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class notes, and reference books or papers
@ “Convex optimization”, Stephen Boyd and Lieven Vandenberghe

@ “Numerical Optimization”, Jorge Nocedal and Stephen Wright,
Springer

@ “Optimization Theory and Methods”, Wenyu Sun, Ya-Xiang Yuan

o XXF, PR, FHH, AL, mAEM. . HEEE R K
dpAt . ISBN: 9787040550351

@ L AIRAA, REFEIH T HEE



P2 A2+ %)

il & # A8 K& mARA LB AR B ok

o AMAK], FrEAX

0 JE 45 B Anth AL A R AR 8 e 0k
o RAKIETE IR B 69 A AR bA B ik
Optimal transport

HFAR]

M AL AL B

I AUAF AR AR B %

AAAE AR B

7% 1.2 3] (reinforcement learning)
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R F21Z &

o H#%H K. REHK
o WA A ik

o B —XR(2418) #TH10%, FT#HZTHRIARGIELFR A (FEAT
BIEE R AR TET)
k’ﬁ?ﬂi’ @3@’7@%"%5/?‘ 40%
o T EK: 30%
(] 1%ﬁilﬁ E : 30%
PFLRR: ) HHERERE R LROHRAFI, AR5 X4
Aol . KA RBEAL ZFAHREL HEOREFEZST, LFHd
REHFmeGIEF A BAEE RR S - i) T AR F A48 A KB
A, EXrAFA T EBEY L, R %EE A TRLTAK - i)
PENEEZE, NEZHER, WEFOLE, LCREFE/EME
BABYE . V) 2 RA TSN L CETRLIRAHN B, H7] 8

o it itk
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e Machine learning
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k]

MEF] . BEF RN

4«3‘

@ MEF], ALK
o TFAMMI . B KiEF LI (ChatGPT)
e HEH#: AlphaGo, AlphaGo Zero
o AFAMBFHLREIIRXALA: f: X =Y
°o BUi4 #’Jfﬁzﬂ‘](Alphafole) X: BQRAFA Y St
o REHA: X: 2 F4M, Y. RT¥Ha
o B fAEFSE . mEEANE, AACHRS LI IRRH
THAEFE R

o Mi&: KAVAR S 69 4 3E:
{(x,-,yi) |x,- eX,yieY, 1< SN}

o MEFAAME frfiBBRALR



B R R X
W 2T W] R F K, = h(x,0)

N
: 1 T 2 2%
10—y 2%, P =] )2
min E Ilx; 0 — yill5 + pe(0) L=y

(5161%/1\1} Zlog (1 + exp(—yx] 0)) + pp(d) E 4w )2

bW ZE (xi,0),yi) + pp(9)  —#H X
@ (x;,y;) THEEGIIE, y;, & EIFx 22 094r &
@ (;(-): BERAMMAEIKIE i E (B 2IETR)

@ h(x,0): RPERE . RRM/ARREAE G REAY 2P B EORTY



MEF] . ki s A, Ak

@ ground truth: 9}, = argmin E[¢(h(x, 0), y)]
VeH

@ optimal hypothesis: 0}, = arg gni;}E[K(h(x,H),y)]
S
@ empirical optimal hypothesis: 65 = argmm]{, Zf.vzl L(h(x;,0),yi)
0cH

@ returned hypothesis: §

e N
’ 7 9p \
a \/
( H 65 Approximation Error
(Expressiveness)
Estimation Error
o5 (Generalization)
\ 8 “Training Error | )
\\ (Optimization) J L

10/41



WL F 1 5

% B =%+ Michael Jordan# ¥ B 2R K& — iR %

4 ﬁ ﬂ] HT /Pﬂ él] /\'?F( k#Jl: \}5&4 % é}f‘_,i"'/ﬁiﬁ Computation and Statistics
Ao Tt I 69 T4 3K VE AT A B o A G kgt el et
@&ﬁ,%mﬂhﬁmkﬂ%4aﬁ -

FARE .

0 R AZINHARME T HAEREA,
BT HiE AR G LR

o MARRIMAL AT AMLALF K T #7695
B BAERTE/HFCON, #HiEN
M, ey, BRERE, F47/90468 XF




WS F A A

“Statistics and the Oncoming Al Revolution”

@ What has made ML so successful? What

are the disciplines supporting ML and i B AR
providing a good basis to understand the Emmanuel
Candés

challenges, open problems, and limitations
of the current techniques?

1) basic statistical tools: linear models,
generalized linear models, logistic
regression, cross validation, overfitting . ..
2) probability theory and probabilistic
modeling.

@ How about engineering disciplines?
Clearly, progress in
optimization—particularly in convex
optimization—has fueled ML algorithms
for the last two decades.

12/4%



R AR R A Bk

RARAL 7] R — FZ T vAG £ A

min  f(x),
st. xe X

0 %M B AR HE A B R BT X kD
SEARIAE AR - DRA/AE S ERERA . FEA
Rl AR . EEOLR] . £ FEAEA . JUFTIRAL - FR R AL L A%
BREETERAL . REMHA . FHREML . 2 HK7M . BAEHRH. M
A AL . AR . F Ry F ALY RMEA . BSATY
RALA « 9T XA F

o AiAmAikE .
EEZ BRBEE . PRETE. FAER . 1% T . BERA
Fo. RILEH . ZFLAE. BRAE . MEFET . BAET . B
KRF . @I . &) ALFHRK



e Sparse and low-rank optimization
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#h FALAL

min /o, min - xll, min x|,
(ZO) xeR (52) xeR (51) xeR
st. Ax=b. st. Ax=0b. st. Ax=0b.

o R ||x|oR ey PABALG K. & F|x|oR FELYZHE, B
BUE AT RE AR, (P IR E NPy, Riga ks R
.

@ BHRL A |x]l; =0, [nls EAVFET 5 AKX EEF
ABALEY B RE . ARL T EAR AL AR, A6 3R R AR

@ NI ||x], = (Z?:lxiz)l/z
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Hh FLAR AL
A MATLABIF 3t Z A A, u A2 -

m
A
u
b

128; n = 256;
randn (m, n);

sprandn (n,
A *x u;

1,

0.1);

M —A128 x 2562ET4A, CIHENTEABRM ST (Gauss) Mo

i HERBUR A% A FIER, F-ANERLT LRI A

%

¥

(@) # i AEu

50

(b) £1 191 % 69 g

Figure: # SRk AL 8945 F

50 100

(C) ta 18 e
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Ak 4E 5 Wk B

o EMIMMERBET X487 M P17 7T 43 w8 LA &R %
¥, B PG @YIFRBAATN, NdmX@ AP eBES R
Y. AHENRP ZAAMIIBEFE R

@ EARE—NRPATHRALIMAGEY,

F—HREH LR TaK

FE APt n. WP FRGAPITS1 BB5 ZAT, 2H

AL~ 698 5. ROV IR RAME —MNMEBRM T . EEMY
F—ATAFRARNP, H—AATRALY.

g W ¥ 2

A FA
F P2
M FP3
F P4

}ﬂ).a'm

4

N W v

?

00 N

2

(U BRI S

3

N N

wEn

?

N N

T AP RAL
d 8 TN, EEMTRS LR E R
w1 w2 w3 w4
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Ak 4E 5 Wk B

@ 40 RIEEM PHA Ot R TEW TARGE A, WZ P TIA
MH R AN E—NEEX, RAELREEOALF TR
Tk BHRX,; =My, (i,)) € 2

o 1AM & (low rank matrix completion)
min  rank(X),
XERT’!X"
s.t. X,'j = Mija (l,]) € .
rank (X) &4 A& 48 [ X AT A 4F & <1 718 69 A~ 4

@ 4EMEX84% %3 (nuclear norm) 4 4E % BT A 4 F-A4 69 F=
B X = 22 0u(X):
min 11X,
XERITIXII



IR 9 &

o AL 2 i AS Fh An A 69 3R
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h S ARARSE 5 5 B

@ LTIEMEM, RABKE —MAKIEE WA RIELE, 1245

W+E=M.
o FFLAEAM .
i k(W E
i, rank(W) 4 pllElo,
st.  WHE=M.
o hinit

min Wl + ullElr, st W+E=M

20/41
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&4 22 W %Convolutional neural network (CNN)

0 X BRI € R 5B MK € RFK, © L HAnR

YES =I+xK> CW¥LEE

0 ERNLERST ARE BB EL . MARREREL . RK

Sij=U(Gi:i+k—1,j:j+k—1),K),
EFAmAEMRX, YO AR ZENA R T FE BRI e

feutFah ey K FAa e Bk

122 [Ta L 1] -
ofofofr)2]o]O ). .. 61516|7 4]
2l0f1]2f0 1)1 1{o]1 31316[1]5
2{1[1]0140 T~ |0]1 713(4|6[4
Ljof2]{o]1]|2[2). 1{0]1 5|5[4|1(7
1{2|1]{o|1]|0(2 7[4]6[4[4
of2]2]1]1]o]0 o

I K S=IxK

2214



&4 42 W %-Convolutional neural network (CNN)

LeCUNFAFRI MO ZE L THF S ROFEMEL . JLERFITIERA T R
BHIZ L FEHFE.

C3: 1, maps 16@10x10
WPUT C1: faatura maps 4.1, maps 16@545

a2

521 maps
6@14x14

\
‘ FuIIcmAec‘u’nn ‘ (Gaussian connections
Convalutions Subsamping  Comvaluions  Subsampling Full connection

2314



Schradinger equation

@ The N-electron Schrédinger equation
HU = EU,

where H is the molecular Hamiltonian operator, ¥ is a N-electron
antisymmetric wave function.

@ Curse of dimensionality: computational work goes as 103V.
@ Kohn-Sham total energy minimization (Manifold Optimization):
XI*%}E[EKS(X) = Elineric (X) + Eion (X) + EHartree(X) + Exc(X)a
where VEks(X) = H(X)X.
@ Kohn-Sham equation:

HX)X =X\, X'X=1I



FermiNet: 4F4E{4 1540 9] B 4+ IR B AF 22 M 26 +SGD

@ Minimizing the following Rayleigh quotient:

Jo*(r dr

Fo o

Ey =minE\Y
0 my_}n[]

@ Variational Quantum Monte Carlo:

[ (r Hy'/g )dr
] (x
I%( )I
f’@g ‘zdl‘

= Ep,(r) [EL(r)] = solved by SGD

mgin L) =

(@, ' (r)HTp(r)) dr

@ Local Energy: Er(r) = @, ' (r)HTy(r),
Probability distribution: Po(r) = (e

25/41
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2k 3815 4T B 69 e

B AR RAKRFEREFIZE

Passenger i

Demand o/

|

[ Network Planning Problem ‘
(NPP)

T

le Planning Problem \‘
(LPP)

X

Strategic Level

( : " 3 \ / . . g ?
Train Timetabling Problem | Rolling Stock Planning Problem
{TT?) — (RSPP)

| |
' |
|

o
: l T | Tactical Level
| (Train Platforming Problcm:\‘ Crew Planning Problem i :
[ (TPP) (CPP) |
I ~ ~ ~
e e e e l____f__________l

v I
/ Disruption /’/ > Conflict Detectlor(l(?gi{})l)esolunou Problem Operational Level
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FATH R

Railway Line

Station 4

Station 3

Station 2

Station 1

Stoppimg: pattern |

Stopping pattern 2

Station 2

Time

L&
/

/
Ll

7
Gt 20min e 20 min i< 18 min >
(@) Scenario 1 (b) Seenario 2 () Scenario 3
= Stpping pattem ——— Train trajectory
a Distance b Distance c
Station4 I j/ / /
Station3 D / / /
Station2 / / /
Station1 >
Train C Time

Train stop plan

(8} A B

Train schedule 1

Time

Train schedule 2
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RIS EATHE AR R . R E . P FAAT

Station S
Overtaking
Station 4
Station 3
Station 2
. S0(k-1) GOCAk+1)
Station 1 - - -
(TD]. T [TDF .71 [7D7. 7D}
(i) Traditional train departure time window
n 74
and 7 s 7
e 4 s
¢ s 4 7.7
s %
= 7 i~ .
S 7’ ’
R 7 s
= £ 7,7
“l B
s 4 7 s 7
7 7 Y
L7, 70 L/t L 70,
<« Ab »
(capacity)

1
) A
(original)
(b) Timetable with overtaking allowance

Time
(a) Timetable without overtaking allowance
29/47%
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*x A8y E, MILP
ETHIESH (B8, HAE
1. Job-shop like ¢

) BT

Commercial Solvers

B&B (Overall, Inserting)

Heuristics (GA,SA,TS,ACO)
station A station B station C ==
=
2. PESP dep ar dep ar \\
m . _dv:cl ) . S
W ot | safel 7 / | fc, q E \\\
( ol i ] Lu]ar ’ regular utuhr =—=

ks \: i TN Jweﬁ_ L‘"’ ‘ un, Y‘ = \\ =

afe) :s&!ﬂ‘ {m‘ | safe mc\ |53(°

b Ul i i mss

sife \PJ safe

Commercial Solvers

Modulo Simplex Heuristic
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station 1 \
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Lagrangian Relaxation

ADMM

Branch and Price
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B f RIS |
RtiEz3|
EFRY T | sf=s+2
B f AT AR R Z T S
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RS

(s+1,s+2)
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BirRE: JERIRITIORE
min Wy, X,
;a;f rrag

pf(51 52) Vas€ AT”" N (s1,57)
it
W=y 0Y Va4
0 va; € AFt

%

1
xaf = 0

By AR EfR D ERBaLiBIT
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uu,:F@Ii’]% 1 if u =0
Z Xap — Z xaf={1 ifufzr VufEVf,VfEF
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thik EFRvkES
QOutbound Direction Inbound Direction
_— —
Section/Segment Section/Segment
e - _ e Lo ram, : Train
—_ 1 yu = L & p — timetabling
Block Block perspective

Station section ‘ Station ‘
Pkt > «

section Station ‘

- ~

B l EUUE S
P i
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RS X

~
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Rams Ane
L]
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R(af) = {rb

Xgo< 1
zferufeAT“"reR(af) o

—
Time horizon

Running arc a,

bis =2
b, T \
b, e |\ \
[ by T Ny T

\
Blocking resource

R(ag) = {120 117,723 1 728, T340 - T30}

Occupied blocking resource

} vb € B(ay)

vreR
¥
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pr(s1,52)  Var€ AL 0 (sy,5,)
W, = 5Y va € AYYns
i3
0 vas € A7
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Xap = Xag 1 ifu=t Vur €V, VfEF
areA*(uy) ageA=(uf) 0 otherwise

xafgl, Vvr €ER
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Xq, € (0,13

References: Simultaneously re-optimizing timetables and platform
schedules under planned track maintenance for a high-speed railway
network, https://doi.org/10.1016/5.trc.2020.102823
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Lecture: Introduction to LP, SDP and SOCP

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html
wenzw@pku.edu.cn

Acknowledgement: this slides is based on Prof. Farid Alizadeh lecture notes
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Outline

° Linear Programming (LP)
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Linear Programming (LP)

Primal Dual
mi_n CiXy + ...+ cuxy myax biyi + ...+ bpym

st. apxi+...+apx, =b; st anyvi+...+aniym L

AmiX1 + ...+ QupXn = by aipy1 + .o+ Gupym < cp
Xi 20



Linear Programming (LP)

more succinctly
Primal (P)
min ¢ x
X
st Ax=0b
x>0

Dual (D)
max b'y
y7s
s.t. ATy +s=c
s>0



Problems with absolute values

min Y eilxi, assume ¢ > 0
i

st. Ax>b

@ Reformulation 1:

min Z CizZi min Z CiZi
; i
<
st. Ax>b st. Ax>b
x| <z —zi<xi <z

i

@ Reformulation 2: x; = x — x

; —

min Z ci(x +x7)
i

st AxT —Ax” >b,xT,x” >0

X, x7 > 0. Then |x;| = x; +x;



LLM: GPT4

For a given matrix $A$ and vector $b%$, consider the basis pursuit problem:
SAmin lIxll_1, st. Ax = b.$

Please convert it to a standard linear programming problem.

ChatGPT
The Basis Pursuit problem is a fundamental optimization problem that seeks to find the sparsest
solution to a linear system. Formally, for a given matrix A < [R™ ™ and a vector b < IR, the

problem is defined as:

min [z subjcct Lo A
R
where [|x||1 — 3>°1°, |x;:| denotes the I1-norm of @, which is the sum of the absolute values of the

components of .

To convert this problem into a standard Linear Programming (LP) form, we leverage the property

that the absolute value function can be represented using auxiliary variables and additional

constraints. The I -norm objective ||x||1 can be linearized as follows:

Introduce Auxiliary Variables: For each variable 23, in o, introduce two non-negative auxiliary
wvariables wu; and v; where x; — w; — w; and u;, v; = 0. This decomposition allows us to

represent both posi

ive and negative values of ; using non-negative variables, as required in LP
formulations.

Obj i Fi ion T mation: The li-noerm ||=]|[1 — 32, |#;| can now be rewritten in
terms of w; and v; as 3 1, (s + ©5), since |x;i| = w; + »; by construction.
Constraint Adaptation: The original constraint Awx = b must be adapted to reflect the

introduction of w; and v;. Since w; — w,; wi. we can rewrite Ax — A(w v) = b, where w

and 7 are vectors consisting of the variables 7z; and 7;, respectively.

Therefore, the Basis Pursuit problem can be reformulated as a standard LP problem:

el Zl (1 —+ 1)
subject to A(a  w) = b
0, Wi—1
>0, Vi=1,...,n.

6/43



LLM: GPT4

N

Great! Please provide alternative formulation by infroducing a new variable $7%, and enforcing $i
x_il== zZ_i%

ChatGPT

To reformulate the Basi

Pursuit problem by introducing a new variable = and enforcing

for each component ¢ of the vector @, we can take advantage of the relationship between the ;-
norm objective and these new variables. This approach aims to directly model the Z;-norm
minimization within a linear programming framework by explicitly capturina the absolute value
constraints.

The original Basis Pursuit problem is given by:

min =l subject to Ao
where |[=|[x — 3270, |
Reformulation Steps:

New WV: it For cach a;

in the vector @, introduce a corresponding variable =;
intendecd to capture the absolute value of a;, i.c., |@:| = =;.

i, since it represents the magnitude of @;.
L= Fu The

The variable =; is non-ncgative for all

Ive becomes the minimization of the sum of the new variables =z,
which represent the absolute values of the components of o. Hence, the objective function is
min 3°7 | =

Constraints: In add
|x:] =< =i forall

ion ta the original equa

¥ constraint A:
. This is achieved by adding the following inequal
= =i.to capture the case when x; is positive or zero.

—as =

.

. we add constraints to ensure

s for each

B

=z:.to capture the case when =, is negative.

Together, these inequalities ensure that =; is at least as large as the absolute value of a;,
effectively modeling |o;| == =;.

Linear Programming Formulation:

The Basis Pursuit problem can now be reformulated as:

R

R T X

— 1.....7.

A
s
@



Problems with absolute values

@ data fitting:

min  [|JAx — b|o
X
min  [|Ax — b|;
X
@ Compressive sensing

min lx|[1, st. Ax=0b (LP)
min  plxl + 3[lAx = b|>  (QP,SOCP)
min |Ax —b||, st. x|l <1



An example of linear programming: >k &

i EHEETTREE
@

> T FO ARSI

ITENETEFESRLIRN
FFHIPATRER

* Online assignment problem

+ Control based method

* Online linear programming
Ref: Agrawal, Shipra, Zizhuo Wang. and Yinyu Ye.
“A dynamic near-optimal algorithm for online
linear programming.” Operations Research 62.4
(2014): 876-890.




Optimal transport

— images, vision, graphics and machine learning, .... -
Bt ;
e gt

Monge Kantorovich Koopmans Dantzig ~ Brenier Otto ~ McCann  Villani Figall

s o fl

10/43



min
mxn
mTeR i1 =1
n
s.t. Zﬂ'ij:/,ti, Vi=1, ,m,
J=1
m
Zﬂ-ij_yl’ \V/]:L yn
i=1
>0
R I -ss (\
S N X
/ - Vo3 CUF =
® © o o b B B
- Fia 7T 7]
® -
[e%
Discrete Semi-discrete Centirusus

Optimal transport: LP

m n
E E Cij’ﬂ'ij




Weak duality

Suppose
@ xis feasible to (P)
@ (y,s) is feasible to (D)

Then
0 < x's becausex;s; >0
= x'(c—Ay)
= ¢'x—(Ax)Ty
= ¢'x—b'y

= duality gap

12/43



Key Properties of LP

@ Strong duality: If both Primal and Dual are feasible then at the

optimum

c'x= bTy —x's=0

@ complementary slackness: This implies
x's = xi51+...+x5,=0 and therefore

XiS;i = 0



complementarity

@ Putting together primal feasibility, dual feasibility and
complementarity together we get a square system of equations

Ax = b, x>0,
Aly+s = ¢, s>0,
xisi = 0 fori=1,...,n

@ At least in principle this system determines the primal and dual
optimal values



Outline

e Semidefinite Programming (SDP)
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Semidefinite Programming (SDP)

@ X > Y means that the the symmetric matrix X — Y is positive
semidefinite

@ X is positive semidefinite
a'Xa > 0forall vector a < X = B' B

all eigenvalues of X is nonnegative
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SDP

@ For simplicity we deal with single variable SDP:

Primal (P) Dual (D)
. T
mn (CX) e
s.t. (A1, X) = by s.t. zyiAi +5=C
(Ans X) = b Sz 0
X>=0

@ A single variable LP is trivial
@ But a single matrix SDP is as general as a multiple matrix
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Facts on matrix calcuation

@ IfA,B € R"™" then Tr(AB") = Tr(B'A)
e If U,V € 8" and Q is orthogonal, then (U, V) = (QTUQ, Q" UQ)
@ If X € 8", then U= Q" AQ, where Q" Q = I and A is diagonal.

Matrix norms: |[X|[r = [A(X)]l2, [X]l2 = [[A(X)[loo, A(X) = diag(A)

@ X=0«=viXv>forallve R" <= \(X) >0<«<= X=B'B

The dual cone of & is S’}

If X =0, then X;; > 0. If X;; =0, then X;; = X;; = 0 for all .

If X = 0, then PXP" > 0 for any P of approriate dimensions

X1 X
If X = > 0, then X;; > 0.
(XL x22> - e

X = 0 iff every principal submatrix is positive semidefinite (psd).
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Facts on matrix calcuation

A B
oLetU_<BT C

) with A and C symmetric and A > 0. Then

U=0(or =0) <= C-B'A"'B>=0(or ~0).

The matrix C — BTA~!B is the Schur complement of A in U:

A B\ _ I 0\ /A 0 I A7'B
B" ¢/ \B"A' 1)J\0 c—BTA"'B)\0O I

@ IfAec S thenx'Ax = <A,xxT>

@ IfA > 0, then (A, B) > 0 for every nonzero B > 0 and
{B*>0|(A,B) <} is bounded for 5 > 0

@ IfA,B > 0,then (A,B) =0iff AB=0

@ A, B € §", then A and B are commute iff AB is symmetric, iff A
and B can be simultaneously diagonalized



Eigenvalue optimization
@ minimizing the largest eigenvalue A\yax(Ao + > _; xiA;):
min - Apax(Ao + Zx,'A,-)

can be expressed as an SDP
and its dual is

min z max (Ap,Y)
st =) xAi = Ag st.  (A4,Y)=

i (I,Y)=

Y>0

o follows from
Amax(A) <t <= A <1l
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Eigenvalue optimization

@ Let A; € R™*". Minimizing the 2-norm of A(x) = Ag + >, xiA;:
min  [A(x)[
can be expressed as an SDP

min ¢
x,t

s.t. (A(;I>T Af;c)) =0

@ Constraint follows from

Al <t <= ATA=<FI, >0

= <A(;I)T Af?) =0



Quadratically Constrained Quadratic Programming
Consider QCQP

min x'Apx+2bjx+cy  assumeA; € S"
st x'Ax+2b/x+¢; <0, i=1,....m

@ IfAy~0andA; =B/B;,i=1,...,m, thenitis a SOCP
@ If A, € §" but may be indefinite

xTA,-x + 2b,-Tx +c¢ = <A,-,xxT> + 2bl~Tx + ¢
@ The original problem is equivalent to

min  TrAgX + 2b] x + co
st. TAX+2b/x+c¢; <0, i=1,....m
X =xx'
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QCQP

@ If A; € 8" but may be indefinite

A; b; X x < 5
T T 1 R
x Aix+2b; x+c¢; = <<bl—f— Ci> , <x—|— 1>> = <A,~,X>

X > 0is equivalentto X > xx"

@ The SDP relaxation is

min  TrAoX
st TAX<0, i=1,....m
X>0

@ Maxcut: max x' Wx, st 1F=1

1

@ Phase retrieval: |a; x| = b;, the value of 4, x is complex



Max cut

@ For graph (V, E) and weights w;; = w;; > 0, the maxcut problem is

max - ZWU - xixj), st xe{-1,1}
i<j

@ Relaxation:

max waU —viv), st vl =1
i<j

@ Equivalent SDP of (P):

(SDP)  max ;wy ~X;), st Xi=1,X>0
i<j



Max cut: rounding procedure

Goemans and Williamson’s randomized approach

@ Solve (SDP) to obtain an optimal solution X. Compute the
decomposition X = VTV, where

V=1[,v2...,v

@ Generate a vector r uniformly distributed on the unit sphere, i.e.,
rll2 =1

@ Set

1 vr>0
X; =
' 1 otherwise
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Max cut: theoretical results

@ Let W be the objective function value of x and E(W) be the
expected value. Then

1
E(W)= = Z w;; arccos(v; ;)
i<j

@ Goemans and Williamson showed:

>C¥ E Wl] ij

l<j

where 5 9
a = min —— > 0.878
0<6r m1 — cos b
o Let Z(SDP) and Z(Q) be the optimal values of (SDP) and (Q)

E(W) > aZ(*SDP) > ozZEkQ)
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Weak duality in SDP

@ Just asin LP
(X,8) =(C,X) = by

@ Also if both X > 0 and S > 0 then
(X,S) = Tr(XS"/28"/%) = Tr(S'/2xS'/?) > 0
because S'/2X5'/2 = 0

@ Thus
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Complementarity Slackness Theorem

@ X>0andS > 0and (X,S) = 0implies
XS=0

@ Proof:
(X,S) = Tr(XS'/28'/%) = Tr(S'/?x5'/?)
Thus Tr(S'/2x5'/2) = 0. Since §'/2x5'/? > 0, then
§1/2x61/2 — g — §1/2x1/2x1/261/2 _
X'/2512 =0 = x5 =0



Equivalent complementarity slackness

@ For reasons to become clear later it is better to write
complementary slackness conditions as

XS+SX
=

@ It can be shown that if X = 0 and S = 0, then XS = 0 iff

0

XS+5X=0



Constraint Qualifications

@ Unlike LP we need some conditions for the optimal values of
Primal and Dual SDP to coincide

@ Here are two:
o If there is primal-feasible X - 0 (i.e. X is positive definite)
o If there is dual-feasible S = 0

@ When strong duality holds (X,S) =0
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KKT Condition

@ Thus just like LP, the system of equations are

<AiaX> = bi7 Xtoa
S yiAi+S = ¢, S=0,

XoS = 0.

It gives us a square system.
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Outline

e Second Order Cone Programming (SOCP)
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Second Order Cone Programming (SOCP)

@ For simplicity we deal with single variable SOCP:

Primal (P) Dual (D)

min ¢'x max bTy

st. Ax=b st. Aly+s=c
xg =0 so =0

@ the vectors x, s, ¢ are indexed from zero
@ If z=1(z0,21,--- ,z,,)—r andz = (z1,. .- ,zn)T

29 > 0=z > |Z|



[llustration of SOC

X

Q={z]z = [z[}
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Quadratic Programming (QP)

min g(x) =x'Ox+a'x+3 assume Q>0,0=0"
st. Ax=0b
x>0
@ g(x) = [la|>+ B8 - ta"Q0'a, where i = Q'/2x + 10124
@ equivalent SOCP
min ug

st. u= Q1/2x+
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Robust linear programming

the parameters in LP are often uncertain

min c¢'x

s.t. a;—x < b;
There can be uncertainty in ¢, a;, b.

two common approaches to handling uncertainty (in a;, for simplicity)
@ deterministic model: constraints must hold for all a; € &;

min ¢ x

st a/x<b, forallg; € &
@ stochastic model: g; is random variable; constraints must hold
with probability n

min c¢'x

s.t.  prob(a] x < b;) > 17
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deterministic approach via SOCP

@ Choose an ellipsoid as &;:
E ={ai+Pul|llula <1}, aecR" P e R

@ Robust LP

min ¢ x

s.t. a;rx < b, for all g; € &;
is equivalent to the SOCP

min c¢'x

st a@'x+|P x|, <bi
since

sup (a; + Piu)Tx = El;rx + HPlTx||2
[lul]2<1
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stochastic approach via SOCP
@ g; is Gaussian with mean a;, covariance %; ( a; ~ N (a;, %)
@ a/ x is Gaussian r.v. with mean @, x, variance x " ¥;x; hence

b —a; x
T . i
prOb(al- x < b,) =0 <M>

where ®(x) = (1/v27) [*__ e "/%dris CDF of N'(0, 1)

@ robust LP

min c¢'x

st.  prob(a) x < b;) >n
is equivalent to the SOCP

min ¢’ x

st @ x+ @7 (n)|2 %2 < b
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Weak Duality in SOCP

@ The single block SOCP is not as trivial as LP but it still can be
solved analytically

@ weak duality: Again as in LP and SDP

x's=c'x—b"y= duality gap

If x,s =0 0, then

x's = X050 Jr)?TE

¥l - lIs] +x"5  since x,s =0 0
x"s|+x"s Cauchy-Schwartz inequality
0

v v v



Complementary Slackness for SOCP

@ Givenx =9 0,s>g0andx's=0. Assume x, > 0 and sy > 0

@ We have

n
() %= x5
i=1

(=1 8)

(xx) sgz E s,-2<:>x(2)2 E lsz
i=1 i=1 “0

n
( * %) x5 =0 —X0So = Zx,-s,- <= —2x% = Z

i i=1

2xl~sl~xo

S0

2
@ Adding (*), (**), (***), we get0 > >"", (xl_ + S,-xo)

50
@ This implies
xiso +x05; =0, fori=1,...,n
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[llustration of SOC

When x = 0, s =¢ 0 are orthogonal both must be on the boundary in
such a way that their projection on the x, ..., x, plane is collinear
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Strong Duality

@ at the optimum

c'x=b"ye=x"s=0

@ Like SDP constraint qualifications are required
@ If there is primal-feasible x ¢ 0

@ If there is dual-feasible s ¢ 0
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Complementary Slackness for SOCP

@ Thus again we have a square system

Ax = b, x=90,
ATy+s = ¢, s=00,

T

x's =

Xo8; +s0x; = 0
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Lagrangian
standard form problem (not necessarily convex)

min  fo(x)
st filx) <0, i=1,....,m

variable x € R”, domain D, optimal value p*.
Lagrangian: £ : R" x R" x R? — R, with domL = D x R” x R?

p
L(x,\,v) —I—Z)\f, + Zl/,-hi(x)
i=1

@ weighted sum of objective and constraint functions
@ ), is the Lagrange multiplier associated with f;(x) <0

@ y; is the Lagrange multiplier associated with #;(x) = 0
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Lagrange dual function

Lagrange dual function: g : R”™ x R” — R

g\ v) = inf  L{xAv)

m p
= ;g% (fo(x) + Z /\Lf,(x) + Z V,~h,~(x)>
i=1 i=1

g is concave, can be —oo for some A, v
@ lower bound property: if A > 0, then g(\,v) < p*

@ Proof: If x is feasible and A > 0, then
fo(x) = L(x, A, v) > in,zf;ﬁ(x7 Av) =g\ v).
xe

minimizing over all feasible x gives p* > g(\, v).
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The dual problem

Lagrange dual problem
max g(\,v)

st. A>0

@ finds best lower bound on p*, obtained from Lagrange dual
function

@ a convex optimization problem; optimal value denoted d*
@ )\, v are dual feasible if A > 0, (\,v) € domg

@ often simplified by making implicit constraint (A, v) € domg
explicit



Standard form LP

(P) min c'x (D) max b'y
st. Ax=b st. Aly+s=c
x>0 s >0

@ Lagrangian is
Lo \v) = ¢ x+v (Ax—b) = A x=—=bv+(c+ATv—)\)Tx
@ Lis affine in x, hence

by, ATu—XA4+¢=0

Av)=inf L(x,\,v) = .
sAv) & 0, A v) {—oo otherwise

@ lower bound property: p* > —b vifATv+¢>0

@ Check the dual of (D)
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Inequality form LP

min ¢'x
st. Ax<b
@ Lagrangian is
Lo \v) = ¢ x+v (Ax—b)=—b v+ (c+ATv) x

@ L is affine in x, hence

by, ATv4c=0

Av) =inf L(x, A\, v) = .
sA.v) 3 0, A v) {—oo otherwise

@ Dual problem
max b'v

st. Alv=c¢, v<O0
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Equality constrained norm minimization

min  ||x|| max b'v
st. Ax=b st ATV <1
Dual function
bTv HATVH* <1

g(v) = inf(||x]| — v Ax + bTu) = _
x —oo  otherwise,

where [|v]|. = supy,<; «" v is the dual norm of || - |
Proof: follows from inf,(||x|| —y x) = 0 if ||[y[. < 1, —oo otherwise
@ if |[y|[« < 1, then ||x|| — y"x > 0 for all x, with equality if x = 0

@ if |[y|[« > 1, then choose x = ru, where |ju| < 1, u"y = ||y|/« > 1:
el =y "o = e(llull = [Iylls) = =00 a@st— oo

for all x, with equality if x =0
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LP with box constraints

min ¢'x max —b'v— IT)\l — 1T)\2
st. Ax=0b st. c+ATv+ A =X =0
—-1<x<1 AM>0,0>0

reformulation with box constraints made implicit

Tx —1<x<1
min  fy(x) = € _x._
00 otherwise
st. Ax=5b
Dual function

gwv)= inf (¢'x+v"(Ax—b))=—b"v—|ATv+c|
—1<x<1

Dual problem:
max —b'v—|ATv+c|
1%



Lagrange dual and conjugate function

min  fo(x)
st Ax<b
Cx=d
@ dual function
g\v) = inf (@) +@A@A+CTV)Tx—b"A—d"v)

xedomjo
= —f*(—ATA-Cv)=b"A—d"v

o recall definition of conjugate f*(y) = sup,cgoms(y ' x — f(x))

@ simplifies derivation of dual if conjugate of f; is known
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Conjugate function

the conjugate of a function f is

1) = sup (y'x—f(x)

xe€dom f

f* is closed and

convex even if f is not Fenchel’s inequality V G
7 A0 -fw)

f)+f() =Ty way

(extends inequality x”x/2 + y’y/2 > xTy to non-quadratic convex f)
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Quadratic function

1
flx) = ExTAx +b'x+c

strictly convex case (A - 0)
* 1 —
FO)=50-b)"A"y-b)—c
general convex case (A > 0)

F0) = 50— DAy —b) ¢, dom f* = range(4) + b



Negative entropy and negative logarithm

negative entropy
flx) = Zn:xi logx; [ (y) = Zn:ey"*l
i=1 i=1
negative logarithm
fx)=— ilogxi o) =- ilog(_)’i) —n
i=1 i=1
matrix logarithm

f(x) = —logdetX (domf=S8",) f*(Y)= —logdet(=Y)—n
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Indicator function and norm

indicator of convex set C: conjugate is support function of C

0, xeC w0\ T
tx dze  T=mms

o0 ={

norm: conjugate is indicator of unit dual norm ball

0, [yl <1
+oo, |yl >1

£2) = [l ﬁw={

(see next page)



proof: recall the definition of dual norm:

yl[« = sup x"y
[|x]| <1

to evaluate f*(y) = sup,(y'x — ||x||) we distinguish two cases
@ if ||y||« < 1, then (by definition of dual norm)
Yix < |l v

and equality holds if x = 0; therefore sup,(y'x — ||x||) = 0
@ if |[y||« > 1, there exists an x with ||x|| < 1,xTy > 1; then

£ ) 2y (0x) = [lex]| = 1" = []]])

and r.h.s. goes to infinity if 1 — oo



The second conjugate

@) = sup (My—f*))

yedom f*
@ f**(x) is closed and convex
@ from Fenchel’s inequality x”y — f*(y) < f(x) for all y and x):
frL ) vx
equivalently, epi f C epi f** (for any f)
@ if f is closed and convex, then
[ =f(x) vx

equivalently, epi f = epi f** (if f is closed convex); proof on next
page

15/33



Conjugates and subgradients

if f is closed and convex, then
yeIfx) & xedfflx) & xy=fl)+r
proof: if y € 9f(x), then f*(y) = sup, (v'u — f(u)) = y"x — f(x)
fH(v) =sup(v'u — f(u)

vix—f(x) (1)
=2 (v =) —f(x) +"x
=f" ) +x"(v—y)

for all v; therefore, x is a subgradient of /* at y (x € 9f*(y))
reverse implication x € 9f*(y) = y € 9f(x) follows from f** = f

I\/ :S
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Some calculus rules

separable sum
fx1,x2) = g(x1) + h(x)
scalar multiplication: (for o > 0)
f(x) = ag(x)
addition to affine function
fx)=gx)+a’x+b
infimal convolution

f(x) = inf (g(u)+h(v))

u+v=x

f O1y2) =g (1) +h*(y2)

[ ) =ag*(y/a)

ffy)=¢0G-a) b

) =80 +r )



Duality and problem reformulations

@ equivalent formulations of a problem can lead to very different
duals

@ reformulating the primal problem can be useful when the dual is
difficult to derive, or uninteresting

Common reformulations
@ introduce new variables and equality constraints

@ make explicit constraints implicit or vice-versa

@ transform objective or constraint functions
e.g., replace fy(x) by ¢(fo(x)) with ¢ convex, increasing



Introducing new variables and equality constraints

min  fo(Ax + b)

@ dual function is constant: g = inf, £(x) = inf, fo(Ax + b) = p*

@ we have strong duality, but dual is quite useless
reformulated problem and its dual

(P) min fo(y) (D) max b'y—fi(v)
st. Ax+b=y st. ATv=0

dual functions follows from
gv) = inf foy)—v'y+vTAx+b'v
x7y

—fiw)+b'v, ATv=0
—00 otherwise



Norm approximation problem

min |yl]

min ||Ax — b|| <=
st. Ax—b=y

can look up conjugate of || - ||, or derive dual directly

gv) = inf |y|+v'y—viAx+bTv
X,y

),

~JbpTv+infy |y|+vTy, ATv=0
—00, otherwise

Ty, ATv=0, |v|.<1
—oo, otherwise

Dual problem is
max b'v

st. Alv=0, |v|.<1
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Weak and strong duality

weak duality: ¢* < p*
@ always holds (for convex and nonconvex problems)

@ can be used to find nontrivial lower bounds for difficult problems
for example, solving the maxcut SDP

strong duality: 4* = p*
@ does not hold in general
@ (usually) holds for convex problems

@ conditions that guarantee strong duality in convex problems are
called constraint qualifications



Slater’s constraint qualification

strong duality holds for a convex problem

min fo()
st filx) <0, i=1,...,m
Ax=0>b

If it is strictly feasible, i.e.,

IxeintD: fi(x) <0, i=1,....m; Ax=0D>

@ also guarantees that the dual optimum is attained (if p* > —o0)

@ can be sharpened: e.g., can replace intD with relintD (interior
relative to affine hull); linear inequalities do not need to hold with
strict inequality, . . .

@ there exist many other types of constraint qualifications
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Complementary slackness

assume strong duality holds, x* is primal optimal, (A\*, v*) is dual
feasible

xeD

m p
Jo(x®) =g(X",v") = inf (fo(X)JrZ)\?‘ﬁ(XHZV?hi(X))
i=1 i=1

m P

< HE) I NAE) D i)
i=1 i=1

< fox™)

hence, the two inequalities hold with equality
@ x* minimizes L(x, \*,v*)

@ \fi(x*) =0fori=1,...,m (known as complementary
slackness):

A >0=fi(x") =0, fi(x")<0= X\ =0



Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem
with differentiable f;, &;):

@ primal constraints: f;(x) <0,i=1,...,m, h(x)=0,i=1,...,p
@ dual constraints: A > 0
© complementary slackness: \fi(x) =0,i=1,...,m

© gradient of Lagrangian with respect to x vanishes:

Vo(x ZAVf, Zy,wl

If strong duality holds and x, A, v are optimal, then they must satisfy
the KKT conditions



KKT conditions for convex problem

If %, \, & satisfy KKT for a convex problem, then they are optimal
@ from complementary slackness: fy() = £(%, A, )

@ from 4th condition (and convexity): g(\, 7) = L(%, \, 7)
Hence, fo(%) = g(A, 7)

if Slater’s condition is satisfied:
x is optimal if and only if there exist A, v that satisfy KKT conditions

@ recall that Slater implies strong duality, and dual optimum is
attained

@ generalizes optimality condition Vfy(x) = 0 for unconstrained
problem
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LP Duality

Strong duality: If a LP has an optimal solution, so does its dual, and

their objective fun. are equal.

primal finite | unbounded | infeasible
dual
finite v X X
unbounded X X Vv
infeasible X vV Vv

o If p* = —o0, then d* < p* = —o0, hence dual is infeasible

@ If d* = 400, then +00 = d* < p*, hence primal is infeasible

°

min x| + 2xp max pi+3p2

st. x4+xn=1 st. pi+2pp=1
2x14+2x =3 p1+2py=2
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Problems with generalized inequalities

min  fy(x)
st filx) 20, i=1,....m

i

hi(x):0, i:1,...,p
@ fi(x) = K; means —fi(x) € K.
@ Lagrangian: (-, )k, inner product in K;
LOAL - Ay v) = fol0) + 3 Ninfil)), +Z’4 i
i=1
@ dual function

g1,y Ay v) =1dnf L, Ap, ..oy A, V)

xe€D
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lower bound property: if \; € K, then g(A,..., A\, v) < p*
proof: If X is feasible and A ~k: 0, then

m

fO(x) > fO(';C)—i_Z hfl +ZV1 z
i=1

> inf  L(x, A, Ay V)

x€D
= ()\1,...,)\,,,,1/)
minimizing over all feasible x gives g(A1, ..., Am,v) < p*.

Dual problem
max g(A1,..., Am, V)

s.t. A iKl* 0, i=1,...,m

@ weak duality: p* > d*

@ strong duality: p* = d* for convex problem with constraint
qualification (for example, Slater’s: primal problem is strictly
feasible)



Semidefinite program
primal SDP (4;,C € S")
min bTy
st YA+ +yudn X C
@ Lagrange multiplier is matrix Z € S"
@ Lagrangian L(y,Z) = bTy + t(Z(y1A1 + - - - + YmAm — C))
@ dual function

Z) =infL(y,Z) = _
8(2) Hyl 0:2) — 00 otherwise

dual SDP
max — tr(CZ)
s.t. ZiO,tr(AiZ)—i—b,-:O, i=1,....,m

{—tr(CZ) tr(AZ) + b =0, i=1,..

,m

p* = d* if primal SDP is strictly feasible (Jy with yjA; +-- -+ y,A, < €)
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SDP Relaxtion of Maxcut

i Tr(WX
min  x' Wx max —1'v min  Tr(WX)
” ! - t W+ di ( ) -0 ~— st X;=1
1. — S.1.
st x + diag(v) > X0

@ a nonconvex problem; feasible set contains 2n discrete points

@ interpretation: partition {1,...,n} in two sets; W;; is cost of
assigning i, to the same set;;, —W;; is cost of assigning to
different sets

dual function

g(v) = inf (XTWx—i- ZV['(X,-Z — 1)) = inf x" (W +diag(v))x — 1"v

1
—1Tv W+ diag(v) = 0
—00 otherwise
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SOCP/SDP Duality

(P) min c'x (D) max b'y
st. Ax=b,xo =0 st. Aly+s=c,50>0
(P) min (C,X) -
st (ALX)—p, (B max by
st. ) yAi+S=C
(A, X) = by, ’
X0

Strong duality
@ If p* > —o0, (P) is strictly feasible, then (D) is feasible and

S=0

p* — d*
@ If d* < +o0, (D) is strictly feasible, then (P) is feasible and
p* — d*

e If (P) and (D) has strictly feasible solutions, then both have
optimal solutions.
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Failure of SOCP Duality

inf (1,-1,0)x sup y
st (0,0,1)x=1 st (0,0,1)Ty+z=(1,-1,0)"
x0 =0 29~ 0

@ primal: min xo — x, S.t. xo > {/x? + 1; It holds xo — x; > 0 and

xo—x1 — 0ifxg = \/x% + 1 — oo. Hence, p* = 0, no finite
solution

@ dual: sup ys.t. 1 > +/1+y2 Hence,y=0
p* = d* but primal is not attainable.
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Failure of SDP Duality

Consider
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@ dual: y* = (0,0). Hence, d* =0
Both problems have finite optimal values, but p* # d*
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Standard form LP

(P) min c¢'x (D) max b'y
st. Ax=b st. Aly+s=c
x>0 s>0

@ KKT condition

Ax = b, x>0
ATy +s = ¢, §2>0
XiS; = 0 fOI’iZl,...,n
@ Strong duality: If a LP has an optimal solution, so does its dual,
and their objective fun. are equal.

dual primal finite | unbounded | infeasible
finite v/ X X
unbounded X X v
infeasible X Vv Vi
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Geometry of the feasible set

@ Assume that A € R™*" has full row rank. Let A; be the ith
column of A:
A= (A1 Ay ... A

@ A vector x is a basic feasible solution (BFS) if x is feasible and
there exists a subset B C {1,2,...,n} such that

@ B contains exactly m indices
0 i¢B=x,=0
o The m x m submatrix B = [A;];c5 is nonsingular

B is called a basis and B is called the basis matrix

Properties:

@ If (P) has a nonempty feasible region, then there is at least one
basic feasible point;

@ If (P) has solutions, then at least one such solution is a basic
optimal point.
@ If (P) is feasible and bounded, then it has an optimal solution.
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If (P) has a nonempty feasible region, then there is at least one BFS;

@ Choose a feasible x with the minimal number (p) of nonzero x;:
YA =D

@ Suppose thatAy,...,A, are linearly dependent A, = Z’,-’;ll ZiA;.
Letx(e) =x+e(z1,.--,2p-1,—1,0,...,0)T =x + ez Then
Ax(e) = b, xi(e) > 0,i=1,...,p, for e sufficiently small. There
exists € such that x;(¢€) = 0 for some i = 1, ..., p. Contradiction to
the choice of x.

@ If p = m, done. Otherwise, choose m — p columns from among
Ap+1,---,A, to build up a set set of m linearly independent
vectors.



Polyhedra, extreme points, vertex, BFS

@ A Polyhedra is a set that can be described in the form
{x e R" | Ax > b}

@ Let P be a polyhedra. A vector x € P is an extreme point if we
cannot find two vectors y, z € P (both different from x) such that
x=Xy+ (1 =Xzfor X e0,1]

@ Let P be a polyhedra. A vector x € P is a vertex if there exists
some csuchthatc'x < c'yforallye Pandy # x

@ Let P be a nonempty polyhedra. Let x € P. The following
statements are equivalent: (i) x is vertex; (ii) x is an extreme
point; (iii) x is a BFS

@ A basis B is said to be degenerate if x;, = 0 for some i € B,
where x is the BFS corresponding to 5. A linear program (P) is
said to be degenerate if it has at least one degenerate basis.
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Vertices of a three-dimensional polyhedron (indicated by x)
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e Primal Simplex method
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The Simplex Method For LP

Basic Principle

Move from a BFS to its adjacent BFS unitil convergence (either
optimal or unbounded)

@ Let x be a BFS and B be the corresponding basis
@ Let NV ={1,2,...,n}\B, N = [Ai]icn, xB = [xilieg @and xy = [xi]ienr
@ Since x is a BFS, then xy = 0 and Ax = Bxg + Nxy = b:
Xgp = B~ b
@ Find exactly one ¢ € A and exactly one p € B such that

BT ={q} U(B\{p})
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Finding ¢ € NV to enter the basis
Let x* be the new BFS:

xt = <;CB> , AxT =0b :>x?3' =B 'p —BileX/
N

The cost at x* is

c'xt

= CB XB + CNX,/\/’
= cgB7'b—cg BINx{ + cxly
= c¢'x+(cy — g BTIN)x;
= ch—i-Z ¢j—cpB” 1A)
JEN v
@ s; is also called reduced cost. It is acfually the dual slackness

@ Ifs; > 0,Vj € N, then xis optimal as ¢"x™ > ¢'x

@ Otherwise, find g such that s, < 0. Then ¢"xt = cT)H—sqxq+ <c'x
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Finding p € B to exit the basis

What is x*: select ¢ € N and p € B such that
Xp = B 'b— B*IAqx;, x;r > 0,x; = O,xjfF =0,j € M\{q}

Letu = B~'A,. Then x}; = x5 — ux,

@ Ifu<0,thenc’xt =cTx+ sqx;; — —o00 as x(‘; — 4+ooand xT is
feasible. (P) is unbounded

@ If 3u > 0, then find x;/ and p such that
ng:xlg—uxj >0, X, =0

Let p be the index corresponding to

x;; = min
i=1,...,m|u;>0 U;
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An iteration of the simplex method

Typically, we start from a BFS x and its associate basis B such that
Xgp = B~ 'band xy = 0.
@ Solve y' = cjB~! and then the reduced costs sy = cy — Ny
@ If sy > 0, x is optimal and stop; Else, choose g € N with 5, < 0.
@ Compute u = B~'A,. If u < 0, then (P) is unbounded and stop.
@ If Ju; > 0, then find x| = 1 miI‘l . B0 and use p to denote
i=1,...,m|u;> !

the minimizing i. Set x}} = x5 — ux; .

@ Change B by adding ¢ and removing the basic variable
corresponding to column p of B.
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Simplex iterates for a two-dimensional problem
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Finite Termination of the simplex method

Suppose that the LP (P) is nondegenerate and bounded, the simplex
method terminates at a basic optimal point.

@ nondegenerate: xz > 0 and ¢ x is bounded
@ A strict reduction of ¢"x at each iteration

@ There are only a finite number of BFS since the number of
possible bases B is finite (there are only a finite number of ways
to choose a subset of m indices from {1,2,...,n}), and since
each basis defines a single basic feasible point

Finite termination does not mean a polynomial-time algorithm



Linear algebra in the simplex method

@ Given B!, we need to compute B~!, where

B=1[A1,...,An), B:=B"=[A1,...,Ap1,ApApt1,...

@ the cost of inversion B~! from scratch is O(m?)
@ Since BB~!' = I, we have

~1
BB = le1,...ep_1,U,€pt1,...,En

1 uj
= up ,

Uy, 1

where ¢; is the ith column of I and u = B—lAq
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Linear algebra in the simplex method

@ Apply a sequence of “elementary row operation”
e For eachj # p, we add the p-th row times —% to the jth row. This

replaces u; by zero.
o We divide the pth row by u,. This replaces u, by one.

_,%7 (j7 l) = (i,p)

, fori
0, otherwise #p

Qip =1+Dj, (Dip)ji = {

@ Find Q such that 9B~'B = 1. Computing B~! needs only O(m?)

@ What if B~! is computed by the LU factorization, i.e., B = LU?
L is is unit lower triangular, U is upper triangular.
Read section 13.4 in “Numerical Optimization”, Jorge Nocedal
and Stephen Wright,
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An iteration of the revised simplex method

Typically, we start from a BFS x and its associate basis B such that
Xgp = B~ 'band xy = 0.
@ Solve y' = ¢jB~! and then the reduced costs sy = cy — Ny
@ If sy > 0, x is optimal and stop; Else, choose ¢ € N with s, < 0.
@ Compute u = B~'A,. If u < 0, then (P) is unbounded and stop.
@ If Ju > 0, then find x| = 1 mir‘l . 59 and use p to denote
i=1,...,m|u;> !

the minimizing i. Set xz = xp — ux, .

@ Form the m x (m+ 1) matrix [B~! | u]. Add to each one of its rows
a multiple of the pth row to make the last column equal to the unit
vector e¢,. The first m columns of the result is the matrix B~ L.
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Selection of the entering index (pivoting rule)

Reduced costs sy = cy — Ny, ¢'xt = cTx + s,xf
@ Dantzig: chooses g € N such that s, is the most negative
component

@ Bland’s rule: choose the smallest j € A/ such that s; < 0; out of
all variables x; that are tied in the test for choosing an exiting
variable, select the one with with the smallest value i.

@ Steepest-edge: choose ¢ € A such that ¢ i "l‘lf is minimized, where

+ -1
+_ (¥ _ (*B —B7 A\ . _ +
<= ()= () ()=

efficient computation of this rule is available
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Degenerate steps and cycling

Let ¢ be the entering variable:

—1 ~1 -1
xng b—B Aqxj:xB—x,';u, where u = B A,

@ Degenerate step: there exists i € B such that x; = 0 and u; > 0.
Then x;" < 0if x} > 0. Hence, x;” = 0 and do the pivoting

@ Degenerate step may still be useful because they change the
basis 13, and the updated B may be closer to the optimal basis.

