, b,MXY) = ⟨Π,MXY⟩

=
〈
Π, x1⊤n + 1⊤m y − 2X⊤Y

〉
= ⟨x,Π1n⟩+

〈
y,Π⊤1m

〉
− 2

〈
Π,X⊤Y

〉
= x⊤a + y⊤b − 2

〈
Π,X⊤Y

〉
= ∥Xdiag(a1/2)− YΠ⊤diag(a−1/2)∥2

F + const.
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Minimizing ψ(a,X) w.r.t. X

For a fixed a, consider the problem

min
X

ψ(a,X) =
N∑

k=1

λkL(a, bk,MXYk).

Then, it is equivalent to

minX

N∑
k=1

λk

(
x⊤a − 2

〈
Πk,X⊤Yk

〉)
minX x⊤a − 2

〈
N∑

k=1

λkΠ
k,X⊤Yk

〉

minX ∥Xdiag(a1/2)−
N∑

k=1

λkYk(Πk)⊤diag(a−1/2)∥2
F

The optimal solution is:

X =

N∑
k=1

λkYk(Πk)⊤diag(a−1)
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Mixed Integer Linear Programming

Consider linear programming with additionally constraints

X = Zp
+ × Rn−p

+ .

The general form of such a mathematical optimization problem is

zIP = max{c⊤x | Ax ≤ b, x ∈ Zp
+ × Rn−p

+ },

where for A ∈ Qm×n, b ∈ Qm, c ∈ Qn.

This type of optimization problem is called a mixed integer linear
programming (MILP) problem.

If p = n, then we have a pure integer linear optimization problem.

Special case: the integer variables are binary, i.e., 0 or 1.
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The Geometry of Integer Programming

Let’s consider an integer linear program

max c⊤x

s.t. Ax ≤ b

x ∈ Zn
+

The feasible region is the integer points inside a polyhedron.

Why does solving the LP relaxation not necessarily yield a good
solution?
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How Hard is Integer Programming?

Solving general integer programs can be much more difficult
than solving linear programs.

There in no known polynomial-time algorithm for solving general
MIPs.

Solving the associated linear programming relaxation results in
an upper bound on the optimal solution to the MIP.

In general, solving the LP relaxation, an LP obtained by dropping
the integerality restrictions, does not tell us much.

Rounding to a feasible integer solution may be difficult.
The optimal solution to the LP relaxation can be arbitrarily far
away from the optimal solution to the MIP.
Rounding may result in a solution far from optimal.
We can bound the difference between the optimal solution to the
LP and the optimal solution to the MIP (how?).
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How Hard is Integer Programming?

Consider the integer
program

max 50x1 + 32x2,

s.t. 50x1 + 31x2 ≤ 250,

3x1 − 2x2 ≥ −4,

x1, x2 ≥ 0 and integer.

The linear programming
solution (376\193, 950\193)
is a long way from the
optimal integer solution
(5, 0).
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The shortest path problem

Consider a network G = (N, A) with cost cij on each edge
(i, j) ∈ A. There is an origin node s and a destination node t.

Standard notation: n = |N|, m = |A|

cost of of a path: c(P) =
∑

(i,j)∈P cij

What is the shortest path from s to t?
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The shortest path problem

min
∑

(i,j)∈A

cijxij

s.t.
∑

j

xsj = 1

∑
j

xij −
∑

j

xji = 0, for each i ̸= s or t

−
∑

i

xit = −1

xij ∈ {0, 1} for all (i, j)



9/52

Conjunction versus Disjunction

A more general mathematical view that ties integer programming
to logic is to think of integer variables as expressing disjunction.

The constraints of a standard mathematical program are
conjunctive.

All constraints must be satisfied.

g1(x) ≤ b1 AND g2(x) ≤ b1 AND · · · AND gm(x) ≤ bm

This corresponds to intersection of the regions associated with
each constraint.

Integer variables introduce the possibility to model disjunction.
At least one constraint must be satisfied.

g1(x) ≤ b1 OR g2(x) ≤ b1 OR · · · OR gm(x) ≤ bm

This corresponds to union of the regions associated with each
constraint.
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Representability Theorem

The connection between integer programming and disjunction is
captured most elegantly by the following theorem.

Theorem
A set F ⊆ Rn is MIP representable if and only if there exist rational
polytopes P1, · · · ,Pk and vectors r1, · · · , rt ∈ Zn such that

F =

n⋃
i=1

Pi + intcone{r1, · · · , rt}.

where intcone{r1, · · · , rt} =
{∑t

i=1 λiri | λ ∈ Zt
+

}
Roughly speaking, we are optimizing over a union of polyhedra,
which can be obtained simply by introducing a disjunctive logical
operator to the language of linear programming.
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Modeling with Integer Variables

From a practical standpoint, why do we need integer variables?

Integer variable essentially allow us to introduce disjunctive logic.

If the variable is associated with a physical entity that is
indivisible, then the value must be integer.

At its heart, integrality is a kind of disjunctive constraint.

0-1 (binary) variables are often used to model more abstract
kinds of disjunctions (non-numerical).

Modeling yes/no decisions.
Enforcing logical conditions.
Modeling fixed costs.
Modeling piecewise linear functions.
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Modeling Binary Choice

We use binary variables to model yes/no decisions.

Example: Integer knapsack problem
We are given a set of items with associated values and weights.
We wish to select a subset of maximum value such that the total
weight is less than a constant K.
We associate a 0-1 variable with each item indicating whether it is
selected or not.

max
m∑

j=1

cjxj

s.t.
m∑

j=1

wjxj ≤ K

x ∈ {0, 1}n
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Modeling Dependent Decisions

We can also use binary variables to enforce the condition that a
certain action can only be taken if some other action is also
taken.

Suppose x and y are binary variables representing whether or
not to take certain actions.

The constraint x ≤ y says "only take action x if action y is also
taken"
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MIP reformulation of ℓ0-minimization

Big-M assumption: ∀i, |xi| ≤ M

min
x∈Rn

f (x) s.t. ∥x∥0 ≤ k, |xi| ≤ M

MIP formulation:

min
x∈Rn

f (x) s.t.
n∑

i=1

yi ≤ k, |xi| ≤ Myi, yi ∈ {0, 1}
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Example: Facility Location Problem

We are given n potential facility locations and m customers.
There is a fixed cost cj of opening facility j.
There is a cost dij associated with serving customer i from facility
j.
We have two sets of binary variables.

yj is 1 if facility j is opened, 0 otherwise.
xij is 1 if customer i is served by facility j, 0 otherwise.

Here is one formulation:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1 ∀i

m∑
i=1

xij ≤ myj ∀j

xij, yi ∈ {0, 1} ∀i, j
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Selecting from a Set

We can use constraints of the form
∑

j∈T xj ≥ 1 to represent that
at least one item should be chosen from a set T.

Similarly, we can also model that at most one or exactly one item
should be chosen.

Example: Set covering problem
A set covering problem is any problem of the form.

min {c⊤x | Ax ≥ 1, xj ∈ {0, 1}}

where A is a 0-1 matrix.
Each row of A represents an item from a set S.
Each column Aj represents a subset Sj of the items.
Each variable xj represents selecting subset Sj.
In other words, each item must appear in at least one selected
subset.
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Modeling Disjunctive Constraints

We are given two constraints a⊤x ≥ b and c⊤x ≥ d with
nonnegative coefficients.
Instead of insisting both constraints be satisfied, we want at least
one of the two constraints to be satisfied.
To model this, we define a binary variable y and impose

a⊤x ≥ yb,

c⊤x ≥ (1 − y)d,

y ∈ {0, 1}.

More generally, we can impose that at least k out of m constraints
be satisfied with

a⊤i x ≥ yibi,
m∑

i=1

yi ≥ k,

yi ∈ {0, 1}.
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Modeling Disjunctive Constraints (cont’d)

Consider the disjunctive constraints a⊤x ≥ b and c⊤x ≥ d where
the coefficients are allowed to be negative.

To model this, we use the Big-M Reformulation. we define a
binary variable y and impose

a⊤x ≥ b − My,

c⊤x ≥ d − M(1 − y),

y ∈ {0, 1}.

where M is a sufficiently large positive number.
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Modeling a Restricted Set of Values

We may want variable x to only take on values in the set
{a1, · · · , am}.

We introduce m binary variables yj, j = 1, · · · ,m and the
constraints

x =
m∑

j=1

ajyj,

m∑
j=1

yj = 1,

yj ∈ {0, 1}.
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Fixed-charge Problems

In many instances, there is a fixed cost and a variable cost
associated with a particular decision.

Example: Fixed-charge Network Flow Problem
We are given a directed graph G = (N,A).
There is a fixed cost cij associated with "opening" arc (i, j) (think of
this as the cost to "build" the link).
There is also a variable cost dij associated with each unit of flow
along arc (i, j).
Consider an instance with a single supply node.

Minimizing the fixed cost by itself is a minimum spanning tree
problem (easy).
Minimizing the variable cost by itself is a minimum cost network flow
problem (easy).
We want to minimize the sum of these two costs (difficult).
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Modeling the Fixed-charge Network Flow Problem

To model the FCNFP, we associate two variables with each arc.
xij (fixed-charge variable) indicates whether arc (i, j) is open.
fij (flow variable) represents the flow on arc (i, j).
Note that we have to ensure that fij > 0 ⇒ xij = 1.

min
∑

(i,j)∈A

cijxij + dijfij

s.t.
∑

j∈O(i)

fij −
∑
j∈I(i)

fji = bi, ∀i ∈ N

fij ≤ Cxij, ∀(i, j) ∈ A

fij ≥ 0, ∀(i, j) ∈ A

xij ∈ {0, 1}, ∀(i, j) ∈ A
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Alternative Formulations

A key concept in the rest of the course will be that every
mathematical model has many alternative formulations.

Many of the key methodologies in integer programming are
essentially automatic methods of reformulating a given model.

The goal of the reformulation is to make the model easier to
solve.
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Simple Example: Knapsack Problem

We are given a set N = {1, · · · , n} of items and a capacity K.
There is a profit ci and a size wi associated with each item i ∈ N.
We want to choose the set of items that maximizes profit subject
to the constraint that their total size does not exceed the capacity.
The most straightforward formulation is to introduce a binary
variable xi associated with each item.
xi takes value 1 if item i is chosen and 0 otherwise.
Then the formulation is

min

n∑
j=1

cjxj

s.t.
n∑

j=1

wjxj ≤ K,

xi ∈ {0, 1}, ∀i
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An Alternative Formulation

Let us call a set C ⊆ N a cover is
∑

i∈C wi > K.

Further, a cover C is minimal if
∑

i∈C\{j} wi ≤ K for all j ∈ C.

Then we claim that the following is also a valid formulation of the
original problem.

max

n∑
j=1

cjxj,

s.t.
∑
j∈C

xj ≤ |C| − 1, for all minimal covers C

xi ∈ {0, 1}, i ∈ N

Which formulation is "better"?
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Back to the Facility Location Problem

Here is another formulation for the same problem:

min
n∑

j=1

cjyj +
m∑

i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1, ∀i,

xij ≤ yj, ∀i, j,

xij, yj ∈ {0, 1}, ∀i, j.

Notice that the set of integer solutions contained in each of the
polyhedra is the same (why?).
However, the second polyhedron is strictly included in the first
one (how do we prove this?).
Therefore, the second polyhedron will yield a better lower bound.
The second polyhedron is a better approximation to the convex
hull of integer solutions.
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Formulation Strength and Ideal Formulations

Consider two formulations A and B for the same ILP.
Denote the feasible regions corresponding to their LP relaxations
as PA and PB.
Formulation A is said to be at least as strong as formulation B if
PA ⊆ PB

If the inclusion is strict, then A is stronger than B.
If S is the set of all feasible integer solutions for the ILP, then we
must have conv(S) ⊆ PA (why?).
A is ideal if conv(S) = PA.
If we know an ideal formulation, we can solve the IP (why?).
How do our formulations of the knapsack problem compare by
this measure?
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Strengthening Formulations

Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

Example: given a graph G = (V, E), a perfect matching in G is a
subset M of edge set E, such that every vertex in V is adjacent to
exactly one edge in M.

We are given a set of n people that need to paired in teams of two.
Let cij represent the "cost" of the team formed by person i and
person j.
The nodes represent the people and the edges represent pairings.
We have xe = 1 if the endpoints of e are matched, xe = 0
otherwise.

min
∑

e={i,j}∈E

cexe

s.t.
∑

{j|{i,j}∈E}

xij = 1, ∀i ∈ N

xe ∈ {0, 1}, ∀e = {i, j} ∈ E
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Valid Inequalities for Matching

Consider the graph on the left above.
The optimal perfect matching has value L + 2.
The optimal solution to the LP relaxation has value 3.
This formulation can be extremely weak.
Add the valid inequality x24 + x35 ≥ 1.
Every perfect matching satisfies this inequality.
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The Odd Set Inequalities

We can generalize the inequality from the last slide.

Consider the cut S corresponding to any odd set of nodes.

The cutset corresponding to S is

δ(S) = {{i, j} ∈ E|i ∈ S, j ̸∈ S}.

An odd cutset is any δ(S) for which the |S| is odd.

Note that every perfect matching contains at least one edge from
every odd cutset.

Hence, each odd cutset induces a possible valid inequality.∑
e∈δ(S)

xe ≥ 1, S ⊂ N, |S| odd.
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Using the New Formulation

If we add all of the odd set inequalities, the new formulation is
ideal.

Hence, we can solve this LP and get a solution to the IP.

However, the number of inequalities is exponential in size, so this
is not really practical.

Recall that only a small number of these inequalities will be
active at the optimal solution.

Later, we will see how we can efficiently generate these
inequalities on the fly to solve the IP
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Contrast with Linear Programming

In linear programming, the same problem can also have multiple
formulations.

In LP, however, conventional wisdom is that bigger formulations
take longer to solve.

In IP, this conventional wisdom does not hold.

We have already seen two examples where it is not valid.

Generally speaking, the size of the formulation does not
determine how difficult the IP is.
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The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (N, A), with N = L ∪ R, and weights wij on
edges (i,j), find a maximum weight matching.

Matching: a set of edges covering each node at most once

Let n=|N| and m = |A|.

Equivalent to maximum weight / minimum cost perfect matching.
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The Max-Weight Bipartite Matching

Integer Programming (IP) formulation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ∈ {0, 1},∀(i, j) ∈ A

xij = 1 indicate that we include edge (i, j ) in the matching

IP: non-convex feasible set
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The Max-Weight Bipartite Matching

Integer program (IP)

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ∈ {0, 1},∀(i, j) ∈ A

LP relaxation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1, ∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ≥ 0,∀(i, j) ∈ A

Theorem. The feasible region of the matching LP is the convex
hull of indicator vectors of matchings.

This is the strongest guarantee you could hope for an LP
relaxation of a combinatorial problem

Solving LP is equivalent to solving the combinatorial problem
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Primal-Dual Interpretation

Primal LP relaxation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ≥ 0,∀(i, j) ∈ A

Dual

min
∑

i

yi

s.t. yi + yj ≥ wij,∀(i, j) ∈ A

y ≥ 0

Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

From strong duality theorem, we know P∗
LP = D∗

LP



37/52

Primal-Dual Interpretation

Suppose edge weights wij = 1, then binary solutions to the dual are
node covers.

Dual

min
∑

i

yi

s.t. yi + yj ≥ 1, ∀(i, j) ∈ A

y ≥ 0

Dual Integer Program

min
∑

i

yi

s.t. yi + yj ≥ 1,∀(i, j) ∈ A

y ∈ {0, 1}

Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

From strong duality theorem, we know P∗
LP = D∗

LP

Consider IP formulation of the dual, then

P∗
IP ≤ P∗

LP = D∗
LP ≤ D∗

IP
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Total Unimodularity

Defintion: A matrix A is Totally Unimodular if every square submatrix
has determinant 0, +1 or -1.

Theorem: If A ∈ Rm×n is totally unimodular, and b is an integer vector,
then {x : Ax ≤ b; x ≥ 0} has integer vertices.

Non-zero entries of vertex x are solution of A′x′ = b′ for some
nonsignular square submatrix A′ and corresponding sub-vector b′

Cramer’s rule:

xi =
det(A′

i | b′)
detA′

Claim: The constraint matrix of the bipartite matching LP is totally
unimodular.
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The Minimum weight vertex cover

undirected graph G = (N, A) with node weights wi ≥ 0
A vertex cover is a set of nodes S such that each edge has at
least one end in S
The weight of a vertex cover is sum of all weights of nodes in the
cover
Find the vertex cover with minimum weight

Integer Program

min
∑

i

wiyi

s.t. yi + yj ≥ 1, ∀(i, j) ∈ A

y ∈ {0, 1}

LP Relaxation

min
∑

i

wiyi

s.t. yi + yj ≥ 1,∀(i, j) ∈ A

y ≥ 0
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LP Relaxation for the Minimum weight vertex cover

In the LP relaxation, we do not need y ≤ 1, since the optimal
solution y∗ of the LP does not change if y ≤ 1 is added.
Proof: suppose that there exists an index i such that the optimal
solution of the LP y∗i is strictly larger than one. Then, let y′ be a
vector which is same as y∗ except for y′i = 1 < y∗i . This y′ satisfies
all the constraints, and the objective function is smaller.

The solution of the relaxed LP may not be integer, i.e., 0 < y∗i < 1

rounding technique:

y′i =

{
0, if y∗i < 0.5
1, if y∗i ≥ 0.5

The rounded solution y′ is feasible to the original problem
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LP Relaxation for the Minimum weight vertex cover

The weight of the vertex cover we get from rounding is at most twice
as large as the minimum weight vertex cover.

Note that y′i = min(⌊2y∗i ⌋, 1)

Let P∗
IP be the optimal solution for IP, and P∗

LP be the optimal
solution for the LP relaxation

Since any feasible solution for IP is also feasible in LP, P∗
LP ≤ P∗

IP

The rounded solution y′ satisfy∑
i

y′iwi =
∑

i

min(⌊2y∗i ⌋, 1)wi ≤
∑

i

2y∗i wi = 2P∗
LP ≤ 2P∗

IP
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Outline

1 Introduction to Integer Programming

2 Integer Programming Modeling and Formulation

3 Constraint Programming (CP)
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Difference with mathematical programming

Problem:
Solving combinatorial optimization problems (Decision
Optimization)

Modeling:
Declarative modeling paradigm
Logical constraints & global constraints
Integer, interval & boolean variables (maybe double variables)

Solving:
Constructive search & domain reduction (propagation)
Based on computer science (logic programming, graph theory,
...)

Solution:
Feasible solution & optimal solution
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A simple example: n-Queen Problem

The classic queens problem: placing n queens on an nxn
checkerboard so that no two queens can attack each other, i.e., no
two queens are on the same row, column, or diagonals.

Integer variable params:
N: number of variables
0: minimum value
N-1: maximum value
"X": name prefix

constraints:
all_diff: xi ̸= xj,∀i ̸= j

DOcplex for n-Queen problem
# Create model
mdl = CpoModel()

# Create column index of each queen
x = mdl. integer_var_list (N, 0, N − 1, "X")

# One queen per row
mdl.add(mdl. all_diff (x))

# One queen per diagonal xi − xj != i − j
mdl.add(mdl. all_diff (x[ i ] + i for i in range(N)))

# One queen per diagonal xi − xj != j − i
mdl.add(mdl. all_diff (x[ i ] − i for i in range(N)))
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High-level constraints: Global constraints

Global constraint captures complex relationships among multiple
variables in a concise and efficient way.

alldifferent

All variables in a
set take distinct
values
Assignment
problems
alldifferent([x, y,
z])
x ̸= y, x ̸= z, y ̸= z

table

Tuple of variables
takes values from
predefined set
table([x, y, z], [(1,
2, 3), (4, 5, 6)])
(x, y, z) = (1, 2, 3)
or (4, 5, 6)

circuit

Sequence of
variables forms a
Hamitonian cycle
Routing problems
circuit(x)
x=[0, 1, 3, 2, 0]
means 0− > 1− >
3− > 2− > 0
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Arithmetic expressions and constraints

CP Optimizer supports integer variables and is possible to contain
float-point expressions in constraints or objective function.

operator +, -, *, /
Sum
Diff
ScalProd
Div
Modulo(%)

StandardDeviation
Min
Max
Count
CountDifferent
Abs
Element

==
!=
<

>

<=

>=
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Diff and Element

Diff & operator-

Automatic linearization by slack
variables
IloNumExpr e1 = x * y;
IloNumExpr e2 = z / w;
IloNumExpr diff = IloDiff (e1, e2);
model.add(diff == 0);

Element: y=array[x]
// Create the model
IloModel model(env);

// Define an array
IloIntArray array(env, 4);
array [0] = 10;
array [1] = 20;
array [2] = 30;
array [3] = 40;

// Define variables
IloIntVar x(env, 0, 3, "x") ;
IloIntVar y(env, 0, 100, "y") ;

// Add the element constraint
model.add(y == IloElement(array, x));



48/52

Logical and compatibility constraints

&&
||
Not
IfThen
AllowedAssignments

ForbiddenAssignments

IfThen
model.add(IloIfThen(x >= 5, y <= 3)) ;

// Nested structure
model.add(IloIfThen(x >= 5, IloIfThen (y <= 3, z == 0))) ;

// Combined with global constraints
model.add(IloIfThen(x != y, IloAllDiff (env, x, y, z)) ) ;

AllowedAssignments
IloIntTupleSet allowed(env);
allowed.add(IloIntArray (env, 2, 1, 2)) ;
allowed.add(IloIntArray (env, 2, 2, 3)) ;

model.add(IloAllowedAssignments(vars, allowed));
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Special constraints on integer variables

Theoretically, these special constraints can be written from arithmetic
constraints and expressions, but they can also be designed and
implemented to reduce domains efficiently during a search.

AllDiff
AllMinDistance
Pack
Inverse
Lexicographic
Distribute

Pack
IloIntVarArray bin(env, 3, 0, 1); // 3 items, 2 bins
IloIntArray size(env, 3); // Size of each item
size [0] = 2;
size [1] = 3;
size [2] = 4;
IloIntVarArray load(env, 2, 0, 5); // Max capacity is 5

model.add(IloPack(bin, size, load)) ;
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Interval variables

Interval variables

Static
StartOf
EndOf
LengthOf
SizeOf

Dynamic
StartEval
EndEval
LengthEval
SizeEval

StartOf
IloIntervalVar task(env, 10); // Task with duration 10
IloIntExpr start = IloStartOf (task) ; // Static start time
model.add(start >= 5); // Task must start after time 5

StartEval
IloIntervalVar task(env, 10);
IloIntVar condition(env, 0, 1); // 0 or 1

// Dynamic start time: if condition=1, start time increases by 5
IloIntExpr dynamicStart = IloStartEval(task) + condition * 5;

// Constraint depends on runtime value of ‘condition ‘
model.add(dynamicStart <= 20);
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Special constraints on interval variables

Forbidden constraints

ForbidStart
ForbidEnd
ForbidExtent

Precedence
constraints

End/Start
+ Before/At
+ End/Start

e.g.
EndBeforeStart

Groups of interval
variables

PresenceOf
Isomorphism
Span
Alternative
Synchronize

Sequence constraints

First
Last
Before
Prev
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Special constraints on interval variables

* CumulFunctionExpr
- AlwaysIn/AlwaysEqual
- AlwaysConstant
- AlwaysNoState
- operator<=, >=

Pulse
Step
StepAtStart
StepAtEnd
HeightAtStart
HeightAtEnd

Resource usage constraints
IloIntervalVar task1(env, 10, "Task1");
IloIntervalVar task2(env, 5, "Task2");

IloCumulFunctionExpr resourceUsage(env);
resourceUsage += IloPulse(task1, 2);
resourceUsage += IloPulse(task2, 1);
resourceUsage += IloStep(5, 3);
resourceUsage += IloStepAtStart(task1, 1);
resourceUsage += IloStepAtEnd(task2, −1);

model.add(resourceUsage <= 5);
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Outline
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2 Bounding

3 Branching
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Computational Integer Optimization

Computationally, the most important aspects of solving integer
optimization problems are

A method for obtaining good bounds on the value of the optimal
solution (usually by solving a relaxation or dual; and
A method for generating valid disjunctions violated by a given
(infeasible) solution.

In this lecture, we will motivate this fact by introducing the branch
and bound algorithm.

We will then look at various methods of obtaining bounds.

Later, we will examine branch and bound in more detail.
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Integer Optimization and Disjunction

The difficulty arises from the requirement that certain variables
take on integer values.
Such requirements can be described in terms of logical
disjunctions, constraints of the form

x ∈
⋃

1≤i≤k

Xi, Xi ⊆ Rn.

The integer variables in a given formulation may represent logical
conditions that were originally expressed in terms of disjunction.
In fact, the MILP Representability Theorem tells us that any
MILP can be re-formulated as an optimization problem whose
feasible region is

F =
⋃

1≤i≤k

Pi + intcone{r1, · · · , rt}

is the disjunctive set F defined above, for some appropriately
chosen polytopes P1, · · · ,Pk and vectors r1, · · · , rt ∈ Zn.
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Two Conceptual Reformulations

We have two conceptual reformulations of a given integer
optimization problem.
The first is in terms of disjunction:

max

c⊤x | x ∈
⋃

1≤i≤k

Pi + intcone{r1, · · · , rt}


The second is in terms of valid inequalities

max{c⊤x | x ∈ conv(S)}

where S is the feasible region.
In principle, if we had a method for generating either of these
reformulations, this would lead to a practical method of solution.
Unfortunately, these reformulations are necessarily of
exponential size in general, so there can be no way of generating
them efficiently.
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Valid Disjunctions

In practice, we dynamically generate parts of the reformulations
(CP) and (DIS) in order to obtain a proof of optimality for a
particular instance.

The concept of valid disjunction, arises from a desire to
approximate the feasible region of (DIS).

Definition 1. Let {Xi}k
i=1 be a collection of subset of Rn. Then if

S ⊆ ∪1≤i≤kXi, the disjunction associated with {Xi}k
i=1 is said to be

valid for an MILP with feasible set S.
Definition 2. Let {Xi}k

i=1 is a disjunction valid for S, and Xi is
polyhedral for all i, then we say the disjunction is linear.
Definition 3. Let {Xi}k

i=1 is a disjunction valid for S, and
Xi ∩ Xj = ∅ for all i, j then we say the disjunction is partitive.
Definition 4. Let {Xi}k

i=1 is a disjunction valid for S that is both
linear and partitive, we call it admissible.
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Valid Inequalities

Likewise, we can think of the concept of a valid inequality as
arising from our desire to approximate conv(S) (the feasible
region of (CP)).

The inequality denoted by (π, π0) is called a valid inequality for S
if π⊤x ≤ π0, ∀x ∈ S.

Note (π, π0) is a valid inequality if and only if
S ⊆ {x ∈ Rn | π⊤x ≤ π0}.
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Optimality Conditions

Let us now consider an MILP (A, b, c, p) with feasible set
S = P ∩ (Zp

+ × Rn−p
+ ), where P is the given formulation.

Further, let {Xi}k
i=1 be a linear disjunction valid for this MILP so

that Xi ∩ P ⊆ Rn is a polyhedral.

Then maxXi∩S c⊤x is an MILP for all i ∈ 1, . . . , k.

For each i, let Pi be a polyhedron such that Xi ∩ S ⊆ Pi ⊆ P ∩ Xi.

In other words, Pi is a valid formulation for subproblem i, possibly
strengthened by additional valid inequalities.

Note that {Pi} is itself a valid linear disjunction.
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Optimality Conditions

From the disjunction on the previous slide, we obtain a relaxation
of a general MILP.

This relaxation yields a practical set of optimality conditions.

In particular,
max

i∈1,··· ,k
max

x∈Pi∩Rn
+

c⊤x ≥ zIP.

If we have x∗ ∈ S such that

max
i∈1,··· ,k

max
x∈Pi∩Rn

+

c⊤x = c⊤x∗

then x∗ must be optimal.
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Branch and Bound

Branch and bound is the most commonly-used algorithm for
solving MILPs. It is a recursive, divide-and-conquer approach.
Suppose S is the feasible set for an MILP and we wish to
compute maxx∈S c⊤x.
Consider a partition of S into subsets S1, · · · ,Sk. Then

max
x∈S

c⊤x = max
1≤i≤k

{max
x∈Si

c⊤x}.

Idea: If we can’t solve the original problem directly, we might be
able to solve the smaller subproblems recursively.
Dividing the original problem into subproblems is called
branching.
Taken to the extreme, this scheme is equivalent to complete
enumeration.
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Branching in Branch and Bound

Branching is achieved by selecting an admissible disjunction
{Xi}k

i=1 and using it to partition S, e.g., Si = S ∩ Xi.
We only consider linear disjunctions so that the subproblem
remain MILPs after branching.
The way this disjunction is selected is called the branching
method and is a topic we will examine in some depth.
Generally speaking, we want x∗ ̸∈ ∪iXi, where x∗ is the
(infeasible) solution produced by solving the bounding problem
associated with a given subproblem.
A typical disjunction is

X1 = {xj ≥ ⌈x∗j ⌉}
X2 = {xj ≤ ⌊x∗j ⌋}

where x∗ ∈ argmaxx∈Pc⊤x.
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Bounding in Branch and Bound

The bounding problem is a problem solved to obtain a bound on
the optimal solution value of a subproblem maxSi c⊤x.

Typically, the bounding problem is either a relaxation or a dual of
the subproblem.

Solving the bounding problem serves two purposes.
In some cases, the solution x∗ to the relaxation may actually be a
feasible solution, in which case c⊤x∗ is a global lower bound l(S).
Bounding enables us to inexpensively obtain a bound b(Si) on the
optimal solution value of subproblem i.

If b(Si) ≤ l(S), then Si can’t contain a solution strictly better than
the best one found so far.

Thus, we may discard or prune subproblem i.

For the rest of the lecture, assume all variables have finite upper
and lower bounds.
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LP-based Branch and Bound: Initial Subproblem

In LP-based branch and bound, we first solve the LP relaxation
of the original problem. The result is one of the following:

The LP is infeasible⇒ MILP is infeasible.
We obtain a feasible solution for the MILP⇒ optimal solution.
We obtain an optimal solution to the LP that is not feasible for the
MILP⇒ upper bound.

In the first two cases, we are finished.

In the third case, we must branch and recursively solve the
resulting subproblems.
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Branching in LP-based Branch and Bound

In LP-based branch and bound, the most commonly used
disjunctions are the variable disjunctions, imposed as follows:

Select a variable i whose value x̂i is fractional in the LP solution.
Create two subproblems.
In one subproblem, impose the constraint xi ≤ ⌊x̂i⌋.
In the other subproblem, impose the constraint xi ≥ ⌈x̂i⌉.

What does it mean in a 0-1 problem?
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LP-based Branch and Bound Algorithm

To start, derive a lower bound L using a heuristic method.

Put the original problem on the candidate list.

Select a problem S from the candidate list and solve the LP
relaxation to obtain the bound b(S).

If the LP is infeasible⇒ node can be pruned.
Otherwise, if b(S) ≤ L⇒ node can be pruned.
Otherwise, if b(S) > L and the solution is feasible for the MILP⇒
set L← b(S).
Otherwise, branch and add the new subproblem to the candidate
list.

If the candidate list in nonempty, go to Step 2. Otherwise, the
algorithm is completed.
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Branch and Bound Tree
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The Geometry of Branching
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The Geometry of Branching (cont’d)
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The Geometry of Branching
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Continuing the Algorithm After Branching

After branching, we solve each of the subproblems recursively.
As mentioned earlier, if the optimal solution value to the LP
relaxation is smaller than the current lower bound, we need not
consider the subproblem further. This is the key to the efficiency
of the algorithm.
Terminology

If we picture the subproblems graphically, they form a search tree.
Each subproblem is linked to its parent and eventually to its
children.
Eliminating a problem from further consideration is called pruning.
The act of bounding and then branching is called processing.
A subproblem that has not yet been considered is called a
candidate for processing.
The set of candidates for processing is called the candidate list.
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Ensuring Finite Convergence

For LP-based branch and bound, ensuring convergence requires
a convergent branching method.

Roughly speaking, a convergent branching method is one which
will

produce a violated admissible disjunction whenever the solution to
the bounding problem is infeasible; and
if applied recursively, guarantee that at some finite depth, any
resulting bounding problem will either
- produce a feasible solution (to the original MILP); or
- be proven infeasible; or
- be pruned by bound.

Typically, we achieve this by ensuring that at some finite depth,
the feasible region of the bounding problem contains at most one
feasible solution.
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Algorithmic Choices in Branch and Bound

Although the basic algorithm is straightforward, the efficiency of it
in practice depends strongly on making good algorithmic
choices.

These algorithmic choices are made largely by heuristics that
guide the algorithm.

Basic decisions to be made include
The bounding method(s).
The method of selecting the next candidate to process.

"Best-first" always chooses the candidate with the highest upper
bound.
This rule minimizes the size of the tree (why?).
There may be practical reasons to deviate from this rule.

The method of branching.
Branching wisely is extremely important.
A "poor" branching can slow the algorithm significantly.
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An example solved by Gurobi
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An example solved by Gurobi
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Another example solved by Gurobi
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Outline

1 Branch and Bound

2 Bounding

3 Branching

4 Cutting Plane
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The Efficiency of Branch and Bound

The overall solution time is the product of the number of nodes
enumerated and the time to process each node.

Typically, by spending more time in processing, we can achieve a
reduction in tree size by computing stronger bounds.

This highlights another of the many tradeoffs we must navigate.

Our goal in bounding is to achieve a balance between the
strength of the bound and the efficiency.

How do we compute bounds?
Relaxation: Relax some of the constraints and solve the resulting
mathematical optimization problem.
Duality: Formulate a "dual" problem and find a feasible to it.

In practice, we will use both of these two approaches.
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Relaxation

As usual, we consider the MILP

zIP = max{c⊤x | x ∈ S}

where
P = {x ∈ Rn | Ax ≤ b}
S = P ∩ (Zp

+ × Rn−p
+ ).

Definition 1. A relaxation of IP is a maximization problem
defined as

zR = max{zR(x)|x ∈ SR}

with the following two properties:

S ⊆ SR

c⊤x ≤ zR(x), ∀x ∈ S
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Importance of Relaxations

The main purpose of a relaxation is to obtain an upper bound on
zIP .
Solving a relaxation is one simple method of bounding in branch
and bound.
The idea is to choose a relaxation that is much easier to solve
than the original problem, but still yields a bound that is "strong
enough."
Note that the relaxation must be solved to optimality to yield a
valid bound.
We consider three types of "formulation-based" relaxations.

LP relaxation
Combinatorial relaxation
Lagrangian relaxation

Relaxations are also used in some other bounding schemes we’ll
look at.
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Obtaining and Using Relaxations

Properties of relaxations
If a relaxation of (MILP) is infeasible, then so is (MILP).
If zR(x) = c⊤x, then for x∗ ∈ argmaxx∈SR

zR(x), if x∗ ∈ S, then x∗ is
optimal for (MILP).

The easiest way to obtain relaxations of IP is to drop some of the
constraints defining the feasible set S.

It is "obvious" how to obtain an LP relaxation, but combinatorial
relaxations are not as obvious.
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Lagrangian Relaxation

The idea is again based on relaxing a set of constraints from the
original formulation.
We try to push the solution towards feasibility by penalizing
violation of the dropped constraints.
Suppose our IP is defined by

max c⊤x

s.t. A1x ≤ b1

A2x ≤ b2

x ∈ Zn
+

where optimizing over Q = {x ∈ Zn
+ | A2x ≤ b2} is "easy."

Lagrangian Relaxation:

LR(λ) : ZR(λ) = max
x∈Q
{(c− (A1)⊤λ)⊤x + λ⊤b1)}.
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Properties of the Lagrangian Relaxation

For any λ ≥ 0, LR(λ) is a relaxation of IP (why?).

Solving LR(λ) yields an upper bound on the value of the optimal
solution.

Because of our assumptions, LR(λ) can be solved easily.

Recalling LP duality, one can think of λ as a vector of "dual
variables."

If the solution to the relaxation is integral, it is optimal if the
primal and dual solutions are complementary, as in LP.
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Disjunctions and Branching

Recall that branching is generally achieved by selecting an
admissible disjunction {Xi}k

i=1 and using it to partition S, e.g.,
Si = S ∩ Xi.

The way this disjunction is selected is called the branching
method.

Generally speaking, we want x∗ ̸∈ ∪1≤i≤kXi, where x∗ is the
(infeasible) solution produced by solving the bounding problem
associated with a given subproblem.
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Split Disjunctions

The most easily handled disjunctions are those based on
dividing the feasible region using a given hyperplane.
In such cases, each term of the disjunction can be imposed by
addition of a single inequality.
A hyperplane defined by a vector π ∈ Rn is said to be integer if
πi ∈ Z for 0 ≤ i ≤ p and πi = 0 for p + 1 ≤ i ≤ n.
Note that if π is integer, then we have π⊤x ∈ Z whenever
x ∈ Zp × Rn−p.
Then the disjunction defined by

X1 = {x ∈ Rn | π⊤x ≤ π0},X2 = {x ∈ Rn | π⊤x ≥ π0 + 1},

is valid when π0 ∈ Z.
This is known as a split disjunction.
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Variable Disjunctions

The simplest split disjunction is to take π = ei for 0 ≤ i ≤ p,
where ei is the ith unit vector.
If we branch using such a disjunction, we simply say we are
branching on xi.
For such a branching disjunction to be admissible, we should
have π0 < x∗i < π0 + 1.
In the special case of a 0-1 IP, this dichotomy reduces to

xj = 0 OR xj = 1

In general IP, branching on a variable involves imposing new
bound constraints in each one of the subproblems.
This is is the most common method of branching and is easily
handled implicitly in most cases.
What are the benefits of such a scheme?
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The Geometry of Branching
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The Geometry of Branching (Variable Disjunction)
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The Geometry of Branching (Variable Disjunction)
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The Geometry of Branching (General Split Disjunction)
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The Geometry of Branching (General Split Disjunction)
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4 Cutting Plane
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Describing conv(S)

We have seen that, in theory, conv(S) is a polyhedron and has a
finite description.

If we "simply" construct that description, we could turn our MILP
into an LP.

So why aren’t IPs easy to solve?
The size of the description is generally HUGE!
The number of facets of the TSP polytope for an instance with 120
nodes is more than 10100 times the number of atoms in the
universe.
It is physically impossible to write down a description of this
polytope.
Not only that, but it is very difficult in general to generate these
facets (this problem is not polynomially solvable in general).
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Cutting Planes

Recall that the inequality denoted by (π, π0) is valid for a
polyhedron P if π⊤x ≤ π0,∀x ∈ P.
The term cutting plane usually refers to an inequality valid for
conv(S), but which is violated by the solution obtained by solving
the (current) LP relaxation.
Cutting plane methods attempt to improve the bound produced
by the LP relaxation by iteratively adding cutting planes to the
initial LP relaxation.
Adding such inequalities to the LP relaxation may improve the
bound (this is not a guarantee).
Note that when π and π0 are integer, then π, π0 is a split
disjunction for which X2 = ∅.
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The Separation Problem

The problem of generating a cutting plane can be stated as:
Separation Problem: Given a polyhedron Q ∈ Rn and x∗ ∈ Rn

determine whether x∗ ∈ Q and if not, determine (π, π0), a valid
inequality for Q such that π⊤x∗ > π0.