@ cycling: after a number of successive degenerate steps, we may
return to an earlier basis B

@ Cycling has been observed frequently in the large LPs that arise
as relaxations of integer programming problems

@ Avoid cycling: Bland’s rule and Lexicographically pivoting rule
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Finding an initial BFS

The two-phase simplex method

(P) min c¢'x (PO) f=min zi4+2+...42m
st Ax=0b st. Ax+4+z=0b>
x>0 x>0, z>0

@ ABFSto (PO): x=0andz=1»
@ If x is feasible to (P), then (x,0) is feasible to (P0)
@ If the optimal cost f of (P0) is nonzero, then (P) is infeasible

@ If f =0, then its optimal solution must satisfies: z = 0 and x is
feasible to (P)

@ An optimal basis B to (P0) may contain some components of z
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Finding an initial BFS

(x,z) is optimal to (PO) with some components of z in the basis
@ Assume Ay, ..., Ay are in the basis matrix with X < m. Then

B =[Ay,...,Ar | some columns of /]
B 'A=le,....ex,B 'Arp1,...,B71A,]
@ Suppose that /th basic variable is an artificial variable

@ If the ¢th row of B~!A is zero, then gTA = 0", where g is the ¢th
row of B! If gTh # 0, (P) is infeasible. Otherwise, A has linearly
dependent rows. Remove the /th row.

@ There exists j such that the ¢th entry of B='4; is nonzero. Then 4;
is linearly independent to Ay, ..., A;. Perform elementary row
operation to replace B~!A; to be the ¢th unit vector. Driving one
of z out of the basis
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The primal simplex method for LP

(P) min clx (D) max bTy
st. Ax=b st. Aly+s=c¢
x>0 s>0

@ KKT condition

Ax = b, x>0
ATy+s = ¢, s§>0
xisi = 0 fori=1,...,n

@ The primal simplex method generates

xg = B7'b>0, xy=0,
y = B e,
Sg = CB— BTy =0,sy =cy — NTy?O
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Outline

© Dual Simplex method
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The dual simplex method for LP

@ The dual simplex method generates

Xp = Bilb?O, xy =0,
y = B_TCB7
_ T, _ _ T
sp = cg—B y=0,sy=cv—N y>0

@ Ifxg > 0, then (x,y,s) is optimal

@ Otherwise, select ¢ € B such that x, < 0 to exit the basis,
select r € A to enter the basis, i.e., s} =

@ The update is of the form

sy = sp+ae, Obvious
y©* = y+av requirement
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The dual simplex method for LP

@ Whatis v? Since ATyt + 5T = ¢, it holds

+ _ T+
sg =cg—B'y

— sp+ e, =cp —BT(y +av) = eq = —BTv
@ The update of the dual objective function

'yt = bly+ably
= bTy — abTB*Teq
= bly— ax;eq

-
= b y—ax

@ Since x, < 0 and we maximize b y*, we choose « as large as
possible, but require sy, > 0
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The dual simplex method for LP

@ Letw=N"v=-NT"BTe,. SinceAy +s=candATy" +st =,
it holds

s;\,“:cN—NTy+:sN—aNTv:sN—0<w20

@ The largest a is
. S
o = min 7]‘
JEN W >0 wj

Let » be the index at which the minimum is achieved.
sF=0, w,=Av>0

@ (D) is unbounded if w < 0
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The dual simplex method for LP: update of x*
We have: Bxg = b, x:{ =0, x5 =~vyand Ax" = b, i.e.,
Bx} +4A, =b=>x}{ =B 'b—~B7'A,,
where Bd = A,. Then Ax™ = b gives
B(xg — vd) + vA, = b for any ~.

Since it is required x;” = 0, we set

v = %, where d, = dTeq = A,TB_Teq = —A,Tv =—w, <0.
q

Therefore
x; —~d;, forie Bwithi#gq,

+ 07 izq;
! 0, ic N withi#r,

Vs i=r
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An iteration of the dual simplex method

Typically, we start from a dual feasible (y, s) and its associate basis B

such that x3 = B~'b and xy = 0.
@ If xg > 0, then x is optimal and stop. Else, choose ¢ such that
xg < 0.

@ Compute v=—BTe,and w=N"v. If w <0, then (D) is
unbounded and stop.

@ If 3w, > 0, thenfind @ = min 34 and use r to denote the
JEN wWi>0 Wi

minimizing j. Set s} = sp + aey, sy = sy —aw and yt =y + av.

@ Change B by adding r and removing the basic variable
corresponding to column ¢ of B.
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© Interior Point method
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Primal-Dual Methods for LP

(P) min c¢'x (D) max b'y
st. Ax=0b s.t. ATy +s=c
x>0 s>0

@ KKT condition

Ax = b, x>0
ATy—f—s = ¢ 520
xisi = 0 fori=1,...,n

@ Perturbed system

Ax = b, x>0
ATy+s = ¢ 520
x5 = op fori=1,....n
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Newton’s method

@ Let (x,y,s) be the current estimate with (x,s) > 0

@ Let (Ax, Ay, As) be the search direction

@ Letu=lxTsand o € (0,1). Hope to find
Ax+Ax) = b

AT+ Ay) +s+As = ¢
(Xi+Axi)(Si+ASi) = OW

@ dropping the nonlinaer term Ax;As; gives

AAx = r1,:=b—Ax
ATAy + As
xiAsi + Axis; = (re)i = op — X8

rd ::c—ATy—s
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Newton’s method

@ Let L, = Diag(x) and Ly = Diag(s). The matrix form is:

A 0 O Ax rp
0 AT I Ay | = | rg
LS 0 Lx AS rC

@ Solving this system we get

Ay = (AL;lLXAT)il(rp "‘AL;I(Lxrd - rC))
As = rg—ATAy
Ax = —L7'(LAs—r.)

@ The matrix AL; 'L, AT is symmetric and positive definite if A is full
rank
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The Primal-Dual Path-following Method

Given (x%,y°,s%) with (x%,5°) > 0. A typical iteration is
@ Choose i = (x*)Ts*/n, 0 € (0, 1) and solve

A 0 0\ /AX r
0 AT 1 Ay | = rs
Le O Lyu As* I

choosing oy such that (x**! s+1) > 0

@ Set

The choices of centering parameter o and step length o4 are crucial
to the performance of the method.
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The Central Path

@ The primal-dual feasible and strictly feasible sets:

F = {xys) |Ax=bATy+s5s=c (x,5) >0}
Fo = {(x,y,s)\Ax:b,ATy+s:c,(x,s)>0}

@ The central path is C = {(x+,y-,s.) | 7 > 0}, where

Ax; = b, x>0
ATyT +s; = ¢, s:>0
(xr)i(sr)i = 7 fori=1,...,n

@ Central path neighborhoods, for 6,y € [0, 1):

M(O) = {(x,y,5) € F° | ||LiLse — pe|l» < Ou}
Now(y) = {(xy,5) € F | xisi > ypu}

Tyically, # = 0.5and vy = 1073
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central path neighborhood

Central path, projected into space of primal variables x, showing a

typical neighborhood N



The Long-Step Path-following Method

Given (x%,),5%) € N_oo(7). A typical iteration is
@ Choose i = (x*)"s*/n, 0 € (0, 1) and solve

A 0 0 /A e
0 AT 1| [A)=[#H
Le O Lg Ast rk

@ Set oy be the largest value of « € [0, 1] such that
(XL YR ) e V() where

(AT YR = (5, 5, 55) + a(AXF, AYF, AsY),
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Analysis of Primal-Dual Path-Following

Q If (x,y,5) € Nooo(7), then ||Ax o As|| < 273/2(1 + 1/y)nu
© The long-step path-following method yields

o
Hie+1 < (1 - ) Mk,
n

where § = 23/2y{20(1 - 0)

© Given ¢, € (0, 1), suppose that the starting point
(x2,5°, s°) € N_oo(7). Then there exists K = O(nlog(1/¢)) such
that
e < epg, forallk>K

Proof of 3:
0
log(pkt1) < log <1 - ) + log (pu)
log(1+8) < B, VB>-I
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Mathematical Formulation: LP Problem

General LP Problem:

min ¢! x
xER"
sit. Lo < Ax < uc

&y <x<uy

Deriving the Lagrangian:

» Introduce dual variables for constraints to form unconstrained problem

» Rewrite constraints: Ax —u. <0, /. —Ax <0, x—u, <0,4,—x<0

» Associate non-negative multipliers y =, yT, r—, r™ with each inequality
Lagrangian Function:

Ly oyt i) =clx+ (y) (Ax = ue) + (y") T (Le — Ax)
H ()= w) + ()T (6 = x)

where all multipliers are non-negative

()
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Deriving the Dual Problem

Derivation: Group x terms and form the dual function
Ly y o ) =xT e+ ATy~ —y") +(rm =)
— () Tue+ () e = () Tu + () T
The minimum over x is —oo unless c + AT(y~ —yT) + (r~ —r*) =0
Dual Problem: Using substitutions y = y* —y~ and r = r* — r~

L UNT o — (7T Ty
L, ) ue+ (") =) v+ (r7) &
s.t. cfATy:r

y oyttt >o

®3)
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Dual Problem Formulation
Simplified notation: Define p(y; /4, u) := u'yt — Ty~ where y* = max(y, 0) and
y~ = max(—y,0)
Rewriting the dual:
emax ., Pyile ue) = p(=rity, uy)
st. c—Aly=r
yeY, reR

Dual feasible sets ) and R: Based on constraint types

{0} (¢c); = —o0, (uc); = oo (unconstrained) {0} (¢v); = —o0,(uy); = o0
. R~ (fc); = —o0, (uc); € R (upper bound) R R~ (4); = —o0,(u,); €R
") RY (€), € R, (ue); = oo (lower bound) TR (4), €R, (), = o
R otherwise (both upper and lower bounds) R otherwise
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Saddle Point Formulation of LP

» Keeping the bounds on x, we obtain the Lagrangian function:
LOGy™ vt =clx+ () T(Ax = ue) + (yF) T (be — Ax)
» Using the notation y = y* — y~ and the function p(y; {,u) = uTyt —¢Ty~:
) (A = ue) + () (e = Ax) = () Tue = () Tee) + (v~ =y ™) T(A%)
= —p(~yile,uc) =y (Ax)
» Then the saddle point problem is:

min max{ch —l—yT(Ax) —p(=yile,uc)} st b, <x<u
x oy

Final saddle point formulation:

i L =c' TAx — p(y; —uc, —4
min max (x,y) =c x+y Ax—p(y; —uc, —Lc)

where X ;== {x e R": ¢, <x < u,}
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Problems with Classical Solvers for Large-Scale LP

» Simplex Method:

> Iterations potentially exponential in problem size

» Poor parallelization on modern hardware

» Interior Point Methods (IPMs):
» Memory requirements: O(nnz(A)) for matrix factorization

» Often exceeds 1TB for problems with billions of nonzeros
» First-Order Methods:

» Low memory requirements

» Highly parallelizable matrix-vector operations

» But historically struggle with achieving high accuracy

>

Small constraint violations can lead to significant errors
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First-Order Methods for LP

» State-of-the-art First-Order Method Solvers:
> SCS: ADMM-based solver with homogeneous self-dual embedding

> OSQP: ADMM-based for convex quadratic programming
» ECLIPSE: Gradient descent on smoothed dual formulation
> ABIP/ABIP+: Interior-point solvers using ADMM
» PDHG (Primal-Dual Hybrid Gradient) Advantages:
» Requires only matrix-vector products: Ax and ATy
» No matrix factorization or systems of equations
» Form of operator splitting (related to ADMM)
| 4

Linear convergence for LP established in theory
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Generic Convex-Concave Saddle Point Problems

General Form:
min max L(x, y) = (Kx, y) + g(x) — £*(y)

xEX yeY

Key components:
> K: Linear operator (matrix) mapping primal to dual space
> g(x): Convex function (often includes constraints on x)
> f*(y): Convex conjugate of function f (handles dual constraints)

Convex Conjugate Definition: For any convex function f

f(y) = Stip{<x,y> —f(x)}

This transforms constraints into penalties in the optimization
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PDHG: Abstract Form

Primal-Dual Hybrid Gradient Algorithm:

Xkt = prong(xk —7K*yk) (5)

YR proxy . (v* + oK (25K — xK)) (6)
Proximal Operator: A generalization of projection

(2) = argmin {g(x) + 5 — 2P
prox.¢(z) = argmin { g(x) + ——|Ix — 2

Moreau Decomposition: Allows computing proximal operator of f* using f

Proxsr«(y) =y — 0 - proxe o (y/0)

This is crucial for implementing PDHG efficiently without explicitly forming the conjugate

function!
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Applying PDHG to LP Problems
For LP saddle point problem:

L =c TAx — —ue, L
min max (x,y) = c'x+y Ax = p(y; —ue, —Lc)

We identify:
» K = A (linear constraint matrix)
> g(x) = c"x 4+ dx(x) (objective + variable bounds)
» *(y) = p(y; —uc, —Lc) (constraint bounds)

Computing proximal operators:
prox,¢(z) = projy(z — 7c) (7
Prox,e«(y) =y — o - proji_y, —¢)(v/0) (8)

where projections enforce the constraints efficiently
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PDHG Algorithm for LP

PDHG iterations for LP:

XK = projpy, ) (XK = 7(c + ATy")) )
PR = yk 4 g A(axk T — XK (10)
YA = gR — oproj_y. e (751 /o) (11)

Key benefits:
» Only requires matrix-vector products (Ax and AT y)
> Projections computed element-wise (highly parallelizable)
» No matrix factorization or linear systems to solve

» Memory-efficient for very large-scale problems
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Convergence Theory for PDHG on LP

Step Size Parameterization:
» 7 =n/wand o0 =wn with € (0,00),w € (0, 0)
» Convergence guaranteed when 1 < 1/||Al|2
> w: primal weight, controls scaling between primal and dual iterates

Special Norm for Convergence Analysis:

2

Il = ol + 1212

for z = (x,y) - Used in convergence theory, restart criteria, and primal-dual balance

Linear convergence: Under certain conditions, PDHG converges linearly for LP:
12 = 2"]lw < C(1 =7)*

where v € (0, 1) depends on problem structure
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Main Algorithm

Algorithm PDLP (Main Structure)

0,0

1: Input: Initial solution Z
2: Initialize outer loop counter n < 0, total iterations k +— 0
3: Initialize step size /%0 - 1/||A||oo, primal weight w® < InitializePrimalWeight

4: repeat
5:  t < 0 {Inner restart loop counter}
6 repeat
7 ZMtHL pmttl pnt+tl o AdaptiveStepOfPDHG(z™t, w", A™t, k)
8 Zmt+l Z+ ijll n™izM {Step-size weighted average}
i =
i=1
9: Zht GetRestartCandidate(z™t+1, zMmt+1 2m0)
10: tt+1 k< k+1
11:  until restart or termination criteria holds

12:  restart the outer loop: z"10 < z' n+n+41
13:  w" < PrimalWeightUpdate(z™0, 2"~ 1.0 ¢,n—1)
14: until termination criteria holds

15: Output: z™°
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PDLP Key Improvements Overview

» Adaptive step sizes: Dynamic adjustment based on convergence conditions
> Restart strategies: Reset algorithm when progress slows
» Primal weight updates: Balance progress in primal and dual spaces

» Special Norm for Convergence Analysis:

yl3

2]l := /wlixlZ +

for z = (x,y) - Used in convergence theory, restart criteria, and primal-dual balance
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Adaptive Step Size

Traditional PDHG: Fixed step size n = HA:\LHz
» Overly pessimistic

> Requires estimation of ||A||2

PDLP Approach: Adaptive step size based on convergence condition

» Calculate maximum allowable step size:

[l

Z(yk+l _ yk)TA(Xk+1 _ Xk)

n=

» This ensures the iteration remains convergent
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Adaptive Step Size Algorithm

Algorithm One step of PDHG with adaptive step size
1: function AdaptiveStepOfPDHG(z™t, w", H™ k)

20 (x,y) < 2™, <+ Hmt

3: fori=1,...,00 do

4: x’eprojx(xfﬁ(cfATy))
5y y— A@xX = x) = wprojig, ) ((nw") "y — A@2x — x))
6 7 (<" =x,y" =) 112,
’ 2y —y) TA( —x)
70 e min (1= (k4 17037, (1+ (k+1)7%)n)
8: if n <7 then
9: return (x',y’),n,n’
10:  end if
11: n+7n
12: end for

Key Properties:
» Guarantee convergence: Only accept step if n < 7

> Aggressive adaptation: Next step size 7/ can grow up to factor of (1 + (k + 1)7%9) 1o/



Normalized Duality Gap and Adaptive Restarts
Normalized Duality Gap Definition:

p2) = S max {£(x,9) — L(k.y))

r||z—z|ju<r

where £(x,y) = c¢"x +yT Ax — p(y; —uc, —£c) is the Lagrangian.
Key Properties:
» Always finite (bounded by search radius)

» Zero if and only if solution is optimal

» Provides a meaningful measure of progress toward optimality

Notation: 1,(z, zef) 1= p\rllzfzrefl\ ,(2), where z.f is a user-chosen reference point (typically

start of current restart)
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Adaptive Restart Criteria
PDLP Parameters:
[7)necessary = 0‘97 ﬁsufficient = 0-17 Bartificial =05

Restart triggered when any of these criteria hold:

» Sufficient decay:
/-Ln(zg’t+1a Zn,O) < /3)sufficientﬂn(zn70> anl,O)

Guarantees linear convergence on LP problems
» Necessary decay + no progress:

,“'n(zg’prl?zn’o) < ﬁnecessary,“’n(zn"Ov Zn—l,O)

and pn(z0tH,

n,t

Zn,O) > pn(28, 2

nA,O)
Detects when progress begins to stall

» Long inner loop: t > Baificialk
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Restart Mechanism - Implementation Details

Restart Candidate Selection:

Zmt+lf Zmt+l Zn0) ~ zmt+l ,n0
GetRestartCandidate(z™t+t, z7 1 2n0) = { #a 217) < ia 2"

zMt+l otherwise

Implementation Note:
» Restart criteria evaluated every 64 iterations to reduce overhead
» Makes minimal impact on total iteration count

sn,t+1

» Running averages z weighted by step sizes
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Primal Weight Updates

Motivation: Balance progress in primal and dual spaces
» For optimal convergence, we want equal progress in both spaces:

1™ =%, 0) lur = 11(0, y™* = y)[Juon
» This yields the ideal primal weight:

o I =yl
[[xmt = x*l2

Implementation:
» Estimate using consecutive iterates:

AN = HX"‘O _ Xn—l,O n—1,0
X

2, A)=[ly"™ =y

» Apply log-scale exponential smoothing:
AP 1
w" = exp <0 log (A—g> + (1 - 0)log(w"™ ))

20/29



Pr

imal Weight Update Algorithm

Algorithm Primal weight update

: function PrimalWeightUpdate(z"?, z
DAL= [xM0 — X"y, AY = [y — yn O
cif AL > go and A; > go then

NoOU A W

n—1,07 wn—l)

return exp (6 log (%) +(1-90) Iog(w"‘l))

: else

return w"~!

. end if

Key innovation: Updates only occur after restarts

» Allows larger weight changes without causing instability

» Focuses on balancing distance traveled rather than residuals

» Significantly improves performance compared to per-iteration updates
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GPU vs. CPU Architecture

CPU Design:
> Few cores (16-64) with deep pipelines

» Optimized for sequential processing
» Sophisticated branch prediction

» Limited memory bandwidth (100-200
GB/sec)

Why GPUs for LP?

GPU Design:

» Thousands of cores (7296 on NVIDIA
H100)

» Single Instruction Multiple Data (SIMD)
» Optimized for parallel computation

» Very high memory bandwidth (2 TB/sec)

» Previous attempts failed with simplex/IPM methods

» First-order methods like PDHG rely on matrix-vector operations

» PDLP's core operations highly parallelizable
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GPU Thread Hierarchy and Execution Model

Thread Hierarchy:
» Thread: Basic execution unit

Hardware hierarchy Thread hierarchy

» Warp: 32 threads executing in lockstep

» Block: Group of threads with shared memory
» Grid: Collection of blocks executing same

kernel er
Implications for PDLP: L EREun
» Matrix-vector operations highly parallelizable Mlimocestor
» Each thread can process individual vector 4
- =
elements o s

» Challenge: Reducing CPU-GPU

communication overhead
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cuPDLP.jl: Design Principles

Minimizing CPU-GPU Communication:

» Initial transfer: Problem instance from CPU
to GPU

» Final transfer: Solution from GPU to CPU
» All iterations computed entirely on GPU

Implementation Framework:
» Implemented in Julia using CUDA ]l

» Custom CUDA kernels for PDHG updates

» cuSPARSE library for sparse matrix operations

@ GPU

Read

+‘ - Scaled LP

l

Restarted PDHG

¥

Infeasibility
detection

¥

Evaluate
progress metric

Return 4——'

Solution
g
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Key Acceleration Points

Matrix and Vector Operations:
» Sparse matrix stored in Compressed Sparse Row (CSR) format

» Matrix-vector multiplication via cuSPARSE library
» Custom CUDA kernels for vector operations and projections

» One thread per vector element for maximum throughput

KKT-Based Restart Scheme:
» Original PDLP: Trust-region algorithm for normalized duality gap
» Sequential nature - poor fit for GPU architecture

» cuPDLP.jl innovation: KKT error-based restart

» Highly parallelizable computation
» Maintains convergence properties
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KKT-Based Restart Details

KKT Error Definition:

S

Restart Candidate Selection:

2

1
+ lle = KTy = A3+ (qTy + TA* = uTA~ = cTx)2

2

Smt+l _ {Z"’H'l if KKTyn(2z™tH1) < KKT,n(z™tH1)
c

zmttl otherwise

Restart Conditions: Algorithm restarts if any of these holds:
> Sufficient decay: KKT,»(z2) < 0.2 KKT»(2™0)

> Necessary decay + no progress: KKT,n(z2""") < 0.8 KKT,»(z™°) and no
improvement

» Long inner loop: lteration count exceeds threshold
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Primal and Dual Updates on GPU

Primal Update CUDA Kernel:
» Input: x¥, y¥ c, A 7, lower/upper bounds

» Parallel operations:

> Matrix-vector product: ATy* (via cuSPARSE)
> Vector addition: ¢ — AT y¥
> Projection onto bounds: projy (x¥ — 7(c — AT y¥))

Dual Update CUDA Kernel:

> Input: xk+1 Xk y", A, o, constraint bounds

» Parallel operations:
» Extrapolation: 2x*t1 — x
> Matrix-vector product: A(2x**! — xk) (via cuSPARSE)
» Projection onto bounds for constraint relaxation
» Final dual update computation

k
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Performance vs. Gurobi: Moderate Accuracy (10%)

Small (269)  Medium (94) Large (20) Total (383)
Count Time Count Time Count Time Count Time

cuPDLP.jl 266 8.61 92 14.80 19 111.19 377 12.02
Primal simplex 268 12.56 69 188.81 11 3145.49 348 39.81
Dual simplex 268 8.75 84 66.67 15 591.63 367 21.75
Barrier 268 5.30 88 45.01 18 415.78 374 14.92

Key Observations:
» cuPDLP.jl solves 377/383 instances (98.4%)
» Clear advantage on medium and large instances:

» 3x faster than simplex on medium instances
» 3.7x faster than barrier on large instances

» Especially strong for problems with complex structures
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Performance vs. CPU PDLP

Small (269) Medium (94) Large (20) Total (383)
Count Time Count Time Count Time Count Time

cuPDLP.jl 266 8.61 92 14.80 19 111.19 377 12.02
FirstOrderLp.jl 253 35.94 82 155.67 12 2002.21 347 66.67

PDLP (1 thread) 256 22.69 85 98.38 15 162291 356 43.81
PDLP (4 threads) 260 24.03 91 42.94 15 736.20 366 34.57
PDLP (16 threads) 238 104.72 84 142.79 15 946.24 337 127.49

GPU Speedup vs. CPU:
» vs. FirstOrderLp.jl: 4x on small, 10x on medium, 18x on large instances

» vs. PDLP with 4 threads: 2.9x overall speedup
» Solved 30 more instances than FirstOrderLp.jl at tolerance 10~*

» Speedup increases with problem size
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Introduction to Compressed Sensing
Sparse Recovery Guarantees

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Emmanuel Candes’ and Prof. Wotao Yin’s
lecture notes
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Underdetermined systems of linear equations

@ xeR", A€ R™" b cR"

When fewer equations than unknowns
@ Fundamental theorem of algebra says that we cannot find x

@ In general, this is absolutely correct
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Special structure

If unknown is assumed to be
@ sparse

@ low-rank

then one can often find solutions to these problems by convex
optimization
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Compressive Sensing

http://bicmr.pku.edu.cn/~wenzw/courses/sparse_ll_example.m

Find the sparest solution
@ Given n=256, m=128.
@ A =randn(m,n); u = sprandn(n, 1, 0.1); b = A*u

3 15 3
2 * x 1 * x 2 x x
x X X
hex X . ] ospe 1% S x . x
. \
x x 5 ®i ,‘;g o m mxwé&w xox
0 Zug LE%
B %Www  ——
M X x 3)( M X x
4 . 05 . 4 .
2 -1 2
}
-3 X -15 -3 X
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
min ||x|o min ||x||» min ||x||;
X X X
st.Ax=b»b st.Ax=0b» st.Ax=b»

(a) £o-minimization

(b) £>-minimization

(€) £1-minimization
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Linear programming formulation

min  ||x[|o min x|,
s.t. Ax=0b s.t. Ax=0b
Combinatorially hard Linear program

minimize ), |x;]
subjectto Ax =b

is equivalent to
minimize ) .1
subjectto Ax=10>
—i <X <t

with variables x,r € R”

x*is a solution = (x*, " = |x*|) is a solution
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Compressed sensing

Name coined by David Donoho
Has become a label for sparse signal recovery
But really one instance of underdetermined problems

Informs analysis of underdetermined problems
Changes viewpoint about underdetermined problems
Starting point of a general burst of activity in

e information theory

@ signal processing

o statistics

e some areas of computer science

o ...

Inspired new areas of research, e. g. low-rank matrix recovery
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Sparsity in signal processing

wavelet coefficients

1 megapixel image

zoom in

Implication: can discard small coefficients without much perceptual
loss
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Sparsity and wavelet "compression"

Take a mega-pixel image
@ Compute 1,000,000 wavelet coefficients

@ Set to zero all but the 25,000 largest coefficients
@ Invert the wavelet transform

1 megapixel image 25k term approximation

This principle underlies modern lossy coders
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Comparison

Sparse representation = good compression
Why? Because there are fewer things to send/store

Sample Compress Transmit /
r —>
Store
Receive Decompress N
> &
Traditional

Compressive sensing

Compressive sensing Transmit /
(senses less, faster) Store

Receive Reconstruction A
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Restricted isometries: C. and Tao (04)

Definition (Restricted isometry constants)
Foreachk=1,2,...,0; is the smallest scalar such that

(1= ) lIx]12 < [lAx]3 < (1 + 0 1113

for all k-sparse x

@ Note slight change of normalization

@ When 6 is not too large, condition says that all m x k
submatrices are well conditioned (sparse subsets of columns are
not too far from orthonormal)
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Interlude: when does sparse recovery make sense?

Perhaps possible if sparse vectors lie {
away from null space of A B /‘

@ xis s-sparse: ||x[jo <s
@ can we recover x from Ax = b? {

Yes if any 2s columns of A are linearly
independent
* If x1, x, s-sparse such that Ax; = Ax, = b
lv ‘ | A(xl—xz)ZO:xl—x2:O®x1:x2

.

~

|
\».,L /'Y
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Interlude: when does sparse recovery make sense?

|

b A

@ xis s-sparse: ||x[jo <s
@ can we recover x from Ax = b? {

Perhaps possible if sparse vectors lie
away from null space of A

T

In general, No if A has 2s linearly depén-

dent columns
* h # 0 is 2s-sparse with Ah = 0

J * |  h=x1—x2 x1,x boths-sparse
Ah =0 & Ax; = Axy and x; 75)62

.

=

¥
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Equivalent view of restricted isometry property

0y is the smallest scalar such that
(1= 6) 1 — x2l5 < [|Ax) — Axa )5 < (14 6oi) 21 — %213

for all k-sparse vectors x, x;.

The positive lower bounds is that which really matters

@ If lower bound does not hold, then we may have x; and x, both
sparse and with disjoint supports, obeying

Ax; = Axp

@ Lower bound guarantees that distinct sparse signals cannot be
mapped too closely (analogy with codes)
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With a picture
For all k-sparse x; and x;

| g < AX — Ax|3

lx1 — x213

<1+ o
Rn Rm
A
* —_— *
Az,




Characterization of /; solutions

Underdetermined system: A € R™" m < n

min [|x[[; st Ax=0b
x€R”

X is solution iff
|x+h|ly > ||x]i VheR" st. Ah=0
Notations: x supportedon 7' = {i : x; # 0}

e+ Al =) i+ il + > |

ieT ieTe
>l + > sen(x)hi+ Y |kl
ieT ieT ieTe

because |x; + k| > |xi| + sgn(x;)h;

Necessay and sufficient condition for ¢, recovery

For all & € null(A)

> sen(xi)h <Y |hil

ieT ieTe




Why is this necessary? If there is h € null(A) with
> sen(x)hi > > |y
ieT i€Te

then
[l = Allr < [lx]l1-

Proof: There exists a small enough ¢ such that

x; —thy = x; — tsgn(xi)hi if x>0
|x,~ — l‘h,’| = —(xl- — l‘h,’) = —X; — tsgn(x,-)hi if x; <O
1) hi otherwise

Then
e — e}y = |lxlls — £ sgn(e)hi+ 6> kil < |||y

ieT ieTe¢
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Characterization via KKT conditions

min f(x) st. Ax=0>
xcRn

@ f convex and differentiable Lagrangian
@ L(x,\) =f(x)+ (\b— Ax)
Ax = 0 if and only if x is orthogonal to each of the row vectors of A.

KKT condition

x is solution iff x is feasible and I\ € R™ s.t.

ViL(x,\) =0=Vfx)—ATA

Geometric interpretation: Vf(x) Lnull(A).
When f is not differentiable, condition becomes: x feasible and
X € R™ s.t.

AT\ is a subgradient of f at x
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Subgradient

Definition
u is a subgradient of convex f at x if for all x

f(x) = fxo) +u- (x = x0)

if f is differentiable at x(, the only subgradient is V£ (xo)
Subgradients of f(r) = |7[,r € R

o
{subgradients} = {sgn(t)} ¢#0
{subgradients} = [-1,1] =0

Subgradients of f(x) = ||x||1,x € R™
u € J||x||; (uis a subgradient) iff t

Y

up = sgn(x;) x #0
|ui] S 1 X = O
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Optimality conditions |l
Given A € R™" and b € R™.
(P) )ICIEI]IRI’% IIx[[1 st Ax=b

The dual problem is

max Ab, stlAT) s <1

x optimal solution iff x is feasible and there exists u = A" \(u_Lnull(A))

with
u = sgn(xi) Xi 75 0 (l € T)
]ui\gl X,‘:O(iETC)

If in addition
@ || < 1whenx; =0
@ A7 has full column rank (implies by RIP )

Then x is the unique solution. We will call such a u or A a dual
certificate. 10147



Uniqueness

Notation
@ x7: restriction of x to indices in T
@ A7: submatrix with column indices in T

If supp(x) C T
Ax = ATXT.

Let i € null(A). Since u_Lnull(A), we have

ngnxlh—Zul i —Zuihi

ieT ieT ieTe

= —Zu,’hi < Z |h,|

i€Te i€Te

unless Are # 0. Now if hpe = 0, then since A7 has full column rank,

Ah=Athy =0=hy=0=h=0

In conclusion, for any & € null(A), ||x + A||; > ||x||; unless i # 0
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Sufficient conditions

@ T = supp(x) and A7 has full column rank (A; A7 invertible)
@ sgn(xr) is the sign sequence of x on T and set

A =Ar(AJ A7) 'sgn(xr) and u = AT\

@ if lu;| < 1forallie T¢ then x is solution
@ if ;| < 1 foralli e T¢, then x is the unique solution

Why?
% @ u; =sgn(x;) ifi € T, since
ur = A Ar(A} Ar) " lsgn(xr) = sgn(xr)
AN
@ u;=A'\ifi¢T.
So u is a valid dual certificate
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RIP

@ RIP: Foreachk =1,2,..., ¢ is the smallest scalar such that
(1= 00 |lxll3 < llAx]l3 < (1 + ) |lx[13
for all k-sparse x

@ Define the constant 6s ¢ such that :
(Arc,Apc’) < Osglc|llc]]
holds for all disjoint sets T, T’ of cardinality |T| < S and |T’| < ¥,
@ Forall S and &', we have

05,50 < Osts0 < b5, + max{ds, s }
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Why this dual certificate? Why |u;| < 1 for all i € T¢?

@ Let S > 1 be such that §s + 05 ¢ + 6525 < 1. Then there exits a
vector A such that AT A; = sgn(x;) for all j € T and for all j ¢ T:

bs.s sy
(1 — 65— Os25)VS (1 =65 —0sps)

@ Assume S > 1 such that o5 + 65 ¢ + 055 < 1. Let x be a real
vector supported on 7 such that |T| < S. Let b = Ax. Thenxis a
unique minimizer to (P).

il = [ATA)] < Isgn(x)[| <

@ Read Lemma 2.1 and Lemma 2.2 in “E. Candes and T. Tao.
Decoding by linear programming. IEEE Transactions on
Information Theory, 51:4203—4215, 2005”.

<1
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General setup

@ x not necessarily sparse :
@ observe b = Ax
@ recover by ¢; minimization

min ||x||; 8. t. Ax=b

5 0 5 @ 3 ® B 0 & ®

Interested in comparing performance with sparsest approximation x;:

Xs = arg min ||x — z|
llzllo<s

@ x,: s-sparse
@ s-largest entries of x are the nonzero entries of x;
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General signal recovery

Theorem (Noiseless recovery (C., Romberg and
Tao?))

If 62y < v/2—1=0.414..., ¢, recovery
obeys

e = xsll1/ /s

[l = sl

1% — xll2

~
X —xlh S

Deterministic (nothing is random)
Universal (applies to all x)

Exact if x is s-sparse
Otherwise, essentially reconstructs the s largest entries of x
Powerful if s is close to m
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General signal recovery from noisy data
Inaccurate measurements: z error term (stochastic or deterministic)
b =Ax+z, with ||z], <€
Recovery via the LASSO: ¢; minimization with relaxed constraints

min [|x||; 8. t. |[Ax —blja <€

Theorem (C., Romberg and Tao)

Assume 4, < v2 — 1, then

i - x5 E= 5l

T

(numerical constants hidden in < are explicit)

+ € = approx.error + measurement error

@ When ¢ = 0 (no noise), earlier result
@ Says when we can solve underdetermined systems of equations
accurately
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Proof of noisy recovery result

Let 4 = x — x. Since x and x are feasible, we obtain
|ARl2 < ||A% — b2 + [|b — Ax|[2 < 2
The RIP gives

| (Ahr, Ah) | < ||Ahr||l2]|AR||l2 < 260/ 1+ bas | A7 |2

Hence,
[lx — x|l | (Ahr,Ah) |
lhl, < Co— P 40— lemma 4
| s rls
< =5l 4 e g,

NG
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Preliminaries: Lemma 1

Let ¥y = {x € R" | x has k nonzero components}
Q Ifuc %y, then ||lulli/vVk < |lulla < VE||ul| o
Proof: [|ul|y = [ (u, sgn(w)) | < [lull2]|sgn(u)]}2-

@ Let u, v be orthogonal vectors. Then ||ull> + |[v]l2 < v2||u + v|>.
Proof: Apply the first statement with w = (||ul|2, [[v|]2) "

© Let A satisfies RIP of order 2k. then for any x, x' € 3 with disjoint
supports
| < Ax,AX > | < Ogpg [Ixll2]1X 2
Proof: Suppose x and x” are unit vectors as above. Then
lx +x'|13 = 2, |lx — ¥||3 = 2 due to the disjoint supports. The RIP
gives
2(1 = 0yyy) < [JAx £ AX |3 < 2(1 + d54)
Parallelogram identity

1
| < Ax,AX' > | = 1 }||Ax + AX|3 — ||Ax —Ax’||%} < gy
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Preliminaries: Lemma 2

@ Let T be any subset {1,2,...,n} such that |Ty| < s. For any
u € R", define T, as the index set corresponding to the s entries
of urs with largest magnitude, T, as indices of the next s largest
coefficients, and so on. Then

[zl
D gl < \/05

j>2

Proof: We begin by observing that for j > 2,

Jury I
oo <+

since the T; sort u to have decreasing magnitude. Using Lemma
1.1, we have

| T||1 lluze1
ZHMTHz<\/ZHTHoo<Z = \/OE

j>2 Jj>2 j>1

28/47



Preliminaries: Lemma 3

@ Let A satisfies the RIP with order 2s. Let Ty be any subset
{1,2,...,n} such that |Ty| < s and h € R" be given. Define T} as
the index set corresponding to the s entries of h7¢ with largest
magnitude, and set T = T, U T1. Then

[|hrel1 N 5' (Ahr,Ah) |
Vs |72

where o = Y2 and § = -

|Ar][2 <

Proof: Since hr € EZS, the RIP gives

(1 = 62)[|hr )3 < ||Ar|]3.
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Continue: Proof Lemma 3

Define 7; as Lemma 2. Since Ahr = Ah — -, Ahr;, we have

(1= 625) |5 < ||Ahr5 =< Ahr,Ah > — < Ahr,)  Ahg, >
j>2

Lemma 1.3 gives
‘ <AhTi,Ath > ’ < 52sHAhTH2”AhH2

Note that ||iz, |2 + ||z, |2 < V2| hr|2, we have

| <Ahr,y " Ahg > | =Y < Ahg,Ahg, >+ < Ahy,, Ahy, > |

i>2 j>2 j=>2
< Saslllbnll2 + Ihrll2) > Mz lla < V282 llrll2 > [l |12
Jj>2 j>2
luzg |11
< V260hr)2

NG
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Preliminaries: Lemma 4

@ Let A satisfies the RIP with order 2s with §,, < v/2 — 1. Let x, % be
given and define h = x — x. Let Ty denote the index set
corresponding to the s entries of x with largest magnitude. Define
T, be the index set corresponding to the s entries of hrc. Set
T=ToUT. If||x]; <|x|l;- Then

[l — xlla | (Ahr, Ah) |
hll, < C +C
N
— (1 \/7)623 _ 2
where Cy = 2 (Y26, and C; [EEYLr

Proof: Note that i = hy + hre, then ||k, < k7|2 + ||hr<|2. Let T be
defined similarly as Lemma 2, then we have

(A
lhzella = 11 " hrlla < gl < 5

j=2 j22
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Continue: Proof Lemma 4
Since ||x]|1 < ||x||1, we obtain
[ xllt > llxz, + Azl + |lxrg + Az lls > llxzplls — Azl + [[Arell — llxrg[lr-

Rearranging and again applying the triangle inequality

[rs[lv < Ilx[lr = [lery [l + 1o 1+ [Perg [0 < e — e 1+ Az [+ [Jxrg [l
Hence, we have ||hT5|]1 < |\hz, |1 + 2|]x — x4]|1. Therefore,

1Az, [[1 + 21} = sl

/s

Since || hz,||2 < ||Ar]|2, we have

2||x = x]ls

NG

laze]l2 < < gy ll2 +

2| = xss

hll, < 2|k
All2 < 2||Ar||2 + 75
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Continue: Proof Lemma 4
Lemma 3 gives

| Aze |y | (Ahr,Ah) |

hrl, <
Iz N Tl
Vgl + 20—l | (A, AR
< « +
= s P el
b=l | | (A AR) |
< «allh + 2« +
= olimlar2e el
Using [ln 12 < lrll> gives
b=l | | (A AR) |
1—a)llh <2« +

Dividing by 1 — « gives

4o lx—xlli | 28 |(Ahr,AR)|
A, < +2
72 < <l—a ) NG L—a il
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Spark

First questions for finding the sparsest solution to Ax = b

@ Can sparsest solution be unique? Under what conditions?

@ Given a sparse x, how to verify whether it is actually the sparsest
one?

Definition (Donoho and Elad 2003)

The spark of a given matrix A is the smallest number of columns from
A that are linearly dependent, written as spark(A).

rank(A) is the largest number of columns from A that are linearly
independent. In general, spark(A) # rank(A) + 1; except for many
randomly generated matrices.

Rank is easy to compute, but spark needs a combinatorial search.
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Spark

Theorem (Gorodnitsky and Rao 1997 )

If Ax = b has a solution x obeying |x||o < spark(A)/2, then x is the
sparsest solution.

@ Proof idea: if there is a solution y to Ax = b and x — y # 0, then
A(x —y) = 0and thus

Ixllo + [l¥llo = [lx = yllo > spark(A),
or [[yllo = spark(A) — [lxllo > spark(A)/2 > |[x[|o

@ The result does not mean this x can be efficiently found
numerically.

@ For many random matrices A € R"*", the result means that if an
algorithm returns x satisfying ||x|o < (m + 1)/2, then x is optimal
with probability 1.

@ What to do when spark(A) is difficult to obtain?
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General Recovery - Spark

@ Rank is easy to compute, but spark needs a combinatorial
search.

@ However, for matrix with entries in general positions, spark(A) =
rank(A)+1.

@ For example, if matrix A € R™*" (m < n) has entries
Ajj ~ N(0,1), then rank(A) = m = spark(A) — 1 with probability 1.

@ In general, any full rank matrix A € R™*" (m < n), any m+ 1
columns of A is linearly dependent, so

spark(A) < m+ 1 = rank(A) + 1
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Coherence

Definition (Mallat and Zhang 1993 )

The (mutual) coherence of a given matrix A is the largest absolute
normalized inner product between different columns from A. Suppose
A = [ay,ay,...,a,]. The mutual coherence of A is given by

lay aj]

A) = max ————————
(4) kikZi |lakll2 - lla;ll2

@ It characterizes the dependence between columns of A

@ For unitary matrices, pu(A) =0

@ For recovery problems, we desire a small 1(A) as it is similar to
unitary matrices.

@ For A = [V, ®] where ® and VU are n x n unitary, it holds
n~1/2 < u(A) < 1. Note pu(A) = n~'/2 is achieved with [l,
Fourier], [I, Hadamard]. ( ¢/ ;| = 1, ||a;|| = v/n)

@ if A € R™" where n > m, then p(A) > m~!/?
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Coherence

Theorem (Donoho and Elad 2003)

spark(A) > 1+ p~1(A)

Proof Sketch
@ A + A with columns normalized to unit 2-norm

@ p « spark(A)

@ B+ apxpminorof ATA

® [Bi|=1and} . [Bj| < (p—1)u(A)

@ Supposep < 1+p~'(A) = 1> (p—1)u(A) = [Bul > >,; |Byl, Vi

@ Then B - 0 (Gershgorin circle theorem) = spark(A) > p.
Contradiction.

38/47



Coherence-base guarantee

If Ax = b has a solution x obeying |x||o < (14 x~'(A))/2, thenx is the
unique sparsest solution.

Compare with the previous

Theorem (Gorodnitsky and Rao 1997 )

If Ax = b has a solution x obeying |x||o < spark(A)/2, then x is the
sparsest solution.

@ For A € R™" where m < n, (1 + u~1(A)) is at most 1 + /m but
spark can be 1 + m. spark is more useful.

@ Assume Ax = b has a solution with ||x||o = k < spark(A)/2. It will
be the unique ¢y minimizer. Will it be the ¢; minimizer as well?
Not necessarily. However, |x[o < (14 x~'(A))/2 is a sufficient
condition.
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Coherence-based ¢y = ¢,

Theorem (Donoho and Elad 2003, Gribonval and Nielsen 2003)

If A has normalized columns and Ax = b has a solution x satisfying
[x[lo < (14 pu=1(A))/2, then x is the unique minimizer with respect to
both ¢y and ¢;.

Proof Sketch
@ Previously we know x is the unique ¢, minimizer; let S := supp(x)
@ Suppose y is the ¢; minimizer but not x; we study 4 :=y — x

@ i must satisfy Ah = 0 and ||A]|; < 2||As]||1 since
0> [yl = [lxll = Xiese byil + Xies(yil = 1xil) =
1sellt = D ies [vi = xil = llhsellr — [|As]l1
@ ATAh=0= |hj| < (14 u(A))~'u(A)||A]|1, Vj. (Expand ATA and
use [lilly = >y el + |jl)
@ the last two points together contradict the assumption
Result bottom line: allow ||x||o up to O(y/m) for exact recovery
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The null space of A

e Definition: ||x[|, = (3, [x:[?)!/?

@ Lemma: Let0 <p < 1. If ||(y — x)s¢|[, > [|(y — x)s][, then
[xllp < l[¥llp-
Proof: Leth =y — x.
Iyllp = [lx+Allp = llxs + hsllp + ll7sellp =
el + (e 15 — Wasl5) + (llxs + Aslly — s + Iasli3)
The last term is nonnegative for 0 < p < 1. Hence, a sufficient
condition is ||hsc|[5 > ||hs||p-

@ If the condition holds for 0 < p < 1, it also holds for g € (0, p].

@ Definition (null space property NSP(k,~)). Every nonzero
h € N(A) satisfies ||hs||; < 7||hsc|]1 for all index sets S with |S| < k.
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The null space of A

Theorem (Donoho and Huo 2001, Gribonval and Nielsen 2003)

min ||x||;, S.t. Ax = b uniquely recovers all k-sparse vectors x° from
measurements b = Ax° if and only if A satisfies NSP(k, 1).

Proof:

e Sufficiency: Pick any k-sparse vector x°. Let S := supp(x®). For
any non-zero h € N'(A), we have A(x° + h) = Ax° = b and

I +nl = |1+ hslh + sl
> [5Gl — Nl + [lhselh
X501 = (sl — Nlse]lh)

@ Necessity. The inequality holds with equality if
sgn(x$) = —sgn(hs) and hg has a sufficiently small scale.
Therefore, basis pursuit to uniquely recovers all k-sparse vectors
x°, NSP(k, 1) is also necessary.
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The null space of A

@ Another sufficient condition (Zhang [2008]) for ||x||; < [|y||1 is
1 Iy—zc||1>2
X|lo < —
Mo < 3 (=

sl < VISIlAsllz < V/ISIlIAll2 = v/llx[lolll2-

Then, the above inequality and the sufficient condition gives
[y = xl[s > 2[|(y = x)slly whichiis || (y = x)se[[1 > [[(y = x)s][1-

@ Proof:

Theorem (Zhang, 2008)

min ||x||;, S.t. Ax = b recovers x uniquely if

Ly
oo < m {4(%”2), heN(A)\{O}}
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The null space of A

o 1<l <yn, WeR"\ {0}
@ Garnaev and Gluskin established that for any natural number
p < n, there exist p-dimensional subspaces V, C R" in which

HVHI Z C\/n_p ,VVGVP\{O},
[[vll2 log(n/(n —p))
@ vectors in the null space of A will satisfy, with high probability, the
Garnaev and Gluskin inequality for V,, = Null(A) and p = n — m.

@ for a random Gaussian matrix A, x will uniquely solve ¢;-min with
high probability whenever

C? m

l|1X]lo < TW
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Formal equivalence

Suppose there is an s-sparse solution to Ax = b

drs < 1 solution to combinatorial optimization (min ¢y) is unique
dos < 0.414 solution to LP relaxation is unique and the same

Comments:

RIP needs a matrix to be properly scaled

the tight RIP constant of a given matrix A is difficult to compute
the result is universal for all s-sparse

T tighter conditions (see next slide)

all methods (including £y) require d,; < 1 for universal recovery;
every s-sparse x is unique if 9y < 1

the requirement can be satisfied by certain A (e.g., whose
entries are i.i.d samples following a subgaussian distribution)
and lead to exact recovery for ||x||o = O(m/log(m/k)).
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More Comments

@ (Foucart-Lai) If 6,,4» < 1, then 3 a sufficiently small p so that ¢,
minimization is guaranteed to recovery any s-sparse x

@ (Candes) d,; < v2 — 1 is sufficient

@ (Foucart-Lai) 65, < 2(3 — v/2)/7 ~ 0.4531 is sufficient

@ RIP gives k(As) < /(1 + &) /(1 = 6,), V|S| < k. so
b2 < 2(3 — V/2)/7 gives k(As) < 1.7, V|S| < 2m, very
well-conditioned.

@ (Mo-Li) 65, < 0.493 is sufficient
@ (Cai-Wang-Xu) d,, < 0.307 is sufficient

@ (Cai-Zhang) d,; < 1/3 is sufficient and necessary for universal ¢;
recovery
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Outline

Proximal gradient method

Accelerated gradient method

Alternating direction methods of Multipliers (ADMM)

Linearized Alternating direction methods of Multipliers

Greedy methods

Algorithm unrolling
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¢ -regularized least square problem

Consider |
min ¢y, (x) 1= pllx||]; + EHAx — bl

Approaches:
@ Interior point method: 11_Is
@ Spectral gradient method: GPSR
@ Fixed-point continuation method: FPC
@ Active set method: FPC_AS
@ Alternating direction augmented Lagrangian method
@ Nesterov’s optimal first-order method
@ many others
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Subgradient
recall basic inequality for convex differentiable f:
FO) =) + V@) (= x).
g is a subgradient of a convex function f at x € domf if
FO) = f(x) +g" (y—x),Vy € dom.

()

| i) + gl (a =)

) 4 gl ()

- T
T . T2

g2, g3 are subgradients at x,, g; is a subgradient at x;.
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Optimality conditions — unconstrained
x* minimizes f(x) if and only

0 € 9f (x*)

Proof: by definition

fO) =) +0T(y—x")forally <= 0edf(x").
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Optimality conditions — constrained

min  fp(x)
st filx)<0,i=1,.