This problem is stated here independent of any solution
algorithm.

However, it is typically used as a subroutine inside an iterative
method for improving the LP relaxation.

In such a case, x∗ is the solution to the LP relaxation (of the
current formulation, including previously generated cuts).

We will see later that the difficulty of solving this problem exactly
is strongly tied to the difficulty of the optimization problem itself.
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Generic Cutting Plane Method

Let P = {x ∈ Rn | Ax ≤ b} be the initial formulation for

max{c⊤x | x ∈ S}, S = P ∩ Zp
+ × Rn−p

+ .

Algorithm 1: Cutting plane method
1 P0 ← P, k← 0.
2 while TRUE do
3 Solve the LP relaxation max{c⊤x|x ∈ Pk} to obtain solution xk.
4 Solve the problem of separating xk from conv(S).
5 if xk ∈ conv(S) then STOP;
6 else Get an inequality (πk, πk

0) valid for conv(S) but
(πk)⊤xk > πk

0 ;
7 Pk+1 ← Pk ∩ {x ∈ Rn | (πk)⊤x ≤ πk

0}.
8 k← k + 1.
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Generating Valid Inequalities for conv(S)

Consider the MILP

zIP = max c⊤x, s.t. x ∈ S,

where P = {x ∈ Rn | Ax ≤ b} and S = P ∩ (Zp
+ × Rn−p

+ )

All inequalities valid for P are also valid for conv(S), but they are
not cutting planes.

We need the following simple principle: if a ≤ b and a is an
integer, then a ≤ ⌊b⌋.

This simple fact is all we need to generate all valid inequalities
for conv(S)!

Example: suppose that 2x1 + x2 ≤ 3/2 is valid for P, then
2x1 + x2 ≤ 1 is also valid for conv(S).
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Chvátal Inequalities

split A = [AI,AC] according to integer and continuous variables

Suppose we can find a u ∈ Rm
+ such that π = A⊤u is integer

(A⊤
I u ∈ Zp and A⊤

C u = 0) and π0 = u⊤b ̸∈ Z.

In this case, we have π⊤x ∈ Z for all x ∈ S, and so π⊤x ≤ ⌊π0⌋ for
all x ∈ S.

In other words, (π, ⌊π0⌋) is both a valid inequality and a split
disjunction

{x ∈ P | π⊤x ≥ ⌊π0⌋+ 1} = ∅

Such an inequality is called a Chvátal inequality

Note that we have not used the non-negativity constraints in
deriving this inequality
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Chvátal-Gomory Inequalities

Assume that P ⊂ Rn
+ and let u ∈ Rn

+ be such that A⊤
C u ≥ 0

Since the variables are nonnegative, we have u⊤ACxC ≥ 0 and

p∑
i=1

(u⊤Ai)xi ≤ u⊤b, ∀x ∈ P

Again, because the variables are nonnegative, we have

p∑
i=1

⌊u⊤Ai⌋xi ≤ u⊤b, ∀x ∈ P

Finally, we have:

p∑
i=1

⌊u⊤Ai⌋xi ≤ ⌊u⊤b⌋, ∀x ∈ S

This is the Chvátal-Gomory inequality
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Chvátal-Gomory Inequalities: another derivation

We explicitly add the non-negativity constraints to the formulation
along the other constraints with associated multipliers v ∈ Rn

+

We cannot round the coefficients to make them integral, so we
require π integral

πi = u⊤Ai − vi ∈ Z for 1 ≤ i ≤ p

πi = u⊤Ai − vi = 0 for p + 1 ≤ i ≤ n

vi will be non-negative as as long as we have

vi ≥ u⊤Ai − ⌊u⊤Ai⌋, for 0 ≤ i ≤ p,

vi = u⊤Ai ≥ 0, for p + 1 ≤ i ≤ n.

Taking vi = u⊤Ai − ⌊uAi⌋ for 1 ≤ i ≤ p, we obtain
p∑

i=1

πixi =

p∑
i=1

⌊uAi⌋xi ≤ ⌊ub⌋ = π0

is a C-G inequality for all u ∈ Rm
+ such that A⊤

C u ≥ 0
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The Chvátal-Gomory Procedure

1 Choose a weight vector u ∈ Rm
+ such that A⊤

C u ≥ 0.
2 Obtain the valid inequality

∑p
i=1(u

⊤Ai)xi ≤ u⊤b.
3 Round the coefficients down to obtain

∑p
i=1⌊u⊤Ai⌋xi ≤ u⊤b.

4 Finally, round the right hand side down to obtain the valid
inequality

p∑
i=1

⌊u⊤Ai⌋xi ≤ ⌊u⊤b⌋

This procedure is called the Chvátal-Gomory rounding
procedure, or simply the C-G procedure.

Surprisingly, for pure ILPs (p = n), any inequality valid for
conv(S) can be produced by a finite number of iterations of this
procedure!

This is not true for the general mixed case.



52/52

Gomory Inequalities

Consider the set of solutions to a pure ILP with one equation:

T =

x ∈ Zn
+ |

n∑
j=1

ajxj = a0


For each j, let fj = aj − ⌊aj⌋. Then equivalently

T =

x ∈ Zn
+ |

n∑
j=1

fjxj = f0 + ⌊a0⌋ −
n∑

j=1

⌊aj⌋xj


Since

∑n
j=1 fjxj ≥ 0 and f0 < 1, then ⌊a0⌋ −

∑n
j=1⌊aj⌋xj ≥ 0 and so

n∑
j=1

fjxj ≥ f0

is a valid inequality for S called a Gomory inequality.
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Lagrangian Relaxation

Consider the integer programming problem

max c⊤x,

s.t. Ax ≤ b, Dx ≤ d,

x ∈ Zn,

(1)

and assume that A,D, b, c, d have integer entries.

Let ZIP the optimal cost and let

X = {x ∈ Zn | Dx ≤ d}. (2)

We assume that optimizing over the set X can be done efficiently.

Let λ ≥ 0 be a vector of dual variables. We introduce the problem

max c⊤x + λ⊤(b − Ax),

s.t. x ∈ X,
(3)

and denote its optimal cost by Z(λ).
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Lagrangian Relaxation

Lemma
If the problem (1) has an optimal solution and if λ ≥ 0, then Z(λ) ≥ ZIP

Proof: Let x∗ denote an optimal solution to (1).
Then, b − Ax∗ ≥ 0 and, therefore

c⊤x∗ + λ⊤(b − Ax∗) ≥ c⊤x∗ = ZIP.

Since x∗ ∈ X,

Z(λ) ≥ c⊤x∗ + λ⊤(b − Ax∗) ≥ c⊤x∗ = ZIP.

Problem (3) provides an upper bound to (1). It is natural to
consider the tightest such bound.
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Lagrangian Dual

We introduce the problem

min Z(λ), s.t. λ ≥ 0. (4)

We will refer to problem (4) as the Lagrangian dual. Let

ZD = min
λ≥0

Z(λ).

Suppose X = {x1, · · · , xm}. Then Z(λ) can be written as

Z(λ) = max
i=1,··· ,m

(c⊤xi + λ⊤(b − Axi)).

The function Z(λ) is convex and piecewise linear.
Computing ZD can be recast as a linear programming problem
with a very large number of constraints.
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Weak Duality

Theorem (Weak Duality)
We have ZD = minλ≥0 Z(λ) ≥ ZIP.

The previous theorem represents the weak duality theory of
integer programming.

Unlike linear programming, integer programming does not have a
strong duality theory. It is possible to have ZD > ZIP.

The procedure of obtaining bounds for integer programming
problems by calculating ZD is called Lagrangian relaxation.
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Strength of the Lagrangian Dual

Theorem
The optimal value ZD of the Lagrangian dual is equal to the optimal
cost of the following linear programming problem:

max c⊤x,

s.t. Ax ≤ b, x ∈ conv(X).
(5)

where conv(X) be the convex hull of the set X = {x ∈ Zn | Dx ≤ d}.

Proof:
Z(λ) = max

x∈X
(c⊤x + λ⊤(b − Ax)).

The optimal cost remains same if we allow convex combinations
of the elements of X.

Z(λ) = max
x∈conv(X)

(c⊤x + λ⊤(b − Ax)).
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Proof

By definition, we have

ZD = min
λ≥0

Z(λ) = min
λ≥0

max
x∈conv(X)

(c⊤x + λ⊤(b − Ax)).

Let {vk, k ∈ K} be the extreme points, and {rj, j ∈ J} be the
complete set of extreme rays of conv(X).
Then, for any fixed λ, we have

Z(λ) =

{
+∞, ∃ j ∈ J, (c⊤ − λ⊤A)rj > 0,
maxk∈K(c⊤vk + λ⊤(b − Avk)), otherwise.

(6)
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Proof

According to (6), the Lagrangian dual is equivalent to and has
the same optimal value as the problem

min
λ≥0

max
k∈K

(c⊤vk + λ⊤(b − Avk)),

s.t. (c⊤ − λ⊤A)rj ≤ 0, j ∈ J.
(7)

Problem (7) is equivalent to the linear programming problem

min
λ≥0

y,

s.t. y + λ⊤(Avk − b) ≥ c⊤vk, k ∈ K,

λ⊤Arj ≥ c⊤rj, j ∈ J.

(8)
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Proof

Taking the linear programming dual of problem (8), and using
strong duality, ZD is equal to the optimal cost of the problem

max c⊤

∑
k∈K

αkvk +
∑
j∈J

βjrj

 ,

s.t. A

∑
k∈K

αkvk +
∑
j∈J

βjrj

 ≤ b,

∑
k∈K

αk = 1, αk, βj ≥ 0.

The result follows since

conv(X) =

∑
k∈K

αkvk +
∑
j∈J

βjrj
∣∣∣∣ ∑

k∈K

αk = 1, αk, βj ≥ 0


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Linear Relaxation

We have characterized the optimal value of the Lagrangian dual
as solution to a linear programming problem.
It is natural to compare the optimal cost ZIP and the optimal cost
ZLP of the linear relaxation

max c⊤x,

s.t. Ax ≤ b, Dx ≤ d.

In general, the following ordering holds among ZLP, ZIP, and ZD:

ZLP ≥ ZD ≥ ZIP.
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Linear Relaxation

We have ZIP = ZD for all cost vector c, if and only if

conv (X ∩ {x | Ax ≤ b}) = conv(X) ∩ {x | Ax ≤ b} .

We have ZLP = ZD for all cost vector c, if

conv(X) = {x | Dx ≤ d}.
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Solution of the Lagrangian Dual

We outline a method for finding the optimal Lagrangian
multipliers λ∗, that solve the Lagrangian dual problem

min Z(λ), s.t. λ ≥ 0.

To keep the presentation simple, we assume that X is finite and
X = {x1, · · · , xm}.

Given a particular value of λ, we assume that we can calculate
Z(λ), which we have defined as follows:

Z(λ) = max
i=1,··· ,m

(c⊤xi + λ⊤(b − Axi)).
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Subgradient

Let fi = b − Axi and hi = c⊤xi. Then,

Z(λ) = max
i=1,··· ,m

(hi + f⊤i λ).

Let E(λ) = {i | Z(λ) = hi + f⊤i λ}.

For every i ∈ E(λ∗), fi is a subgradient of the function Z(·) at λ∗.

∂Z(λ∗) = conv({fi, i ∈ E(λ∗)}), i.e., a vector s is a subgradient of
the function Z(·) at λ∗ if and only if s is a convex combination of
the vectors fi, i ∈ E(λ∗).



15/43

Subgradient Optimization Algorithm

The following algorithm generalizes the steepest ascent algorithm to
maximize a nondifferentiable concave function Z(·).

1 Choose a starting point λ1; let t = 1.
2 Given λt, choose a subgradient st of the function Z(·) at λt.
3 If st = 0, then λt is optimal and the algorithm terminates.

Else, continue.
4 Let λt+1

j = max{λt
j − θtst

j, 0}, where θt is a positive
stepwise parameter. Increment t and go to Step 2.

Typically, only the extreme subgradients fi are used.
The stopping criterion 0 ∈ ∂Z(λt) is rarely met. Typically, the
algorithm is stopped after a fixed number of iterations.
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Stepsize

It can be proved that Z(λt) converges for any stepsize sequence
θt such that

∞∑
t=1

θt = ∞, and lim
t→∞

θt = 0.

An example of the stepsize sequence is θt = 1/t, which leads to
slow convergence in practical. Another example is

θt = θ0α
t, t = 1, 2, · · · ,

where α is a scalar satisfying 0 < α < 1.
A more sophisticated and popular rule is to let

θt =
Z(λt)− ẐD

∥st∥2 α

where α is a scalar satisfying 0 < α < 1 and ẐD is an estimate of
the optimal value ZD.
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Outline
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Mixed Integer Program

Let us consider a mixed integer program (MIP)

zI = max cTx,

s.t. Ax ≤ b,Dx ≤ d,

x ∈ Zd
+ × Rp

+.

(9)

Let X be defined as

X =
{

x ∈ Zd
+ × Rp

+ : Dx ≤ d
}
.

We assume that X is nonempty and D, d have rational entries.
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Lagrangian dual

Let m be the number of rows of A, and take λ ∈ Rm
+. The

Lagrangian relaxation with respect to λ as follows.

zLR(λ) = max c⊤x + λ⊤(b − Ax),

s.t. Dx ≤ d,

x ∈ Zq
+ × Rp

+.

(10)

Moreover, recall that the Lagrangian dual is defined as

zLD = min{ZLR(λ) : λ ≥ 0}. (11)

(10) and (11) are related according to the following
characterization of zLD.

zLD = max{c⊤x : Ax ≤ b, x ∈ conv(X)}.
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Decomposition of conv(X)

conv(X) can be expressed as

conv(X) = conv
{

v1, . . . , vn}+ cone
{

r1, . . . , rℓ
}
,

where v1, . . . , vn are the extreme points of conv(X) and r1, . . . , rℓ

are the extreme rays of conv(X).
Any point x in conv(X) can be written as

x =
∑
k∈[n]

αkvk +
∑
h∈[ℓ]

βhrh

for some α ∈ Rk
+ and β ∈ Rℓ

+ such that
∑

k∈[n] αk = 1.
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Dantzig-Wolfe Relaxation

Based on the decomposition of conv(X), it follows that

zLD = max
∑
k∈[n]

(
c⊤vk

)
αk +

∑
h∈[ℓ]

(
c⊤rh

)
βk,

s.t.
∑
k∈[n]

(
Avk)αk +

∑
h∈[ℓ]

(
Arh)βk ≤ b,

∑
k∈[n]

αk = 1, α ∈ Rk
+, β ∈ Rℓ

+.

(12)

We refer to (12) as the Dantzig-Wolfe relaxation.



22/43

Dantzig-Wolfe Reformulation

Moreover, we have

zI = max
{

c⊤x : Ax ≤ b, x ∈ conv(X), xj ∈ Z, ∀j ∈ [q]
}
.

Therefore, we deduce

zI = max
∑
k∈[n]

(
c⊤vk

)
αk +

∑
h∈[ℓ]

(
c⊤rh

)
βk,

s.t.
∑
k∈[n]

(
Avk)αk +

∑
h∈[ℓ]

(
Arh)βk ≤ b,

∑
k∈[n]

αk = 1,

α ∈ Rk
+, β ∈ Rℓ

+,∑
k∈[n]

αkvk
j +

∑
h∈[ℓ]

βhrh
j ∈ Z, j ∈ [q].

(13)

Here, (13) is referred to as the Dantzig-Wolfe reformulation.
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Pure Binary Programs

Let us consider a pure binary integer program as follows.

zI = max c⊤x,

s.t. Ax ≤ b,Dx ≤ d,

x ∈ {0, 1}p.

We define X as

X = {x ∈ {0, 1}p : Dx ≤ d} .

Since X is bounded and finite, X =
{

v1, . . . , vn
}

Any point x in X can be expressed as

x =
∑
k∈[n]

αkvk,
∑
k∈[n]

αk = 1, α ∈ {0, 1}n.
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Pure Binary Programs

Then we obtain the Dantzig-Wolfe reformulation.

zI = max
∑
k∈[n]

(
c⊤vk

)
αk,

s.t.
∑
k∈[n]

(
Avk)αk ≤ b,

∑
k∈[n]

αk = 1, α ∈ {0, 1}n.

The Dantzig-Wolfe relaxation

max
∑
k∈[n]

(
c⊤vk

)
αk,

s.t.
∑
k∈[n]

(
Avk)αk ≤ b,

∑
k∈[n]

αk = 1, α ≥ 0.
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Block Diagonal Structure

We consider the following optimization model with block diagonal
structure.

max c1⊤x1+ c2⊤x2+ · · · +cp⊤xp,

s.t. D1x1 ≤ d1,

D2x2 ≤ d2,

. . .

Dpxp ≤ dp,

A1x1+ A2x2+ · · · +Apxp ≤ b,

xj ∈ {0, 1}qj , j ∈ [p].

For j ∈ [p], let Xj be defined as Xj =
{

xj ∈ {0, 1}qj : Djxj ≤ dj
}
.

Xj is bounded and finite. Any point xj in Xj can be written as

xj =
∑
v∈Xj

αj
vv,

∑
v∈Xj

αj
v = 1, αj ∈ {0, 1}|Xj|.
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Block Diagonal Structure

The Dantzig-Wolfe reformulation is given by

max
∑
v∈X1

(
c1⊤v

)
α1

v +
∑
v∈X2

(
c2⊤v

)
α2

v + · · ·+
∑
v∈Xp

(
cp⊤v

)
αp

v ,

s.t.
∑
v∈X1

(
A1v

)
α1

v +
∑
v∈X2

(
A2v

)
α2

v + · · ·+
∑
v∈Xp

(Apv)αp
v ≤ b,

∑
v∈Xj

αj
v = 1, αj ∈ {0, 1}|Xj|, j ∈ [p].

The Dantzig-Wolfe relaxation is given by

max
∑
v∈X1

(
c1⊤v

)
α1

v +
∑
v∈X2

(
c2⊤v

)
α2

v + · · ·+
∑
v∈Xp

(
cp⊤v

)
αp

v ,

s.t.
∑
v∈X1

(
A1v

)
α1

v +
∑
v∈X2

(
A2v

)
α2

v + · · ·+
∑
v∈Xp

(Apv)αp
v ≤ b,

∑
v∈Xj

αj
v = 1, αj ≥ 0, j ∈ [p].
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Column Generation: Master Problem

The Dantzig-Wolfe relaxation has variables α1, . . . , αn for the
extreme points of conv(X) and variables β1, . . . , βℓ for the
extreme rays of conv(X).
n and ℓ are potentially very large. In this case, we may apply the
column generation technique.
The column generation procedure works as follows. We start
with N ⊆ [n] and L ⊆ [ℓ]. Then we have the master problem

max
∑
k∈N

(
c⊤vk

)
αk +

∑
h∈L

(
c⊤rh

)
βk,

s.t.
∑
k∈N

(
Avk)αk +

∑
h∈L

(
Arh)βk ≤ b,∑

k∈N

αk = 1, α ∈ Rk
+, β ∈ Rℓ

+.
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Column Generation: Subproblem —原理解析

子问题的构造基于对偶理论，其目标是在当前主问题解的对偶向
量λ下，检验是否存在未加入的列（变量）仍可提升目标函数。

设当前主问题对偶解为λ，则任意潜在变量x ∈ conv(X)的reduced
cost为：

c̄(x) = c⊤x − λ⊤Ax.

若存在x ∈ conv(X)使得c̄(x) > 0，则当前主问题并非最优。

因此，构造如下子问题以判定最优性并生成新列：

max
x∈conv(X)

(
c⊤ + λ⊤(b − Ax)

)
.

三种情形：

若最优值> 0：存在可提升目标的极点/极射线；
若最优值= 0：当前已最优，无需再加列；
若最优值为+∞：存在无界方向（极射线）可继续改进。
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Column Generation: Subproblem —算法流程

1 解主问题（restricted master problem），得到对偶变量λ；

2 构造子问题：
max

x∈conv(X)
c⊤x + λ⊤(b − Ax);

3 若子问题最优值> 0，则：
若最优解为极点vk，则有

(Avk − b)⊤λ < c⊤vk,

加入vk 到主问题；
若子问题无界，存在极射线rh，则有

(Arh)⊤λ < c⊤rh,

加入rh 到主问题；

4 若子问题最优值≤ 0，则当前解已为全局最优，算法终止。

注：子问题等价于在X 上求解线性目标
(
c − A⊤λ

)⊤ x的最优解，
是pricing problem的具体实现。
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Bender’s Decomposition

We use the Lagrangian relaxation framework to deal with
complicating constraints.
In this section, we learn the Bender’s reformulation technique
that can deal with complicating variables.
Consider the following mixed-integer program.

zI = max c⊤x + q⊤y,

s.t. Ax + Gy ≤ b,

x ∈ Zd
+, y ∈ Rp

+.
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Bender’s Decomposition

Here, the integer variables x are complicating variables. If we fix
the x part, then the optimization problem becomes

zLP(x) =max q⊤y,

s.t. Gy ≤ b − Ax,

y ∈ Rp
+.

Taking the dual of it, we deduce

min u⊤(b − Ax),

s.t. G⊤u ≥ q,

u ≥ 0.

Here, the feasible set of the dual does not depend on x.
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Bender’s Decomposition

Let Q denote the feasible set of the dual:

Q =
{

u : G⊤u ≥ q, u ≥ 0
}
.

Suppose that Q can be expressed as

Q = conv
{

v1, . . . , vn}+ cone
{

r1, . . . , rℓ
}
.

for some vectors v1, . . . , vn and r1, . . . , rℓ.
We will prove the following theorem.

Theorem (Bender’s Decomposition)
The mixed integer program can be reformulated as

zI = max η,

s.t. η ≤ c⊤x + (b − Ax)⊤vk, k ∈ [n],

(b − Ax)⊤rh ≥ 0, h ∈ [ℓ],

x ∈ Zd
+, η ∈ R.
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Projection Theorem of Egon Balas

Theorem
Let P =

{
(x, y) ∈ Rd × Rp : Ax + Gy ≤ b, y ≥ 0

}
. Suppose that

C =
{

u : G⊤u ≥ 0, u ≥ 0
}

can be expressed as C = cone
{

r1, . . . , rℓ
}

.
Then projx(P), the projection of P onto the x-space, is given by

projx(P) =
{

x ∈ Rd : (b − Ax)⊤rh ≥ 0, h ∈ [ℓ]
}
.

Let x̄ ∈ Rd. Note that x̄ /∈ projx(P) holds if and only if there is no
y ∈ Rp that satisfies Gy ≤ b − Ax̄ and y ≥ 0.
By Farkas’ Lemma, the system Gy ≤ b − Ax̄, y ≥ 0 is infeasible if
and only if there exists u ∈ C such that u⊤(b − Ax̄) < 0.
Since C = cone

{
r1, . . . , rℓ

}
, such a vector u exists if and only if

(b − Ax̄)⊤rh ≤ 0 for some h ∈ [ℓ], in which case,
x̄ /∈

{
x ∈ Rd : (b − Ax)⊤rh ≥ 0, h ∈ [ℓ]

}
.
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Proof of Bender’s Decomposition

Let P =
{
(x, y) ∈ Rd × Rp : Ax + Gy ≤ b, y ≥ 0

}
. Note that

zI = max c⊤x + zLP(x),

s.t. x ∈ Zd
+.

Here, zLP(x) > −∞ if and only if there exists some y ≥ 0 such
that Gy ≤ b − Ax, which is equivalent to x ∈ projx(P).
Therefore, it follows that

zI = max c⊤x + zLP(x),

s.t. x ∈ projx(P) ∩ Zd
+.
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Proof of Bender’s Decomposition

Recall that Q =
{

u : G⊤u ≥ q, u ≥ 0
}

and

Q = conv
{

v1, . . . , vn}+ cone
{

r1, . . . , rℓ
}
.

Then C =
{

u : G⊤u ≥ 0, u ≥ 0
}

is the recession cone of Q, so we
have C = cone

{
r1, . . . , rℓ

}
.

Then it follows from projection theorem of Egon Balas that
projx(P) =

{
x ∈ Rd : (b − Ax)⊤rh ≥ 0, h ∈ [ℓ]

}
.

Therefore, we deduce that

zI = max c⊤x + zLP(x),

s.t. (b − Ax)⊤rh ≥ 0, h ∈ [ℓ],

x ∈ Zd
+.
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Proof of Bender’s Decomposition

Moreover, note that for any x ∈ projx(P), zLP(x) > −∞, so strong
duality implies that

zLP(x) = min u⊤(b − Ax),

s.t. G⊤u ≥ q,

u ≥ 0.

If zLP(x) is finite, then it means that Q is non-empty and

zLP(x) = min
k∈[n]

{
(b − Ax)⊤vk

}
.

If zLP(x) = +∞, then Q is empty, so the above equation also
holds. Hence,

zI = max c⊤x +min
k∈[n]

{
(b − Ax)⊤vk

}
,

s.t. (b − Ax)⊤rh ≥ 0, h ∈ [ℓ],

x ∈ Zd
+.
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Proof of Bender’s Decomposition

We may move the term mink∈[n]
{
(b − Ax)⊤vk

}
in the objective to

constraints, after which we deduce that

zI = max η,

s.t. η ≤ c⊤x +min
k∈[n]

{
(b − Ax)⊤vk

}
,

(b − Ax)⊤rh ≥ 0, h ∈ [ℓ],

x ∈ Zd
+, η ∈ R.

which is equivalent to Bender’s reformulation as required.
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Bender’s Decomposition Algorithm

The Bender’s reformulation has an enormous number of
constraints.

A natural approach is to work with a small subset of the
constraints and add new ones as cutting planes.

The Bender’s decomposition algorithm is the row generation
framework for Bender’s reformulation.
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Master Problem

At iteration t, we have Nt ⊆ [n] and Lt ⊆ [ℓ]. Then we solve

zt
I = max η,

s.t. η ≤ c⊤x + (b − Ax)⊤vk, k ∈ Nt,

(b − Ax)⊤rh ≥ 0, h ∈ Lt,

x ∈ Zd
+, η ∈ R.

This is the master problem.
Assume that we get a solution (xt, ηt) after solving the master
problem at iteration t. Then we attempts to find a violated
inequality among

η ≤ c⊤x + (b − Ax)⊤vk, k ∈ [n]\Nt,

(b − Ax)⊤rh ≥ 0, h ∈ [ℓ]\Lt.



41/43

Subproblem

The question is
does there exists kt ∈ [n] such that

ηt > c⊤xt + (b − Axt)
⊤ vkt?

does there exists ht ∈ [ℓ] such that

(b − Axt)
⊤ rht < 0?

To answer this, we solve

zLP (xt) = max q⊤y,

s.t. Gy ≤ b − Axt,

y ∈ Rp
+.

This is the subproblem for the Bender’s decomposition
algorithm.
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Solving the Subproblem

If zLP (xt) = +∞, then for any M > 0, there exists y ≥ 0 such that
Axt + Gy ≤ b and c⊤xt + q⊤y > M, in which case zI = +∞.
If zLP (xt) is finite, then

zLP (xt) = min
k∈[n]

(b − Axt)
⊤ vk = (b − Axt)

⊤ vkt

for some kt.
Hence, we deduce that

c⊤xt + zLP (xt) = c⊤xt + (b − Axt)
⊤ vkt .

Moreover, if zLP (xt) = −∞, then the subproblem is infeasible, in
which case, there exists ht ∈ [ℓ]

(b − Axt)
⊤ rht < 0.
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Bender’s decomposition algorithm

1 At iteration t, solve the master problem with Nt ⊆ [n] and Lt ⊆ [ℓ].
2 If zt

I = −∞, then the mixed-integer program is infeasible.
3 Let (xt, ηt) be an optimal solution to the master problem. Solve

the subproblem with xt.
4 If zLP(xt) = +∞ then the mixed-integer program is unbounded.
5 If zLP(xt) = −∞ then there exists ht ∈ [ℓ] such that

(b − Ax)⊤rht < 0.
Add constraint (b − Ax)⊤rht ≥ 0 and update Lt+1 = Lt ∪ {ht}.

6 If zLP(xt) is finite. Let yt be an optimal solution and
kt ∈ argmink∈[n]{(b − Axt)⊤ > vk}.
If c⊤xt + q⊤yt ≥ ηt, then we conclude that (xt, yt) is an optimal
solution.
If c⊤xt + q⊤yt < ηt, then we add constraint η ≤ c⊤x + (b − Ax)⊤vkt

and update Nt+1 = Nt ∪ {kt}.
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Maxcut: 0.878 bounds

For graph (V,E) and weights wij = wji ≥ 0, the maxcut problem is

(Q) max
x

∑
i<j

wij(1 − xixj), s.t. xi ∈ {−1, 1}

SDP relaxation

(SDP) max
X∈Sn

∑
i<j

wij(1 − Xij), s.t. Xii = 1,X ⪰ 0

Compute the decomposition X = V⊤V, where V = [v1, v2, . . . , vn]
Rounding: generate a vector r uniformly distributed on the unit sphere, i.e.,
∥r∥2 = 1, set

xi =

{
1 v⊤i r ≥ 0
−1 otherwise

Let Z∗
(SDP) and Z∗

(Q) be the optimal values of (SDP) and (Q)

E(W) ≥ 0.878Z∗
(SDP) ≥ 0.878Z∗

(Q)
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Reinforcement Learning

Consider an infinite-horizon discounted
Markov decision process (MDP), usually
defined by a tuple (S,A,P,R, ρ0, γ);

The policy is supposed to maximize the total expected reward:

max
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
, with s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P(·|st, at).
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Erdos Goes Neural

The probability distribution D in Erdos is learned by a GNN.
A "good" probability distribution leads to higher quality solutions.

Figure: Illustration of the "Erdos goes neural" pipeline.

Optimization on explicit formulation of the expectation.
Maximum clique problem:

ℓ(D) = γ − (β + 1)
∑

(vi,vj)∈E

wijpipj +
β

2

∑
vi ̸=vj

pipj.
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Parameterized Probabilistic Model

MCPG: construct a parameterized model with parameter θ to output pθ and
generate x ∼ pθ by Monte Carlo sampling

MCPG: optimization over the probabilistic space.
Erdos: optimization on the expectation of objective function.
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Binary Optimization

Let f be arbitrary (even non-smooth) cost function:

min f (x), s.t. x ∈ Bn = {−1, 1}n.

Example: maxcut problem on G = (V,E)

max
∑

(i,j)∈E

wij(1 − xixj), s.t. x ∈ {−1, 1}n.

Example: maxSAT problem:

max
x∈{−1,1}n

∑
ci∈C1

max{ci
1x1, ci

2x2, · · · , ci
nxn, 0},

s.t. max{ci
1x1, ci

2x2, · · · , ci
nxn, 0} = 1, for ci ∈ C2

Binary optimization is NP-hard due to the combinatorial structure.
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Probabilistic Approach

Let X ∗ be the set of optimal solutions and consider the distribution,

q∗(x) =
1

|X ∗|
1X ∗(x) =

{
1

|X ∗| , x ∈ X ∗,

0, x ̸∈ X ∗.

Motivation: Searching for optimal points X ∗ ⇒ Constructing a distribution pθ(x)
converging to q∗(x).

A universal approach for various binary optimization problems.
Algorithms for continuous optimization can be applied.
The optimal points set X ∗ is unknown.
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Gibbs distributions

To approximate q∗, we introduce Gibbs distributions,

qλ(x) =
1

Zλ
exp

(
− f (x)

λ

)
, x ∈ Bn,

where Zλ =
∑

x∈Bn
exp

(
− f (x)

λ

)
is the normalizer.

Given the optimal objective value f ∗, for any x ∈ Bn,

qλ(x) =
exp

(
f ∗−f (x)

λ

)
∑

x∈Bn
exp

(
f ∗−f (x)

λ

) =
exp

(
f ∗−f (x)

λ

)
|X ∗|+

∑
x∈Bn/X ∗ exp

(
f ∗−f (x)

λ

)
→ 1

|X ∗|
1X ∗(x) = q∗, as λ → 0.

The calculation of qλ does not require knowledge of X ∗.
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Parameterized Probabilistic Model

KL divergence:

KL (pθ ∥ qλ) =
∑
x∈Bn

pθ(x) log
pθ(x)
qλ(x)

.

In order to reduce the discrepancy between pθ and qλ, the KL divergence is
supposed to be minimized:

KL (pθ ∥ qλ) =
1
λ

∑
x∈Bn

pθ(x)f (x) +
∑
x∈Bn

pθ(x) log pθ(x) + log Zλ

=
1
λ
(Epθ [f (x)] + λEpθ [log pθ(x)]) + log Zλ.

Loss Function (Zλ is a constant):

minθ Lλ(θ) = Epθ [f (x)] + λEpθ [log pθ(x)]
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Gradient for the Loss Function

Lemma 1

Suppose for any x ∈ Bn, pθ(x) is differentiable with respect to θ. For any constant c ∈ Re,
we denote the advantage function

Aλ(x; θ, c) := f (x) + λ log pθ(x)− c.

Then, the gradient of the loss function is given by

∇θLλ(θ) = Epθ [Aλ(x; θ, c)∇θ log pθ(x)] .

One candidate for c is
c = Epθ [f (x)].

Very similar to the policy gradient in reinforcement learning!
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Extension: general constrained problem

Consider
x∗ = argmin

x
f (x), s.t. c(x) = 0, x ∈ Bn

L1 exact penalty problem

x∗σ = argmin
x∈Bn

fσ(x) := f (x) + σ∥c(x)∥1

Let ϖ := minx∈Bn{∥c(x)∥1 | ∥c(x)∥1 ̸= 0} and f ∗ = minx∈Bn f (x). Define
σ̄ = (fσ(x∗)− f ∗)/ϖ ≥ 0.

For all σ ≥ σ̄, x∗ is a global minima of the penalty problem and x∗σ is also a global
minima of the constrained problem.
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Pipeline of MCPG
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Filter Function

The filter function T projects x to a better one in the neighborhood.
Applied with the filter function, f (T(x)) has fewer local minima and the same global
minimum as the original one.

f(x) f(T1(x)) f(T2(x)) f(T3(x)) f(T4(x))f(TLS(x))
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(a) Expectation of the objective function.
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(b) A selected sequence of solutions.
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Filter Function

Definition 2 (Filter Function)

For each x ∈ Bn, let N (x) ⊂ Bn be a neighborhood of x such that x ∈ N (x), |N (x)| ≥ 2
and any point in N (x) can be reached by applying a series of “simple" operations to x. A
filter function T(x) is defined as

T(x) ∈ argmin
x̂∈N (x)

f (x̂),

where T(x) is arbitrarily chosen if there exists multiple solutions.

Projection to the best solution on the neighborhood:

Tk(x) = argmin
∥x̂−x∥1≤2k

f (x̂), N (x) = {x̂ | ∥x̂ − x∥1 ≤ 2k}.

Algorithms serves as the filter function:

TLS(x) = LocalSearchf (x).
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Local Search

Local Search:
Generality: Local search works for various kinds of problem.
Efficiency: GPUs allow parallel access to the same indexed variable for a large
number of samples.

Pipeline of Local Search with flipping operation:
1 Choose a single variable from the current solution x.
2 Flip the variable to its opposite value.
3 Evaluate the new solution to determine if it is improvement.
4 If it is, the variable is flipped to its opposite value
5 Back to Step 1 and continues to the next index in I.
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Large-Scale Parallel Sampling on GPU

GPU: quick for parallel accessing but slow for memory copying.
Sampling in MCPG

constructs large number of short chains,
discards all previous states in transition (no memory copying),
outputs the last states for all chains.
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Probabilistic Model Applied with Filter Function

MCPG focuses on the following modified binary optimization:

min f (T(x)), s.t. x ∈ Bn.

The probabilistic model is equivalent to

min
θ

Lλ(θ;P) = Epθ [f (T(x))] + λEpθ [log pθ(x|P)].

Empirical gradient:

ḡλ(θ) =
1
|S|
∑
x∈S

Aλ(x; θ)∇θ log p(x|θ;P).

where S is the sample set extracted from distribution pθ(·|P) and

Aλ(x; θ) := f (T(x)) + λ log pθ(x|P)− 1
|S|
∑
x∈S

f (T(x)).
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Binary Optimization and Probabilistic model

For an arbitrary function f on Bn, we define the B as

G(f ) = min
x∈Bn\X ∗

f (x)− f ∗. (1)

Proposition 1

For any 0 < δ < 1, suppose Lλ(θ)− f ∗ < (1 − δ)G(f ), then

P(x ∈ X ∗) > δ.

Therefore, for x1, . . . , xm independently sampled from pθ, mink f (xk) = f ∗ with probability
at least 1 − (1 − δ)m.

The above proposition shows that with a optimized probabilistic model, the obtained
probability from the optimal solutions is linearly dependent on the gap between the
expectation and the minimum of f .
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Impact of the Filter Function

When T(x) = x, it means that x is a local minimum point.
For any given x ∈ Bn, there exists a corresponding local minimum point by applying
the filter function T to x for many times.
We can divide the set Bn into subsets with respect to the classification of local
minima.

Let X1,X2, ...,Xr be a partition of Bn such that for any j ∈ {1, . . . , r}, every x ∈ Xj has the
same corresponding local minimum point.

Proposition 2

If there exists some x ∈ Bn such that pθ(x) > 0 and f (x) > f (T(x)), then for any
sufficiently small λ > 0 satisfying

Epθ [f (x)− f (T(x))] ≥ λ log(max
1≤i≤r

|Xi|),

it holds that
KL (pθ ∥ q̂λ) ≤ KL (pθ ∥ qλ) .
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Boundedness of f (T(x))

Denote N = 2n and sort all possible points in Bn = {s1, . . . , sN} such that
f (s1) ≤ f (s2) ≤ · · · ≤ f (sN). The bounds of f (T(x)) and Epθ [f (T(x))], for a large probability,
are not related to samples sM+1, sM+2, ..., sN for an integer M.

Proposition 3
Suppose that the cardinality of each neighborhood N (si) is fixed to be
|N (si)| ≥ X ≥ n + 1 and all elements in N (si) except si are chosen uniformly at random
from Bn\{si}. For δ ∈ (0, 1), let M =

⌈
log(N/δ)

X−1 N
⌉
+ 1. Then, with probability at least 1 − δ

over the choice of T(x), it holds:
1) f (T(x)) ∈ [f (s1), f (sM)], ∀x ∈ Bn;
2) Epθ [f (T(x))] ≤

∑M−1
i=1 pθ(si)f (si) + (1 −

∑M−1
i=1 pθ(si))f (sM) ≤ f (sM).
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Convergence of MCPG

Assumption: Let ϕ(x; θ) = log pθ(x|P). There exists some constants M1,M2,M3 > 0
such that, for any x ∈ Bn,

1 supθ∈Red |ϕ(x; θ)| ≤ M1,
2 supθ∈Red ∥∇θϕ(x; θ)∥ ≤ M2,
3 ∥∇θ1ϕ(x; θ)−∇θ2ϕ(x; θ)∥ ≤ M3 ∥θ1 − θ2∥ ,∀θ1, θ2,∈ Red.