From Lagrange duality: if strong duality holds, then x*, \* are
primal, dual optimal if and only if

@ x* is primal feasible
@ \*>0
@ complementary: \fi(x*) =0fori=1,...,m

@ x* is a minimizer of min L(x, \*) = fo(x) + >, Ajfi(x), i.e

0 € O:L(x, \*) = fp(x +Z)\8fl
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Proximal Gradient Method

Let f(x) = 1|[Ax — b||3. The gradient Vf(x) = AT (Ax — b). Consider
min 19, (x) = plx]y +£(x).
@ First-order approximation + proximal term:

. 1
= argmin plfe]y + (V7)) T =) 4 Sl =23
xeR” 2T
. 1 2
= argmin gl ol (- VA3
= shrink(x* — 7VF(x5), ur)

@ gradient step: bring in candidates for nonzero components
@ shrinkage step: eliminate some of them by “soft” thresholding
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Shrinkage (soft thresholding)

shrink(y,v): = argmin v|x|; + l||x — |3
x€R 2
= sgn(y) max(|y| —v,0)
_ {y —vsgn(y), if[y|>v
0, nthanwica
Chambolle, Devore, Lee and Lucier $ shrink(y, v)
Figueirdo, Nowak and Wright
Elad, Matalon and Zibulevsky
Hales, Yin and Zhang i s ° =
Darbon, Osher
Many others
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Proximal gradient method For General Problems

Consider the model
min F(x) := f(x) + h(x)

@ f(x) is convex, differentiable
@ h(x) is convex but may be nondifferentiable
General scheme: linearize f(x) and add a proximal term:

2

1
k1, ; INT (x —¥) + —|lx — xF
X = argmin hix) + (Vf(5) ' (x —x°) + 27_Hx x|z

. 1

= argmin 7h(x) + 5 lx - (W =TV
= prox,,(x* — V("))

Proximal Operator

, I
prox;, (y) := argmin h(x) + 5 [x = y[j3;
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Convergence of proximal gradient method

to minimize f + h, choose x° and repeat
X = prox,,, (xk_1 - tVf(xk_l)) , k>1

assumptions

@ f convex with dom g = R"; Vf Lipschitz continuous with constant
L:

IVF(x) = VFll2 < Lllx = yll2 V¥
@ his closed and convex (so that prox,, is well defined)

@ optimal value F* is finite and attained at x* (not necessarily
unigque)

convergence result: 1/k rate convergence with fixed step size
trk = 1/L
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Gradient map

1
Gi(x) = - (x = prox,, (x — 1Vf(x)))
G,(x) is the negative ‘step’ in the proximal gradient update

xT = prox,, (x — tVFf(x))
= x — 1G(x)
@ G,(x) is not a gradient or subgradient of F = g+ h
@ from subgradient definition of prox-operator
Gi(x) € Of (x) + Oh(x — tG,(x))
@ G,(x) = 0if and only if x minimizes F(x) = f(x) + h(x)
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Consequences of Lipschitz assumption

recall upper bound (lecture on "gradient method") for convex f with
Lipschitz continuous gradient

F0) < S+ V)T - x) + Sy~ 2B oy
@ substitute y = x — tG(x):

2
fx = 1Gy(x)) < f(x) = 1Vf(x) T Gi(x) + %lle(X)H%

@ if0<r<1/L,then

flx=1G(0) <£() = V() G + JIGWIE (1)
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A global inequality

if the inequality (1) holds, then for all z,
t
F(x = 1Gy(x)) < F(x) + Gi(x) " (x = 2) — EHGt(X)H% (@)

proof: (define v = G,(x) — Vf(x))

Flx = 1G,(x) < () = 9/ () Gy() + 2| Gi(x)[B + h(x = 1Gi(x))
< £(@) + V) (6 = 2) = 197() T Giw) + 211G 3
+h(z) +v'(x — 2 — 1G,(x))

F@) +h@D) + Gi) (x = 2) = 2IG(x) 3

line 2 follows from convexity of f and &, and v € Oh(x — tG(x))
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Progress in one iteration

xt =x — 1G,(x)

@ inequality (2) with z = x shows the algorithm is a descent
method:

t
F(<") < Fx) = S 1G5
@ inequality (2) with z = x*

Fxb) = F* < Gyx) T (x —x") — %IIGt(X)H%
1

=5 (k=23 =2 =GB @)
1 .
= 5 (=13 = I+ = x"[3)

hence, ||xt — x*||3 < ||x — x*||3, i.e., distance to optimal set
2 2

decreases)
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Analysis for fixed step size

add inequalities (3) forx = x~'.x* =xt =1, = 1/L

M)~
=
=
|
E!
A
Q|-
]~

(=" =213 = I = 7113)

Il
-
Il
-

R =R~

(I =13 = o = x7[13)

0 * (|2

IA
=
|
=
o

since f(x') is nonincreasing,

k 1
0 * 12
Z _szHx —x*[3

conclusion: reaches F(x*) — F* < ¢ after O(1/e) iterations

= \
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Outline: Accelerated Gradient Method

@ Amir Beck and Marc Teboulle, A fast iterative shrinkage thresholding
algorithm for linear inverse problems

@ Paul Tseng, On accelerated proximal gradient methods for
convex-concave optimization

@ Paul Tseng, Approximation accuracy, gradient methods and error
bound for structured convex optimization
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FISTA: Accelerated proximal gradient

Consider the model
min F(x) := f(x) + h(x).
Givent = 1/L, y! = xp and v! = 1, compute:

X = prox, (¥ — VF("))

1+ 4/1+492

Ve+1 = 2
-1
YL = kg Tk (o — 21
Vi+1

Complexity results:

oy o 2L — |3
F(xk) —F(X ) < W
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APG Variant 1

Acclerated proximal gradient (APG):
Setx~! =x% and 0_1 =6y =1:

o= Aot - Dk -

= prox, (Y — V(YY)
O+ 402 — 67
Or1 = 5

2

Question: what is the difference between 6, and ~,? Show 6, < )

for all k.
Complexity:

4L
(k+1)2

F(x*) — F(x*) <

012
I =72
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APG Variant 2

Another version of APG:

Yoo= (1= ) + 6

2= prox, (2 — V("))
= (1— Qk)xk +9ka+l

0 1402 — 62
1 = 5

y is a convex combination of x* and zX,
x**1is a convex combination of x* and z*1.

Complexity:

F() — Flx) < —F

L
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Outline: ADMM

@ Alternating direction augmented Lagrangian methods

@ Variable splitting method

@ Convergence for problems with two blocks of variables
References:

@ Wotao Yin, Stanley Osher, Donald Goldfarb, Jerome Darbon,
Bregman lterative Algorithms for I1-Minimization with
Applications to Compressed Sensing

@ Junfeng Yang, Yin Zhang, Alternating direction algorithms for
I11-problems in Compressed Sensing

@ Tom Goldstein, Stanely Osher, The Split Bregman Method for
L1-Regularized Problems

@ B.S. He, H. Yang, S.L. Wang, Alternating Direction Method with
Self-Adaptive Penalty Parameters for Monotone Variational
Inequalities
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Basis pursuit problem

Primal: min  ||x||;, st Ax=05b
Dual: max b'A, St [[ATA|e <1

The dual problem is equivalent to

max b' A, 8t ATA =5, ||s]le < 1.
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Augmented Lagrangian (Bregman) framework

Augmented Lagrangian function:

1
L, $,x) = b " A +x"T(ATA—5)+ 2—”ATA — s|?
)

Algorithmic framework

@ Compute M+ and s**! at k-th iteration
(DL)  min) 4 L, 5,x5), st ||s]loo <1
@ Update the Lagrangian multiplier:

T yk+1_ k+1
kL = ok 4 AT =

Pros and Cons:
@ Pros: rich theory, well understood and a lot of algorithms

@ Cons: L£()\,s,xk) is not separable in A\ and s, and the subproblem
(DL) is difficult to minimize
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An alternating direction minimization scheme

@ Divide variables into different blocks according to their roles

@ Minimize the augmented Lagrangian function with respect to one
block at a time while all other blocks are fixed

N+l — argm}%n L\, s, x5

sk+l = argmin E(/\k—’—l,syxk)’ s.t. ”SHOO S 1
S

AT\ k1
A = = = "

7
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An alternating direction minimization scheme

Explicit solutions:

)\k—H — (AAT)—I (M(Axk —b) —|—Ask)

Lt argmin ||s — AT 'ukaz’ st slleo <1
= Pog@T N 4 )
AT K+ _ gkt
1o ok A A TS
i
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ADMM for BP-denoising

Primal:
min ||x||1, s.t. [[Ax —=D|x <o

which is equivalent to
min ||x||;, St. Ax—b+r=0, [[r]2 <o
Lagrangian function:

Lx,r,\) = |lx|]1 — )\T(Ax —b+r)+n(||r].— o)
= Jxli—A" N x+7|rlo = A r+b" A =70
Hence, the dual problem is:
maxb' A — 7o, St AN <1, A2 <7

which is equivalent to

maxb' A — oAz, St AT Ao < 1
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ADMM for BP-denoising

The dual problem is equivalent to:
maxb' A —oullz, st.ATA=5, [[s]lc <1,A=u
Augmented Lagrangian function is:
1 1
L= —bTA+0HuH2+xT(ATA—s)+@HATA—SHZHT(A—uH@HA—uHZ

ADMM scheme:

1 1
A+ in —[|ATA — 55> + (AF — b+ 75 TA+ —||x — b,
arg min 2#” sIF+ ( +7) A+ ZuH u||
1
uk-i—l — argmuin 0'||MH2—|—(7Tk)T()\k+1 _M)_FZH)\IC-H _u||2’
s = argmin [ls — AT — |2 st [fs]e <1
N

— P[_IJ](AT)\/C-‘FI +Mxk)
Tkl gkt
oo A N — s ’ ﬂ_k+1:ﬂ_k+l()\k+l_uk+l)
7 m
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ADMM for ¢,-regularized problem

Primal: |
min goll|s + 5lAx - |3

which is equivalent to

1
min f|x[[; + EHrH%, st.Ax—b=r.

Lagrangian function:

1
Lo, A) = plxll + EHrHﬁ A (Ax—b-1)

1
pllxlls = (ATA) T+ Slirllz + ArbTA

Hence, the dual problem is:

1
maxh ' A — EHAH% st AT Ao < i
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ADMM for ¢;-regularized problem

The dual problem is equivalent to

max b\ — %H)\Hz, st ATA =5, [|sl|e < 1
Augmented Lagrangian function is:
L, 5,x) :=—b' A+ %HAHZ +x (ATA—5) + 21M||AT>\ —s|?
ADMM scheme:

N = (AAT 4 ul) 7 (u(AXF - b) + AsY)

s = argmin s — ATAT — |2 st [s]|eo <
= Pl (ATNH 4 gt

PR . ATNH — 5
w
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YALLA1

Derive ADMM for the following problems:

BP:
L1/L1:

L1/L2:
BP+:
L1/L1+:

L1/L2+:

minxe(crt
min,ecn
minxe(crl
min,ecpe

minxeRn

minxeRn

HWwa,h St A)C — b
1
(| Wl fy,1 + ;HAx — b
1
[ Wxl|w,1 + %HAx — |}
[x[lw,1, St Ax=5b, x>0

1
[[x[lw,1 + ;HAX —b|l;, st.x>0

1
ol 1 + %HAx — b}, st.x>0

v,p>0,AeC™" beC"xe C"for the first three and x € R” for the
last three, W € C"*" is an unitary matrix serving as a sparsifying

Z?:l wixi].

basis, and ||x||,,,1 :=
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Variable splitting

Given A € R™*", consider min f(x) + g(Ax), which is
min f(x) + g(y), st. Ax=y

Augmented Lagrangian function:
1
L(x,y,A) =f(x) +g(y) = AT (Ax - y) + @HAx -3

(P): xXtl:=argmin L(x,y" \b),
XEX

(Py) : Y= argmin LX)y, M),
yey

Axkl — yk—H

(Py): Ml.= )k _ .
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Variable splitting

split Bregman (Goldstein and Osher) for anisotropic TV:
. 1
min o Dully + 5][ulli + 5| Au —fll3
Introduce y = Du and w = Yu, obtain
. 1 2
min «olly||; + Bl|w||1 + §||Au —fll3, st.y=Du, w=Yu

Augmented Lagrangian function:
._ 1 2 T 1 2
£ = alli+Blwlh + 5 llAu~fl2 = p (Du—y) + @HDM =l

1
—q' (Vu—w) + EII\PM —wl3
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Variable splitting

@ The variable u can be otained by

1 1
<ATA +—(D'D+ 1)) u=A'f+-D'y+ ¥ Tw)+D p+ Ty
% @
If A and D are diagonalizable by FFT, then the computational
cost is very cheap. For example, A = RF, both R and D are
circulant matrices.
@ Variables y and w:

S(Du — pp, oup)
= S(Vu— pgq,op)

S <
I

@ apply a few iterations before updating the Lagrangian multipliers
pandg
Exercise: isotropic TV

: 1
min o[ Dull2 + B[ Wully + - |[Au ~fl3
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FTVd: Fast TV deconvolution

Wang-Yang-Yin-Zhang consider:
. 1
min Y || Dullz + @HKM AP
Introducing w and quadratic penalty:
1
win 35 (Il + 5 i = D) + - 113

Alternating minimization:
@ For fixed u, {w;} can be solved by shrinkage at O(N)
@ For fixed {w;}, u can be solved by FFT at O(NlogN)
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Outline: Linearized ADMM

@ Linearized Bregman and Bregmanized operator splitting
@ ADMM + proximal point method

@ Xiaoqun Zhang, Martin Burgerz, Stanley Osher, A unified
primal-dual algorithm framework based on Bregman iteration
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Review of Bregman method

Consider BP:
min ||x||;, s.t. Ax=1>

Bregman method:
k
® Df (x,x*) := ||xlli — [l — (p*,x — o)
@ X! := argmin, ;LD’J’k(x, )+ 1||Ax — b3
Y pk+1 :pk + iAT(b _Axk-‘rl)
Augmented Lagrangian (updating multiplier or b):
@ X1 :=argmin, pullx||; + 3||Ax — b¥|3
® P! = b+ (bF — AxkTT)
They are equivalent, see Yin-Osher-Goldfarb-Darbon
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Linearized approaches

Linearized Bregman method:

‘ 1
£ = argmin uDﬁk () + AT A —b) T (x — 4 + 2—5\|x — "3,
1 1
k1 k 1k T4k
p = p— —ET —x)— —A (A" —b),
ué( ) Iz

which is equivalent to
: 1
A= argmin pllx|i + 25— lF
= W sAT (AT — b)
Bregmanized operator splitting:
1
H = argmin gl + (AT (A = 59) T (r =) + S llx — o
P = b+ (0 - A
Are they equivalent?
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Linearized approaches

Linearized Bregman method:

1
A = argmin ,uD?k(x,xk)+(AT(Axk—b))T(x—xk)—|—2—6\|x—xk||%,
1 1
k—+1 k k—+1 k T k
= P — (M o) - AT (A -
p p M(x x) m (Ax" = b),

which is equivalent to

= SO, o) = S(6AT B, o)
or
VI =k AT (AT — b) P = b 4 (b — AT

Bregmanized operator splitting:

= SO —s(AT (A — b)), ud) = S(BATH + X — AT AXE, 1)
bk+l _ b“r (bk 7Axk+l)
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Linearized approaches

Linearized Bregman:

e If the sequence x* converges and p* is bounded, then the limit of
x* is the unique solution of

min pjx||; + 25 Htz s.t. Ax =b.

@ For u large enough, the limit solution solves BP.
@ Exact regularization if § > §
What about Bregmanized operator splitting?
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Primal ADMM for ¢,-regularized problem
Primal: min gjx|[; + 1[|Ax — b[|3 which is equivalent to
min gy + 1B, St Ax—b=r
Augmented Lagrangian function:
£0r,X) = il + 313 = AT (A — b= )+ 5 cflAx b 3

ADMM scheme:

1 -
AT = argmin x| + S5 llAx—b— * —8Xk||3 original problem
L1 1 c
P arg min §||r||§+ %HAXI\-H —b—r—(5)\k\|%
AL )\k+Axk+l —b— !

)
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Primal ADMM for ¢,-regularized problem

Primal: min p[x| + 3 [lAx — b3 which is equivalent to

1
min p|x||; + EHrH%, st.Ax—b=r.

Augmented Lagrangian function:

1 1
£(6.7,\) = el + 53 = AT (Ax = b= ) + - Ax—b— |

ADMM scheme:

k41
x+

k+1
r+

)\k+ 1

. I
= argmin pflxfi + (¢ (x =) + 5[ — x|z

1 1
= argmin §||r||% + ﬁﬂAka —b—r—8\3

A — p — AL

— A\
+ 5

Convergence of the linearized scheme?

2
2
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Outline: Greedy Methods

@ Orthogonal matching pursuit

@ CoSaOMP
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Orthogonal Matching Pursuit, OMP
@ gh=AT (A1 —b)

@ x* = argmin {||Ax — b||, : supp(x) C Sk}. 4= RAEEAT AR
ERIPAM, MALAg RIS ERTHS. MEH
Fargmin {||[Agixge — b||2 : supp(x) C S¥}. & X
Axge = (ALAs) 'ALD

Algorithm 1 OMPJ- ik 1E &

1A A b, e RS =0,k = 1, R ARR Bkppax.
2: while k < k. dO

3 THHEA =AK b

4 TH=AT

5. THHASH = S5 Uargmax; |g¥).

6: I Hx* = argmin, {||[Ax — b| : supp(x) C S*}.

7

8:

o k+—k+1.
end while
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CoSaOMP

@ g& = argmin{|lx — g : [|x]lo < 25} R gr892s-38

Algorithm 2 CoSaOMP A i£1E &

18 AP0 e RS = 0,k = 1,40k K e
2: while ||/*|| < e do

3 THEA = AR b

4 THigh =ATH

5. HHASK = supp(x*~1) U supp(g’és).

6: 1HHc = argmin {||Ax — bl|5 : supp(x) C S¥}.
7.

8:

9:

T = ¢
k< k—+1.
end while
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Ouitline: Algorithm Unrolling

@ A Brief Introduction to Algorithm Unrolling

@ Learned ISTA
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Algorithm Unrolling (AU)

AU consists of two steps
@ Pick a classic iteration and unroll it to an Neural Network (NN)
@ Select a set of NN parameters to learn

LASSO example: assume b = Ax""® 4- noise; recover x"*¢ by

1
xlasso minimizeiHAx - bH% + Allx[l:
X

Iterative soft-thresholding algorithm (ISTA):
= Ma (xk —aAT (Axk — b))
@ convergence requires a proper stepsize « or line search

e the gradient-descent step reduces ;||Ax — b||?
@ the soft-thresholding step 7,.(-) reduces A||x||;
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Unrolled ISTA

@ Introduce scalar # = Aa and matrices W; = aAT and
Wy, =1—aATA
@ Rewrite ISTA as
= 19 (Wlb + szk)

@ Unrolling: introduce 6%, W, Wk k = 0,1, ..., as free parameters
and re-define
X =y (W{‘b + lecxk)

which resembles a DNN:

b

@ Once 6%, WX, W5 are chosen, the algorithm is defined
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Train the Unrolled ISTA

@ Objective: Find 0%, WX, Wk for k = 0,1, ..., such that the
algorithm converges quickly for LASSO instances with the same
matrix A.

@ Setup and Training:

e Fix a random matrix A, generate sparse vectors x''® with varying
supports, and compute b; = Ax!""® + noise,. Form the training set
D = {(x}",bi)}.

e Fix a small K > 0, and train the parameters {6, W¥, Wi}X_ using
SGD to minimize:

minimize Z ||XK(b)—X*H§;

{orwiw} | e

where xX(b) is the K-layer output of the neural network.
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Performance of the Learned ISTA (LISTA)

After the NN is trained with K = 16, the test performance is pretty
good:

——ISTA(A=0.1)  -©— ISTA (= 0.025)
—— ISTA (A =0.05) —%— LISTA

-10

-20

NMSE (dB)

o0—6—0—0—06—0

-30

-40 — I | | | | | | 1
100 200 300 400 500 600 700 800

Tterations / Layers (k)

Figure: The trained unrolled ISTA is called Learned ISTA (LISTA)

LISTA is better than ISTA at any \ and using a theoretical stepsize
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Lecture: Matrix Completion

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Jure Leskovec and Prof. Emmanuel
Candes’s lecture notes
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Recommendation systems

References:
http://bicmr.pku.edu.cn/~wenzw/bigdata/07-recsysl.pdf

http://bicmr.pku.edu.cn/~wenzw/bigdata/08-recsys?2.pdf 252



The Netflix Prize

@ Training data

@ 100 million ratings, 480,000 users, 17,770 movies
@ 6 years of data: 2000-2005

@ Test data

o Last few ratings of each user (2.8 million)
e Evaluation criterion: root mean squared error (RMSE):
> (i — i) ry and rf; are the predicted and true rating of x
oni
o Netflix Cinematch RMSE: 0.9514

@ Competition

e 2700+ teams
o $1 million prize for 10% improvement on Cinematch
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Netflix: evaluation

480,000 users

Matrix R

17,700
movies

Training Data Set

Test Data Set

L—True rating of
. ~ 2 user x on item i
SSE = Z(i,x)eR(rxi - rxi)

Predicted ratina

O I WEN Ez D@ H4E



Collaborative Filtering: weighted sum model

T = by + Z W,'j(rxj — bxj)
JEN(isx)

@ baseline estimate for ry;: by = p+ by + b;
w: overall mean rating
b,: rating deviation of user x = (avg. rating of user x) - u
b;: (avg. rating of movie i) - u

@ We sum over all movies j that are similar to i and were rated by x

@ w;; is the interpolation weight (some real number). We allow:
ZjGN(i,x) wij 7 1

@ w; models interaction between pairs of movies (it does not
depend on user Xx)

@ N(i;x): set of movies rated by user x that are similar to movie i
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Finding weights w;;?

Find w;; such that they work well on known (user, item) ratings:

2
levfjn F(w) = Z ({bxﬁF Z wij(rej — X/] rxi)

JEN(isx)

@ Unconstrained optimization: quadratic function

Vi, F = ZZ ( {bx,- + Z Wik (T — bxk)] - in) (rg—by) =0

keN (isx)
forj e {N(i,x),Vi,x}

@ Equivalent to solving a system of linear equations?

@ Steepest gradient descent method: wit! = wk — 7V F(w)

@ Conjugate gradient method -



Latent factor models

@ low rank factorization on Netflix data: R ~ Q - PT

users f factors
TNE 5 5[ T4 T4
" 5l e 2 AR 5(6 |5 users -
EEET ST o Talers EEERE W1723572—,587431424§‘
AP PP e e e e e e b et o
4 3] 4] 2 2| 5 gJ 21| 2 " a1
TRERE 2 I ENERE PT
R Q

@ For now let's assume we can approximate the rating matrix R as
a product of “thin” Q - PT
R has missing entries but let’s ignore that for now! Basically, we
will want the reconstruction error to be small on known ratings
and we don’t care about the values on the missing ones

S
]
i)



Ratings as products of factors

@ How to estimate the missing rating of user x for item i?

Fi =q;- Z qifPxf»

where ¢; is row i of Q and p, is column x of PT

ffactors Q

users
E 2 |3 |5 5 |8 4 |3 |14 [24 |9
' 7 |5 |14 1 |14 |29 [-7 |12 [-1 [13
0]
-
= 4 |6 |17 9 314 |8 |7 [-68 |4
1 7 3 PT



Latent factor models

@ Minimize SSE on training data!

@ Use specialized methods to find P, Q such that #,; = g; - p!

min Z (ri—aqi-pi)°
(i,x)etraining

We don’t require cols of P, Q to be orthogonal/unit length
@ P, Q map users/movies to a latent space

@ Add regularization:

min Z (ri —qi-pL)* + A
(ix)etraining

zupx||5+z||q,~n5]
X i

A is called regularization parameters
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Gradient descent method

z\px||5+znq,-n5]
X i

. L .2
I}Jl}QIl F(P, Q) = Z . (rxt qi px) + A
(ix)etraining

Gradient decent:
@ Initialize P and Q (using SVD, pretend missing ratings are 0)

@ Do gradient descent:
Pl Pk — 7V pF(PF, QY),
Q! O — TVF(P', 0Y),
where (VoF)y = =23 .(rv — qipl)pyr + 2Aqir. Here gy is entry f
of row ¢; of matrix Q ’

@ Computing gradients is slow when the dimension is huge
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Stochastic gradient descent method

Observation: Letgy be entry f of row g; of matrix Q

(VoF)y = > (=2(ri — gipl)par + 20qyr) = > VoF(ry)

X,i

(VeF)y = > (=2(ri —apl)ay +2X\py) = Y VpF(ra)

X,i

Stochastic gradient decent:

@ Instead of evaluating gradient over all ratings, evaluate it for each
individual rating and make a step

o P%P—TVPF(I"XI')
Q(—Q—TVQF(I"X,')

@ Need more steps but each step is computed much faster



Latent factor models with biases

predicted models:
;'xi:,u"i_bx'i_bi"i_qrp){

w: overall mean rating, b,: Bias for user x, b;: Bias for movie i

New model:

D IS SRy
(i)etraining

AN a3+ D llaill3 + 116413 + 184013
X i

@ Both biases by, b; as well as interactions g¢;, p, are treated as
parameters (we estimate them)

@ Add time dependence to biases:

Fi = 1+ by(t) + bi(t) + gi - pL
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Netflix: performance

Global average: 1.1296

User average: 1.0651
Movie average: 1.05633

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91
Latent factors:_0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876




Netflix: performance

Showing Test Score. Click hera to show quiz score
Leaderboard o -

Rank Team Name

yianaliana

Best Test Score % Impro
Grand Prize - RMSE = 0.8567 - Winning Tear- B=1 = im o m e e O

Best Sub

1 BellKor's Pragmatic Chaos } 0.8567 10.06 | 2009-07-26 18:18:28
2 The Ensemble : 0.8567 ' 10.086 | 2009-07-26 18:38:22
3 Grand Prize Team . - I U U R
4 lutions and Vandel ni 08588 984 | 2009-07-10 01:12:31
5 Vandelay Industries | 0.8591 9.81 | 2009-07-10 00:32:20
6 PragmaticTheory 0.8594 877 | 2009-06-24 12:06:56
7 BellKor in BigChaos : 08601 970 2009-05-13 08:14:09
8 Dace 08612 9.59 2009-07-24 17:18:43
9 Feeds2 0.8622 848 + 2009-07-1213:11:51
10 BigChaos i 0.8623 947 | 2009-04-07 12:33:59
11 lution: : 08623 947 | 2008-07-24 00:34:07
12 BellKor ' 08624 946 ¢+ 2009-07-26 17:18:11

it Time
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General matrix completion
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Matrix completion

@ Matrix M € Rm>*m
@ Observe subset of entries
@ Can we guess the missing entries?

D ) D) D) ) e
D D ) N e X

X =2 X 0 X =
'\3'\3)('\3'\3'\3

X 0 X 2 X
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Which algorithm ?

Hope: only one low-rank matrix consistent with the sampled entries J

Recovery by minimum complexity

minimize rank(X)
subjectto X =My, (i,j) €Q

Problem
@ This is NP-hard

@ Doubly exponential in n (?)




SVD - Properties
If A is a real m-by-n matrix, then there exits
U=[u,...,un)] ER™™and V =[vy,...,v,] € RV
such that UTU =1, V'V =T and
UTAV = diag(ay,...,0,) € R™"  p=min(m,n),

where oy > 02 > ... > 0, > 0.

@ Proof: Let V; € R"*" has orthonormal columns, then exits
Vo € R™ (1) sych that V = [V}, V,] is orthogonal.

@ Letx € R" and y € R™ be unit 2-norm vectors: Ax = oy with
o = ||A|l>. Then exists V, € R™*("=1) and U, € R"*("~1) 50
V=[x, Vo] e R and U = [y, U] € R™*™ are orthogonal.



@ Then it can be proved that UTAV has the following structure

T
UTAV = (0 W > = A,

0 B
‘Al (0>
w

we have ||A;]]3 > (o + wiw). But o> = ||A|j3 = ||A4]3, and so we
must have w = 0. An induction gives the proof.

Since
2

> (0_2 + WTW)27
2

Properties:
@ AV = UY, ATU = vxT: Av; = ou;, ATMi =owvi,i=1,...,p.
@ rank(A) = r, null(A) = span{v,y1,...,vn}, ran(A) = spanf{uy, ..., u,}

© A= owmv]
] HAH%— = U% —+ ... —i—Ulz], HAHZ = 0]
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SVD - Best Low Rank Approximation

Let the SVD of A € R™*" be given in Theorem: SVD. If
k < r=rank(A) and Ay = Zle ouv?, then

min  [[A = B2 = [|A — Acll2 = okt
rank(B)=k

@ Proof: Since UTAV = diag(oy, ..., 04,0,...,0) it follows that
rank(Ay) = k and UT(A — Ay)V = diag(0, . ..,0, 0441, .. .,0p).
Hence ||A — A2 = 0k41-

@ Suppose rank(B) = k for some B € R™*". We can find
orthonormal vectors x, ..., x,—x SO null(B) = span{xi, ..., x,—i}.
A dimension argument shows:

span{xi, ..., xo—i} Nspan{vi,...,viy1} # {0}
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@ Let z be a unit 2-norm vector in this intersection. Since Bz =0

and
k+1
Az = Z Ui(viTz)u,-,
i=1
we have
k+1
IA = B3 > [[(A = B)z|)3 = |Azll; = Y 07 (v 2)* = o
i=1
Comments:

@ So zeroing small o; introduces less error

@ How many os to keep? Rule of thumb: keep 80-90% of ’energy’

(=207



SVD - Complexity

@ To compute SVD: O(nm?) or O(n*m)

@ But:

o Less work, if we just want singular values
e or if we want first k singular vectors
e or if the matrix is sparse

@ Implemented in linear algebra packages like

o Dense matrix: LAPACK
o Sparse Matrix: ARPACK, PROPACK
e High Level Software packages: Matlab, SPlus, Mathematica ...
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Relation to Eigen-decomposition

@ SVDgivesusA =UXV'

@ Eigen-decomposition: A = XAX "
@ A is symmetric
e U,V X are orthonormal
e A, Y are diagonal

e AAT =UuxxTUT
@ATA=VEXTVYT
@ \(ATA) = d?(A)



Nuclear-norm minimization

Singular value decomposition
,
X = Z akukv,f
k=1

@ {ox}: singular values, {u}, {vi}: singular vectors
Nuclear norm (o;(X) is ith largest singular value of X)

n

x|l = oi(X)

i=1
Heuristic

minimize || X||«
subjectto  X; = M;, (i,j) € Q

@ Convex relaxation of the rank minimization program



Connections with compressed sensing

General setup

Rank minimization Convex relaxation
minimize rank(X) minimize || X||.
subjectto A(X)=1b subjectto A(X)=1b

Suppose X = diag(x),x € R”
@ rank(X) = > 1(xz20) = l1xllg
o HXH* = Zi ‘xi’ = Hngl

Rank minimization Convex relaxation
minimize  ||x||,, minimize  ||x||,,
subjectto Ax=05b subjectto Ax=0»b

This is compressed sensing!
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SOCP/SDP Duality

(P) min c'x (D) max b'y
st. Ax=b,xo =0 st. Aly+s=c,50>0
(P) min (C,X) -
st (ALX)—p, (B max by
st. ) yAi+S=C
(A, X) = by, ’
X0

Strong duality
@ If p* > —o0, (P) is strictly feasible, then (D) is feasible and

S=0

p* — d*
@ If d* < +o0, (D) is strictly feasible, then (P) is feasible and
p* — d*

e If (P) and (D) has strictly feasible solutions, then both have
optimal solutions.
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Semidefinite program

min — bTy

(D)
st yiAir+...+yAn XC

@ A;, C € S multiplier is matrix X € S*
@ Lagrangian £L(y,X) = —b'y+ (X, y1A; + ... + yuAn — C)
@ dual function

- <C’X> > (Ai7X> = b;

X)=inf L(y,X)= .
§(X) & 0, %) {—oo otherwise

Y

The dual of (D) is

min  (C,X)

st. {(A,X)=b,X =0
p* = d* if primal SDP is strictly feasible.
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Positive semidefinite unknown: SDP formulation

Suppose unknown matrix X is positive semidefinite

min Y 0i(X) min trace(X)
= s.t. X,'j = M; (l7]) e N
X>=0

Trace heuristic: Mesbahi & Papavassilopoulos (1997), Beck &
D’Andrea (1998)



General SDP formulation

Let X € R™*". For a given norm || - ||, the dual norm || - ||, is defined as
[1Xlla := sup{(X,Y) : ¥ € R™", [[Y| < 1}

Nuclear norm and spectral norms are dual:

IX|| == o1(X), X[« = > oi(X).

. 0 X
(o[ 1))
max 2(X,Y)

st ||Y|, <1 st |7 70 2= In
Y' I,

®) max (X,Y)



General SDP formulation

The Lagrangian dual problem is:

. 0 X
Iax min —<Z,[ . 0]>+<Z1—Im,W1>+<Zz—In,W2>

strong duality after a scaling of 1/2 and change of variables X to —X

minimize (trace(W;) + trace(W))

N =

(D)
. W X
subject to [XT Wz] =0
Optimization variables: W, € R">*" W, € R"™*",

Proposition 2.1 in "Guaranteed Minimum-Rank Solutions of Linear
Matrix Equations via Nuclear Norm Minimization", Benjamin Recht,
Maryam Fazel, Pablo A. Parrilo
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General SDP formulation

Nuclear norm minimization

min || X||. max by
<~
st. AX)=b st A ()| <1

SDP Reformulation
1
min 5 (trace(W;) + trace(W,))

W X
[XT Wz] =0
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Matrix recovery

2
M = ¥
;U"""”k’ = (e1—e2)/V2

0 00

* x 0 ... 00
M=10 00 ... 00
0 0 0 0 0]

Cannot be recovered from a small set of entries
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Rank-1 matrix M = xy*

Mj; = x;y;

X X X X
X X X X
X X X X
X X X X
X X X X
X X X X

If single row (or column) is not sampled — recovery is not possible

What happens for almost all sampling sets?

2 subset of m entries selected uniformly at random
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Matrix Rank Minimization

Given X € R™" A : R™" — RP, b € RP, we consider
@ the matrix rank minimization problem:

min rank(X), s.t. A(X)=0>
@ matrix completion problem:
min rank(X), s.t. X = My, (i,j) € Q
@ nuclear norm minimization:
min [ X|. s.t. AX)=0b

where || X||. = )", 0; and o; = ith singular value of matrix X.

35/52



Quadratic penalty framework

@ Unconstrained Nuclear Norm Minimization:
min F(X) = X1l + 3| AX) bl
@ Optimality condition:
0 € pd||IX*||. + A*(AX*) — b),

where 9||X||, = {UVT + W :U"W =0,WV =0, [|W|, < 1}.
e Linearization approach (g is the gradient of 1| A(X) — b|)3):

. 1
X = argmin pl|X + (X — X5) + |IX = X7

. 1
= argmin ul|X[l. + 5= [IX — (X" —7¢")|7
X 2T
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Matrix Shrinkage Operator

For a matrix Y € R™*", consider:

min IR+ 3K - VIR

The optimal solution is:
X := S(Y,v) = UDiag(s(o,v))V',

@ SVD: Y = UDiag(c)V"
@ Thresholding operator:

xi—v, ifxpi—v>0

s(x,v) :=x, withx; = { 0 ow
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Fixed Point Method (Proximal gradient method)

Fixed Point Iterative Scheme

Yk =Xk — 7 A*(A(XK) - b)
XKL = (YK ).

Lemma: Matrix shrinkage operator is non-expansive. i.e.,

1S(Y1,v) = S(Y2, v)||F < [[Y1 = Yal|F.

Complexity of the fixed point method:

L] X° — x*|

F(X) = F(x*) < o
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Accelerated proximal gradient (APG) method

APG algorithm (r=! = = 1):

P |
tk

G = Y- (THTTA (AT - b)

1+ /1 +4(s)?

Complexity:
2Ly || X0 — X*|?

FOX) = FX) < =T



SVT

Linearized Bregman method:

VAL = VR s AT (AXY) - b)

Xk+1 = ST'LL(V](-‘FI)

Convergence to

1
min X + S/IX|IF, st AX) =b
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Review of Bregman method

Consider the problem:
min [|X|., st AX)=0b

Bregman method:
o DX, X*) == ||« — || X" — (P*, X — X*)
o X! .= argminy uD" (X, X*) + AX) - b3
@ pk+l :Pk+ﬁAT(b_A(Xk+l))
Augmented Lagrangian (updating multiplier or b):
o Xk = argminy p|X|. + 1 AX) — 03
@ bl = b+ (bF — AX<D))
They are equivalent, see Yin-Osher-Goldfarb-Darbon
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Linearized approaches

Linearized Bregman method:

X' .= argmin prk(X,Xk)+<AT(A(X")fb),Xka>+2i6||XfX"|\%,
1 1

P P (XM XN - — AT (A - b),
15 ) ATARY )

which is equivalent to
1
X = argmin plX]|. + 251X = Vi
v = VR s AT (AT — b)
Bregmanized operator splitting:
1
X = argmin ]|+ (AT (AKX =59, X = X) + X - X
P = b+ (0 - AXTY)

Are they equivalent?
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Linearized approaches

Linearized Bregman method:

X = angmin D (60X + (AT(AGE) — b),X X)X - X,
1 1

Po= P (X XN — AT (A - b),
oo x = AT -y

which is equivalent to

X = SV, uo) X = S(8AT (BY), uo)
or
V= vE AT (AT — b) P = b4 (b — AXTY)

Bregmanized operator splitting:

X = S(XF = (AT (AXY) = b)), ud) = S(BAT (V) + X* — 5 AT (AXY), ud)
P = b+ (0 - AXTY)
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Low-rank factorization model

@ Finding a low-rank matrix W so that || Po(W — M)||% or the
distance between W and {Z € R™*", Z;; = M;;,V(i,j) € Q} is
minimized.

@ Any matrix W € R™*" with rank(W) < K can be expressed as
W = XY where X € R™X and Y € RK>",

New model

1 2 .
[ EHXY—ZHF s.t. Zj = My, V(i,j) € Q

@ Advantage: SVD is no longer needed!

@ Related work: the solver Opt Space based on optimization on
manifold



Nonlinear Gauss-Seidel scheme

First variant of alternating minimization:

X, « zvt=zvT(yyr"Hf,
v, (xp)'z=xix)'(x]2),
Z_|_ — X+Y++PQ(M—X+Y+).

Let P4 be the orthogonal projection onto the range space R(A)
© X,V = (X:(X[X.)'X[)Z="Px,Z
@ One can verify that R(X,) = R(ZY ") .
@ X\ Y, =PyuZ=2Y"(YZ'ZY")(YZ2")Z.
@ idea: modify X or Y. to obtain the same product X, Y,
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Nonlinear Gauss-Seidel scheme

Second variant of alternating minimization:

X, « zv',
Ve e (x0iz= (X))
Z+ — X+Y++PQ(M—X+Y+)

Third variant of alternating minimization: V = orth(ZY")

X <V,
Y, « V'z
Z, +— X4Y4 +PQ(M—X+Y+)
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Sparse and low-rank matrix separation

@ Given a matrix M, we want to find a low rank matrix W and a
sparse matrix E, so that W + E = M.

@ Convex approximation:

min |Wl. + p|[Elli;, st W+E=M

@ Robust PCA
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Video separation

@ Partition the video into moving and static parts
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ADMM

Convex approximation:

min |W|. + glEll, st. W+E=M
W.E

Augmented Lagrangian function:

1
L(W,E, A) := W[l + plE[lh + (A, W+ E - M) + ﬁ||W+E—M||%

Alternating direction Augmented Lagrangian method

Wj+1
Ej+1

Aj+1

argmﬂi/n L(W, E, N),

argmbin LWL E, N),

N+ %(Wj“ + BT M),
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W-subproblem

Convex approximation:

witl

= argmv‘i/n L(W, E, N)

= augmin W]+ 55 [W— (4~ 2 - )

= S3(M — B — BN) := UDiag(sz(0))V"

@ SVD: M — E/ — BN = UDiag(o)V'
@ Thresholding operator:

o xi—v, ifxp—v>0
sy(x) ==X, withx; = { 0, oW,
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E-subproblem

Convex approximation:

with = argmgn LWL E, N)
1 ; N
_ : 41
= argn}z_lnHEHl-i-mHE—(M—Wf — BN ||,
B " .
= spu(M =W — BN) 4 shrink(y, V)
() = argmin vl + 5l — 13
v(y): = argmin vixf; + Sl yll5
-D D
's

_Jy—wvsan(y), iy >v 5
0, otherwise
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Low-rank factorization model for matrix separation

@ Consider the model

min |[S]1 s.t. Z+8=D, rank(Z) < K

@ Low-rank factorization: Z = UV

min [|Z—-DJj; st. UV—-Z=0
uyv,z

@ Only the entries Dy, (i,j) € 2, are given. Pq(D) is the projection
of D onto €.

New model

i Z-D t. —Z=
min, || Pa( e st UV 0

2V 9

@ Advantage: SVD is no longer needed!
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ADMM

Consider:

min  |[Po(Z-D)[i st UV-Z=0

Introduce the augmented Lagrangian function
L5(U.V.ZA) = [Pa(Z = D) + (A, UV~ 2) + S |uv — 7]}

Alternating direction augmented Lagrangian framework (Bregman):

Ut = arg min LU, VI, Z, N),
UcRmxk

V.= arg min Eg(Uj‘H, V,Z, N),
Vekan

2T = arg min Ly, VIt Z, V),
ZeRmxn

N = N gtV — 7,



ADMM subproblems

@ LetB=2Z—- A/p3, then
Up=Bv (vWhiland vy = (U[U4)'UB
Since UV, = U (U] U4)'U]B = Py, B, then:
Q:=orth(BV'), U,=QandV,=Q'B

@ Variable Z:

Pa(Zy) Pa (S <U+V+—D+g,;> +D>
PQC(Z+) - PQC <U+V+ + /ﬁ\)
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Optimal Transport

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Gabriel Peyré’s lecture notes

1/85



Outline
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A Geometric Motivation

Setting: Probability measures P(X) on a metric space (X, dist).

distance between p and v:
@ /=4, and v =,
dist(p, v) = dist(xy,y1)
o i = %Z?:l 5xi andv = % Z?:l 5}’:‘
dist(p, v) = 5 7, dist(x;, ;) ? or
diSt(/L, 1/) = min, permutation % Z,‘ diSt(xia ya(i))
@ Whatif u,v € P(X)?
Goal: Build a metric on P(X") with the geometry of (X, dist).
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Applications: comparing measures

Comparing Measures

— images, vision, graphics and machine learning

e Optimal transport
— takes into account a metric d.

L? mean Op al transport mean
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Applications: toward high-dimensional OT

Toward High-dimensional OT

Monge Kantorovich Dantzig Brenier B Otto McCann Villani

&.
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Kantorovitch’s Formulation

Discrete Optimal Transport
Input two discrete probability measures

0= ad, B=3 bd, (1)
i=1 j=1

@ X = {x;};, Y = {x;};: are given points clouds, x;,y; are vectors.
® a;,b; : positive weights, 37" a; = 377 b = 1.
o Cl] costs, Cij = c(xi,yj) > 0.

def

U(CY, B) =

{Il e R7*"; 111, = a,1I" 1,, = b} (2)

is called the set of couplings with respect to o and 4.
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Kantorovitch’s Formulation

Discrete Optimal Transport
In the optimal transport, we want to compute the following quantity
[Kantorovich 1942]

Optimal transport distance

L(a, f, )mln{ZC,JH,J,HEU(a b)} (3)

LJ
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Push Forward

@ Radon measures («, ) on (X,)).
@ Transfer of measure by T: X — Y: push forward.
@ The measure Ta on Y is defined by

Tya(Y) = o(T~'(Y)), forall measurable Y € V.

Equivalently,
/ ¢()dTa(y) & / ¢(T())da ).
% X

@ Discrete measures: Tya = ), idr(y)
@ Smooth densities: da = p(x)dx, d5 = &(x)dx.

Tpa =B < p(T(x))|det(0T (x))| = £(x).



Monge problem

@ Monge problem seeks for a map that associates to each point x;
a single point y;, and which must push the mass of « toward the
mass of 3, namely:

Vj, bj = Z a;
T (x1)=y;

@ Discrete case:

min Zc(xi,T(xi)), st. Tya=p

@ Arbitrary measures:

mTin /Xc(x, T(x))do(x), st Tpa=p



Couplings between General Measures

Projectors:
Py:(x,y) €X' x)Y —=x€eX,

Py:(x,y)eXxY—>ye).

Couplings between General Measures

Ula, B) E {r € Mo (X X Y);Payn =, Pyyr =6}  (8)

is called the set of couplings with respect to « and 5.
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Cases of Couplings

Couplings: the 3 Settings

Discrete

Semi-discrete Continuous
Y @

L J6] 900 L Y5}
e ™
1



More Examples

Examples of Couplings

“T a
S AN

)3 gis )3 T
x C
B B8
B
s 6 T
()‘ (l‘
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Kantorovitch Problem for General Measures

Optimal transport distance between General Measures

By D /X el y)dn(x).

meU(a,B)

Probability interpretation:

in{E X.Y)). X~ Y ~ .
g}%{ x,y)(c(X,Y)), a,Y ~ G}

(10)



Wasserstein Distance

Metric Space X = ).
Distance d(x,y) (nonegative, symmetric, identity, triangle inequality).
Cost c(x,y) =d(x,y)?,p > 1.

Wasserstein Distance

Wy(a, 8) € L(a, 8,d")"P. (11)

i \

W, is a distance, and

Wy(an, ) >0 <= oy wegk . (12)

i

Wy (0x, dy) = d(x,y).




Dual form

Dual problem (discrete case)

max wla+ rTb,
wER’",rE]R" (14)

st wi+r <Gy V(i)

Relation between any primal and dual solutions:

P,-j>0:>w,-—i—rj:C,-j.



Wasserstein barycenter

e Define c & Myy, where (Myy);; = d(x;,y;)’. The Wasserstein
distance as

ij

L(a,b,C) % min {Z G ;T e U(a,b)} . (15)

@ Given a set of point clouds and their corresponding probability
vector {(Y\, b))}, i=1,...,N.

@ Find a support X = {x;} with a probability vector a such that
(X, a) is the optimal solution of the following problem

N
Ig(lin kzl )\kﬁ(a, bk, Mxyk),

,a

where Y, Ay = 1 and \¢ > 0.
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Applications: image color adaptation

Example: https://github.com/rflamary/POT/blob/
master/notebooks/plot_otda_color_images.ipynb

Given color image stored in the RGB format: Il1l, I2
# Converts an image to matrix (one pixel per line)
X1 = im2mat (I1), X2 = im2mat (I2)

# Take samples

Xs = X1[idx1l, :], Xt = X2[idx2, :]
# Scatter plot of colors
pl.scatter (Xs[:, 0], Xs[:, 2], c=Xs)

# Sinkhorn Transport

ot_sinkhorn = ot.da.SinkhornTransport (reg_e=le-1)
ot_sinkhorn.fit (Xs=Xs, Xt=Xt)

# prediction between images

transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)

transp_Xt_sinkhorn = ot_sinkhorn.inverse_transform (Xt=X2)



Applications: image color adaptation

Image 1 Image 1 Adapt (reg)

Image 1 Image 2
g 1 g

[m T T T T T 00 T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10
Red Red
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Applications: image color palette equalization

Image Color Palette Equalization

Optimal 2
transport fuii e
"?“’ e §
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Applications: shape interpolation

Shape Interpolation

Y TS AW FES S
SSSFY| A elakNkNk
2SOPY PRk
B8OOI QR
X X & & SO Ok




Applications: MRI Data Processing

MRI Data Procesing [with A. Gramfort]

Ground cost ¢ = djps: geodesic on cortical surface M.

L? barycenter

W2 barycenter
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Applications: word mover’s distance

normalized bag-of-words (nBOW), word travel cost (word2vec
distance), document distance Tj;c(i, ), transportation problem

Bag of Words
document 1 H ‘gl;‘,ets’ document 2
‘Obama’
Obama ./' 1 74 T!\c
speaks . s o , ‘speaks’ President
to President greets
the the
media ‘Chicago’ press
in ‘media’ in
Illinois . ee—S Chicago
‘Illinois” Press

word2vee embedding

[Kusner’15] dist(D1, D2) = Wa(p, v)



Applications: word mover’s distance

min I1;c;
>0 &= = Y70
ij

n

st. > T =d;
j=1
n

> T =d;

i=1

@ x;: word2vec embedding

@ ¢ = |lxi — xj2

@ if word i appears w; times in the document, we denote d; =

Zw



Distributional Robust Optimization (DRO)
@ stochastic optimization:
inf Ep-[((5' X)),

where B is a convex set, ¢ is a loss function, Ep«[-] represents the
expectation operator associated to the probability model P*,
which describes the random element X.

@ The DRO model:

inf sup  Ep[t(57X)],
BEB peits(Py)

where Us(Py) is a so-called distributional uncertainty region
“centered” around some benchmark model, Py, which may be
data-driven (for example, an empirical distribution) and ¢ >0
parameterizes the sizeof the distributional uncertainty.

@ Wasserstein distance: Us(Py) = {P | W(P, Py) < d}.

25/55



Outline

e Entropic Regularization
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Discrete OT Review

Given an integer n > 1, we write 3, for the discrete probability simplex

zd:ef{ eR+Za,_1} (16)

Givena € ¥, b € ¥, the Optimal Transport problem is to compute

L(a,b,C) € min{}" C;P;y; st PeUla,b)}. (17)
i

Where U(q, b) is the set of couplings between a and b.
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Entropy

The discrete entropy of a positive matrix P (3, P; = 1) is defined as
- Zpij(log(Pij) —1). (18)
ij
For a positive vector u € ¥, the entropy is defined analogously:
—> ui(log(w;) — 1). (19)

For two positive vector u,v € ¥, the Kullback-Leibler divergence (or,
KL divergence) is defined to be

n

KL(ulv) = =Y u 1og(3). (20)

i=1 !

The KL divergence is always non-negative: KL(u||v) > 0 (Jensen’s

inequality: E[f(g(X))] = f(E[g(X)]))-



Entropic regularization

@ Givena € %, b € ¥, and cost matrix C € R7*". The entropic
regularization of the transportation problem reads

L*(a,b,C) = PEI{JL%:}}))(P, C) —cH(P). (21)

@ The case ¢ = 0 corresponds to the classic (linear) optimal
transport problem.

@ Fore > 0, problem (21) has an e-strongly convex objective and
therefore admits a unique optimal solution P}.

@ This is not (necessarily) true for e = 0. But we have the following
proposition.



Entropic regularization

Proposition

When ¢ — 0, the unique solution P. of (21) converges to the optimal
solution with maximal entropy within the set of all optimal solutions of
the unregularized transportation problem, namely,

P. % argmaxp{H(P); P € U(a,b), (P,C) = L°(a,b,C)}  (22)

The above proposition motivates us to solve the problems in (21)
sequentially and then take ¢ — 0.
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Entropic regularization

Proof

We consider a sequence (g/), such thate, — 0 and ¢, > 0. We
denote P, = P,. Since U(a, b) is bounded, we can extract a
sequence (that we do not relabel for the sake of simplicity) such that
P, — P*. Since U(a, b) is closed, P* € U(a, b). We consider any P
such that (C,P) = L°(a, b, C). By optimality of P and P, for their
respective optimization problems (for e = 0 and ¢ = ¢/), one has

0 <(C,P;) — (C,P) < eo(H(P;) — H(P)). (23)

Since H is continuous, taking the limit £ — +oc in this expression
shows that (C,P*) = (C,P). Furthermore, dividing by ¢, and taking
the limit shows that H(P) < H(P*). Now the result follows from the
strictly convexity of —H.




Entropic regularization

By the concavity of entropy, for a > 0, we introduce the convex set

Ua(a,b) © (P € U(a, b)|[KL(P|lab") < o}

(24)
— {P € U(a,b)|H(P) > H(a) + H(b) — 1 — a}.

Definition: Sinkhorn Distance

)L min (C,P). (25)

de.o(a,b
Cala PEU, (a)b)

v

For a > 0, dc o (a, b) is symmetric and satisfies all triangle inequalities.
Moreover, 1,45dc .« (a, b) satisfies all three distance axioms.

v,
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Entropic regularization

Proposition

For « large enough, the Sinkhorn distance dc , is the transport
distance dc.

Note that for any P € U(a, b), we have

H(P) > Z(H(a) + H(D)),

N —

so for a > 1(H(a) + H(b)) — 1, we have

Uy(a,b) = U(a,b).

(26)

.




Outline

e Sinkhorn’s Algorithm
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Sinkhorn’s algorithm

For solving (21), consider its Lagrangian dual function

LE(P,w,r) = (C,P) —cH(P) +w' (P1,—a)+r (P'1, —b).

Now let 0L /0P; = 0, i.e.,

SO we can write
P. — diag(e *)e s diag(e ?).

Note that
P.1,=a, P/1,=0,

we can then use Sinkhorn’s algorithm to find P!
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Sinkhorn’s algorithm

Letu=e:,v=e¢"< and K = ¢~ /<. We again state the KKT system
of (21):
P. = diag(«)Kdiag(v),

a = diag(u)Kv, (31)
b = diag(v)K " u

Then the Sinkhorn’s algorithm amounts to alternating updates in the

form of
u*) = diag(Kv¥)q,

v — diag(K T u*1)~1p, (32)
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Sinkhorn’s algorithm

Sinkhorn’s algorithm

|

1. Compute K=¢"=.

2. Compute K = diag(a—")K.
3. Initial scale factor u € R™.
4. lteratively update u:

u=1./(K(b./(K u))),

until reaches certain stopping criterion.
5. Compute
v=">b./(K"u),

and eventually

P. = diag(«)Kdiag(v).
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Outline

e Sinkhorn-Newton method
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Sinkhorn-Newton method

The dual problem of (21) is

min  {(a,w) 4 (b,r) +ele" =, Ke =),

s.t. diag(e :)Ke = =a,
diag(¢ =)K'e = = b.

with w, r being the dual variables.



Sinkhorn-Newton method

Let () r
_ ( diag(e :)Ke = —a
Flw,r) = <diag(e—§)KTe—Z’ - b) :

We want to find w, r such that F(w, r) = 0 so that
P. — diag(e ¥ )e s diag(e ?).

The Newton iteration is given by

(k+1) wk) -
(V:(k—i-l) ) = ( k) ) —-Jr ! (W(k)7 r(k))F(w(k)’ r(k))’

7l

where

_ 1 (diag(P1,) P

r=z < P’ diag(PTlm)> '

(37)
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Sinkhorn-Newton method: Convergence

Proposition

For w € R™ and r € R”, the Jacobian matrix Jp(w, r) is symmetric
positive semidefinite, and its kernel is given by

Ker(Jy(w, 7)) — span { ( j’f) } . (38)

Jr is clearly symmetric. For arbitrary v € R™ and ¢ € R”", one has
1
(" o7 JIr <g> =z > Pi(yi+¢)* >0,
ij

which holds with equality if and only if v; + ¢; = 0 for all 7, j, leading us
to (38).

V
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Sinkhorn-Newton method: Convergence

Let F : D — R” be a continuously differentiable mapping with D C R" open
and convex. Suppose that F(x) is invertible for each x € D. Assume that the
following affine covariant Lipschitz condition holds

IF'(x) ™' (F' (v) = F'(x0)) (v = 2)II < wlly — x[I? (39)

for x,y € D. Let F(x) = 0 have a solution x*. For the initial guess x(*) assume
that B(x*, |x(©) — x*||) € D and that

w|x©@ —x*|| < 2.

Then the ordinary Newton iterates remain in the open ball B(x*, [|x© — x*||)
and converge to x* at an estimated quadratic rate

* w *
D — ) < EHX(") —x*%. (40)

Moreover, the solution x* is unique in the open ball B(x*,2/w).
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Sinkhorn-Newton method: Convergence

Denote e = x® — x*. Let us prove the lemma by induction:

e+l = I6® = (P9~ (FEO - F)) - )|
= [}e® — (F'(9) " (F D — PG|

= [(F' &)~ (FG*) = Fa®) + F(9)e®))

-1 (41)
= ||(F/(x(k)))_1/ (F/(x(k) _|_se(k)) _F/(x(k)))e(k) ds]|

5s=0

—1
< wll/ sdslle® | = ZYje® 2 < [|e®].
s=0 2
Also
wlle® V]| < wlle®] < 2. (42)

For the uniqueness part, let x(O) = x** = x* be a different solution,then
x) = x**, then consider (40) when k = 0.




Sinkhorn-Newton method: Convergence

For any k € N with Pg‘; > 0, the affine covariante Lipschitz condition
holds in the ¢.,-norm for

;max{uPé")lnuw”<"5k))“’"”°°}> 43)

. k
min;; PE:,i)j

wg(eé—l) (1+2e

when ||y — x|l < 1.

The proof for this proposition is tedious and therefore we refer the
interested readers to the paper [?].
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Relationship with Sinkhorn’s algorithm

Letu=e:,v=e¢"< and K = ¢~ /<. We again state the KKT system
of (21):
P. = diag(«)Kdiag(v),

a = diag(u)Kv, (44)
b = diag(v)K " u

Then the Sinkhorn’s algorithm amounts to alternating updates in the

form of
u*) = diag(Kv¥)q,

v — diag(K T u*1)~1p, (45)
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Relationship with Sinkhorn’s algorithm

_ [ diag(u)Kv —a
Glu,v) = (diag(v)KTu - b> '

Process analogously to the Sinkhorn-Newton method we just
discussed, note that

Define

_ ( diag(Kv)  diag(u)K
Toluv) = (diag(v)KT diag(KTu)> '

If we neglect the off-diagonal blocks above, i.e.,

X _ (diag(Kv) 0
JG(M,W_( 0 diag(KTu>>’

and perform the Newton iteration

M(k+l) u(k) n
(v(k—i—l)) = < k)> — T @ VO Gu® Ry,

w

(47)



Relationship with Sinkhorn’s algorithm

We get
w1 = diag(Kv®))1q,

v — diag(KTu®)~1p. (50)

So the Sinkhorn’s algorithm simply approximates one Newton step by
neglecting the off-diagonal blocks and replacing u®) by u*+1,
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@ Wasserstein barycenter
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Wasserstein barycenter

e Define c & Myy, where (Myy);; = d(x;,y;)’. The Wasserstein
distance as

ij

L(a,b,C) % min {Z ;1,11 € U(a, b)} . (51)

@ Given a set of point clouds and their corresponding probability
vector {(Y\, b))}, i=1,...,N

@ Find a support X = {x;} with a probability vector a such that
(X, a) is the optimal solution of the following problem

rg(unqan ;)\kﬁab ,Myyr), S.t. Za,—1a>0

where >, Ay = 1 and A\¢ > 0.



Differentiability of L(a, b, C) w.r.t. a

@ The primal problem:
def .
L(a,b,C) = mﬁnz CL,; st T,=aT"1,=>hbT>0.
L
@ Let u* is the optimal dual vector of the dual problem:

T T ..
max ua+v b, st u+vi<Cy V(i
MGRDI7VERH ’ 1 J = 178 ( ?])

@ Suppose L(a, b, C) is finite, the strong duality holds. Then u* is a
subgradient of £L(a, b, C) w.r.t. a.
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Subgradient of optimal value function

define h(u,v) as the optimal value of convex problem

min  fp(x)
st filx) <wuji=1,--- m
Ax=b+v

(functions f; are convex; optimization variable is x)

weak result: suppose k(i v) is finite, strong duality holds with the
dual

max 1nf (fo )+ Z Ai(fi(x) +v (Ax—b— f’))

st. A>0

if \, 7 are optimal dual variables (for r.h.s. i, ) then (A, ) € dh(ii, b)



proof : by weak duality for problem with r.h.s. u,v

h(u, v)>1nf (fo +Z)\(ﬁx—u,)+y (Ax—b—v))

mf (fo +Z)\(fx—u,)+1/ (Ax—b—v))

A (u—i)— VT(V —9)

=h(@,9) =X (w—a)—0"(v—1)
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minimizing ¥ (a, X) w.r.t a
For a fixed X, consider the problem
N
min (e, X) = > ML(a, b Myp), st. > a;=1,a>0
k=1
@ Let u* be the optimal dual variable of £(a, b*, Myy«) w.r.t. a. Then
N
g= Z )\kuk € 0¥ (a,X)
k=1
@ Leth(a) =", a;loga;. The associated Bregman divergence is
Dy(y,x) = h(y) = h(x) = Vh(x)"(y = x)

@ The mirror descent method is

@™ = argmin {gT(a —d)+ th(a,aj)}
S ai=1,a>0 «a
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Minimizing ¥ (a, X) w.rt. X

Denote X = [x1,...,xu) @and ¥ = [y1,..., -

@ Consider (Myy); = ||xi — yi||3. Let x = diag(X " X) and
y = diag(Y "Y). Then we have:

Myy =x1] +1]y —2xTy e R™"
@ Let IT be the optimal matrix corresponding to a
L(a,b,Myxy) = (II,Mxy)
- <H xI] +1Ty —2xTy >
(x,111,)) + <y, HT1m> ) <H,XTY>

= x'a+y'bh-2 <H,XTY>

= | Xdiag(a'/?) — YII "diag(a~"/?)||% + const.



Minimizing ¥ (a, X) w.rt. X

For a fixed a, consider the problem
N

min - ¢(a,X) = > MeL(a, b, Myye).
k=1
Then, it is equivalent to
M (xTa 2 <Hk,XTYk>)

miny

M-

N
miny x'a—2 <Z )\kﬂk,XTYk>

k=1

ming  [Xdiag(a'/?) Zxkyk (I1%) " diag(a~"/?)||%
k=1
The optimal solution is:

N
X =Y NyH(Ir) " diag(a")
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Discrete Optimization: Modelling

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on Prof. Ted Ralphs’s lecture notes
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Mixed Integer Linear Programming

@ Consider linear programming with additionally constraints
X=7 xR".
@ The general form of such a mathematical optimization problem is
zp = max{c'x | Ax < b,x € 7/, x R},
where forA € Q™" b € Q™,c € Q".

@ This type of optimization problem is called a mixed integer linear
programming (MILP) problem.

@ If p = n, then we have a pure integer linear optimization problem.

@ Special case: the integer variables are binary, i.e., 0 or 1.
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The Geometry of Integer Programming

@ Let’s consider an integer linear program

@ The feasible region is the integer points inside a polyhedron.

@ Why does solving the LP relaxation not necessarily yield a good

solution?

7

6
5
4
3
2
1
0
1

max

s.t.

CT)C

Ax <b
xeZ,

— Polyhedron P
-~ Convex Hull of Integer Points
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How Hard is Integer Programming?

@ Solving general integer programs can be much more difficult
than solving linear programs.

@ There in no known polynomial-time algorithm for solving general
MIPs.

@ Solving the associated linear programming relaxation results in
an upper bound on the optimal solution to the MIP.

@ In general, solving the LP relaxation, an LP obtained by dropping
the integerality restrictions, does not tell us much.

e Rounding to a feasible integer solution may be difficult.

o The optimal solution to the LP relaxation can be arbitrarily far
away from the optimal solution to the MIP.

@ Rounding may result in a solution far from optimal.

e We can bound the difference between the optimal solution to the
LP and the optimal solution to the MIP (how?).

5/52



How Hard is Integer Programming?

Consider the integer
program

max 50x; + 32x;,

s.t.  50x; 4 31xy < 250,
3x] — 2xp > —4,
x1,x > 0 and integer.

The linear programming
solution (376\193,950\193)
is a long way from the
optimal integer solution
(5,0).
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The shortest path problem

@ Consider a network G = (N, A) with cost ¢;; on each edge
(i,j) € A. There is an origin node s and a destination node t.

@ Standard notation: n = |[N|, m = |A|
@ cost of of a path: c¢(P) = > (; ycp Cij

@ What is the shortest path from s to t?
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The shortest path problem

J
inj - iji =0, foreachi #sort

J J
_E X =—1
i

x;j € {0, 1} for all (i)



Conjunction versus Disjunction

@ A more general mathematical view that ties integer programming
to logic is to think of integer variables as expressing disjunction.

@ The constraints of a standard mathematical program are
conjunctive.
@ All constraints must be satisfied.

g1(x) < by AND gy(x) < b; AND --- AND g, (x) < by,

e This corresponds to intersection of the regions associated with
each constraint.

@ Integer variables introduce the possibility to model disjunction.
@ At least one constraint must be satisfied.

g1(x) < b OR g2(x) < by OR --- OR gu(x) < by,

e This corresponds to union of the regions associated with each
constraint.



Representability Theorem

The connection between integer programming and disjunction is
captured most elegantly by the following theorem.

A set F C R" is MIP representable if and only if there exist rational
polytopes Py, - -- , P, and vectors r',--- ,r' € 7" such that

n
F= UPi+intcone{rl,-" '}

i=1

where intcone{r',--- '} = {37 Niri | A\ € Z!, }

Roughly speaking, we are optimizing over a union of polyhedra,
which can be obtained simply by introducing a disjunctive logical
operator to the language of linear programming.
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Modeling with Integer Variables

From a practical standpoint, why do we need integer variables?

Integer variable essentially allow us to introduce disjunctive logic.

If the variable is associated with a physical entity that is
indivisible, then the value must be integer.

At its heart, integrality is a kind of disjunctive constraint.

0-1 (binary) variables are often used to model more abstract
kinds of disjunctions (non-numerical).

Modeling yes/no decisions.

Enforcing logical conditions.

Modeling fixed costs.

Modeling piecewise linear functions.
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Modeling Binary Choice

@ We use binary variables to model yes/no decisions.

@ Example: Integer knapsack problem
o We are given a set of items with associated values and weights.
o We wish to select a subset of maximum value such that the total
weight is less than a constant K.
e We associate a 0-1 variable with each item indicating whether it is
selected or not.

m

max E ijj'
=1

m
s.t. Z WiX; <K
J=1

x e {0,1}"
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Modeling Dependent Decisions

@ We can also use binary variables to enforce the condition that a
certain action can only be taken if some other action is also
taken.

@ Suppose x and y are binary variables representing whether or
not to take certain actions.

@ The constraint x < y says "only take action x if action y is also
taken"
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MIP reformulation of ¢yp-minimization

@ Big-M assumption: Vi, |x;| <M

min f(x) st |xljo <k, |xi| <M

@ MIP formulation:

n
min f(x) st Y i <k |ul < Myyi € {0,1}
i=1
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Example: Facility Location Problem

@ We are given n potential facility locations and m customers.
@ There is a fixed cost ¢; of opening facility ;.
@ There is a cost d;; associated with serving customer i from facility

J-
@ We have two sets of binary variables.
e y;is 1 if facility j is opened, 0 otherwise.
e x; is 1 if customer i is served by facility j, 0 otherwise.
@ Here is one formulation:

n

m n
min Z cjyj + Z Z djjx;j

j=1 i=1 j=1

n
st. > x=1 Vi
j=1

m
> xij < my; vj
i=1

Xijy Vi € {Oa 1} VI,]
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Selecting from a Set

@ We can use constraints of the form >, x; > 1 to represent that
at least one item should be chosen from a set 7.

@ Similarly, we can also model that at most one or exactly one item
should be chosen.

@ Example: Set covering problem
@ A set covering problem is any problem of the form.

min  {c'x|Ax> 1,x; € {0,1}}

where A is a 0-1 matrix.

Each row of A represents an item from a set S.
Each column A; represents a subset S; of the items.
Each variable x; represents selecting subset S;.

In other words, each item must appear in at least one selected
subset.



Modeling Disjunctive Constraints

@ We are given two constraints a'x > b and ¢ 'x > d with
nonnegative coefficients.

@ Instead of insisting both constraints be satisfied, we want at least
one of the two constraints to be satisfied.

@ To model this, we define a binary variable y and impose

a'x > yb,
x> (1—-y)d,
y € {0, 1}.

@ More generally, we can impose that at least k out of m constraints
be satisfied with
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Modeling Disjunctive Constraints (cont'd)

@ Consider the disjunctive constraints a'x > b and ¢ "x > d where
the coefficients are allowed to be negative.

@ To model this, we use the Big-M Reformulation. we define a
binary variable y and impose

a'x>b — My,
clx>d—M(1-y),
y€{0,1}.

where M is a sufficiently large positive number.



Modeling a Restricted Set of Values

@ We may want variable x to only take on values in the set
{alv e ,Clm}.

@ We introduce m binary variables y;, j = 1,--- ,m and the

constraints o,
x=) ay;
j=l1

m
=1

yi € {0, 1}.
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Fixed-charge Problems

@ In many instances, there is a fixed cost and a variable cost
associated with a particular decision.

@ Example: Fixed-charge Network Flow Problem
e We are given a directed graph G = (N, A).
e There is a fixed cost ¢; associated with "opening” arc (i,;) (think of
this as the cost to "build" the link).
e There is also a variable cost d; associated with each unit of flow
along arc (i,j).
o Consider an instance with a single supply node.
@ Minimizing the fixed cost by itself is a minimum spanning tree
problem (easy).
@ Minimizing the variable cost by itself is a minimum cost network flow
problem (easy).
@ We want to minimize the sum of these two costs (difficult).
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Modeling the Fixed-charge Network Flow Problem

@ To model the FCNFP, we associate two variables with each arc.

e x; (fixed-charge variable) indicates whether arc (i, j) is open.
o f; (flow variable) represents the flow on arc (i, ).
o Note that we have to ensure thatf; > 0= x; = 1.

min E CijXjj + dl}fl]

(ij)eA

st. D fi— > fi=b, VieN
jeo(i) JEI(i)
fi < Cxy, V(i,j) €A
fi >0, V(i,j) € A

Xij € {Oa 1}7 V(l,J) €A
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Alternative Formulations

@ A key concept in the rest of the course will be that every
mathematical model has many alternative formulations.

@ Many of the key methodologies in integer programming are
essentially automatic methods of reformulating a given model.

@ The goal of the reformulation is to make the model easier to
solve.



Simple Example: Knapsack Problem

We are givenaset N = {1,--- ,n} of items and a capacity K.
There is a profit ¢; and a size w; associated with each item i € N.

We want to choose the set of items that maximizes profit subject
to the constraint that their total size does not exceed the capacity.

The most straightforward formulation is to introduce a binary
variable x; associated with each item.

x; takes value 1 if item i is chosen and 0 otherwise.
Then the formulation is

n
min E ijj'
j=1

n
s.t. EWJ’X]' <K,
Jj=1

Xi € {0,1}, Vi



An Alternative Formulation

@ Letuscallaset C C Nacoveris ) ,.-w; > K.
@ Further, a cover C is minimal if ZieC\{i} w; < K forallj € C.

@ Then we claim that the following is also a valid formulation of the
original problem.

n

max E CjXxj,

j=1

st. > x<|C[—1, forall minimal covers C
jec
xelo1), ieN

@ Which formulation is "better"?
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Back to the Facility Location Problem

@ Here is another formulation for the same problem:

min Z cjyj + Z Z djjxij

i=1 j=1

s.t. le:i =1, Vi,
j=1

xii < yj, Vi, j,
xij,yj € {0, 1}, Vi, j.

@ Notice that the set of integer solutions contained in each of the
polyhedra is the same (why?).

@ However, the second polyhedron is strictly included in the first
one (how do we prove this?).

@ Therefore, the second polyhedron will yield a better lower bound.

@ The second polyhedron is a better approximation to the convex

hull of integer solutions. sei5a



Formulation Strength and Ideal Formulations

@ Consider two formulations A and B for the same ILP.

@ Denote the feasible regions corresponding to their LP relaxations
as P, and Pg.

@ Formulation A is said to be at least as strong as formulation B if
Pa C Pp
@ If the inclusion is strict, then A is stronger than B.

o If S is the set of all feasible integer solutions for the ILP, then we
must have conv(S) C P4 (why?).

@ Aisideal if conv(S) = Py.
@ If we know an ideal formulation, we can solve the IP (why?).

@ How do our formulations of the knapsack problem compare by
this measure?

27/52



Strengthening Formulations

@ Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

@ Example: given a graph G = (V, E), a perfect matching in G is a
subset M of edge set E, such that every vertex in V is adjacent to
exactly one edge in M.

o We are given a set of n people that need to paired in teams of two.

o Let ¢; represent the "cost" of the team formed by person i and
person j.

e The nodes represent the people and the edges represent pairings.

e We have x, = 1 if the endpoints of ¢ are matched, x, = 0

otherwise.
min z CoXe
e={ij}€E
st. > oxi=1, Vie N
{il{iJ}€E}

x. € {0, 1}, Ve ={i,j} € E



Valid Inequalities for Matching

Consider the graph on the left above.

The optimal perfect matching has value L + 2.

The optimal solution to the LP relaxation has value 3.
This formulation can be extremely weak.

Add the valid inequality x4 + x35 > 1.

Every perfect matching satisfies this inequality.



The Odd Set Inequalities

@ We can generalize the inequality from the last slide.
@ Consider the cut S corresponding to any odd set of nodes.

@ The cutset corresponding to S is

5(5) = {{i.j} € Eli € S.j ¢ S).

@ An odd cutset is any §(S) for which the |S| is odd.

@ Note that every perfect matching contains at least one edge from
every odd cutset.

@ Hence, each odd cutset induces a possible valid inequality.

> x> 1,5 CN,|S| odd.
e€d(S)
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Using the New Formulation

@ If we add all of the odd set inequalities, the new formulation is
ideal.

@ Hence, we can solve this LP and get a solution to the IP.

@ However, the number of inequalities is exponential in size, so this
is not really practical.

@ Recall that only a small number of these inequalities will be
active at the optimal solution.

@ Later, we will see how we can efficiently generate these
inequalities on the fly to solve the IP

31/52



Contrast with Linear Programming

@ In linear programming, the same problem can also have multiple
formulations.

@ In LP, however, conventional wisdom is that bigger formulations
take longer to solve.

@ In IP, this conventional wisdom does not hold.
@ We have already seen two examples where it is not valid.

@ Generally speaking, the size of the formulation does not
determine how difficult the IP is.
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The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (N, A), with N = L U R, and weights w;; on
edges (i,j), find a maximum weight matching.

@ Matching: a set of edges covering each node at most once
@ Let n=|N| and m = |A|.

@ Equivalent to maximum weight / minimum cost perfect matching.




The Max-Weight Bipartite Matching

Integer Programming (IP) formulation

max E WiiXij
i

st. > x<LViel
j

d x<1LVjER
i

Xijj € {Oa 1},V(l,]) €A

@ x; = 1 indicate that we include edge (i, j ) in the matching

@ |IP: non-convex feasible set
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The Max-Weight Bipartite Matching

Integer program (IP) LP relaxation
max Z WijXij max Z WiiXij
ij ij
st. > x<LViel st. > x<LViel
J J
S <1LYjer d x<1LVjeR
i i
xj € {0,1},V(i,j) € A xj > 0,Y(i,j) €A

@ Theorem. The feasible region of the matching LP is the convex
hull of indicator vectors of matchings.

@ This is the strongest guarantee you could hope for an LP
relaxation of a combinatorial problem

@ Solving LP is equivalent to solving the combinatorial problem
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Primal-Dual Interpretation

Primal LP relaxation
max Z WijXij Dual
ij

st Y wm<lViel win Zyi

j s.t.yi+y > wy,V(i,j) €A

> x<LVjieER y>0
: >

Xij > O,V(l,]) €A

@ Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge isin S

@ From strong duality theorem, we know P;, = Dj,
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Primal-Dual Interpretation

Suppose edge weights w;; = 1, then binary solutions to the dual are
node covers.

Dual Dual Integer Program
min Z)’i min Zyi
y=0 y€{0,1}

@ Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge isin S

@ From strong duality theorem, we know P;, = Djp
@ Consider IP formulation of the dual, then

Plp < Prp=Dip < Djp
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Total Unimodularity

Defintion: A matrix A is Totally Unimodular if every square submatrix
has determinant 0, +1 or -1.

Theorem: If A € R™*" is totally unimodular, and b is an integer vector,
then {x : Ax < b;x > 0} has integer vertices.

@ Non-zero entries of vertex x are solution of A’x’ = ' for some
nonsignular square submatrix A’ and corresponding sub-vector 4’

@ Cramer’s rule:
det (A} | )
X = ——>=
! det A’

Claim: The constraint matrix of the bipartite matching LP is totally
unimodular.
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The Minimum weight vertex cover

@ undirected graph G = (N, A) with node weights w; > 0

@ A vertex cover is a set of nodes S such that each edge has at
least one end in S

@ The weight of a vertex cover is sum of all weights of nodes in the

cover
@ Find the vertex cover with minimum weight
Integer Program LP Relaxation
min Z wiyi min zwiyi
i i
sty +y > 1,9(,j) €A styi+y > 1,V(i,j)cA

ye€{0,1} y=>0



LP Relaxation for the Minimum weight vertex cover

@ In the LP relaxation, we do not need y < 1, since the optimal
solution y* of the LP does not change if y < 1 is added.
Proof: suppose that there exists an index i such that the optimal
solution of the LP y} is strictly larger than one. Then, let y’ be a
vector which is same as y* except for y. = 1 < y;. This )’ satisfies
all the constraints, and the objective function is smaller.

@ The solution of the relaxed LP may not be integer, i.e., 0 < y/ < 1

@ rounding technique:

J— 0, ifyf<05
! 1, ifyr>05

@ The rounded solution y’ is feasible to the original problem
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LP Relaxation for the Minimum weight vertex cover

The weight of the vertex cover we get from rounding is at most twice
as large as the minimum weight vertex cover.

@ Note that y/ = min([2y/],1)

@ Let Pj, be the optimal solution for IP, and P;, be the optimal
solution for the LP relaxation

@ Since any feasible solution for IP is also feasible in LP, P, < Pjp

@ The rounded solution y’ satisfy

D viwi =D min([2y7], Dwi <Y 2ywi = 2P} < 2P,
i i i
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Difference with mathematical programming

Problem:

@ Solving combinatorial optimization problems (Decision

Optimization)

Modeling:

@ Declarative modeling paradigm

@ Logical constraints & global constraints

@ Integer, interval & boolean variables (maybe double variables)
Solving:

@ Constructive search & domain reduction (propagation)

@ Based on computer science (logic programming, graph theory,

)

Solution:
@ Feasible solution & optimal solution



A simple example: n-Queen Problem

The classic queens problem: placing n queens on an nxn

checkerboard so that no two queens can attack each other, i.e., no

two queens are on the same row, column, or diagonals.

Integer variable params:
@ N: number of variables
@ 0: minimum value
@ N-1: maximum value
@ "X": name prefix
constraints:
@ all_diff: x; # xj, Vi #j

DOcplex for n-Queen problem

# Create model
mdl = CpoModel()

# Create column index of each queen
x = mdl.integer_var_list (N, 0, N -1, "X")

# One queen per row
mdl.add(mdl. all_diff (x))

# One queen per diagonal xi — xj = i — j
mdl.add(mdl. all_diff (x[i] + i for i in range(N)))

# One queen per diagonal xi — xj = j — i
mdl.add(mdl. all_diff (x[i] — i for i in range(N)))
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High-level constraints: Global constraints

Global constraint captures complex relationships among multiple
variables in a concise and efficient way.

alldifferent

@ All variables in a
set take distinct
values

@ Assignment
problems

o alldifferent([x, v,

z])
@ Xx#E VXA YF2Z

table

@ Tuple of variables
takes values from
predefined set

e table([x, y, z], [(1,
2,3), (4,5, 6))])

° (x,y,2)=(1,2,3)
or (4,5, 6)

circuit

@ Sequence of
variables forms a
Hamitonian cycle

@ Routing problems

@ circuit(x)

e x=[0,1, 3,2, 0]
means 0— > 1— >
3—>2->0
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Arithmetic expressions and constraints

CP Optimizer supports integer variables and is possible to contain
float-point expressions in constraints or objective function.

°
@ operator +, -, *, / StandardDeviation e ==
@ Sum @ Min @ I=
o Diff @ Max 0 <
@ ScalProd @ Count ° >
@ Div @ CountDifferent 0 <=
@ Modulo(%) @ Abs o >—

@ Element
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Diff and Element

Diff & operator-

Automatic linearization by slack
variables

Element: y=array[x]

lloNumExpr el =x ~y;
lloNumExpr e2 =z / w;
lloNumExpr diff = lloDiff (e1, e2);
model.add(diff == 0);

/I Create the model
lloModel model(env);

/I Define an array
lloIntArray array(env, 4);

array[0] = 10;
array[1] = 20;
array[2] = 30;
array [3] = 40;

/I Define variables
lloIntVar x(env, 0, 3, "Xx");
lloIntVar y(env, 0, 100, "y");

/I Add the element constraint
model.add(y == lloElement(array, x));
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Logical and compatibility constraints

IfThen
model.add(llolfThen(x >= 5, y <= 3));

&& /I Nested structure
|| model.add(llolfThen(x >= 5, llolfThen(y <=3, z == 0)));

Not /I Combined with global constraints
model.add(llolfThen(x !=y, lloAlIDiff (env, x, y, z)));
IfThen

AllowedAssignments

AllowedAssignments

. . lloIntTupleSet allowed(env);
ForbiddenAssignmentsaiiowed.add(llolntArray (env, 2, 1, 2)):

allowed.add(lloIntArray (env, 2, 2, 3));

model.add(lloAllowedAssignments(vars, allowed));

48/52



Special constraints on integer variables

Theoretically, these special constraints can be written from arithmetic
constraints and expressions, but they can also be designed and
implemented to reduce domains efficiently during a search.

@ AlIDiff

@ AlIMinDistance
@ Pack

@ Inverse

@ Lexicographic
@ Distribute

Pack

lloIntVarArray bin(env, 3, 0, 1); // 3 items, 2 bins
lloIntArray size(env, 3); // Size of each item

size[0] = 2;
size[1] = G;
size[2] = 4;

lloIntVarArray load(env, 2, 0, 5); // Max capacity is 5

model.add(lloPack(bin, size, load));




Interval variables

Interval variables

Static
@ StartOf
@ EndOf
@ LengthOf
@ SizeOf
Dynamic
@ StartEval
@ EndEval
@ LengthEval
@ SizeEval

StartOf

llolntervalVar task(env, 10); // Task with duration 10
lloIntExpr start = lloStartOf (task); // Static start time
model.add(start >= 5); // Task must start after time 5

StartEval

llolntervalVar task(env, 10);
lloIntVar condition(env, 0, 1); // O or 1

/I Dynamic start time: if condition=1, start time increases by 5
lloIntExpr dynamicStart = lloStartEval(task) + condition « 5;

/I Constraint depends on runtime value of ‘condition*
model.add(dynamicStart <= 20);

50/52



Special constraints on interval variables

Forbidden constraints

e + + ©

ForbidStart
ForbidEnd
ForbidExtent

Precedence
constraints

End/Start
Before/At
End/Start

e.g.
EndBeforeStart

Groups of interval

variables Sequence constraints
@ PresenceOf @ First
@ Isomorphism @ Last
@ Span @ Before
@ Alternative @ Prev

@ Synchronize



Special constraints on interval variables

* CumulFunctionExpr
- AlwaysIn/AlwaysEqual
- AlwaysConstant

- AlwaysNoState

- operator<=,>=

@ Pulse

@ Step

@ StepAtStart

@ StepAtEnd

@ HeightAtStart

@ HeightAtEnd

Resource usage constraints

llolntervalVar taski(env, 10, "Task1");
lloIntervalVar task2(env, 5, "Task2");

lloCumulFunctionExpr resourceUsage(env);
resourceUsage += lloPulse(task1, 2);
resourceUsage += lloPulse(task2, 1);
resourceUsage += lloStep(5, 3);
resourceUsage += lloStepAtStart(taski, 1);
resourceUsage += lloStepAtEnd(task2, —1);

model.add(resourceUsage <= 5);
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Algorithms for Mixed Integer Linear Programming

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on Prof. Ted Ralphs’s lecture notes
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Computational Integer Optimization

@ Computationally, the most important aspects of solving integer
optimization problems are

@ A method for obtaining good bounds on the value of the optimal
solution (usually by solving a relaxation or dual; and

o A method for generating valid disjunctions violated by a given
(infeasible) solution.

@ In this lecture, we will motivate this fact by introducing the branch
and bound algorithm.

@ We will then look at various methods of obtaining bounds.

@ Later, we will examine branch and bound in more detail.
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Integer Optimization and Disjunction

@ The difficulty arises from the requirement that certain variables
take on integer values.

@ Such requirements can be described in terms of logical
disjunctions, constraints of the form

X € U X;, X; CR"
1<i<k

@ The integer variables in a given formulation may represent logical
conditions that were originally expressed in terms of disjunction.

@ In fact, the MILP Representability Theorem tells us that any
MILP can be re-formulated as an optimization problem whose
feasible region is

F = U P; + intcone{r!,--- 1’}
1<i<k

is the disjunctive set F defined above, for some appropriately
chosen polytopes P, - - - , Px and vectors r!,--- | ' € 7.



Two Conceptual Reformulations

We have two conceptual reformulations of a given integer
optimization problem.

The first is in terms of disjunction:

max{chxe U Pi—|—intcone{r1,--~ J’t}}

1<i<k

The second is in terms of valid inequalities
max{c' x| x € conv(S)}

where S is the feasible region.

In principle, if we had a method for generating either of these
reformulations, this would lead to a practical method of solution.
Unfortunately, these reformulations are necessarily of
exponential size in general, so there can be no way of generating
them efficiently.
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Valid Disjunctions

@ In practice, we dynamically generate parts of the reformulations
(CP) and (DIS) in order to obtain a proof of optimality for a
particular instance.

@ The concept of valid disjunction, arises from a desire to
approximate the feasible region of (DIS).

e Definition 1. Let {X;}*_, be a collection of subset of R". Then if
S C Uj<i<iX;, the disjunction associated with {X;}*_, is said to be
valid for an MILP with feasible set S.

e Definition 2. Let {X;} | is a disjunction valid for S, and X; is
polyhedral for all i, then we say the disjunction is linear.

o Definition 3. Let {X;}*_, is a disjunction valid for S, and
X;NX; = 0 for all i, j then we say the disjunction is partitive.

o Definition 4. Let {X;}*_, is a disjunction valid for S that is both

i=1

linear and partitive, we call it admissible.



Valid Inequalities

@ Likewise, we can think of the concept of a valid inequality as
arising from our desire to approximate conv(S) (the feasible
region of (CP)).

@ The inequality denoted by (7, 1) is called a valid inequality for S
if 77x < 7o, Vx €8.

@ Note (7, ) is a valid inequality if and only if
SC{xeR"|7'x < m}.
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Optimality Conditions

Let us now consider an MILP (A, b, ¢, p) with feasible set
S =Pn(Z. xR "), where P is the given formulation.

Further, let {X;}*_, be a linear disjunction valid for this MILP so
that X; NP C R" is a polyhedral.

Then maxy.nsc'xisan MILP foralli € 1,. .. k.

For each i, let P; be a polyhedron such that X;nS C P; C PN X,.

In other words, P; is a valid formulation for subproblem i, possibly
strengthened by additional valid inequalities.

Note that {P;} is itself a valid linear disjunction.



Optimality Conditions

@ From the disjunction on the previous slide, we obtain a relaxation
of a general MILP.

@ This relaxation yields a practical set of optimality conditions.

@ In particular,

max max ¢ x > z1p.
i€l kxeP,NRY.

@ If we have x* € S such that

max max ¢ x=c' x*

i€l kx€P,NRY,

then x* must be optimal.
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Branch and Bound

@ Branch and bound is the most commonly-used algorithm for
solving MILPs. It is a recursive, divide-and-conquer approach.

@ Suppose S is the feasible set for an MILP and we wish to
compute maxyes ¢ ' x.

@ Consider a partition of S into subsets Sy, - - - , Sk. Then
max c' x = max {maxc ' x}.
x€S 1<i<k " x€S;

@ |dea: If we can’t solve the original problem directly, we might be
able to solve the smaller subproblems recursively.

@ Dividing the original problem into subproblems is called
branching.

@ Taken to the extreme, this scheme is equivalent to complete
enumeration.
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Branching in Branch and Bound

@ Branching is achieved by selecting an admissible disjunction
{X;}*_, and using it to partition S, e.g., S; = SN X;.

@ We only consider linear disjunctions so that the subproblem
remain MILPs after branching.

@ The way this disjunction is selected is called the branching
method and is a topic we will examine in some depth.

@ Generally speaking, we want x* ¢ U;X;, where x* is the
(infeasible) solution produced by solving the bounding problem
associated with a given subproblem.

@ A typical disjunction is

X1 ={x > [x1}
Xo = {x < 1]}

where x* € argmax,cpc ' x.



Bounding in Branch and Bound

@ The bounding problem is a problem solved to obtain a bound on
the optimal solution value of a subproblem maxg, ¢ " x.

@ Typically, the bounding problem is either a relaxation or a dual of
the subproblem.

@ Solving the bounding problem serves two purposes.

e In some cases, the solution x* to the relaxation may actually be a
feasible solution, in which case ¢ x* is a global lower bound (S).

e Bounding enables us to inexpensively obtain a bound b(S;) on the
optimal solution value of subproblem i.

e If b(S;) <I(S), then S; can’t contain a solution strictly better than
the best one found so far.

@ Thus, we may discard or prune subproblem i.
@ For the rest of the lecture, assume all variables have finite upper

and lower bounds.
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LP-based Branch and Bound: Initial Subproblem

@ In LP-based branch and bound, we first solve the LP relaxation
of the original problem. The result is one of the following:

e The LP is infeasible = MILP is infeasible.

o We obtain a feasible solution for the MILP =- optimal solution.

@ We obtain an optimal solution to the LP that is not feasible for the
MILP =- upper bound.

@ In the first two cases, we are finished.

@ In the third case, we must branch and recursively solve the
resulting subproblems.
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Branching in LP-based Branch and Bound

@ In LP-based branch and bound, the most commonly used
disjunctions are the variable disjunctions, imposed as follows:
Select a variable i whose value 1; is fractional in the LP solution.

o Create two subproblems.
o In one subproblem, impose the constraint x; < [;].
@ In the other subproblem, impose the constraint x; > [%;].

@ What does it mean in a 0-1 problem?
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LP-based Branch and Bound Algorithm

@ To start, derive a lower bound L using a heuristic method.

@ Put the original problem on the candidate list.

@ Select a problem S from the candidate list and solve the LP
relaxation to obtain the bound 5(S).

o If the LP is infeasible = node can be pruned.

Otherwise, if (S) < L = node can be pruned.

Otherwise, if (S) > L and the solution is feasible for the MILP =
set L + b(S).

Otherwise, branch and add the new subproblem to the candidate
list.

@ If the candidate list in nonempty, go to Step 2. Otherwise, the
algorithm is completed.
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The Geometry of Branching
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The Geometry of Branching (cont'd)

7 T T T 1 1
3 3 -~ Subproblem 1
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The Geometry of Branching

- - Subproblem 3
— Subproblem 4 ||
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Continuing the Algorithm After Branching

@ After branching, we solve each of the subproblems recursively.

@ As mentioned earlier, if the optimal solution value to the LP
relaxation is smaller than the current lower bound, we need not
consider the subproblem further. This is the key to the efficiency
of the algorithm.

@ Terminology
o If we picture the subproblems graphically, they form a search tree.
e Each subproblem is linked to its parent and eventually to its
children.
e Eliminating a problem from further consideration is called pruning.
The act of bounding and then branching is called processing.
o A subproblem that has not yet been considered is called a
candidate for processing.
e The set of candidates for processing is called the candidate list.
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Ensuring Finite Convergence

@ For LP-based branch and bound, ensuring convergence requires
a convergent branching method.

@ Roughly speaking, a convergent branching method is one which
will

@ produce a violated admissible disjunction whenever the solution to
the bounding problem is infeasible; and

o if applied recursively, guarantee that at some finite depth, any
resulting bounding problem will either
- produce a feasible solution (to the original MILP); or
- be proven infeasible; or
- be pruned by bound.

@ Typically, we achieve this by ensuring that at some finite depth,
the feasible region of the bounding problem contains at most one
feasible solution.



Algorithmic Choices in Branch and Bound

@ Although the basic algorithm is straightforward, the efficiency of it

in practice depends strongly on making good algorithmic
choices.

@ These algorithmic choices are made largely by heuristics that
guide the algorithm.

@ Basic decisions to be made include

@ The bounding method(s).

e The method of selecting the next candidate to process.
@ "Best-first" always chooses the candidate with the highest upper

bound.

@ This rule minimizes the size of the tree (why?).
@ There may be practical reasons to deviate from this rule.

o The method of branching.
@ Branching wisely is extremely important.
@ A "poor" branching can slow the algorithm significantly.
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An example solved by Gurobi

Aeq = [22 13 26 33 21 3 14 26
39 16 22 28 26 30 23 24
18 14 29 27 30 38 26 26
41 26 28 36 18 38 16 261;

beq = [ 7872 10466 11322 12058]'[;

q= 12 10 13 17 7 5 7 31';

N = 8;
b = zeros(N,1);

% Gurobi

model.A = sparse(Aeq);
model.obj = q;

model.rhs = beq;
model.sense = '="';
model.vtype = 'I"';
model.lb = 1b;
model.modelsense = 'min';
params.outputflag = 1;
result = gurobi(model, params);
u = result.x;



An example solved by Gurobi

CPU model: Intel(R) Core(TM) i9-8950HK CPU @ 2.90GHz

Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 4 rows, 8 columns and 32 nonzeros

Model fingerprint: 0x62d@@dcc

Variable types: @ continuous, 8 integer (@ binary)

Coefficient statistics:

Matrix range [3e+00, 4e+01]
Objective range [2e+00, 2e+01]
Bounds range [@e+00, @e+00]
RHS range [8e+03, 1le+04]

Presolve time: 0.00s

Presolved: 4 rows, 8 columns, 27 nonzeros

Variable types: @ continuous, 8 integer (@ binary)

Root relaxation: objective 1.554048e+03, 4 iterations, ©.00 seconds (0.00 work units)

Nodes | Current Node | Objective Bounds wWork
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
] @ 1554.04753 (<] 4 — 1554.04753 = = @s
2 @ 1589.02274 (] 5 — 1589.02274 = = @s
2 @ 1589.05678 (%] 6 — 1589.05678 - - @s
] @ 1590.18573 (<] 6 — 1590.18573 - - @s
2 @ 1594.53362 (] 7 — 1594.53362 - - @s
2 @ 1594.78032 (%] 7 — 1594.78032 = = @s
] @ 1594.80681 (<] 7 — 1594.80681 = - Qs
] © 1595.40391 2] 7 — 1595.40391 - - os
%] 2 1595.40391 (3] 7 — 1595.40391 - - as
* 1618 282 44 3136.0000000 1696.80813 45.9% 1.0 @s
* 3900 385 33 2728.0000000 1801.99014 33.9% 1.0 @s
* 5047 340 11 1854.0000000 1827.44921 1.43% 1.1 os

Cutting planes:
Lift—and—project: 1
MIR: 1
StrongCG: 1
Inf proof: 4

Explored 5839 nodes (5868 simplex iterations) in ©.13 seconds (.01 work units)
Thread count was 12 (of 12 available processors)
Solution count 3: 1854 2728 3136
Optimal solution found (tolerance 1.00e—04)
Best objective 1.854000000020e+03, best bound 1.854000000020e+03, gap 0.0000%
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Another example solved by Gurobi

CPU model: 1ntel(K) Core(IM) 19Y—8Y5UHK (PU @ Z.90GHZ
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads

Optimize a model with 904 rows, 246 columns and 2712 nonzeros
Model fingerprint: 0xa7138a9d

Variable types: @ continuous, 246 integer (246 binary)
Coefficient statistics:

Matrix range [1e+00, 1le+00]
Objective range [3e-02, 4e+00]
Bounds range [1e+00, 1le+00]
RHS range [2e+00, 2e+00]

Found heuristic solution: objective 0.0000000
Presolve removed 152 rows and @ columns

Presolve time: 0.00s

Presolved: 752 rows, 246 columns, 2256 nonzeros
Variable types: @ continuous, 246 integer (246 binary)

Root relaxation: objective -5.528150e+01, 254 iterations, 0.00 seconds (0.00 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
o @ -55.28150 9 168 0.00000 -55.28150 - - 0s
H o o —47.7299486 —-55.28150 15.8% - 2s
o @ -50.40010 @ 149 -47.72995 -50.40010 5.59% - 0s
o @ -—-47.72995 @ 186 —47.72995 -—47.72995 0.00% - 2s
Cutting planes:
MIR: 2
Zero half: 31
RLT: 21

Explored 1 nodes (741 simplex iterations) in ©0.11 seconds (0.04 work units)
Thread count was 12 (of 12 available processors)

Solution count 2: -47.7299 0
No other solutions better than -47.7299

Optimal solution found (tolerance 1.00e-04)
fx Best objective —-4.772994863496e+01, best bound —-4.772994863496e+01, gap 0.0000%
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The Efficiency of Branch and Bound

@ The overall solution time is the product of the number of nodes
enumerated and the time to process each node.

@ Typically, by spending more time in processing, we can achieve a
reduction in tree size by computing stronger bounds.

@ This highlights another of the many tradeoffs we must navigate.

@ Our goal in bounding is to achieve a balance between the
strength of the bound and the efficiency.

@ How do we compute bounds?

o Relaxation: Relax some of the constraints and solve the resulting
mathematical optimization problem.
e Duality: Formulate a "dual" problem and find a feasible to it.

@ In practice, we will use both of these two approaches.
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Relaxation

@ As usual, we consider the MILP
zp = max{c' x| x € S}

where
P={xcR"|Ax < b}

S=Pn@. xR7).

@ Definition 1. A relaxation of IP is a maximization problem
defined as
zr = max{zg(x)|x € Sg}

with the following two properties:

S C Sk
c'x<zp(x), VxeS



Importance of Relaxations

@ The main purpose of a relaxation is to obtain an upper bound on
ZIp -

@ Solving a relaxation is one simple method of bounding in branch
and bound.

@ The idea is to choose a relaxation that is much easier to solve
than the original problem, but still yields a bound that is "strong
enough."

@ Note that the relaxation must be solved to optimality to yield a
valid bound.
@ We consider three types of "formulation-based" relaxations.

e LP relaxation
o Combinatorial relaxation
o Lagrangian relaxation

@ Relaxations are also used in some other bounding schemes we'll
look at.



Obtaining and Using Relaxations

@ Properties of relaxations

o If a relaxation of (MILP) is infeasible, then so is (MILP).
o If zz(x) = ¢ x, then for x* € argmax 5 2z (x), if x* € S, then x* is
optimal for (MILP).

@ The easiest way to obtain relaxations of IP is to drop some of the
constraints defining the feasible set S.

@ It is "obvious" how to obtain an LP relaxation, but combinatorial
relaxations are not as obvious.
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Lagrangian Relaxation

@ The idea is again based on relaxing a set of constraints from the
original formulation.

@ We try to push the solution towards feasibility by penalizing
violation of the dropped constraints.

@ Suppose our IP is defined by

max CTX

st Alx <!
Ax < b?
x € Zl

where optimizing over Q = {x € Z" | A’x < b’} is "easy."
@ Lagrangian Relaxation:

LR(\) : Zg(\) = I}leaéc{(c —AHTN) T+ AT}
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Properties of the Lagrangian Relaxation

@ Forany A > 0, LR()) is a relaxation of IP (why?).

@ Solving LR()) yields an upper bound on the value of the optimal
solution.

@ Because of our assumptions, LR(\) can be solved easily.

@ Recalling LP duality, one can think of A as a vector of "dual
variables."

@ If the solution to the relaxation is integral, it is optimal if the
primal and dual solutions are complementary, as in LP.
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Disjunctions and Branching

@ Recall that branching is generally achieved by selecting an
admissible disjunction {X;}*_, and using it to partition S, e.g.,
Si=8nX.

@ The way this disjunction is selected is called the branching
method.

@ Generally speaking, we want x* ¢ U;<;<X;, where x* is the
(infeasible) solution produced by solving the bounding problem
associated with a given subproblem.

34/52



Split Disjunctions

@ The most easily handled disjunctions are those based on
dividing the feasible region using a given hyperplane.

@ In such cases, each term of the disjunction can be imposed by
addition of a single inequality.

@ A hyperplane defined by a vector = € R" is said to be integer if
meZforO<i<pandm =0forp+1<i<n.

@ Note that if 7 is integer, then we have 7' x € Z whenever
x € ZP x R"P,

@ Then the disjunction defined by
Xi={xeR" |n'x<mh, Xo={x eR" | x>m+ 1},

is valid when 7 € Z.
@ This is known as a split disjunction.
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Variable Disjunctions

The simplest split disjunction is to take 7 = ¢; for 0 < i < p,
where ¢; is the i" unit vector.

If we branch using such a disjunction, we simply say we are
branching on x;.

For such a branching disjunction to be admissible, we should
have mp < xj < mo + 1.

In the special case of a 0-1 IP, this dichotomy reduces to

=0 OR x=1

In general IP, branching on a variable involves imposing new
bound constraints in each one of the subproblems.

This is is the most common method of branching and is easily
handled implicitly in most cases.

What are the benefits of such a scheme?
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The Geometry of Branching
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The Geometry of Branching (Variable Disjunction)

- - Subproblem 1

—  Subproblem 2 |4
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The Geometry of Branching (Variable Disjunction)

- - Subproblem 3
— Subproblem 4 |
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The Geometry of Branching (General Split Disjunction)
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The Geometry of Branching (General Split Disjunction)

— Subproblem 3

- - Subproblem 4 ||
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Describing conv(S)

@ We have seen that, in theory, conv(S) is a polyhedron and has a
finite description.

@ If we "simply" construct that description, we could turn our MILP
into an LP.

@ So why aren'’t IPs easy to solve?

e The size of the description is generally HUGE!

o The number of facets of the TSP polytope for an instance with 120
nodes is more than 10'% times the number of atoms in the
universe.

o ltis physically impossible to write down a description of this
polytope.

o Not only that, but it is very difficult in general to generate these
facets (this problem is not polynomially solvable in general).



Cutting Planes

@ Recall that the inequality denoted by (7, 7) is valid for a
polyhedron P if 77 x < mp, Vx € P.

@ The term cutting plane usually refers to an inequality valid for
conv(S), but which is violated by the solution obtained by solving
the (current) LP relaxation.

@ Cutting plane methods attempt to improve the bound produced
by the LP relaxation by iteratively adding cutting planes to the
initial LP relaxation.

@ Adding such inequalities to the LP relaxation may improve the
bound (this is not a guarantee).

@ Note that when 7 and 7 are integer, then =, 7 is a split
disjunction for which X, = (.



The Separation Problem

@ The problem of generating a cutting plane can be stated as:
Separation Problem: Given a polyhedron Q € R"” and x* € R”
determine whether x* € Q and if not, determine (r, m9), a valid
inequality for Q such that 7 "x* > .

@ This problem is stated here independent of any solution
algorithm.

@ However, it is typically used as a subroutine inside an iterative
method for improving the LP relaxation.

@ In such a case, x* is the solution to the LP relaxation (of the
current formulation, including previously generated cuts).

@ We will see later that the difficulty of solving this problem exactly
is strongly tied to the difficulty of the optimization problem itself.



Generic Cutting Plane Method

Let P = {x € R" | Ax < b} be the initial formulation for

max{c' x|x €S}, S=PnZ, xR 7.

Algorithm 1: Cutting plane method

1 Py« P, k<« 0.
2 while TRUE do
3 | Solve the LP relaxation max{c'x[x € 7} to obtain solution x*.
Solve the problem of separating x* from conv(S).
if x* € conv(S) then STOP;
else Get an inequality (7%, 75) valid for conv(S) but
(7Y Tk > mh
Prr1 < PN {x eR"| (ﬂ'k)Tx < 7T(]§}
8 k< k+1.

o G

~
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Generating Valid Inequalities for conv(S)

Consider the MILP

Zjp = max ch, st xes,

where P = {x e R" |Ax < b} and S = PN (Z. x RL")

@ All inequalities valid for P are also valid for conv(S), but they are
not cutting planes.

@ We need the following simple principle: if a < b and a is an
integer, then a < |b|.

@ This simple fact is all we need to generate all valid inequalities
for conv(S)!

@ Example: suppose that 2x; + x, < 3/2 is valid for P, then
2x1 + xp < 1 is also valid for conv(S).
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Chvatal Inequalities

@ split A = [A;, Ac] according to integer and continuous variables

@ Suppose we can find a u € R” such that 7 = ATuis integer
(AJuce7PandAlu=0)and m)=u'b ¢ Z.

@ In this case, we have 7 'x ¢ Z forall x € S, and so 7' x < || for
allx e S.

@ In other words, (r, | ) is both a valid inequality and a split
disjunction
(xeP|n'x>|m)+1}=0

@ Such an inequality is called a Chvatal inequality

@ Note that we have not used the non-negativity constraints in
deriving this inequality
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Chvatal-Gomory Inequalities

@ Assume that P C R and letu € R” be such that ALu >0

@ Since the variables are nonnegative, we have u'Acxc > 0 and

P
Z(MTA[)x,- <u'b, YxeP
i=1
@ Again, because the variables are nonnegative, we have
)4
Z TA xlgu b, VYxeP
i=1
@ Finally, we have:

p
Zqu,ﬁLuTbJ Vxe S
i=1

@ This is the Chvatal-Gomory inequality



Chvatal-Gomory Inequalities: another derivation

@ We explicitly add the non-negativity constraints to the formulation

along the other constraints with associated multipliers v € R’
@ We cannot round the coefficients to make them integral, so we

require w integral
mi=uAi—vicZ for1<i<p
Wi:uTAi—vizo forp+1<i<n

@ v; will be non-negative as as long as we have
Vi > MTA,' — LMTA,'J, for0 <i< D,
vi=u A; >0, for p+1<i<n.

@ Taking v; = u' A; — |uA;| for 1 <i < p, we obtain

P P
Zﬂix,- = Z{uAiJXi < Lubj = T
i=1

i=1

is a C-G inequality for all u € R such that Alu > 0
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The Chvatal-Gomory Procedure

@ Choose a weight vector u € R such that ALu > 0.
@ Obtain the valid inequality >0, (u"A;)x; < u'b.
@ Round the coefficients down to obtain >°7_ [u"A;]x; < u'b.

© Finally, round the right hand side down to obtain the valid
inequality

Xp:LuTAijxi < LuTbJ
i=1

@ This procedure is called the Chvatal-Gomory rounding
procedure, or simply the C-G procedure.

@ Surprisingly, for pure ILPs (p = n), any inequality valid for
conv(S) can be produced by a finite number of iterations of this
procedure!

@ This is not true for the general mixed case.



Gomory Inequalities
@ Consider the set of solutions to a pure ILP with one equation:
T=<xeZ | Zajx_,':ao
j=1
@ For eachj, let f; = a; — |a;|. Then equivalently
T = {x €z | fri=fo+ lao) - ZM’JXJ}
j=1 j=1

@ Since 3, fix; > 0 and fy < 1, then [ao] — > 7 [;]x; > 0 and so

> S = o

J=1

is a valid inequality for S called a Gomory inequality.
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Large-scale Integer Linear Programming

https://bicmr.pku.edu.cn/~wenzw/bigdata2024.html
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Lagrangian Relaxation

@ Consider the integer programming problem

max ¢ x,
st. Ax<b, Dx<d, (1)
x ez,

and assume that A, D, b, ¢, d have integer entries.
@ Let Z;p the optimal cost and let
X={xeZ"|Dx<d}. (2)
We assume that optimizing over the set X can be done efficiently.
@ Let A\ > 0 be a vector of dual variables. We introduce the problem

max ¢'x+ A (b — Ax),
st xeX,

(3)

and denote its optimal cost by Z(\).
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Lagrangian Relaxation

If the problem (1) has an optimal solution and if A\ > 0, then Z(\) > Z;p

@ Proof: Let x* denote an optimal solution to (1).
Then, b — Ax* > 0 and, therefore

clx* + /\T(b — Ax™) > c'x* = Zp.
Since x* € X,
Z(\) > Xt + /\T(b — Ax") > c'x* = Zp.

@ Problem (3) provides an upper bound to (1). It is natural to
consider the tightest such bound.



Lagrangian Dual

@ We introduce the problem

min Z(\), st A>0. (4)

@ We will refer to problem (4) as the Lagrangian dual. Let

Zp = min Z(\).
A>0
@ Suppose X = {x!',--- ,x"}. Then Z()\) can be written as

Z(\) = max (c'x' + AT (b—Ax")).

=1, m

@ The function Z(\) is convex and piecewise linear.