Theorem 3
Let the assumption holds and {θt} be generated by MCPG. If the stepsize is chosen as
ηt = c

√
mk√
t with c ≤ 1

2l , then we have

min
1≤t≤τ

E
[
∥∇θLλ(θ

t)∥2
]
≤ O

(
log τ√

mkτ
+

1
m2

)
.
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Parameterization of sampling policy

Mean field (MF) approximation:

pθ(x|P) =
n∏

i=1

µ
(1+xi)/2
i (1 − µi)

(1−xi)/2, µi = ϕi(θ;P)

Parameterization of µi:

µi = ϕi(θi) =
1 − 2α

1 + exp(−θi)
+ α, 1 ≤ i ≤ n.

The probability is scaled to the range (α, 1 − α), where 0 < α < 0.5 is given.

For problems graph structures, combining advanced neural networks such as GNN
can also be a good choice.
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Maxcut

We use the results reported by BLS as benchmark. Denoting UB as the results
achieved by BLS and obj as the cut size, the gap reported is defined as follows:

gap =
UB − obj

UB
× 100%.

Graph Nodes Edges BLS MCPG DSDP RUN-CSP PI-GNN EO EMADM
G14 800 4,694 3,064 3,064 2,922 2,943 3,026 3047 3045
G15 800 4,661 3,050 3,050 2,938 2,928 2,990 3028 3034
G22 2,000 19,990 13,359 13,359 12,960 13,028 13,181 13215 13297
G49 3,000 6,000 6,000 6,000 6,000 6,000 5,918 6000 6000
G50 3,000 6,000 5,880 5,880 5,880 5,880 5,820 5878 5870
G55 5,000 12,468 10,294 10,296 9,960 10,116 10,138 10107 10208
G70 10,000 9,999 9,541 9595 9,456 - 9,421 8513 9557

Table: Computational results on selected Gset instances. The result is sourced from references.
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Mixed integer linear program

Mixed-Integer Linear Programs (MILPs) are utilized to solve a myriad of
decision-making problems across various practical applications.

min cTx,

s.t. Ax ≤ b,

l ≤ x ≤ u,

x ∈ Rn−p × Zp.

Feasibility: The feasible region is discrete and non-convex, which makes it difficult
to analyze and optimization methods hard to design.

Complexity: Even with a relatively small number of variables, the solution space
can be exponentially vast due to the integer constraints.

Algorithmic strategy: Preprocessing, Branching Strategies, Bounding Strategies,
Cut Generation, Heuristic ...
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Graph Representation of MILP Instances
An MILP instance can be represented as a bipartite graph G = (V ∪ W,E):

Variable nodes wj ∈ W: correspond to variables xj, each with features:
Type of variable (e.g., binary, integer, continuous);
Objective coefficient cj;
Bounds [lj, uj].

Constraint nodes vi ∈ V: represent constraints δi, each with features:
Constraint type (≤, =, or ≥);
Right-hand side value bi.

Edges (vi,wj) ∈ E: exist if xj appears in constraint δi, with weight aij.
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Branch and bound
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Learning the exact methods

Branching Variable Selection:
Branch variable selection determines which fractional variables (also known as
candidates) to branch the current node into two child nodes.
Nair et al.(2021) encode MIP to the GCN as a bipartite graph and compute an initial
feasible solution (Neural Diving), then train a GCN to imitate ADMM-based policy for
branching (Neural Branching).

Node Selection:
The branch-and-bound algorithm recursively divides the feasible set of a problem into
disjoint subsets, organized in a tree structure.
He et al.(2014) uses imitation learning to train a node selection and a node pruning
policy to speed up the tree search in the B&B process.

Cutting Plane:
Cuts serve as the purpose of reducing the LP solution space, which might lead to a
smaller tree in the branch-and-cut algorithm.
Tang et al. (2020) train a RL agent for sequentially selecting cutting planes.
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Routing problems

Travelling Salesman Problem (TSP)
Given a fully connected graph with node coordinates {xi}n

i=1, the goal is to find a tour
that visits each node exactly once and returns to the starting point, while minimizing
the total travel distance.
Permutaion formulation

min
π

L(π) :=
n−1∑
i=1

∥xπ(i+1) − xπ(i)∥+ ∥xπ(1) − xπ(n)∥.

Capacitated Vehicle Routing Problem (CVRP)
There are n customers, each with a demand δi, to be served by a fleet of identical
vehicles with capacity D, all starting and ending at a common depot. The objective
is to find the shortest possible set of routes such that every customer is visited
exactly once, and the total demand on each route does not exceed the vehicle
capacity.
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Example tours

Travelling Salesman Problem (TSP) Vehicle Routing Problem (VRP)

NP-hard combinatorial problem with a wide range of applications!
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Overview: machine learning for routing problems

Learning to construct: iteratively add nodes to the partial solution.
Pointer Network was first proposed by Vinyals et al. based on Recurrent Neural
Networks and supervised learning.

The Graph Neural Networks were then leveraged for graph embedding (Dai et al.) and
faster encoding (Drori et al.) under reinforcement learning framework.

Later, the Attention Model (AM) was proposed by Kool et al.

Policy Optimization with Multiple Optima (POMO) significantly improved AM with
diverse rollouts and data augmentations (Kwon et al.).

Efficient Active Search (EAS) helps to get out of local optima by updating a small
subset of pre-trained model parameters on each test instance (Hottung et al.), which
could be further boosted if coupled with Simulation Guided Beam Search (SGBS) by
Choo et al., achieving better generalization performance.

Light Encoder and Heavy Decoder (LEHD) model is proposed by Luo et al. with
stronger generalization to large-scale instances sizes.
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Overview: machine learning for routing problems

Learning to search: iteratively refine a solution to a new one — a search process.
NeuRewriter (Chen et al.) and L2I (Lu et al.) relied heavily on traditional local search
algorithms with long run time.

Hottung and Tierney proposed the Neural large neighborhood search (NLNS) solver
improving upon them by controlling a ruin-and-repair process using a deep model.

Several L2S solvers focused on controlling k-opt heuristic within RL training:
self-attention-based policy (Wu et al.), Dual-Aspect Collaborative Attention (Ma et al.),
Synthesis Attention (Ma et al.) , GNN+RNN-based policy (Costa et al.).

Learning to predict: guide the search by predicting critical information.
Joshi et al. proposed using GNN models to predict heatmaps that indicate probabilities
of the presence of an edge, which then uses beam search to solve TSP.

The GLS solver (Hudson et al.) used GNN to guide the local search heuristics.

The DIFUSCO solver (Sun et al.) proposed to replace those GNN models with
diffusion models in generating heatmaps.
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Comparison

The L2C solvers can produce high-quality solutions within seconds using greedy
rollouts; however, they are shown to get trapped in local optima, even when
equipped with post-hoc methods, such as sampling, beam search, etc.

Although L2S solvers strive to surpass L2C solvers by directly learning to search,
they are still inferior to those state-of-the-art L2C solvers even when given
prolonged run time.

Compared to L2C or L2S solvers, L2P solvers exhibit better scalability for large
instances; however, L2P solvers are mostly limited to supervised learning and TSP
only, due to challenges in preparing training data and the ineffectiveness of
heatmaps in handling VRP constraints.
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Construct a path

A solution π = (π1, . . . , πn) is a permutation of the nodes {1, . . . , n}.

Given a problem instance s, the stochastic policy for selecting a solution π is
parameterized by θ as

pθ(π|s) =
n∏

t=1

pθ(πt|s, π1:t−1).

The encoder produces embeddings of all input nodes, where an instance s is
encoded by features xi on each node i.

The decoder produces the sequence π of input nodes, one nodes at a time, which
takes as input the encoder embeddings and a problem specific mask and context.
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Multi-head attention mechanism

The multi-head attention mechanism starts by linearly projecting input sequences
Q,K,V into H distinct subspaces using learned projection matrices WQ

j ,WK
j ,WV

j :

Qj = QWQ
j , Kj = KWK

j , Vj = VWV
j , j = 1, . . . ,H.

Attention weights are obtained via a scaled dot-product between projected queries
and keys, followed by a softmax operation:

Aj = Softmax

(
QjKT

j√
dk

+ M

)
, j = 1, . . . ,H,

where dk represents the dimension of the keys and M is an optional attention mask
that can be used to prevent attending to certain positions.
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Multi-head attention mechanism

Using these attention weights, the mechanism computes a weighted sum of the
projected values, yielding the output of each attention head:

Zj = AjVj, j = 1, 2, . . . ,H.

Finally, the outputs from all attention heads are concatenated and linearly projected
using a learned output matrix WO, forming the final multi-head attention output:

MHA(Q,K,V;M) = Concat(Z1, . . . ,ZH)WO.
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Encoder

The encoder computes the initial embeddings h(0)i ∈ Rdh from node features xi using
a linear transformation:

h(0)i = W(0)xi + b(0), i = 1, . . . , n.

Stacking these embeddings forms h(0) ∈ Rn×dh . The encoder then refines them
through L attention layers, each consisting of a multi-head attention (MHA) layer
and a node-wise fully connected feed-forward (FF) layer:

ĥ
(ℓ)

= BNl
(

h(ℓ−1) + MHA(ℓ)
(

h(ℓ−1),h(ℓ−1),h(ℓ−1)
))

,

h(ℓ) = BNℓ
(

ĥ
(ℓ)

+ FF(ℓ)
(

ĥ
(ℓ)
))

.

The graph-level representation is the mean of the final node embeddings:

h̄(L) =
1
n

n∑
i=1

h(L)i .
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Encoder
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Decoder

During decoding, the graph is augmented with a special context node (c) to
represent the decoding context.

The decoder computes an attention (sub)layer on top of the encoder, but with
messages only to the context node for efficiency.

The final probabilities are computed using a single-head attention mechanism.
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Context embedding

The context vector of the decoder at time t consists of the embedding of the graph
h̄(L), the previous (last) node πt−1 and the first node π1:

h(c) =

{
[h̄(L), h(L)πt−1

, h(L)π1
], t > 1,

[h̄(L), v1, v2] t = 1.

The context embedding h′(c) is computed using a single masked cross-attention
layer, where the context vector serves as the query, while the node embeddings
provide the keys and values:

h′(c) = MHA(h(c),h,h;Mt).

The mask vector Mt encodes node availability at time t, with Mt(i) = 0 for unvisited
nodes and Mt(i) = −∞ for visited nodes.
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Calculation of probabilities

The logits are obtained by a single attention head:

z =
(h(L)WK)h′(c)√

dk
,

where the matrix h(L)WK is precomputed only once as cache during the overall
decoding process.
The conditional probability distribution over available nodes is computed using a
softmax:

pθ(· | s, π1:t−1) = Softmax (C · tanh(z) + Mt) ,

where the tanh clipping constant C > 0 serves in improving the exploration.
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Attention model for the CVRP

Encoder: Let δ̂i be the normalized demand of the node i.

h(0)i =

{
W(0)

0 xi + b0
0, i = 0,

W(0)[xi, δ̂i], i = 1, . . . , n.

Capacity constraints: Keep track of the remaining demands δ̂i,t for the nodes
i ∈ {1, . . . , n} and remaining vehicle capacity D̂t at time t. At t = 1, these are
initialized as δ̂i,t = δ̂i and D̂t = 1.

δ̂i,t+1 =

{
max(0, δ̂i,t − D̂t), πt = i,

δ̂i,t, πt ̸= i.
D̂t+1 =

{
max(0, D̂t − δ̂πt,t), πt ̸= 0,

1, πt = 0.
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Attention model for the CVRP

Decoder context: The context for the decoder for the VRP at time t is the
current/last location πt−1 and the remaining capacity D̂t.

h(c) =

{
[h̄(L), h(L)πt−1

, D̂t], t > 1,

[h̄(L), h(L)0 , D̂t] t = 1.

Masking: In the decoder layers, the masking rules are defined as follows: for the
depot node 0, it is masked (i.e., Mt(0) = −∞) if and only if the current step t = 1 or
the previous node πt−1 is the depot itself. For any customer node j ̸= 0, it is masked
(i.e., Mt(j) = −∞) if it has been visited (δ̂i,t = 0) or its demand exceeds the
remaining capacity (δ̂i,t > D̂t).
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Reinforcement learning

Loss function:
L(θ|s) = Epθ(π|s)[L(π)],

where L(π) is the tour length for TSP.

Policy gradient:

∇θL(θ|s) = Epθ(π|s)[(L(π)− b(s))∇θ log pθ(π|s)].

Rollout baseline:
b(s) = L(πBL),

where πBL is a solution from a deterministic greedy rollout of the policy pθ.

Optimizer: Adam.
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Policy Optimization with Multiple Optima

Symmetry in solving CO problems leads to multiple optima.

A routing problem contains a loop rather than a sequence, where (π1, π2, π3, π4) is
the same as (π2, π3, π4, π1).

Let a solution trajectory denoted by π = (π1, . . . , πn) and the policy

pθ(π|s) =
n∏

t=1

pθ(πt|s, π1:t−1).

In the above equation, the starting nodes π1 heavily influences the rest of the
sequence (π2, . . . , πn), when in fact any choice for π1 should be equally good.
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Explorations from multiple starting nodes

Designate N different nodes {π1
1, . . . , π

N
1 } as starting points for exploration.

Sample N different solution trajectories π1, . . . , πN from the policy.

Apply entropy maximization techniques to improve exploration of the first moves.
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Policy gradient with a shared baseline

A set of solution trajectories π1, . . . , πN is sampled from the policy pθ(π|s).

The policy gradient is approximated by

∇̂θL(θ|s) =
1
N

N∑
i=1

(
L(πi)− b(s)

)
∇θ log pθ(πi|s),

where pθ(πi|s) =
∏n

t=2 pθ(πi
t|s, πi

1:t−1).

The shared baseline is taken as the approximation of Epθ(π|s)[L(π)],

b(s) =
1
N

N∑
j=1

L(πj).

The shared baseline makes RL training highly resistant to local minima.
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Instance augmentation

Drawback: N, the number of greedy rollouts one can utilize, cannot be arbitrarily
large, as it is limited to a finite number of possible starting nodes.

Reformulate the problem: meet a different problem but arrive at the same solution.

One can flip or rotate the coordinates of all the nodes in a 2D routing problem and
generate another instance, from which more greedy trajectories can be acquired.
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Multi-Task vehicle routing problems

Prevailing neural solvers still need network structures tailored and trained
independently for each specific VRP.
Several VRP variants involve additional practical constraints:

Open route (O): The vehicle does not need to return to the depot after visiting
customers.
Backhaul (B): We name the customer nodes with δi > 0 as linehauls and the ones
with δi < 0 as backhauls. VRP with backhaul allows the vehicle traverses linehauls and
backhauls in a mixed manner, without strict precedence between them.
Duration Limit (L): To maintain a reasonable workload, the cost (i.e., length) of each
route is upper bounded by a predefined threshold.
Time Window (TW): Each node vi ∈ V is associated with a time window [ei, li] and a
service time si. A vehicle must start serving customer vi in the time slot from ei to li.
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Mixture of Experts

An MoE layer consists of
1 m experts {E1,E2, . . . ,Em}, each of which is a linear layer or FFN with independent

trainable parameters.
2 A gating network G parameterized by WG, which decides how the inputs are distributed

to experts.

MoE(x) =
m∑

j=1

G(x)jEj(x).

A sparse vector G(x) only activates a small subset of experts with partial model
parameters, and hence saves the computation.
A TopK operator can achieve such sparsity by only keeping the K-largest values
while setting others as the negative infinity.

G(x) = Softmax(TopK(x · WG)).
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MVMoE

It jointly optimizes all trainable parameters θ, with the objective formulated as follows

min
θ

L = La + αLb.

La = Eπ∼pθ [L(π)] denotes the original loss function of the VRP solver.
Lb denotes the the auxiliary loss used to ensure load-balancing in MoEs.

I(X) =
∑
x∈X

G(x),

D(X)j =
∑
x∈X

Φ

(
(x · WG)− ϕ(H′

x, k, j)
Softplus((x · Wnoise)j)

)
,

Lb = Var(I(X))2 + Var(D(X))2.
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MVMoE

Despite MVMoE presents the first attempt towards a large VRP model, the scale of
parameters is still far less than LLMs.
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Failure in TSPTW

The success of the masking mechanism in routing problems relies on
the feasibility of the entire solution can be properly decomposed into the feasibility of
each node selection step;
ground truth masks are easily obtainable for each step.

However, such assumptions may fail in some routing problems, such as travelling
salesman problem with time windows (TSPTW).
Once a node is selected, the decision becomes irreversible, potentially leading to
infeasible situations after several steps.

Figure: No node can be selected to satisfy the time windows.
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LMask
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Numerical results



Submodular Function Optimization

http://bicmr.pku.edu.cn/~wenzw/bigdata2024.html

Acknowledgement: this slides is based on Prof. Andreas Krause’s, Prof. Jeff Bilmes, Prof.
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Outline

1 What is submodularity?

2 Submodular maximization

3 Submodular minimization
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Interactive recommendation

Number of recommendations k to choose from large data.
Similar articles→ similar click-through rates!

Performance depends on query / context.
Similar users→ similar click-through rates!

Need to compile sets of k recommendations(instead of only
one).

Similar sets→ similar click-through rates!
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News recommendation

Which set of articles satisfies most users?
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Relevance vs. Diversity

Users may have different interests /
queries may be ambiguous.

E.g., "jaguar", "squash",· · · .

Want to choose a set that is relevant to
as many users as possible.

Users may choose from the set the
article they’re most interested in.

Want to optimize both relevance and
diversity.
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Simple abstract model

Given a set W of users and a collection V of articles/ads.
Each article i is relevant to a set of users Si.

For now suppose this is known!

For each set A of articles, define

F(A) = | ∪i∈A Si|.

Want to select k articles from V to maximize "users covered"

max
A⊆V,|A|<k

F(A).

Number of sets A grows exponential in k!
Finding optimal A is NP-hard.
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Maximum coverage

Given: Collection V of sets, utility function F(.).

Want: A∗ ⊆ V such that

A∗ = argmax|A|≤kF(A)

NP-hard!
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Set Functions

Ground set X := {x1, x2, ..., xn} is the domain of interest or the
universe of elements.

In sensor network, the ground set might consist of all possible
locations where sensors could be placed.

The solution space V := 2X = {A | A ⊆ X}.

A set function takes as input a set, and outputs a real number.
Inputs are some subsets of ground set X.
F : 2X → R.

It is common in the literature to use either X or V as the ground
set.

We will follow this inconsistency in the literature and will
inconsistently use either X or V as our ground set (hopefully not
in the same equation, if so, please point this out).
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Modular Functions

If F is a modular function, then for any A,B ⊆ X, we have

F(A) + F(B) = F(A ∩ B) + F(A ∪ B).

If F is a modular function, it may be written as

F(A) = F(∅) +
∑
a∈A

(F({a})− F(∅)) .

Modular set functions
Associate a weight wi with each i ∈ X, and set F(S) =

∑
i∈S wi.

Discrete analogue of linear functions.

Other possibly useful properties a set function may have:
Monotone: if A ⊆ B ⊆ X, then F(A) ≤ F(B).
Nonnegative: F(S) ≥ 0 for all S ⊆ X.
Normalized: F(∅) = 0.
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Submodular Functions

Definition 1
A set function F : 2X → R is submodular if and only if

F(A) + F(B) ≥ F(A ∩ B) + F(A ∪ B)

for all A,B ⊆ X.

“Uncrossing” two sets reduces their
total function value.

Definition
A set function F : 2X → R is supmodular if and only if −F is
submodular.
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Submodular Functions

Definition 2 (diminishing returns)
A set function F : 2X → R is submodular if and only if

F(B ∪ {s})− F(B)︸ ︷︷ ︸
Gain of adding an element s to a large set

≤ F(A ∪ {s})− F(A)︸ ︷︷ ︸
Gain of adding an element s to a small set

for all A ⊆ B ⊆ X and s ∈ X \ B.

The marginal value of the added element
exhibits “diminishing marginal returns”.
This means that the incremental “value”,
“gain”, or “cost” of s decreases (diminishes)
as the context in which s is considered
grows from A to B.
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Submodular: Consumer Costs of Living

Consumer costs are very often submodular.
For example:

When seen as diminishing returns:
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Submodular Functions

Definition 3 (group diminishing returns)
A set function F : 2X → R is submodular if and only if

F(B ∪ C)− F(B) ≤ F(A ∪ C)− F(A)

for all A ⊆ B ⊆ X and C ⊆ X\B.

This means that the incremental “value”, “gain”, or “cost” of set C
decreases (diminishes) as the context in which C is considered
grows from A to B.
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Equivalence of Definitions

Definition 2 =⇒ Definition 3
Let C = {c1, . . . , ck}. The Definition 2 implies

F(A ∪ C)− F(A)

= F(A ∪ C)−
k−1∑
i=1

(F(A ∪ {c1, . . . , ci})− F(A ∪ {c1, . . . , ci}))− F(A)

=

k∑
i=1

(F(A ∪ {c1, . . . , ci})− F(A ∪ {c1, . . . , ci−1}))

≥
k∑

i=1

(F(B ∪ {c1, . . . , ci})− F(B ∪ {c1, . . . , ci−1}))

= F(B ∪ C)− F(B)
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Equivalence of Definitions

Definition 1 =⇒ Definition 2
Let A′ = A ∪ {s}, B′ = B, from Definition 1, we have

F(A ∪ {s}) + F(B) = F(A′) + F(B′)

≥ F(A′ ∩ B′) + F(A′ ∪ B′)

= F(A) + F(B ∪ {s})

Definition 2 =⇒ Definition 1
Assume A ̸= B. Define A′ = A ∩ B, C = A\B and B′ = B. Then

F(A′ ∪ C)− F(A′) ≥ F(B′ ∪ C)− F(B′)

⇐⇒ F((A ∩ B) ∪ (A\B)) + F(B) ≥ F(B ∪ (A\B)) + F(A′)

⇐⇒ F(A) + F(B) ≥ F(A ∪ B) + F(A ∩ B)
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Submodularity

Submodular functions have a long history in economics, game
theory, combinatorial optimization, electrical networks, and
operations research.

They are gaining importance in machine learning as well.

Arbitrary set functions are hopelessly difficult to optimize, while
the minimum of submodular functions can be found in polynomial
time, and the maximum can be constant-factor approximated in
low-order polynomial time.

Submodular functions share properties in common with both
convex and concave functions.
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Example: Set cover

F is submodular: A ⊆ B

F(A ∪ {s})− F(A)︸ ︷︷ ︸
Gain of adding an element s to a small set

≥ F(B ∪ {s})− F(B)︸ ︷︷ ︸
Gain of adding an element s to a large set

Natural example:
Set S1, S2, · · · , Sn

F(A)=size of union of Si

(e.g., number of satisfied users)

F(A) = |∪i∈ASi|
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Closedness properties

F1, · · · ,Fm are submodular functions on V and λ1, · · · , λm ≥ 0.
Then: F(A) =

∑
i λiFi(A) is submodular!

Submodularity closed under nonnegative linear combinations
Extremely useful fact:

Fθ(A) is submodular⇒
∑

θ P(θ)Fθ(A) is submodular!
Multi-objective optimization:
F1, · · · ,Fm are submodular, λi > 0⇒

∑
i λiFi(A) is submodular.
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Probabilistic set cover

Document coverage function:
coverd(c)=probability document d covers concept c, e.g., how
strongly d covers c.
It can model how relevant is concept c for user u.

Set coverage function:

coverA(c) = 1−Πd∈A(1− coverd(c)).

Probability that at least one document in A covers c.

Objective:
max
|A|≤k

F(A) =
∑

c

wc.coverA(c)

wc is the concept weights.

The objective function is submodular.
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The value of a friend

Let X be a group of individuals. How valuable to you is a given
friend x ∈ X ?

It depends on how many friends you have.

Given a group of friends S ⊆ X , can you valuate them with a
function F(S) and how?

Let F(S) be the value of the set of friends S. Is submodular or
supermodular a good model?
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Information and Summarization

Let X be a set of information containing elements
X might say be either words, sentences, documents, web pages,
or blogs.

Each x ∈ X is one element, so x might be a word, a sentence, a
document, etc.

The total amount of information in X is measure by a function
F(X); subset S ⊆ X measures the amount of information in S,
given by F(S).

How informative is any given item x in different sized contexts?
Any such real-world information function would exhibit
diminishing returns, i.e., the value of x decreases when it is
considered in a larger context.

So a submodular function would likely be a good model.



22/59

Restriction

Restriction
If F(S) is submodular on V and W ⊆ V. Then F′(S) = F(S ∩W) is
submodular.

Proof: Given A ⊆ B ⊆ V\{i}, prove:

F((A ∪ {i}) ∩W)− F(A ∩W) ≥ F((B ∪ {i}) ∩W)− F(B ∩W).

If i /∈ W, then both differences on each size are zero.
Suppose that i ∈ W, then (A ∪ {i}) ∩W = (A ∩W) ∪ {i} and
(B ∪ {i}) ∩W = (B ∩W) ∪ {i}. We have A ∩W ⊆ B ∩W, the
submodularity of F yields

F((A ∩W) ∪ {i})− F(A ∩W) ≥ F((B ∩W) ∪ {i})− F(B ∩W).
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Conditioning

Conditioning
If F(S) is submodular on V and W ⊆ V. Then F′(S) = F(S ∪W) is
submodular
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Reflection

Reflection
If F(S) is submodular on V. Then F′(S) = F(V \ S) is submodular.

Proof: Since V\(A ∪ B) = (V\A) ∩ (V\B) and
V\(A ∩ B) = (V\A) ∪ (V\B), then

F(V\A) + F(V\B) ≥ F(V\(A ∪ B)) + F(V\(A ∩ B)))
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Contraction

Let F : 2X → R and A ⊆ X. Define FA(S) = F(A ∪ S)− F(A).
Lemma: If F is monotone and submodular, then FA is monotone,
submodular, and normalized for any A.

Proof: Monotone:
Let S ⊆ T, then FA(S) = F(A∪ S)−F(A) ≤ F(A∪T)−F(A) = FA(T)

Submodular. Let S,T ⊆ X:

FA(S) + FA(T) = F(S ∪ A)− F(A) + F(T ∪ A)− F(A)

≥ F(S ∪ T ∪ A)− F(A) + F((S ∩ T) ∪ A)− F(A)

= FA(S ∪ T) + FA(S ∩ T)
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Lemma
If F is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that F({j}) ≥ 1

|A|F(A)

Proof. If A1 and A2 partition A, i.e., A = A1 ∪ A2 and A1 ∩ A2 = ∅,
then

F(A1) + F(A2) ≥ F(A1 ∪ A2) + F(A1 ∩ A2) = F(A)

Applying recursively, we get∑
j∈A

F({j}) ≥ F(A)

Therefore, maxj∈A F({j}) ≥ 1
|A|F(A)
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Convex aspects

Submodularity as discrete analogue of convexity

Convex extension

Duality

Polynomial time minimization!

A∗ = argmin
A⊆V

F(A)

Many applications (computer vision,ML, · · · )
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Concave aspects

Marginal gain △F(s|A) = F({s} ∪ A)− F(A)
Submodular:

∀A ⊆ B, s ̸∈ B : F(A ∪ {s})− F(A) ≥ F(B ∪ {s})− F(B)

Concave:

∀a ≤ b, s > 0 g(a + s)− g(a) ≥ g(b + s)− g(b)
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∀a ≤ b, s > 0 g(a + s)− g(a) ≥ g(b + s)− g(b)

Suppose that a + s ∈ [a, b]

Apply the concavity of g(x) to [a, a + s, b + s]:

g(a + s) ≥ b− a
b + s− a

g(a) +
s

b + s− a
g(b + s)

⇐⇒ g(a + s)− g(a) ≥ −s
b + s− a

g(a) +
s

b + s− a
g(b + s)

Apply the concavity of g(x) to [a + s, b, b + s]:

g(b) ≥ s
b + s− a

g(a) +
b− a

b + s− a
g(b + s)

⇐⇒ g(b + s)− g(b) ≤ −s
b + s− a

g(a) +
s

b + s− a
g(b + s)
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Submodularity and Concavity

Let m ∈ RX
+ be a modular function, and g a concave function over R.

Define F(A) = g(m(A)). Then F(A) is submodular.

Proof: Given A ⊆ B ⊆ X\v, we have 0 ≤ a = m(A) ≤ b = m(B), and
0 ≤ s = m(v). For g concave, we have
g(a + s)− g(a) ≥ g(b + s)− g(b), which implies

g(m(A) + m(v))− g(m(A)) ≥ g(m(B) + m(v))− g(m(B))
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Maximum of submodular functions

Suppose F1(A) and F2(A) submodular.
Is F(A) = max(F1(A),F2(A)) submodular?

max(F1,F2) not submodular in general!
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Minimum of submodular functions

Well,maybe F(A) = min(F1(A),F2(A)) instead?

min(F1,F2) not submodular in general!
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Max - normalized

Given V, let c ∈ RV
+ be a given fixed vector. Then F : 2V → R+, where

F(A) = max
j∈A

cj

is submodular and normalized (we take F(∅) = 0).
Proof: Since

max(max
j∈A

cj,max
j∈B

cj) = max
j∈A∪B

cj

and
min(max

j∈A
cj,max

j∈B
cj) ≥ max

j∈A∩B
cj,

we have
max
j∈A

cj +max
j∈B

cj ≥ max
j∈A∪B

cj + max
j∈A∩B

cj
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Monotone difference of two functions

Let F and G both be submodular functions on subsets of V and let
(F −G)(·) be either monotone increasing. Then h : 2V → R defined by
h(A) = min(F(A),G(A)) is submodular.

If h(A) agrees with either f or g on both X and Y , the result
follows since

F(X) + F(Y)
G(X) + G(Y)

≥ min(F(X ∪Y),G(X ∪Y))+min(F(X ∩Y),G(X ∩Y))

otherwise, w.l.o.g., h(X) = F(X) and h(Y) = G(Y), giving

h(X) + h(Y) = F(X) + G(Y) ≥ F(X ∪ Y) + F(X ∩ Y) + G(Y)− F(Y)

Assume F − G is monotonic increasing. Hence,
F(X ∪ Y) + G(Y)− F(Y) ≥ G(X ∪ Y) giving

h(X) + h(Y) ≥ G(X ∪ Y) + F(X ∩ Y) ≥ h(X ∪ Y) + h(X ∩ Y)
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Min

Let F : 2V → R be an increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V → R
defined by

h(A) = min(k;F(A))

is submodular

In general, the minimum of two submodular functions is not
submodular. However, when wishing to maximize two monotone
non-decreasing submodular functions, we can define function
h : 2V → R as

h(A) =
1
2
(min(k,F) + min(k,G))

then h is submodular, and h(A) ≥ k if and only if both F(A) ≥ k
and G(A) ≥ k
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Outline

1 What is submodularity?

2 Submodular maximization

3 Submodular minimization
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Submodular maximization with Cardinality Constraint

Problem Definition
Given a non-decreasing and normalized submodular function
F : 2X → R+ on a finite ground set X with |X| = n, and an integer
k ≤ n:

max F(A), s.t. |A| ≤ k

Greedy Algorithm
▶ A0 ← ∅, set i = 0

▶ While |Ai| ≤ k
Choose s ∈ X maximizing F(Ai ∪ {s})
Ai+1 ← Ai ∪ {s}
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Greedy maximization is near-optimal

Theorem[Nemhauser, Fisher& Wolsey’78]
For monotonic submodular functions, Greedy algorithm gives
constant factor approximation

F(Agreedy) ≥ (1− 1/e)︸ ︷︷ ︸
∼63%

F(A∗)

Greedy algorithm gives near-optimal solution!
For many submodular objectives: Guarantees best possible
unless P=NP
Can also handle more complex constraints.
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Greedy maximization is near-optimal

Theorem[Nemhauser, Fisher& Wolsey’78]
For monotonic submodular functions, Greedy algorithm gives
constant factor approximation

F(Agreedy) ≥ (1− 1/e)F(A∗)

Proof: Let Ai be the working set in the algorithm
Let A∗ be optimal solution.
We will show that the suboptimality F(A∗)− F(A) shrinks by a
factor of (1− 1/k) each iteration
After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its
original value
The algorithm choose s ∈ X maximizing F(Ai ∪ {s}). Hence:

F(Ai+1) = F(Ai) + F(Ai ∪ {s})− F(Ai) = F(Ai) + max
j

FAi({j})
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By our lemmas, there is j ∈ A∗ s.t.

FAi({j}) ≥
1
|A∗|

FAi(A
∗) (apply lemma to FAi)

=
1
k
(F(Ai ∪ A∗)− F(Ai))

≥ 1
k
(F(A∗)− F(Ai))

Therefore

F(A∗)− F(Ai+1) = F(A∗)− F(Ai)−max
j

FAi({j})

≤
(

1− 1
k

)
(F(A∗)− F(Ai))

≤
(

1− 1
k

)k

(F(A∗)− F(∅))
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Scaling up the greedy algorithm [Minoux’78]

In round i+1,
have picked Ai = s1, · · · , si

pick si+1 = argmaxs F(Ai ∪ {s})− F(Ai).
Update the gain of other elements affected by the addition of si+1.

The core of the algorithm is maximize "marginal benefit" △(s|Ai)

△(s|Ai) = F(Ai ∪ {s})− F(Ai)

Key observation: Submodularity implies

Marginal benefits can never increase!
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"Lazy" greedy algorithm [Minoux’78]

Lazy greedy algorithm:
First iteration as usual
Keep an ordered list of marginal
benefits △i from previous iteration
Re-evaluate △i only for top
element
If △i stays on top, use it,
otherwise re-sort

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec,Krause et al.’07]
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Empirical improvements [Leskovec, Krause et al’06]
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Stochastic-greedy algorithm [[Mirzasoleimanet al’14]

In round i+1,
have picked Ai = s1, · · · , si.
R is a random subset obtained by sampling s random elements
from X \ A.
pick si+1 = argmaxs∈R F(Ai ∪ {s})− F(Ai).

The algorithm at each step selects a random subset R of size
s = n

k log
1
ϵ , choosing the element from R that provides the maximum

marginal gain to the current solution A.
It achieves a (1− 1

e − ϵ) approximation guarantee with O(n log 1
ϵ )

function evaluations, where ϵ is an acceptable error bound for the
algorithm.
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Outline

1 What is submodularity?

2 Submodular maximization

3 Submodular minimization
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Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common

These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard

1
2 approximation Polynomial time

via convex opt
Constrained Usually NP-hard

1 − 1/e (mono, matroid)
O(1) (“nice” constriants)

Usually NP-hard to apx.
Few easy special cases

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating F(S).
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Problem Definition
Given a submodular function f : 2X → R on a finite ground set X,

min F(S)

s.t. S ⊆ X

We denote n = |X|

We assume F(S) is a rational number with at most b bits

Representation: in order to generalize all our examples,
algorithmic results are often posed in the value oracle model.
Namely, we only assume we have access to a subroutine
evaluating F(S) in constant time.

Goal
An algorithm which runs in time polynomial in n and b.
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Some more notations

E = {1, 2, . . . , n}

RE = {x = (xj ∈ R : j ∈ E)}

RE
+ = {x = (xj ∈ R : j ∈ E) : x ≥ 0}

Any vector x ∈ RE can be treated as a normalized modular
function, and vice verse. That is

x(A) =
∑
a∈A

xa.

Note that x is said to be normalized since x(∅) = 0.

Given A ⊆ E, define the vector 1A ∈ RE
+ to be

1A(j) =

{
1 if j ∈ A
0 if j /∈ A

given modular function x ∈ RE, we can write x(A) in a variety of
ways, i.e., x(A) = x · 1A =

∑
i∈A xi
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Continuous Extensions of a Set Function

A set function F on X = {1, . . . , n} can be thought of as a map
from the vertices {0, 1}n of the n-dimensional hypercube to the
real numbers.

Extension of a Set Function
Given a set function F : {0, 1}n → R, an extension of F to the
hypercube [0, 1]n is a function g : [0, 1]n → R satisfying g(x) = F(x) for
every x ∈ {0, 1}n.

min
w∈{0,1}n

F(w)

with ∀A ⊆ X, F(1A) = F(A)
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Choquet integral - Lovász extension

Subsets may be identified with elements of {0, 1}n

Given any set-function F and w such that wj1 ≥ . . . ≥ wjn , define

f (w) =
n∑

k=1

wjk [F({j1, . . . , jk})− F({j1, . . . , jk−1})

=

n−1∑
k=1

(wjk − wjk+1)F({j1, . . . , jk}) + wjnF({j1, . . . , jn})

If w = 1A, f (w) = F(A) =⇒ extension from {0, 1}n to Rn
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Choquet integral - Lovász extension, example: p = 2

If w1 ≥ w2, f (w) = F({1})w1 + [F({1, 2})− F({1})]w2

If w1 ≤ w2, f (w) = F({2})w2 + [F({1, 2})− F({2})]w1

level set {w ∈ R2, f (w) = 1} is displayed in blue

Compact formulation: f (w) =
[F({1, 2})− F({1})− F({2})]min(w1,w2) + F({1})w1 + F({2})w2
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Links with convexity

Theorem (Lovász, 1982)
F is submodular if and only if f is convex

Proof requires: Submodular and base polyhedra

Submodular polyhedron: P(F) = {s ∈ Rn, ∀A ⊆ V, s(A) ≤ F(A)}

Base polyhedron: B(F) = P(F) ∩ {s(V) = F(V)}
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Submodular and base polyhedra

P(F) has non-empty interior
Many facets (up to 2n), many extreme points (up to n!)

Fundamental property (Edmonds, 1970): If F is submodular,
maximizing linear functions may be done by a “greedy algorithm”

Let w ∈ Rn
+ such that wj1 ≥ . . . ≥ wjn

Let sjk = F({j1, . . . , jk})− F({j1, . . . , jk−1}) for k ∈ {1, . . . , n}

Then
f (w) = max

s∈P(F)
w⊤s = max

s∈B(F)
w⊤s

Both problems attained at s defined as above.

proofs: pages 41-44 in http://bicmr.pku.edu.cn/
~wenzw/bigdata/submodular_fbach_mlss2012.pdf
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Links with convexity

Theorem (Lovász, 1982)
F is submodular if and only if f is convex

If F is submodular, f is the maximum of linear functions. Then f is
convex

If f is convex, let A,B ⊆ V
1A∪B + 1A∩B = 1A + 1B has components equal to 0 (on V\(A ∪ B)),
2 (on A ∩ B) and 1 (on A∆B = (A\B) ∪ (B\A))

Thus f (1A∪B + 1A∩B) = F(A ∪ B) + F(A ∩ B). Proof by writing out
f (1A∪B + 1A∩B) and the definition of f (w).