@ Computing Z, can be recast as a linear programming problem
with a very large number of constraints.

5/43



Weak Duality

Theorem (Weak Duality)
We have Zp = min)\zo Z()\) > Zip.

@ The previous theorem represents the weak duality theory of
integer programming.

@ Unlike linear programming, integer programming does not have a
strong duality theory. It is possible to have Zp > Zp.

@ The procedure of obtaining bounds for integer programming
problems by calculating Z, is called Lagrangian relaxation.
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Strength of the Lagrangian Dual

The optimal value Zy, of the Lagrangian dual is equal to the optimal
cost of the following linear programming problem:

max ch,

s.t.  Ax <b,x € conv(X).

(5)

where conv(X) be the convex hull of the set X = {x € Z"" | Dx < d}.

Proof:

Z(\) = max (c"x+ A" (b — Ax)).

@ The optimal cost remains same if we allow convex combinations
of the elements of X.

Z(\) = max  (c'x+ A (b—Ax)).

xeconv(X)
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Proof

@ By definition, we have

Zp = minZ()\) = mi Tx 4+ AT (b — Ax)).
P RRAY TR A A 0 A

@ Let {y* k € K} be the extreme points, and {r/,j € J} be the
complete set of extreme rays of conv(X).

@ Then, for any fixed \, we have

Z0) = +00, Jjed, (¢ =ATA) >0,
| maxeex (¢ + AT (b — A¥)), otherwise.



Proof

@ According to (6), the Lagrangian dual is equivalent to and has
the same optimal value as the problem

min  max(c vF + X7 (b — AF)),
A>0 kek (7)

st. (¢! —=ATA)PF <0, jel.
@ Problem (7) is equivalent to the linear programming problem
iy,
st. y+A (A —b) >V keKk, (8)
NAY >cTH, el
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Proof

@ Taking the linear programming dual of problem (8), and using
strong duality, Zp is equal to the optimal cost of the problem

max ¢ (Z ap® + Z @rj) )

kek JjeJ

st A(D af+> B | <b,
keK jeJ
Zakzl, ag, B > 0.

keK

@ The result follows since

conv(X) = {Z o+ Z Bir!

kekK jet

Zak = laakaﬁj >0}

kek

10/43



Linear Relaxation

@ We have characterized the optimal value of the Lagrangian dual
as solution to a linear programming problem.

@ Itis natural to compare the optimal cost Z;» and the optimal cost
Zrp of the linear relaxation

max ch,

st Ax<b, Dx <d.

@ In general, the following ordering holds among Z; p, Z;p, and Zp:

Zip > Zp = Zjp.



Linear Relaxation

@ We have Z;p = Z), for all cost vector ¢, if and only if

conv (X N{x | Ax < b}) =conv(X) N {x | Ax < b}.

@ We have Z;p = Zp for all cost vector ¢, if

conv(X) = {x | Dx < d}.

12/43



Solution of the Lagrangian Dual

@ We outline a method for finding the optimal Lagrangian
multipliers \*, that solve the Lagrangian dual problem

min Z(\), st A>0.

@ To keep the presentation simple, we assume that X is finite and
X={x'-- ¥}

@ Given a particular value of A\, we assume that we can calculate
Z(\), which we have defined as follows:

Z(\) = max (c'x' + AT (b—Ax)).

i=1,-,m



Subgradient

@ Letfi=b—Ax' and h; = ¢'x'. Then,
Z(A) = max (h+ £ X).
@ LetE\N) = {i | Z(\) = b + 1 A}
@ For every i € E(\*), f; is a subgradient of the function Z(-) at A*.

@ 0Z(\*) =conv({f;,i € E(\*)}), i.e., a vector s is a subgradient of
the function Z(-) at A* if and only if s is a convex combination of
the vectors f;,i € E(\").



Subgradient Optimization Algorithm

The following algorithm generalizes the steepest ascent algorithm to
maximize a nondifferentiable concave function Z(-).

r

@ Choose a starting point A!; let r = 1.
@ Given X, choose a subgradient s’ of the function Z(-) at \".

Q If s' =0, then X" is optimal and the algorithm terminates.
Else, continue.

Q Let X*' = max{X\ — 65,0}, where 6, is a positive
stepwise parameter. Increment r and go to Step 2.

@ Typically, only the extreme subgradients f; are used.

@ The stopping criterion 0 € 9Z(\) is rarely met. Typically, the
algorithm is stopped after a fixed number of iterations.
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Stepsize

@ It can be proved that Z(\") converges for any stepsize sequence
0, such that

Z@, =00, and lim 6, =0.
P 11— 00

@ An example of the stepsize sequence is 6, = 1/t, which leads to
slow convergence in practical. Another example is

0, =0, t=1,2,--,

where « is a scalar satisfying 0 < a < 1.
@ A more sophisticated and popular rule is to let

5 _ ZON) = 2p
s

where « is a scalar satisfying 0 < o < 1 and Zp is an estimate of
the optimal value Zp.
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@ Dantzig-Wolfe decomposition
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Mixed Integer Program

@ Let us consider a mixed integer program (MIP)

z7 = max clx,
s.t. Ax <b,Dx <d, (9)
x € Z‘_{_ X Rﬁ_.

@ Let X be defined as
X={xeZ{ xR : Dx<d}.

We assume that X is nonempty and D, d have rational entries.



Lagrangian dual

@ Let m be the number of rows of A, and take A € R". The
Lagrangian relaxation with respect to A as follows.

wr(\) = max ¢ x+ M\ (b— Ax),
s.t. Dx<d, (10)
xeZl xR
@ Moreover, recall that the Lagrangian dual is defined as

ZLD = min{ZLR()\) DA Z O} (1 1)

@ (10) and (11) are related according to the following
characterization of z;p.

D = max{ch : Ax < b,x € conv(X)}.



Decomposition of conv(X)

@ conv(X) can be expressed as

conv(X) = conv {vl,...,v"} —i—cone{rl,...,ré},

where v!, ... V" are the extreme points of conv(X) and r!,

are the extreme rays of conv(X).
@ Any point x in conv(X) can be written as

X—Zakv +Zﬁh g

keln] hell]

for some a € RY and 5 € R suchthat Y-, o = 1.
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Dantzig-Wolfe Relaxation

Based on the decomposition of conv(X), it follows that

ZLp = max Z (chk> oy + Z (cTrh> Brs

k€(n] hell]

s.t. Z (Avk) oy + Z (Arh) Br < b,
k€n] hel)
Zak: 1,046R]jr,5 ERﬁ.
k€n]

We refer to (12) as the Dantzig-Wolfe relaxation.

(12)



Dantzig-Wolfe Reformulation

@ Moreover, we have

7 = max {ch :Ax < b,x € conv(X),x; € Z, Vj € [q]} .

@ Therefore, we deduce

maXZ( )ak+Z<Tl1>ﬁk,

kE(n] hell]
st Y (AF)a+ D (AF) B < b,
k€E|[n] hell)
Z ap =1, (13)
k€n]
a e RE B eR,
S ank+> B €z, jelql.
ke(n] hell)

@ Here, (13) is referred to as the Dantzig-Wolfe reformulation.



Pure Binary Programs

@ Let us consider a pure binary integer program as follows.

7] = Imax CT)C7

sit. Ax<b,Dx <d,
x € {0, 1}".
@ We define X as

X={xe{0,1}Y : Dx <d}.

@ Since X is bounded and finite, X = {v',...,v"}
@ Any point x in X can be expressed as

x—Zakv Zak—l a e {0,1}".

ke(n] ke(n]



Pure Binary Programs

@ Then we obtain the Dantzig-Wolfe reformulation.

Zy = max E (chk> g,

k€n]

s.t. Z (Avk) ar < b,

ke[n]

da=1, ac{o1}"

ke(n]

@ The Dantzig-Wolfe relaxation

max E (chk) Qs

k€E[n]

st. > (M) a < b,

k€|n]



Block Diagonal Structure

@ We consider the following optimization model with block diagonal

structure.
max ¢ "x'+ AT TR
st. D! <d',
D’x? < d*
D'y < d,
Alxl A2 AP < b,

¥ e {0,139, jep.

@ Forj € [p], let X; be defined as X; = {¥ € {0,1}9 : D'¥ < d'}.
@ X; is bounded and finite. Any point ¢/ in X; can be written as
d=>"ay, Y d =1 o {01}/

VEX; veX;
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Block Diagonal Structure

@ The Dantzig-Wolfe reformulation is given by

max Z <c1Tv) oy + Z (cZTv> e Z <cpTv) ol
veX, VEXp

veX
s.t. Z (A'v) ai—i—z (sz) O‘%"‘""FZ(Apv)a{j <b,
veX) veX) VEXP
Yoo =1, oefo,}M, jelp.
VvEX;

@ The Dantzig-Wolfe relaxation is given by

max Z (clTv> o) + Z <02Tv> o2+ 4+ Z (cf’Tv> ol
veX,

veX) veX,
s.t. Z (Alv) al+z (sz) a%+...+Z(ApV)O/V7 <b,
veX) veXy VGX];

dal=1, o>0, jelp.

vEX;



Column Generation: Master Problem

@ The Dantzig-Wolfe relaxation has variables «;, ..., «, for the
extreme points of conv(X) and variables 5, ..., 3, for the
extreme rays of conv(X).

@ n and ¢ are potentially very large. In this case, we may apply the
column generation technique.

@ The column generation procedure works as follows. We start
with N C [n] and L C [¢]. Then we have the master problem

< T k ) B,
ma Z(c v)ozk—k%(C V)Bk

s.t.

keEN
Z (Avk) oy + Z (Arh) Br < b,
keEN heL

Zak: 1, aeRi,ﬂeRﬂ.
keEN
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Column Generation: Subproblem — /& 2 ## #7

o TIRAMMEAT B, L EARAL S I FAMY S &
FANT, BBREEHAERMAGT (R2) BTRABARHE
@ R LA L FAMAEMAN, MAEZRAE T Ex € conv(X) #reduced
cost 4 :
¢(x) =c'x = ATAx.

@ & A fx e conv(X) Ae(x) >0, M HA]EFRHAERRL -
o Ak, #i&de T F MR LA R AR £ A H 7

T T
A (b—A .
e (T HAT(h - A0)

o =HMIEH .
o & RMMA> 0: A4 TR B AT R LA 4
o HZRMME=0: ALRHK, LFAEWI;
o LREMA+oo: BERRT @ GRHEE) T A .



Column Generation: Subproblem — % 742

@ M EFA (restricted master problem) . A2 x{ET )\ ;
Q MiETFIA .

max ¢ x4+ A (b—Ax);
xeconv(X)

Q EFTFEAKMMAESO N .
o HFRMMAM BN, MA

Ak —b)TA < TV,

Jm AV B 2 EAR
o XTFAER, HAMGSE!, MA

A TA <™,
et B 2R
Q FFRARMKMA<0, MBATARCH SRR, FELE.

o FRMENTAEX ERMBEMEAR (c—ATN) x 8RR,
& pricing problem &9 1k 52 3,



Outline

e Bender's Decomposition
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Bender’s Decomposition

@ We use the Lagrangian relaxation framework to deal with
complicating constraints.

@ In this section, we learn the Bender’s reformulation technique
that can deal with complicating variables.

@ Consider the following mixed-integer program.

z; = max clx + qu,
st. Ax+ Gy <,
x € Zi,y eR.

3i/43



Bender’s Decomposition

@ Here, the integer variables x are complicating variables. If we fix
the x part, then the optimization problem becomes

ZLP(X) =1nax qua
s.t. Gy < b — Ax,
ye R
@ Taking the dual of it, we deduce
min u' (b — Ax),

st. Glu> q,
u>0.

@ Here, the feasible set of the dual does not depend on x.
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Bender's Decomposition

@ Let Q denote the feasible set of the dual:

Q:{MZGTMZQ,MZO}.
@ Suppose that Q can be expressed as
Q:conv{vl,...,v"} —|—cone{rl,...,r£}.
¢

for some vectors v!, ... v and r!,..., /.
@ We will prove the following theorem.

Theorem (Bender’s Decomposition)
The mixed integer program can be reformulated as

z =max 1,
st. n<c'x+(b-Ax)"HW, keln,
(b—Ax)"F" >0, hell,
xeZl, neR

™ = = = T 35/43



Projection Theorem of Egon Balas

LetP = {(x,y) € R? x R” : Ax+ Gy < b,y > 0}. Suppose that
C={u:G"u>0,u>0} can be expressed as C = cone {r',... r'}.

Then proj,(P), the projection of P onto the x-space, is given by

proj,(P) = {x ER:(b—Ax)"F">0,h e [8]} :

@ Let x € R?. Note that x ¢ proj,(P) holds if and only if there is no
y € RP that satisfies Gy < b —Axand y > 0.

@ By Farkas’ Lemma, the system Gy < b — Ax,y > 0 is infeasible if
and only if there exists u € C such that u" (b — Ax) < 0.

@ Since C = cone {r',...,r}, such a vector u exists if and only if
(b — Ax) /" < 0 for some & € [/], in which case,
x¢{xeR:(b—Ax)"/">0,he 0]}
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Proof of Bender’s Decomposition

o LetP = {(x,y) € R x R? : Ax+ Gy < b,y > 0}. Note that
Z7 = max ch—i-ZLP(x),

d
st xeZ,.

@ Here, 7;p(x) > —oc if and only if there exists some y > 0 such
that Gy < b — Ax, which is equivalent to x € proj,(P).

@ Therefore, it follows that

z7=max ¢ x+zp(x),

st xé€proj(P)NZL.
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Proof of Bender’s Decomposition
@ Recallthat 9 = {u: G'u > g,u >0} and

Q:conv{vl,...,v"}—l—cone{rl,...,rf}.

@ Then C = {u G u>0,u> 0} is the recession cone of Q, so we

have C = cone {rl, .. ,rz}.
@ Then it foIIows from projection theorem of Egon Balas that
proj,(P) = {x e RY: (b — Ax)Tr" > 0,h € [(]}.

° Therefore, we deduce that

77 =max ¢ x-+ zrp(X),
st. (b—Ax)'/">0, hell,
d
xeZ.

36/43



Proof of Bender’s Decomposition
@ Moreover, note that for any x € proj,(P), zzp(x) > —oo, S0 strong
duality implies that
zp(x) =min  u' (b — Ax),
st. Glu> q,
u>0.

@ If z;p(x) is finite, then it means that Q is non-empty and
zzp(x) = lgren[ﬁ {(b - Ax)Tvk} .

@ If z.p(x) = 400, then Q is empty, so the above equation also
holds. Hence,

z=max ¢ x+ lzren[’% {(b - Ax)Tvk} ,
st. (b—Ax)"/">0, hell],

d
xEZ+.
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Proof of Bender’s Decomposition

@ We may move the term min;¢, { (b — Ax) "V*} in the objective to
constraints, after which we deduce that
Zy = max 1,

st. 7 <c'x+min {(b - Ax)Tvk} ,
ke(n]

(b—Ax)"F" >0, hell,
xeZl, neRr.

which is equivalent to Bender’s reformulation as required.



Bender’s Decomposition Algorithm

@ The Bender’s reformulation has an enormous number of
constraints.

@ A natural approach is to work with a small subset of the
constraints and add new ones as cutting planes.

@ The Bender’s decomposition algorithm is the row generation
framework for Bender’s reformulation.



Master Problem

@ At iteration 7, we have N, C [n] and L, C [¢]. Then we solve

g =max 1,
st. n<c'x+(b-Ax)"V, keN,
(b—Ax)'/" >0, hel,
X € Zi,n eR.

This is the master problem.

@ Assume that we get a solution (x', ") after solving the master
problem at iteration . Then we attempts to find a violated
inequality among

n<cx+(b—Ax)"V, ke n\NV,
(b—Ax)"r" >0, hell\L.
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Subproblem

@ The question is
o does there exists k; € [n] such that

0> cTx 4 (b—Ax) VR

e does there exists i, € [¢] such that

T
)

(b —AX') " <0?

@ To answer this, we solve

71p (x') = max qu,
st Gy <b-—AxX,
p
yeER,.

@ This is the subproblem for the Bender’s decomposition
algorithm.
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Solving the Subproblem

@ If z7p (x') = +o0, then for any M > 0, there exists y > 0 such that
Ax'+ Gy <bandc'x' +¢"y > M, in which case z; = +oc.

@ If z.p (') is finite, then

zep (x') = min (b — sz)T V= (b - Ax’)—r vk
kE([n]

for some k;.
@ Hence, we deduce that

X 4z () =c'X +(b— Ax’)—r vk,

@ Moreover, if z;p (x') = —o0, then the subproblem is infeasible, in
which case, there exists &, € [/]

(b—Ax")" " <o0.
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Bender’s decomposition algorithm

@ Atiteration 7, solve the master problem with N, C [n] and L, C [¢].

@ If Z; = —o0, then the mixed-integer program is infeasible.

© Let (x,7') be an optimal solution to the master problem. Solve
the subproblem with x'.

Q If z.p(x") = +oco then the mixed-integer program is unbounded.

@ If z1p(x") = —oo then there exists i, € [¢] such that
(b —Ax) " r < 0.
Add constraint (b — Ax) "7 > 0 and update L, = L, U {h,}.
Q If z1p(x") is finite. Let y' be an optimal solution and
k; € argmin, {(b — Ax')T > vk
If c"x' +¢"y" > 1/, then we conclude that (x',y") is an optimal
solution.
If c"x' +¢"y" < 7', then we add constraint n < ¢"x + (b — Ax) "Wk
and update N1 = N, U {k;}.
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Maxcut: 0.878 bounds
@ For graph (V, E) and weights w;; = w;; > 0, the maxcut problem is
(Q) max Zw,-j(l —xx5), st xe{-1,1}
g
@ SDP relaxation
(SDP) max ZW,/ (1-X;), st Xy=1,X>0
i<j
Compute the decomposition X = VTV, where V = [v1,va,..., v]
@ Rounding: generate a vector r uniformly distributed on the unit sphere, i.e.,

IIrlla = 1, set
1 v;rr >0
Xi = .
—1 otherwise
@ Let Z(SDP and Z(*Q) be the optimal values of (SDP) and (Q)

E(W) > 0.878Z{spp) > 0.878Z7,)
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Reinforcement Learning

Consider an infinite-horizon discounted
Markov decision process (MDP), usually
defined by a tuple (S, A, P, R, po,7); //

state| |reward action
S, R, 4

S ]|
e e

|
===

|
)|

 /&7
e

Rmmsisisl
@ The policy is supposed to maximize the total expected reward:

oo
max E. |:Z fy[r(s,,a,)] , with so ~ po,ar ~ 7(|st), Si1 ~ P(:|ss, ar).
=0

o
G
i
W
il
<

na 4/58
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Erdos Goes Neural

@ The probability distribution D in Erdos is learned by a GNN.
@ A "good" probability distribution leads to higher quality solutions.

M '
Sequential
Decoding

Figure: lllustration of the "Erdos goes neural" pipeline.

@ Optimization on explicit formulation of the expectation.
@ Maximum clique problem:

UD)=v—(B+1) > wypipj+ g > piv.

(vi,vj)€EE ViFVj
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Parameterized Probabilistic Model

@ MCPG: construct a parameterized model with parameter 6 to output pg and
generate x ~ py by Monte Carlo sampling

Probabilistic . .
- Policy Gradient

@ MCPG: optimization over the probabilistic space.
@ Erdos: optimization on the expectation of objective function.
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Outline

e Machine learning for binary optimization
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Binary Optimization
Let f be arbitrary (even non-smooth) cost function:

min f(x), st xeB,={-1,1}"
@ Example: maxcut problem on G = (V,E)

max Z wi(l —xx;), st xe{-1,1}"
(iy)eE

@ Example: maxSAT problem:

max E max{c|xy, chxa, -+, CpXn, 0},
xe{—-1,1}" ‘
el
s.t. max{cixi,chxa, -+ 0%, 0} =1, forc' € G,

@ Binary optimization is NP-hard due to the combinatorial structure.

8/58



Probabilistic Approach

Let X* be the set of optimal solutions and consider the distribution,

x e X*

00 = e () = {X o

Motivation: Searching for optimal points X* = Constructing a distribution py(x)
converging to ¢*(x).

@ A universal approach for various binary optimization problems.

@ Algorithms for continuous optimization can be applied.

@ The optimal points set X* is unknown.

9/58



Gibbs distributions
@ To approximate ¢*, we introduce Gibbs distributions,

1 X
q)\(x) = Zexp (71¥) , X € By,
where Z, = 3" ;3 exp ( f(r)) is the normalizer.

@ Given the optimal objective value f*, for any x € B3,

exp ( exp (
oo (4] 31 Do o0 ()

1
|X*|1X*( x)=¢q", asA—0.

ar(x) =

@ The calculation of ¢, does not require knowledge of X*.
10/58



Parameterized Probabilistic Model

@ KL divergence:

KL (pg || 4) = Zpe(x)log”().

x€B, ( )

@ In order to reduce the discrepancy between py and ¢,, the KL divergence is
supposed to be minimized:

KL (po || gx) Z Po(Of (x) + D po(x) log py(x) + log Zy
xEB x€B,

- % (Bp, /(9] + NEy, [log po(x)]) + log 2.

@ Loss Function (Z) is a constant):
‘ming Lx(0) = E,, [f(x)] + AE,, [log pe(x)] ‘
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Gradient for the Loss Function

Suppose for any x € B, pg(x) is differentiable with respect to 6. For any constant c € Re,
we denote the advantage function

Ax(x;0,¢) == f(x) + Alog pg(x) — c.
Then, the gradient of the loss function is given by
VoL (0) = Ep, [Ax(x; 60, c)Vglogps(x)].

One candidate for c is

¢ = Bp, [f(x)]-

Very similar to the policy gradient in reinforcement learning!
12/58



Extension: general constrained problem

@ Consider
x* =argmin f(x), s.t. ¢(x) =0, x€ B,
X

@ L1 exact penalty problem

X = argminfy (x) :=f(x) + ollc(x) |
xeB,

@ Let w := minyep, {|lc(x)||1 | [Jc(x)|1 # 0} and /* = min,¢p, f(x). Define
7= (o) )/ > 0.

@ Forallo > &, x* is a global minima of the penalty problem and x} is also a global
minima of the constrained problem.
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Pipeline of MCPG

Sampling with Filter Function Policy Gradient Probabilistic Model
——{Stnrting Points sq Sk ] MCMC Sammling swith Output Probability
R P = po(x|P)
Generate Raw Samples r ‘—/1/ 1— 51/ T
Raw Samples  {s1,+, 5T} - {s}, -, sp} Update Parameter
0—06-ng
lP""“y (Grriitat ‘ Mean Field Policy
él’lﬂy Filter Function g=—— Z A{VB log pg (,—ﬁzp) with Parameter 6 to
§=T(s) Lo Generate a Distribution
Po(- |P)
Samples after sl .. om sl ... gm
[Loca] Search 1o 87Y e (S SE) Advantage
. : 1
A =f(E)-=D s
Selecting Best Samples l l =1(s)) fm £ U T
_[Best Samples 53 sj, ] Problem Instance P
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Filter Function

@ The filter function T projects x to a better one in the neighborhood.

@ Applied with the filter function, f(T(x)) has fewer local minima and the same global
minimum as the original one.

12500 12500
11120
2 12000
H 12000 111004
5
5 11500 11500 _ 11080
5 =
® = 4
£ 11000 11000 = 1106097 + A1)
g 2
g s10a0 | /] = ATy
10500 10500 any - AT500)
[S 110204 £ i/ —== f(Talx)
10000 10000 M7.s00)
- - - - - - 11000
fx) - AT1X)) AT2(x)) AT3(x)) ATa(x) ATis(x)) X1 X3 Xs X7 Xo Xu X13 X5 X7 Xig

(a) Expectation of the objective function.  (b) A selected sequence of solutions.
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Filter Function

Definition 2 (Filter Function)

For each x € B,, let N'(x) C B, be a neighborhood of x such that x € NV (x), |V (x)| > 2
and any point in A/(x) can be reached by applying a series of “simple" operations to x. A
filter function 7'(x) is defined as

T(x) € arg minf(x),
XeN(x)

where T'(x) is arbitrarily chosen if there exists multiple solutions.

@ Projection to the best solution on the neighborhood:
Ti(x) = argmin f(%), N(x)={x][x — x| <2k}.
[le—x|l1 <2k
@ Algorithms serves as the filter function:

Trs(x) = LocalSearchy(x).
' 16/58



Local Search

Local Search:
@ Generality: Local search works for various kinds of problem.

o Efficiency: GPUs allow parallel access to the same indexed variable for a large
number of samples.

Pipeline of Local Search with flipping operation:
@ Choose a single variable from the current solution x.
@ Flip the variable to its opposite value.
© Evaluate the new solution to determine if it is improvement.
Q Ifitis, the variable is flipped to its opposite value
@ Back to Step 1 and continues to the next index in 1.
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Large-Scale Parallel Sampling on GPU

Select variables randomly

Sample 1 01-[1]~01
Sample 2 o]~ 0 ~10 mp

Sample m 11 0 ~[1]o

Transition

1

0

1

0

1

1

New states

@ GPU: quick for parallel accessing but slow for memory copying.

Sampling in MCPG
@ constructs large number of short chains,

@ discards all previous states in transition (no memory copying),

@ outputs the last states for all chains.
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Probabilistic Model Applied with Filter Function

@ MCPG focuses on the following modified binary optimization:
min f(T(x)), st x¢€bB,.

@ The probabilistic model is equivalent to
mein Ly(6;P) =Ep, [f(T(x))] + AE,, [log pe(x|P)].

@ Empirical gradient:
o) =g %A,\ x;0)Vg log p(x|6; P).

where S is the sample set extracted from distribution pg(-\P) and

AN(x:0) = F(T(x)) + Mogpo(alP) — 1 i

X€ES
19/58



Binary Optimization and Probabilistic model
For an arbitrary function f on B,, we define the B as

G(f) = min f(x)—f". (1)

xEB\X*

Proposition 1

Forany 0 < é < 1, suppose L(0) — f* < (1 — 0)G(f), then
P(x € X*) > 4.

Therefore, forx', ..., x" independently sampled from py, min; f(x*) = f* with probability
atleast1 — (1 —9)™.

The above proposition shows that with a optimized probabilistic model, the obtained
probability from the optimal solutions is linearly dependent on the gap between the
expectation and the minimum of 1. s



Impact of the Filter Function

@ When T'(x) = x, it means that x is a local minimum point.
@ For any given x € B,, there exists a corresponding local minimum point by applying
the filter function T to x for many times.
@ We can divide the set B, into subsets with respect to the classification of local
minima.
Let X1, X», ..., X, be a partition of B, such that for any j € {1,...,r}, every x € X; has the
same corresponding local minimum point.

Proposition 2

If there exists some x € B, such that pg(x) > 0 andf(x) > f(T(x)), then for any
sufficiently small A > 0 satisfying

Ep, [f (x) = f(T(x))] = Alog(lﬂgll%g |Xi1),

it holds that
KL (pg || g») < KL (pg || g») -
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Boundedness of f(T(x))

Denote N = 2" and sort all possible points in B, = {si,..., sy} such that
fls1) <f(s2) <--- <f(sw). The bounds of f(T(x)) and E,, [f(T(x))], for a large probability,
are not related to samples sy+1, sp+2, ..., sy for an integer M.
Proposition 3

Suppose that the cardinality of each neighborhood N (s;) is fixed to be
N (s;))] > X > n+ 1 and all elements in N (s;) excepts; are chosen uniformly at random

from B,\{s;}. Foré € (0,1), let M = [%N] + 1. Then, with probability at least 1 — &
over the choice of T (x), it holds:
1) f(T()) € [f(n)f(w)] Vx € By;
2) By, [f(T(0))] < S5 polsidf (si) + (1 = 005" po(si))f (sm) < f (smr)-
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Convergence of MCPG

Assumption: Let ¢(x; 0) = log ps(x|P). There exists some constants M, M, M3 > 0
such that, for any x € B,

Q supyeped |9(x;0)] < My,
(2] SUPgeRre? (IVoo(x;0)|| < M,
@ [Vo,0(x:6) — Voo 6)]| < Ms 161 — s V61, 62, € Re”.

Theorem 3
Let the assumption holds and {0,} be generated by MCPG. If the stepsize is chosen as

0= % with ¢ < 3;, then we have

log T 1
. £y (12 g —
V < .
Iéltl%le [H GLX(G)H ] =0 (\/m+m2>

1
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Parameterization of sampling policy

@ Mean field (MF) approximation:

poGeP) =TT 20— )72 i = (6, P)

i=1

@ Parameterization of ;:

1 -2«

wi = ¢i(bi) = T+ op(—0) +

a, 1<i<n.

The probability is scaled to the range (a, 1 — a), where 0 < « < 0.5 is given.

@ For problems graph structures, combining advanced neural networks such as GNN
can also be a good choice.
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Maxcut

@ We use the results reported by BLS as benchmark. Denoting UB as the results
achieved by BLS and obj as the cut size, the gap reported is defined as follows:

UB — obj

100%.
B~ 00%

gap =

Graph|Nodes |Edges [BLS |MCPG |DSDP |RUN-CSP|PI-GNN|EO |EMADM
G14 |800 4,694 (3,064 (3,064 |2,922 [2,943 3,026 |3047 |3045
G15 |800 4,661 |3,050 (3,050 |2,938 [2,928 2,990 |3028 |3034
G22 (2,000 [19,990(13,359(13,359(12,960|13,028 13,181 [13215|13297
G49 [3,000 |6,000 [6,000 |6,000 6,000 |6,000 5,918 |6000 |6000
G50 [3,000 |6,000 |5,880 |5,880 |5,880 |5,880 5,820 |5878 [5870
G55 5,000 |12,468|10,294(10,296 (9,960 (10,116 10,138 [10107|10208
G70 |[10,000|9,999 |9,541 |9595 (9,456 |- 9,421 |8513 |9557

Table: Computational results on selected Gset instances. The result is sourced from references.
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Outline

e Machine learning for general MILPs
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Mixed integer linear program

@ Mixed-Integer Linear Programs (MILPs) are utilized to solve a myriad of

decision-making problems across various practical applications.
T

min ¢ x,

st Ax < b,
[ <x<u,
xeR"™P x 7P,

@ Feasibility: The feasible region is discrete and non-convex, which makes it difficult
to analyze and optimization methods hard to design.

@ Complexity: Even with a relatively small number of variables, the solution space
can be exponentially vast due to the integer constraints.

@ Algorithmic strategy: Preprocessing, Branching Strategies, Bounding Strategies,
Cut Generation, Heuristic ...
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Graph Representation of MILP Instances

@ An MILP instance can be represented as a bipartite graph G = (VU W, E):
o Variable nodes w; ¢ W: correspond to variables x;, each with features:
@ Type of variable (e.g., binary, integer, continuous);
@ Objective coefficient ¢;;
@ Bounds [1;, uj].
o Constraint nodes v; € V: represent constraints ¢;, each with features:
@ Constraint type (<, =, or >);
@ Right-hand side value b;.

e Edges (v, w;) € E: exist if x; appears in constraint ¢;, with weight a;;.

min[
2.,
JLs
st T '
‘174”‘ +3‘1‘3‘>‘0‘
ngll 1 |

‘-,12713‘<1 '
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Branch and bound

training examples:

SRS

(=
prune:

node expansion
order

- global lower and
upper bound

O optimal node
@ fathomed node

min -2x -y

st 3x-5y=0
3x+5y=15
x=0,y=0

X, yeZ
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Learning the exact methods

@ Branching Variable Selection:
e Branch variable selection determines which fractional variables (also known as
candidates) to branch the current node into two child nodes.
o Nair et al.(2021) encode MIP to the GCN as a bipartite graph and compute an initial
feasible solution (Neural Diving), then train a GCN to imitate ADMM-based policy for
branching (Neural Branching).

@ Node Selection:

e The branch-and-bound algorithm recursively divides the feasible set of a problem into
disjoint subsets, organized in a tree structure.

o He et al.(2014) uses imitation learning to train a node selection and a node pruning
policy to speed up the tree search in the B&B process.

@ Cutting Plane:

o Cuts serve as the purpose of reducing the LP solution space, which might lead to a
smaller tree in the branch-and-cut algorithm.
e Tang et al. (2020) train a RL agent for sequentially selecting cutting planes.
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Outline

e Machine learning for routing problems
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Routing problems

@ Travelling Salesman Problem (TSP)
e Given a fully connected graph with node coordinates {x;}?_,, the goal is to find a tour
that visits each node exactly once and returns to the starting point, while minimizing
the total travel distance.

o Permutaion formulation

n—1

min L() := > ity = Xaoll 4+ Xty = Xy -

i=1

@ Capacitated Vehicle Routing Problem (CVRP)
There are n customers, each with a demand ¢;, to be served by a fleet of identical
vehicles with capacity D, all starting and ending at a common depot. The objective
is to find the shortest possible set of routes such that every customer is visited
exactly once, and the total demand on each route does not exceed the vehicle
capacity.
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Example tours

e Travelling Salesman Problem (TSP) @ Vehicle Routing Problem (VRP)

@ NP-hard combinatorial problem with a wide range of applications!
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Overview: machine learning for routing problems

@ Learning to construct: iteratively add nodes to the partial solution.

o Pointer Network was first proposed by Vinyals et al. based on Recurrent Neural
Networks and supervised learning.

e The Graph Neural Networks were then leveraged for graph embedding (Dai et al.) and
faster encoding (Drori et al.) under reinforcement learning framework.

o Later, the Attention Model (AM) was proposed by Kool et al.

e Policy Optimization with Multiple Optima (POMO) significantly improved AM with
diverse rollouts and data augmentations (Kwon et al.).

o Efficient Active Search (EAS) helps to get out of local optima by updating a small
subset of pre-trained model parameters on each test instance (Hottung et al.), which
could be further boosted if coupled with Simulation Guided Beam Search (SGBS) by
Choo et al., achieving better generalization performance.

Light Encoder and Heavy Decoder (LEHD) model is proposed by Luo et al. with
stronger generalization to large-scale instances sizes.
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Overview: machine learning for routing problems

@ Learning to search: iteratively refine a solution to a new one — a search process.
o NeuRewriter (Chen et al.) and L2I (Lu et al.) relied heavily on traditional local search
algorithms with long run time.

e Hottung and Tierney proposed the Neural large neighborhood search (NLNS) solver
improving upon them by controlling a ruin-and-repair process using a deep model.

o Several L2S solvers focused on controlling k-opt heuristic within RL training:
self-attention-based policy (Wu et al.), Dual-Aspect Collaborative Attention (Ma et al.),
Synthesis Attention (Ma et al.) , GNN+RNN-based policy (Costa et al.).

@ Learning to predict: guide the search by predicting critical information.

e Joshi et al. proposed using GNN models to predict heatmaps that indicate probabilities
of the presence of an edge, which then uses beam search to solve TSP.

e The GLS solver (Hudson et al.) used GNN to guide the local search heuristics.

e The DIFUSCO solver (Sun et al.) proposed to replace those GNN models with
diffusion models in generating heatmaps.
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Comparison

@ The L2C solvers can produce high-quality solutions within seconds using greedy
rollouts; however, they are shown to get trapped in local optima, even when
equipped with post-hoc methods, such as sampling, beam search, etc.

@ Although L2S solvers strive to surpass L2C solvers by directly learning to search,
they are still inferior to those state-of-the-art L2C solvers even when given
prolonged run time.

@ Compared to L2C or L2S solvers, L2P solvers exhibit better scalability for large
instances; however, L2P solvers are mostly limited to supervised learning and TSP
only, due to challenges in preparing training data and the ineffectiveness of
heatmaps in handling VRP constraints.
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Construct a path

@ A solution m = (my,...,m,) is a permutation of the nodes {1,...,n}.

@ Given a problem instance s, the stochastic policy for selecting a solution 7 is
parameterized by 6 as

n
po(rls) = [ [ po(mils, m1).
=1

@ The encoder produces embeddings of all input nodes, where an instance s is
encoded by features x; on each node i.

@ The decoder produces the sequence = of input nodes, one nodes at a time, which
takes as input the encoder embeddings and a problem specific mask and context.
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Multi-head attention mechanism

@ The multi-head attention mechanism starts by linearly projecting input sequences
0, K,V into H distinct subspaces using learned projection matrices W].Q., W_,K, WJ-V:

g=0owl, K=kwf vi=vw' j=1...H

@ Attention weights are obtained via a scaled dot-product between projected queries
and keys, followed by a softmax operation:

KT
A; = Softmax (de] +M> , j=1,...)H,
k

where d; represents the dimension of the keys and M is an optional attention mask
that can be used to prevent attending to certain positions.
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Multi-head attention mechanism

@ Using these attention weights, the mechanism computes a weighted sum of the
projected values, yielding the output of each attention head:

Zi=AV;, j=12,.. . H

@ Finally, the outputs from all attention heads are concatenated and linearly projected
using a learned output matrix W9, forming the final multi-head attention output:

MHA(Q, K, V; M) = Concat(Zy, ..., Zy)WP.
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Encoder

@ The encoder computes the initial embeddings hfo) € R% from node features x; using
a linear transformation:

hl(o):W(O)xi+b(0>7 [:l,n

@ Stacking these embeddings forms 1(?) € R"*4_The encoder then refines them
through L attention layers, each consisting of a multi-head attention (MHA) layer
and a node-wise fully connected feed-forward (FF) layer:

Y — BN (h“’” + MHA® (h“’*l)., R, h“”))) ,

B0 — BN (ﬁ“) +FRO (iz“))) .

@ The graph-level representation is the mean of the final node embeddings:
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Encoder

() Node input
() Node embedding

O Graph embedding

| Message

' Projection

V' Skip connection

 Attention query
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Decoder

@ During decoding, the graph is augmented with a special context node (c¢) to
represent the decoding context.

@ The decoder computes an attention (sub)layer on top of the encoder, but with
messages only to the context node for efficiency.

@ The final probabilities are computed using a single-head attention mechanism.

() Node embedding () Context node cmbedding () Leamed input symbol Message Compatibility

© Graph embeading

by

(©00) Concatenation Output probability v Attention query | Identity / reference.

WY

v v i
C @) ( ( e
~ N ® O
v 1o v 2 4
9" Decodert=2 U Decodert= 3 a Decodert = 4
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Context embedding

@ The context vector of the decoder at time 7 consists of the embedding of the graph
kD), the previous (last) node m,_; and the first node =;:

{[h(L),h(L> h(L)], t>1,
(e) =

Ti—17 "]

(A V102 t=1.

@ The context embedding h’(c) is computed using a single masked cross-attention
layer, where the context vector serves as the query, while the node embeddings
provide the keys and values:

hz) = MHA (h()., . h; M,).

The mask vector M, encodes node availability at time z, with M,(i) = 0 for unvisited
nodes and M,(i) = —oc for visited nodes.
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Calculation of probabilities

@ The logits are obtained by a single attention head:

(L) ywK\ 7/
(YW )h@
Vi
where the matrix 2“) WX is precomputed only once as cache during the overall
decoding process.

@ The conditional probability distribution over available nodes is computed using a
softmax:

=

po(- | s, m1—1) = Softmax (C - tanh(z) + M,) ,

where the tanh clipping constant C > 0 serves in improving the exploration.
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Attention model for the CVRP

@ Encoder: Let §; be the normalized demand of the node i.

{Wéo)x,- +80, i=0,

R0 — R
W<0)[xi76i}7 l:17~n

i

@ Capacity constraints: Keep track of the remaining demands 5, . for the nodes
i €{l,...,n} and remaining vehicle capacity D, attime 1. Atr = 1, these are
|n|t|aI|zed as 6,, =d;and D, = 1.

. max(0, 5,»7, -D)), m=i, . max(0, D, — 577,7,), m £ 0,
Oipg1 = 4 » ) Dy =
5:‘.1-, T # i L, = 0.
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Attention model for the CVRP

@ Decoder context: The context for the decoder for the VRP at time ¢ is the
current/last location 7,_; and the remaining capacity D;.

B, hD D], 1> 1,
hie) = 7L L) A
WO AP D] r=1.

@ Masking: In the decoder layers, the masking rules are defined as follows: for the
depot node 0, it is masked (i.e., M,(0) = —oco) if and only if the current step r =1 or
the previous node 7, is the depot itself. For any customer node j # 0, it is masked
(i.e., M,(j) = —o0) if it has been visited (5;, = 0) or its demand exceeds the
remaining capacity (6;, > D,).
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Reinforcement learning

@ Loss function:
£(9|Y) = Epg(w\s) [L(ﬂ')]./
where L() is the tour length for TSP.
@ Policy gradient:

VoL(0]s) = Epy (xjs) [(L(7) — b(s)) Vi log pe(]s)].

@ Rollout baseline:
b(s) = L(""),

where 78" is a solution from a deterministic greedy rollout of the policy py.

@ Optimizer: Adam.
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Policy Optimization with Multiple Optima

@ Symmetry in solving CO problems leads to multiple optima.

@ A routing problem contains a loop rather than a sequence, where (|, m, 73, 74) iS
the same as (m,, w3, ma, 7).

@ Let a solution trajectory denoted by = = (my, ..., m,) and the policy

n
po(mls) = H[Jg(m\s, Thi—1)-

=1

@ In the above equation, the starting nodes 7; heavily influences the rest of the
sequence (m, ..., T,), when in fact any choice for =, should be equally good.
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Explorations from multiple starting nodes

@ Designate N different nodes {x}, .. w'} as starting points for exploration.
@ Sample N different solution trajectories 7!, ..., 7" from the policy.

@ Apply entropy maximization techniques to improve exploration of the first moves.

1 ay T
ay|
a a a ay t N @) o
policy [ _|_ policy | | policy | .. _ policy
network network network

Ovork
< START >

(a)
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Policy gradient with a shared baseline

@ A set of solution trajectories 7!, ..., 7" is sampled from the policy py(r|s).

@ The policy gradient is approximated by

N
1
VoL(0]s) Z )) Vo log pa(r']s),

l:l

where py(r'ls) = [/, po(ils. 7,y )-
@ The shared baseline is taken as the approximation of £, (5 [L(T)],

1L
=5 ;L(ﬂ-f).

@ The shared baseline makes RL training highly resistant to local minima.
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Instance augmentation
@ Drawback: N, the number of greedy rollouts one can utilize, cannot be arbitrarily
large, as it is limited to a finite number of possible starting nodes.
o Reformulate the problem: meet a different problem but arrive at the same solution.

@ One can flip or rotate the coordinates of all the nodes in a 2D routing problem and
generate another instance, from which more greedy trajectories can be acquired.

0° rotation 90° rotation 180° rotation
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Multi-Task vehicle routing problems

@ Prevailing neural solvers still need network structures tailored and trained
independently for each specific VRP.
@ Several VRP variants involve additional practical constraints:
@ Open route (O): The vehicle does not need to return to the depot after visiting
customers.

e Backhaul (B): We name the customer nodes with ¢; > 0 as linehauls and the ones
with ¢; < 0 as backhauls. VRP with backhaul allows the vehicle traverses linehauls and
backhauls in a mixed manner, without strict precedence between them.

o Duration Limit (L): To maintain a reasonable workload, the cost (i.e., length) of each
route is upper bounded by a predefined threshold.

o Time Window (TW): Each node v; € V is associated with a time window [e;, /] and a
service time s;. A vehicle must start serving customer v; in the time slot from ¢; to /;.
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Mixture of Experts

@ An MoE layer consists of
@ mexperts {E|,E,, ..., E,.}, each of which is a linear layer or FFN with independent

trainable parameters.
@ A gating network G parameterized by W, which decides how the inputs are distributed
to experts.

MOE(x) = > G(x);Ej(x).

j=1

@ A sparse vector G(x) only activates a small subset of experts with partial model
parameters, and hence saves the computation.

@ A TopK operator can achieve such sparsity by only keeping the K-largest values
while setting others as the negative infinity.

G(x) = Softmax(TopK(x - Wg)).
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MVMoE

@ It jointly optimizes all trainable parameters 6, with the objective formulated as follows

mein L=Ly+ aLlyp.

@ L, =E..,, [L(m)] denotes the original loss function of the VRP solver.
@ [, denotes the the auxiliary loss used to ensure load-balancing in MoEs.

I(X) =Y G(x),

xeX

_ (x ) WG) - (b(H)lc k,j)
b, = ; @ <Softplus((x~ Wnoisg)j)> ’

Ly, = Var(I(X))? + Var(D(X))>.
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MVMoE

Encoder
‘ Add & Normalize -~ Node Embedding Dynamic Feature  Last Node:
€ N ™
/ I (® 0 06 Pewe®
i ‘ MoE | < v a
Nt 17 ‘ Multi-Head Attention with MoE.
3 Add & Nonmalize - !
T [ Dot-Product & Softmax
‘ Multi-Head Self-Attention ( hY
Probability )
00060,
v

!

[ Lincar o
T ® © 6

@ Despite MVMoOE presents the first attempt towards a large VRP model, the scale of
parameters is still far less than LLMs.
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Failure in TSPTW

@ The success of the masking mechanism in routing problems relies on
o the feasibility of the entire solution can be properly decomposed into the feasibility of
each node selection step;
e ground truth masks are easily obtainable for each step.
@ However, such assumptions may fail in some routing problems, such as travelling
salesman problem with time windows (TSPTW).
@ Once a node is selected, the decision becomes irreversible, potentially leading to
infeasible situations after several steps.

t=1 =2 =3
@
o a4 @
5 5 ® ® ®
2 “)
» ® » @ @ 6
Dobslg 02 @ 12 @ 14 @ R4 @ K

Figure: No node can be selected to satisfy the time windows.
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Numerical results

Table 1: Results on synthetic TSPTW datasets.

Nodes | n =50 | n = 100
Infeasible ) - Infeasible . . -

Method Sol. Inst. Obj. Gap Time Sol. Inst. Obj. Gap Time
PyVRP - 0.00% 7.31 * 1.7h - 0.00% 10.19 * 4.3h
LKH - 0.00%  7.31  0.00% 1.5h - 0.00% 1021  0.29%  7.2h
z PIP 0.28% 0.01% 7.1 2.70% 9s 0.16%  0.00%  10.57 3.57%  29s
= PIP-D 028%  0.00% 7.50 2.57% 10s 0.05% 0.009% 10,66  4.41% 31s
LMask | 0.09% 001% 749 255% 8s 0.08%  0.00% 10.62  4.23% 14s
PyVRP - 0.00% 13.03 * 1.7h - 0.00% 18.72 * 4.3h
g LKH - 0.00% 13.02  0.00% 2.9h - 0.01% 18.74  0.16%  10.3h
-_:,:' PIP 4.82% 1.07% 1341 3.07% 10s 435%  0.39% 19.62  4.73%  29s
2” PIP-D 4.14%  090% 1346  345% 9s 3.46% 0.03% 19.80  5.70% 31s
LMask | 0.33% 0.03% 1336 2.53% 9s 0.49%  0.00% 1957 4.52% 158
PyVRP - 0.00%  25.61 * 1.7h - 0.01% 51.27 * 4.3h
= LKH - 0.52% 2561  0.00% 2.3h - 0.95% 5127 0.00% 1d8h
z PIP 5.65% 2.85% 2573 1.12% 9s 31.74% 16.68% 5148 0.80%  28s
T PIP-D 6.44%  3.03% 2575 1.20% 9s 13.60%  6.60% 5143 0.68% 3ls
LMask | 240% 1.28% 2570 0.08% 10s | 5.63% 231% 5134 0.14%  3ls
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Submodular Function Optimization

http://bicmr.pku.edu.cn/~wenzw/bigdata2024.html

Acknowledgement: this slides is based on Prof. Andreas Krause’s, Prof. Jeff Bilmes, Prof.
Francis Bach and Prof. Shaddin Dughmi lecture notes
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Outline

ﬂ What is submodularity?
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Interactive recommendation

@ Number of recommendations k to choose from large data.
o Similar articles — similar click-through rates!

@ Performance depends on query / context.
o Similar users — similar click-through rates!

@ Need to compile sets of k recommendations(instead of only
one).
o Similar sets— similar click-through rates!




News recommendation
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op Stories

National Guard Called Out in Baltimore as Police and Youths
Clash After ...
BALTIMORE - Rioters in northwest Baltimore looted stores and pelted riot-gear-clad police with

rocks on Monday, hours after Freddie Gray, the 25-year-old biack man who has become
nation's latest symbol of police brutality, was laid to rest ami..

Latest on police-custody death: Govenor declares emergency Related
Maryland governor declares state of emergency in Balimore amid rioting o
Death »

Trending on Google+: Balimore protests tum violent; police officers atacked
in Depth: Maryland Gov. activates National Guard as Baltimore protests rage

Wikipedia: Death of Freddie Gray
KATHMANDU, April 27 (Xinhua) - Smoke from burning pyres for bodies rose high and spread wide. The

Sorrow prevails Nepal capital after deadly quake
Nepalese, who are a quiet people, restrained from crying out loud.

In US-Japan talks, China is the elephant in the room

ign Minister i left, and Defense: Nakatani, second from left, attend a
meeting ith U.S. Secretary of Sate Joh Kerry, thirdfrom right, and Secretary o Defense Ashion Carter, not
visible, in New York, Monday, April 27, .

Nepal earthquake: RAF plane leaves for Nepal with UK aid

An RAF plane carrying UK aid supplies and a team of British Army Gurkha engineers is on its way to Nepal
Dozens of British and still not been

Apple Earnings Surge 33% on iPhone Sales

Apple Inc. AAPL 1.82 % s pulling off a feat rarely seen in any industry, much less the cutthroat world of

maoy
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Relevance vs. Diversity

@ Users may have different interests /
queries may be ambiguous.

e E.g., "jaguar", "squash”,---.

@ Want to choose a set that is relevant to
as many users as possible.

e Users may choose from the set the
article they’re most interested in.

@ Want to optimize both relevance and
diversity.

EES

B
=F
LR

KRAT-1 9 IR
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Simple abstract model

@ Given a set W of users and a collection V of articles/ads.
@ Each article i is relevant to a set of users S;.
e For now suppose this is known!

@ For each set A of articles, define
F(A) = | Uiea Si|.
@ Want to select k articles from V to maximize "users covered"

max F(A).
ACV JA|<k

@ Number of sets A grows exponential in k!
@ Finding optimal A is NP-hard.
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Maximum coverage

@ Given: Collection V of sets, utility function F(.).

Want: A* C V such that
A* = argmax| 4 <, F(A)

NP-hard!
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Set Functions

@ Ground set X := {x;,x2, ..., x, } is the domain of interest or the
universe of elements.

e In sensor network, the ground set might consist of all possible
locations where sensors could be placed.

@ The solution space V :=2%¥ = {A | A C X}.

@ A set function takes as input a set, and outputs a real number.

@ Inputs are some subsets of ground set X.
e F:2X 5 R.

@ Itis common in the literature to use either X or V as the ground
set.

@ We will follow this inconsistency in the literature and will
inconsistently use either X or V as our ground set (hopefully not
in the same equation, if so, please point this out).



Modular Functions

@ If Fis a modular function, then for any A, B C X, we have
F(A)+ F(B) =F(ANB) + F(AUB).

@ If Fis a modular function, it may be written as

)+ (F({a}) = F(0)).

acA

@ Modular set functions

e Associate a weight w; with each i € X, and set F(S) = >, c¢wi.
o Discrete analogue of linear functions.

@ Other possibly useful properties a set function may have:
@ Monotone: if A C B C X, then F(A) < F(B).
@ Nonnegative: F(S) > 0for all S C X.
e Normalized: F(0) = 0.



Submodular Functions

Definition 1
A set function F : 2X — R is submodular if and only if

F(A) + F(B) > F(ANB) + F(AUB)

forallA,B C X.

@ “Uncrossing” two sets reduces their

total function value. ‘

(>

Definition

A set function F : 2X — R is supmodular if and only if —F is
submodular.
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Submodular Functions

Definition 2 (diminishing returns)
A set function F : 2 — R is submodular if and only if

F(BU{s}) — F(B) = F(AU{s}) — F(A)

Gain of adding an element s to a large set Gain of adding an element s to a small set

foralACBCXands e X)\B.

@ The marginal value of the added element
exhibits “diminishing marginal returns”.

o

@ This means that the incremental “value”,
“gain”, or “cost” of s decreases (diminishes)
as the context in which s is considered
grows from A to B.



Submodular: Consumer Costs of Living

@ Consumer costs are very often submodular.
o For example:

i) () > F(id)+ (@)

e When seen as diminishing returns:

(CHRCIRE( il
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Submodular Functions

Definition 3 (group diminishing returns)

A set function F : 2X — R is submodular if and only if
F(BUC) — F(B) < F(AUC) — F(A)

forallAC BC Xand C C X\B.

@ This means that the incremental “value”, “gain”, or “cost” of set C
decreases (diminishes) as the context in which C is considered
grows from A to B.



Equivalence of Definitions

Definition 2 — Definition 3
Let C = {ci,..., ck}- The Definition 2 implies

F(AUC)—F(A)
k—1
= FAuC)—)» (FAU{cy,..., ¢i}) —F(AU{c;
i=1
k
= Y (F(AU{c1,...,ci}) —=F(AU{c1,...,ci1}))
i=1
k
> (F(BU{c1, ..., ci}) —F(BU{cy,..., ci—1}))

......
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Equivalence of Definitions

Definition 1 — Definition 2
Let A’ = AU {s}, B' = B, from Definition 1, we have

F(AU {s}) + F(B) F(A") + F(B)
> FA'NB)+FA' UB)

F(A)+ F(BU {s})

Definition 2 — Definition 1
Assume A # B. Define A’ =ANB, C =A\Band B’ = B. Then

F(A'UC)—-F(A") >FB' UC)—-F(B)
F((ANB)U (A\B)) + F(B) > F(BU (A\B)) + F(A")

<~
< F(A)+F(B)>FAUB)+F(ANB)
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Submodularity

@ Submodular functions have a long history in economics, game
theory, combinatorial optimization, electrical networks, and
operations research.

@ They are gaining importance in machine learning as well.

@ Arbitrary set functions are hopelessly difficult to optimize, while
the minimum of submodular functions can be found in polynomial
time, and the maximum can be constant-factor approximated in
low-order polynomial time.

@ Submodular functions share properties in common with both
convex and concave functions.
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Example: Set cover

@ Fis submodular:A C B
F(AU{s}) — F(A) > F(BU{s}) — F(B)

Gain of adding an element s to a small set ~ Gain of adding an element s to a large set

A

@ Natural example:

° SetSIaS27"' 7Sn
o F(A)=size of union of S;
(e.g., number of satisfied users) B

F(A) = [UieaSi| S
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Closedness properties

@ Fy,---,F, are submodular functionson Vand Ay,--- , A\, > 0.
@ Then: F(A) = ), \iFi(A) is submodular!

@ Submodularity closed under nonnegative linear combinations
@ Extremely useful fact:

@ Fy(A) is submodular = ", P(0)Fy(A) is submodular!
o Multi-objective optimization:
Fi,--- ,F, are submodular, \; > 0 = ). \;F;(A) is submodular.



Probabilistic set cover

@ Document coverage function:
cover,(c)=probability document d covers concept ¢, e.g., how
strongly d covers c.
It can model how relevant is concept ¢ for user u.

@ Set coverage function:
covery(c) = 1 — Izea(1 — covery(c)).
Probability that at least one document in A covers c.
@ Objective:
e F(A) = Z:wc.coverA(c)
w, is the concept weights.

@ The objective function is submodular.



The value of a friend

@ Let X be a group of individuals. How valuable to you is a given
friendx e X ?

@ It depends on how many friends you have.

@ Given a group of friends § C X, can you valuate them with a
function F(S) and how?

@ Let F(S) be the value of the set of friends S. Is submodular or
supermodular a good model?
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Information and Summarization

@ Let X be a set of information containing elements

e X might say be either words, sentences, documents, web pages,
or blogs.

e Each x € X is one element, so x might be a word, a sentence, a
document, etc.

e The total amount of information in X is measure by a function
F(X); subset S C X measures the amount of information in S,
given by F(S).

@ How informative is any given item x in different sized contexts?
Any such real-world information function would exhibit
diminishing returns, i.e., the value of x decreases when it is
considered in a larger context.

@ So a submodular function would likely be a good model.



Restriction

Restriction

If £(S) is submodularon V.and W C V. Then F'(S) = F(SN W) is
submodular.

Proof: Given A C B C V\{i}, prove:
F(AU{i})NW)—FANW)>F(BU{i})NW)—FBNW).

If i ¢ W, then both differences on each size are zero.

Suppose thati € W, then (AU {i}) "W = (AN W)U {i} and

BU{ih)NnW=BNW)U{i}. Wehave ANW C BN W, the

submodularity of F yields

F(ANW)U{i}) —F(ANW) > F(BN W)U {i}) — F(BN'W).




Conditioning

Conditioning

If F(S) is submodularon V.and W C V. Then F'(S) = F(SU W) is
submodular




Reflection

Reflection
If F(S) is submodular on V. Then F'(S) = F(V \ S) is submodular.

Proof: Since V\(AUB) = (V\A) N (V\B) and
V\(ANB) = (V\A) U (V\B), then

F(V\A) + F(V\B) > F(V\(AUB)) + F(V\(ANB)))
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Contraction

Let F: 2X¥ — Rand A C X. Define F4(S) = F(AUS) — F(A).
Lemma: If F is monotone and submodular, then F, is monotone,
submodular, and normalized for any A.
@ Proof: Monotone:
o LetS C T,then F4(S) = F(AUS) — F(A) < F(AUT) — F(A) = Fa(T)

@ Submodular. Let S, T C X:

Fs(S)+Fa(T) = F(SUA)—F(A)+F(TUA)—F(A)
> F(SUTUA)—-FA)+F(SNT)UA) —F(A)
= FA(SUT)+FA(SNT)
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If F is normalized and submodular, and A C X, then thereisj € A

such that F({j}) > 7 F(A)

@ Proof. If A; and A, partition A, i.e., A=A, UAy and A; NA; = (),
then

F(A1)+ F(Ay) > F(A1 UA2) + F(A1 NAy) = F(A)

@ Applying recursively, we get

Y F({j}) = F(4)

JEA

@ Therefore, maxjea F({j}) > |71|F(A)
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Convex aspects

@ Submodularity as discrete analogue of convexity

@ Convex extension
e Duality

@ Polynomial time minimization!

A* = in F(A
arg ;in F(4)

@ Many applications (computer vision,ML, - - -)




Concave aspects

@ Marginal gain  Ap(s|A) = F({s} UA) — F(A)
@ Submodular:

VACB,s¢B: F(AU{s}) — F(A) > F(BU {s}) — F(B)

@ Concave:

Ya<b,s >0 gla+s)—gla) >gb+s)—g(b)

F(A) “intuitively”




Va<b,s>0  gla+ts)—gla)=gb+s)—gb)

@ Suppose that a + s € [a, D]

@ Apply the concavity of g(x) to [a,a + s,b + s]:

b—a s
> —g(b
fats) > g 4 gr)
—s s
> gla+s)—g(a) mg(a) + mg(b—i—s)
@ Apply the concavity of g(x) to [a +s,b,b + s]:
s b—a
sb) 2 priTgt @t gt
—S S
> g(b+s) —g(b) mg(a) + b+s_ag(b+5)



Submodularity and Concavity

Let m € RX be a modular function, and g a concave function over R.
Define F(A) = g(m(A)). Then F(A) is submodular. J

Proof: Given A C B C X\v, we have 0 < a = m(A) < b = m(B), and
0 < s =m(v). For g concave, we have
gla+s)—g(a) > g(b+s) — g(b), which implies

g(m(A) +m(v)) — g(m(A)) > g(m(B) + m(v)) — g(m(B))

g(lAD

v

|Al
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Maximum of submodular functions

Suppose F;(A) and F,(A) submodular.
Is F(A) = max(F(A), F2(A)) submodular?

r 3

F(A) = max(F,(A),Fx(A))

|
L

Al

max(Fy, F,) not submodular in general!
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Minimum of submodular functions

Well,maybe F(A) = min(F;(A), F»(A)) instead?

Fi(A) |F,(A) et g
0 0 0 ( })<— (H=
{a} 1 0 i
{b} |0 1 F({a,b}) - F{a})=1
{a,b} |1 1

min(F, F,) not submodular in general!
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Max - normalized

Given V, let c € RK be a given fixed vector. Then F : 2¥ — R, where

F(A) = :
(4) = maxc;

is submodular and normalized (we take F((})) = 0).

Proof: Since
max(max ¢j, max ¢j) = max ¢j
jeA jeB JEAUB
and
min(max ¢j, maxcj) > max cj,
jeA jeB JEANB
we have

max ¢; + max¢; 2 max ¢j + max ¢j
jeA JjEB JjEAUB JEANB



Monotone difference of two functions

Let F and G both be submodular functions on subsets of V and let
(F — G)(-) be either monotone increasing. Then h : 2 — R defined by
h(A) = min(F(A), G(A)) is submodular.

@ If h(A) agrees with either f or g on both X and Y , the result
follows since

) = min(F(XUY), GXUY)) 4 min(F(X 1Y), GX 1Y)

@ otherwise, w.l.o.g., h(X) = F(X) and h(Y) = G(Y), giving
h(X)+h(Y)=FX)+G(Y)>F(XUY)+FXNY)+G(Y)—F(Y)

Assume F — G is monotonic increasing. Hence,
FXUY)+G(Y)—F(Y)>G(XUY) giving

h(X)+h(Y)>GXUY)+FXNY)>hXUY)+h(XNY)
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Min

@ Let F: 2V — R be an increasing or decreasing submodular
function and let k be a constant. Then the function #: 2V — R
defined by

h(A) = min(k; F(A))

is submodular

@ In general, the minimum of two submodular functions is not
submodular. However, when wishing to maximize two monotone
non-decreasing submodular functions, we can define function
h:2Y - Ras

mm:%mmmm+mm@®)

then h is submodular, and h(A) > k if and only if both F(A) > k
and G(A) > k



Outline

9 Submodular maximization
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Submodular maximization with Cardinality Constraint

Problem Definition
Given a non-decreasing and normalized submodular function
F :2X — R on a finite ground set X with |X| = n, and an integer

k <n:
max F(A), s.t. |A| <k

Greedy Algorithm

> Ay« (,seti=0

» While |A;| <k
o Choose s € X maximizing F(A; U {s})
@ A +— AU {S}
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Greedy maximization is near-optimal

Theorem[Nemhauser, Fisher& Wolsey’78]

For monotonic submodular functions, Greedy algorithm gives
constant factor approximation

F(Agreedy) > (1 - 1/6) F(A*)
63%

@ Greedy algorithm gives near-optimal solution!

@ For many submodular objectives: Guarantees best possible
unless P=NP

@ Can also handle more complex constraints.



Greedy maximization is near-optimal

Theorem[Nemhauser, Fisher& Wolsey’78]

For monotonic submodular functions, Greedy algorithm gives
constant factor approximation

F(Agreeay) = (1 —1/€)F(A7)

@ Proof: Let A; be the working set in the algorithm
@ Let A* be optimal solution.

@ We will show that the suboptimality F(A*) — F(A) shrinks by a
factor of (1 — 1/k) each iteration

@ After k iterations, it has shrunk to (1 — 1/k)* < 1/e from its
original value

@ The algorithm choose s € X maximizing F(A; U {s}). Hence:

F(Ait1) = F(A) + F(A; U {s}) — F(A;) = F(A;) + max Fa,(4})



@ By our lemmas, there is j € A* s.t.

1
FA(G)) 2 pFala’) (@pply lemmarto £y

= LFAUAY) - FA)
LF(AT) — F(4)

v

@ Therefore

F(A") = F(Aip1) = F(A*)—F(Ai)—mjaxFA,-({j})

40/52



Scaling up the greedy algorithm [Minoux’78]

In round i+1,

@ have picked A; = s1,- - , 5

@ pick si41 = argmax, F(A; U {s}) — F(A)).

@ Update the gain of other elements affected by the addition of s; ;.
The core of the algorithm is maximize "marginal benefit" A(s|A;)

A(s|A;) = F(A; U {s}) — F(A;)

Key observation: Submodularity implies
A(s [A) 2 A(s |Aig)
d [
Marginal benefits can never increase!
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"Lazy" greedy algorithm [Minoux'78]

Lazy greedy algorithm: Benefit A(s | A)
@ First iteration as usual a -
@ Keep an ordered list of marginal
benefits /\; from previous iteration b .
@ Re-evaluate A; only for top b
element
@ If A\; stays on top, use it, d
otherwise re-sort :

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec,Krause et al.’07]
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Empirical improvements [Leskovec, Krause et al’06]

Lower is better

Running time (minutes)

400
300 A=
Exhaustive search 9 5 Exhaustive search
" (All subsets) g § 300 (All subsets)
200 . ,.-r' a8
Naive o wl o Naive
greedy > | E 200 greedy
100 ~" Lazy greed €
- Zzy g Yy 9 émo Lazy greedy
0 &= v
1 2 3 456 7 8 910 1 2 3 4 5 6 7 8 9 I
Number of sensors selected Number of blogs selected
I
Sensor placement :}g% 1 Blog selection ===
g ‘;-.j‘{ -
“.i«’é

30x speedup 700x speedup



Stochastic-greedy algorithm [[Mirzasoleimanet al’14]

In round i+1,
@ have picked A; = 51, - , ;.
@ Ris arandom subset obtained by sampling s random elements
from X \ A.

(*] pICk Si41 = arg maxXgcpr F(Al U {S}) — F(Al)

The algorithm at each step selects a random subset R of size

s = 7log é choosing the element from R that provides the maximum
marginal gain to the current solution A.

It achieves a (1 — 1 — ¢) approximation guarantee with O(nlog 1)
function evaluations, where ¢ is an acceptable error bound for the
algorithm.
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Outline

e Submodular minimization
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Optimizing Submodular Functions

@ As our examples suggest, optimization problems involving
submodular functions are very common

@ These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained | NP-hard o
1 approximation Rolynomlal time
via convex opt
Constrained Usually NP-hard Usually NP-hard to apx.
1 — 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constriants)

Representation

In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating F(S).
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Problem Definition
Given a submodular function f : 2X — R on a finite ground set X,

min F(S)
st. SCX

@ We denote n = |X]|

@ We assume F(S) is a rational number with at most b bits

@ Representation: in order to generalize all our examples,
algorithmic results are often posed in the value oracle model.
Namely, we only assume we have access to a subroutine
evaluating F(S) in constant time.

An algorithm which runs in time polynomial in n and b.
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Some more notations

e E={1,2,...,n}
@ RE={x=(x;eR:jEE)}
@R ={x=(x€eR:jEE): x>0}

@ Any vector x € R¥ can be treated as a normalized modular
function, and vice verse. That is

x(A) = Zxa.
acA
Note that x is said to be normalized since x()) = 0.
@ Given A C E, define the vector 1, € R% to be
. 1 ifjeA
w=9 7
0 ifj¢gA

@ given modular function x € RE, we can write x(A) in a variety of
ways, i.e., x(A) = x- 14 = > ;i cu X



Continuous Extensions of a Set Function

@ A set function Fon X = {1,...,n} can be thought of as a map
from the vertices {0, 1}" of the n-dimensional hypercube to the
real numbers.

Extension of a Set Function

Given a set function F : {0, 1}" — R, an extension of F to the
hypercube [0, 1]" is a function g : [0, 1]* — R satisfying g(x) = F(x) for
every x € {0,1}".

(1,0, 1)"‘{1’ 3 (1,1, I)'”{I, 2, 3}
min  F(w) (0,0, 1)~5; ‘
we{0,1}" (1,0, 0)_“{1} | (0,1, I)~{21 3}

with VA C X, F(14) = F(A) o a1 01,

(0,0, 0~{] (0, 1, 0)~{2}



Choquet integral - Lovasz extension

@ Subsets may be identified with elements of {0, 1}"

@ Given any set-function F and w such that w;, > ... > w;,, define

fw) = > wilF({ins - did) = F({jt, - i1 })
k=1

n—1

= ) Wi = Wi JFrs i) +wi F (s in})

k=1

@ Ifw =14, f(w) = F(A) = extension from {0, 1}" to R"



Choquet integral - Lovasz extension, example: p = 2

© Ifwi >wy, f(w) = F({1)w1 + [F({1,2}) = F({1})]w2
© Ifwi <wa, f(w) = F({2})w2 + [F({1,2}) — F({2})]w:

fow)=1

level set {w € R?, f(w) = 1} is displayed in blue

@ Compact formulation: f(w) =
[F({1,2}) = F({1}) — F({2})] min(wi, w2) + F({1})wr + F({2})w2



Links with convexity

Theorem (Lovasz, 1982)

F is submodular if and only if f is convex

@ Proof requires: Submodular and base polyhedra

@ Submodular polyhedron: P(F) = {s € R",VA C V,s5(A) < F(A)}

@ Base polyhedron: B(F) = P(F)N{s(V) =F(V)}

S5

P(F)

B(F)

53
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Submodular and base polyhedra

@ P(F) has non-empty interior
@ Many facets (up to 2"), many extreme points (up to n!)

Fundamental property (Edmonds, 1970): If F is submodular,
maximizing linear functions may be done by a “greedy algorithm”

@ Letw € R suchthatw; >...>w;,

LetSjk :F({jl,...,jk})—F({jl,...,jk_l}) fork € {1,...,11}

@ Then

f(w) = max w's = max w's
seP(F) s€B(F)

Both problems attained at s defined as above.

proofs: pages 41-44 in http://bicmr.pku.edu.cn/
~wenzw/bigdata/submodular_fbach_mlss2012.pdf



Links with convexity

Theorem (Lovasz, 1982)
F is submodular if and only if f is convex

@ If Fis submodular, f is the maximum of linear functions. Then f is
convex

@ Iffisconvex,letA,BCV

@ laup + lang = 14 + 15 has components equal to 0 (on V\(A U B)),
2(onANB)and 1 (on AAB = (A\B) U (B\A))

o Thus f(1aus + lans) = F(AU B) + F(A N B). Proof by writing out
F(1aup + 1ang) and the definition of f(w).

o By homogeneity and convexity, f(14 + 15) < f(14) +f(1g), which is
equal to F(A) + F(B), and thus F is submodular.



Links with convexity

Theorem (Lovasz, 1982)

If F is submodular, then

A = m o
e (A) W&l&}}}nf(W) wg;g}}],,ﬂW)

@ Since f is an extension of F,

min F(A) = min f(w) > min f(w)

ACV we{0,1}" we(0,1]n

@ Any w € [0,1]" can be decomposed as w = )" | A1, where
By C...CB,=V,where A >0and A(V) < 1:
e Since minscy F(A) <0 (F(0) = 0),

m

= ZA,-F Aimin F(A) > min F(A)

3

"ACY ACV

@ Thus min,,cp, i f(w) > minacy F(A).



Links with convexity

@ Any w € [0,1]", sort wj, > ... > w;,. Find X such that

n n
Z)\jk = Wj],Z)\jk :sz,...,)\jn = Wj,,
k=1 k=2

Bl - {jl}yBZ - {jlujZ}a CIEER 7Bn - {jl)jZa .. 7jn}

Then we have w = Y7 | \/15, where B; C ... C B, = V, where
A>0and A(V) =3 ey M < 1L
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Submodular function minimization

@ Let F: 2V — R be a submodular function (such that F(0) = 0)

1 A — min

— min max w's
we(0,1)" seB(F)

= max min w's= max s_(V)
SEB(F) wel0,1]" SEB(F)



Submodular function minimization

Convex optimization
If F is submodular, then

A= m o
iy (A) W&l&}}}nf(W) wg[g}}],,f(W)

Using projected subgradient descent to minimize f on [0, 1]"
@ lteration: w, = Ijg yju(wy— — %s,), where s; € Of (w,_1)

@ f(w) = maxep(r) w's

@ Standard convergence results from convex optimization

: c
flwe) = min f(w) < 7



Summary

@ Many problems of recommending sets can be cast as
submodular maximization

@ Greedy algorithm gives best set of size k

@ Can use lazy evaluations to speed up

@ Approximate submodular maximization possible under a variety
of constraints:

Matroid

Knapsack

Multiple matroid and knapsack constraints

Path constraints (Submodular orienteering)

Connectedness (Submodular Steiner)

Robustness (minimax)



Stochastic Gradient Methods for Large-scale
Machine Learning

Zaiwen Wen

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Thanks Yongfeng Li and Zhanwang Deng for preparing part of this slides
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Why Optimization in Machine Learning?

Many problems in ML can be written as

N

. 1 T 2 2 . .
min Z§||xi9—yiH2+,u||9||2 linear regression

=

N

: 1 T - .

min El log(1 + exp(—yx;/ 0)) + u||f]|5 logistic regression
i—

N
i L(h(0,x;), v 0 eneral formulation
min ;((,x)y)Jruso() g ulati
@ The pairs (x;,y;) are given data, y; is the label of the data point x;
@ /(-): measures how model fit for data points (avoids under-fitting)
@ ©(6): regularization term (avoids over-fitting)

@ h(6,x): linear function or models constructed from deep neural
networks
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Sparse Logistic Regression

The logistic regression problem:

min
0eRrR

@ The data pair {x;,y;} € R" x {—1,1},i € [N],

N

1

5 D log(1 -+ exp(~yixf6)) + p0]5.
i=1

Data Set | #dataN  #featuresn sparsity(%)
cina 16,033 132 70.49
a9a 32,561 123 88.72

ijcnn1 49,990 22 40.91
covtype 581,012 54 77.88
url 2,396,130 3,231,961 99.99
susy 5,000,000 18 1.18
higgs 11,000,000 28 7.89

news20 19,996 1,355,191 99.97
rcvi 20,242 47,236 99.84
kdda 8,407,752 20,216,830 99.99
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Deep Learning

The objective function is the CrossEntropy function plus
regularization term:

S N exp(h(0,xi)[yi]) 2
T N; log (Zjexp(h(ﬁ,xi)[Y'D>+MH9H2

where (0, x;) is output from network, and (x;, y;) are data points.

| Cifar-10  Cifar-100

# num_class 10 100
# number per class (training set) 5,000 500
# number per class (testing set) 1,000 100

# Total parametes of VGG-16 15,253,578 15,299,748
# Total parameters of ResNet-18 11,173,962 11,220,132

Table: A description of datasets used in the neural network experiments



ResNet Architecture

Kaiming He, Xiangyu Zhang,
Shaoqing Ren, Jian Sun, Cited by
114474 since 2015 at Google
scholar

Stack residual blocks. Every residual
block has two 3x3 conv layers.

@ Make networks from shallow to deep.

@ Fancy network architecture. Many

Applications.
High-computationally-cost !

@ ResNet-50 on ImageNet, 29 hours

using 8 Tesla P100 GPUs

Fe9 Le'“ ide);tity

X
Residual block
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B ARiE T/

Dataset Tokens  Assumptions Tokensperbyte  Ratio  Size

LANGUAGE MODEL SIZES TO DEC/2

(billion) (Tokens / bytes) (6B)
Webdata 4108 - 071 119 570
WebText2 198 25%>WebText  0.38 126 50
Books1 128 Gutenberg 0.57 1175 21
Books2 558 Bibliotik 0.54 1:1.84 101
Wikipedia 3B See RoBERTa 0.26 138 114
& Li 5 Total 4998 753.4GB

Chart. Major Al language models 2018-2022, GPT-3 on the left in red. Table. GPT-3 Datasets. Disclosed in bold. Determined in talics.

ChatGPT (2022/12) 1 4 A4
o AR M . A%t AL 10,000 GPUs #= 285,000 CPU #
24101 £ T
o AR %A &R A% Kllya Sutskever 1907 % 7T/F(20165F), +#
FMEPh.DAK, 120A, H—FAR ®ARLE2CE T
o FKIENMENR12-184 A DILE A9-124
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Al For Science

TABLE IV
RESOURCE AND TIME COST COMPARE.

Implementation ~ Framework  Training Process Hardward Step Time (s)  Training Time (days) Resource

AphaFold  Jax (g A0 s ! 1 33792 TPU hours
Fine-tuning /

Openfoll Pyl albning o g 616 839 25774 GPU hours
Fine-tuning 20.657
Initial traini 256 x A100 2487

FastFold PyTorch mf rmrllng * 281 20738 GPU hours
Fine-tuning 512 x A100 4153

J.Jumper et a, Nature (2021)

Framework ~ MCMC Steps  Det weights Envelope GPU Hours  Energy (Ej)

TensorFlow [12] 10 Yes Full Covariance 11520 -155.9263(6)
JAX 50 No Full Covariance 1880 -155.9348(1)
JAX 50 No Isotropic 1104 -155.9348(1)

Table 2: Speed and accuracy comparison for different training runs of the FermiNet on bicyclobutane.
All runs were for 200,000 iterations, with the same number of determinants and hidden units as
in [12]. Number of GPU hours for TensorFlow assumes 30 days of training on 16 GPUs. Lower
energies are strictly better as FermiNet provides an upper bound to the exact energy.
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Outline

e Problem Description



Lo

ML F

@ x ¢

5] A A

XAEKPE;, yeVAWRE, EPXARBEBLEGZR, YARE
BT Z 1A, FFAxEyRAENRF G S Fr, B (x,y) ~ .

%i;l}%%ﬁg {(xlayl)}tzl

@ hp(x

VAMFEIGER, LRdoaERAEMGTE. KMNBLDA L

O R AT BN &3 B iy (x) -
o ik &k

F AR BEC Ay, ho(x)) = [[ho(x) — y]]*.

I EE: Uy, ho(x)) = ¥ log(he(x)) = 21 1y]10g(ha(X));
#4247 % % 2 (Hinge loss): £(y, hy(x)) = max(0, 1 — hg(x)Ty);
16 #40 k 2 % (Exponential loss): £(y, ho(x)) = exp(—ho(x)Ty);
*t #47 & % 4L (Logisticloss): £(y, hg(x)) = log(1 + exp(—hg(x)T
KL # & (KL d|vergence)

0y, ho(x) = Yo yjlog hg(x;) — 21, yilog .

y
) =

»);
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PACAR R

o %2 X% (Expected risk):

min  fx(0) =Rlho] = E_[€(y,he(x))].

o %% R[&(Empirical risk): 2f:(0) = £(yi, hy(x;)),
def 1 o
min - f5(0) = Rslho] = N > fi(6)
i=1

@ E ATXT(xy)®oHRN2

(x,y)~m

E [Rs[hy]] =

(xi,yi)~m (xi yz)Nﬂ'

(xvy)Nﬂ-

N
Z ynhe xl ]

= E [g(y,he x))] = Rlhy].
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i £ R

o BRIk Rhy € H. RAAILEHE LT R AL MG L Z
BH CH deHESAX . S BEEN XS A2 M %50 R
6 R A, RS AL LT, SRR b Ay BT B 6 E
B, PP € HERThy € H-

//% s é>\
has A////V

I




% £ 58
@ XO*A RARAER 2 & 6] AL A H, AR 8B A hy. BP:

0* = argmin R[hy], s.t. 6 € A. (3)
(%

o 03, A AR E MH P 8 FE IR B RIS R 6 RAL S
xR 6 AR hgs B

63, = argmin R[hg|, s.t. 6 € H. (4)
0

o HOLH B TILE M H I BA A ARIE RS L AK RS AE 5 6
AR AL 7R 0B A Ry PP

0% = argmin Rs[hg], s.t. 6 € H. (5)
0
@ 1X0A (5) 8 L AARE, 2t 49AR T Ay by, BP:
6 ~ argmin Rs[hg|, S1. 6 € H. (6)
0
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*® £ &7t

o AAmE) ZIFARM AR M B RILRENMA -

Rlhg«| — Rhg] = Rlho] — Rlhgs,| + Rlhgs,| — Rlhg] + Rlhgz] — Rhg] .

BARE AR £ AR £

0 BHIFRESBETRHY KA H F

0 ZALEELEMARBERERAX. BEHALT, BAZTHRK, £
?ﬁ?%M*ﬁmwi&

o MALFEEDAEE)VE U SHEMRA XA, R, /£
LE X695, Qi B iEF.



Hoeffding Inequality

Let X1, X>, - -- be a sequence of i.i.d. random variables and assume
that for all i, E(X;) = pand P(a < X; < b) = 1. Then forany ¢ > 0

| — 2ne?
— i— | Z2€el L2exp| ———5 7
P(‘n;X | > ><2ep< (b_a)z) (7)

@ The Hoeffding Inequality describes the asymptotic property that
sampling mean convergences to expectation.
@ Azuma-Hoeffding inequality is a martingle version. Let X;,X>, - - -

be a martingale difference sequence with |X;| < B for all
i=1,2,... Then

. 21
P(in > 1) <exp B

i=1

P(XH:X- <1) <exp —2—t2
== nB?

i=1



* £ 1T
FARR T AHA ARG 3] &S HH R0 < L(h(x),y) < 1,
Vi, yi, h € H. MxtT0 <6 < 1,MARBE]L — 6,8

In |H| —I—ln(%)
\\— v

WEY: ARIER[A]E SLRE[RA)] = R[h]> MERT A5 XA
P(IR[h) — R[h]| > €) < 2¢~2N",
B A T A TR 69 IR % 2 R H, A

P (R~ RiH| = <)) < 2fpe >,

RA 2P (hgﬂ{\fe[h] RIA) za}> < SR EBHAE R

v 11<2m|> O<ln]7—[\+2ln(51)>. .

22 ) €
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Z AR E AT

. § In|H| +1n(3)
— < R
R[h%] — R[h3,] <2 o

TERA: & T

Rlhs] = R3] = R(hs) — R(K§) + R(hs) — R(h3) + R(kyy) — R(K3,) .

(1) ) 3)
2T (1) XA (3) X £ x4 s Fsup [R[k] — R[A]|,Vh € 1.3
T(2) X, RIBR[A]OE LKA T A Fo 8 LAEE, d b T3 .
IR[KS] — R[k3,]| < 2sup |R[A] — R[A]|, Yh € H.
FARBA — R T o KBEETAH T XL
In |H]| —|—ln(%)
IN

HEHAFTEHOGELT, ALY REREE R DILER X E KEGE
M2 RESLZRREMELTK.

[R[hs] = Rlhy]| < 2
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Z AR £

@ What if |H| = oco? This bound doesn’t work

@ For a two label classification problem, with a probability 1 — §, we

have
0O, n o) 1

n

where VC[H] is a VC dimension of H.

@ Finite VC dimension is sufficient and necessary condition of
empirical risk concentration for two label classification.

o 1fE MR A
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Outline

e Stochastic Gradient Methods



TR A
% 4o T HALRAL 140

min  f(x Lef 1Zf, (10)

xeR”

o MBARAE— A (x) R Y . TTHkHy . TR A Tk
= X — oy V().
@ BhJE LTI AT A 69 VS (6K R B K €148 e

1 N
=5 2 Vi)
i=1

o AMILEED P RENGHATEL, HLIAV/()HEHF %
KT E . R G e bh ok RARILE 2 T 98 R A —
F 8GRk



kA AL B T % % (SGD)
o SGD# kK K& XA
= — VI, (6N, (11)
A AR{1,2,- - N}F FAF T aE 30 G — MR
o T ko EMEF D FWARA F ] £ (learning rate) -
o MMM E A AN AR, B
Ey [Vfs (24)[] = Vf ().
o FMH X Z M kE (mini-batch) A E & . MiLkiFELEA
BV GEET, C {1,2,--- ,N}» REHITEREX

Wkl sk &vas(xk),

2l =

® Yo Rfi(x) R Tk, TIAE BHARIEE Kk

k+1 k

=¥ — oy gk
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HE &

0 AT RIBMAAEE FTHHMRES GG, 2H 7z}12ﬁa’&
(momentum) » A& AR ALZERN —TRE LREIATE
#og e, FIEAR BArh e R ERLG EH T 6.
@ HEL LY EARENRMBRN4T

Vk+] = :ukvk - akvak (xk)> (1 2)
KA = pk kL (13)

B 53 A G HAVR VS, ()6 . 3 b — 3 £ 37 5 ek
LR LA R AT B #7869 B A 7wkl

) —ﬁuk:09¢1§7f/£531%)&.1%7m‘7}% T f‘—’;{(ukéﬁ/&@
Z[0,1), BERu >05 EELAZREAFARREE, FX
BERAAE R ERG G o ek B — AN 8915 E

o Eaﬁéﬁﬁﬁ” xl%c" ﬂ-‘ %ﬁ/ﬁuxmﬁ 1T fJFJ’] ‘56177}577 &F1ts
z?&‘a’%éﬁi%ﬁﬁr‘]kﬁiﬁ] TXATHERE S,

o IS EHUMHERGMRG T @, FRHARK, ZINANR
J’-?%{’LEEIF”“/‘E‘Z@’J



HE &

BRI T MR kA sh & 7 R RIL. T AK Bl 584 ik £ R 8 R 5

ShEMEEET @ LRSS, M E KL RN AT E PR

TR AME A

—o— W THEE

—— HETE T




Nesterovieig B %

o MBS (x) A E &) L Z 4. 42t &P AL 6 Nesterovieig & %
Y = ok (b —
A=y — V()
@ 4t iF 5] A 6 Nesterovim ik F ik ik X 6 AR AR A
Y = 2 4 gy (o — ), (14)
= Vi, 6T, (15)

;E\L“P,uk k+2 %‘kaki"/\.&fﬁ&%é]éijg?ﬁfﬁ/{

o TOUE th, =480 — K 54 M B AN 2 E V(A B4k A 1
WA VL, (1) -



Nesterovimik Ak 55 &7 k693 &
° %E Pk RGN E Tk =k — ¥k, A& R4 Nesterov
ke A AT AT 2
K= b (o = 2 — g VARG + e (F — X)),
@ A Kvilag ik R K
VA = ik — g VR OF 4 ),
@ TRAFE X T vkeg FHhk X .

VL = o — g VA (8 + ),
T = Xk it

0 —HWM IR EFNAMKEGITA L. Nesterovhnig B ik %3t & 3he
BREGER, BRBE, TRERAIEH ST FERTRE.



AdaGrad

@ 4gk=Vf, (b)), IInEmE

k

szzgiGgi.

i=1

GBS RMEL G ERGERTF T . SGROEN» T4
REf, B TAEREZ, Hm XAk, RITA.
o [ itAdaGrad#y ik KA& XA

k+1 k « k
¥ =x - =04, (16)
VGE+el,
Gk — Gk +gk+1 ng+1’ (17)
\/(T RRZHEAESGEFENTE 2 HIRFLY

(FR) » aiwF ¥k, 51 xel,X—A-AT HikhEizf.
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AdaGrad

o TLABAdaGrad® ¥ K KRB R WTH S E R H A ARTFS
B, BTOAMRERKREFRTHRRE, RN THRIREG, ZAEMKY
BRRAESFZRNEFEYG T L, TERRERGEFIKRK.

o & LA IFl A F AdaGrad A tb iR AT 69 3L MR . 12 ZERE A P 4
BEREVNGEEAZRNERBE, NINAALHKBREHEFFT S
SE kT FRT S R

@ 4R 7 AdaGrad ¥ 1 M A £ #EVF(x*), A 2AdaGrad¥ =T A&
PRA —FENT — e Z 69 R AL %

@ HEf(x)E AL =N EB R

F0) 2 F0) + V)T (= 24) 3= ) TB (e ),

AdaGrad & 1# ] — /-t f 4B % & AF A B

1
Bt = EDiag(\/ Gk +¢l,)
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RMSProp

@ RMSProp (root mean square propagation) & xtAdaGradé)—
ANk, % kAR EAR ST AR AL £4F. AdaGrad4 A w
ﬁﬁﬁ%ﬁ&ﬁ%%ﬁ,ﬁﬁgﬁﬁ&%ﬁﬁﬁﬁ%,H%ﬁm
S IF KkEEF D, HHEGFHELEKRK

@ RMSProp#® i R F4& A & % a7k AR & i L 69, Rl 5] AR
H8p. Bk, &

Fat EHAS 205 RIR, 345 83 7 K (root mean square)
R = /M + €1, (18)

R T ROGEIBEAFN D EF KOG E.
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RMSProp

@ RMSPropit K& X 74 .

P oY (19)
VMK 4+ <1,
M = pM* + (1 - p)gt o g (20)

SNSRI ZAT LS EFA0GE L E. —AHp = 0.9,
a = 0.001-
o T A& E|RMSProp ##AdaGrad #°# — R 3| & 3 GF 4 4 i, T M~



Adam
@ AdamitiF T — A ah R AT £ 3 .
S =p S+ (1= p1)g*
o XM RMSProp. Adam+w&12 F46E 69 =N 4E
M = ppM (1 - pr)gf o 8"

o 54 iﬁzﬁi&%ﬂRMSPropé’JE%’Jm, W TS MA R & A AR
%, Adami & # A7 ot L4745 .
G s o M
1—pF ,01 I —p5
LEP], k/\ %‘prpzéﬁk’/\ﬁ
° Adamai%&)ﬂfr’}mﬁéﬁ MrdEfr — 4R AT AR B89 F 47 .

[0 o
k+1 _ _k 0 Sk.

VMK + €1,



w5 2 DR

o KL%

o MARA, MBRM

o BRI . W w/E @itk
o ik

o Y K/% A FFLLFMK

o VA LMK, XAkE

o WEIH K, WEMENF

o MBRMEH k& i AE
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Outline

e Convergence Analysis
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FE AT B A B R R X

#RMAE 5 1{X,}2,
0 JUF sl RIS (B E L) P(limyoo Xy = X) = 1

@ R AN HTEZe > 0, lim, 00 P(| Xy — X| > €) =0
o RAOMIA: HTHA M PX, <a)— PX<a)

o BRI EH

o T IRk EE

LRTRIFX, Wk R FF X

Hoeffding 1~ % X

Azuma-Hoeffding 7 % X
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WS . I B4

FEAUR A Bk X =2 — oy g, gf e f, ()
@ FANfi(x) MM K, BARWEELERK, BR[N] € of (x)
@ MAKRME —M4ERA—HA TG, BWAEAEM, EZx c R"A
B AT Ars> A
e [llg"1] < M? < 400, g € 9y (x");

o {MIRAAF, Bp|ak —x*|| <R, VK, HEPxtR IR

A ERBRT, ol RIE—EFRFI], (K} & & MAUKHE %~
2655, AT AGK > 1, A

ZakE[f ()] < E[l — x| Za%MZ (21)




5| 32 &9 1k B

o 4z =E[ghxt], ¢k =gk — gt
0 WIEIRAEE HIHR .
g = E[g"x] € of (x"),

o kML

(3", x — ) <f() — £ ().

T A4 543
[ — )|

= " — gt —x*|?
= [l — x> + 20 (", x* — ) + o[l "I1P
= |l — x| * + 20 (@ xF — ) + gl + 2o (€F, X — )
< ot = 22+ 2e(F () — () + ozl gh]|* + 200 (€, xF — xF).



0 EFHE[KH] =0, AT
E[(¢",x* —x")] = E[E[(¢", x* — x*)[xui]] = 0.
o 3R % X,(22) s K3 B 34T 5|

2
QB[ (4) ()] < SB[l [Pl Bl - P+ . (29)

9 |

@ & i 2tk R Ao BRAFIE -

35/83



B AL R A % 69 ISP

K
Z E[f (") —f(x)] <

EAVRE 5 152

1

SE[l — x| zZa%MZ
| 8 AR A B B R TR B S
I (ALK R ok 60 St 1)

RS HABRGEHT, A=K 0 &g = AiK S agxks W]

R* + i oarM?
Elf (i) —f(")] € —%——

2> oy
k=1
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T 32 64 1iE BA
o thf(x)8) & AR 5] 22143 3|
AE[f () — f ()]
< iakE[f(x’() —f(x")]

1
< SEll! - x°|P) Za%MZ

_ R+ 38 aiM?
2

@ % X ikl Mk vAA A% 5

R® + fj aZM?
Blf (i) — ()] < ——5
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B AL R A % 69 ISP

o NEHEAITUNAE, %

o0 K 2
Zak = 400, ZIIC(ZI %k —0
k=1 > ket Qk
B, REALR AR kI
o MH—NEZNF ko, TFX(24)EMA —ANFKE R F E
B B kAR B R R B 2 & LT & Ik
8, CAR A B — SRR -
_ y R>  aM?
E[f(xl() _f(x )] < Ka + S
B, T2 ERREK BBREZTY ka= Mf}l?: = VA
KB O(1/VE)OHE . B

Elf(xk) —f(x)] <

BE
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FE AU R A 7% 69 IS P2

LR REOELT, KAOVT G5B 42 T35 & LT ek
T IL (FAAR R B I % 6 4L T 2)

AL & e X
7,

BERT, Alalt—ATREOES LA

e
Sk m
k=1

><\~

Elf(xx) — f(x*)] < ZakMz. (25)

2KaK




€ 3% 6% 1 B

o #(23)X Al Fllhay A

1

E[f(*) = f(x")] < %E[llxk Bl

o AatkRAn, FFEAFLf(x)89 Aoy b £ K

2

«
B[ — x5+ R
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FE AU R A 7% 69 IS P2

T g I R F A Txg b9 2 3L -
BO(1/VE) B Et %, HATT 435 B 4r % 589 sk
(1/Vk):

BB AT ML\/,;, ]

@ EE %
o i
B AO(1

Elf(ix) — /()] < j’% (26)

HEdxety T LA g B4R .
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16 69 1E B

o &3
K
— —dr = 2VK.
,;f /\/
° ¥y = B _RAK (25)345 5|

MVk

R? RM 3RM
Elf(x) —f(*)] € ———%— + 5 2VK = —~.
2KML\;E 2K 2vVK
@ HATTT VAR I LR AR B ik A AE ALK AS B % B of 48 Bl 69 0%
Sk E—0(1/Vk) -
@ MWRMEKLEEVOHHARNZ D TIERMIKHEE, T—TF2
ELRETAM 2AMMWE XA LA P RN L RaF TR
MOHE L.
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FE AR A % 69 IS0 13

T RS M AR MR IR AR R R SUT RS A SR R

B LR TG F Ko RBE[F(Rk) — F(x*)] — 00 A8 2 HKAA &
BESS (k) —f(x*) D0 (K = 00)» BPxtiE&dge >0, #A

lim P(f(xk) —f(x*) > ¢) = 0. (27)

K—o0

@ W& R KA F X B4 E

P(f() —/(x°) > €) < Elf(xx) —£(x")] = 0.
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FE AL = 09I Ea e
0 fﬂﬂ%#‘kE‘Ei‘hﬁ§'I{Xn},ﬁlm‘?‘%‘?§4iﬁi§‘]X’ 4o R
(i) -1
° fﬂiFﬁ#‘k”)jii‘f?:§'J{Xn}?lozlff<7f%$4iﬁi§'JX: o F
li)m P(|X, —X|>¢)=0.

I (FAALR AR LI ik 69 ST D)

BB ABAR O AT . A — SR T AT 8 ALK B g
Allgll < M- A8 23HEF e > 0,

_ X R? 1 & , RM
fEg) —f(x*) < S + 0% kz:; apM?* + ﬁs (28)

AKTFETF e WM ERL, LFF Ko REBTES
5, Tk R U R E2 F AR AR

™ = = = Ty 4@//83



B E 75

5 SL

BAX 2, 5{Z, 12,4 (Q, F,P) Lag it 2. 4o Rvne N,
Q E[x,|] < +oo,

Q X, E&TZ,... Z,%&780-R3E&;

Q EX,.1|Z1,...,Z,) =0.

AR {X, } 7‘@%%{2 }Ojléﬁﬁkz‘%‘ 5. A M,

{2,322, = {Xu}22, MAR{X,}  AETF].

o BEFINH Fho s H{Z, )2 A~k HERAEE, (X}, E
XAX, =7y —Zpn1 (RPREXLZy=0) -

o I — LW E AU AR, X, A1 /200 BEH 1, A1 /260 B 5
A—1. BARE[X,|] =1 < 400;

o X, M7, \RZ, FARE. BETZ.. . 7, kKooK

o WM EMAFENGER Xy =Zpp1 — Z, BT Zy,...,2Z,
BT AE[X, 41121, - ., Zy]) = E[Xpg1] = 0.
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Azuma-Hoeffding 7 4 X

T @ % Azuma-Hoeffding 7~ 3 X B #R A 89 Hoeffding &< ¥ X

B{X, }o0  ABET I, BVn e Ny, |X,| <B- Ve >0

- 212
P> X;>t| <exp —=

i=1

- 212

i=1
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0 4gF =E[gkt], ¢F =gk — 3" @ (22) Kty AR KM T L2/ 3]

1 1
ky < xk_ *)12 .kl 2
F) =f(7) = g I =7 = g e =

+ Sl + € x = ).
| R f(x) 89 b 5 o, 89 £REAR

K
FK) —£x°) < %Zf(x") -

< sk Zakng LS -

k 1

R? 2 k k
< 4o M4 — * ).
_2K041<+2Kkz:]ak —l—KZ({,x x°)
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@ ’ZF=(x!,x%,--- XD, BA
E[Z"" = E[g* ] =0, EK|Z7T =4,

Ao 36 ¢k xr — o) R —ANBRE .
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o Fliftd

€912 = llg* — 5[l < 2m

i

(€8x =) < € In —

BP (&, x* — xi) AR
@ W Azuma-Hoeffding % X 1%

k=1

o ’]QJ’I: %’Pﬂ)\: %

'

44(29) K. RIBAFIE,

K
k=

x| —

1

Z<£k’x* _xk> >

x|, < 2MR



FE ALK A L 7k 8IS TS

O'ﬁa%ﬂlak:ﬁ, %‘_/?\6267%52, ﬁ}c;ﬁ‘

; .. _3RM RM\/2In1/s
P(f(XK)_f(x)SZ\/E o

) >1-4. (30)

S

K

o TulA Bk — MR AL éa;fifﬁ»w( 1 >ééi$/§t4ié§(.
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AU B TR G BCSTE ¢ 5B DR B

(x)E TR BANG()WEAE

Q fx)RMEA LA K EZY, MEFRAL;

Q fx)RELEHE, BOERAp;

Q MM E ML —BA T, WAEM, SHEENGy c RVAR
AT ARk, A

Ey[[Vfe (0)]7] < M? < +o0.

38 (MEALM R I ik 6 M 4t )

BB RBREGERHT, TXA = |5 — x| HEZGF
Koy = a, 0<a<ﬁ’ A

2

oM
E[Af 4] < (1—2au)KA?+ﬂ- (31)

E[f (1) —f(x")] <

(STl

51/83



€ 3% 6% 1 B

o RIE MMM R ey B AT AKX

ARy = [ =2 = Oékavk(xk) —x?
= o = 21 = 200 (V5 (), A = %) + @[ Vs () 1P
= Af = 20 (Vi (), 6" = ) + of | VAN,
o mAMMEYMAEX] = EE[X|Y]]. A
Eyy s, 5t [V (8, 6 = x%)]
= }E’SI:SL'”,Sk 1[ k[<vf\'k( ) _X*Hslv"' 7sk—1H
= Eslrs27"' »Sk— 1[<]Esk [VfS (Xk)|51,52, e 7sk71]7xk - X*>]

= ES|7527“‘75k 1[<vf xk)’x >]
= Esl,sz,“',skaf(xk)’xk >]
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@ ARVE 72 Ih R F6g £

(V)2 —x%) = (VA () = VF () 8 =) 2> ol = |2,
o AL L = W 4E 69 — BUR 1k

E [Af1] < (1= 2ap)E (AR +a?M? (32)

155257 Sk 158257 58k

o kR )ath, HiFEH
M2

Egy s [ Bk 1] < (1= 2ap) AT + [1 = (1 = 2ap)]—— 2

W0 < 2ap < 17T %

MZ

ES17521 [A%(—H] (1 - ZO‘M)KA% + 5 2,u



AR AR LA S A R A R B, T PR B
FORH) (7)< (TR0, 2K ) 4 2

ARVE(x*) =028 L X A& R B2 TH

L L M?
E[f(*+1) — f(x)] < 5 [AK+1] < 5 (1 —2ap)kA? + O;T



R SRR € QS

TaegTEER, wREEZBGT K, KENTREEO(1/K).
i

MU BRI B £ LR TG R, AR &8
T, BERG T K .

k+~’

EFp> i”y >0, /o < ﬁ ARt FAEZGE> 1, AA

Qf =

E[A2] < L v

8 L
E[f(xk) —f(x")] < B = Ema

(34)

Jioid
e

2M2
v:max{zglu_ 1,(74— I)A%}.
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€ 3% 6% 1 B

0 AT HELEMERT

ESI:SL [Ak—i-l] (1 - 20‘/(/1)EY17527'” Sk [Ai] + O‘l%Mz

0 M )aMiKIEN(34)K . Bvey T Lok = 15 (34) X R L -
o MBI EX kML, TXk=~+k Mag=LF/k- ®)a%B%,

2 *M?
E[AkJrl] ( ilu> ]A{ + Bi{z

k—], C28p—1 pM?
k2 K2 v K2

Tkl
BE—ATEXME Too R L. FTABA) XAk + 1A 5
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& AULAD

LR R AT R DR

& Bk B IS

A U

Tk 6 SR T VAR

O(1/K)- 2t F —#xth & &S AU B H kA — a9l stE, sk
EMNETARARKRMIWE R LB EEGR 2R
Table: % & TR A xR 2B
FOCRBETR) | fTMRE | #3584 LL-EF
EALEE | O(L) oY) oY)
FARE | O o) | oWm()
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Outline

@ Variance Reduction



ME TR E S A E T ke ik

TEIMHETEESMAME THEEGIERES .
o EELMAERT, MWETHEA
Ay = W =P = | = aVF() — x|
= Aj = 2a(Vf ("), —x) + | VF ()P
< (- 20mA2 + RIVFHE (B )
< (1 =20+ o*L*)AL (L- &%)
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M E TRk S AU E T ke ik

o MEMME TR, ARAEHNME2GHRA
E[A 1]

E[l**" = x*[13] = E[|lx* — aVf, () — x|
[A%) = 20E[(Vfy ("), 5" — )] + B[V, () |1°)
[AF] = 20E[(VF ("), —x*)] + o E[|[Vfy, ()]

E
E

IN

(1= 2a0)E[AF] + B[ VA,OP] (- D)

(1 = 2ap)E[A7] + o’E[||Vfy, (<) = VF (") + VF ()]

(1 - 2ap + a’L?)E[AF] + *E[||Vf;, () — Vf ()]]7].
A

IN

(36)
o TUAMMMI LN LEEFRABRL, Wik LM E T LA
ZE. CRBT MAEIEERRAO(1/k) 8 KSR R
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7 E R ER

o AW HMES LT, AU E R KSR E B —
@ RIRRAARS MMM BRERERTIKRS, MAEFEIFTS
EB, BAB <A MaRMN2NEBAMQ-ZK ISR ;
o MM ABRFHNS, FEMA, RAKIMREAO(/k)-
0 AT HRAF A BBt KSR E . RAM R A ARIR Y T £
RB. T@EANBEARAT 2GR X
o SAG (stochastic average gradient)

o SAGA
@ SVRG (stochastic variance reduced gradient)
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SAGH %

o Y MREBIIHN, E—F bt ELE SR ELHE Y
—AMRAFEG AT MALT M R (SAG) R A T X —H k.

o ¥R, SAGHELFMAIMITELYOMAAME, BE LA
PR RT3, REEA T —F ot BT

o Aitkkit, SAGHZEA NG T AT G NN 6 218

[gllcﬂgéa e 7g5<\7]7

2 HR Tt & Ao BiMEA X0 R G MIAPE . & BT B H
B, 2RI A AT A A s RITHIRAUH S i gk 894 % 4
BB A TEA AL, 2t Rk A BB 6 T A U 6 gh IR A5
T 5 RSAG Hik B AR 4B T R BT g6 A
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SAGH %
o SAGH ik ik At X

N
(873
N Zé’f’c
i=1
Hob gkt B 3 XA

;fs ( ) [ = 5g
k k ) ’
i {gi{ la ;B:-{r'z,’ (87)

@ BRUMRAF —Ngh R AT HT. HILSAGE R XL TIAE MK
1
K=ok~ Qe (N(vaA( gSk Zg ) (38)

@ {gF} ey AT M £ AOK T A AL &£,

@ SAGHZHFRIERNOMAMBEG AN E AT ZEASH
BV, {2M A B RBAT, MUK 693 25 L 246 691k £
SR AR -



SAGAJ- %

o SAGAR %ty ENRH XA

=3k — (stk gSk Ly — Zg ) . (39)

o AH(38)XTAKIL, SAGAKHHH TV, (&) — g 19T @) 4
/N - 7T oA B B R 2k AR R 69 4 B 77 @) AR & RAm 69 BP

E |Vf, (%) — g+ = Zg ‘xk = Vi ().
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SAGA F % a9 8t

SAGAJE % FIH A Q- K S i JE -
% 7 (SAGAH % 6 JL S )

£35S AT REZ Y Kow = yry-
LA = [|xk — x|, RIsHE &k > 1A

E[AZ] < (1 - u))" (A% PRGED) —f<x*>>) |

2(uN + L uN + L

-4

(40)

b RBOG S B PR RS, AT AR = L. A RUGRELER.
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SVRGH# %

o 5SAGH %##SAGAK AT F . SVRGH AL RAMMLE & 44
B0y 7y ik kb7 E

0 AARMERAMIWBME THRZEFY, FE2EImRERKLE -4
b B, THE—REWE, AIBOmREXRT, FEXANAEHE
A %% B RKB AR F £ B .

@ AXREFMEE L, MNAEMNEEHE AV EHE

N
VW) = SO Vi)
i=1

B2 G R R RS B
Vo=V, (65 — (V) — VF)), (41)
Eds € {1,2,--- N} RIEAZLIEG — K.
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SVRGH# %

0 EFH LKy, 50, s WK FH AR, dkeg Rk X T4
ED¥|s1, 52, k1]

= E[Vfy )] — B[V, (F) — VFF)|s1, 82, s51]
= Vf(x*) — 0 = Vf(xh),
o NX(41)A £y ERLM . KN4 ZRAVS, (V) XETHVAF)
M AV, (F) — V()T AE R EE TR E, TAEE—F
WA AUB JE 3 KR 297 Sk 3V, () B — AR E -

B67/83



SVRGH# %

@ 1%
IVi(x) = VEO)| < Llx—y|, i=1,2,---,N.
) /’lr\y:)}j, x*j@f(x)ﬁﬁﬁ/]\{ﬁ‘é, Ak:ka*X*H’ ]

E [IV1P] = E [IIVf, () = (V. 0) = VEO)) I
=E [V () = Vi, (3) + VFO) + Vs (&%) = Vs, () [17]
<R [|| Vi, (25) = Vs, ()] + 2E [ Ve (0) — V() = Vs ()]
< 2L°E [A}] + 2K [|| VA, (v) — Vi, ()]
<2L°E [A}] +2L%E [|ly — x*|] .
(42)

o K+ H—ATFXREA at bl < 2jal +2b|> #=ATF
KAER T H X =M4E8 1 F X

E[ll¢ — E€[1%] < E[I€])-
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SVRG A % 69 s

T @4 HSVRG A % 8l ot . 3 T8It R 4 xt 5 % 23 5] (W)
sy

T (SVRGH ik 695 it)

BemA A R EAY BAGRE . REAN() T B EL-A LA X &
4 dfkf(x)RE. BOSEAL BYKkae (0,5] HFEmAF R
13

N _ 1 + 2L <
~ pa(l —2La)ym 1 —2La

MSVRGH F3 THE AVARBMER B E LT A Q- AR :

Ef (¥) — f(x*) < pE[f(F~") —f(x*))- (44)

p L (43)




& 32 8 1E B
0 LA = [|x* —x*|-
o M THEIMBIK,
] = E[|l¥* — av* —x|?]
AF] = 2aE[(F, x* — )] + & B[[V¥]1%]
[(VF (), = x5)] + B[ V)]
[(F(F) = FN] + Q2E[I4)1%)-
o MM B R %K
¢i(x) = fix) = fi(x") = Vfilx™) (x = x7),
EREEB ()R S BB L-A A R g, HA

1 *
S IV < dilx) — ai(x")
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@ JTt¢i(x) 5 Ve(x)8 &k X T 4%

IVfi(x) = V)P < 2L[f(x) — fitx*) — VA T (x — x")].
o MM EIN#AT KA, EEVf(x*) =0

*ZHVJ‘, — VAP < 2L[F(x) —f(x7)], V. (45)

A (42) K 8 4 % 14 42 T 4%
E[|[V¥]1?] < 2E[[|Vfy, (&) = Vs (¥ 7]+ 2E[[| Vs (¥ 1) = Vifs (65) 2],
xt E XAEME -, A

E[|[Vfy, (&) = Vfo, (x) 1]
= [ [”vfsk( k) vak( *)||2|51,S2,‘-- 7Sk—1]]

}jnvn — VAP | < 2LE[f(¢) — f(x*)],



o R, HAEMFE =R, &

E[[|Vfi, (#1) = Vi 0)[%] < 2LE[f(F") — f(x")].
o 4T3 HE[|VH]|2] 80 47t -

E[[V1") < 4L(E[f (") = f()] + E[f(F1) = ().
o HE[|Vf|2]8 ERRAME[AL, |83t kA

E[Af11] < E[AY] = 2aE[f(x) — f(x*)] + E[[[V¥]]]
< E[AF] - 2a(1 = 2aL)E[f(x) — f(x")]
+ALCE[F(F ) — ().
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o kA1 BImRFe, H BLEZEIx! =¥ 3R A4F 2]

E[A7 4] +2a(1 —2aL) ) E[f(x*) —f(x*)]
k=1
S E[IFT =[] + 4La’mE[f (V) — f(x7)]

E[f(#") = f(x")] + 4La’mE[f (¥ ") — f(x*)],

2 i *
< ST (i + e’ B 1)
= pE[f(¥ ") — f(x*)).
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Outline

© Natural Gradient Method



Rl

BV A7 25 5, yi Y

-i}f(il}g 7El< {xi}fy:l

Rl

ESREERED N T AR

2 X R A Byt A KR

0., BMEFE R HK

O, BB BB 4k

S PEL LT

R A OB B Toxfo he By B o A K

IROGLEY LT

P (0)AREE DK

% AT 22 W 4G h e AR By 8 o R B AL

R ABETEBK
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5 4 T A

o HIFMKLIE R4 & % B )5 M HEP,,(0)5 K FEHE HAFE

6 5 B30, 8 5
oy
ey ™
e aba)
= [ ate s POk e =Y
!