By homogeneity and convexity, f (1A + 1B) ≤ f (1A) + f (1B), which is
equal to F(A) + F(B), and thus F is submodular.
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Links with convexity

Theorem (Lovász, 1982)
If F is submodular, then

min
A⊆V

F(A) = min
w∈{0,1}n

f (w) = min
w∈[0,1]n

f (w)

Since f is an extension of F,

min
A⊆V

F(A) = min
w∈{0,1}n

f (w) ≥ min
w∈[0,1]n

f (w)

Any w ∈ [0, 1]n can be decomposed as w =
∑m

i=1 λi1Bi , where
B1 ⊆ . . . ⊆ Bm = V, where λ ≥ 0 and λ(V) ≤ 1:

Since minA⊆V F(A) ≤ 0 (F(∅) = 0),

f (w) =
m∑

i=1

λiF(Bi) ≥
m∑

i=1

λi min
A⊆V

F(A) ≥ min
A⊆V

F(A)

Thus minw∈[0,1]n f (w) ≥ minA⊆V F(A).
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Links with convexity

Any w ∈ [0, 1]n, sort wj1 ≥ . . . ≥ wjn . Find λ such that

n∑
k=1

λjk = wj1 ,

n∑
k=2

λjk = wj2 , . . . , λjn = wjn ,

B1 = {j1},B2 = {j1, j2}, . . . ,Bn = {j1, j2, . . . , jn}

Then we have w =
∑n

i=1 λi1Bi , where B1 ⊆ . . . ⊆ Bn = V, where
λ ≥ 0 and λ(V) =

∑
i∈V λi ≤ 1.
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Submodular function minimization

Let F : 2V → R be a submodular function (such that F(∅) = 0)

convex duality:

min
A⊆V

F(A) = min
w∈[0,1]n

f (w)

= min
w∈[0,1]n

max
s∈B(F)

w⊤s

= max
s∈B(F)

min
w∈[0,1]n

w⊤s = max
s∈B(F)

s−(V)
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Submodular function minimization

Convex optimization
If F is submodular, then

min
A⊆V

F(A) = min
w∈{0,1}n

f (w) = min
w∈[0,1]n

f (w)

Using projected subgradient descent to minimize f on [0, 1]n

Iteration: wt = Π[0,1]n(wt−1 − C√
t st), where st ∈ ∂f (wt−1)

f (w) = maxs∈B(F) w⊤s

Standard convergence results from convex optimization

f (wt)− min
w∈[0,1]n

f (w) ≤ C√
t
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Summary

Many problems of recommending sets can be cast as
submodular maximization
Greedy algorithm gives best set of size k
Can use lazy evaluations to speed up
Approximate submodular maximization possible under a variety
of constraints:

Matroid
Knapsack
Multiple matroid and knapsack constraints
Path constraints (Submodular orienteering)
Connectedness (Submodular Steiner)
Robustness (minimax)
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Why Optimization in Machine Learning?

Many problems in ML can be written as

min
θ∈W

N∑
i=1

1
2
∥x⊤i θ − yi∥2

2 + µ∥θ∥2
2 linear regression

min
θ∈W

1
N

N∑
i=1

log(1 + exp(−yix⊤i θ)) + µ∥θ∥2
2 logistic regression

min
θ∈W

N∑
i=1

ℓ(h(θ, xi), yi) + µφ(θ) general formulation

The pairs (xi, yi) are given data, yi is the label of the data point xi

ℓ(·): measures how model fit for data points (avoids under-fitting)
φ(θ): regularization term (avoids over-fitting)
h(θ, x): linear function or models constructed from deep neural
networks
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Sparse Logistic Regression

The logistic regression problem:

min
θ∈Rn

1
N

N∑
i=1

log(1 + exp(−yixT
i θ)) + µ∥θ∥2

2.

The data pair {xi, yi} ∈ Rn × {−1, 1}, i ∈ [N],

Data Set # data N # features n sparsity(%)
cina 16,033 132 70.49
a9a 32,561 123 88.72

ijcnn1 49,990 22 40.91
covtype 581,012 54 77.88

url 2,396,130 3,231,961 99.99
susy 5,000,000 18 1.18
higgs 11,000,000 28 7.89

news20 19,996 1,355,191 99.97
rcv1 20,242 47,236 99.84
kdda 8,407,752 20,216,830 99.99

Table: A description of datasets used in the experiments
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Deep Learning

The objective function is the CrossEntropy function plus
regularization term:

min
θ

1
N

N∑
i=1

− log

(
exp(h(θ, xi)[yi])∑
j exp(h(θ, xi)[yj])

)
+ µ∥θ∥2

2

where h(θ, xi) is output from network, and (xi, yi) are data points.

Cifar-10 Cifar-100

# num_class 10 100
# number per class (training set) 5,000 500
# number per class (testing set) 1,000 100
# Total parametes of VGG-16 15,253,578 15,299,748

# Total parameters of ResNet-18 11,173,962 11,220,132

Table: A description of datasets used in the neural network experiments
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ResNet Architecture

Kaiming He, Xiangyu Zhang,
Shaoqing Ren, Jian Sun, Cited by
114474 since 2015 at Google
scholar
Stack residual blocks. Every residual
block has two 3x3 conv layers.
Make networks from shallow to deep.
Fancy network architecture. Many
Applications.
High-computationally-cost !
ResNet-50 on ImageNet, 29 hours
using 8 Tesla P100 GPUs



6/83

自然语言处理

ChatGPT (2022/12)训练代价
硬件代价：超级计算机 10,000 GPUs和 285,000 CPU核，
约10亿美元
人员费用：首席科学家Ilya Sutskever 190万美元/年(2016年)，世
界顶级Ph.D团队，120人，第一年人员费用超过2亿美元
数据收集时间12-18个月，训练时间9-12个月
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AI For Science
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Outline

1 Problem Description

2 Stochastic Gradient Methods

3 Convergence Analysis

4 Variance Reduction

5 Natural Gradient Method
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机器学习模型

x ∈ X为数据；y ∈ Y为标签，其中X为数据所在的空间，Y为标签
的所在的空间，并且x与y服从某个未知的分布π，也即(x, y) ∼ π.
数据集为S = {(xi, yi)}N

i=1．

hθ(x)为得到的模型，其中θ为需要优化的变量．我们通过训练参
数θ来得到合适的模型hθ(x)．

损失函数

平方损失函数: ℓ(y, hθ(x)) = ∥hθ(x)− y∥2.
交叉熵函数: ℓ(y, hθ(x)) = yT log(hθ(x)) =

∑C
j=1 yj log(hθ(x))j.

链接损失函数(Hinge loss): ℓ(y, hθ(x)) = max(0, 1 − hθ(x)Ty);
指数损失函数(Exponential loss): ℓ(y, hθ(x)) = exp(−hθ(x)Ty);
对数损失函数(Logisticloss): ℓ(y, hθ(x)) = log(1 + exp(−hθ(x)Ty));
KL散度(KL divergence):
ℓ(y, hθ(x)) =

∑C
j=1 yj log hθ(xj)−

∑C
j=1 yj log yj.
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优化模型

期望风险(Expected risk):

min
θ

fπ(θ) = R[hθ]
def
== E

(x,y)∼π
[ℓ(y, hθ(x))]. (1)

经验风险(Empirical risk): 令fi(θ) = ℓ(yi, hθ(xi)),

min
θ

fS(θ) = R̂S [hθ]
def
==

1
N

N∑
i=1

fi(θ). (2)

E
(x,y)∼π

表示关于(x, y)的分布求期望:

E
(xi,yi)∼π

[R̂S [hθ]] = E
(xi,yi)∼π

[
1
N

N∑
i=1

ℓ(yi, hθ(xi))

]
= E

(x,y)∼π
[ℓ(y, hθ(x))] = R[hθ].
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误差分解

假设真实解满足hθ∗ ∈ Ĥ. 然而现实情况下时只能取近似的假设空
间H ⊆ Ĥ，比如H是多项式、分段线性函数或者神经网络等组成
的函数空间. 在不引起歧义的情况下，混淆使用h和hθ所属的空
间，即θ ∈ H表示hθ ∈ H．
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误差分解

设θ∗为最优模型对应的最优参数，对应的模型为hθ∗ ,即:

θ∗ = argmin
θ

R[hθ], s.t. θ ∈ Ĥ. (3)

设θ∗H为在假设空间H中的最小化期望风险模型对应的最优参数，
对应的模型为hθ∗H ,即：

θ∗H = argmin
θ

R[hθ], s.t. θ ∈ H. (4)

设θ∗S为属于假设空间H并且在样本数据集S上经验风险模型对应的
最优参数，对应的模型为hθ∗S ,即:

θ∗S = argmin
θ

R̂S [hθ], s.t. θ ∈ H. (5)

设θ̄为(5)的近似解，对应的模型为hθ̄,即:

θ̄ ≈ argmin
θ

R̂S [hθ], s.t. θ ∈ H. (6)
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误差估计

相应的实际模型与最优模型的期望风险的误差分解为：

R[hθ∗ ]− R[hθ̄] = R[hθ∗ ]− R[hθ∗H ]︸ ︷︷ ︸
逼近误差

+R[hθ∗H ]− R[hθ∗S ]︸ ︷︷ ︸
泛化误差

+R[hθ∗S ]− R[hθ̄]︸ ︷︷ ︸
优化误差

.

逼近误差与假设空间H的表达能力有关

泛化误差与样本和假设空间有关．通常情况下，样本量越大，求
解得到的hθ∗S与hθ∗H越接近．

优化误差(训练误差)与许多因素都有关系，比如模型的选择，优
化算法的设计，包括初始点的选择等．
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Hoeffding Inequality
Let X1,X2, · · · be a sequence of i.i.d. random variables and assume
that for all i, E(Xi) = µ and P(a ≤ Xi ≤ b) = 1. Then for any ϵ > 0

P
(∣∣∣∣∣1n

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− 2nϵ2

(b − a)2

)
(7)

The Hoeffding Inequality describes the asymptotic property that
sampling mean convergences to expectation.
Azuma-Hoeffding inequality is a martingle version. Let X1,X2, · · ·
be a martingale difference sequence with |Xi| ≤ B for all
i = 1, 2, ... Then

P(
n∑

i=1

Xi ≥ t) ≤ exp

(
− 2t2

nB2

)

P(

n∑
i=1

Xi ≤ t) ≤ exp

(
− 2t2

nB2

)
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误差估计

设假设空间H为有限的，损失函数满足0 ≤ ℓ(h(xi), yi) ≤ 1,
∀xi, yi, h ∈ H.则对于0 < δ < 1,则有以概率1 − δ,有

|R[h]− R̂[h]| ≤

√
ln |H|+ ln( 2

δ )

2N
.

证明: 根据R̂[h]定义及E[R̂[h]] = R[h]，由霍夫丁不等式有

P(|R̂[h]− R[h]| ≥ ε) ≤ 2e−2Nε2
.

所以对于有限的假设空间H,有

P
(

∪
h∈H

{|R̂[h]− R[h]| ≥ ε}
)

≤ 2|H|e−2Nε2
.

如果希望P
(

∪
h∈H

{|R̂[h]− R[h]| ≥ ε}
)

≤ δ,则需要样本量满足

N =
1

2ε2 ln

(
2|H|
δ

)
= O

(
ln |H|+ ln(δ−1)

ε2

)
. (8)
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泛化误差估计

R[h∗S ]− R[h∗H] ≤ 2

√
ln |H|+ ln( 2

δ )

2N
.

证明: 由于

R[h∗S ]− R[h∗H] = R(h∗S)− R̂(h∗S)︸ ︷︷ ︸
(1)

+ R̂(h∗S)− R̂(h∗H)︸ ︷︷ ︸
(2)

+ R̂(h∗H)− R(h∗H)︸ ︷︷ ︸
(3)

.

对于(1)式和(3)式，其绝对值均小于sup |R[h]− R̂[h]|,∀h ∈ H.对
于(2)式，根据R̂[h]的定义我们可以知道其非正，由此可得：

|R[h∗S ]− R[h∗H]| ≤ 2 sup |R[h]− R̂[h]|, ∀h ∈ H.

再根据前一页可知在大概率下有下式成立:

|R[h∗S ]− R[h∗H]| ≤ 2

√
ln |H|+ ln( 2

δ )

2N
.

在H为常数的情况下，通过增大样本数量来极小化经验误差求解得到
的h∗S的期望误差与其经验误差相差不大．



17/83

泛化误差

What if |H| = ∞? This bound doesn’t work

For a two label classification problem, with a probability 1 − δ, we
have

sup
h∈H

|R̂n[h]− R[h]| ≤ O


√

VC[H] log( n
VC[H]) + log( 1

δ ))

n

 (9)

where VC[H] is a VC dimension of H.

Finite VC dimension is sufficient and necessary condition of
empirical risk concentration for two label classification.

拉德马赫复杂度
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Outline

1 Problem Description

2 Stochastic Gradient Methods

3 Convergence Analysis

4 Variance Reduction

5 Natural Gradient Method
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梯度下降算法

考虑如下随机优化问题：

min
x∈Rn

f (x) def
==

1
N

N∑
i=1

fi(x), (10)

假设每一个fi(x)是凸的、可微的．可以运用梯度下降算法

xk+1 = xk − αk∇f (xk).

梯度必须计算出所有的∇fi(xk)然后将它们相加:

∇f (xk) =
1
N

N∑
i=1

∇fi(xk).

然而机器学习中采集到的样本量巨大，因此计算∇f (xk)需要非常
大的计算量．使用传统的梯度法求解机器学习问题并不是一个很
好的做法．
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随机梯度下降算法(SGD)

SGD的基本迭代格式为

xk+1 = xk − αk∇fsk(x
k), (11)

其中sk是从{1, 2, · · · ,N}中随机等可能地抽取的一个样本
步长αk在机器学习中被称为学习率(learning rate)．

随机梯度的条件期望恰好是全梯度，即

Esk [∇fsk(x
k)|xk] = ∇f (xk).

常用的形式是小批量（mini-batch）随机梯度法．随机选择元素个
数很少的集合Ik ⊂ {1, 2, · · · ,N}，然后执行迭代格式

xk+1 = xk − αk

|Ik|
∑
s∈Ik

∇fs(xk),

如果fi(x)不可微，可以考虑随机次梯度算法:

xk+1 = xk − αkgk
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动量方法

为了克服随机梯度下降法收敛速度慢的缺陷，提出了动量方法
（momentum），其思想是在算法迭代时一定程度上保留之前更
新的方向，同时利用当前计算的梯度调整最终的更新方向．

动量方法的具体迭代格式如下：

vk+1 = µkvk − αk∇fsk(x
k), (12)

xk+1 = xk + vk+1. (13)

在计算当前点的随机梯度∇fsi(x
k)后，将其和上一步更新方向vk做

线性组合来得到新的更新方向vk+1．

当µk = 0时该方法退化成随机梯度下降法．参数µk的范围
是[0, 1)，通常取µk ≥ 0.5，其含义为迭代点带有较大惯性，每次
迭代会在原始迭代方向的基础上做一个小的修正．

在普通的梯度法中，每一步迭代只用到了当前点的梯度估计，动
量方法的更新方向还使用了之前的梯度信息．

当许多连续的梯度指向相同的方向时，步长就会很大，这从直观
上看也是非常合理的．
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动量方法

图1比较了梯度法和动量方法的表现．可以看到普通梯度法生成的点列
会在椭圆的短轴方向上来回移动，而动量方法生成的点列更快收敛到
了最小值点．

−10 −5 0 5 10
−4

−2

0

2

4 梯度下降法

动量方法

Figure:动量方法在海瑟矩阵病态条件下的表现
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Nesterov加速算法

假设f (x)为光滑的凸函数．针对凸问题的Nesterov加速算法为

yk+1 = xk + µk(xk − xk−1)

xk+1 = yk − αk∇f (yk)

针对光滑问题的Nesterov加速算法迭代的随机版本为

yk+1 = xk + µk(xk − xk−1), (14)

xk+1 = yk+1 − αk∇fsk(y
k+1), (15)

其中µk =
k−1
k+2，步长αk是一个固定值或者由线搜索确定．

可以看出，二者的唯一区别为随即版本将全梯度∇f (yk)替换为随
机梯度∇fsk(y

k+1)．
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Nesterov加速算法与动量方法的联系

若在第k步迭代引入速度变量vk = xk − xk−1，再合并原始Nesterov
加速算法的两步迭代可以得到

xk+1 = xk + µk(xk − xk−1)− αk∇fk(xk + µk(xk − xk−1)).

定义有关vk+1的迭代式

vk+1 = µkvk − αk∇fk(xk + µkvk),

于是得到关于xk和vk的等价迭代：

vk+1 = µkvk − αk∇fsk(x
k + µkvk),

xk+1 = xk + vk+1.

二者的主要差别在梯度的计算上．Nesterov加速算法先对点施加
速度的作用，再求梯度，可以理解为对标准动量方法做了校正．
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AdaGrad

令gk = ∇fsk(x
k)，引入向量

Gk =
k∑

i=1

gi ⊙ gi.

Gk的每个分量是梯度在该分量处的累积平方和．当Gk的某分量较
大时，该分量变化比较剧烈，因此应采用小步长，反之亦然．

因此AdaGrad的迭代格式为

xk+1 = xk − α√
Gk + ε1n

⊙ gk, (16)

Gk+1 = Gk + gk+1 ⊙ gk+1, (17)

这里 α√
Gk+ε1n

中的除法和求根运算都是对向量每个分量分别操作的

（下同），α为初始步长，引入ε1n这一项是为了防止除零运算．
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AdaGrad

可以看到AdaGrad的步长大致反比于历史梯度累计值的算术平方
根，所以梯度较大时步长下降很快，反之则下降较慢，这样做的
效果是在参数空间更平缓的方向上，前后两次迭代的距离较大．

在凸优化问题中AdaGrad有比较好的理论性质，但实际应用中也
发现在训练深度神经网络模型时，从训练开始就积累梯度平方会
导致步长过早或过多减小．

如果在AdaGrad中使用真实梯度∇f (xk)，那么AdaGrad也可以看
成是一种介于一阶和二阶的优化算法．

考虑f (x)在点xk处的二阶泰勒展开：

f (x) ≈ f (xk) +∇f (xk)⊤(x − xk) +
1
2
(x − xk)⊤Bk(x − xk),

AdaGrad是使用一个对角矩阵来作为Bk:

Bk =
1
α

Diag(
√

Gk + ε1n)
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RMSProp

RMSProp（root mean square propagation）是对AdaGrad的一
个改进，该方法在非凸问题上可能表现更好．AdaGrad会累加之
前所有的梯度分量平方，这就导致步长是单调递减的，因此在训
练后期步长会非常小，计算的开销也较大．

RMSProp提出只需使用离当前迭代点比较近的项，同时引入衰减
参数ρ．具体地，令

Mk+1 = ρMk + (1 − ρ)gk+1 ⊙ gk+1,

再对其每个分量分别求根，就得到均方根(root mean square)

Rk =
√

Mk + ε1n, (18)

最后将均方根的倒数作为每个分量步长的修正．
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RMSProp

RMSProp迭代格式为：

xk+1 = xk − α√
Mk + ε1n

⊙ gk, (19)

Mk+1 = ρMk + (1 − ρ)gk+1 ⊙ gk+1. (20)

引入参数ε同样是为了防止分母为0的情况发生．一般取ρ = 0.9,
α = 0.001．

可以看到RMSProp和AdaGrad的唯一区别是将Gk替换成了Mk．
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Adam

Adam选择了一个动量项进行更新：

Sk = ρ1Sk−1 + (1 − ρ1)gk.

类似RMSProp，Adam也会记录梯度的二阶矩：

Mk = ρ2Mk−1 + (1 − ρ2)gk ⊙ gk.

与原始动量方法和RMSProp的区别是，由于Sk和Mk本身带有偏
差，Adam在更新前先对其进行修正：

Ŝk =
Sk

1 − ρk
1
, M̂k =

Mk

1 − ρk
2
,

这里ρk
1, ρ

k
2分别表示ρ1, ρ2的k次方．

Adam最终使用修正后的一阶矩和二阶矩进行迭代点的更新．

xk+1 = xk − α√
M̂k + ε1n

⊙ Ŝk.
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深度学习训练

数据准备

优化模型，网络架构

梯度计算：前向/后向传播

初始化

步长/学习率等参数调试

训练与测试，交叉检验

梯度消失，梯度爆炸

网络架构与算法的适配调整
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Outline

1 Problem Description

2 Stochastic Gradient Methods

3 Convergence Analysis

4 Variance Reduction

5 Natural Gradient Method
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随机变量收敛性与概率不等式

考虑随机变量序列{Xn}∞n=1

几乎必然收敛(概率1收敛): P(limn→∞ Xn = X) = 1

依概率收敛: 对于任意ϵ > 0, limn→∞ P(|Xn − X| ≥ ϵ) = 0

依分布收敛: 对于所有的α，P(Xn ≤ α) → P(X ≤ α)

强大数定理

中心极限定理

马尔可夫不等式，切比雪夫不等式

Hoeffding不等式

Azuma-Hoeffding不等式
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收敛性：凸函数

随机次梯度算法: xk+1 = xk − αkgk, gk ∈ ∂fsk(x
k)

每个fi(x)是闭凸函数，存在次梯度且无偏，即E[gk|xk] ∈ ∂f (xk)

随机次梯度二阶矩是一致有界的，即存在M，对任意的x ∈ Rn以
及随机下标sk，有

Esk [∥gk∥2] ≤ M2 < +∞, gk ∈ ∂fsk(x
k);

{xk}处处有界，即∥xk − x∗∥ ≤ R, ∀K，其中x∗是问题的最优解．

引理

在上述假设下，令{αk}是任一正步长序列，{xk}是由随机次梯度法产
生的序列，那么对所有的K ≥ 1，有

K∑
k=1

αkE[f (xk)− f (x∗)] ≤ 1
2
E[∥x1 − x∗∥2] +

1
2

K∑
k=1

α2
kM2. (21)
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引理的证明

令ḡk = E[gk|xk], ξk = gk − ḡk．

由随机次梯度法的性质，

ḡk = E[gk|xk] ∈ ∂f (xk),

由次梯度的性质，

⟨ḡk, x∗ − xk⟩ ≤ f (x∗)− f (xk).

可以推导得

∥xk+1 − x∗∥2

= ∥xk − αkgk − x∗∥2

= ∥xk − x∗∥2 + 2αk⟨gk, x∗ − xk⟩+ α2
k∥gk∥2

= ∥xk − x∗∥2 + 2αk⟨ḡk, x∗ − xk⟩+ α2
k∥gk∥2 + 2αk⟨ξk, x∗ − xk⟩

≤ ∥xk − x∗∥2 + 2αk(f (x∗)− f (xk)) + α2
k∥gk∥2 + 2αk⟨ξk, x∗ − xk⟩.

(22)
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注意到E[ξk|xk] = 0，所以

E[⟨ξk, x∗ − xk⟩] = E[E[⟨ξk, x∗ − xk⟩|xk]] = 0.

对不等式(22)两端求期望就得到

αkE[f (xk)−f (x∗)] ≤ 1
2
E[∥xk−x∗∥2]−1

2
E[∥xk+1−x∗∥2]+

α2
k

2
M2. (23)

两边对k求和即得证．
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随机次梯度算法的收敛性1

K∑
k=1

αkE[f (xk)− f (x∗)] ≤ 1
2
E[∥x1 − x∗∥2] +

1
2

K∑
k=1

α2
kM2.

我们很容易得到随机次梯度算法在收缩步长下的收敛性．

定理 (随机次梯度算法的收敛性1)

在收敛性假设的条件下，令AK =
∑K

i=1 αi，定义x̄K = 1
AK

K∑
k=1

αkxk，则

E[f (x̄K)− f (x∗)] ≤
R2 +

K∑
k=1

α2
kM2

2
K∑

k=1
αk

. (24)



37/83

定理的证明

由f (x)的凸性以及引理1得到

AkE[f (x̄K)− f (x∗)]

≤
K∑

k=1

αkE[f (xk)− f (x∗)]

≤ 1
2
E[∥x1 − x∗∥2] +

1
2

K∑
k=1

α2
kM2

=
R2 +

∑K
k=1 α

2
kM2

2

不等式两边同除以AK得到

E[f (x̄K)− f (x∗)] ≤
R2 +

K∑
k=1

α2
kM2

2AK
.
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随机次梯度算法的收敛性1

从定理1可以看到，当
∞∑

k=1

αk = +∞,

∑K
k=1 α

2
k∑K

k=1 αk
→ 0

时，随机次梯度算法收敛．

对一个固定的步长α，不等式(24)右侧有一个不随K递减的常数，
因此固定步长随机次梯度算法在函数值取期望意义下是不收敛
的，它仅仅能找到一个次优解：

E[f (x̄K)− f (x∗)] ≤ R2

2Kα
+

αM2

2
.

特别地，对于给定的迭代次数K，选取固定步长α = R
M
√

K
，可以

达到O(1/
√

K)的精度，即

E[f (x̄K)− f (x∗)] ≤ RM√
K
.



39/83

随机次梯度算法的收敛性2

在步长不增的情况下，我们可以得到直接平均意义下的收敛性．

定理 (随机次梯度算法的收敛性2)

在收敛性假设的条件下，令{αk}是一个不增的正步长序
列，x̄K = 1

K

K∑
k=1

xk，则

E[f (x̄K)− f (x∗)] ≤ R2

2KαK
+

1
2K

K∑
k=1

αkM2. (25)
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定理的证明

对(23)式两边同除αk，就有

E[f (xk)− f (x∗)] ≤ 1
2αk

E[∥xk − x∗∥2
2]−

1
2αk

E[∥xk+1 − x∗∥2
2] +

αk

2
M2.

再对k求和，并且利用f (x)的凸性和αk的单调性得

E[f (x̄K)− f (x∗)] ≤ 1
K

K∑
k=1

E[f (xk)− f (x∗)]

≤ 1
2K

(
1
α1

E[∥x1 − x∗∥2] +

K∑
k=1

αkM2+

K∑
k=2

(
1
αk

− 1
αk−1

)
E[∥xk − x∗∥2

)

≤ R2

2KαK
+

1
2K

K∑
k=1

αkM2.
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随机次梯度算法的收敛性2

注意该定理和定理1的不同之处在于x̄K的定义．

通过选取O(1/
√

k)阶数的步长，我们可以得到目标函数的收敛速
度为O(1/

√
k)：

推论

在收敛性假设的条件下，令αk =
R

M
√

k
，则

E[f (x̄K)− f (x∗)] ≤ 3RM
2
√

K
. (26)

其中x̄K的定义和定理2相同．
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推论的证明

注意到
K∑

k=1

1√
k
≤
∫ K

0

1√
t
dt = 2

√
K.

将αk =
R

M
√

k
代入式(25)就得到

E[f (x̄K)− f (x∗)] ≤ R2

2K R
M
√

K

+
RM
2K

2
√

K =
3RM
2
√

K
.

我们可以发现随机次梯度算法和非随机次梯度算法具有相同的收
敛速度——O(1/

√
k)．

随机次梯度算法每步的计算代价远小于非随机次梯度，这一定程
度上解释了为什么随机算法在一些问题中的表现要远远好于非随
机算法．
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随机次梯度算法的收敛性3

下面主要讨论随机次梯度算法在依概率意义下的收敛性和收敛速度．

定理

选择上述推论中的步长αk，使得E[f (x̄K)− f (x∗)] → 0，那么我们有依
概率收敛f (x̄K)− f (x∗) P−→ 0 (K → ∞)，即对任意的ε > 0，都有

lim
K→∞

P(f (x̄K)− f (x∗) ≥ ε) = 0. (27)

由马尔可夫不等式立即得到

P(f (x̄K)− f (x∗) ≥ ε) ≤ 1
ε
E[f (x̄K)− f (x∗)] → 0.
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随机变量的收敛性

称随机变量序列{Xn}∞n=1几乎必然收敛到X，如果

P
(
lim

n→∞
Xn = X

)
= 1;

称随机变量序列{Xn}∞n=1依概率收敛到X，如果

lim
n→∞

P(|Xn − X| ≥ ε) = 0.

定理 (随机次梯度算法的收敛性3)

在收敛性假设的条件下，进一步假设对于所有的随机次梯度g，
有∥g∥ ≤ M．那么对任意的ε > 0，

f (x̄K)− f (x∗) ≤ R2

2KαK
+

1
2K

K∑
k=1

αkM2 +
RM√

K
ε (28)

以大于等于1 − e−
1
2 ε

2
的概率成立，其中步长列{αk}是单调不增序

列，x̄K的定义和定理2中的定义相同．



45/83

鞅差序列

定义

设{Xn}∞n=1与{Zn}∞n=1为(Ω,F ,P)上的随机过程．如果∀n ∈ N+，

1 E[|Xn|] < +∞；
2 Xn属于Z1, . . . ,Zn生产的σ-代数；
3 E[Xn+1|Z1, . . . ,Zn] = 0．

则称{Xn}∞n=1为关于{Zn}∞n=1的鞅差序列．特别地，
若{Zn}∞n=1 = {Xn}∞n=1，则称{Xn}∞n=1为鞅差序列．

鞅差序列的例子如：设{Zn}∞n=1为一维简单随机游走，{Xn}∞n=1定
义为Xn = Zn − Zn−1（补充定义Z0 = 0）．
由一维简单随机游走的性质，Xn以1/2的概率为1，以1/2的概率
为−1．因此E[|Xn|] = 1 < +∞；
Xn由Zn−1及Zn完全决定，因此属于Z1, . . . ,Zn生成的σ-代数；
由一维简单随机游走的性质，Xn+1 = Zn+1 − Zn独立于Z1, . . . ,Zn，
所以E[Xn+1|Z1, . . . ,Zn] = E[Xn+1] = 0.
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Azuma-Hoeffding不等式

下面给出Azuma-Hoeffding不等式，即鞅版本的Hoeffding不等式：

引理

设{Xn}∞n=1为鞅差序列，且∀n ∈ N+, |Xn| ≤ B．则∀t > 0，

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
− 2t2

nB2

)
;

P

(
n∑

i=1

Xi ≤ −t

)
≤ exp

(
− 2t2

nB2

)
.
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定理的证明

令gk = E[gk|xk], ξk = gk − gk．由(22)式的推导过程我们已经得到

f (xk)− f (x∗) ≤ 1
2αk

∥xk − x∗∥2 − 1
2αk

∥xk+1 − x∗∥2

+
αk

2
∥gk∥2 + ⟨ξk, x∗ − xk⟩.

利用f (x)的凸性与αk的单调性有

f (x̄K)− f (x∗) ≤ 1
K

K∑
k=1

f (xk)− f (x∗)

≤ R2

2KαK
+

1
2K

K∑
k=1

αk∥gk∥2 +
1
K

K∑
k=1

⟨ξk, x∗ − xk⟩

≤ R2

2KαK
+

1
2K

K∑
k=1

αkM2 +
1
K

K∑
k=1

⟨ξk, x∗ − xk⟩.
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令

ω =
R2

2KαK
+

1
2K

K∑
k=1

αkM2

得到

P(f (x̄K)− f (x∗)− ω ≥ t) ≤ P

(
1
K

K∑
k=1

⟨ξk, x∗ − xk⟩ ≥ t

)
. (29)

设Zk = (x1, x2, · · · , xk+1)．因为

E[ξk|Zk−1] = E[ξk|xk] = 0, E[xk|Zk−1] = xk,

我们知道⟨ξk, x∗ − xk⟩是一个鞅差序列．
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同时由
∥ξk∥2 = ∥gk − gk∥2 ≤ 2M

推出
|⟨ξk, x∗ − xk⟩| ≤ ∥ξk∥∥x∗ − xk∥2 ≤ 2MR

即⟨ξk, x∗ − xk⟩有界．
由Azuma-Hoeffding不等式得到

P

(
1
K

K∑
k=1

⟨ξk, x∗ − xk⟩ ≥ t

)
≤ exp

(
− Kt2

2M2R2

)

将t = MRε√
K
代入，有

P

(
1
K

K∑
k=1

⟨ξk, x∗ − xk⟩ ≥ MRε√
K

)
≤ exp

(
−ε2

2

)
.

结合(29)式，定理得证.
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随机次梯度算法的收敛性3

如果取αk =
R√
kM
，并令δ = e−

1
2 ε

2
，就有

P

(
f (x̄K)− f (x∗) ≤ 3RM

2
√

K
+

RM
√

2 ln 1/δ√
K

)
≥ 1 − δ. (30)

可以看到除一个很小的概率外，函数值以O
(

1√
K

)
的速度收敛．
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随机梯度算法的收敛性：强凸函数

1 f (x)是可微函数，每个fi(x)梯度存在；
2 f (x)是梯度利普希茨连续的，相应常数为L；
3 f (x)是强凸函数，强凸参数为µ；

4 随机梯度二阶矩是一致有界的，即存在M，对任意的x ∈ Rn以及
随机下标sk，有

Esk [∥∇fsk(x)∥2] ≤ M2 < +∞.

定理 (随机梯度算法的收敛性)

在收敛性假设的条件下，定义∆k = ∥xk − x∗∥．对固定的步
长αk = α, 0 < α < 1

2µ，有

E[f (xK+1)− f (x∗)] ≤ L
2
E[∆2

K+1] ≤
L
2

[
(1 − 2αµ)K∆2

1 +
αM2

2µ

]
. (31)
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定理的证明

根据随机梯度算法的更新公式，

∆2
k+1 = ∥xk+1 − x∗∥2 = ∥xk − αk∇fsk(x

k)− x∗∥2

= ∥xk − x∗∥2 − 2αk⟨∇fsk(x
k), xk − x∗⟩+ α2

k∥∇fsk(x
k)∥2

= ∆2
k − 2αk⟨∇fsk(x

k), xk − x∗⟩+ α2
k∥∇fsk(x

k)∥2,

由条件期望的性质E[X] = E[E[X|Y]]，有

Es1,s2,··· ,sk [⟨∇fsk(x
k), xk − x∗⟩]

= Es1,s2,··· ,sk−1 [Esk [⟨∇fsk(x
k), xk − x∗⟩|s1, · · · , sk−1]]

= Es1,s2,··· ,sk−1 [⟨Esk [∇fsk(xk)|s1, s2, · · · , sk−1], xk − x∗⟩]
= Es1,s2,··· ,sk−1 [⟨∇f (xk), xk − x∗⟩]
= Es1,s2,··· ,sk [⟨∇f (xk), xk − x∗⟩].
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根据强凸函数的单调性，〈
∇f (xk), xk − x∗

〉
=
〈
∇f (xk)−∇f (x∗), xk − x∗

〉
≥ µ∥xk − x∗∥2.

由随机梯度二阶矩的一致有界性，

Es1,s2,··· ,sk [∆
2
k+1] ≤ (1 − 2αµ)Es1,s2,··· ,sk [∆

2
k ] + α2M2. (32)

对k做归纳，就得到

Es1,s2,··· ,sK [∆
2
K+1] ≤ (1 − 2αµ)K∆2

1 + [1 − (1 − 2αµ)K ]
αM2

2µ
.

由0 < 2αµ < 1可知

Es1,s2,··· ,sK [∆
2
K+1] ≤ (1 − 2αµ)K∆2

1 +
αM2

2µ
. (33)
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利用梯度L-利普希茨连续函数的二次上界，可以得到

f (xK+1)− f (x∗) ≤
〈
∇f (x∗), xK+1 − x∗

〉
+

L
2
∥xK+1 − x∗∥2.

利用∇f (x∗) = 0并对上式左右两边取期望可得

E[f (xK+1)− f (x∗)] ≤ L
2
E[∆2

K+1] ≤
L
2

[
(1 − 2αµ)K∆2

1 +
αM2

2µ

]
.
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随机梯度算法的收敛性

下面的定理表明，如果设置递减的步长，收敛阶可以达到O(1/K)．

定理

随机梯度算法的收敛速度在上述定理的结果中，在收敛性假设的条件
下，取递减的步长

αk =
β

k + γ
,

其中β > 1
2µ , γ > 0，使得α1 ≤ 1

2µ，那么对于任意的k ≥ 1，都有

E[f (xk)− f (x∗)] ≤ L
2
E[∆2

k ] ≤
L
2

v
γ + k

, (34)

这里

v = max

{
β2M2

2βµ− 1
, (γ + 1)∆2

1

}
.
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定理的证明

之前的定理已经证明了

Es1,s2,··· ,sk [∆
2
k+1] ≤ (1 − 2αkµ)Es1,s2,··· ,sk [∆

2
k ] + α2

kM2.

用数学归纳法证明(34)式．由v的定义知k = 1时(34)式成立．
现假设该式对k成立，定义k̂ = γ + k，则αk = β/k̂．由归纳假设，

E[∆2
k+1] ≤

(
1 − 2βµ

k̂

)
v

k̂
+

β2M2

k̂2

=
k̂ − 1

k̂2
v − 2βµ− 1

k̂2
v +

β2M2

k̂2

≤ v

k̂ + 1

最后一个不等式用到了v的定义．所以(34)式对k + 1也成立．
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随机梯度算法的收敛性

上述定理表明对于强凸函数，随机梯度下降法的收敛速度可以达
到O(1/K)．对于一般的凸函数随机梯度算法也有一定的收敛性，为此
我们在下表比较随机算法和普通算法的复杂度．

Table:梯度下降法的算法复杂度

f凸(次梯度算法) f可微强凸 f可微强凸且L-光滑
随机算法 O

( 1
ε2

)
O
( 1
ε

)
O
( 1
ε

)
普通算法 O

( N
ε2

)
O
(N
ε

)
O
(
N ln

( 1
ε

))
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梯度下降法与随机梯度下降法的比较

下面分析梯度下降法与随机梯度下降法的主要区别：

在强凸性假设下，对梯度下降法有

∆2
k+1 = ∥xk+1 − x∗∥2 = ∥xk − α∇f (xk)− x∗∥2

= ∆2
k − 2α⟨∇f (xk), xk − x∗⟩+ α2∥∇f (xk)∥2

≤ (1 − 2αµ)∆2
k + α2∥∇f (xk)∥2

2 (µ-强凸)

≤ (1 − 2αµ+ α2L2)∆2
k . (L-光滑)

(35)
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梯度下降法与随机梯度下降法的比较

对随机梯度下降法，利用条件期望的性质有

E[∆2
k+1] = E[∥xk+1 − x∗∥2

2] = E[∥xk − α∇fsk(x
k)− x∗∥]2

= E[∆2
k ]− 2αE[⟨∇fsk(x

k), xk − x∗⟩] + α2E[∥∇fsk(x
k)∥2]

= E[∆2
k ]− 2αE[⟨∇f (xk), xk − x∗⟩] + α2E[∥∇fsk(x

k)∥2]

≤ (1 − 2αµ)E[∆2
k ] + α2E[∥∇fsk(x

k)∥2] (µ-强凸)

= (1 − 2αµ)E[∆2
k ] + α2E[∥∇fsk(x

k)−∇f (xk) +∇f (xk)∥2]

≤ (1 − 2αµ+ α2L2)E[∆2
k ]︸ ︷︷ ︸

A

+α2E[∥∇fsk(x
k)−∇f (xk)∥2]︸ ︷︷ ︸
B

.