— X x)lo q0) X
= [a@) [ atboro 22 aay
= Eg, [KL(Qy]|Py<(9))]-

o F IR IR FE K69 9 A LA K E R IE 6 A
EQX[KL(Qy\x||Py\x) ’ x| Z log(p |x 9))
(x,y)eS

AP R TAOR T LR FHGFLT A4 &sH X
TORE Z Hp].

KL(Quy||Pey(0)) = / (x,) log
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AR

o AL AR .

min

Z log(p(ylx, 0)). (46)

(xy)es

o WAV EM B EH K A hg(x), FEAP,(0) & T A AP E M &
mmu%ﬁ*Aﬂi\ﬁ%mth%i Ere
BP Py (60) = Ryjny (x)- E Ry, x)éﬂ%i%‘f"‘ R A r(ylhy(x)), T
R OR K BBy, hy(x)), TR
Lr(ylho(x)) oc exp(—£(y, hy(x)))-

@ 4R
B[S =N £y, hy(x)) o< —log(r(ylhg(x))) = —log(p(y|x,6))> M
5 areg A A —2. BB REFNTRAXTHER
FE BB p(y|x, 0) % T 54069 KAXAAETHIEI AR . =T vAE 3
BR 0 A A B RIS R B 64 K S R £
B R HEL(y, ho(x)) = [[ho(x) — y||.
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n ;ﬁ{a A\_;é:EF$

o XTHENAHKP, ,(0), LHA1EEIEET LA .
F=Ep (9 [Vlogp(x,y|0)Vlogp(x,y[6)], (47)

H P VA oK A

o RIEF X
Vlogp(x,y|f)) = Vlogp(y|x,0) + Vlog g(x) = Vlogp(y|x, )
BT AFIM 47T VA 5 %,
F = Eo, [Epylx(e) [Vlogp(ylx, 0)V1og p(ylx, 9)T]} :

o & XL kflog p(ylx, 0) &k T O & ZEIEE A H og p(y110) 0 MA -

EPx,y(G) [Hlogp(y\x,@)} =-F. (48)



B R E T e

o % TIE &R & HAEVF(O) W 0 BA T @ 80k

—Vf(o)
[INf@)] — ==ve

o M TKLMAELA R, &AA

F-! 1
- \ﬁi = lim — argmin fO+a).
[VAllE-1 ==0& ki, (0)1Pr, (9+d))<22

0 BB AT AIELFT LA

F(0) =E,  [Viogp(y|x.0)Viogp(ylx.0)]

N
1
=% E V log p(yilxi, )V log p(vilxi, )"
i1

1
= lim —argminf(f +d), st |d| <e.
d



B AR A

Algorithm 1 & &4 % %

1: W BARSES, 445500 k=0.

2: while & ik 2]k 44 /& 7 do

3 THEBEVf(0h).

4 HHEFAE BIEER (KA BR R A IELER,)-

50 TR A AMET @V (05) = FVF(0)(REF,VI(0))-
6

7

8:

ZHHEOT = 05 — oy Vof (0F) P ARk T %
k=k+1.
end while

80/83



KFAC

@ LERIEMMALEZRNEMSG, ‘A BiIRAIRETREEAEN G
W, aARTRIBERE R

si=Wai—1, a; = ¢(si), (52)
EFic{l,-- 0}, ;A FiIBGEERZ WARELEE.

° ixﬁ%_négéﬁftﬁ
#4160 = [vec(W)T vec(W)T, ... vec(W)T].
gl = aZ(n) (=T,

i ot 'y i) (=(i—
DWW .= 8%/1);(’)))) =g @ =T, (53)

H kA DY = [vec(DW)T vec(DW)T, ... vec(DW)TIT.
@ WL f A3 BB RK XA .

F = E[DIDO"] = [F; .
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Kronecker product

@ A ® B denotes the Kronecker product between A and B:
[Al1iB -+ [Al1.B
A®B= : . :
[AlwaB - [AlmaB
@ vec(uv') =veu
@ (A®B)'=A""oB .
@ (B ®A)vec(X) = vec(AXB)
@ vec(GiA") = (A; ® G;) vec(I).
@ (A®B)(C®D) = (AC)® (BD) for any A, B, C, D with correct sizes.
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KFAC

@ &HL: _ .
vec(DW ) )vec(DWV)T]

E

E[a(ifl)(a(/*l))T ® g(i) (g(j))T]
Efai~(ai=Y)T] @ E[g?) (/)7
Ai—lj—l ® G;J = Fi,j;

Q

L EFRF, jMERL A = Ea?) (@), G, = E[g?(g")T].% =
EF J\‘Efﬂié T R

o WILIFE| FLFokH ey B H T XA
0 = 0f — auFy ' g
= 05 - ak(Aifl,ifl + \/XI)_I &® (Gi,i + \/XI)_I
b g b Bk B AR B, o BT 0 K
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Randomized Numerical Linear Algebra

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Petros Drineas and Prof. Michael W.
Mahoney'’s, Prof. Gunnar Martinsson lecture notes
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Outline

0 Randomized Numerical Linear Algebra (RandNLA)
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Why RandNLA?

Randomization and sampling allow us to design provably accurate
algorithms for problems that are:

@ Massive

(matrices so large that can not be stored at all, or can only be
stored in slow memory devices)

@ Computationally expensive or NP-hard
(combinatorial optimization problems such as the Column
Subset Selection Problem)
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RandNLA: sampling rows/columns

Randomized algorithms

@ By (carefully) sampling rows/columns of a matrix, we can
construct new, smaller matrices that are close to the original
matrix (w.r.t. matrix norms) with high probability.

A B ~ C ( R )

@ By preprocessing the matrix using random projections, we can
sample rows/columns much less carefully (uniformly at random)
and still get nice bounds with high probability.
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RandNLA: sampling rows/columns

Matrix perturbation theory

@ The resulting smaller matrices behave similarly (in terms of
singular values and singular vectors) to the original matrices
thanks to the norm bounds.

Structural results that “decouple” the “randomized” part from
the “matrix perturbation” part are important in the analyses of
such algorithms.

Interplay

@ Applications in BIG DATA: (Data Mining, Information Retrieval,
Machine Learning, Bioinformatics, etc.)

@ Numerical Linear Algebra: Matrix computations and linear
algebra (ie., perturbation theory)

@ Theoretical Computer Science: Randomized and approximation
algorithms
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Issues

@ Selecting good columns that “capture the structure” of the top
principal components

o Combinatorial optimization problem; hard even for small matrices.
e Often called the Column Subset Selection Problem (CSSP).
o Not clear that such columns even exist.

The two issues:
@ Fast approximation to the top k singular vectors of a matrix, and

@ Selecting columns that capture the structure of the top k singular
vectors

are connected and can be tackled using the same framework



Outline

e Approximating Matrix Multiplication
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Approximating Matrix Multiplication

Problem Statement

Given an m-by-n matrix A and an n-by-p matrix B,
approximate the product AB, Or equvialently,
Approximate the sum of n rank-one matrices

A=y (A(i)) ( By )

ERmxp

@ A the i-th column of A
@ B, the i-th row of B
@ Each term in the summation is a rank-one matrix
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A sampling approach

ERmXp
Algorithm
@ Fix a set of probabilities p;, i = 1,...,n, summing up to 1.
@ Fort=1,...,c,

setj, = i, where P(j, = i) = p;.
(Pick c terms of the sum, with replacement, with respect to the
pi-)
@ Approximate the product AB by summing the c terms, after
scaling.
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Generate Discrete Distributions

Consider a discrete random variable with possible values
c1 < ... < cy. The probability attached to ¢; is p;. Let

i
0=0, g=>Y p
=1
They are the cumulative probabilities associated with ¢;, i.e.,
gi = F(ci).

To sample this distribution
@ generate a uniform U

e find K € {1,...,n} suchthat gx_; < U < g

@ setX =cg
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With/without replacement

@ Sampling with replacement:

Each data unit in the population is allowed to appear in the
sample more than once.
It is easy to analyze mathematically.

@ Sampling without replacement:

Each data unit in the population is allowed to appear in the
sample no more than once.
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A sampling approach

AB = (AU))( B )
i=1

X
| =
M-
3|-
/-~

b

<
N~ —

—~

o
=
SN—

Keeping the terms jy, /o, ..., jc
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The algorithm (matrix notation)

mxn nxp mXxc
cXp
A B ~ C ( R )
Algorithm:

@ Pick ¢ columns of A to form an m-by-c matrix C and the
corresponding ¢ rows of B to form a c-by-p matrix R.

@ Approximate AB by CR.
Note
@ We pick the columns and rows with non-uniform probabilities.

@ We scale the columns (rows) prior to including them in C(R).
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The algorithm (matrix notation)

mxn nxp mXxc
cXp
A B = C ( R )
Algorithm:
@ Create C and R by performing c i.i.d. trials, with replacement.
@ Fort=1,...,c, pick a column AU and a row B, with probability
ADI511B,:

>t IAD|2[[Bgll2

@ Include AU /(cp;,)!/? as a column of C, and B;,)/(cp;,)"/* as a

row of R 14/50



The algorithm (matrix notation)

@ Let S be an n-by-c matrix whose t-th column (forz=1,...,¢) has
a single non-zero entry, namely

1
Sjn = ——
Vi

Clearly:
AB ~ CR = (AS)(S"B)

Note: S is sparse (has exactly ¢ non-zero elements, one per
column).

@ ltis easy to implement this particular sampling in two passes.
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A bound for the Frobenius norm
For the above algorithm,

1
E[||AB — CR||r] = E[||AB — ASS"B||r] < —|A]l<|Bllr

@ The expectation of CR (element-wise) is AB (unbiased
estimator), regardless of the sampling probabilities.

@ Our particular choice of sampling probabilities minimizes the
variance of the estimator (w.r.t. the Frobenius norm of the error
AB-CR).

@ prove using elementary manipulations of expectation
@ Measure concentration follows from a martingale argument.

@ The above bound also implies an upper bound for the spectral
norm of the error AB — CR.
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Proofs

LetA e R"™"and B € RP*?, 1 <c <n,andp; >0,> . p;=1. Then

¢ AszB%j 1 5
E[(CR)y] = (AB)y, Var[(CR)] = ~ 3 =2 (4B
i=1
(iB,.
o Define X, = <A Cp?(::)) _ 4% Then
ij !
n . )
ApBy 1 , A2B
ElX| = Zpk i E(AB)I‘]‘ and E[X;| = Z 2
k=1 p %
® E[(CR);] = >i_, E[X)] = (AB);
" A-sz%. 1
vare] = £~ £ = 3078 - Ly

k=1
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Proofs

ma:
Lemma ) n |A(k)‘2’B(k)|2 1 5
E[|[AB—CR|f] = ) ————— — ~[lAB|r
=1 Pk ¢

Proof:

n 14

n p
E[|AB—CR|Z] = > Y E[(AB—CR)}] =) Var[(CR);]
i=1 j=l1 i=1 j=l1
| 1 5 5 1 5
= Aj Bj; _*HAB”F
o (24) (Z )

n

1 1 1
= - f!A(k)IZIB(@\z—;HABII%
c =1 Pk
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Proofs

@ Find p; to minimize E[||AB — CR|3]:

n

1
min yeeyPn) = — AW 2|B, |2
ZZ:M’kZlf(pl Pn) kz:;pk’ “1B |

@ Introduce L = f(pi1,...,pn) + A(>_j—, Pk — 1) and solve gTﬁ =0

|A®|B |

o Itgi _ __WPBwl  pen
LOIVeS i = S @ g 1Ne
1 [ P
E[JAB -~ CRI}] = C(ZIA(")HB@\) ~Ljasy
k=1
1 2 2
< ;HAHFHBHF
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Special case: B = AT

If B = AT, then the sampling probabilities are

Ao
PU =0 =

Also, R = CT, and the error bounds are:

1
E[|aA” — CCT||r] = E[|AA" — ASSTA"||F] < —[|A||7
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Special case: B = AT

A better spectral norm bound via matrix Chernoff/Bernstein
inequalities:

Assumptions:
@ Spectral norm of A is one (not important, just normalization)

@ Frobenius norm of A is at least 0.2 (not important, simplifies

bounds).
_ o (Al (llAlR
c= < 2 In N

Then: for any 0 < ¢ < 1 with probability at least 1 — ¢

@ Important: Set

E[|AAT — CC"||r] = E[[|AAT — ASSTAT||F] < €
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Outline

e Approximate SVD
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Low-Rank Matrix Approximation

Problem Statement:
Given: mxn matrix A, and 0 < k < min(m, n) = n.
Goal: Compute a rank-k approximation to A.

@ Fast low-rank matrix approximation is key to efficiency of
superfast direct solvers for integral equations and many large
sparse linear systems.

@ Indispensable tool in mining large data sets.
@ Randomized algorithms compute accurate truncated SVD.

@ Minimum work and communication/Exceptionally high success
rate.
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Low-rank Approximation

seek to compute a rank-k approximation with £ < n

mxn mx k

@ Eigenvectors corresponding to leading eigenvalues.

@ Singular Value Decomposition (SVD) / Principal Component
Analysis (PCA).

@ Spanning columns or rows.
The problem being addressed is ubiquitous in applications.
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Review of existing methods: dense matrix

For a dense n x n matrix that fits in RAM, excellent algorithms are
already part of LAPACK (and incorporated into Matlab, Mathematica,
etc).

@ Double precision accuracy.

@ Very stable.

@ O(n?) asymptotic complexity. Reasonably small constants.
@ Require extensive random access to the matrix.

@ When the target rank k is much smaller than n, there also exist
O(n*k) methods with similar characteristics (the well-known
Golub-Businger method, RRQR by Gu and Eisentstat, etc).

@ For small matrices, the state-of-the-art is quite satisfactory. (By
“small” we mean something like n < 10000 on today’s
computers.)
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Review of existing methods: structured matrix

If the matrix is large, but can rapidly be applied to a vector (if it is
sparse, or sparse in Fourier space, or amenable to the FMM, etc.), so
called Krylov subspace methods often yield excellent accuracy and
speed.
Lanczos-based methods:

@ From v € R", computes orthonormal basis V for

K(A,v) = span {v,Av,sz, . 7Akilv}

@ Rayleigh-Ritz: eig(VTAV) = Ritz pairs ~ eigenpairs
© If “not converged”, update v and go to Step 1.

Strength and weakness:
@ Most efficient in terms of the number of Av (or SpMv)
@ Fast and reliable for computing “not too many” eigenpairs

@ Lower concurrency and unable to be warm-started
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“New” challenges in algorithmic design

The existing state-of-the-art methods of numerical linear algebra that

we have very briefly outlined were designed for an environment

where the matrix fits in RAM and the key to performance was to

minimize the number of floating point operations required. Currently,

communication is becoming the real bottleneck:

@ While clock speed is hardly improving at all anymore, the cost of

a flop keeps going down rapidly. (Multi-core processors, GPUs,
cloud computing, etc.)

@ The cost of slow storage (hard drives, flash memory, etc.) is also
going down rapidly.

@ Communication costs are decreasing, but not rapidly. Moving
data from a hard-drive. Moving data between nodes of a parallel
machine. (Or cloud computer ... ) The amount of fast cache
memory close to a processor is not improving much. (In fact, it
could be said to be shrinking — GPUs, multi-core, etc.)

@ “Deluge of data”. Driven by ever cheaper storage and acquisition
techniques. Web search, data mining in archives of documents .,



Linear Time SVD Algorithm

@ Input: m-by-n matrix A, 1 <k <c <n, {p;}}_, such thatp; > 0
and ) ;pi=1

@ Sampling:
e Forr=1toc
pick i; € {1,...,n} with P(i;, = a) = pa,.

() — Al
Set C = o

@ Compute C”C and its eigenvalue decomposition, say
CT'C =371, o(C)yyf

e Compute h, = U,C(VC’) forr=1,... k.

(Note: A = USVT and C = HScY! = H = CYS,')

@ Return H, where H,Et) =hand o, (C)fort=1,...k

The left singular vectors of C are with high probability approximations
to the left singular vectors of A
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Extract approximate SVD

@ Given A. Let X be an approximation of the left singular vectors of

A corresponding to k largest singular values
method = 2; % 1 or 2

o ||

Y = (X"xA)'; Y = A’ *X;
switch method
case 1;
[V,S,W] = svd(Y,0);
U = X«*W;
case 2;
[V,R] = qr(Y,0);
[(W,S5,2] = svd(R");
U = X«W; V = VxZ;

end

@ The pair (U, S, V) is an approximation of the k-dominant SVD
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Main theoretical results

Let H; be constructed the linear Time SVD

E[|A — HH{A|IF] < [|[A — A7 + el AllR

® Exact SVD of A = USVT, Ay = UV = GUTA = AV
Wrank(B)<k |[A = Bll2 = [|A — Akll2 = ow+1(A)
mmrank (B)<k |4 —Bl7 = IA - Al = Zz:k—i—l ot (A)
@ perturbation theory of matrices
n

A+E)— <||E A+E)— o (A)? < ||E|?
1](2%1‘@( +E)—o0i(A)| < ||E||2, ;(Uk( +E) —ox(A))” < [IE|lF

the latter is known as Hoffman-Wielandt inequality

@ Exact SVD of C = HX YT
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Proofs

Lemma:
|A — HcHL A7
|A — HHIA|3

< ||A — Ag||® + 2VE||AAT — CCT ||
< A = A5 + 2|AAT — cCT ||

Proof of the first inequality
@ ||X||2 = Tr(X"X) and Tr(X + Y) = Tr(X) + Tr(Y)
1A — HH{A|F = Tr((A — HeH{A)' (A — HH[A))
= Tr(ATA) — Te(ATHH{A) = |AllF — |ATHel[7
@ Using Cauchy-Schwartz inequality:

k

1/2
<k (Z(IAT/%2 - Uf(C))2>

t=1

k
IATHi 7 =) 07(C)
t=1

k

k 1/2 1/:
vk (Z(ATMZ - |CTht|2)2> = Vk (Z((hr)T(AAT - CCT)h,)2>

=1 =1

IN

Vi|AAT — cC" |

3i/50



Proofs

@ by Hoffman-Wielandt inequality

A
S
RS
M=
S
)
q
<
|
2
=
-
=
SN—
S
IA
=
Q
Q
2,
|
=
i
=

@ Therefore

< 2Vik||AAT — cCT |

k
IATHlF — ) ot (4)
=1
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Proofs
@ matrix approximation gives
1
E[|AB - CR|}] < ;IIAH%HBH%

which yields

1/2
2WVEKE[|AAT —cCT||p] < (C> A7

k
IATHIE > o7 () — 2VA[AAT — cCTr
t=1

@ If ¢ > 4k/é?, then

k
E[|A - HH{A|F] < [IAlF — ) o7 (A) + 2VAE[AAT — CCT|f]
t=1
<A = AdE + elAllz
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Outline

e Random Sampling for SVD
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Range finding problem

Given an m x n matrix A and an integer k < min(m, n), find an
orthonormal m x k matrix Q such that

A~ Q0TA

Solving the primitive problem via randomized sampling — intuition
@ Draw random vectors ry, ra, ..., rx € R".

@ Form “sample” vectors y; = Ary,y, = Ara,...,yr = Arg € R,,.

@ Form orthonormal vectors ¢, g2, . . ., gx € R™ such that

span{qi,qz, - .., qk} = span{yi,y2, ..., Yk}

Almost always correct if A has exact rank k&
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Low-Rank Approximation: Randomized Sampling

Algorithm RandSamO0

Input: mxn matrix A, int k, p.
» Draw a random n x (k + p) matrix Q

» Compute QR = AQ

» and SVD: Q7A = USVT

> Truncate SVD: U3V}
Output: B = (QU,) S VT

@ Easy to implement.

@ Very efficient computation.

@ Minimum communication.
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error for Gaussian test matrices

Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin,
Tygert (2006)

@ Let A denote an m x n matrix with singular values {o;},_,

min(m,n)

@ Let k denote a target rank and let p denote an over-sampling
parameter.

@ Let Q2 denote an n x (k + p) Gaussian matrix.

@ Let Q denote the m x (k + p) matrix Q = orth(AQ).
If p > 4, then

J>k

1/2
|A — QO*A|, < (1 + 6\/%) o1 + 3k +p (Z sz)

except with probability at most 3p~7.
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Improved Randomized Sampling

Algorithm RandSam1

Input: mxn matrix A, intk, p, c.
» Draw a random n x (k + p + ¢) matrix Q

» Compute QR = AQ)
> and SVD: 074 = UXV’
> Truncate SVD: UiS v/
Output: B = (QU,) 3 VT
@ Only change from RandSamO: p becomes p + ¢
@ Smallest modification of any algorithm.
@ c allows a drastically different error bound, controls accuracy.

@ p remains in control of failure chance.



Randomized Power Method

Algorithm RandSam2

Input: mxn matrix A, intk, p, ¢, q
» Draw a random n x (k + p + ¢) matrix Q

» Compute OR = (AAT)7AQ

» and SVD: Q74 = U2V

» Truncate SVD: U, %, V]
Output: B = (QU;)S VI

@ QR needs done carefully for numerical accuracy.
@ Algorithm is old one when q = 0; but q = 1 far more accurate.

@ Should converge faster when singular values do not decay very
fast.
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Example 1

We consider a 1000 x 1000 matrix A whose singular values are shown
below:

The red line indicates the
singular values oy ¢ of A.
These indicate the theo-
retically minimal approxi-
mation errot.

€k

The blue lines indicate the
actual errors g, incurred
by 20 instantiations of the
proposed method.

Ok+1

0 10 20 30 40 50 60 70 80

k
A is a discrete approximation of a certain compact integral operator
normalized so that ||A|| = 1. Curiously, the nature of A isin a strong

sense irrelevant: the error distribution depends only on {aj}mln mn)
40/50



Example 2

We consider a 1000 x 1000 matrix A whose singular values are shown
below:

The red line indicates the
singular values oy, ¢ of A.
These indicate the theo-
retically minimal approxi-
mation error.

€

The blue lines indicate the
actual errors e, incurred
by 20 instantiations of the
proposed method.

k-1

g ——

L L
0 50 100 150

A is a discrete approximation of a certain compact integral operator
normalized so that ||A|| = 1. Curiously, the nature of A isin a strong

sense irrelevant: the error distribution depends only on {aj}mln mn)
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Example 3

The matrix A being analyzed is a 9025 x 9025 matrix arising in a
diffusion geometry approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3 x 3 patches.

42/50



Approximation error ex Estimated Eigenvalues \;

1 T T T T
it « “Exact” elgenvalues

o yforg=3

0.9

& Nforg=1
* XNforg=0

08

07F f

06

05

Magnitude

04}

03

%
02} Hhy

.
o
F
S
v
=k, e

0 I I I I 0 L L L L
0 20 40 60 80 100 a 20 40 60 80 100

The pink lines illustrates the performance of the basic random
sampling scheme. The errors for q = 0 are huge, and the estimated

eigenvalues are much too small.
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Outline

e Single View Algorithm For Matrix Approximation
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Low-rank reconstruction

Given A € R™*" and a target rank r. Select k and ¢. Given random
matrices 2 € R and ' € R, Compute

Y=AQ, W=UA,

Then an approximation A is computed:

@ Form an orthogonal-triangular factorization Y = QR where
0c Rmxk.

@ Solve a least-squares problem to obtain X = (¥Q)'W € RF*»

@ Construct the rank-k approximation A = 0X
Suppose k =2r+ 1 and ¢ = 4r + 2, then

ElA-Alr<2 min [JA-Z||s
rank(z)<r
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Linear update of A

@ Suppose that A is sent as a sequence of additive updates:
A=H +Hy+Hy+---
Then one compute
Y+ Y+HQ, W=W+UH
@ Suppose that A is sent as a sequence of additive updates:
A=0A+nH
Then one compute

Y < 0Y +nHQ, W =0W +nUH
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Intuition

@ Suppose
A~ QQ*A.

We want to form the rank-k approximation Q(Q*A), but we cannot
compute the factor 0*A without revisiting the target matrix A.

@ Note
W =U(Q0"A) + ¥(A — QQ"A) = (VQ)(Q"A)

@ The construction of X:
X=(v0)'w =~ 0*A
@ Hence

A=0X~Q00"A~A
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Projection onto a Convex Set.

Let C be a closed and convex set. Define the projection:

Mc(M) = argmin  |[X — M|z, st.XeC

@ Suppose A € C. Let A;, be an initial approximation of A,
1A = Tc(An)|lF < |A = Ainllr
@ Conjugate Symmetric Approximation
H"={X € C""X = X*}
The projection

T (M) = %(M + M)
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Conjugate Symmetric Approximation.

LetA € H". Let A = QX.

M (3) = jx+x°0") = 1jo.x] (§ 3} le.x

@ Let [Q,X*]| = U[T1,T,]. Then

1
§= (T3 + 1oTY)

@ Construct

~

Agym = USU*
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PSD Approximation

Let A be positive semidefinite (PSD). Let A = 0X.
@ Form eigenvalue decomposition

S =VDV*

@ Compute )

@ Construct

A~

Ay =Tl (A) = (UV)D4(UV)*
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Phase Retrieval

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Emmanuel Candes ’s lecture notes
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Outline

@ Introduction
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X-ray crystallography
Method for determining atomic structure within a crystal

Source of
| X rays

Beam of
collimated

X rays i)
10,000-
Q Single protein crystal 40,000 volts
Diffracted "\.\
X rays A « z
% \ - Crystalline solid screen

~—- Spot from incident beam

Spots from diffracted X-rays

- P Photographic plate
“um

principle typical setup

10 Nobel Prizes in X-ray crystallography, and counting...
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Missing phase problem

Detectors record intensities of diffracted rays = phaseless data
only!

diffraction patterns

Fraunhofer diffraction = intensity of electrical ~ Fourier transform

x(fi, L) * =

/x(tl, l‘g)eﬂ'zw(fm +f212)dl‘1dl‘2

Electrical field x = |x|e’® with intensity ||

Phase retrieval problem (inversion)

How can we recover the phase (or signal x(z;, 1)) from [x(f1,/2)|

=—yoTY 4163



Phase and magnitude

¥ IFY) phasa(F(Y)) iF{IF(Y)L."phasa{F{S))}

s IF(S) phaze(F(S))

Phase carries more information than magnitude
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Other applications of phase retrieval

ey

Hubble telescope James Webb space telescope
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Outline

e Classical Phase Retrieval
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Classical Phase Retrieval

Feasibility problem

findxe SN Mor findxe S N M

@ given Fourier magnitudes:
M = {x(r) | [¥(w)] = b(w)}

where x(w) = F(x(r)), F: Fourier transform
@ given support estimate:

S :={x(r) | x(r) =0 for r ¢ D}

or
St :={x(r) | x(r) > 0and x(r) =0if r ¢ D}



Error Reduction

Alternating projection:
A = PP

@ projection to S:

[ x(r), ifren,
Ps(x) = { 0, otherwise,

@ projection to M:

) A b(w) 2l if #(w) # 0,
= F*(5), where § = )P :
Pam(x) 3), w y { b(w), otherwise,
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Summary of projection algorithms

@ Basic input-output (BIO)

= (PsPu + 1 — Ppg) ()
@ Hybrid input-output (HIO)

= (14 B)YPsPum +1— Ps — BPum) (+)
@ Hybrid projection reflection (HPR)
K= (14 B)Ps, Pm+1—Ps, — BPm) (x*)
@ Relaxed averaged alternating reflection (RAAR)
= (28Ps, Pam + BI — BPs, + (1 —2B)Pum) (X

@ Difference map (DF)

= (14 B(Ps((1 = 72)Pae = 22) + Pa((1 = 1)Ps = 1)) (+)
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ADMM

Consider problem

findxandy, suchthatx=y, xe XYandye )y

@ XiseitherSorS,,and Y is M.
@ Augmented Lagrangian function
1
Lxy,A) = AT (x—y) + 5l —?
@ ADMM:

Y S - in Llx. vk K
argmin (x5, A%),

k41

= argmin L(x* 1y, N,
y gmin L{x,y, X)

)\k—f—] — )\k +B(xk+1 7yk+1)’



ADMM

e ADMM
xk+1 — Px(yk _ )\k)’
yk+1 — Py(xk+1 +>\k)7
)\k+1 — )\k + /B(Xk+1 _yk+1)

@ ADMM is equivalent to HIO or HPR
o if Px(x+y) = 'Px(x) + Px(y)

M2 N = [(14 B)PaxPy + (I — Px) — BPy)(x* ' + XY
Hybrid input-output (HIO)
M = (14 B)PsPam +1—Ps — BPum) ()
0 iff=1
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ADMM

@ ADMM: updating Lagrange Multiplier twice

L= Py (yf — b,

AU 7k BT ) = (1= BPx) (0 — ),
PH = Py 409,

ML () (1P (R 4 N,

@ ADMM is equivalentto ERif 5 =v =1
= Px(yk) and ka = Py(xk+1).
@ ADMM is equivalentto BIO if f =v =1

AT LN = (PaPy +1—Py) (¢ + N1



Numerical comparison

The parameter g in HPR and RAAR was updated dynamically with
Bo = 0.95. For ADMM, 8 =0.5.

ADM HPR RAAR

=10

iter

=20

iter

=200

iter




Numerical comparison

The parameter g in HPR and RAAR was updated dynamically with
Bo = 0.95. For ADMM, 8 =0.5.

=20

iter

=40

iter
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Numerical comparison

The parameter § was fixed at 0.6, 0.8 and 0.95 for the first, second
and third rows respectively.
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Numerical comparison

The parameter 3 was fixed at 0.6, 0.8 and 0.95 for the first, second
and third rows respectively.
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Numerical Results

Convergence behavior:

v _ 1Px(Py(x) — Py()|r

[l <

err

—o— ADM —O—ADM
- 8- HPR - 8- HPR

L e j| a|
| e i FE
L W \ 4 L 4
ik

L L L L L
0 20 40 60 80 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

(a) Satellite (b) lena
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Discrete mathematical model

@ Phaseless measurements about xo € C"
bk:|<ak,xo)\2, kE{l,...,m}
@ Phase retrieval is feasibility problem

find x
st [{a,x0) P =bi,k=1,...,m

Solving quadratic equations is NP-complete in general J
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NP-complete stone problem

Given weights w; € R, i = 1,...,n, is there an assignment x; = +1

such that .
Z WiX; = 07
i=1

Formulation as a quadratic system

> = 1, i=1,....n

n 2
E WiXi
i=1




PhaselLift (C., Eldar, Stronmer, Voroninski, 2011)
Lifting: X = xx*
b = | {ax, x0) |* = afxx*ay = (aa}, X)

Turns quadratic measurements into linear measurements b = A(X)
about xx*

Phase retrieval problem

find X find X
st. AX)=b> st. AX)=0b
X > 0,rank(X) =1 X>-0

Connections: relaxation of quadratically constrained QP’s
@ Shor (87) [Lower bounds on nonconvex quadratic optimization
problems]
@ Goemans and Williamson (95) [MAX-CUT]

@ Chai, Moscoso, Papanicolaou (11)
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Exact generalized phase retrieval via SDP

Phase retrieval problem

find x find tr(X)
st b= | {ax,xo) |2 st. AX)=b, X=0

Theorem (C. and Li ('12); C., Strohmer and Voroninski ('11))

» a; independently and uniformly sampled on unit sphere
> m2>n
Then with prob. 1 — O(e="™), only feasible point is xx*

{X: AX) =b, and X > 0} = {xx™}




Extensions to physical setups

xray
sample source

mask l !

diffraction
pattern




Coded diffraction

Collect diffraction patterns of modulated samples

|.7-"(w[t]x[t])\2 wew

Makes problem well-posed (for some choices of W)




Exact recovery

T T
s —Qniginal signal |
“““ Feconstruction
2
1
o
-1
-2
0 20 40 60 80 100 120

(a) Smooth signal (real part)

T
— Original signal
=== Reconstruction

20 40 80 80 100 120

(b) Random signal (real part)

Figure: Recovery from 6 random binary masks

26/63



Numerical results: noiseless 2D images

3 Gaussian masks

5o E3 00 150 0 250

8 binary masks error with 8 binary masks




Outline

e PhaseCut



PhaseCut

@ GivenA e ("™ and b € R™
find x, s.t. |Ax| = b.
(Candes et al. 2011b, Alexandre d’Aspremont 2013)

@ An equivalent model

1
elnin 2|| x =yl

s.t. |yl =b.



PhaseCut
@ Reformulation:

1
in  ~||Ax — diag(b)ul|?
xeé?jfécmz" x — diag(b)ull3

st |u|l=1,,i=1,...,m.
@ Given u, the signal variable is x = Afdiag(h)u. Then

min  u*Mu
ucCm

st uil=1i=1,...,m,

where M = diag(b)(I — AA")diag(b) is positive semidefinite.
@ The MAXCUT problem
min 7r(UM)
UeSy
st. Ui=1,i=1,--- ,m, U>=0.
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Outline

e Wirtinger Flows
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Phase retrieval by non-convex optimization

Solve the equations: y, = |{a,,x)|?, r=1,2,...,m.
@ Gaussian model:

a, € C" K N(0,1/2) +iN(0,1)2).

@ Coded Diffraction model:

n—1 2

> " x[fd(r)e= 2

t=0

vy = r=@k, 0<k<n—1, 1<I<L

Nonlinear least square problem:
1 m
~ Z 2)2
min — [(a
zeCn " 4m — Ok = e 2

@ Pro: operates over vectors and not matrices

@ Con: f is nonconvex, many local minima
32/63



Wirtinger flow: C., Li and Soltanolkotabi (*14)
Strategies:
@ Start from a sufficiently accurate initialization
@ Make use of Wirtinger derivative
f(Z) = 4’"2:])]](_| A, 2
\Y _ Y
flz) = %Z Ak, | — vi)(akag)z

=1

@ Careful iterations to avoid local minima



Algorithm: Gaussian model

@ Spectral Initialization:
1 Input measurements {a,} and observation {y,}(r =1,2,...,m).

m

2 Calculate z to be the leading eigenvector of ¥ = L 3~ y,.q,a;.

>y

3 Normalize zy such that ||z||* = ns=p.

@ lteration via Wirtinger derivatives: forr =0,1,...

Zri1 = 2r ﬁLTsz()
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Convergence property: Gaussian model

distance (up to global phase)

dist(z,x) = arg min |z — x|
w€[0,27]

Convergence for Gaussian model (C. Li and Soltanolkotabi ("14))
@ number of samples m Z nlogn
@ Step size p < ¢/n(c > 0)

Then with probability at least 1 — 10e~"" — 8/n* — me™~ """, we have dist(zo, x) < 4|/

and after t iteration
. 1 1% T/2
dist(z-, ¥) < g(1— 572,

Here ~ is a positive constant.




Numerical results: 1D signals

Consider the following two kinds of signals:
e Random low-pass signals:

M2
X[t] — Z (Xk + iYk)eZﬂ'i(k—l)(t—l)/n
k=—(M/2-1)

)

with M=n/8 and X; and Y are i.i.d. A/(0,1).

e Random Guassian signals: where x € C" is a random complex
Gaussian vector with i.i.d. entries of the form

X[1] = X +iY,

with X and Y distributed as A/(0, 1/2).
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Success rate

e Setn = 128.

e Apply 50 iterations of the power method as initialization.

e Set y; = min(1 — e~ 7/™,0.2), where 7, ~ 330.

e Stop after 2500 iterations, and declare a trial successful if the
relative error of the reconstruction dist(x, x)/||x|| falls below 1073,
The empirical probability of success is an average over 100 trials.

Ganssian model Coded diffraction model
T T T T T T T T T T
1 4 1F R
m
& osf 4 08fF g
= 06| 1ol .
Z 04l 4 04 .
? o2t 4 02 .
~ TP : TR
—e— Gaussian signal —e— Gaussian signal
0 =8 low-pass signal |4 0 —&— low-pass signal |
1 | | T T I T 1 | 1 I I T
2 25 3 35 4 45 5 2 4 6 8 10 12

mfn min 7/63



Numerical results: natural images

e View RGB image as n; x ny x 3 array, and run the WF algorithm
separately on each color band.

e Apply 50 iterations of the power method as initialization.

e Set the step length parameter p; = min(1 — exp(—7/70),0.4),
where 7y ~ 330. Stop after 300 iterations.

e One FFT unit is the amount of time it takes to perform a single
FFT on an image of the same size.
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Numerical results: natural images

Figure: Milky way Galaxy. Image size is 1080 x 1920 pixels; timing is 1318.1
sec or 41900 FFT units. The relative error is 9.3 x 10716,
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Recall the main theorems

Convergence for Gaussian model (C. Li and Soltanolkotabi ('14))
@ number of samples m 2 nlogn
@ Step size i < ¢/n(c > 0)
Then with probability at least 1 — 10e="" — 8/n> — me~'>", we have
dist(zo,x) < g|lx|| and after T iteration

1
dist(zr,x) < (1 = £)7/]l.

Here ~ is a positive constant.
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Regularity condition

Definition

Definition We say that the function f satisfies the regularity condition
or RC(a, 3, €) if for all vectors z € E(e) we have

Re (V1102 — xe%9)) 2 ~disP(e.5) + 5 VF )

o §(2) = argmingepoan [z — x|
o dist(z,x) = ||z — £?Wx].
o E(e):={z € C": dist(z,x) < €}.
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Proof of convergence

Assume that f obeys RC((«, 3, ¢€)) for all z € E(e). Furthermore,
suppose zp € E(¢e), and assume 0 < p < 2/53. Consider the following
update

Zr+1 = Zr — va(ZT)

Then for all 7 we have z, € E(¢) and

o

2 T
dist*(z,x) < (1 - _,u) dist*(z0, x).
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Proof of convergence

Proof.

We prove that if z € E(¢) thenforall 0 < 4 <2/
2+ =z — pVf(2)

obeys

2
dist* (z4,%) < (1 - O’lf) dist*(z,x).

Then the lemma holds by inductively applying the equation above.



Proof of convergence

Simple algebraic manipulations together with the regularity condition

give

IN

which concludes the proof.

——Cl

7 — xe?9 — UV (2) H2

2= x| — 2me ((9712) - xe’¢<z>>) 1 [P
e=20 " =2 (L= we '+ s
HR VI

(1 - 2“) HZ — xe' ’
(1 - ) HZ - xe’¢(z)

(= 3) IR
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Proof of regularity condition

We will make use of the following lemma:

@ xis a solution obeying ||x|| = 1, and is independent from the
sampling vectors;
@ m > c(0)nlogn in Gaussian model or L > ¢(8) log® n in CD model.
Then,
IV (x) —EVZf(x)|| < &

holds with pabability at least 1 — 10e=" — 8/n?> and 1 — (2L + 1)/n? for
the Gaussian and CD model, respectively.

v,

e The concentration of the Hessian matrix at the optimizers.
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Proof of regularity condition

Based on the lemma above with § = 0.01, we prove the regularity
condition by establishing the local curvature condition and the local
smoothness condition.

Local curvature condition
We say that the function f satisfies the local curvature condition or
LCC(a,¢,0) if for all vectors z € E(e),

m

r=

ay(z — xe'® Z)j

-

The LCC condition states that the function curves sufficiently upwards
along most directions near the curve of global optimizers.
For the CD model, LCC holds with o > 30 and ¢ = ﬁ;

For the Gaussian model, LCC holds with o« > 8 and ¢ = é
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Proof of regularity condition

Local smoothness condition

We say that the function f satisfies the local smoothness condition or
LSC(5,¢€,0) if for all vectors z € E(e) we have

IV QI < 8 <( Vi (z) + oo

" , 4
a’(z — xe'®@) ) .

r=1

The LSC condition states that the gradient of the function is well

behaved near the curve of global optimizers. Using § = 0.01, LSC
holds with 8 > 550 + 3n

B >550 for e=1/(8Vn),
B>550+3n for e=1/8.
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Proof of regularity condition

In conclusion, when § = 0.01, for the Gaussian model, the regularity
condition holds with

a>8,8>550+3n, and e = 1/8.
while for the CD model, the regularity condition holds with
a > 30,83 > 550, and € = 1/(8y/n),
Therefore, for the Gaussian model, linear convergence holds if the

initial points satisfies dist(zy, x) < 1/8; for the CD model, linear
convergence holds if dist(zp,x) < 1/(8y/n).
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Proof of initialization

Recall the initialization algorithm:

1 Input measurements {a,} and observation {y,}(r = 1,2, ...,m).
2 Calculate zj to be the leading eigenvector of Y = % Z yrarar.

3 Normalize zo such that ||zo* = ”Zzi'\';rnz'

Ideas:
= I + 2xx*,

1 m
m Z yraydy

r=1

and any leading eigenvector of I + 2xx* is of the form Ax. Therefore,
by the strong law of large number, the initialization step would recover
the direction of x perfectly as long as there are enough samples.



Proof of initialization

In the detailed proof, we will use the following lemma:

In the setup of Lemma 2,
1 < .
I—— -
m;aa

holds with probability at least 1 — 2¢~"™ for the Gaussian model and 1 — 1/x* for the
CD model. On this event,

<4,

m

1
1=98)|nl? < — *h)* < (1+ 6)||A|
( )17l _mZIar [ < (1 +0)All

r=1

holds for all # € C".




Proof of initialization

Detailed proof:
Lemma 2 gives

1Y — (xx* + ||x||21)]| < € := 0.001.

Let Zo be the unit eigenvector corresponding to the top eigenvalue A
of Y, then

Ao = (20> + D) = [Z5(Y — (e + 1)Z0l < [IY = (o* + D) < e.

Therefore, \zgxyz > Ao — 1 — e. Meanwhile, since A is the top
eigenvalue of Y, and ||x|| = 1, we have

M > X Yx=x"(Y—-(IT+x%x)x+2>2—¢€
Combining the above two inequalities together, we have

1 1
Z5x)? > 1-2¢ = dist*(Z0,x) <2-2v1 —2e < 556 = dist(%0,%) < 1.

51/63



Proof of initialization

Now consider the normalization. Recall that zgp = ( Ls |a;*x\2> 20-

m

By Lemma 3, with high probability we have

ax2—1
ZI |

llzoll = 1 < [llzoll? = 1] =

Therefore, we have

dist(zo,x) < ||z0 — Zo]| + dist(Zo,x) < |||zo|| — 1| + dist(Zo,x) <
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Nonlinear least square problem

(a

ra;r)z ] .
)

(@ra) )z

s,

1 m
min — Y (x — |{ak, z
zeC 4m P
Using Wirtinger derivative:
H
7z = B
Z
1 m
60 = VE) =3 (lafz =) |
r=1
Jz) = lzm:[ \a’fz|a1, ‘asz|a2>
T Um | lada, e,
1 [ |alz?a.ar
R T _ r rty
R CRCEES M s b

r=1

)

|ayzlam
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The Modified LM method for Phase Retrieval

Levenberg-Marquardt lteration:

Zip1 = 2 — (U(a) + ud) ™" g(ze)

Algorithm
1 Input: Measurements {a,}, observations {y,}. Set e > 0.

2 Construct zp using the spectral initialization algorithms.
3 While ||g(z)|| > € do
o Compute s; by solving equation

Whise = (W(zk) + el ) s = —8(z)-

until
(| Whesi + g(z)]| < mellg(z) -
o Setz, =z +srand k:=k+ 1.
3 Output: z.
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Convergence of the Gaussian Model

If the measurements follow the Gaussian model, the LM equation is
solved accurately (n, = 0 for all k), and the following conditions hold:

e m > cnlogn, where c is sufficiently large;
o Iff(ze) > L2 et 1y, = 70000n+/nf (z0); if else, let i = /F(z).-

Then, with probability at least 1 — 15¢=7" — 8/n*> — me~'", we have
dist(z0,x) < (1/8)||x||, and

dist(zx11,x) < cidist(zx, x),

o5

Meanwhile, once f (z;) < <555,

for any k > s we have

dist(zx11,%) < cadist(zp, x)%.
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Convergence of the Gaussian Model

In the theorem above,

4.28+5.56\/n -
YTV otherwise.

x|| . )
- { (1- 1Y, it7(e0) 2 sl
and
_ 428+556yn

Cy) =
x|



Key to proof

Lower bound of GN matrix’s second smallest eigenvalue
Forany y, z € C*, Im(y*z) = 0, we have:

YUy = [yl

holds with high probability.

* 1\ — 2
Im(y*'z) =0 = [[(¥¥)"ly|| < WHYW



Key to proof

Local error bound property

1
Zdist(z, x)? < f(z) < 8.04dist(z, x)> + 6.06ndist(z, x)*,

holds for any z satisfying dist(z,x) < .

Regularity condition

p(h* () ™ g(z) > ] + Mugwuz

holds for any z = x + A, ||n|| < &, and f(z) >



Convergence for the inexact LM method

Convergence of the inexact LM method for the Gaussian model:
e m = nlogn;
e 1y takes the same value as in the exact LM method for the Gaussian model;
(I=c)me if (. llzcll® . ; (4.33/n—4.28) 1. || g |
® M < a5z () = S50 5 Otherwise my < 372.54)12\\:AHA3 .

Then, with probability at least 1 — 15¢=7" — 8 /n* — me™'>", we have dist(zo, x) < ||x|, and
1
dist(zk+1 ,x) < ta dist(zx, X), forallk=0,1,...
. 9.89v/n + c||x]| ,. llze ]I
dlsl(zk+17x) < wdlsl(zhx)z, for a]lf(zk) < m

Here ¢, and ¢, take the same values as in the exact algorithm for the Gaussian model.
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Solving the LM Equation: PCG

Solve
(Wk + g )u = gy

by Pre-conditioned Conjugate Gradient Method:

Mﬁl(\I/k—&—ukI)u:M*lgk, M = O + .

2277

7z*
D(z) := { T } + ||z]|*I2n

277* 2
@ small condition number

e Easy to inverse: M = (y + ||z||*)I + My, where M, is rank-2
matrix.
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Solving the LM Equation: PCG

e small condition number.

Lemma

Consider solving the equation (®%)~'Wts = (®£)~!g(z) by the CG
method from sy := —(®%)~'g(z). Let s, be the solution of the system.
Define V := {x : x = [x*,xT]*,x € C"}. Then, V is an invariant
subspace of (&)=, and sy, s. € V. Meanwhile, choosing

w = Kn+/f(z), then the eigenvalues of (®*)~'W! on V satisfy:

7 <ALSI1+ 2l

K /n Kyn'

| —

62/63



Solving the LM Equation: PCG

e Easy to inverse.
Calculate by Sherman-Morrison-Woodbury theorem:

@ —a v | 2] e F e

where
1 3 1

4= —— b=— o=
2]l + 4 2([lz1> + m) (412> + ) 2(ll2lf* + p)p




Dynamic Programming: MDP

http://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on OpenAl Spinning Up and and Prof. Shipra
Agrawal’s lecture notes
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What Can RL Do?

RL methods have recently enjoyed a wide variety of successes. For
example, it’'s been used to teach computers to control robots in
simulation

.Gg*{?% 08 :  LEESEDOL

« 00:01:00
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What Can RL Do?

It's also famously been used to create breakthrough Als for
sophisticated strategy games, most notably ‘Go* and ‘Dota’, taught
computers to ‘play Atari games’ from raw pixels, and trained
simulated robots ‘to follow human instructions".

@ Go: https://deepmind.com/research/alphago
@ Dota: https://blog.openai.com/openai-five
@ play Atari games: https://deepmind.com/research/dqgn/

@ to follow human instructions: nttps://blog.openai.com/
deep-reinforcement-learning-from-—human-preferences
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RL: agent and environment

@ environment: the world that the agent lives in and interacts with.
At every step of interaction, the agent sees a (possibly partial)
observation of the state of the world, and then decides on an
action to take. The environment changes when the agent acts on
it, but may also change on its own.

@ agent: perceives a reward signal from the environment, a
number that tells it how good or bad the current world state is.
The goal of the agent is to maximize its cumulative reward,
called return. Reinforcement learning methods are ways that the
agent can learn behaviors to achieve its goal.

State, Reward
Se. Te

Action
e

Environment
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Dynamic Programming

@ Basically, we want to solve a big problem that is hard

@ We can first solve a few smaller but similar problems, if those can
be solved, then the solution to the big problem will be easy to get

@ To solve each of those smaller problems, we use the same idea,
we first solve a few even smaller problems.

@ Continue doing it, we will eventually encounter a problem we
know how to solve

Dynamic programming has the same feature, the difference is that at
each step, there might be some optimization involved.
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Shortest Path Problem

You have a graph, you want to find the shortest path from s to ¢

Here we use d;; to denote the distance between node i and node j
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DP formulation for the shortest path problem

Let V; denote the shortest distance between i to ¢.
@ Eventually, we want to compute V;

@ ltis hard to directly compute V; in general

@ However, we can just look one step

We know if the first step is to move from i to j, the shortest distance
we can get must be d;; + V;.