(36)
可以看到两种算法的主要差别就在B项上，也就是梯度估计的某种
方差．它导致了随机梯度算法只能有O(1/k)的收敛速度．
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方差减小技术

在许多机器学习的应用中，随机梯度算法的收敛速度更快一些．

这主要是因为许多应用对解的精度要求不太高，而在开始部分方
差较小，即有B ≪ A，那么我们会观察到近似Q-线性收敛速度；
而随着迭代步数增多，方差增大，最终的收敛速度为O(1/k)．
为了能获得比较快的渐进收敛速度，我们的主要目标即减少方差
项B．下面介绍三种减小方差的算法：

SAG (stochastic average gradient)
SAGA
SVRG (stochastic variance reduced gradient)
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SAG算法

当迭代接近收敛时，上一步的随机梯度也是当前迭代点处梯度的
一个很好的估计．随机平均梯度法(SAG)就是基于这一想法．
在迭代中，SAG算法记录所有之前计算过的随机梯度，再与当前
新计算的随机梯度求平均，最终作为下一步的梯度估计．

具体来说，SAG算法在内存中开辟了存储N个随机梯度的空间

[gk
1, gk

2, · · · , gk
N ],

分别用于记录和第i个样本相关的最新的随机梯度．在第k步更新
时，若抽取的样本点下标为sk，则计算随机梯度后将gk

sk
的值更新

为当前的随机梯度值，而其他未抽取到的下标对应的gk
i保持不

变．每次SAG算法更新使用的梯度方向是所有gk
i的平均值．
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SAG算法

SAG算法的迭代格式为

xk+1 = xk − αk

N

N∑
i=1

gk
i

其中gk
i的更新方式为

gk
i =

{
∇fsk(x

k), i = sk,

gk−1
i , 其他,

(37)

每次迭代只有一个gk
i发生了改变．因此SAG迭代公式还可以写成

xk+1 = xk − αk

(
1
N
(∇fsk(x

k)− gk−1
sk

) +
1
N

N∑
i=1

gk−1
i

)
, (38)

{gk
i }的初值可简单地取为0或中心化的随机梯度向量，

SAG算法每次使用的随机梯度的条件期望并不是真实梯
度∇f (xk)，但随着迭代进行，随机梯度的期望和真实梯度的偏差
会越来越小．
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SAGA算法

SAGA算法的迭代方式为

xk+1 = xk − αk

(
∇fsk(x

k)− gk−1
sk

+
1
N

N∑
i=1

gk−1
i

)
. (39)

对比(38)式可以发现，SAGA算法去掉了∇fsk(x
k)− gk−1

sk
前面的系

数1/N．可以证明每次迭代使用的梯度方向都是无偏的，即

E

[
∇fsk(x

k)− gk−1
sk

+
1
N

N∑
i=1

gk−1
i

∣∣∣ xk

]
= ∇f (xk).
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SAGA算法的收敛性

SAGA算法同样有Q-线性收敛速度：

定理 (SAGA算法的收敛性)

在强凸性收敛性假设的条件下，取固定步长αk =
1

2(µN+L)．定

义∆k = ∥xk − x∗∥，则对任意的k ≥ 1有

E[∆2
k ] ≤

(
1 − µ

2(µN + L)

)k (
∆2

1 +
N(f (x1)− f (x∗))

µN + L

)
. (40)

如果强凸的参数µ是未知的，也可以取α = 1
3L，有类似的收敛结果．
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SVRG算法

与SAG算法和SAGA算法不同，SVRG算法通过周期性缓存全梯
度的方法来减小方差．

具体做法是在随机梯度下降方法中，每经过m次迭代就设置一个
检查点，计算一次全梯度，在之后的m次迭代中，将这个全梯度
作为参考点来达到减小方差的目的．

令x̃j是第j个检查点，则我们需要计算点x̃j处的全梯度

∇f (x̃j) =
1
N

N∑
i=1

∇fi(x̃j),

在之后的迭代中使用方向vk作为更新方向：

vk = ∇fsk(x
k)− (∇fsk(x̃

j)−∇f (x̃j)), (41)

其中sk ∈ {1, 2, · · · ,N}是随机选取的一个样本．
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SVRG算法

注意到给定s1, s2, · · · , sk−1时xk, x̃j均为定值，由vk的表达式可知

E[vk|s1, s2, · · · , sk−1]

= E[∇fsk(x
k)|xk]− E[∇fsk(x̃

j)−∇f (x̃j)|s1, s2, · · · , sk−1]

= ∇f (xk)− 0 = ∇f (xk),

公式(41)有简单的直观理解：我们希望用∇fsk(x̃
j)去估计∇f (x̃j)，

那么∇fsk(x̃
j)−∇f (x̃j)就可以看作梯度估计的误差，所以在每一步

随机梯度迭代用该项来对∇fsk(x
k)做一个校正．



68/83

SVRG算法

假设
∥∇fi(x)−∇fi(y)∥ ≤ L∥x − y∥, i = 1, 2, · · · ,N.

令y = x̃j，x∗为f (x)的最小值点，∆k = ∥xk − x∗∥，则

E
[
∥vk∥2] = E

[
∥∇fsk(x

k)− (∇fsk(y)−∇f (y))∥2]
= E

[
∥∇fsk(x

k)−∇fsk(y) +∇f (y) +∇fsk(x
∗)−∇fsk(x

∗)∥2]
≤ 2E

[
∥∇fsk(x

k)−∇fsk(x
∗)∥2]+ 2E

[
∥∇fsk(y)−∇f (y)−∇fsk(x

∗)∥2]
≤ 2L2E

[
∆2

k
]
+ 2E

[
∥∇fsk(y)−∇fsk(x

∗)∥2]
≤ 2L2E

[
∆2

k
]
+ 2L2E

[
∥y − x∗∥2] .

(42)
其中第一个不等式是因为∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2，第二个不等
式使用了有关二阶矩的不等式

E[∥ξ − Eξ∥2] ≤ E[∥ξ∥2].
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SVRG算法的收敛性

下面给出SVRG算法的收敛性．这里的收敛性是针对参考点序列{x̃j}而
言的．

定理 (SVRG算法的收敛性)

设m为利用每个x̃j更新的次数．设每个fi(x)可微，且梯度L-利普希茨连
续；函数f (x)强凸，强凸参数为µ．取步长α ∈

(
0, 1

2L

]
，并且m充分大使

得

ρ =
1

µα(1 − 2Lα)m
+

2Lα
1 − 2Lα

< 1, (43)

则SVRG算法对于参考点x̃j在函数值期望的意义下有Q-线性收敛速度：

Ef (x̃j)− f (x∗) ≤ ρE[f (x̃j−1)− f (x∗)]. (44)
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定理的证明

定义∆k = ∥xk − x∗∥．
对于内层循环，

E[∆2
k+1] = [∥xk+1 − x∗∥2] = E[∥xk − αvk − x∗∥2]

= E[∆2
k ]− 2αE[⟨vk, xk − x∗⟩] + α2E[∥vk∥2]

= E[∆2
k ]− 2αE[⟨∇f (xk), xk − x∗⟩] + α2E[∥vk∥2]

≤ E[∆2
k ]− 2αE[(f (xk)− f (x∗))] + α2E[∥vk∥2].

构造辅助函数

ϕi(x) = fi(x)− fi(x∗)−∇fi(x∗)(x − x∗),

注意到ϕi(x)也是凸函数且梯度L-利普希茨连续，因此有

1
2L

∥∇ϕi(x)∥2 ≤ ϕi(x)− ϕi(x∗)
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展开ϕi(x)与∇ϕi(x)的表达式可得

∥∇fi(x)−∇fi(x∗)∥2 ≤ 2L[fi(x)− fi(x∗)−∇fi(x∗)⊤(x − x∗)].

对i从1到N进行求和，注意∇f (x∗) = 0：

1
N

N∑
i=1

∥∇fi(x)−∇fi(x∗)∥2 ≤ 2L[f (x)− f (x∗)], ∀x. (45)

利用(42)式的推导过程可得

E[∥vk∥2] ≤ 2E[∥∇fsk(x
k)−∇fsk(x

∗)∥2]+2E[∥∇fsk(x̃
j−1)−∇fsk(x

∗)∥2].

对上式右侧第一项，有

E[∥∇fsk(x
k)−∇fsk(x

∗)∥2]

= E[E[∥∇fsk(x
k)−∇fsk(x

∗)∥2|s1, s2, · · · , sk−1]]

= E

[
1
N

N∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2

]
≤ 2LE[f (xk)− f (x∗)],
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类似地，对右侧第二项，有

E[∥∇fsk(x̃
j−1)−∇fsk(x

∗)∥2] ≤ 2LE[f (x̃j−1)− f (x∗)].

最终可得对E[∥vk∥2]的估计：

E[∥vk∥2] ≤ 4L(E[f (xk)− f (x∗)] + E[f (x̃j−1)− f (x∗)]).

将E[∥vk∥2]的上界代入对E[∆2
k+1]的估计，就有

E[∆2
k+1] ≤ E[∆2

k ]− 2αE[f (xk)− f (x∗)] + α2E[∥vk∥2]

≤ E[∆2
k ]− 2α(1 − 2αL)E[f (xk)− f (x∗)]

+ 4Lα2E[f (x̃j−1)− f (x∗)].
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对k从1到m求和，并且注意到x1 = x̃j−1就可以得到

E[∆2
m+1] + 2α(1 − 2αL)

m∑
k=1

E[f (xk)− f (x∗)]

≤ E[∥x̃j−1 − x∗∥2] + 4Lα2mE[f (x̃j−1)− f (x∗)]

≤ 2
µ
E[f (x̃j−1)− f (x∗)] + 4Lα2mE[f (x̃j−1)− f (x∗)],

注意到x̃j = 1
m

∑m
k=1 xk，所以

E[f (x̃j)− f (x∗)]

≤ 1
m

m∑
k=1

E[f (xk)− f (x∗)]

≤ 1
2α(1 − 2αL)m

(
2
µ
+ 4mLα2

)
E[f (x̃j−1)− f (x∗)]

= ρE[f (x̃j−1)− f (x∗)].
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Outline

1 Problem Description

2 Stochastic Gradient Methods

3 Convergence Analysis

4 Variance Reduction

5 Natural Gradient Method
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常见记号约定

记号 含义

S 数据标签集{xi, yi}N
i=1

Sx 数据集{xi}N
i=1

Sy 标签集{yi}N
i=1

Qx,y 真实数据与标签的分布函数

Qx 真实数据的分布函数

Qy|x 给定数据x后标签y的分布函数
q(x, y) Qx,y的概率密度函数

q(x) Qx的概率密度函数

q(y|x) Qy|x的概率密度函数

Px,y(θ) 实际训练学习到的分布函数

Py|x(θ) 给定参数θ与数据x后标签y的分布函数
p(x, y|θ) Px,y(θ)的概率密度函数

p(y|x, θ) Py|x(θ)的概率密度函数

Ry|z 给定神经网络输出z后标签y的分布函数
ry|z Ry|z的概率密度函数
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概率统计模型

选择用KL散度来刻画学习到的分布函数Px,y(θ)与真实数据与标签
的分布函数Qx,y的距离

KL(Qx,y∥Px,y(θ)) :=

∫
q(x, y) log

q(x, y)
p(x, y|θ)dxdy

=

∫
q(x, y) log

q(y|x)q(x)
p(y|x, θ)q(x)dxdy

=

∫
q(x)

∫
q(y|x) log q(y|x)

p(y|x, θ)dxdy

= EQx [KL(Qy|x∥Py|x(θ))].

实际情况用数据集的分布近似真正数据的分布

EQ̂x
[KL(Q̂y|x∥Py|x)] ∝ − 1

|Sx|
∑

(x,y)∈S

log(p(y|x, θ)),

其中∝表示在θ固定的情况并且省略常数的情况下左右两端关
于θ成固定比例．
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优化问题

优化问题：

min
θ

− 1
|Sx|

∑
(x,y)∈S

log(p(y|x, θ)). (46)

设神经网络的输出为hθ(x)，并且将Py|x(θ)表示为神经网络输
出hθ(x)与另一个概率分布输出Ry|hθ(x)的复合函数，
即Py|x(θ) = Ry|hθ(x).设Ry|hθ(x)的概率密度函数为r(y|hθ(x))，则对于
任意的损失函数ℓ(y, hθ(x))，可以定
义r(y|hθ(x)) ∝ exp(−ℓ(y, hθ(x))).

如果
设|Sx| = N，ℓ(y, hθ(x)) ∝ − log(r(y|hθ(x))) = − log(p(y|x, θ))，则
与之前的优化模型一致．极小化经验风险等价于求解关于概率密
度函数p(y|x, θ)关于参数θ的极大似然估计问题．可以证明
若Ry|hθ(x)为高维独立高斯分布，则其对应的损失函数为平方误差

损失函数ℓ(y, hθ(x)) = ∥hθ(x)− y∥2.
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费希信息矩阵

对于概率分布函数Px,y(θ)，其费希信息矩阵定义为：

F = EPx,y(θ)

[
∇ log p(x, y|θ)∇ log p(x, y|θ)T] , (47)

其中∇为对θ求梯度．

根据等式

∇ log p(x, y|θ) = ∇ log p(y|x, θ) +∇ log q(x) = ∇ log p(y|x, θ)

所以FIM也可以写成

F = EQx

[
EPy|x(θ)

[
∇ log p(y|x, θ)∇ log p(y|x, θ)T]] .

定义函数log p(y|x, θ)关于θ的海瑟矩阵为Hlog p(y|x,θ)，则有：

EPx,y(θ)

[
Hlog p(y|x,θ)

]
= −F. (48)
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自然梯度方向

对于任意损失函数∇f (θ)梯度方向具有下面的性质:

−∇f (θ)
∥∇f (θ)∥ = lim

ε→0

1
ε
argmin

d
f (θ + d), s.t. ∥d∥ ≤ ε. (49)

对于KL散度约束，我们有：

−
√

2
F−1∇f
∥∇f∥F−1

= lim
ε→0

1
ε

argmin
KL[Px,y(θ)∥Px,y(θ+d)]≤ε2

f (θ + d). (50)

经验费希信息矩阵F̂定义为

F̂(θ) = EQ̂x,y

[
∇ log p(y|x, θ)∇ log p(y|x, θ)T]

=
1
N

N∑
i=1

∇ log p(yi|xi, θ)∇ log p(yi|xi, θ)
T.

(51)
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自然梯度法

Algorithm 1自然梯度法

1: 输入：目标函数f，初始参数θ0, k = 0．
2: while未达到收敛准则 do
3: 计算梯度∇θf (θk).
4: 计算费希信息矩阵Fk(或者经验费希矩阵F̂k)．
5: 计算自然梯度方向∇̃θf (θk) = F−1

k ∇f (θ)(或者F̂−1
k ∇f (θ))．

6: 更新参数θk+1 = θk − αk∇̃θf (θk)，其中αk为第k步的步长．
7: k = k + 1.
8: end while
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KFAC

考虑ℓ层前馈全连接神经网络，设si为第i层经过权重矩阵作用后的
输出，ai为经过第i层激活函数ϕi的输出：

si = Wiāi−1, ai = ϕ(si), (52)

其中i ∈ {1, · · · , ℓ}, ϕi为第i层的激活函数,Wi为权重矩阵．

定义神经网络的参数
为θ = [vec(W(1))T, vec(W(2))T, · · · , vec(W(l))T].

设g(l) = ∂ℓ(y,ŷ)
∂z(l) · (a(l−1))T.

DW(i) :=
∂ℓ(y, ŷ)
∂W(i)

= g(i)(ā(i−1))T. (53)

因此有Dθ = [vec(DW(1))T, vec(DW(2))T, · · · , vec(DW(l))T]T.

由此可知费希信息矩阵的表达式为：

F = E[DθDθT] = [Fi,j].
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Kronecker product

A ⊗ B denotes the Kronecker product between A and B:

A ⊗ B ≡

[A]1,1B · · · [A]1,nB
...

. . .
...

[A]m,1B · · · [A]m,nB

 .

vec(uv⊤) = v ⊗ u.

(A ⊗ B)−1 = A−1 ⊗ B−1.

(B⊤ ⊗ A) vec(X) = vec(AXB)

vec(GiA⊤
i ) = (Ai ⊗ Gi) vec(I).

(A⊗B)(C ⊗D) = (AC)⊗ (BD) for any A,B,C,D with correct sizes.
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KFAC

近似：
Fi,j = E[vec(DW(i))vec(DW(j))T]

= E[ā(i−1)(ā(j−1))T ⊗ g(i)(g(j))T]

≈ E[ā(i−1)(ā(j−1))T]⊗ E[g(i)(g(j))T]

= Āi−1.j−1 ⊗ Gi,j := F̃i,j,

其中F̃i,j是Fi,j的近似，Āi,j := E[ā(i)(ā(j))T],Gi,j := E[g(i)(g(j))T].第三
个关系式是用到了交换的性质．

由此得到第k步θk+1的更新方式为

θk+1
i = θk

i − αkF̂−1
ii gk

= θk
i − αk(Āi−1,i−1 +

√
λI)−1 ⊗ (Gi,i +

√
λI)−1gk

其中gk为第k步目标函数的梯度，αk为第k步的步长
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Outline
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Why RandNLA?

Randomization and sampling allow us to design provably accurate
algorithms for problems that are:

Massive
(matrices so large that can not be stored at all, or can only be
stored in slow memory devices)

Computationally expensive or NP-hard
(combinatorial optimization problems such as the Column
Subset Selection Problem)
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RandNLA: sampling rows/columns

Randomized algorithms
By (carefully) sampling rows/columns of a matrix, we can
construct new, smaller matrices that are close to the original
matrix (w.r.t. matrix norms) with high probability. A


 B

 ≈
 C


 R



By preprocessing the matrix using random projections, we can
sample rows/columns much less carefully (uniformly at random)
and still get nice bounds with high probability.
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RandNLA: sampling rows/columns

Matrix perturbation theory
The resulting smaller matrices behave similarly (in terms of
singular values and singular vectors) to the original matrices
thanks to the norm bounds.

Structural results that “decouple” the “randomized” part from
the “matrix perturbation” part are important in the analyses of
such algorithms.

Interplay
Applications in BIG DATA: (Data Mining, Information Retrieval,
Machine Learning, Bioinformatics, etc.)
Numerical Linear Algebra: Matrix computations and linear
algebra (ie., perturbation theory)
Theoretical Computer Science: Randomized and approximation
algorithms
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Issues

Selecting good columns that “capture the structure” of the top
principal components

Combinatorial optimization problem; hard even for small matrices.
Often called the Column Subset Selection Problem (CSSP).
Not clear that such columns even exist.

The two issues:
Fast approximation to the top k singular vectors of a matrix, and

Selecting columns that capture the structure of the top k singular
vectors

are connected and can be tackled using the same framework
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Outline

1 Randomized Numerical Linear Algebra (RandNLA)

2 Approximating Matrix Multiplication

3 Approximate SVD

4 Random Sampling for SVD

5 Single View Algorithm For Matrix Approximation
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Approximating Matrix Multiplication

Problem Statement

Given an m-by-n matrix A and an n-by-p matrix B,
approximate the product AB, Or equvialently,
Approximate the sum of n rank-one matrices

AB =
n∑

i=1

A(i)

( B(i)
)

︸ ︷︷ ︸
∈Rm×p

A(i) the i-th column of A

B(i) the i-th row of B

Each term in the summation is a rank-one matrix
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A sampling approach

AB =

n∑
i=1

A(i)

( B(i)
)

︸ ︷︷ ︸
∈Rm×p

Algorithm
Fix a set of probabilities pi, i = 1, . . . , n, summing up to 1.

For t = 1, . . . , c,
set jt = i, where P(jt = i) = pi.

(Pick c terms of the sum, with replacement, with respect to the
pi.)

Approximate the product AB by summing the c terms, after
scaling.
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Generate Discrete Distributions

Consider a discrete random variable with possible values
c1 < . . . < cn. The probability attached to ci is pi. Let

q0 = 0, qi =
i∑

j=1

pj.

They are the cumulative probabilities associated with ci, i.e.,
qi = F(ci).

To sample this distribution
generate a uniform U

find K ∈ {1, . . . , n} such that qK−1 < U < qK

set X = cK
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With/without replacement

Sampling with replacement:
Each data unit in the population is allowed to appear in the
sample more than once.
It is easy to analyze mathematically.

Sampling without replacement:
Each data unit in the population is allowed to appear in the
sample no more than once.
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A sampling approach

AB =

n∑
i=1

A(i)

( B(i)
)

︸ ︷︷ ︸
∈Rm×p

≈ 1
c

c∑
t=1

1
pjt

A(jt)

( B(jt)
)

︸ ︷︷ ︸
∈Rm×p

Keeping the terms j1, j2, . . . , jc
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The algorithm (matrix notation)



m× n

A




n× p

B

 ≈


m× c

C




c× p

R



Algorithm:
Pick c columns of A to form an m-by-c matrix C and the
corresponding c rows of B to form a c-by-p matrix R.

Approximate AB by CR.
Note

We pick the columns and rows with non-uniform probabilities.
We scale the columns (rows) prior to including them in C(R).
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The algorithm (matrix notation)



m× n

A




n× p

B

 ≈


m× c

C




c× p

R


Algorithm:

Create C and R by performing c i.i.d. trials, with replacement.

For t = 1, . . . , c, pick a column A(jt) and a row B(jt) with probability

P(jt = i) =
∥A(i)∥2∥B(i)∥2∑n
j=1 ∥A(j)∥2∥B(j)∥2

Include A(jt)/(cpjt)
1/2 as a column of C, and B(jt)/(cpjt)

1/2 as a
row of R
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The algorithm (matrix notation)

Let S be an n-by-c matrix whose t-th column (for t = 1, . . . , c) has
a single non-zero entry, namely

Sjtt =
1
√cpjt

Clearly:
AB ≈ CR = (AS)(STB)

Note: S is sparse (has exactly c non-zero elements, one per
column).
It is easy to implement this particular sampling in two passes.



16/50

A bound for the Frobenius norm

For the above algorithm,

E[∥AB− CR∥F] = E[∥AB− ASSTB∥F] ≤
1
c
∥A∥F∥B∥F

The expectation of CR (element-wise) is AB (unbiased
estimator), regardless of the sampling probabilities.

Our particular choice of sampling probabilities minimizes the
variance of the estimator (w.r.t. the Frobenius norm of the error
AB-CR).

prove using elementary manipulations of expectation

Measure concentration follows from a martingale argument.

The above bound also implies an upper bound for the spectral
norm of the error AB− CR.
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Proofs

Let A ∈ Rm×n and B ∈ Rp×p, 1 ≤ c ≤ n, and pi ≥ 0,
∑

i pi = 1. Then

E[(CR)ij] = (AB)ij, Var[(CR)ij] =
1
c

n∑
i=1

A2
ikB2

kj

pk
− 1

c
(AB)2

ij

Define Xt =

(
A(it)B(it)

cpit

)
ij
=

Aiit Bit j
cpit

. Then

E[Xt] =
n∑

k=1

pk
AikBkj

cpk
=

1
c
(AB)ij and E[X2

t ] =
n∑

k=1

A2
ikB2

kj

c2pk

E[(CR)ij] =
∑c

t=1 E[Xt] = (AB)ij

Var[Xt] = E[X2
t ]− E[Xt]

2 =
n∑

k=1

A2
ikB2

kj

c2pk
− 1

c2 (AB)2
ij
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Proofs

Lemma:

E[∥AB− CR∥2
F] =

n∑
k=1

|A(k)|2|B(k)|2

cpk
− 1

c
∥AB∥2

F

Proof:

E[∥AB− CR∥2
F] =

n∑
i=1

p∑
j=1

E[(AB− CR)2
ij] =

n∑
i=1

p∑
j=1

Var[(CR)ij]

=
1
c

n∑
k=1

1
pk

(∑
i

A2
ik

)(∑
i

B2
kj

)
− 1

c
∥AB∥2

F

=
1
c

n∑
k=1

1
pk
|A(k)|2|B(k)|2 −

1
c
∥AB∥2

F
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Proofs

Find pk to minimize E[∥AB− CR∥2
F]:

min∑n
k=1 pk=1

f (p1, . . . , pn) =
n∑

k=1

1
pk
|A(k)|2|B(k)|2

Introduce L = f (p1, . . . , pn) + λ(
∑n

k=1 pk − 1) and solve ∂L
∂pi

= 0

It gives pk =
|A(k)||B(k)|∑n

k′=1 |A(k′)||B(k′)|
. Then

E[∥AB− CR∥2
F] =

1
c

(
n∑

k=1

|A(k)||B(k)|

)2

− 1
c
∥AB∥2

F

≤ 1
c
∥A∥2

F∥B∥2
F
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Special case: B = AT

If B = AT , then the sampling probabilities are

P(jt = i) =
∥A(i)∥2

2

∥A∥2
F

Also, R = CT , and the error bounds are:

E[∥AAT − CCT∥F] = E[∥AAT − ASSTAT∥F] ≤
1
c
∥A∥2

F
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Special case: B = AT

A better spectral norm bound via matrix Chernoff/Bernstein
inequalities:

Assumptions:
Spectral norm of A is one (not important, just normalization)

Frobenius norm of A is at least 0.2 (not important, simplifies
bounds).

Important: Set

c = Ω

(
∥A∥2

F

ϵ2 ln

(
∥A∥2

F

ϵ2
√
δ

))
Then: for any 0 < ϵ < 1 with probability at least 1− δ

E[∥AAT − CCT∥F] = E[∥AAT − ASSTAT∥F] ≤ ϵ
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Outline
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Low-Rank Matrix Approximation

Problem Statement:
Given: mxn matrix A, and 0 < k < min(m, n) = n.
Goal: Compute a rank-k approximation to A.

Fast low-rank matrix approximation is key to efficiency of
superfast direct solvers for integral equations and many large
sparse linear systems.

Indispensable tool in mining large data sets.

Randomized algorithms compute accurate truncated SVD.

Minimum work and communication/Exceptionally high success
rate.
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Low-rank Approximation

seek to compute a rank-k approximation with k≪ n



m× n

A

 ≈


m× k

Uk




k × n

X



Eigenvectors corresponding to leading eigenvalues.

Singular Value Decomposition (SVD) / Principal Component
Analysis (PCA).

Spanning columns or rows.
The problem being addressed is ubiquitous in applications.
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Review of existing methods: dense matrix

For a dense n× n matrix that fits in RAM, excellent algorithms are
already part of LAPACK (and incorporated into Matlab, Mathematica,
etc).

Double precision accuracy.

Very stable.

O(n3) asymptotic complexity. Reasonably small constants.

Require extensive random access to the matrix.

When the target rank k is much smaller than n, there also exist
O(n2k) methods with similar characteristics (the well-known
Golub-Businger method, RRQR by Gu and Eisentstat, etc).

For small matrices, the state-of-the-art is quite satisfactory. (By
“small” we mean something like n ≤ 10000 on today’s
computers.)
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Review of existing methods: structured matrix

If the matrix is large, but can rapidly be applied to a vector (if it is
sparse, or sparse in Fourier space, or amenable to the FMM, etc.), so
called Krylov subspace methods often yield excellent accuracy and
speed.

Lanczos-based methods:
1 From v ∈ Rn, computes orthonormal basis V for

K(A, v) = span
{

v,Av,A2v, · · · ,Ak−1v
}

2 Rayleigh-Ritz: eig(VTAV)⇒ Ritz pairs ≈ eigenpairs
3 If “not converged”, update v and go to Step 1.

Strength and weakness:
Most efficient in terms of the number of Av (or SpMv)
Fast and reliable for computing “not too many” eigenpairs
Lower concurrency and unable to be warm-started
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“New” challenges in algorithmic design

The existing state-of-the-art methods of numerical linear algebra that
we have very briefly outlined were designed for an environment
where the matrix fits in RAM and the key to performance was to
minimize the number of floating point operations required. Currently,
communication is becoming the real bottleneck:

While clock speed is hardly improving at all anymore, the cost of
a flop keeps going down rapidly. (Multi-core processors, GPUs,
cloud computing, etc.)
The cost of slow storage (hard drives, flash memory, etc.) is also
going down rapidly.
Communication costs are decreasing, but not rapidly. Moving
data from a hard-drive. Moving data between nodes of a parallel
machine. (Or cloud computer ... ) The amount of fast cache
memory close to a processor is not improving much. (In fact, it
could be said to be shrinking — GPUs, multi-core, etc.)
“Deluge of data”. Driven by ever cheaper storage and acquisition
techniques. Web search, data mining in archives of documents
or photos, hyper-spectral imagery, social networks, gene arrays,
proteomics data, sensor networks, financial transactions, . . .
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Linear Time SVD Algorithm

Input: m-by-n matrix A, 1 ≤ k ≤ c ≤ n, {pi}n
i=1 such that pi ≥ 0

and
∑

i pi = 1

Sampling:
For t = 1 to c

pick it ∈ {1, . . . , n} with P(it = α) = pα.
Set C(t) = A(it)

√cpit

Compute CTC and its eigenvalue decomposition, say
CTC =

∑c
t=1 σt(C)2ytyT

t

Compute ht =
Cyt

σt(C) for t = 1, . . . , k.

(Note: A = UΣVT and C = HΣCYT =⇒ H = CYΣ−1
C )

Return Hk where H(t)
k = ht and σt(C) for t = 1, . . . , k

The left singular vectors of C are with high probability approximations
to the left singular vectors of A
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Extract approximate SVD

Given A. Let X be an approximation of the left singular vectors of
A corresponding to k largest singular values

method = 2; % = 1 or 2
Y = (X’*A)’; % Y = A’*X;
switch method

case 1;
[V,S,W] = svd(Y,0);
U = X*W;

case 2;
[V,R] = qr(Y,0);
[W,S,Z] = svd(R’);
U = X*W; V = V*Z;

end

The pair (U, S, V) is an approximation of the k-dominant SVD
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Main theoretical results

Let Hk be constructed the linear Time SVD

E[∥A− HkHT
k A∥2

F] ≤ ∥A− Ak∥2
F + ϵ∥A∥2

F

Exact SVD of A = UΣVT , Ak = UkΣkVT
k = UkUT

k A = AVkVT
k .

minrank(B)≤k ∥A− B∥2 = ∥A− Ak∥2 = σk+1(A)
minrank(B)≤k ∥A− B∥2

F = ∥A− Ak∥2
F =

∑r
t=k+1 σ

2
t (A)

perturbation theory of matrices

max
1≤t≤n

|σt(A+E)−σt(A)| ≤ ∥E∥2,
n∑

k=1

(σk(A+E)−σk(A))2 ≤ ∥E∥2
F

the latter is known as Hoffman-Wielandt inequality

Exact SVD of C = HΣCYT
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Proofs

Lemma:

∥A− HkHT
k A∥2

F ≤ ∥A− Ak∥2
F + 2

√
k∥AAT − CCT∥F

∥A− HkHT
k A∥2

2 ≤ ∥A− Ak∥2
2 + 2∥AAT − CCT∥2

Proof of the first inequality
∥X∥2

F = Tr(XTX) and Tr(X + Y) = Tr(X) + Tr(Y)

∥A− HkHT
k A∥2

F = Tr((A− HkHT
k A)T(A− HkHT

k A))

= Tr(ATA)− Tr(ATHkHT
k A) = ∥A∥2

F − ∥ATHk∥2
F

Using Cauchy-Schwartz inequality:∣∣∣∣∣∥ATHk∥2
F −

k∑
t=1

σ2
t (C)

∣∣∣∣∣ ≤ √k

(
k∑

t=1

(|ATht|2 − σ2
t (C))2

)1/2

=
√

k

(
k∑

t=1

(|ATht|2 − |CTht|2)2

)1/2

=
√

k

(
k∑

t=1

((ht)
T(AAT − CCT)ht)

2

)1/2

≤
√

k∥AAT − CCT∥F
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Proofs

by Hoffman-Wielandt inequality∣∣∣∣∣
k∑

t=1

σ2
t (C)−

k∑
t=1

σ2
t (A)

∣∣∣∣∣ ≤ √k

(
k∑

t=1

(σ2
t (C)− σ2

t (A))
2

)1/2

=
√

k

(
k∑

t=1

(σt(CCT)− σt(AAT))2

)1/2

≤
√

k

(
m∑

t=1

(σt(CCT)− σt(AAT))2

)1/2

≤
√

k∥CCT − AAT∥F

Therefore ∣∣∣∣∣∥ATHk∥2
F −

k∑
t=1

σ2
t (A)

∣∣∣∣∣ ≤ 2
√

k∥AAT − CCT∥F
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Proofs

matrix approximation gives

E[∥AB− CR∥2
F] ≤

1
c
∥A∥2

F∥B∥2
F

which yields

2
√

kE[∥AAT − CCT∥F] ≤
(

4k
c

)1/2

∥A∥2
F

∥ATHk∥2
F ≥

k∑
t=1

σ2
t (A)− 2

√
k∥AAT − CCT∥F

If c ≥ 4k/ϵ2, then

E[∥A− HkHT
k A∥2

F] ≤ ∥A∥2
F −

k∑
t=1

σ2
t (A) + 2

√
kE[∥AAT − CCT∥F]

≤ ∥A− Ak∥2
F + ϵ∥A∥2

F
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Outline

1 Randomized Numerical Linear Algebra (RandNLA)

2 Approximating Matrix Multiplication

3 Approximate SVD

4 Random Sampling for SVD

5 Single View Algorithm For Matrix Approximation
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Range finding problem

Given an m× n matrix A and an integer k < min(m, n), find an
orthonormal m× k matrix Q such that

A ≈ QQTA

Solving the primitive problem via randomized sampling — intuition
Draw random vectors r1, r2, . . . , rk ∈ Rn.

Form “sample” vectors y1 = Ar1, y2 = Ar2, . . . , yk = Ark ∈ Rm.

Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that

span{q1, q2, . . . , qk} = span{y1, y2, . . . , yk}

Almost always correct if A has exact rank k
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Low-Rank Approximation: Randomized Sampling

Algorithm RandSam0
Input: mxn matrix A, int k, p.
▶ Draw a random n× (k + p) matrix Ω

▶ Compute QR = AΩ

▶ and SVD: QTA = ÛΣ̂V̂T

▶ Truncate SVD: ÛkΣ̂kV̂T
k

Output: B = (QÛk)Σ̂kV̂T
k

Easy to implement.

Very efficient computation.

Minimum communication.
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error for Gaussian test matrices

Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin,
Tygert (2006)

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1

Let k denote a target rank and let p denote an over-sampling
parameter.

Let Ω denote an n× (k + p) Gaussian matrix.

Let Q denote the m× (k + p) matrix Q = orth(AΩ).
If p ≥ 4, then

∥A− QQ∗A∥2 ≤
(

1 + 6
√
(k + p)p log p

)
σk+1 + 3

√
k + p

∑
j>k

σ2
j

1/2

except with probability at most 3p−p.
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Improved Randomized Sampling

Algorithm RandSam1
Input: mxn matrix A, int k, p, c.
▶ Draw a random n× (k + p + c) matrix Ω

▶ Compute QR = AΩ

▶ and SVD: QTA = ÛΣ̂V̂T

▶ Truncate SVD: ÛkΣ̂kV̂T
k

Output: B = (QÛk)Σ̂kV̂T
k

Only change from RandSam0: p becomes p + c

Smallest modification of any algorithm.

c allows a drastically different error bound, controls accuracy.

p remains in control of failure chance.
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Randomized Power Method

Algorithm RandSam2
Input: mxn matrix A, int k, p, c, q
▶ Draw a random n× (k + p + c) matrix Ω

▶ Compute QR = (AAT)qAΩ

▶ and SVD: QTA = ÛΣ̂V̂T

▶ Truncate SVD: ÛkΣ̂kV̂T
k

Output: B = (QÛk)Σ̂kV̂T
k

QR needs done carefully for numerical accuracy.

Algorithm is old one when q = 0; but q = 1 far more accurate.

Should converge faster when singular values do not decay very
fast.
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Example 1

We consider a 1000× 1000 matrix A whose singular values are shown
below:

A is a discrete approximation of a certain compact integral operator
normalized so that ∥A∥ = 1. Curiously, the nature of A is in a strong
sense irrelevant: the error distribution depends only on {σj}min(m,n)

j=1 .



41/50

Example 2

We consider a 1000× 1000 matrix A whose singular values are shown
below:

A is a discrete approximation of a certain compact integral operator
normalized so that ∥A∥ = 1. Curiously, the nature of A is in a strong
sense irrelevant: the error distribution depends only on {σj}min(m,n)

j=1 .
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Example 3

The matrix A being analyzed is a 9025× 9025 matrix arising in a
diffusion geometry approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3×3 patches.
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The pink lines illustrates the performance of the basic random
sampling scheme. The errors for q = 0 are huge, and the estimated
eigenvalues are much too small.
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Outline

1 Randomized Numerical Linear Algebra (RandNLA)

2 Approximating Matrix Multiplication

3 Approximate SVD

4 Random Sampling for SVD

5 Single View Algorithm For Matrix Approximation
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Low-rank reconstruction

Given A ∈ Rm×n and a target rank r. Select k and ℓ. Given random
matrices Ω ∈ Rn×k and Ψ ∈ Rℓ×m. Compute

Y = AΩ, W = ΨA,

Then an approximation Â is computed:
Form an orthogonal-triangular factorization Y = QR where
Q ∈ Rm×k.

Solve a least-squares problem to obtain X = (ΨQ)†W ∈ Rk×n

Construct the rank-k approximation Â = QX

Suppose k = 2r + 1 and ℓ = 4r + 2, then

E∥A− Â∥F ≤ 2 min
rank(Z)≤r

∥A− Z∥F
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Linear update of A

Suppose that A is sent as a sequence of additive updates:

A = H1 + H2 + H3 + · · ·

Then one compute

Y ← Y + HΩ, W = W +ΨH

Suppose that A is sent as a sequence of additive updates:

A = θA + ηH

Then one compute

Y ← θY + ηHΩ, W = θW + ηΨH
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Intuition

Suppose
A ≈ QQ∗A.

We want to form the rank-k approximation Q(Q∗A), but we cannot
compute the factor Q∗A without revisiting the target matrix A.

Note
W = Ψ(QQ∗A) + Ψ(A− QQ∗A) ≈ (ΨQ)(Q∗A)

The construction of X:

X = (ΨQ)†W ≈ Q∗A

Hence
Â = QX ≈ QQ∗A ≈ A
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Projection onto a Convex Set.

Let C be a closed and convex set. Define the projection:

ΠC(M) = argmin
X

∥X −M∥2
F, s.t. X ∈ C

Suppose A ∈ C. Let Âin be an initial approximation of A,

∥A−ΠC(Âin)∥F ≤ ∥A− Âin∥F

Conjugate Symmetric Approximation

Hn = {X ∈ Cn×n|X = X∗}

The projection

ΠHn(M) =
1
2
(M + M∗)
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Conjugate Symmetric Approximation.

Let A ∈ Hn. Let Â = QX.

ΠHn(Â) =
1
2
(QX + X∗Q∗) =

1
2
[Q,X∗]

(
0 I
I 0

)
[Q,X∗]∗

Let [Q,X∗] = U[T1,T2]. Then

S =
1
2
(T1T∗

2 + T2T∗
1 )

Construct
Âsym = USU∗
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PSD Approximation

Let A be positive semidefinite (PSD). Let Â = QX.
Form eigenvalue decomposition

S = VDV∗

Compute
Âsym = (UV)D(UV)∗

Construct
Â+ = ΠHn

+
(Â) = (UV)D+(UV)∗



Phase Retrieval

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Emmanuel Candès ’s lecture notes
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X-ray crystallography

Method for determining atomic structure within a crystal

10 Nobel Prizes in X-ray crystallography, and counting...



4/63

Missing phase problem

Detectors record intensities of diffracted rays =⇒ phaseless data
only!

Fraunhofer diffraction =⇒ intensity of electrical ≈ Fourier transform

|x̂(f1, f2)|2 =

∣∣∣∣∫ x(t1, t2)e−i2π(f1t1+f2t2)dt1dt2

∣∣∣∣
Electrical field x̂ = |x̂|eiϕ with intensity |x̂|2

Phase retrieval problem (inversion)
How can we recover the phase (or signal x(t1, t2)) from |x̂(f1, f2)|
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Phase and magnitude

Phase carries more information than magnitude
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Other applications of phase retrieval
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Classical Phase Retrieval

Feasibility problem

find x ∈ S ∩M or find x ∈ S+ ∩M

given Fourier magnitudes:

M := {x(r) | |x̂(ω)| = b(ω)}

where x̂(ω) = F(x(r)), F : Fourier transform
given support estimate:

S := {x(r) | x(r) = 0 for r /∈ D}

or
S+ := {x(r) | x(r) ≥ 0 and x(r) = 0 if r /∈ D}
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Error Reduction

Alternating projection:

xk+1 = PSPM(xk)

projection to S:

PS(x) =
{

x(r), if r ∈ D,
0, otherwise,

projection to M:

PM(x) = F∗(ŷ), where ŷ =

{
b(ω) x̂(ω)

|x̂(ω)| , if x̂(ω) ̸= 0,
b(ω), otherwise,
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Summary of projection algorithms

Basic input-output (BIO)

xk+1 = (PSPM + I − PM) (xk)

Hybrid input-output (HIO)

xk+1 = ((1 + β)PSPM + I − PS − βPM) (xk)

Hybrid projection reflection (HPR)

xk+1 =
(
(1 + β)PS+PM + I − PS+ − βPM

)
(xk)

Relaxed averaged alternating reflection (RAAR)

xk+1 =
(
2βPS+PM + βI − βPS+ + (1 − 2β)PM

)
(xk)

Difference map (DF)

xk+1 = (I + β(PS((1 − γ2)PM − γ2I) + PM((1 − γ1)PS − γ1I))) (xk)
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ADMM

Consider problem

find x and y, such that x = y, x ∈ X and y ∈ Y

X is either S or S+, and Y is M.
Augmented Lagrangian function

L(x, y, λ) := λ⊤(x − y) +
1
2
∥x − y∥2

ADMM:

xk+1 = argmin
x∈X

L(x, yk, λk),

yk+1 = argmin
y∈Y

L(xk+1, y, λk),

λk+1 = λk + β(xk+1 − yk+1),
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ADMM

ADMM

xk+1 = PX (yk − λk),

yk+1 = PY(xk+1 + λk),

λk+1 = λk + β(xk+1 − yk+1),

ADMM is equivalent to HIO or HPR
if PX (x + y) = PX (x) + PX (y)

xk+2 + λk+1 = [(1 + β)PXPY + (I − PX )− βPY ](xk+1 + λk)

Hybrid input-output (HIO)

xk+1 = ((1 + β)PSPM + I − PS − βPM) (xk)

if β = 1
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ADMM

ADMM: updating Lagrange Multiplier twice

xk+1 := PX (yk − πk),

πk+1 := πk + β(xk+1 − yk) = −(I − βPX )(yk − πk),

yk+1 := PY(xk+1 + λk),

λk+1 := λk + ν(xk+1 − yk+1) = (I − νPY)(xk+1 + λk),

ADMM is equivalent to ER if β = ν = 1

xk+1 := PX (yk) and yk+1 := PY(xk+1).

ADMM is equivalent to BIO if β = ν = 1

xk+1 + λk = (PXPY + I − PY) (xk + λk−1)
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Numerical comparison

The parameter β in HPR and RAAR was updated dynamically with
β0 = 0.95. For ADMM, β = 0.5.

ADM

it
e
r 

=
 1

0
it
e
r 

=
 2

0
it
e
r 

=
 2

0
0

HPR RAAR
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Numerical comparison

The parameter β in HPR and RAAR was updated dynamically with
β0 = 0.95. For ADMM, β = 0.5.
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Numerical comparison

The parameter β was fixed at 0.6, 0.8 and 0.95 for the first, second
and third rows respectively.

ADM HPR RAAR
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Numerical comparison

The parameter β was fixed at 0.6, 0.8 and 0.95 for the first, second
and third rows respectively.

ADM HPR RAAR
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Numerical Results

Convergence behavior:

errk =
∥PX (PY(xk))− PY(xk)∥F

∥m∥F
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Discrete mathematical model

Phaseless measurements about x0 ∈ Cn

bk = | ⟨ak, x0⟩ |2, k ∈ {1, . . . ,m}

Phase retrieval is feasibility problem

find x

s.t. | ⟨ak, x0⟩ |2 = bk, k = 1, . . . ,m

Solving quadratic equations is NP-complete in general
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NP-complete stone problem

Given weights wi ∈ R, i = 1, . . . , n, is there an assignment xi = ±1
such that

n∑
i=1

wixi = 0?

Formulation as a quadratic system

|xi|2 = 1, i = 1, . . . , n∣∣∣∣∣
n∑

i=1

wixi

∣∣∣∣∣
2

= 0
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PhaseLift (C., Eldar, Strohmer, Voroninski, 2011)

Lifting: X = xx∗

bk = | ⟨ak, x0⟩ |2 = a∗k xx∗ak = ⟨aka∗k ,X⟩

Turns quadratic measurements into linear measurements b = A(X)
about xx∗

Phase retrieval problem

find X

s.t. A(X) = b

X ⪰ 0, rank(X) = 1

PhaseLift
find X

s.t. A(X) = b

X ⪰ 0

Connections: relaxation of quadratically constrained QP’s
Shor (87) [Lower bounds on nonconvex quadratic optimization
problems]
Goemans and Williamson (95) [MAX-CUT]
Chai, Moscoso, Papanicolaou (11)
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Exact generalized phase retrieval via SDP

Phase retrieval problem

find x

s.t. bk = | ⟨ak, x0⟩ |2

PhaseLift
find tr(X)

s.t. A(X) = b, X ⪰ 0

Theorem (C. and Li (’12); C., Strohmer and Voroninski (’11))
▶ ak independently and uniformly sampled on unit sphere
▶ m ≳ n

Then with prob. 1 − O(e−γm), only feasible point is xx∗

{X : A(X) = b, and X ⪰ 0} = {xx∗}



24/63

Extensions to physical setups
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Coded diffraction

Collect diffraction patterns of modulated samples

|F(w[t]x[t])|2 w ∈ W

Makes problem well-posed (for some choices of W)
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Exact recovery

Figure: Recovery from 6 random binary masks
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Numerical results: noiseless 2D images
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PhaseCut

Given A ∈ Cm×n and b ∈ Rm

find x, s.t. |Ax| = b.

(Candes et al. 2011b, Alexandre d’Aspremont 2013)

An equivalent model

min
x∈Cn,y∈Rm

1
2
∥Ax − y∥2

2

s.t. |y| = b.
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PhaseCut

Reformulation:

min
x∈Cn,u∈Cm

1
2
∥Ax − diag(b)u∥2

2

s.t. |ui| = 1, , i = 1, . . . ,m.

Given u, the signal variable is x = A†diag(b)u. Then

min
u∈Cm

u∗Mu

s.t. |ui| = 1, i = 1, . . . ,m,

where M = diag(b)(I − AA†)diag(b) is positive semidefinite.
The MAXCUT problem

min
U∈Sm

Tr(UM)

s.t. Uii = 1, i = 1, · · · ,m, U ⪰ 0.
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Phase retrieval by non-convex optimization

Solve the equations: yr = |⟨ar, x⟩|2, r = 1, 2, ...,m.

Gaussian model:

ar ∈ Cn i.i.d.∼ N (0, I/2) + iN (0, I/2).

Coded Diffraction model:

yr =

∣∣∣∣∣
n−1∑
t=0

x[t]d̄l(t)e−i2πkt/n

∣∣∣∣∣
2

, r = (l, k), 0 ≤ k ≤ n − 1, 1 ≤ l ≤ L.

Nonlinear least square problem:

min
z∈Cn

f (z) =
1

4m

m∑
k=1

(yk − |⟨ak, z⟩|2)2

Pro: operates over vectors and not matrices

Con: f is nonconvex, many local minima
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Wirtinger flow: C., Li and Soltanolkotabi (’14)

Strategies:
Start from a sufficiently accurate initialization

Make use of Wirtinger derivative

f (z) =
1

4m

m∑
k=1

(yk − |⟨ak, z⟩|2)2

∇f (z) =
1
m

m∑
k=1

(|⟨ak, z⟩|2 − yk)(aka∗k)z

Careful iterations to avoid local minima
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Algorithm: Gaussian model

Spectral Initialization:
1 Input measurements {ar} and observation {yr}(r = 1, 2, ...,m).

2 Calculate z0 to be the leading eigenvector of Y = 1
m

m∑
r=1

yrara∗r .

3 Normalize z0 such that ∥z0∥2 = n
∑

r yr∑
r ∥ar∥2 .

Iteration via Wirtinger derivatives: for τ = 0, 1, . . .

zτ+1 = zτ −
µτ+1

∥z0∥2∇f (zτ )
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Convergence property: Gaussian model

distance (up to global phase)

dist(z, x) = arg min
π∈[0,2π]

∥z − eiϕx∥

Theorem
Convergence for Gaussian model (C. Li and Soltanolkotabi (’14))

number of samples m ≳ n log n

Step size µ ≤ c/n(c > 0)

Then with probability at least 1 − 10e−γn − 8/n2 − me−1.5n, we have dist(z0, x) ≤ 1
8∥x∥

and after τ iteration
dist(zτ , x) ≤ 1

8
(1 − µ

4
)τ/2∥x∥.

Here γ is a positive constant.
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Numerical results: 1D signals

Consider the following two kinds of signals:
• Random low-pass signals:

x[t] =
M/2∑

k=−(M/2−1)

(Xk + iYk)e2πi(k−1)(t−1)/n,

with M=n/8 and Xk and Yk are i.i.d. N (0, 1).
• Random Guassian signals: where x ∈ Cn is a random complex

Gaussian vector with i.i.d. entries of the form

X[t] = X + iY,

with X and Y distributed as N (0, 1/2).
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Success rate

• Set n = 128.
• Apply 50 iterations of the power method as initialization.
• Set µτ = min(1 − e−τ/τ0 , 0.2), where τ0 ≈ 330.
• Stop after 2500 iterations, and declare a trial successful if the

relative error of the reconstruction dist(x̂, x)/∥x∥ falls below 10−5.
• The empirical probability of success is an average over 100 trials.



38/63

Numerical results: natural images

• View RGB image as n1 × n2 × 3 array, and run the WF algorithm
separately on each color band.

• Apply 50 iterations of the power method as initialization.
• Set the step length parameter µτ = min(1 − exp(−τ/τ0), 0.4),

where τ0 ≈ 330. Stop after 300 iterations.
• One FFT unit is the amount of time it takes to perform a single

FFT on an image of the same size.
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Numerical results: natural images

Figure: Milky way Galaxy. Image size is 1080 × 1920 pixels; timing is 1318.1
sec or 41900 FFT units. The relative error is 9.3 × 10−16.
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Recall the main theorems

Theorem
Convergence for Gaussian model (C. Li and Soltanolkotabi (’14))

number of samples m ≳ n log n

Step size µ ≤ c/n(c > 0)

Then with probability at least 1 − 10e−γn − 8/n2 − me−1.5n, we have
dist(z0, x) ≤ 1

8∥x∥ and after τ iteration

dist(zτ , x) ≤ 1
8
(1 − µ

4
)τ/2∥x∥.

Here γ is a positive constant.
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Regularity condition

Definition
Definition We say that the function f satisfies the regularity condition
or RC(α, β, ϵ) if for all vectors z ∈ E(ϵ) we have

Re
(
⟨∇f (z), z − xeiϕ(z)⟩

)
≥ 1

α
dist2(z, x) +

1
β
∥∇f (z)∥2.

• ϕ(z) := argminϕ∈[0,2π] ∥z − eiϕx∥.

• dist(z, x) := ∥z − eiϕ(z)x∥.
• E(ϵ) := {z ∈ Cn : dist(z, x) ≤ ϵ}.
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Proof of convergence

Lemma 1
Assume that f obeys RC((α, β, ϵ)) for all z ∈ E(ϵ). Furthermore,
suppose z0 ∈ E(ϵ), and assume 0 < µ ≤ 2/β. Consider the following
update

zτ+1 = zτ − µ∇f (zτ ).

Then for all τ we have zτ ∈ E(ϵ) and

dist2(zτ , x) ≤
(

1 − 2µ
α

)τ

dist2(z0, x).
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Proof of convergence

Proof.
We prove that if z ∈ E(ϵ) then for all 0 < µ ≤ 2/β

z+ = z − µ∇f (z)

obeys

dist2(z+, x) ≤
(

1 − 2µ
α

)
dist2(z, x).

Then the lemma holds by inductively applying the equation above.
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Proof of convergence

Simple algebraic manipulations together with the regularity condition
give ∥∥∥z+ − xeiϕ(z)

∥∥∥2

=
∥∥∥z − xeiϕ(z) − µ∇f (z)

∥∥∥2

=
∥∥∥z − xeiϕ(z)

∥∥∥2
− 2µRe

(
⟨∇f (z), z − xeiϕ(z)⟩

)
+ µ2 ∥∇f (z)∥2

≤
∥∥∥z − xeiϕ(z)

∥∥∥2
− 2µ

(
1
α

∥∥∥z − xeiϕ(z)
∥∥∥2

+
1
β
∥∇f (z)∥2

)
+µ2 ∥∇f (z)∥2

=

(
1 − 2µ

α

)∥∥∥z − xeiϕ(z)
∥∥∥2

+ µ

(
µ− 2

β

)
∥∇f (z)∥2

≤
(

1 − 2µ
α

)∥∥∥z − xeiϕ(z)
∥∥∥2

,

which concludes the proof.
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Proof of regularity condition

We will make use of the following lemma:

Lemma 2
1 x is a solution obeying ∥x∥ = 1, and is independent from the

sampling vectors;
2 m ≥ c(δ)n log n in Gaussian model or L ≥ c(δ) log3 n in CD model.

Then, ∥∥∇2f (x)− E∇2f (x)
∥∥ ≤ δ

holds with pabability at least 1 − 10e−γn − 8/n2 and 1 − (2L + 1)/n3 for
the Gaussian and CD model, respectively.

• The concentration of the Hessian matrix at the optimizers.



46/63

Proof of regularity condition

Based on the lemma above with δ = 0.01, we prove the regularity
condition by establishing the local curvature condition and the local
smoothness condition.

Local curvature condition
We say that the function f satisfies the local curvature condition or
LCC(α, ϵ, δ) if for all vectors z ∈ E(ϵ),

Re
(
⟨∇f (z), z − xeiϕ(z)⟩

)
≥
(

1
α
+

1 − δ

4

)
dist2(z, x)+

1
10m

m∑
r=1

∣∣∣a∗r (z − xeiϕ(z))
∣∣∣4 .

The LCC condition states that the function curves sufficiently upwards
along most directions near the curve of global optimizers.
For the CD model, LCC holds with α ≥ 30 and ϵ = 1

8
√

n ;

For the Gaussian model, LCC holds with α ≥ 8 and ϵ = 1
8 .
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Proof of regularity condition

Local smoothness condition
We say that the function f satisfies the local smoothness condition or
LSC(β, ϵ, δ) if for all vectors z ∈ E(ϵ) we have

∥∇f (z)∥2 ≤ β

(
(1 − δ)

4
dist2(z, x) +

1
10m

m∑
r=1

∣∣∣a∗r (z − xeiϕ(z))
∣∣∣4) .

The LSC condition states that the gradient of the function is well
behaved near the curve of global optimizers. Using δ = 0.01, LSC
holds with β ≥ 550 + 3n

β ≥ 550 for ϵ = 1/(8
√

n),

β ≥ 550 + 3n for ϵ = 1/8.
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Proof of regularity condition

In conclusion, when δ = 0.01, for the Gaussian model, the regularity
condition holds with

α ≥ 8, β ≥ 550 + 3n, and ϵ = 1/8.

while for the CD model, the regularity condition holds with

α ≥ 30, β ≥ 550, and ϵ = 1/(8
√

n),

Therefore, for the Gaussian model, linear convergence holds if the
initial points satisfies dist(z0, x) ≤ 1/8; for the CD model, linear
convergence holds if dist(z0, x) ≤ 1/(8

√
n).
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Proof of initialization

Recall the initialization algorithm:
1 Input measurements {ar} and observation {yr}(r = 1, 2, ...,m).

2 Calculate z0 to be the leading eigenvector of Y = 1
m

m∑
r=1

yrara∗r .

3 Normalize z0 such that ∥z0∥2 = n
∑

r yr∑
r ∥ar∥2 .

Ideas:

E

[
1
m

m∑
r=1

yrara∗r

]
= I + 2xx∗,

and any leading eigenvector of I + 2xx∗ is of the form λx. Therefore,
by the strong law of large number, the initialization step would recover
the direction of x perfectly as long as there are enough samples.
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Proof of initialization

In the detailed proof, we will use the following lemma:

Lemma 3
In the setup of Lemma 2, ∥∥∥∥∥I − 1

m

m∑
r=1

ara∗
r

∥∥∥∥∥ ≤ δ,

holds with probability at least 1 − 2e−γm for the Gaussian model and 1 − 1/n2 for the
CD model. On this event,

(1 − δ)∥h∥2 ≤ 1
m

m∑
r=1

|a∗
r h|2 ≤ (1 + δ)∥h∥2

holds for all h ∈ Cn.
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Proof of initialization

Detailed proof:
Lemma 2 gives

∥Y − (xx∗ + ∥x∥2I)∥ ≤ ϵ := 0.001.

Let z̃0 be the unit eigenvector corresponding to the top eigenvalue λ0
of Y, then

|λ0 − (|̃z0x|2 + 1)| = |̃z∗0(Y − (xx∗ + I))z̃0| ≤ ∥Y − (xx∗ + I)∥ ≤ ϵ.

Therefore, |̃z∗0x|2 ≥ λ0 − 1 − ϵ. Meanwhile, since λ0 is the top
eigenvalue of Y, and ∥x∥ = 1, we have

λ0 ≥ x∗Yx = x∗(Y − (I + x∗x))x + 2 ≥ 2 − ϵ.

Combining the above two inequalities together, we have

|̃z∗0x|2 ≥ 1−2ϵ ⇒ dist2(z̃0, x) ≤ 2−2
√

1 − 2ϵ ≤ 1
256

⇒ dist(z̃0, x) ≤ 1
16

.
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Proof of initialization

Now consider the normalization. Recall that z0 =

(√
1
m

m∑
r=1

|a∗r x|2
)

z̃0.

By Lemma 3, with high probability we have

|∥z0∥ − 1| ≤
∣∣∥z0∥2 − 1

∣∣ = ∣∣∣∣∣ 1
m

m∑
r=1

|a∗r x|2 − 1

∣∣∣∣∣ ≤ δ <
1

16
.

Therefore, we have

dist(z0, x) ≤ ∥z0 − z̃0∥+ dist(z̃0, x) ≤ |∥z0∥ − 1|+ dist(z̃0, x) ≤ 1
8
.
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Outline

1 Introduction

2 Classical Phase Retrieval

3 PhaseLift

4 PhaseCut

5 Wirtinger Flows

6 Gauss-Newton Method
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Nonlinear least square problem

min
z∈Cn

f (z) =
1

4m

m∑
k=1

(yk − |⟨ak, z⟩|2)2

Using Wirtinger derivative:

z :=

[
z
z̄

]
;

g(z) := ∇cf (z) =
1
m

m∑
r=1

(
|aT

r z|2 − yr
) [ (araT

r )z
(āra⊤r )z̄

]
;

J(z) :=
1√
m

m∑
r=1

[
|a∗1z|a1, |a∗2z|a2, · · · , |a∗mz|am

|a∗1z|ā1, |a∗2z|ā2, · · · , |a∗mz|ām

]T

;

Ψ(z) := J(z)TJ(z) =
1
m

m∑
r=1

[
|aT

r z|2araT
r (aT

r z)2ara⊤r
( ¯aT

r z)2āraT
r |aT

r z|2āra⊤r

]
.
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The Modified LM method for Phase Retrieval

Levenberg-Marquardt Iteration:

zk+1 = zk − (Ψ(zk) + µkI)−1 g(zk)

Algorithm
1 Input: Measurements {ar}, observations {yr}. Set ϵ ≥ 0.
2 Construct z0 using the spectral initialization algorithms.
3 While ∥g(zk)∥ ≥ ϵ do

Compute sk by solving equation

Ψµk
zk

sk = (Ψ(zk) + µkI) sk = −g(zk).

until ∥∥Ψµk
zk

sk + g(zk)
∥∥ ≤ ηk∥g(zk)∥.

Set zk+1 = zk + sk and k := k + 1.

3 Output: zk.
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Convergence of the Gaussian Model

Theorem
If the measurements follow the Gaussian model, the LM equation is
solved accurately (ηk = 0 for all k), and the following conditions hold:
• m ≥ cn log n, where c is sufficiently large;

• If f (zk) ≥ ∥zk∥2

900n , let µk = 70000n
√

nf (zk); if else, let µk =
√

f (zk).
Then, with probability at least 1 − 15e−γn − 8/n2 − me−1.5n, we have
dist(z0, x) ≤ (1/8)∥x∥, and

dist(zk+1, x) ≤ c1dist(zk, x),

Meanwhile, once f (zs) <
∥zs∥2

900n , for any k ≥ s we have

dist(zk+1, x) < c2dist(zk, x)2.
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Convergence of the Gaussian Model

In the theorem above,

c1 :=


(

1 − ||x||
4µk

)
, if f (zk) ≥ 1

900n∥zk∥2;
4.28+5.56

√
n

9.89
√

n , otherwise.

and

c2 =
4.28 + 5.56

√
n

∥x∥
.
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Key to proof

Lower bound of GN matrix’s second smallest eigenvalue
For any y, z ∈ Cn, Im(y∗z) = 0, we have:

y∗Ψ(z)y ≥ ∥y∥2∥z∥2,

holds with high probability.

Im(y∗z) = 0 ⇒ ∥(Ψµ
z )

−1y∥ ≤ 2
∥z∥2 + µ

∥y∥.
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Key to proof

Local error bound property

1
4

dist(z, x)2 ≤ f (z) ≤ 8.04dist(z, x)2 + 6.06ndist(z, x)4,

holds for any z satisfying dist(z, x) ≤ 1
8 .

Regularity condition

µ(z)h∗ (Ψµ
z
)−1 g(z) ≥ 1

16
∥h∥2 +

1
64100n∥h∥

∥g(z)∥2

holds for any z = x + h, ∥h∥ ≤ 1
8 , and f (z) ≥ ∥z∥2

900n .
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Convergence for the inexact LM method

Theorem
Convergence of the inexact LM method for the Gaussian model:

• m ≳ n log n;

• µk takes the same value as in the exact LM method for the Gaussian model;

• ηk ≤ (1−c1)µk
25.55n∥zk∥

if f (zk) ≥ ∥zk∥2

900n ; otherwise ηk ≤ (4.33
√

n−4.28)µk∥gk∥
372.54n2∥zk∥3 .

Then, with probability at least 1 − 15e−γn − 8/n2 − me−1.5n, we have dist(z0, x) ≤ 1
8∥x∥, and

dist(zk+1, x) ≤
1 + c1

2
dist(zk, x), for all k = 0, 1, ...

dist(zk+1, x) ≤
9.89

√
n + c2∥x∥

2∥x∥
dist(zk, x)2, for all f (zk) <

∥zk∥2

900n
.

Here c1 and c2 take the same values as in the exact algorithm for the Gaussian model.
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Solving the LM Equation: PCG

Solve
(Ψk + µkI)u = gk

by Pre-conditioned Conjugate Gradient Method:

M−1(Ψk + µkI)u = M−1gk, M = Φk + µkI.

Φ(z) :=
[

zz∗ 2zzT

2z̄z∗ z̄zT

]
+ ∥z∥2I2n

small condition number
Easy to inverse: M = (µk + ∥zk∥2)I + M1, where M1 is rank-2
matrix.
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Solving the LM Equation: PCG

• small condition number.

Lemma

Consider solving the equation (Φµ
z )−1Ψµ

z s = (Φµ
z )−1g(z) by the CG

method from s0 := −(Φµ
z )−1g(z). Let s∗ be the solution of the system.

Define V := {× : × = [x∗, xT ]∗, x ∈ Cn}. Then, V is an invariant
subspace of (Φµ

z )−1Ψµ
z , and s0, s∗ ∈ V. Meanwhile, choosing

µk = Kn
√

f (z), then the eigenvalues of (Φµ
z )−1Ψµ

z on V satisfy:

1 − 57
K
√

n
≤ λ ≤ 1 +

57
K
√

n
.
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Solving the LM Equation: PCG

• Easy to inverse.
Calculate by Sherman-Morrison-Woodbury theorem:

(Φµ
z )

−1 = aI2n + b
[

z
z̄

]
[z∗, zT ] + c

[
z
−z̄

]
[z∗,−zT ]

where

a =
1

∥z∥2 + µ
, b = − 3

2(∥z∥2 + µ)(4∥z∥2 + µ)
, c =

1
2(∥z∥2 + µ)µ

.
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What Can RL Do?

RL methods have recently enjoyed a wide variety of successes. For
example, it’s been used to teach computers to control robots in
simulation
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What Can RL Do?

It’s also famously been used to create breakthrough AIs for
sophisticated strategy games, most notably ‘Go‘ and ‘Dota‘, taught
computers to ‘play Atari games‘ from raw pixels, and trained
simulated robots ‘to follow human instructions‘.

Go: https://deepmind.com/research/alphago

Dota: https://blog.openai.com/openai-five

play Atari games: https://deepmind.com/research/dqn/

to follow human instructions: https://blog.openai.com/
deep-reinforcement-learning-from-human-preferences
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RL: agent and environment

environment: the world that the agent lives in and interacts with.
At every step of interaction, the agent sees a (possibly partial)
observation of the state of the world, and then decides on an
action to take. The environment changes when the agent acts on
it, but may also change on its own.

agent: perceives a reward signal from the environment, a
number that tells it how good or bad the current world state is.
The goal of the agent is to maximize its cumulative reward,
called return. Reinforcement learning methods are ways that the
agent can learn behaviors to achieve its goal.
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Dynamic Programming

Basically, we want to solve a big problem that is hard

We can first solve a few smaller but similar problems, if those can
be solved, then the solution to the big problem will be easy to get

To solve each of those smaller problems, we use the same idea,
we first solve a few even smaller problems.

Continue doing it, we will eventually encounter a problem we
know how to solve

Dynamic programming has the same feature, the difference is that at
each step, there might be some optimization involved.
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Shortest Path Problem

You have a graph, you want to find the shortest path from s to t

Here we use dij to denote the distance between node i and node j
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DP formulation for the shortest path problem

Let Vi denote the shortest distance between i to t.
Eventually, we want to compute Vs

It is hard to directly compute Vi in general

However, we can just look one step

We know if the first step is to move from i to j, the shortest distance
we can get must be dij + Vj.

To minimize the total distance, we want to choose j to minimize
dij + Vj

To write into a math formula, we get

Vi = min
j
{dij + Vj}



10/68

DP for shortest path problem

We call this the recursion formula

Vi = min
j
{dij + Vj} for all i

We also know if we are already at our destination, then the distance
is 0. i.e.,

Vt = 0

The above two equations are the DP formulation for this problem
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Solve the DP

Given the formula, how to solve the DP?

Vi = min
j
{dij + Vj} for all i, Vt = 0

We use backward induction.
From the last node (which we know the value), we solve the
values of V ′s backwardly.
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Example

We have Vt = 0. Then we have

Vf = min
(f ,j) is a path

{dfj + Vj}

Here, we only have one path, thus Vf = 5 + Vt = 5

Similarly, Vg = 2
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Example Continued 1

We have Vt = 0,Vf = 5 and Vg = 2

Now consider c, d, e. For c and e there is only one path

Vc = dcf + Vf = 7, Ve = deg + Vg = 5

For d, we have

Vg = min
(d,j) is a path

{ddj + Vj} = min{ddf + Vf , ddg + Vg} = 10

The optimal way to choose at d is go to g
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Example Continued 2

We got Vc = 7,Vd = 10 and Ve = 5. Now we compute Va and Vb

Va = min{dac + Vc, dad + Vd} = min{3 + 7, 1 + 10} = 10

Vb = min{dbd + Vd, dbe + Ve} = min{1 + 10, 2 + 5} = 7

and the optimal path to go at a is to choose c, and the optimal
path to go at b is to choose e.
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Example Continued 3

Finally, we have

Vs = min{dsa + Va, dsb + Vb} = min{1 + 10, 9 + 7} = 11

and the optimal path to go at s is to choose a

Therefore, we found the optimal path is 11, and by connecting
the optimal path, we get

s → a → c → f → t
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Summary of the example

In the example, we saw that we have those Vi’s, indicating the
shortest length to go from i to t.

We call this V the value function

We also have those nodes s, a, b, . . . , g, t

We call them the states of the problem

The value function is a function of the state

And the recursion formula

Vi = min
j
{dij + Vj} for all i

connects the value function at different states. It is known as the
Bellman equation
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Stochastic DP

In some cases, when you choose action a at x, the next state is not
certain (e.g., you decide a price, but the demand is random).

There will be p(x, y, a) probability you move from x to y if you
choose action a ∈ A(x)

Then the recursion formula becomes:

V(x) = min
a∈A(x)

{r(x, a) +
∑

y

p(x, y, a)V(y)}

or if we choose to use the expectation notation:

V(x) = min
a∈A(x)

{r(x, a) + EV(x, a))}
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Example: Stochastic Shortest Path Problem

Stochastic setting:
One no longer controls which exact node to jump to next
Instead one can choose between different actions a ∈ A
Each action a is associated with a set of transition probabilities
p(j|i; a) for all i, j ∈ S.
The arc length may be random wija

Objective:
One needs to decide on the action for every possible current
node. In other words, one wants to find a policy or strategy that
maps from S to A.

Bellman Equation for Stochastic SSP:

V(i) = min
a

∑
j∈S

p(j|i; a)(wija + V(j)), i ∈ S
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Tetris

Height: 12
Width: 7
Rotate and move the falling
shape
Gravity related to current
height
Score when eliminating an
entire level
Game over when reaching
the ceiling
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DP Model of Tetris

State: The current board, the current falling tile, predictions of
future tiles
Termination state: when the tiles reach the ceiling, the game is
over with no more future reward
Action: Rotation and shift
System Dynamics: The next board is deterministically
determined by the current board and the player’s placement of
the current tile. The future tiles are generated randomly.
Uncertainty: Randomness in future tiles
Transitional cost g: If a level is cleared by the current action,
score 1; otherwise score 0.
Objective: Expectation of total score.
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Interesting facts about Tetris

First released in 1984 by Alexey Pajitnov from the Soviet Union

Has been proved to be NP-complete.

Game will be over with probability 1.

For a 12 × 7 board, the number of possible states ≈ 212×7 ≈ 1025

Highest score achieved by human ≈ 1 million

Highest score achieved by algorithm ≈ 35 million (average
performance)
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States and Observations

state: s is a complete description of the state of the world. There
is no information about the world which is hidden from the state.
An observation o is a partial description of a state, which may
omit information.

In deep RL, we almost always represent states and observations
by a “real-valued vector, matrix, or higher-order tensor”. For
instance, a visual observation could be represented by the RGB
matrix of its pixel values; the state of a robot might be
represented by its joint angles and velocities.

When the agent is able to observe the complete state of the
environment, we say that the environment is fully observed.
When the agent can only see a partial observation, we say that
the environment is partially observed.

We often write that the action is conditioned on the state, when
in practice, the action is conditioned on the observation because
the agent does not have access to the state.
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Action Spaces

Different environments allow different kinds of actions. The set of
all valid actions in a given environment is often called the action
space. Some environments, like Atari and Go, have discrete
action spaces, where only a finite number of moves are
available to the agent. Other environments, like where the agent
controls a robot in a physical world, have continuous action
spaces. In continuous spaces, actions are real-valued vectors.

This distinction has some quite-profound consequences for
methods in deep RL. Some families of algorithms can only be
directly applied in one case, and would have to be substantially
reworked for the other.
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Markov decision processes

The defining property of MDPs is the Markov property which
says that the future is independent of the past given the current
state. This essentially means that the state in this model
captures all the information from the past that is relevant in
determining the future states and rewards.
A Markov Decision Process (MDP) is specified by a tuple
(S, s1,A,P,R,H), where S is the set of states, s1 is the starting
state, A is the set of actions. The process proceeds in discrete
rounds t = 1, 2, · · · ,H, starting in the initial state s1. In every
round, t the agent observes the current state st ∈ S, takes an
action at ∈ A, and observes a feedback in form of a reward signal
rt+1 ∈ R. The agent then observes transition to the next state
st+1 ∈ S.
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Formal definition

The probability of transitioning to a particular state depends only
on current state and action, and not on any other aspect of the
history. The matrix P ∈ [0, 1]S×A×Sspecifies these probabilities.
That is,

Pr(st+1 = s′ | history till time t) = Pr(st+1 = s′ | st = s, at = a)

= P(s, a, s′)

The reward distribution depends only on the current state and
action. So, that the expected reward at time t is a function of
current state and action. A matrix R specifies these rewards.

E[rt+1 | history till time t] = E[rt+1 | st = s, at = a] = R(s, a)

Let R(s, a, s′) be the expected (or deterministic) reward when
action a is taken in state s and transition to state s′ is observed.
Then, we can obtain the same model as above by defining

R(s, a) = E[rt+1 | st = s, at = a] = Es′∼P(s,a)[R(s, a, s′)]
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Policy

A policy specifies what action to take at any time step. A history
dependent policy at time t is a mapping from history till time t to
an action. A Markovian policy is a mapping from state space to
action π: S → A. Due to Markovian property of the MDP, it
suffices to consider Markovian policies (in the sense that for any
history dependent policy same performance can be achieved by
a Markovian policy). Therefore, in this text, policy refers to a
Markovian policy.
A deterministic policy π: S → A is mapping from any given state
to an action. A randomized policy π : S → ∆A is a mapping from
any given state to a distribution over actions. Following a policy
πt at time t means that if the current state st = s, the agent takes
action at = πt(s) (or at ∼ π(s) for randomized policy). Following a
stationary policy π means that πt = π for all rounds t = 1, 2, . . .



28/68

Policy

Any stationary policy π defines a Markov chain, or rather a
’Markov reward process’ (MRP), that is, a Markov chain with
reward associated with every transition.
The transition probability vector and reward for this MRP in state
s is given by Pr (s′|s) = Pπ

s ,E [rt|s] = rπs , where Pπ is an S × S
matrix, and rπ is an S-dimensional vector defined as:

Pπ
s,s′ = Ea∼π(s)

[
P
(
s, a, s′

)]
,∀s, s′ ∈ S

rπs = Ea∈π(s)[R(s, a)]

The stationary distribution (if exists) of this Markov chain when
starting from state s1 is also referred to as the stationary
distribution of the policy π, denoted by dπ:

dπ(s) = lim
t→∞

Pr (st = s|s1, π)
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Goals, finite horizon MDP

The tradeoffs between immediate reward vs. future rewards of
the sequential decisions and the need for planning ahead is
captured by the goal of the Markov Decision Process. At a high
level, the goal is to maximize some form of cumulative reward.
Some popular forms are total reward, average reward, or
discounted sum of rewards.

finite horizon MDP
actions are taken for t = 1, . . . ,H where H is a finite horizon. The
total (discounted) reward criterion is simply to maximize the
expected total (discounted) rewards in an episode of length H.
(In reinforcement learning context, when this goal is used, the
MDP is often referred to as an episodic MDP.) For discount
0 ≤ γ ≤ 1, the goal is to maximize

E

[
H∑

t=1

γt−1rt|s1

]
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Infinite horizon MDP

Expected total discounted reward criteria: The most popular form
of cumulative reward is expected discounted sum of rewards.
This is an asymptotic weighted sum of rewards, where with time
the weights decrease by a factor of γ < 1. This essentially
means that the immediate returns more valuable than those far
in the future.

lim
T→∞

E

[
T∑

t=1

γt−1rt|s1

]
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Infinite horizon MDP

Expected total reward criteria: Here, the goal is to maximize

lim
T→∞

E

[
T∑

t=1

rt|s1

]

The limit may not always exist or be bounded. We are only
interested in cases where above exists and is finite. This requires
restrictions on reward and/or transition models. Interesting cases
include the case where there is an undesirable state, the reward
after reaching that state is 0. For example, end of a computer
game. The goal would be to maximize the time to reach this
state. (A minimization version of this model is where there is a
cost associated with each state and the game is to minimize the
time to reach winning state, called the shortest path problem).
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Infinite horizon MDP

Expected average reward criteria: Maximize

lim
T→∞

E

[
1
T

T∑
t=1

rt|s1

]
Intuitively, the performance in a few initial rounds does not matter
here, what we are looking for is a good asymptotic performance.
This limit may not always exist. Assuming bounded rewards and
finite state spaces, it exists under some further conditions on
policy used.
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Gain of the MDP

Gain (roughly the ‘expected value objective’ or formal goal) of an
MDP when starting in state s1 is defined as (when supremum exists):

episodic MDP:

J (s1) = sup
{πt}

E

[
H∑

t=1

γt−1rt|s1

]

Infinite horizon expected total reward:

J (s1) = sup
{πt}

lim
T→∞

E

[
T∑

t=1

rt|s1

]

Infinite horizon discounted sum of rewards:

J (s1) = sup
{πt}

lim
T→∞

E

[
T∑

t=1

γt−1rt|s1

]



34/68

Gain of the MDP

infinite horizon average reward:

J (s1) = sup
{πt}

lim
T→∞

E

[
1
T

T∑
t=1

rt|s1

]

Here, expectation is taken with respect to state transition and reward
distribution, supremum is taken over all possible sequence of policies
for the given MDP. It is also useful to define gain ρπ of a stationary
policy π, which is the expected (total/total discounted/average)
reward when policy π is used in all time steps. For example, for
infinite average reward:

Jπ (s1) = lim
T→∞

E

[
1
T

T∑
t=1

rt|s1

]

where at = π (st) , t = 1, . . . ,T
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Optimal policy

Optimal policy is defined as the one that maximizes the gain of
the MDP.
Due to the structure of MDP it is not difficult to show that it is
sufficient to consider Markovian policies. Henceforth, we
consider only Markovian policies.
For infinite horizon MDP with average/discounted reward criteria,
a further observation that comes in handy is that such a MDP
always has a stationary optimal policy, whenever optimal policy
exists. That is, there always exists a fixed policy so that taking
actions specified by that policy at all time steps maximizes
average/discounted/total reward.
The agent does not need to change policies with time. This
insight reduces the question of finding the best sequential
decision making strategy to the question of finding the best
stationary policy.
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Value Functions

It’s often useful to know the value of a state, or state-action pair. By
value, we mean the expected return if you start in that state or
state-action pair, and then act according to a particular policy forever
after. Value functions are used, one way or another, in almost every
RL algorithm.

The On-Policy Value Function Vπ(s), which gives the expected
return if you start in state s and always act according to policy π:

Vπ(s) = lim
T→∞

E

[
T∑

t=1

γt−1rt|s1 = s

]
The On-Policy Action-Value Function Qπ(s, a), which gives the
expected return if you start in state s, take an arbitrary action a
(which may not have come from the policy), and then forever
after act according to policy π:

Qπ(s, a) = lim
T→∞

E

[
T∑

t=1

γt−1rt|s1 = s, a1 = a

]
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Value Functions

The Optimal Value Function V∗(s), which gives the expected
return if you start in state s and always act according to the
optimal policy in the environment:

V∗(s) = max
π

Vπ(s)

The Optimal Action-Value Function, Q∗(s, a), which gives the
expected return if you start in state s, take an arbitrary action a,
and then forever after act according to the optimal policy in the
environment:

Q∗(s, a) = max
π

Qπ(s, a)
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Value Functions

When we talk about value functions, if we do not make reference
to time-dependence, we only mean expected infinite-horizon
discounted return. Value functions for finite-horizon
undiscounted return would need to accept time as an argument.
Can you think about why? Hint: what happens when time’s up?

There are two key connections between the value function and
the action-value function that come up pretty often:

Vπ(s) = E
a∼π

[Qπ(s, a)] ,

and

V∗(s) = max
a

Q∗(s, a).

These relations follow pretty directly from the definitions just
given: can you prove them?
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The Optimal Q-Function and the Optimal Action

There is an important connection between the optimal
action-value function Q∗(s, a) and the action selected by the
optimal policy. By definition, Q∗(s, a) gives the expected return for
starting in state s, taking (arbitrary) action a, and then acting
according to the optimal policy forever after.

The optimal policy in s will select whichever action maximizes the
expected return from starting in s. As a result, if we have Q∗, we
can directly obtain the optimal action, a∗(s), via

a∗(s) = argmax
a

Q∗(s, a).

Note: there may be multiple actions which maximize Q∗(s, a), in
which case, all of them are optimal, and the optimal policy may
randomly select any of them. But there is always an optimal
policy which deterministically selects an action.
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Bellman Equations

All four of the value functions obey special self-consistency
equations called Bellman equations. The basic idea is: The
value of your starting point is the reward you expect to get from
being there, plus the value of wherever you land next.

The Bellman equations for the on-policy value functions are

Vπ(s) = E
a∼π
s′∼P

[
R(s, a, s′) + γVπ(s′)

]
,

Qπ(s, a) = E
s′∼P

[
R(s, a, s′) + γ E

a′∼π

[
Qπ(s′, a′)

]]
,

where s′ ∼ P is shorthand for s′ ∼ P(·|s, a), indicating that the
next state s′ is sampled from the environment’s transition rules;
a ∼ π is shorthand for a ∼ π(·|s); and a′ ∼ π is shorthand for
a′ ∼ π(·|s′).
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Proof of Bellman equations

Proof. Vπ = Rπ + γPπVπ:

Vπ(s) = E
[
r1 + γr2 + γ2r3 + γ3r4 + . . . |s1 = s

]
= E [r1|s1 = s] + γE

[
E
[
r2 + γr3 + γ2r4 + . . . |s2

]
|s1 = s

]
The first term here is simply the expected reward in state s when
action is given by π(s). The second term is γ times the value function
at s2 ∼ P(s, π(s), ·)

Vπ(s) = E [R (s, π(s), s1) + γVπ (s2) |s1 = s]

= R(s, π(s)) + γ
∑
s2∈S

P (s, π(s), s2)Vπ (s2)

= Rπ(s) + γ [PπVπ] (s)
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Bellman Optimal Equations

The Bellman equations for the optimal value functions are

V∗(s) = max
a

E
s′∼P

[
R(s, a) + γV∗(s′)

]
,

Q∗(s, a) = E
s′∼P

[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
.

The crucial difference between the Bellman equations for the
on-policy value functions and the optimal value functions, is the
absence or presence of the max over actions. Its inclusion
reflects the fact that whenever the agent gets to choose its
action, in order to act optimally, it has to pick whichever action
leads to the highest value.

The term “Bellman backup” comes up quite frequently in the RL
literature. The Bellman backup for a state, or state-action pair, is
the right-hand side of the Bellman equation: the
reward-plus-next-value.
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Proof of Bellman optimality equations

Proof. for all s, from the theorem ensuring stationary optimal policy:

V∗(s) = max
π

Vπ(s) = max
π

Ea∼π(s),s′∼P(s,a)
[
R
(
s, a, s′

)
+ γVπ

(
s′
)]

≤ max
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
max
π

Vπ
(
s′
)

= max
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
V∗ (s′

)
Now, if the above inequality is strict then the value of state s can be
improved by using a (possibly non-stationary) policy that uses action
argmaxa R(s, a) in the first step. This is a contradiction to the
definition V∗(s). Therefore,

V∗(s) = max
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
V∗ (s′

)
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Bellman optimality equations

Technically, above only shows that V∗ satisfies the Bellman
equations.
Theorem 6.2.2 (c) in Puterman [1994] shows that V∗ is in fact
unique solution of above equations.
Therefore, satisfying these equations is sufficient to guarantee
optimality, so that it is not difficult to see that the deterministic
(stationary) policy

π∗(s) = argmax
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
V∗ (s′

)
is optimal (see Puterman [1994] Theorem 6.2.7 for formal proof).
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Linear programming

Linear programming
The fixed point for above Bellman optimality equations can be found
by formulating a linear program. It amounts to :

min
v∈RS

∑
s

wsvs

s.t. vs ≥ R(s, a) + γP(s, a)⊤v ∀a, s

Proof. V∗ clearly satisfies the constraints of the above LP. Next, we
show that v = V∗ minimizes the obj. fun. The constraint implies that

vs ≥ R (s, π∗(s)) + γP (s, π∗(s))⊤ v, ∀s

(Above is written assuming π∗ is deterministic, which is in fact true in
the infinite horizon discounted reward case.) Or,(

I − γPπ∗
)

v ≥ Rπ∗
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Proof

Because γ < 1, (I − γPπ)−1 exists for all π, and for any u ≥ 0

(I − γPπ)−1 u =
(

I + γPπ + γ2 (Pπ)2 + · · ·
)

u ≥ u

Therefore, from above(
I − γPπ∗

)−1 ((
I − γPπ∗

)
v − Rπ∗

)
≥ 0

Or,

v ≥
(

I − γPπ∗
)−1

Rπ∗
= V∗

Therefore, w⊤v for w > 0 is minimized by v = V∗.
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An Example in Revenue Management: Airfare Pricing

The price corresponding to each fare class rarely changes (this is
determined by other department), however, the RM department
determines when to close low fare classes

From the passenger’s point of view, when the RM system closes
a class, the fare increases

Closing fare class achieves dynamic pricing
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Fare classes

And when you make booking, you will frequently see messages like

This is real. It means there are only that number of tickets at that fare
class (there is one more sale that will trigger the next protection level)

You can try to buy one ticket with only one remaining, and see
what happens
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Dynamic Arrival of Consumers

Assumptions
There are T periods in total indexed forward (the first period is 1
and the last period is T )
There are C inventory at the beginning
Customers belong to n classes, with p1 > p2 > ... > pn

In each period, there is a probability λi that a class i customer
arrives
Each period is small enough so that there is at most one arrival
in each period

Decisions
When at period t and when you have x inventory remaining,
which fare class should you accept (if such a customer comes)
Instead of finding a single optimal price or reservation level, we
now seek for a decision rule, i.e., a mapping from (t, x) to
{I|I ⊂ {1, ..., n}}.
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Dynamic Arrival - a T-stage DP problem

State: Inventory level xk for stages k = 1, ...,T

Action: Let u(k) ∈ {0, 1}n to be the decision variable at period k

u(k)i =

{
1 accept class i customer
0 reject class i customer

decision vector u(k) at stage k, where u(k)i decides whether to
accept the ith class

Random disturbance: Let wk, k ∈ {0, ...,T} denotes the type of
new arrival during the kth stage (type 0 means no arrival). Then
P(wk = i) = λi for k = 1, . . . ,T and P(wk = 0) = 1 −

∑n
i=1 λi
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Value Function: A Rigorous Definition

State transition cost:

gk(xk, u(k),wk) = u(k)wk pwk

where we take p0 = 0. Clearly, E[gk(xk, u(k),wk)|xk] =
∑n

i=1 u(k)i piλi

State transition dynamics

xk+1 =

{
xk − 1 if u(k)wk wk ̸= 0 (with probability

∑n
i=1 u(k)i λi)

xk otherwise (with probability 1 −
∑n

i=1 u(k)i λi)

The overall revenue is

max
µ1,...,µT

E

[
T∑

k=0

gk(xk, µk(xk),wk)

]

subject to the µk : x → {u} for all k
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A Dynamic Programming Model

Let Vt(x) denote the optimal revenue one can earn (by using the
optimal policy onward) starting at time period t with inventory x

Vt(x) = max
µt,...,µT

E

[
T∑

k=t

gk(xk, µk(xk),wk)|xt = x

]

We call Vt(x) the value function (a function of stage t and state x)

Suppose that we know the optimal pricing strategy from time
t + 1 for all possible inventory levels x.

More specifically, suppose that we know Vt+1(x) for all possible
state x. Now let us find the best decisions at time t.
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Bellman’s Equation for Dynamic Arrival Model

We just proved the Bellman’s equation. In the airfare model,
Bellman’s equation is

Vt(x) = max
u

{
n∑

i=1

λi(piui + uiVt+1(x − 1)) + (1 −
n∑

i=1

λiui)Vt+1(x)

}

with VT+1(x) = 0 for all x and Vt(0) = 0 for all t

We can rewrite this as

Vt(x) = Vt+1(x) + max
u

{
n∑

i=1

λiui(pi + Vt+1(x − 1)− Vt+1(x))

}

For every (t, x), we have an equality and an unknown. The Bellman
equation bears a unique solution.
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Dynamic Programming Analysis

Vt(x) = Vt+1(x) + max
u

{
n∑

i=1

λiui(pi −∆Vt+1(x))

}
Therefore the optimal decision at time t with inventory x should be

u∗i =

{
1 pi ≥ ∆Vt+1(x)
0 pi < ∆Vt+1(x)

This is also called bid-price control policy
The bid-price is ∆Vt+1(x)

If the customer pays more than the bid-price, then accept

Otherwise reject
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Dynamic Programming Analysis

Of course, to implement this strategy, we need to know ∆Vt+1(x)

We can compute all the values of Vt+1(x) backwards

Computational complexity is O(nCT)

With those, we can have a whole table of Vt+1(x). And we can
execute based on that

Proposition (Properties of the Bid-prices)
For any x and t, i) ∆Vt(x + 1) ≤ ∆Vt(x), ii) ∆Vt+1(x) ≤ ∆Vt(x)

Intuitions:
Fixed t, the value of the inventory has decreasing marginal
returns

The more time one has, the more valuable an inventory worth

Proof by induction using the DP formula
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Value Iteration

Indirect method that finds optimal value function (value vector v
in above), not explicit policy.

Pseudocode
Start with an arbitrary initialization v0. Specify ϵ > 0

Repeat for k = 1, 2, . . . until
∥∥vk(s)− vk−1(s)

∥∥
∞ ≤ ϵ (1−γ)

2γ :
for every s ∈ S, improve the value vector as:

vk(s) = max
a∈A

R(s, a) + γ
∑

s′
P (s, a, s′) vk−1 (s′) (1)

Compute optimal policy as

π(s) ∈ argmax
a

R(s, a) + γP(s, a)⊤vk (2)
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Bellman operator

It is useful to represent the iterative step (1) using operator
L : RS → RS.

LV(s) := max
a∈A

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
V
(
s′
)

LπV(s) := Ea∈π(s)

[
R(s, a) + γ

∑
s′

P
(
s, a, s′

)
V
(
s′
)]

(3)

Then, (1) is same as
vk = Lvk−1 (4)

For any policy π, if Vπ denotes its value function, then, by
Bellman equations:

V∗ = LV∗,Vπ = LπVπ (5)
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Bellman operator

Below is a useful ‘contraction’ property of the Bellman operator,
which underlies the convergence properties of all DP based iterative
algorithms.

Lemma 6
The operator L(·) and Lπ(·) defined by (3) are contraction mappings,
i.e.,

∥Lv − Lu∥∞ ≤ γ∥v − u∥∞
∥Lπv − Lπu∥∞ ≤ γ∥v − u∥∞
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Proof of contraction

Proof. First assume Lv(s) ≥ Lu(s).
Let a∗s = argmaxa∈A R(s, a) + γ

∑
s′ P (s, a, s′) v (s′)

0 ≤ Lv(s)− Lu(s)

≤ R (s, a∗s ) + γ
∑

s′
P
(
s, a∗s , s′

)
v
(
s′
)
− R (s, a∗s )− γ

∑
s′

P
(
s, a∗s , s′

)
u
(
s′
)

= γP (s, a∗s )
⊤ (v − u)

≤ γ∥v − u∥∞

Repeating a symmetric argument for the case Lv(s) ≥ Lu(s) gives the
lemma statement. Similar proof holds for Lπ.
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Convergence

Theorem 7 (Theorem 6.3.3, Section 6.3.2 in Puterman [1994])
The convergence rate of the above algorithm is linear at rate γ.
Specifically, ∥∥vk − V∗∥∥

∞ ≤ γk

1 − γ

∥∥v1 − v0∥∥
∞

Further, let πk be the policy given by (2) using vk. Then,∥∥∥Vπk − V∗
∥∥∥
∞

≤ 2γk

1 − γ

∥∥v1 − v0∥∥
∞
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Proof of Convergence

Proof. By Bellman equations V∗ = LV∗∥∥V∗ − vk
∥∥
∞ =

∥∥LV∗ − vk
∥∥
∞

≤
∥∥LV∗ − Lvk

∥∥
∞ +

∥∥Lvk − vk
∥∥
∞

=
∥∥LV∗ − Lvk

∥∥
∞ +

∥∥Lvk − Lvk−1∥∥
∞

≤ γ
∥∥V∗ − vk

∥∥+ γ
∥∥vk − vk−1∥∥

≤ γ
∥∥V∗ − vk

∥∥+ γk
∥∥v1 − v0∥∥∥∥V∗ − vk

∥∥
∞ ≤ γk

1 − γ

∥∥v1 − v0∥∥
Let π = πk be the policy at the end of k iterations. Then, Vπ = LπVπ

by Bellman equations. Further, by definition of π = πk,

Lπvk(s) = max
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
vk (s′

)
= Lvk(s)
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Proof of Convergence

Therefore,∥∥Vπ − vk
∥∥
∞ =

∥∥LπVπ − vk
∥∥
∞

≤
∥∥LπVπ − Lπvk

∥∥
∞ +

∥∥Lπvk − vk
∥∥
∞

=
∥∥LπVπ − Lπvk

∥∥
∞ +

∥∥Lvk − Lvk−1∥∥
∞

≤ γ
∥∥Vπ − vk

∥∥+ γ
∥∥vk − vk−1∥∥∥∥Vπ − vk

∥∥
∞ ≤ γ

1 − γ

∥∥vk − vk−1∥∥
≤ γk

1 − γ

∥∥v1 − v0∥∥
Adding the two results above:

∥Vπ − V∗∥∞ ≤ 2γk

1 − γ

∥∥v1 − v0∥∥
∞
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Convergence

In average reward case, the algorithm is similar, but the Bellman
operator used to update the values is now
LV(s) = maxa rs,a + P(s, a)⊤V. Also, here vk will converge to
v∗ + ce for some constant c. Therefore, the stopping condition
used is instead sp

(
vk − vk−1

)
≤ ϵ where

sp(v) := maxs vs −mins vs. That is, span is used instead of L∞
norm. Further since there is no discount (γ = 1), a condition on
the transition matrix is required to prove convergence. Let

γ := max
s,s′,a,a′

1 −
∑
j∈S

min
{

P(s, a, j),P
(
s′, a′, j

)}
Then, linear convergence with rate γ is guaranteed if γ < 1. This
condition ensures that the Bellman operator in this case: is still a
contraction. For more details, refer to Section 8.5.2 in Puterman
[1994].
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Q-value iteration

Q∗(s, a): expected utility on taking action a in state s, and
thereafter acting optimally. Then,V∗(s) = maxa Q∗(s, a).
Therefore, Bellman equations can be written as,

Q∗(s, a) = R(s, a) + γ
∑

s′
P
(
s, a, s′

)(
max

a′
Q∗ (s′, a′

))
Based on above a Q-value-iteration algorithm can be derived:
Pseudocode

Start with an arbitrary initialization Q0 ∈ RS×A.
In every iteration k, improve the Q-value vector as:

Qk(s, a) = R(s, a) + γEs′

[
max

a′
Qk−1 (s′, a′

)
|s, a

]
,∀s, a

Stop if
∥∥Qk − Qk−1

∥∥
∞ is small.
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Policy iteration

Start with an arbitrary initialization of policy π1. The k-th policy
iteration has two steps:

Policy evaluation: Find vk by solving vk = Lπk vk, i.e.,

vk(s) = Ea∼π(s)

[
R
(
s, a, s′

)
+ γ

∑
s′

P
(
s, a, s′

)
vk (s′

)]
,∀s

Policy improvement: Find πk+1 such that Lπk+1vk = Lvk, i.e.,

πk+1(s) = argmax
a

R(s, a) + γEs′
[
vk (s′

)
|s, a

]
,∀s



TD-learning and Q-learning

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html
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TD-learning

TD-learning is essentially approximate version of policy
evaluation using samples. Adding policy improvement gives an
approximate version of policy iteration.

Since Vπ(s) is defined as the expectation of the random return
when the process is started from the given state s, an obvious
way of estimating this value is to compute an average over
multiple independent realizations started from the given state.
This is an instance of the so-called Monte-Carlo method.

Unfortunately, the variance of the observed returns can be high.
The Monte-Carlo technique is further difficult to apply if the
system is not accessible through a simulator but rather
estimation happens while actually interacting with the system.
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TD(0)-learning

Policy evaluation is about estimating Vπ(·), which by Bellman
equations is equivalent to finding a stationary point of

Vπ(s) = Ea∼π(s)

[
R (s, a) + γ

∑
s′

P
(
s, a, s′

)
Vπ
(
s′
)]

, ∀s

However, we need to estimate this using only observations
rt, st+1 on playing some action at at current state st.
Let the current estimate of V(s) is V̂(s). Let on taking action
at = π (st) in the current state st, st+1 is the observed (sample)
next state. The predicted value function for the next state st+1 is
V̂ (st+1), giving another prediction of value function at state st

rt + γV̂ (st+1). Note that

E
[
rt + V̂ (st+1) |st, V̂

]
= Ea∼π(st)

[
R (st, a) +

∑
s′

P
(
st, a, s′

)
V̂
(
s′
)
|st, V̂

]
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TD(0)-learning

From Bellman equations, we are looking for V̂ such that

V̂ (st) ≈ rt + V̂ (st+1)

The TD method performs the following update to the value
function estimate at st, moving it towards the new estimate:

V̂ (st)← (1− αt) V̂ (st) + αt
(
rt + γV̂ (st+1)

)
Let δt be the following gap:

δt := rt + γV̂ (st+1)− V̂ (st)

referred to as temporal difference, i.e., the difference between
current estimate, and one-lookahead estimate. Then, the above
also be written as:

V̂ (st)← V̂ (st) + αtδt (1)
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SGD interpretation: a general principal

Let zs be a random variable independent to θ.

Consider:
min
θ

(xθ − Es[zs])
2

It is equivalent to

min
θ

(xθ − Es[zs])
2 − (Es[zs])

2 + Es[z2
s ]

⇐⇒ min
θ

x2
θ + (Es[zs])

2 − 2xθEs[zs]− (Es[zs])
2 + Es[z2

s ]

⇐⇒ min
θ

x2
θ − 2xθEs[zs] + Es[z2

s ]

⇐⇒ min
θ

Es[xθ − zs]
2

Expectation is taken out. It enables us to perform sample on zs.
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SGD interpretation

Recall the Bellman equation:

Vπ(s) = E
a∼π
s′∼P

[
R(s, a, s′) + γVπ(s′)

]
,

we introduce a target Vπ
targ and approximate:

Vπ(s) ≈ E
a∼π
s′∼P

[
R(s, a, s′) + γVπ

targ(s
′)
]

construct a least-squares problem:

min
Vπ(s)

(
Vπ(s)− E

a∼π
s′∼P

[
R(s, a, s′) + γVπ

targ(s
′)
])2

⇐⇒ min
Vπ(s)

E
a∼π
s′∼P

[
Vπ(s)− [R(s, a, s′) + γVπ

targ(s
′)]
]2
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SGD interpretation

use SGD to solve:

min
Vπ(s)

1
2

E
a∼π
s′∼P

[
Vπ(s)− [R(s, a, s′) + γVπ

targ(s
′)]
]2

The gradient with respect to Vπ(s) is

E
a∼π
s′∼P

[
Vπ(s)− [R(s, a, s′) + γVπ

targ(s
′)]
]
.

Take one sample:

Vπ(st)− [R(st, a, st+1) + γVπ
targ(st+1)] = −δt

Hence, one step of SGD is

Vπ(st)← Vπ(st) + αδt



9/48

Tabular TD(0) method for policy evaluation

Algorithm 1 Tabular TD(0) method for policy evaluation
1: Initialization: Given a starting state distribution D0, policy π, the

method evaluates Vπ(s) for all states s.
Initialize V̂ as an empty list/array for storing the value estimates.

2: repeat
3: Set t = 1, s1 ∼ D0. Choose step sizes α1, α2, . . . .
4: Perform TD(0) updates over an episode:
5: repeat
6: Take action at at ∼ π (st). Observe reward rt, and new state

st+1.
7: δt := rt + γV̂ (st+1)− V̂ (st)
8: Update V̂ (st)← V̂ (st) + αtδt

9: t = t + 1
10: until episode terminates
11: until change in V̂ over consecutive episodes is small
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Monte Carlo method

Why use only 1-step lookahead to construct target z? Why not
lookahead entire trajectory (in problems where there is a terminal
state, also referred to as episodic MDPs)?

[Szepesvari, 1999] In this example, all transitions are deterministic.
The reward is zero, except when transitioning from state 3 to state 4,
when it is given by a Bernoulli random variable with parameter 0.5.
State 4 is a terminal state. When the process reaches the terminal
state, it is reset to start at state 1 or 2. The probability of starting at
state 1 is 0.9, while the probability of starting at state 2 is 0.1.
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Monte Carlo method

The resulting method is referred to as Monte Carlo method, here
for z a sample trajectory starting at st is used

z =
∞∑

n=0

γnrt+n =: Rt

so that
δt = z− V̂ (st) = Rt − V̂ (st)

V̂ (st) = (1− α)V̂ (st) + αRt
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TD(0) or Monte-Carlo?

This example is taken from page 22− 23, Szepesvari [1999]

First, let us consider an example when TD(0) converges faster.
Consider the above undiscounted episodic MRP shown on the
above figure.
The initial states are either 1 or 2. With high probability the
process starts at state 1, while the process starts at state 2 less
frequently.
Consider now how TD(0) will behave at state 2. By the time state
2 is visited the kth time, on the average state 3 has already been
visited 10 k times.
Assume that αt = 1/(t + 1) (the TD updates with this step size
reduce to averaging of target observations). At state 1 and 2, the
target is V̂(3) (since immediate reward is 0 and transition
probability to state 3 is 1).
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TD(0) or Monte-Carlo?

Therefore, whenever state 2 is visited the TD(0) sets its value as
the average of estimates V̂ t(3) over the time steps t when state 1
was visited (similarly for state 2). At state 3 the TD(0) update
reduces to averaging the Bernoulli rewards incurred upon
leaving state 3. At the kth visit of state 2, Var(V̂(3)) ≃ 1/(10k)
Clearly, E[V̂(3)] = 0.5. Thus, the target of the update of state 2
will be an estimate of the true value of state 2 with accuracy
increasing with k.
Now, consider the Monte-Carlo method. The Monte-Carlo
method ignores the estimate of the value of state 3 and uses the
Bernoulli rewards directly. In particular, Var (Rt|st = 2) = 0.25,
i.e., the variance of the target does not change with time.
On this example, this makes the Monte-Carlo method slower to
converge, showing that sometimes bootstrapping might indeed
help.
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TD(0) or Monte-Carlo?

To see an example when bootstrapping is not helpful, imagine
that the problem is modified so that the reward associated with
the transition from state 3 to state 4 is made deterministically
equal to one.
In this case, the Monte-Carlo method becomes faster since
Rt = 1 is the true target value, while for the value of state 2 to get
close to its true value, TD(0) has to wait until the estimate of the
value at state 3 becomes close to its true value. This slows down
the convergence of TD(0).
In fact, one can imagine a longer chain of states, where state
i + 1 follows state i, for i ∈ 1, . . . ,N and the only time a nonzero
reward is incurred is when transitioning from state N − 1 to state
N.
In this example, the rate of convergence of the Monte-Carlo
method is not impacted by the value of N, while TD(0) would get
slower with N increasing.
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TD(λ)

TD(λ) is a "middle-ground" between TD(0) and Monte-Carlo
evaluation.
Here, the algorithm considers ℓ-step predictions:

zℓt =
ℓ∑

n=0

γnrt+n + γℓ+1V̂ (st+ℓ+1)

with temporal difference:

δℓt = z− V̂ (st)

=
ℓ∑

n=0

γnrt+n + γℓ+1V̂ (st+ℓ+1)− V̂ (st)

=

ℓ∑
n=0

γn (rt+n + γV̂ (st+n+1)− V̂ (st+n)
)

=
ℓ∑

n=0

γnδt+n
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TD(λ)

In TD(λ) method, a mixture of ℓ-step predictions is used, with
weight (1− λ)λℓ for ℓ ≥ 0. Therefore, λ = 0 gives TD(0), and
λ→ 1 gives Monte-Carlo method. λ > 1 gives a multi-step
method. To summarize, the TD(λ) update is given as:

V̂ (st)← V̂ (st) + αt

∞∑
ℓ=0

(1− λ)λℓδℓt = V̂ (st) + αt

∞∑
n=0

λnγnδt+n
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Policy improvement with TD-learning

TD-learning allows evaluating a policy. For using TD-learning for
finding optimal policy, we need to be able to improve the policy.
Recall policy iteration effectively requires evaluating Q-value of a
policy, where Qπ(s, a) = R(s, a) + γ

∑
s′ P

π (s, a, s′)Vπ (s′). With simple
modification, TD-learning can be used to estimate Q-value of a policy.
There, the updates would be replaced by:
δt := rt + γQ̂ (st+1, π (st+1))− Q̂ (st, at)
Update Q̂ (st, at)← Q̂ (st, at) + αtδt

Then, the scheme for policy improvement is similar to policy iteration.
Repeat the following until convergence to some policy:

Use TD-learning to evaluate the policy πk. The method outputs
Q̂πk

(s, a),∀s, a

Compute new ’improved policy’ πk+1 as
πk+1(s)← argmaxa Q̂πk

(s, a).
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Q-learning (tabular)

Q-learning is a sample based version of Q-value iteration. This
method attempts to directly find optimal Q-values, instead of
computing Q-values of a given policy.
Recall Q-value iteration: for all s, a update,

Qk+1(s, a)← R(s, a) + γ
∑

s′
P
(
s, a, s′

)(
max

a′
Qk
(
s′, a′

))
Q-learning approximates these updates using sample
observations, similar to TD-learning.
In steps t = 1, 2, . . . of an episode, the algorithm observes reward
rt and next state st+1 ∼ P (·, st, at) for some action at. It updates
the Q-estimates for pair (st, at) as follows:

Qk+1 (st, at) = (1− α)Qk (st, at) + α

(
rt + γmax

a′
Qk
(
st+1, a′

))
︸ ︷︷ ︸

target
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SGD Interpretation

The Bellman optimal equation is

Q∗(s, a) = E
s′∼P

[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
We introduce a target Qtarg(s, a) and approximate:

Q(s, a) ≈ E
s′∼P

[
R(s, a, s′) + γmax

a′
Qtarg(s′, a′)

]
Construct a least square problem:

min

(
Q(s, a)− E

s′∼P

[
R(s, a, s′) + γmax

a′
Qtarg(s′, a′)

])2

⇐⇒ min E
s′∼P

[
Q(s, a)− [R(s, a, s′) + γmax

a′
Qtarg(s′, a′)]

]2
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SGD Interpretation

use SGD to solve the least square problem:

min
1
2

E
s′∼P

[
Q(s, a)− [R(s, a, s′) + γmax

a′
Qtarg(s′, a′)]

]2

One sample of the gradient is

Q(s, a)− [R(s, a, st+1) + γmax
a′

Qtarg(st+1, a′)] = −δt.

One SGD step is

Q(s, a)← Q(s, a) + αtδt.
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Q-learning (tabular)

Algorithm 2 Tabular Q-learning method
1: Initialization: Given a starting state distribution D0.

Initialize Q̂ as an empty list/array for storing the Q-value estimates.
2: repeat
3: Set t = 1, s1 ∼ D0. Choose step sizes α1, α2, . . . .
4: Perform Q-learning updates over an episode:
5: repeat
6: Take action at at. Observe reward rt, and new state st+1.
7: δt :=

(
rt + γmaxa′ Q̂ (st+1, a′)

)
− Q̂ (st, at)

8: Update Q̂ (st, at)← Q̂ (st, at) + αtδt

9: t = t + 1
10: until episode terminates
11: until change in Q̂ over consecutive episodes is small
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How to select actions, the issue of exploration

The convergence results (discussed below) for Q-learning will
say that if all actions and states are infinitely sampled, learning
rate is small, but does not decrease too quickly, then Q-learning
converges. (Does not matter how you select actions, as long as
they are infinitely sampled).
One option is to select actions greedily according to the current
estimate maxa Qk(s, a). But, this will reinforce past errors, and
may fail to sample and estimate Q-values for actions which have
higher error levels. We may get stuck at a subset of (suboptimal)
actions.
Therefore, exploration is required. The ϵ-greedy approach (i.e.,
with ϵ probability pick an action uniformly at random instead of
greedy choice) can ensure infinite sampling of every action, but
can be very inefficient.
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How to select actions, the issue of exploration

The same issue occurs in TD-learning based policy improvement
methods. The choice of action is specified as the greedy policy
according to the previous episode estimates. Without exploration
this may not ensure that all actions and states are infinitely
sampled.
One option is to replace policy improvement step by greedy
choice. That is, the policy improvement step will now compute
the new ‘improved policy’ πk+1 as the randomized policy:

πk+1(s) =

{
a∗k := argmaxa Q̂πk

(s, a), with probability 1− ϵ+ ϵ
|A|

a, with probability ϵ
|A| , a ̸= a∗k

Then, in policy evaluation, this ’randomized policy’ must be used.
7 : δt := rt + γEa∼πk+1(st+1)

[
Q̂ (st+1, a)

]
− Q̂ (st, at)

8 : Update Q̂ (st, at)← Q̂ (st, at) + αtδt
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Convergence theorem

Theorem 1 (Watkins and Dayan [1992])
Given bounded rewards |rt| ≤ R, learning rates 0 ≤ αt < 1, and

∞∑
i=1

αni(s,a) =∞,

∞∑
i=1

(
αni(s,a)

)2
<∞

then Q̂t(s, a)→ Q(s, a) as t→∞ for all s, a with probability 1. Here,
ni(s, a) is the index of the ith time the action a is tried in state s, and
Q̂t(s, a) is the estimate Q̂ in round t.

If all actions and states are infinitely sampled, learning rate is
small, but does not decrease too quickly, then Q-learning
converges. (Does not matter how you select actions, as long as
they are infinitely sampled).
The proof of this and many similar results in RL algorithms follow
the analysis of a more general online learning/optimization
method - the stochastic approximation method.
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Stochastic Approximation method

The stochastic approximation (SA) algorithm essentially solves a
system of (nonlinear) equations of the form

h(θ) = 0

for unknown h(·), based on noisy measurements of h(θ).
More specifically, consider a (continuous) function Rd → Rd, with
d ≥ 1, which depends on a set of parameters θ ∈ Rd. Suppose
that h(θ) is unknown. However, for any θ we can measure
Z = h(θ) + ω, where ω is some 0-mean noise. The classical SA
algorithm (Robbins and Monro [1951]) is of the form

θn+1 = θn + αnZn

= θn + αn (h (θn) + ωn) , n ≥ 0

Since ωn is 0-mean noise, the stationary points of the above
algorithm coincide with the solutions of h(θ) = 0.
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Asynchronous version

More relevant to the RL methods discussed here is the
asynchronous version of the SA method. In the asynchronous
version of SA method, we may observe only one coordinate (say
ith) of Zn = h (θn) + ωn at a time step, and we use that to update
ith component of our parameter estimate:

θn+1[i] = θn[i] + αnZn[i]

The convergence for this method will be proven similarly to the
synchronous version, under the assumption that every
coordinate is sampled infinitely often.
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Q-learning with function approximation

The tabular Q-learning does not scale with increase in the size of
state space. In most real applications, there are too many states
to keep visit, and keep track of.
For scalability, we want to generalize, i.e., use what we have
learned about already visited (relatively small number of) states,
and generalize it to new, similar states.
A fundamental idea is to use ‘function approximation’, i.e., use a
lower dimensional feature representation of the state- action pair
s, a and learn a parametric approximation Qθ(s, a).
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Q-learning with function approximation

For example, the function Qθ(s, a) can simply be a linear function
in θ and features Qθ(s, a) = θ0f0(s, a) + θ1f1(s, a) + . . .+ θnfn(s, a),
or a deep neural net. Given parameter θ, the Q-function can be
computed for unseen s, a. Instead of learning the |S| × |A|
dimensional Q-table, the Q-learning algorithm will learn the
parameter θ. Here, on observing sample transition to s′ from s on
playing action a, instead of updating the estimate of Q(s, a) in the
Q-table, the algorithm updates the estimate of θ.
Intuitively, we are trying to find a θ such that for every s, a the
Bellman equation,

Qθ(s, a) = Es′∼P(·|s,a)

[
R
(
s, a, s′

)
+ γmax

a′
Qθ

(
s′, a′

)]
can be approximated well for all s, a.
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SGD Interpretation

Similarly, we obtain a least square problem:

min
θ

1
2

E
s′∼P

[
Qθ(s, a)− [R(s, a, s′) + γmax

a′
Qθtarg(s

′, a′)]
]2

min
θ

ℓθ(s, a) = E
s′∼P

[
ℓθ
(
s, a, s′

)]
One sample of the gradient is

∇θℓθ(s, a, s′)

=

(
Qθ(s, a)− [R(s, a, s′) + γmax

a′
Qtarg(st+1, a′)]

)
∇θQθ(s, a)

= −δt∇θQθ(s, a).

One SGD step is

Q(s, a)← Q(s, a) + αtδt∇θQθ(s, a).
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Q-learning Algorithm overview

Start with initial state s = s0. In iteration k = 1, 2, . . .,
Take an action a.
Observe reward r, transition to state s′ ∼ P(·|s, a).
θk+1 ← θk − αk∇θkℓθk (s, a, s′), where

∇θℓθk

(
s, a, s′

)
= −δt∇θQθk(s, a)

δt = r + γmax
a′

Qθk

(
s′, a′

)
− Qθk(s, a)

s← s′,
If s′ reached at some point is a terminal state, s is reset to starting
state.
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Deep Q-Networks — Algorithm

DQN: θ is a deep neural network
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Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an algorithm
which concurrently learns a Q-function and a policy. It uses
off-policy data and the Bellman equation to learn the Q-function,
and uses the Q-function to learn the policy.

This approach is closely connected to Q-learning, and is
motivated the same way: if you know the optimal action-value
function Q∗(s, a), then in any given state, the optimal action a∗(s)
can be found by solving

a∗(s) = argmax
a

Q∗(s, a).

DDPG interleaves learning an approximator to Q∗(s, a) with
learning an approximator to a∗(s), and it does so in a way which
is specifically adapted for environments with continuous action
spaces. But what does it mean that DDPG is adapted
*specifically* for environments with continuous action spaces? It
relates to how we compute the max over actions in maxa Q∗(s, a).
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When there are a finite number of discrete actions, the max
poses no problem, because we can just compute the Q-values
for each action separately and directly compare them. (This also
immediately gives us the action which maximizes the Q-value.)
But when the action space is continuous, we can’t exhaustively
evaluate the space, and solving the optimization problem is
highly non-trivial. Using a normal optimization algorithm would
make calculating maxa Q∗(s, a) a painfully expensive subroutine.
And since it would need to be run every time the agent wants to
take an action in the environment, this is unacceptable.

Because the action space is continuous, the function Q∗(s, a) is
presumed to be differentiable with respect to the action
argument. This allows us to set up an efficient, gradient-based
learning rule for a policy µ(s) which exploits that fact. Then,
instead of running an expensive optimization subroutine each
time we wish to compute maxa Q(s, a), we can approximate it
with maxa Q(s, a) ≈ Q(s, µ(s)).
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The Q-Learning Side of DDPG

First, let’s recap the Bellman equation describing the optimal
action-value function, Q∗(s, a). It’s given by

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
where s′ ∼ P is shorthand for saying that the next state, s′, is
sampled by the environment from a distribution P(·|s, a).

This Bellman equation is the starting point for learning an
approximator to Q∗(s, a). Suppose the approximator is a neural
network Qϕ(s, a), with parameters ϕ, and that we have collected
a set D of transitions (s, a, r, s′, d) (where d indicates whether
state s′ is terminal). We can set up a mean-squared Bellman
error (MSBE) function, which tells us roughly how closely Qϕ

comes to satisfying the Bellman equation:

L(ϕ,D) = E
(s,a,r,s′,d)∼D

(Qϕ(s, a)−
(

r + γ(1− d)max
a′

Qϕ(s′, a′)
))2


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Here, in evaluating (1− d), we’ve used: “True" to 1 and “False” to
zero. Thus, when “d==True”—which is to say, when s′ is a
terminal state—the Q-function should show that the agent gets
no additional rewards after the current state.

Q-learning algorithms for function approximators, such as DQN
(and all its variants) and DDPG, are largely based on minimizing
this MSBE loss function. There are two main tricks employed by
all of them which are worth describing, and then a specific detail
for DDPG.

Trick One: Replay Buffers. All standard algorithms for training
a deep neural network to approximate Q∗(s, a) make use of an
experience replay buffer. This is the set D of previous
experiences. In order for the algorithm to have stable behavior,
the replay buffer should be large enough to contain a wide range
of experiences, but it may not always be good to keep everything.
If you only use the very-most recent data, you will overfit to that
and things will break; if you use too much experience, you may
slow down your learning. This may take some tuning to get right.
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Trick Two: Target Networks. Q-learning algorithms make use
of target networks. The term

r + γ(1− d)max
a′

Qϕ(s′, a′)

is called the target, because when we minimize the MSBE loss,
we are trying to make the Q-function be more like this target.
Problematically, the target depends on the same parameters we
are trying to train: ϕ. This makes MSBE minimization unstable.
The solution is to use a set of parameters which comes close to
ϕ, but with a time delay—that is to say, a second network, called
the target network, which lags the first. The parameters of the
target network are denoted ϕtarg.
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In DQN-based algorithms, the target network is just copied over
from the main network every some-fixed-number of steps. In
DDPG-style algorithms, the target network is updated once per
main network update by polyak averaging:

ϕtarg ← ρϕtarg + (1− ρ)ϕ

where ρ is between 0 and 1 (usually close to 1).

DDPG Detail: Calculating the Max Over Actions in the
Target. As mentioned earlier: computing the maximum over
actions in the target is a challenge in continuous action spaces.
DDPG deals with this by using a target policy network to
compute an action which approximately maximizes Qϕtarg . The
target policy network is found the same way as the target
Q-function: by polyak averaging the policy parameters over the
course of training.
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Putting it all together, Q-learning in DDPG is performed by
minimizing the following MSBE loss with stochastic gradient
descent:

L(ϕ,D) = E
(s,a,r,s′,d)∼D

(Qϕ(s, a)−
(
r + γ(1− d)Qϕtarg(s

′, µθtarg(s
′))
))2

 ,

where µθtarg is the target policy.
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The Policy Learning Side of DDPG

Policy learning in DDPG is fairly simple. We want to learn a
deterministic policy µθ(s) which gives the action that maximizes
Qϕ(s, a). Because the action space is continuous, and we
assume the Q-function is differentiable with respect to action, we
can just perform gradient ascent (with respect to policy
parameters only) to solve

max
θ

E
s∼D

[Qϕ(s, µθ(s))] .

Note that the Q-function parameters are treated as constants
here.
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Pseudocode: DDPG

Algorithm 3 Deep Deterministic Policy Gradient
1: Input: initial policy parameters θ, Q-function parameters ϕ, empty replay bufferD
2: Set target parameters equal to main parameters θtarg ← θ, ϕtarg ← ϕ

3: repeat
4: Observe state s and select action a = clip(µθ(s) + ϵ, aLow, aHigh), where ϵ ∼ N
5: Execute a in the environment
6: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, d) in replay bufferD
8: If s′ is terminal, reset environment state.
9: if it’s time to update then
10: for however many updates do
11: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} fromD
12: Compute targets y(r, s′, d) = r + γ(1− d)Qϕtarg (s′, µθtarg (s′))

13: Update Q-function by one step of gradient descent using∇ϕ
1

|B|
∑

(s,a,r,s′,d)∈B
(

Qϕ(s, a)− y(r, s′, d)
)2

14: Update policy by one step of gradient ascent using∇θ
1

|B|
∑

s∈B Qϕ(s, µθ(s))

15: Update target networks with

ϕtarg ← ρϕtarg + (1− ρ)ϕ

θtarg ← ρθtarg + (1− ρ)θ

16: end for
17: end if
18: until convergence
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Twin Delayed DDPG (TD3)

A common failure mode for DDPG is that the learned Q-function
begins to dramatically overestimate Q-values, which then leads
to the policy breaking, because it exploits the errors in the
Q-function.

Trick One: Clipped Double-Q Learning. TD3 learns two
Q-functions instead of one (hence "twin"), and uses the smaller
of the two Q-values to form the targets in the Bellman error loss
functions.

Trick Two: "Delayed" Policy Updates. TD3 updates the policy
(and target networks) less frequently than the Q-function. The
paper recommends one policy update for every two Q-function
updates.

Trick Three: Target Policy Smoothing. TD3 adds noise to the
target action, to make it harder for the policy to exploit Q-function
errors by smoothing out Q along changes in action.
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Key Equations: target policy smoothing

TD3 concurrently learns two Q-functions, Qϕ1 and Qϕ2 , by mean
square Bellman error minimization, in almost the same way that
DDPG learns its single Q-function.

target policy smoothing. Actions used to form the Q-learning
target are based on the target policy, µθtarg , but with clipped noise
added on each dimension of the action. After adding the clipped
noise, the target action is then clipped to lie in the valid action
range (all valid actions, a, satisfy aLow ≤ a ≤ aHigh). The target
actions are thus:

a′(s′) = clip
(
µθtarg(s

′) + clip(ϵ,−c, c), aLow, aHigh
)
, ϵ ∼ N (0, σ)

Target policy smoothing essentially serves as a regularizer for
the algorithm. It addresses a particular failure mode that can
happen in DDPG: if the Q-function approximator develops an
incorrect sharp peak for some actions, the policy will quickly
exploit that peak and then have brittle or incorrect behavior. This
can be averted by smoothing out the Q-function over similar
actions, which target policy smoothing is designed to do.
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clipped double-Q learning

Both Q-functions use a single target, calculated using whichever
of the two Q-functions gives a smaller target value:

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕi,targ(s
′, a′(s′)),

and then both are learned by regressing to this target:

L(ϕ1,D) = E
(s,a,r,s′,d)∼D

(Qϕ1(s, a)− y(r, s′, d)

)2
 ,

L(ϕ2,D) = E
(s,a,r,s′,d)∼D

(Qϕ2(s, a)− y(r, s′, d)

)2
 .

Using the smaller Q-value for the target, and regressing towards
that, helps fend off overestimation in the Q-function.
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the policy is learned just by maximizing Qϕ1 :

max
θ

E
s∼D

[Qϕ1(s, µθ(s))] ,

which is pretty much unchanged from DDPG. However, in TD3,
the policy is updated less frequently than the Q-functions are.
This helps damp the volatility that normally arises in DDPG
because of how a policy update changes the target.

Exploration vs. Exploitation: TD3 trains a deterministic policy
in an off-policy way. Because the policy is deterministic, if the
agent were to explore on-policy, in the beginning it would
probably not try a wide enough variety of actions to find useful
learning signals. To make TD3 policies explore better, we add
noise to their actions at training time, typically uncorrelated
mean-zero Gaussian noise. To facilitate getting higher-quality
training data, you may reduce the scale of the noise over the
course of training.
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Pseudocode: TD3

Algorithm 4 Twin Delayed DDPG
1: Input: initial policy θ, Q-function ϕ1, ϕ2, empty replay bufferD. Set θtarg ← θ, ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

2: repeat
3: Observe state s and select action a = clip(µθ(s) + ϵ, aLow, aHigh), where ϵ ∼ N
4: Execute a in the environment
5: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
6: Store (s, a, r, s′, d) in replay bufferD
7: If s′ is terminal, reset environment state.
8: if it’s time to update then
9: for j in range(however many updates) do
10: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} fromD
11: Compute target actions a′(s′) = clip

(
µθtarg (s′) + clip(ϵ,−c, c), aLow, aHigh

)
, ϵ ∼ N (0, σ)

12: Compute targets y(r, s′, d) = r + γ(1− d)mini=1,2 Qϕtarg,i
(s′, a′(s′))

13: Update Q-functions by one gradient step: ∇ϕi
1

|B|
∑

(s,a,r,s′,d)∈B
(

Qϕ,i(s, a)− y(r, s′, d)
)2 for i = 1, 2

14: if j mod policy_delay = 0 then
15: Update policy by one step of gradient ascent using∇θ

1
|B|

∑
s∈B Qϕ,1(s, µθ(s))

16: Update target networks with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2, θtarg ← ρθtarg + (1− ρ)θ

17: end if
18: end for
19: end if
20: until convergence
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Policy gradient methods

In Q-learning function approximation was used to approximate
Q-function, and policy was a greedy policy based on estimated
Q-function. In policy gradient methods, we approximate a
stochastic policy directly using a parametric function
approximator.
More formally, given an MDP (S,A, s1,R,P), let πθ : S→ ∆A

denote a randomized policy parameterized by parameter vector
θ ∈ Rd For a scalable formulation, we want d << |S|.
For example, the policy πθ might be represented by a neural
network whose input is a representation of the state, whose
output is action selection probabilities, and whose weights form
the policy parameters θ. (The architecture for such a [deep]
neural network is similar to that for a multi-label classifier, with
input being a state, and labels being different actions. The
network should be trained to predict the probability of different
actions given an input state).
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Policy gradient methods

For simplicity, assume that πθ is differentiable with respect to θ,
i.e. ∂πθ(s,a)

∂θ exists. This is true for example, if a neural network
with differentiable activation functions is used to define πθ. Let
ρ (πθ) denote the gain of policy πθ.This may be defined as long
term average reward, long term discounted reward or total
reward in an episode or finite horizon. Therefore, solving for
optimal policy reduces to the problem of solving

max
θ

ρ (πθ)

In order to use stochastic gradient descent algorithm for finding a
stationary point of the above problem, we need to compute (an
unbiased) estimate of gradient of ρ (πθ) with respect to θ.
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Finite horizon MDP

Here performance measure to optimize is total expected reward
over a finite horizon H.

ρ(π) = E

[
H∑

t=1

γt−1rt|π, s1

]

Let π(s, a) denote the probability of action a in state s for
randomized policy π. Let Dπ(τ) denote the probability distribution
of a trajectory (state-action sequence)
τ = (s1, a1, s2, . . . , aH−1, sH) of states on starting from state s1 and
following policy π. That is,

Dπ(τ) :=
H−1∏
i=1

π (si, ai)P (si, ai, si+1)
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Finite horizon MDP

Theorem 2
For finite horizon MDP (S,A, s1,P,R,H), let R(τ) be the total reward
for an sample trajectory τ , on following πθ for H steps, starting from
state s1. Then,

∇θρ (πθ) = Eτ [R(τ)∇θ log (Dπθ(τ))] = Eτ

[
R(τ)

H−1∑
t=1

∇θ log (πθ (st, at))

]

Proof. Let R(τ) be expected total reward for an entire sample
trajectory τ , on following πθ for H steps, starting from states1. That is,
given a sample trajectory τ = (s1, a1, s2, . . . , aH−1, sH) from distribution
Dπθ ,

R(τ) :=
H−1∑
t=1

γt−1R (st, at)
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Proof of Theorem 2

Then,
ρ (πθ) = Eτ∼Dπθ[R(τ)]

Now, (the calculations below implicitly assume finite state and action
space, so that the distribution D(τ) has a finite support)

∂ρ (πθ)

∂θ
=

∂

∂θ
Eτ∼Dπθ [R(τ)]

=
∂

∂θ

∑
τ :Dπθ (τ)>0

Dπθ(τ)R(τ)

=
∑

τ :Dπθ (τ)>0

Dπθ(τ)
∂

∂θ
log (Dπθ(τ))R(τ)

= Eτ∼Dπθ

[
∂

∂θ
log (Dπθ(τ))R(τ)

]



8/71

Proof of Theorem 2

Further, for a given sample trajectory τ i.

∇θ log
(
Dπθ

(
τ i)) =

H−1∑
t=1

∇θ log
(
πθ
(
si

t, ai
t
))

+∇θ logP
(
si

t, ai
t, si

t+1
)

=

H−1∑
t=1

∇θ log
(
πθ
(
si

t, ai
t
))
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Finite horizon MDP

The gradient representation given by above theorem is extremely
useful, as given a sample trajectory this can be computed only
using the policy parameter, and does not require knowledge of
the transition model P(·, ·, ·)! This does seem to require
knowledge of reward model, but that can be handled by
replacing R

(
τ i
)

by R̂
(
τ i
)
= r1 + γr2 + . . . , γH−2rH−1, the total of

sample rewards observed in this trajectory.
Since, given a trajectory τ , the quantity Dπθ(τ) is determined,
and E[R̂(τ)|τ ] = R(τ)

∇θρ (πθ) = Eτ [R(τ)∇θ log (Dπθ(τ))]

= Eτ

[
R̂(τ)∇θ log (Dπθ(τ))

]
= Eτ

[
R̂(τ)

H−1∑
t=1

∇θ log (πθ (st, at))

]
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Unbiased estimator of gradient from samples

From above, given sample trajectories τ i, i = 1, . . . ,m, an
unbiased estimator for gradient ∇θρ (πθ) is given as:

ĝ =
1
m

m∑
i=1

R̂
(
τ i)∇θ log

(
Dπθ

(
τ i))

=
1
m

m∑
i=1

R̂
(
τ i) H−1∑

t=1

∇θ log
(
πθ
(
si

t, ai
t
))
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Baseline

Note that for any constant b (or b that is conditionally
independent of sampling from πθ given θ), we have:

Eτ

[
b
∂

∂θj
log (Dπθ(τ)) |θ, s1

]
= b

∫
τ

∂

∂θj
(Dπθ(τ)) = b

∂

∂θj

∫
τ

Dπθ(τ) = 0

Therefore, choosing any ’baseline’ b, following is also an
unbiased estimator of the ∇θρ (πθ):

ĝ =
1
m

m∑
i=1

H−1∑
t=1

(
R̂
(
τ i)− b

)
∇θ log

(
πθ
(
si

t, ai
t
))
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Baseline

Or, more generally, one could even use a state and time
dependent baseline bt

(
si

t
)

conditionally is independent of
sampling from πθ given si

t, θ, to get estimator:

ĝ =
1
m

m∑
i=1

H−1∑
t=1

(
R̂
(
τ i)− bt

(
si

t
))
∇θ log

(
πθ
(
si

t, ai
t
))

(1)

Below we show this is unbiased. The expectations below are
over trajectories (s1, a1, . . . , aH−1, sH), where at ∼ π (st, ·), given
st. For any fixed θ, t, the baseline bt (st) |st needs to be
deterministic or independent of at|st. For simplicity we assume it
is deterministic.
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Baseline

Eτ

[
H−1∑
t=1

bt (st)
∂

∂θj
log (πθ (st, at)) |θ, s1

]

= E

[
H−1∑
t=1

E
[

bt (st)
∂

∂θj
log (πθ (st, at)) |st

]
|θ, s1

]

= E

[
H−1∑
t=1

bt (st)E
[
∂

∂θj
log (πθ (st, at)) |st

]
|θ, s1

]

= E

[
H−1∑
t=1

bt (st)
∑

a

πθ (st, a)
∂

∂θj
log (πθ (st, a)) |θ, s1

]

= E

[
H−1∑
t=1

bt (st)
∑

a

∂

∂θj
πθ (st, a) |θ, s1

]
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Baseline

= E

[
H−1∑
t=1

bt (st)
∂

∂θj

∑
a

πθ (st, a) | θ, s1

]

= E

[
H−1∑
t=1

bt (st)
∂

∂θj
1 | θ, s1

]
= 0

An example of such state dependent baseline bt(s), given s and
θ, is Vπθ

H−t(s), i.e., the value of policy πθ, starting from state s at
time t. We will see later that such a baseline is useful in reducing
the variance of gradient estimates.
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Vanilla policy gradient algorithm

Initialize policy parameter θ, and baseline.
In each iteration,

Execute current policy πθ to obtain several sample trajectories τ i,
i = 1, . . . ,m.
Use these sample trajectories and chosen baseline to compute
the gradient estimator ĝ as in (1)
Update θ ← θ + αĝ

Update baseline as required.
Above is essentially same as the REINFORCE algorithm introduced
by [Williams, 1988, 1992].



16/71

Softmax policies

Consider policy set parameterized by θ ∈ Rd such that given
s ∈ S, probability of picking action a ∈ A is given by:

πθ(s, a) =
eθ

⊤ϕsa∑
a′∈A eθ⊤ϕsa′

where each ϕsa is an d-dimensional feature vector characterizing
state-action pair s, a. This is a popular form of policy space
called softmax policies. Here,

∇θ log (πθ(s, a)) = ϕsa −

(∑
a′∈A

ϕsa′πθ
(
s, a′

))
= ϕsa − Ea′∼π(s) [ϕsa′ ]
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Gaussian policy for continuous action spaces

In continuous action spaces, it is natural to use Gaussian
policies. Given state s, the probability of action a is given as:

πθ(s, a) = N
(
ϕ(s)Tθ, σ2)

for some constant σ. Here ϕ(s) is a feature representation of s.
Then,

∇θ log (πθ(s, a)) = ∇θ
−
(
a− θ⊤ϕ(s)

)2

2σ2 =

(
θ⊤ϕ(s)− a

)
σ2 ϕ(s)
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Actor-critic methods

Actor-only methods (vanilla policy gradient) work with a
parameterized family of policies.
The gradient of the performance, with respect to the actor
parameters, is directly estimated by simulation, and the
parameters are updated in a direction of improvement.
A possible drawback of such methods is that the gradient
estimators may have a large variance.
As the policy changes, a new gradient is estimated
independently of past estimates (by sampling trajectories).
There is no "learning", in the sense of accumulation and
consolidation of older information.
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Actor-critic methods

Critic-only methods (e.g., Q-learning, TD-learning) rely
exclusively on value function approximation and aim at learning
an approximate solution to the Bellman equation, which will then
hopefully prescribe a near-optimal policy.
Such methods are indirect in the sense that they do not try to
optimize directly over a policy space.
A method of this type may succeed in constructing a "good"
approximation of the value function, yet lack reliable guarantees
in terms of near-optimality of the resulting policy.
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Actor-critic methods

Actor-critic methods aim at combining the strong points of
actor-only and critic-only methods, by incorporating value
function approximation in the policy gradient methods.
We already saw the potential of using value function
approximation for picking baseline for variance reduction.
Another more obvious place to incorporate Q-value
approximation is for approximating Q-function in the policy
gradient expression. Recall, by policy gradient theorem:

∇θρ (πθ) =
∑

s

dπθ(s)Ea∼π(s) [(Q
πθ(s, a)− bπθ(s))∇θ log (πθ(s, a))]

for any baseline bπθ(·).
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Theorem 1 (Sutton et al. [1999])
If function fω is compatible with policy parametrization θ in the sense
that for every s, a,

∇ωfω(s, a) =
1

πθ(s, a)
∇θπθ(s, a) = ∇θ log (πθ(s, a))

And, further we are given parameter ω which is a stationary point of
the following least squares problem:

min
ω

Es∼dπθ ,a∼πθ(s,)

[
(Qπθ(s, a)− b(s; θ)− fω(s, a))2

]
where b(·; θ) is any baseline, which may depend on the current policy
πθ. Then,

∇θρ (πθ) = Es∼dπθEa∈πθ(s) [fω(s, a)∇θ log (πθ(s, a))]

That is, function approximation fω can be used in place of Q-function
to obtain gradient with respect to θ.
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Proof of Policy gradient theorem

(Here, we abuse the notation and use Es∼dπθ [x] as a shorthand for∑
s dπθ(s)x. This is not technically correct in the discounted case since

in that case dπθ(s) = Es1

[∑∞
t=1 Pr (st = s;π, s1) γ

t−1
]
, which is not a

distribution. In fact in discounted case, (1− γ)dπθ is a distribution.)
Proof. Given θ, for stationary point ω of the least squares problem:

Es∼dπθ,a∼πθ(s,·) [(Q
πθ(s, a)− b(s; θ)− fω(s, a))∇ωfω(s, a)] = 0

Substituting the compatibility condition:

Es∼dπθ ,a∼πθ(s,·)

[
(Qπθ(s, a)− b(s; θ)− fω(s, a))∇θπθ(s, a)

1
πθ(s, a)

]
= 0
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Proof of Policy gradient theorem

Or, ∑
s

dπθ(s)
∑

a

∇θπθ(s, a) (Qπθ(s, a)− b(s; θ)− fω(s, a)) = 0

Since b(s; θ)
∑

a∇θπθ(s, a) = 0∑
s

dπθ(s)
∑

a

∇θπθ(s, a) (Qπθ(s, a)− fω(s, a)) = 0

using this with the policy gradient theorem, we get

∇θρ (πθ) =
∑

s

dπθ(s)
∑

a

∇θπθ(s, a)fω(s, a)
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Example: softmax policy

Consider policy set parameterized by θ such that given s ∈ S,
probability of picking action a ∈ A is given by:

πθ(s, a) =
eθ

⊤ϕsa∑
a′∈A eθ⊤ϕsa′

where each ϕsa is an ℓ-dimensional feature vector characterizing
state-action pair s, a. This is a popular form of parameterization.
Here,

∇θπθ(s, a) = ϕsaπθ(s, a)−

(∑
a′∈A

ϕsa′πθ
(
s, a′

))
πθ(s, a)
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Example: softmax policy

Meeting the compatibility condition in Theorem 1 requires that

∇ωfω(s, a) =
1

πθ(s, a)
∇θπθ(s, a) = ϕsa −

∑
a′∈A

ϕsa′πθ
(
s, a′

)
A natural form of fω(s, a) satisfying this condition is:

fω(s, a) = ω⊤

(
ϕsa −

∑
b∈A

ϕsbπθ(s, b)

)

Thus fω must be linear in the same features as the policy, except
normalized to be mean zero for each state. In this sense it is
better to think of fω as an approximation of the advantage
function, Aπ(s, a) = Qπ(s, a)− Vπ(s), rather than Qπ.
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Example: Gaussian policy for continuous action
spaces

In continuous action spaces, it is natural to use Gaussian policy.
Given state s, the probability of action a is given as:

πθ(s, a) = N
(
ϕ(s)Tθ, σ2)

for some constant σ. Here ϕ(s) is a feature representation of s.
Then, compatibility condition for fω(s, a):

∇ωfω(s, a) = ∇θ log (πθ(s, a)) = ∇θ
−
(
a− θ⊤ϕ(s)

)2

2σ2 =

(
θ⊤ϕ(s)− a

)
σ2 ϕ(s)

For fω to satisfy this, it must be linear in ω, e.g.,

fω(s, a) = (θ⊤ϕ(s)−a)
σ2 ϕ(s)⊤ω
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Policy iteration algorithm with function approximation

Let fω(·, ·) be such that ∇fω(s, a) = ∇θ log πθ(s, a) for all ω, θ, s, a.
Initialize θ1, π1 := πθ1 . Pick step sizes α1, α2, . . . ,.
In iteration k = 1, 2, 3, . . . ,

Policy evaluation: Find wk = w such that

Es∼dπkEa∼πk(s) [(Q
πk(s, a)− bk(s)− fω(s, a))∇θ log (πk(s, a))] = 0

(Here, dπk is not normalized to 1, and sums to 1/(1− γ).)
Policy improvement:

θk+1 ← θk + αkEs∼dπkEa∼πk(s) [fω(s, a)∇θ log (πk(s, a))]

A similar algorithm appears in Konda and Tsitsiklis [1999].
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Convergence Guarantees

Following version of convergence guarantees were provided by
Sutton et al. [1999] for infinite horizon MDPs (average or discounted).

Theorem 2 (Sutton et al. [1999])
Given α1, α2, . . . , such that

lim
T→∞

T∑
k=1

αk =∞, lim
T→∞

T∑
k=1

α2
k <∞

and maxθ,s,a,i,j
∂2πθ(s,a)

∂θiθj
<∞. Then, for θ1, θ2, . . . , obtained by the

above algorithm,
lim

k→∞
∇θρ (θ)|θk

= 0
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Pseudocode: Vanilla Policy Gradient Algorithm

Algorithm 1 Vanilla Policy Gradient Algorithm
1: Input: initial policy parameters θ0, initial value function parameters ϕ0
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t .
5: Compute advantage estimates, Ât (using any method of advantage estimation) based on the current value function Vϕk

.

6: Estimate policy gradient as

ĝk =
1

|Dk|

∑
τ∈Dk

T∑
t=0

∇θ log πθ(at|st)|θk
Ât.

7: Compute policy update, either using standard gradient ascent,

θk+1 = θk + αk ĝk,

or via another gradient ascent algorithm like Adam.
8: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T

∑
τ∈Dk

T∑
t=0

(
Vϕ(st) − R̂t

)2
,

typically via some gradient descent algorithm.
9: end for
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Outline

1 Policy gradient methods
Finite horizon MDP

2 Actor-critic methods

3 TRPO and PPO

4 MCTS and AlphaGo Zero
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Trust Region Policy Optimization (John Schulman, etc)

Assume start-state distribution d0 is independent with policy

Total expected discounted reward with policy π

η(π) = Eπ[

∞∑
t=0

γtr(st)]

Advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

Between any two different policy π̃ and π

η(π̃) = η(π) + Eπ̃[
∞∑

t=0

γtAπ(st, at)]

= η(π) +
∞∑

t=0

∑
s

P(st = s|π̃)
∑

a

π̃(a|s)γtAπ(s, a)

= η(π) +
∑

s

∞∑
t=0

γtP(st = s|π̃)
∑

a

π̃(a|s)Aπ(s, a)

= η(π) +
∑

s

dπ̃(s)
∑

a

π̃(a|s)Aπ(s, a).
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Trust Region Policy Optimization

Find new policy π̃ to maximize η(π̃)− η(π) for given π, that is

max
π̃

η(π) +
∑

s

dπ̃(s)
∑

a

π̃(a|s)Aπ(s, a)

For simpleness, maximize the approximator

Lπ(π̃) = η(π) +
∑

s

dπ(s)
∑

a

π̃(a|s)Aπ(s, a)

Parameterize the policy π(a|s) := πθ(a|s)

Lπθold
(πθ) = η(πθold) +

∑
s

dπθold
(s)
∑

a

πθ(a|s)Aπθold
(s, a)
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Why Lπθold
(πθ)?

A sufficiently small step θold → θ improves Lπθold
(πθ) also improves η

Lπθold
(πθold) =η(πθold),

∇θLπθold
(πθ)|θ=θold =∇θη(πθ)|θ=θold .

Lower bounds on the improvement of η

η(πθnew) ≥ Lπθold
(πθnew)−

2ϵγ
(1− γ)2 α

2

where

ϵ =max
s
|Ea∼πθnew

Aπθold
(s, a)|

α =Dmax
TV (πθold ||πθnew) = max

s
DTV(πθold(·|s)||πθnew(·|s))
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Lower bound

TV divergence between two distribution p, q (discrete case)

DTV(p∥q) =
1
2

∑
X

|p(X)− q(X)|

KL divergence between two distribution p, q (discrete case)

DKL(p∥q) =
∑

X

p(X) log
p(X)
q(X)

(DTV(p||q))2 ≤ DKL(p||q) (Pollard(2000),Ch.3)

Thus obtain a lower bound

η(πθnew) ≥ Lπθold
(πθnew)−

2ϵγ
(1− γ)2 α

where

α = Dmax
KL (πθold ||πθnew) := max

s
DKL(πθold(·|s)||πθnew(·|s))
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Practical algorithm

The penalty coefficient 2ϵγ
(1−γ)2 is large in practice, which yields small

update

Take a constraint on the KL divergence, i.e., a trust region constraint:

max
θ

Lπθold
(πθ)

s.t. Dmax
KL (πθold ||πθ) ≤ δ

A heuristic approximation

max
θ

Lπθold
(πθ)

s.t. D
ρπθold
KL (πθold ||πθ) ≤ δ

where

D
ρπθold
KL (πθold ||πθ) = Eπθold

(DKL(πθold(·|s)||πθ(·|s))
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TRPO

The objective and constraint are both zero when θ = θk.
Furthermore, the gradient of the constraint with respect to θ is
zero when θ = θk.

The theoretical TRPO update isn’t the easiest to work with, so
TRPO makes some approximations to get an answer quickly. We
Taylor expand the objective and constraint to leading order
around θk:

Lθk(θ) ≈ gT(θ − θk)

D̄KL(θk||θ) ≈
1
2
(θ − θk)

TH(θ − θk)

resulting in an approximate optimization problem,

θk+1 = argmax
θ

gT(θ − θk)

s.t.
1
2
(θ − θk)

TH(θ − θk) ≤ δ.
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TRPO

By happy coincidence, the gradient g of the surrogate advantage
function with respect to θ, evaluated at θ = θk, is exactly equal to
the policy gradient, ∇θJ(πθ)

This approximate problem can be analytically solved by the
methods of Lagrangian duality, yielding the solution:

θk+1 = θk +

√
2δ

gTH−1g
H−1g.

TRPO adds a modification to this update rule: a backtracking line
search,

θk+1 = θk + αj

√
2δ

gTH−1g
H−1g,

where α ∈ (0, 1) is the backtracking coefficient, and j is the
smallest nonnegative integer such that πθk+1 satisfies the KL
constraint and produces a positive surrogate advantage.
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TRPO

computing and storing the matrix inverse, H−1, is painfully
expensive when dealing with neural network policies with
thousands or millions of parameters. TRPO sidesteps the issue
by using the ‘conjugate gradient’ algorithm to solve Hx = g for
x = H−1g, requiring only a function which can compute the
matrix-vector product Hx instead of computing and storing the
whole matrix H directly.

Hx = ∇θ

(
(∇θD̄KL(θk||θ))T x

)
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Pseudocode: TRPO

Algorithm 2 Trust Region Policy Optimization
1: Input: initial policy θ0, initial value function ϕ0, KL-divergence limit δ, backtracking coefficient α
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t .
5: Compute advantage estimates, Ât (using any method of advantage estimation) based on the current value function Vϕk

.

6: Estimate policy gradient as

ĝk =
1

|Dk|

∑
τ∈Dk

T∑
t=0

∇θ log πθ(at|st)|θk
Ât.

7: Use the conjugate gradient algorithm to compute x̂k ≈ Ĥ−1
k ĝk , where Ĥk is the Hessian of the sample average KL-

divergence.

8: Update the policy by backtracking line search with θk+1 = θk + αj
√

2δ
x̂T
k Ĥk x̂k

x̂k , where j is the smallest value which

improves the sample loss and satisfies the sample KL-divergence constraint.
9: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T

∑
τ∈Dk

T∑
t=0

(
Vϕ(st) − R̂t

)2
,

typically via some gradient descent algorithm.
10: end for
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Proximal Policy Optimization (PPO)

PPO is motivated by the same question as TRPO: how can we
take the biggest possible improvement step on a policy using the
data we currently have, without stepping so far that we
accidentally cause performance collapse? Where TRPO tries to
solve this problem with a complex second-order method, PPO is
a family of first-order methods that use a few other tricks to keep
new policies close to old.

PPO-Penalty approximately solves a KL-constrained update like
TRPO, but penalizes the KL-divergence in the objective function
instead of making it a hard constraint, and automatically adjusts
the penalty coefficient over the course of training so that it’s
scaled appropriately.

PPO-Clip doesn’t have a KL-divergence term in the objective
and doesn’t have a constraint at all. Instead relies on specialized
clipping in the objective function to remove incentives for the new
policy to get far from the old policy.
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Key Equations

PPO-clip updates policies via

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)] ,

typically taking multiple steps of (usually minibatch) SGD to
maximize the objective. Here L is given by

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk (a|s)

Aπθk (s, a), clip

(
πθ(a|s)
πθk (a|s)

, 1 − ϵ, 1 + ϵ

)
Aπθk (s, a)

)
,

in which ϵ is a (small) hyperparameter which roughly says how
far away the new policy is allowed to go from the old.

https:
//openai.com/research/openai-baselines-ppo
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This is a pretty complex expression, and it’s hard to tell at first
glance what it’s doing, or how it helps keep the new policy close
to the old policy. As it turns out, there’s a considerably simplified
version of this objective which is a bit easier to grapple with

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ,Aπθk (s, a))
)
,

where

g(ϵ,A) =
{

(1 + ϵ)A A ≥ 0
(1− ϵ)A A < 0.

To figure out what intuition to take away from this, let’s look at a
single state-action pair (s, a), and think of cases.
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Pseudocode: PPO

Algorithm 3 PPO-Clip
1: Input: initial policy parameters θ0, initial value function parameters ϕ0
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t .
5: Compute advantage estimates, Ât (using any method of advantage estimation) based on the current value function Vϕk

.

6: Update the policy by maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1

|Dk|T

∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)

πθk
(at|st)

A
πθk (st, at), g(ϵ, A

πθk (st, at))

)
,

typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T

∑
τ∈Dk

T∑
t=0

(
Vϕ(st) − R̂t

)2
,

typically via some gradient descent algorithm.
8: end for
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Reinforcement Learning from Human Feedback

RLHF: Nisan Stiennon, etc, Learning to summarize with human
feedback, NeurIPS 2020
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InstructGPT

provide detailed, accurate, and instructive responses to user queries.
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ChatGPT

generate human-like text based on the input it’s given, and it can
carry out a wide-ranging conversation on various topics.
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Outline

1 Policy gradient methods
Finite horizon MDP

2 Actor-critic methods

3 TRPO and PPO

4 MCTS and AlphaGo Zero
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Monte-Carlo Tree Search (MCTS)

MCTS is a recent algorithm for sequential decision making

MCTS is a versatile algorithm (it does not require knowledge
about the problem)

especially, does not require any knowledge about the Bellman
value function

stable on high dimensional problems

it outperforms all other algorithms on some problems (difficult
games like Go, general game playing, . . . )
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MCTS

Problems are represented as a tree structure:
blue circles = states
plain edges + red squares = decisions
dashed edges = stochastic transitions between two states

Explored decisions

Explored states

Stochastic transitions

.

.

.

Current state (root)

t 1

.

.

.

t 2
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Main steps of MCTS

+1

+1

+1

+1

horizon

selection expansion simulation propagation

t n t n+1
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Main steps of MCTS

Starting from an initial state:
1 Selection: select the state we want to expand from

2 Expansion: One (or more) child nodes are added to expand the
tree, according to the available actions.

3 Simulation: A simulation is run from the new node(s) according
to the default policy (pick actions randomly) to produce an
outcome.

4 Back-propagation of some information:
N(s, a) : number of times decision a has been simulated in s

N(s) : number of time s has been visited in simulations

Q(s, a) : mean reward of simulations where a was chosen in s
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Main steps of MCTS

+1

+1

+1

+1

horizon

1. selection 2. expansion 3. simulation 4. propagation

t n t n+1

a t n

The selected decision
atn = the most visited decision from the current state (root node)
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Selection step

How to select the state to expand ?

?

?
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How to select the state to expand ?

? ? ?

argmax scoreucb(s,a)
       a

The selection phase is driven by Upper Confidence Bound (UCB):

scoreucb(s, a) = Q(s, a)︸ ︷︷ ︸
1

+

√
log(2 + N(s))

2 + N(s, a)︸ ︷︷ ︸
2

1 mean reward of simulations including action a in state s
2 the uncertainty on this estimation of the action’s value
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How to select the state to expand ?

? ? ?

argmax scoreucb(s,a)
       a

The selection phase is driven by Upper Confidence Bound (UCB):

scoreucb(s, a) = Q(s, a)︸ ︷︷ ︸
1

+

√
log(2 + N(s))

2 + N(s, a)︸ ︷︷ ︸
2

The selected action:

a⋆ = argmax
a

scoreucb(s, a)
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Example: Back-propagation
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AlphaZero

2018/12/7, AlphaZero at “Science”. It demonstrates learning chess,
shogi and go, tabula rasa without any domain-specific human
knowledge or data, only using self-play. The evaluation is performed
against strongest programs available.
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AlphaZero

AlphaZero uses a neural network predicting (p(s), v(s)) = f (s, θ)
for a given state s

p(s) is a vector of move probabilities
v(s) is expected outcome of the game in range [−1, 1].

Unlike the standard MCTS, Alpha Go Zero does not use a
default policy to perform a rollout in order to achieve an estimate
of the value of a state.

By a sequence of simulated self-play games, the search can
improve the estimate of p and v, and can be considered a
powerful policy evaluation operator given a network f predicting
policy p and value estimate v, MCTS produces a more accurate
policy π and better value estimate w for a given state:

(π(s),w(s))← MCTS(p(s), v(s), f ) for (p(s), v(s)) = f (s, θ).
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AlphaZero: MCTS

MCTS keeps a tree of currently explored states from a fixed root
state. Each node corresponds to a game state and to every non-root
node we got by performing an action a from the parent state. Each
state-action pair (s, a) stores the following set of statistics:

visit count N(s, a)

total action-value W(s, a)

mean action-value Q(s, a) = W(s, a)/N(s, a), which is not stored
explicitly

prior probability P(s, a) of selecting action a in state s
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AlphaZero: UCB

Each simulation starts in the root node and finishes in a leaf
node sL. In a state st, an action is selected using a variant of
PUCT algorithm as

at = argmax
a

Q(st, a) + U(st, a)

where

U(s, a) = C(s)P(s, a)

√
N(s)

1 + N(s, a)
,

with C(s) = log
(

1+N(s)+cbase
cbase

)
+ cinit.

In the Alphazero paper, cinit = 1.25 and cbase = 19652.
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AlphaZero

When reaching a leaf node sL,
evaluate it by the network, generating (p, v)

add all its children with N = W = 0 and the prior probability p,

in the backward pass for all t ≤ L, we update the statistics in
nodes by performing

N(st, at)← N(st, at) + 1, and
W(st, at)← W(st, at)± v, depending on the player on turn.
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AlphaZero

The MCTS runs usually several hundreds simulations in a single
tree. The result is a distribution proportional to exponentiated
visit counts N(sroot, a)1/τ using a temperature (τ = 1 is mostly
used), together with the predicted value function.

The next move is chosen as either:
proportional to visit counts N(sroot, ·)1/τ

πroot(a) ∼ N(sroot, ·)1/τ

deterministically as the most visited action

πroot = argmax
a

N(sroot, a)

During self-play, the stochastic policy is used for the first 30
moves of the game, while the deterministic is used for the rest of
the moves. (This does not affect the internal MCTS search, there
we always sample according to PUCT rule.)
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AlphaZero: Loss function

The network is trained from self-play games.

A game is played by repeatedly running MCTS from a state st

and choosing a move at ∼ πt, until a terminal position sT is
encountered, which is then scored according to game rules as
z ∈ {−1, 0, 1}.

Finally, the network parameters are trained to minimize

L = (z− v)2 + π⊤ log p + c∥θ∥2

a mean squared error between the predicted outcome v and the
simulated outcome z
a crossentropy/KL divergence for the action distribution, i.e., the
similarity of the policy vector p and the search probabilities π
L2 regularization
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AlphaGo Zero
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AlphaGo Zero
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AlphaGo Zero
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AlphaGo Zero
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AlphaGo Zero
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AlphaGo Zero
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AlphaGo Zero
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AlphaGo Zero
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