@ To minimize the total distance, we want to choose j to minimize
dij +Vj

To write into a math formula, we get

V; = min{d; + V}
J
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DP for shortest path problem

We call this the recursion formula

V= mjn{d,j + VJ} for all
J

We also know if we are already at our destination, then the distance
is 0. i.e.,
V[ - 0

The above two equations are the DP formulation for this problem
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Solve the DP

Given the formula, how to solve the DP?
Vi =min{d; + V;} foralli, V,=0
J

We use backward induction.

@ From the last node (which we know the value), we solve the
values of V’s backwardly.
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Example

@ We have V, = 0. Then we have

Vi= min_ {d;j+V}
(ry) is a path

@ Here, we only have one path, thus V; =5+ V, =5

@ Similarly, V, =2
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Example Continued 1

@ WehaveV,=0,V,=5and V, =2

@ Now consider ¢, d, e. For ¢ and e there is only one path
Ve=dy+ V=T, Ve=dg+V,=5

@ For d, we have

V, = “min {dgj + V;} = min{dy + Vy,dae + Vo} = 10
(dy) is a path

@ The optimal way to choose at d is go to g \see



Example Continued 2

@ WegotV,=7,V;,=10and V, = 5. Now we compute V, and V,
V, = min{dy + V., dsg + V4} = min{3 + 7,1+ 10} = 10

Vy = min{dhd + Vg, dpe + Ve} = min{l + 10,2 + 5} =7

and the optimal path to go at a is to choose ¢, and the optimal
path to go at b is to choose e.
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Example Continued 3

@ Finally, we have
Vs = min{dy, + Vy,dgp + Vp} = min{l + 10,9+ 7} = 11

and the optimal path to go at s is to choose a

@ Therefore, we found the optimal path is 11, and by connecting
the optimal path, we get

s—a—c—f—t
15/68



Summary of the example

In the example, we saw that we have those V;’s, indicating the
shortest length to go from i to .

@ We call this V the value function

We also have those nodes s,a,b, ..., g,t
@ We call them the states of the problem

@ The value function is a function of the state
And the recursion formula

Vi= m_in{dij + Vj} for all i
J

connects the value function at different states. It is known as the
Bellman equation
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Stochastic DP

In some cases, when you choose action a at x, the next state is not
certain (e.g., you decide a price, but the demand is random).

@ There will be p(x,y, a) probability you move from x to y if you
choose action a € A(x)

Then the recursion formula becomes:

Vix) = r(x,a) + X,y,a
() = min {r( ZP y

or if we choose to use the expectation notation:
V(x) = min {r(x a)+EV(x,a))}

acA(x)
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Example: Stochastic Shortest Path Problem

Stochastic setting:
@ One no longer controls which exact node to jump to next
@ Instead one can choose between different actions a € A
@ Each action a is associated with a set of transition probabilities
p(jli;a) foralli,j € S.
@ The arc length may be random wyj,
Objective:

@ One needs to decide on the action for every possible current
node. In other words, one wants to find a policy or strategy that
maps from S to A.

Bellman Equation for Stochastic SSP:

V(i) = min 3 pljlis @) (wia + V()), i €S

JjES
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Tetris

@ Height: 12
e Width: 7

@ Rotate and move the falling
shape

@ Gravity related to current
height

@ Score when eliminating an
entire level

@ Game over when reaching
the ceiling



DP Model of Tetris

@ State: The current board, the current falling tile, predictions of
future tiles

@ Termination state: when the tiles reach the ceiling, the game is
over with no more future reward

@ Action: Rotation and shift

@ System Dynamics: The next board is deterministically
determined by the current board and the player’s placement of
the current tile. The future tiles are generated randomly.

@ Uncertainty: Randomness in future tiles

@ Transitional cost g: If a level is cleared by the current action,
score 1; otherwise score 0.

@ Objective: Expectation of total score.

= i |
* 1
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Interesting facts about Tetris

First released in 1984 by Alexey Pajitnov from the Soviet Union

Has been proved to be NP-complete.

Game will be over with probability 1.

@ For a 12 x 7 board, the number of possible states ~ 2!2%7 ~ 10?

Highest score achieved by human ~ 1 million

Highest score achieved by algorithm ~ 35 million (average
performance)
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States and Observations

@ state: s is a complete description of the state of the world. There
is no information about the world which is hidden from the state.
An observation o is a partial description of a state, which may
omit information.

@ In deep RL, we almost always represent states and observations
by a “real-valued vector, matrix, or higher-order tensor”. For
instance, a visual observation could be represented by the RGB
matrix of its pixel values; the state of a robot might be
represented by its joint angles and velocities.

@ When the agent is able to observe the complete state of the
environment, we say that the environment is fully observed.
When the agent can only see a partial observation, we say that
the environment is partially observed.

@ We often write that the action is conditioned on the state, when
in practice, the action is conditioned on the observation because
the agent does not have access to the state.
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Action Spaces

@ Different environments allow different kinds of actions. The set of
all valid actions in a given environment is often called the action
space. Some environments, like Atari and Go, have discrete
action spaces, where only a finite number of moves are
available to the agent. Other environments, like where the agent
controls a robot in a physical world, have continuous action
spaces. In continuous spaces, actions are real-valued vectors.

@ This distinction has some quite-profound consequences for
methods in deep RL. Some families of algorithms can only be
directly applied in one case, and would have to be substantially
reworked for the other.
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Markov decision processes

@ The defining property of MDPs is the Markov property which
says that the future is independent of the past given the current
state. This essentially means that the state in this model
captures all the information from the past that is relevant in
determining the future states and rewards.

@ A Markov Decision Process (MDP) is specified by a tuple
(S,s1,A,P,R,H), where S is the set of states, s, is the starting
state, A is the set of actions. The process proceeds in discrete
rounds t = 1,2,--- , H, starting in the initial state s;. In every
round, ¢ the agent observes the current state s, € S, takes an
action a; € A, and observes a feedback in form of a reward signal
r.r1 € R. The agent then observes transition to the next state
St € S.
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Formal definition

@ The probability of transitioning to a particular state depends only
on current state and action, and not on any other aspect of the

history. The matrix P e [0, 1]°***Sspecifies these probabilities.
That is,
Pr(s;o1 = 5’ | historytilltimet) = Pr(s;1 =5 |5 =s,a, = a)

= P(s,a,s")

@ The reward distribution depends only on the current state and
action. So, that the expected reward at time 7 is a function of
current state and action. A matrix R specifies these rewards.

E[ri41 | historytilltime t| = Elr.y1 | s, = s,a, = a] = R(s, a)

@ Let R(s,a,s") be the expected (or deterministic) reward when
action « is taken in state s and transition to state s’ is observed.
Then, we can obtain the same model as above by defining

R(s,a) = E[ri1 | 5 = 5,0, = a] = By p(s0)[R(s, a, s')]
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Policy

@ A policy specifies what action to take at any time step. A history
dependent policy at time ¢ is a mapping from history till time ¢ to
an action. A Markovian policy is a mapping from state space to
action 7: § — A. Due to Markovian property of the MDP, it
suffices to consider Markovian policies (in the sense that for any
history dependent policy same performance can be achieved by
a Markovian policy). Therefore, in this text, policy refers to a
Markovian policy.

@ A deterministic policy =: S — A is mapping from any given state
to an action. A randomized policy 7 : § — A* is a mapping from
any given state to a distribution over actions. Following a policy
7, at time ¢ means that if the current state s, = s, the agent takes
action a, = m,(s) (or a; ~ m(s) for randomized policy). Following a
stationary policy 7 means that 7, = = for all rounds r = 1,2, . ..
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Policy

@ Any stationary policy 7 defines a Markov chain, or rather a
'Markov reward process’ (MRP), that is, a Markov chain with
reward associated with every transition.

@ The transition probability vector and reward for this MRP in state
s is given by Pr (s'|s) = PT,E [r;|s] = r7, where PTisan § x S
matrix, and r™ is an S-dimensional vector defined as:

PSy = Eqn(s) [P (s,a,s')] ,Vs,s' €S

l’ _EGE’R‘(S)[ (s a)]

@ The stationary distribution (if exists) of this Markov chain when
starting from state s, is also referred to as the stationary
distribution of the policy 7, denoted by d™:

d"(s) = lim Pr (s, = s|s1, m)

t—00
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Goals, finite horizon MDP

@ The tradeoffs between immediate reward vs. future rewards of
the sequential decisions and the need for planning ahead is
captured by the goal of the Markov Decision Process. At a high
level, the goal is to maximize some form of cumulative reward.
Some popular forms are total reward, average reward, or
discounted sum of rewards.

finite horizon MDP

@ actions are taken forr =1, ..., H where H is a finite horizon. The
total (discounted) reward criterion is simply to maximize the
expected total (discounted) rewards in an episode of length H.
(In reinforcement learning context, when this goal is used, the
MDP is often referred to as an episodic MDP.) For discount
0 <+ <1, the goal is to maximize

H
. [zwr,ysl]
=1

29/68



Infinite horizon MDP

@ Expected total discounted reward criteria: The most popular form
of cumulative reward is expected discounted sum of rewards.
This is an asymptotic weighted sum of rewards, where with time
the weights decrease by a factor of v < 1. This essentially
means that the immediate returns more valuable than those far

in the future. ;
lim E Z'ytlr,\sll
=1

T—o00

30/68



Infinite horizon MDP

@ Expected total reward criteria: Here, the goal is to maximize

t=1

lim E

T—o00

The limit may not always exist or be bounded. We are only
interested in cases where above exists and is finite. This requires
restrictions on reward and/or transition models. Interesting cases
include the case where there is an undesirable state, the reward
after reaching that state is 0. For example, end of a computer
game. The goal would be to maximize the time to reach this
state. (A minimization version of this model is where there is a
cost associated with each state and the game is to minimize the
time to reach winning state, called the shortest path problem).
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Infinite horizon MDP

@ Expected average reward criteria: Maximize

1 T
Tzl’t‘ﬁ]

=1

lim E

T—o00

Intuitively, the performance in a few initial rounds does not matter
here, what we are looking for is a good asymptotic performance.
This limit may not always exist. Assuming bounded rewards and
finite state spaces, it exists under some further conditions on
policy used.
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Gain of the MDP

Gain (roughly the ‘expected value objective’ or formal goal) of an
MDP when starting in state s, is defined as (when supremum exists):

@ episodic MDP:

H
J(s1) =supE [Z *y’_lr,]sli

{me}t =1

@ Infinite horizon expected total reward:

J(s1) =sup lim E

{m} T—00

t=1

@ Infinite horizon discounted sum of rewards:

T
zw]

=1

J(s1) =sup lim E

{71_[} T—o0
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Gain of the MDP

@ infinite horizon average reward:

J(s1) =sup lim E

{ﬂ't} T—o0

1 T
r =1

Here, expectation is taken with respect to state transition and reward
distribution, supremum is taken over all possible sequence of policies
for the given MDP. It is also useful to define gain p™ of a stationary
policy 7, which is the expected (total/total discounted/average)
reward when policy 7 is used in all time steps. For example, for
infinite average reward:

T
. 1
J7T (sl) = Th_}I{.IOE [T Zl’;’S]]
=1

where a;, =7 (s;),t=1,...,T
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Optimal policy

@ Optimal policy is defined as the one that maximizes the gain of
the MDP.

@ Due to the structure of MDP it is not difficult to show that it is
sufficient to consider Markovian policies. Henceforth, we
consider only Markovian policies.

@ For infinite horizon MDP with average/discounted reward criteria,
a further observation that comes in handy is that such a MDP
always has a stationary optimal policy, whenever optimal policy
exists. That is, there always exists a fixed policy so that taking
actions specified by that policy at all time steps maximizes
average/discounted/total reward.

@ The agent does not need to change policies with time. This
insight reduces the question of finding the best sequential
decision making strategy to the question of finding the best
stationary policy.
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Outline

e Bellman Equation

36/68



Value Functions

It's often useful to know the value of a state, or state-action pair. By
value, we mean the expected return if you start in that state or
state-action pair, and then act according to a particular policy forever
after. Value functions are used, one way or another, in almost every
RL algorithm.
@ The On-Policy Value Function V7 (s), which gives the expected
return if you start in state s and always act according to policy :

Z’y' 1r,|s1 = s]

@ The On-Policy Action-Value Functlon Q" (s, a), which gives the
expected return if you start in state s, take an arbitrary action a
(which may not have come from the policy), and then forever
after act according to policy :

T
t—1
E Y7 s =s,a1 = a

=1

V™(s) = lim E

T—o0

Q" (s,a) = lim E
T—o0
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Value Functions

@ The Optimal Value Function V*(s), which gives the expected
return if you start in state s and always act according to the
optimal policy in the environment:

V*(s) = max V™ (s)

@ The Optimal Action-Value Function, Q0*(s, a), which gives the
expected return if you start in state s, take an arbitrary action a,
and then forever after act according to the optimal policy in the
environment:

0*(s,a) = max Q" (s,a)
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Value Functions

@ When we talk about value functions, if we do not make reference
to time-dependence, we only mean expected infinite-horizon
discounted return. Value functions for finite-horizon
undiscounted return would need to accept time as an argument.
Can you think about why? Hint: what happens when time’s up?

@ There are two key connections between the value function and
the action-value function that come up pretty often:

Vi(s) = E [Q"(s,a)],

anym

and

V*(s) = max Q*(s, a).

These relations follow pretty directly from the definitions just
given: can you prove them?
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The Optimal Q-Function and the Optimal Action

@ There is an important connection between the optimal
action-value function Q*(s,a) and the action selected by the
optimal policy. By definition, Q*(s, a) gives the expected return for
starting in state s, taking (arbitrary) action a, and then acting
according to the optimal policy forever after.

@ The optimal policy in s will select whichever action maximizes the
expected return from starting in s. As a result, if we have Q*, we
can directly obtain the optimal action, a*(s), via

a*(s) = arg max Q*(s,a).

@ Note: there may be multiple actions which maximize Q*(s,a), in
which case, all of them are optimal, and the optimal policy may
randomly select any of them. But there is always an optimal
policy which deterministically selects an action.
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Bellman Equations

@ All four of the value functions obey special self-consistency
equations called Bellman equations. The basic idea is: The
value of your starting point is the reward you expect to get from
being there, plus the value of wherever you land next.

@ The Bellman equations for the on-policy value functions are

VT(s)= E [R(s,a,s’) + vV”(s’)] ,

anyT

s'~P
Q"(s,a) = E [R(s,a,s')+v E [Q7(s,d)]],
s'~P a'~m

where s’ ~ P is shorthand for s’ ~ P(:|s,a), indicating that the
next state s’ is sampled from the environment’s transition rules;
a ~ m is shorthand for a ~ 7 (-|s); and &’ ~ = is shorthand for

a ~m(]s).
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Proof of Bellman equations

Proof. V™ = R™ 4 ~P"V":

Vi(s) = E [rl + A+ 4 = s]
= Elr|si =s]+1E [E [rz + vr3 —|—y2r4—|—...|s2] |s1 = s]
The first term here is simply the expected reward in state s when
action is given by 7 (s). The second term is ~ times the value function
ats, ~ P(s,m(s),")
Vi(s) = E[R(s,m(s),s1) + 7V (s2) [s1 = o]
= R(s5,7(s)) +7 Y P(s,7(s),52) V" (52)

€S
= R7(s) +y[PTVT](s)
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Bellman Optimal Equations

@ The Bellman equations for the optimal value functions are

V*(s) =max E [R(s,a) + 7V*(s)],

a g ~p

Q*(s,a) = /EP R(s,a) +ymax Q*(s',d) | .
s~ a
The crucial difference between the Bellman equations for the
on-policy value functions and the optimal value functions, is the
absence or presence of the max over actions. Its inclusion
reflects the fact that whenever the agent gets to choose its
action, in order to act optimally, it has to pick whichever action
leads to the highest value.

@ The term “Bellman backup” comes up quite frequently in the RL
literature. The Bellman backup for a state, or state-action pair, is
the right-hand side of the Bellman equation: the
reward-plus-next-value.
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Proof of Bellman optimality equations

Proof. for all s, from the theorem ensuring stationary optimal policy:

Vi(s) =max V™ (s) = maxE, ;) yp(sa) R (s,a,5") + V7 (s)]

™
/ /
< m;axR(s,a) + WZ:P (s,a,s") max VT (s')
N

— / * /
= méixR(s,a)—i—'yZP(s,a,s) 1% (s)

S/

Now, if the above inequality is strict then the value of state s can be
improved by using a (possibly non-stationary) policy that uses action
arg max, R(s,a) in the first step. This is a contradiction to the
definition V*(s). Therefore,

V¥(s) = HlleR(S, a)+y ZP (s,a,s") V* (s')

S/
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Bellman optimality equations

@ Technically, above only shows that V* satisfies the Bellman
equations.

@ Theorem 6.2.2 (c) in Puterman [1994] shows that V* is in fact
unique solution of above equations.

@ Therefore, satisfying these equations is sufficient to guarantee
optimality, so that it is not difficult to see that the deterministic
(stationary) policy

* o / /
T (s) = argml?XR(s,a) —i—’yZP (s,a,s") V* ()

s/

is optimal (see Puterman [1994] Theorem 6.2.7 for formal proof).

45/68



Linear programming

Linear programming

The fixed point for above Bellman optimality equations can be found
by formulating a linear program. It amounts to :

min E WV
vERS .

st. v, >R(s,a) +~P(s,a)' v Va,s

Proof. V* clearly satisfies the constraints of the above LP. Next, we
show that v = V* minimizes the obj. fun. The constraint implies that

Vg > R(s,7"(s)) + P (s, 7" (s))T v, Vs

(Above is written assuming «* is deterministic, which is in fact true in
the infinite horizon discounted reward case.) Or,

(1 _ fyP’f*> v>R"
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Proof

Because v < 1, (I — vP™) ! exists for all 7, and for any u > 0
(I—~P) 'u= (I+’yP“+’yZ(P“)2+-~-) u>u

Therefore, from above
(1 - ’yP’r*)_l ((1 — VP’T*> v— R’f*) >0

* -1 *
v2<1—7P”) R™ = v*

Or,

Therefore, w'v for w > 0 is minimized by v = V*.
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e Example: Airfare Pricing
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An Example in Revenue Management: Airfare Pricing

Nonstop flights from $303

ahromn 1,846 miles

ahr10mn 1,846 miles

Ahr10mn 1,846 miles:

The price corresponding to each fare class rarely changes (this is
determined by other department), however, the RM department
determines when to close low fare classes

@ From the passenger’s point of view, when the RM system closes
a class, the fare increases

@ Closing fare class achieves dynamic pricing
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Fare classes

And when you make booking, you will frequently see messages like

4y Shanghsi Beijing Duration Direct Lowest fare/person Economy
ar ; ;
SHA12:00 PEK 1420 2h20m
L ] .
China Southern Airines CZ3908 w

+CNY 160 taves & fees

A Fight detais ¥ Al fares ¥

$179 A_ Delta SFO 4:00p » JFK 121153 nonstop
Deta $179 T 10

This is real. It means there are only that number of tickets at that fare
class (there is one more sale that will trigger the next protection level)

@ You can try to buy one ticket with only one remaining, and see
what happens
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Dynamic Arrival of Consumers

Assumptions

@ There are T periods in total indexed forward (the first period is 1
and the last period is T)

@ There are C inventory at the beginning
@ Customers belong to n classes, with p; > p> > ... > p,

@ In each period, there is a probability \; that a class i customer
arrives

@ Each period is small enough so that there is at most one arrival
in each period

Decisions

@ When at period t and when you have x inventory remaining,
which fare class should you accept (if such a customer comes)

@ Instead of finding a single optimal price or reservation level, we
now seek for a decision rule, i.e., a mapping from (¢, x) to

{11 c{1,...n}}.
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Dynamic Arrival - a T-stage DP problem

@ State: Inventory level x; for stagesk=1,...,T

@ Action: Let u® € {0, 1}" to be the decision variable at period k

®) 1 accept class i customer
l/t' = . .
‘ 0 reject class i customer

decision vector u*) at stage k, where uf") decides whether to
accept the ith class

@ Random disturbance: Let wy, k € {0, ..., T} denotes the type of
new arrival during the kth stage (type 0 means no arrival). Then

Pwg=1i)=XNfork=1,...,Tand P(wy =0)=1—->" |\
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Value Function: A Rigorous Definition

@ State transition cost:

g, u® wi) = ulp,,

where we take po = 0. Clearly, E[g (x¢, u®, wi) o] = S0, ufk)p,-)\i
@ State transition dynamics

o fur ulwyi # 0 (with probability S u®)\)
T otherwise (with probability 1 — 5™ u*x,)

i=1"

@ The overall revenue is

T
Z 8 (X5 pur (), Wk)]

subject to the py : x — {u} for all k
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A Dynamic Programming Model

@ Let V;(x) denote the optimal revenue one can earn (by using the
optimal policy onward) starting at time period t with inventory x

T

Vi(x) = nax E Z 8k (Xkes puk (), wie) [0 = x
o

@ We call V(x) the value function (a function of stage r and state x)

@ Suppose that we know the optimal pricing strategy from time
t + 1 for all possible inventory levels x.

@ More specifically, suppose that we know V,;(x) for all possible
state x. Now let us find the best decisions at time .
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Bellman’s Equation for Dynamic Arrival Model

We just proved the Bellman’s equation. In the airfare model,
Bellman’s equation is

V()—max{Z)\ (piti + u;iVig1(x — 1)) I—Z)\u, Vipr(x }
i=1
with V71 (x) = 0 for all x and V,(0) = 0 for all ¢
We can rewrite this as
Vi(x) = Vi (x) + max {Z Aitti(pi + Vipi1(x — 1) — Vt+1(x))}
i=1

For every (t,x), we have an equality and an unknown. The Bellman
equation bears a unique solution.
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Dynamic Programming Analysis

Vi(x) = Vigr(x +max{2/\u, Di AV;+1(X))}
Therefore the optimal decision at time t with inventory x should be

<) piz AV ()
l 0 pi <AVigi(x)

This is also called bid-price control policy
@ The bid-price is AV, (x)

@ If the customer pays more than the bid-price, then accept

@ Otherwise reject
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Dynamic Programming Analysis
Of course, to implement this strategy, we need to know AV, (x)
@ We can compute all the values of V,(x) backwards
@ Computational complexity is O(nCT)

@ With those, we can have a whole table of V,;(x). And we can
execute based on that

Proposition (Properties of the Bid-prices)
Forany x and ¢, i) AV, (x + 1) < AV,(x), i) AVi41(x) < AVy(x)

Intuitions:

@ Fixed ¢, the value of the inventory has decreasing marginal
returns

@ The more time one has, the more valuable an inventory worth

@ Proof by induction using the DP formula
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Outline

e Iterative algorithms (discounted reward case)
@ Value lteration
@ (-value iteration
@ Policy iteration

58/68



Value lteration

@ Indirect method that finds optimal value function (value vector v
in above), not explicit policy.

Pseudocode
@ Start with an arbitrary initialization +°. Specify e>0
@ Repeat for k = 1,2,... until ||vk(s) — v~ (s)[| < {32

o for every s € S, improve the value vector as:

vE(s) = ?&XR(S’CI) + 'yZP (s,a,s') V=1 (s) (1)

s’

@ Compute optimal policy as

7(s) € argmax R(s, a) + vP(s,a) ' v (2)
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Bellman operator

@ Itis useful to represent the iterative step (1) using operator
L:RS — RS

LV(s) := I;l&XR(S, a) +y Z,P (s,a,8) V()

L™V (s) := Euer(s) |R(s,a) + fyZP (s, a, s’) 1% (s’) (3)

s’

@ Then, (1) is same as
vk = Ly*! 4)

@ For any policy =, if V™ denotes its value function, then, by
Bellman equations:

VE=LV* VT = L7V~ (5)
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Bellman operator

Below is a useful ‘contraction’ property of the Bellman operator,
which underlies the convergence properties of all DP based iterative
algorithms.

The operator L(-) and L™ (-) defined by (3) are contraction mappings,
i.e.,

v — Lafloo < 7llv — ulloo

LTy = Lul o, < yllv — ulloo
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Proof of contraction

Proof. First assume Lv(s) > Lu(s).
Let a} = argmaxqeca R(s,a) +v> P (s,a,5)v(s)

0 Lv(s) — Lu(s)
R (s,d;) —|—72P (s,a;‘,s’) % (s’) —R(s,a;) — 72P (s,af,s') u (s')
VP (s,a3) " (v —u)

Yy = ullo

IN A

IN

Repeating a symmetric argument for the case Lv(s) > Lu(s) gives the
lemma statement. Similar proof holds for L.
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Convergence

Theorem 7 (Theorem 6.3.3, Section 6.3.2 in Puterman [1994])

The convergence rate of the above algorithm is linear at rate ~.
Specifically,

k

.

IV =Vl < 7= IV =¥l
1

Further, let 7% be the policy given by (2) using v*. Then,

v v <2THV |

o~ 1

o0
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Proof of Convergence

Proof. By Bellman equations V* = LV*

v =¥ =

e}

IN

IN N

oo T

lve =]

LV 4.,
LV LA+ k4]
LV Lo+ Lt
ST L e ]
o L el [P

'}’k

0
L -]

o

Let 7 = 7* be the policy at the end of « iterations. Then, V™ = L™V~
by Bellman equations. Further, by definition of = = 7,

L™K (s) = m(?xR(s,a) + v ZP (s,a,s') v* (') = L (s)

sl
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Proof of Convergence

Therefore,
Ve =l = IV =
S PG S W Pl
= [LTvT - LA [ =
< v = =
™ 8l _
VAo < =5 1=l
k
i 1.0
< -y
Adding the two results above:
k
IV =Vl < | =)

11—~ o0
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Convergence

@ In average reward case, the algorithm is similar, but the Bellman
operator used to update the values is now
LV(s) = max, ry, + P(s,a) " V. Also, here v* will converge to
v* + ce for some constant c¢. Therefore, the stopping condition
used is instead sp (V¥ — v*~!) < e where
sp(v) := max, vy — min, vs. That is, span is used instead of L,
norm. Further since there is no discount (v = 1), a condition on
the transition matrix is required to prove convergence. Let

v:= max | — Zmin {P(S,Cl>j)aP (s’,a',j)}

S7S/’a7a, .
JES

@ Then, linear convergence with rate v is guaranteed if v < 1. This
condition ensures that the Bellman operator in this case: is still a
contraction. For more detalils, refer to Section 8.5.2 in Puterman
[1994].
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O-value iteration

@ O*(s,a): expected utility on taking action a in state s, and
thereafter acting optimally. Then,V*(s) = max, Q*(s, a).
Therefore, Bellman equations can be written as,

Q*(s,a) = R(s,a) + v;P (s,a,5) <H;%X 0 (s, a’))

Based on above a Q-value-iteration algorithm can be derived:
Pseudocode

@ Start with an arbitrary initialization Q° € RS*4.
@ In every iteration k, improve the Q-value vector as:

Q*(s,a) = R(s,a) + YEy | max Q*! (s’,a') |s,al ,Vs,a
a/

e Stopif ||@F — Q1| _ is small.
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Policy iteration

Start with an arbitrary initialization of policy 7!. The k-th policy
iteration has two steps:

@ Policy evaluation: Find v* by solving vF = L™ v, i.e.,

vE(s) = Egn(s) |R (s, a, s’) + ’yZP (s, a, s’) vk (s’) , Vs

s/

@ Policy improvement: Find 7“1 such that L™ "' vk = Lv£, i.e.,

m™t(s) = argmax R(s,a) + yEy [v* (5') |5, a] , Vs
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TD-learning and Q-learning

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Shipra Agrawal’s lecture notes
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Outline

0 TD-learning
@ TD(0)-learning
@ TD(\)
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TD-learning

@ TD-learning is essentially approximate version of policy
evaluation using samples. Adding policy improvement gives an
approximate version of policy iteration.

@ Since V™ (s) is defined as the expectation of the random return
when the process is started from the given state s, an obvious
way of estimating this value is to compute an average over
multiple independent realizations started from the given state.
This is an instance of the so-called Monte-Carlo method.

@ Unfortunately, the variance of the observed returns can be high.
The Monte-Carlo technique is further difficult to apply if the
system is not accessible through a simulator but rather
estimation happens while actually interacting with the system.
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TD(0)-learning

@ Policy evaluation is about estimating V™ (-), which by Bellman
equations is equivalent to finding a stationary point of

VT (s) = Egurgs) |R(s:a) + 7Y _P(s,a,8) VT (5)] Vs

N

@ However, we need to estimate this using only observations
11, 8¢+1 ON playing some action at a, current state s;.

@ Let the current estimate of V(s) is V(s). Let on taking action
a, = 7 (s;) in the current state s,, 5,11 is the observed (sample)
next state. The predicted value function for the next state s, is
V (si+1), giving another prediction of value function at state s,
7t +~V (si11). Note that

E [I", + ‘7 (SH-l) ‘sh V] = anw(s,) R (Sta Cl) + ZP (stvavsl) ‘7 (S/) |Sta ‘7
SJ
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TD(0)-learning
@ From Bellman equations, we are looking for V such that
V(St) ~ It + ‘A/ (StJrl)

@ The TD method performs the following update to the value
function estimate at s,, moving it towards the new estimate:

Vis) < (1—a)V(s)+ o (”t + 7V(st+1))
@ Let ¢, be the following gap:
Op =1+ 'YV (S141) — v(st)

referred to as temporal difference, i.e., the difference between
current estimate, and one-lookahead estimate. Then, the above
also be written as:

V (s;) < V(s¢) + audy (1)
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SGD interpretation: a general principal

@ Let z; be a random variable independent to 6.

@ Consider:

@ ltis equivalent to

min
0

<— min
6

<= mein

<= min
6

Expectation is taken out. It enables us to perform sample on z;.

min (5 - Ez)?

(xo — ES[ZS])Z - (ES[ZS])Z + ES[ZE]
xé + (ES[ZS])2 — 2xgEs[z] — (ES[ZS])Z + ES[Z?]
xé - 2x9Es [Zs] + Es [Z?]

E [XG - Zs]z
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SGD interpretation

@ Recall the Bellman equation:

Vi) = E_[Ris,a.8) + V()]
s'~P

@ we introduce a target V7, and approximate:

ta rg

VA6 ~ B, [R(5,0,8') + Vi)
s'~P

@ construct a least-squares problem:

2
min (VW(S) — aIN‘Eﬂ_ [R(s,a,s) V;errg( )])

VT (s) s ~P

<= min E [V”(S)—[R(S,aas) V;rzrg( )]]2
Vel 9%
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SGD interpretation

@ use SGD to solve:

. 1 2
min 5 E, [V7(s) = [R(5,a,8") + Vg (s)]]
s’ ~P

@ The gradient with respect to V™ (s) is

E_[V(5) = [R(5,0,5) & 1Vig (5] -
s'~P

Take one sample:
V(1) = [R(s1, @, 8t41) + VWVigrg (Se41)] = =6
@ Hence, one step of SGD is

VT (s¢) = V7 (s¢) + ady
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Tabular TD(0) method for policy evaluation

Algorithm 1 Tabular TD(0) method for policy evaluation
1: Initialization: Given a starting state distribution Dy, policy =, the
method evaluates V™ (s) for all states s.
Initialize V as an empty list/array for storing the value estimates.
2: repeat

3: Setr=1,s; ~ Dy. Choose step sizes aj,as,....

4:  Perform TD(0) updates over an episode:

5:  repeat

6: Take action at a, ~ 7 (s;). Observe reward r;, and new state
St+1- R

7: 5,.—r,+ny(st 1) = Vi(s:)

8: Update V (s;) < V (s,) + a6,

9: t=t+1

10:  until episode terminates
11: until change in V over consecutive episodes is small
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Monte Carlo method

Why use only 1-step lookahead to construct target z? Why not
lookahead entire trajectory (in problems where there is a terminal
state, also referred to as episodic MDPs)?

Po(2) = 0.1

[Szepesvari, 1999] In this example, all transitions are deterministic.
The reward is zero, except when transitioning from state 3 to state 4,
when it is given by a Bernoulli random variable with parameter 0.5.
State 4 is a terminal state. When the process reaches the terminal
state, it is reset to start at state 1 or 2. The probability of starting at
state 1 is 0.9, while the probability of starting at state 2.is 0.1.
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Monte Carlo method

@ The resulting method is referred to as Monte Carlo method, here

for z a sample trajectory starting at s, is used
<= Z’ant-l-n =R,
n=0

so that ) )
6t =2 V(St) = R[— V(St)

Vis)) =1 —a)V(s)+ aRy
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TD(0) or Monte-Carlo?

This example is taken from page 22 — 23, Szepesvari [1999]

@ First, let us consider an example when TD(0) converges faster.
Consider the above undiscounted episodic MRP shown on the
above figure.

@ The initial states are either 1 or 2. With high probability the
process starts at state 1, while the process starts at state 2 less
frequently.

@ Consider now how TD(0) will behave at state 2. By the time state
2 is visited the k™ time, on the average state 3 has already been
visited 10 k times.

@ Assume that a, = 1/(t + 1) (the TD updates with this step size
reduce to averaging of target observations). At state 1 and 2, the
target is V(3) (since immediate reward is 0 and transition
probability to state 3 is 1).
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TD(0) or Monte-Carlo?

@ Therefore, whenever state 2 is visited the TD(0) sets its value as
the average of estimates V’(3) over the time steps r when state 1
was visited (similarly for state 2). At state 3 the TD(0) update
reduces to averaging the Bernoulli rewards incurred upon
leaving state 3. At the k" visit of state 2, Var(V(3)) ~ 1/(10k)
Clearly, E[V(3)] = 0.5. Thus, the target of the update of state 2
will be an estimate of the true value of state 2 with accuracy
increasing with .

@ Now, consider the Monte-Carlo method. The Monte-Carlo
method ignores the estimate of the value of state 3 and uses the
Bernoulli rewards directly. In particular, Var (R,|s, = 2) = 0.25,
i.e., the variance of the target does not change with time.

@ On this example, this makes the Monte-Carlo method slower to
converge, showing that sometimes bootstrapping might indeed
help.
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TD(0) or Monte-Carlo?

@ To see an example when bootstrapping is not helpful, imagine
that the problem is modified so that the reward associated with
the transition from state 3 to state 4 is made deterministically
equal to one.

@ In this case, the Monte-Carlo method becomes faster since
R. = 1 is the true target value, while for the value of state 2 to get
close to its true value, TD(0) has to wait until the estimate of the
value at state 3 becomes close to its true value. This slows down
the convergence of TD(0).

@ In fact, one can imagine a longer chain of states, where state

i + 1 follows state i, fori € 1, ..., N and the only time a nonzero
reward is incurred is when transitioning from state N — 1 to state
N.

@ In this example, the rate of convergence of the Monte-Carlo
method is not impacted by the value of N, while TD(0) would get
slower with N increasing.
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TD()\)

@ TD()\) is a "middle-ground” between TD(0) and Monte-Carlo
evaluation.
@ Here, the algorithm considers ¢-step predictions:
‘
%= ZV"”ﬂrn + 7TV (sie41)
n=0
with temporal difference:

A~

5? = I— V(S[)
J4

= E’Y"mn + TV (s14041) — V (s1)
n=0
¢

= Z'}’" (I"H—n + '7‘7 (SH—n—H) - ‘7 (st—l-n))
n=0

¢
= 27 Grtn
n=0
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TD()\)

@ In TD(\) method, a mixture of ¢-step predictions is used, with
weight (1 — M)A for £ > 0. Therefore, A = 0 gives TD(0), and
A — 1 gives Monte-Carlo method. )\ > 1 gives a multi-step
method. To summarize, the TD(\) update is given as:

o0

14 (s0) = 14 (se) + Z(l - )‘))‘Z(Szg =V (se) + Z 'Y 614
=0 n=0
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Policy improvement with TD-learning

TD-learning allows evaluating a policy. For using TD-learning for
finding optimal policy, we need to be able to improve the policy.
Recall policy iteration effectively requires evaluating Q-value of a
policy, where Q7 (s,a) = R(s,a) +~v>_, P" (s,a,s") V™ (s'). With simple
modification, TD-learning can be used to estimate Q-value of a policy.
There, the gpdates would be [eplaced by:

O =1y ‘ﬁ’YQ (81415 TFA(SH-I)) — O (st ar)

Update Q (s, a;) < O (s1,a1) + o0y

Then, the scheme for policy improvement is similar to policy iteration.
Repeat the following until convergence to some policy:

@ Use TD-learning to evaluate the policy 7*. The method outputs
Q”k (s,a),Ys,a

@ Compute new 'improved policy’ 7**! as
T+ (s) « arg max, O™ (s, a).
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Outline

e Q-learning (tabular)
@ The Q-learning method

@ Stochastic Approximation method
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Q-learning (tabular)

@ Q-learning is a sample based version of Q-value iteration. This
method attempts to directly find optimal Q-values, instead of
computing Q-values of a given policy.

@ Recall Q-value iteration: for all s, a update,

Or+1(s,a) < R(s,a) +~ ZP (s, a, s/) <nzz/xx O (s/, a'))

S/

Q-learning approximates these updates using sample
observations, similar to TD-learning.

@ Instepst=1,2,... of an episode, the algorithm observes reward
r, and next state 5,41 ~ P (-, s, a,) for some action a,. It updates
the Q-estimates for pair (s;, a,;) as follows:

0crn 510) = (1 = )@ 510) + (17 max 04 s,

target
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SGD Interpretation
@ The Bellman optimal equation is
Q*(s,a)= E [R(s,a,s’) + v max Q*(s/,a')]
s'~P a
@ We introduce a target Q. (s, a) and approximate:
O(s,a) = E {R(s,a,s’) + vy max erg(s/,a')]
s/ ~P a’
@ Construct a least square problem:
2
min (Q(s,a) — E {R(s,a,s’) + v max Qm,g(s',a')]>
s’ ~P a’
2
<= min S]EP [Q(s,a) — [R(s,a,s") + 7y max Qm,g(s/,a/)]]
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SGD Interpretation

@ use SGD to solve the least square problem:

| 2
min  — E |Q(s,a) — [R(s,a,s") + vy max Que(s',d')]
(l/

25/~P
@ One sample of the gradient is
O(s,a) — [R(s,a,s41) + 7y max Orarg(s141,d)] = 0.
@ One SGD step is

Q(s,a) A Q(s,a) + at(st-
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Q-learning (tabular)

Algorithm 2 Tabular Q-learning method
1: Initialization: Given a starting state distribution Dy.
Initialize Q as an empty list/array for storing the Q-value estimates.

2: repeat

Sett =1, s; ~ Dy. Choose step sizes ay, ay, . ...

Perform Q-learning updates over an episode:

repeat

Take action at a,. Observe reward r,, and new state s, .

3
4
5
6
7: 0 1= (r, + ymax, O (S,H,a’)) — O (s, ay)
8
9
10
11:

Update O (si,a:) O (s, a) + cud;
t=t+1
until episode terminates
until change in O over consecutive episodes is small
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How to select actions, the issue of exploration

@ The convergence results (discussed below) for Q-learning will
say that if all actions and states are infinitely sampled, learning
rate is small, but does not decrease too quickly, then Q-learning
converges. (Does not matter how you select actions, as long as
they are infinitely sampled).

@ One option is to select actions greedily according to the current
estimate max, Q(s, a). But, this will reinforce past errors, and
may fail to sample and estimate Q-values for actions which have
higher error levels. We may get stuck at a subset of (suboptimal)
actions.

@ Therefore, exploration is required. The e-greedy approach (i.e.,
with e probability pick an action uniformly at random instead of
greedy choice) can ensure infinite sampling of every action, but
can be very inefficient.
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How to select actions, the issue of exploration

@ The same issue occurs in TD-learning based policy improvement
methods. The choice of action is specified as the greedy policy
according to the previous episode estimates. Without exploration
this may not ensure that all actions and states are infinitely
sampled.

@ One option is to replace policy improvement step by greedy
choice. That is, the policy improvement step will now compute
the new ‘improved policy’ 7**! as the randomized policy:

() = ai := argmax, Q" (s,a), with probability 1 — ¢ + o
a, with probability ﬁ, a # aj

@ Then, in policy evaluation, this 'randomized policy’ must be used.
7100 = 1+ VEqoniti(5, ) [Q (s,+1,a)} — Q0 (s, )
8 : Update QO (s, a;) + O (s, ar) + cud;
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Convergence theorem

Theorem 1 (Watkins and Dayan [1992])
Given bounded rewards |r;| < R, learning rates 0 < o, < 1, and

o0

Z Cpi(s,a) — OO Z (O‘n"(s,al))2 < 0
i=1 i=1

then Q' (s,a) — Q(s,a) as t — oo for all s, a with probability 1. Here,
n'(s,a) is the index of the i time the action « is tried in state s, and
Q!(s,a) is the estimate Q in round .

@ If all actions and states are infinitely sampled, learning rate is
small, but does not decrease too quickly, then Q-learning
converges. (Does not matter how you select actions, as long as
they are infinitely sampled).

@ The proof of this and many similar results in RL algorithms follow
the analysis of a more general online learning/optimization
method - the stochastic approximation method.
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Stochastic Approximation method

@ The stochastic approximation (SA) algorithm essentially solves a
system of (nonlinear) equations of the form

h(6) =0

for unknown A(-), based on noisy measurements of A(6).

@ More specifically, consider a (continuous) function R¢ — R?, with
d > 1, which depends on a set of parameters 6 € R?. Suppose
that () is unknown. However, for any § we can measure
Z = h(0) + w, where w is some 0-mean noise. The classical SA
algorithm (Robbins and Monro [1951]) is of the form

0n+1 = 9n + anZ,
= O+, (h(0y) +w,), n>0

@ Since w, is 0-mean noise, the stationary points of the above
algorithm coincide with the solutions of 2(9) = 0.
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Asynchronous version

@ More relevant to the RL methods discussed here is the
asynchronous version of the SA method. In the asynchronous
version of SA method, we may observe only one coordinate (say
i of Z, = h(6,) + w, at a time step, and we use that to update
ith component of our parameter estimate:

Oni1[i] = Onli] + ]

@ The convergence for this method will be proven similarly to the
synchronous version, under the assumption that every
coordinate is sampled infinitely often.
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Outline

e Q-learning with function approximation
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Q-learning with function approximation

@ The tabular Q-learning does not scale with increase in the size of
state space. In most real applications, there are too many states
to keep visit, and keep track of.

@ For scalability, we want to generalize, i.e., use what we have
learned about already visited (relatively small number of) states,
and generalize it to new, similar states.

@ A fundamental idea is to use ‘function approximation’, i.e., use a
lower dimensional feature representation of the state- action pair
s, a and learn a parametric approximation Qy(s, a).
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Q-learning with function approximation

@ For example, the function Qy(s,a) can simply be a linear function
in 0 and features Qg (s,a) = Oofo(s,a) + 01fi(s,a) + ... + Oufu(s, a),
or a deep neural net. Given parameter 6, the Q-function can be
computed for unseen s, a. Instead of learning the |S| x |A]
dimensional Q-table, the Q-learning algorithm will learn the
parameter 6. Here, on observing sample transition to s’ from s on
playing action a, instead of updating the estimate of Q(s, a) in the
Q-table, the algorithm updates the estimate of 6.

@ Intuitively, we are trying to find a 6 such that for every s, a the
Bellman equation,

Qo(s,a) = Eyp(lsa) |R (s7 a, s’) + vy max Qo (s', a’)

can be approximated well for all s, a.
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SGD Interpretation

@ Similarly, we obtain a least square problem:

1 2
min = E [Qg(s,a) — [R(s,a,s") + ymax Q, (s/,a')]]

Hbin lo(s,a) = SEP [59 (s,a, s’)]
@ One sample of the gradient is
Voly(s,a,s")
_ <Q9(s,a) ~ [R(s,a, ) + 7 max Qm,g(s,+1,a')]> V400(s,a)
= —0,VgQp(s,a).
@ One SGD step is

O(s,a) «+ QO(s,a) + a0, VgQy(s,a).
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Q-learning Algorithm overview

Start with initial state s = 5. In iterationk =1,2,.. .,
@ Take an action a.
@ Observe reward r, transition to state s ~ P(:|s, a).
(*] 9k+1 — O — akVQkfgk (S, a, S/), where

VOEG/{ (Sa a, S,) = _5lv9Q9k (S, a)
51‘ =r+ ")/mf/i.X Q@k (S/, a/) - Q9k (S, (l)

@ s« ¢,

If s’ reached at some point is a terminal state, s is reset to starting
state.
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Outline

e Deep Q-learning Networks (DQN)
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Deep Q-Networks — Algorithm

DQN: ¢ is a deep neural network

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function ) with random weights

for episode = 1, M do

Initialise sequence s; = {1} and preprocessed sequenced ¢1 = ¢(s1)
fort=1,7Tdo

With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢), a; 0)
Execute action a; in emulator and observe reward r; and image x ;1
Set s141 = S¢,a¢, x441 and preprocess @1 = P(S¢41)
Store transition (¢, ar, ¢, pry1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢j4+1) from D

{ T for terminal ¢4

rj +ymaxy Q(dj41,a’;60) for non-terminal ¢;41
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation
end for
end for

Set Yj =
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Deep Deterministic Policy Gradient

@ Deep Deterministic Policy Gradient (DDPG) is an algorithm
which concurrently learns a Q-function and a policy. It uses
off-policy data and the Bellman equation to learn the Q-function,
and uses the Q-function to learn the policy.

@ This approach is closely connected to Q-learning, and is
motivated the same way: if you know the optimal action-value
function Q*(s, a), then in any given state, the optimal action a*(s)
can be found by solving

a*(s) = arg max 0*(s,a).

@ DDPG interleaves learning an approximator to Q* (s, a) with
learning an approximator to a*(s), and it does so in a way which
is specifically adapted for environments with continuous action
spaces. But what does it mean that DDPG is adapted
*specifically* for environments with continuous action spaces? It
relates to how we compute the max over actions in max, Q*(s, a).
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@ When there are a finite number of discrete actions, the max
poses no problem, because we can just compute the Q-values
for each action separately and directly compare them. (This also
immediately gives us the action which maximizes the Q-value.)
But when the action space is continuous, we can’t exhaustively
evaluate the space, and solving the optimization problem is
highly non-trivial. Using a normal optimization algorithm would
make calculating max, Q*(s, a) a painfully expensive subroutine.
And since it would need to be run every time the agent wants to
take an action in the environment, this is unacceptable.

@ Because the action space is continuous, the function Q*(s, a) is
presumed to be differentiable with respect to the action
argument. This allows us to set up an efficient, gradient-based
learning rule for a policy p(s) which exploits that fact. Then,
instead of running an expensive optimization subroutine each
time we wish to compute max, Q(s, a), we can approximate it
with max, Q(s,a) = O(s, pu(s)).
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The Q-Learning Side of DDPG

@ First, let’s recap the Bellman equation describing the optimal
action-value function, Q*(s,a). It's given by

Q*(s,a) = /EP r(s,a) + v max Q*(s',d)

s~

where s’ ~ P is shorthand for saying that the next state, s/, is
sampled by the environment from a distribution P(-|s, a).

@ This Bellman equation is the starting point for learning an
approximator to Q*(s,a). Suppose the approximator is a neural
network Q4 (s, a), with parameters ¢, and that we have collected
a set D of transitions (s, a,r,s',d) (where d indicates whether
state s’ is terminal). We can set up a mean-squared Bellman
error (MSBE) function, which tells us roughly how closely O,
comes to satisfying the Bellman equation:

LeD)= E o [<Q¢(w) = (r+7(1 —d) HZE}XQ¢<S/aa/))> ]

(s,a,r,s’,d
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@ Here, in evaluating (1 — d), we've used: “True" to 1 and “False” to
zero. Thus, when “d==True”—which is to say, when s’ is a
terminal state—the Q-function should show that the agent gets
no additional rewards after the current state.

@ Q-learning algorithms for function approximators, such as DQN
(and all its variants) and DDPG, are largely based on minimizing
this MSBE loss function. There are two main tricks employed by
all of them which are worth describing, and then a specific detail
for DDPG.

@ Trick One: Replay Buffers. All standard algorithms for training
a deep neural network to approximate Q*(s, a) make use of an
experience replay buffer. This is the set D of previous
experiences. In order for the algorithm to have stable behavior,
the replay buffer should be large enough to contain a wide range
of experiences, but it may not always be good to keep everything.
If you only use the very-most recent data, you will overfit to that
and things will break; if you use too much experience, you may
slow down your learning. This may take some tuning to get right.
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@ Trick Two: Target Networks. Q-learning algorithms make use
of target networks. The term

r+7(1 —d)max Qy(s', a’)
a/

is called the target, because when we minimize the MSBE loss,
we are trying to make the Q-function be more like this target.
Problematically, the target depends on the same parameters we
are trying to train: ¢. This makes MSBE minimization unstable.
The solution is to use a set of parameters which comes close to
¢, but with a time delay—that is to say, a second network, called
the target network, which lags the first. The parameters of the
target network are denoted ¢rarg.
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@ In DQN-based algorithms, the target network is just copied over
from the main network every some-fixed-number of steps. In
DDPG-style algorithms, the target network is updated once per
main network update by polyak averaging:

Ptarg < pdtarg + (1 — p)o
where p is between 0 and 1 (usually close to 1).

@ DDPG Detail: Calculating the Max Over Actions in the
Target. As mentioned earlier: computing the maximum over
actions in the target is a challenge in continuous action spaces.
DDPG deals with this by using a target policy network to
compute an action which approximately maximizes Qy,, .. The
target policy network is found the same way as the target
Q-function: by polyak averaging the policy parameters over the
course of training.
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@ Putting it all together, Q-learning in DDPG is performed by
minimizing the following MSBE loss with stochastic gradient
descent:

2
L(¢7 D) = E [<Q¢(S, a) - (V—i—’}/(l - d)Q¢larg(s/’lu“91arg(sl)))) ] )

(s,a,r,s’ ,d)~D

where pg,,, is the target policy.
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The Policy Learning Side of DDPG

@ Policy learning in DDPG is fairly simple. We want to learn a
deterministic policy ug(s) which gives the action that maximizes
Q4(s,a). Because the action space is continuous, and we
assume the Q-function is differentiable with respect to action, we
can just perform gradient ascent (with respect to policy
parameters only) to solve

max SED [0 (s, po(s))] -

@ Note that the Q-function parameters are treated as constants
here.
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Pseudocode: DDPG

Algorithm 3 Deep Deterministic Policy Gradient

1: Input: initial policy parameters 6, Q-function parameters ¢, empty replay buffer D
2: Set target parameters equal to main parameters 6targ < 0, Ptarg < ¢
3: repeat

. serve state s and select action a = clip(ug (s) + €, arow, agion), Where e ~

4:  onb d sel i lip(ue ) Wh N

5: Execute a in the environment

6: Observe next state s’, reward r, and done signal d to indicate whether s’ is terminal

7. Store (s, a, r, s", d) in replay buffer D

8: If s is terminal, reset environment state.

9: if it's time to update then

10: for however many updates do

11: Randomly sample a batch of transitions, B = {(s, a, r, 5", d)} from D

12: Compute targets y(r, s’,d) = r 4+ ~v(1 — AOgyarq ', Hbiarg "))

13: Update Q-function by one step of gradient descent using V , ﬁ Z(x)“'m/ d)EB (Qg (sy @) — ¥(r, s, d))z
14: Update policy by one step of gradient ascent using V¢ IITI >sen Q¢ (5 19 ()
15: Update target networks with

Ptarg < PPtarg + (1-p)o
Otarg < pOtarg + (1—p)o

16: end for
17:  endit
18

. until convergence

43/48



Twin Delayed DDPG (TD3)

@ A common failure mode for DDPG is that the learned Q-function
begins to dramatically overestimate Q-values, which then leads
to the policy breaking, because it exploits the errors in the
Q-function.

@ Trick One: Clipped Double-Q Learning. TD3 learns two
Q-functions instead of one (hence "twin"), and uses the smaller
of the two Q-values to form the targets in the Bellman error loss
functions.

@ Trick Two: "Delayed" Policy Updates. TD3 updates the policy
(and target networks) less frequently than the Q-function. The
paper recommends one policy update for every two Q-function
updates.

@ Trick Three: Target Policy Smoothing. TD3 adds noise to the
target action, to make it harder for the policy to exploit Q-function
errors by smoothing out Q along changes in action.
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Key Equations: target policy smoothing

TD3 concurrently learns two Q-functions, Q,, and Q,,, by mean
square Bellman error minimization, in almost the same way that
DDPG learns its single Q-function.

@ target policy smoothing. Actions used to form the Q-learning
target are based on the target policy, y4,,,, but with clipped noise
added on each dimension of the action. After adding the clipped
noise, the target action is then clipped to lie in the valid action
range (all valid actions, a, satisfy a;,. < a < amien). The target
actions are thus:

al(sl) - C“p (/J'Otarg (S/) + C|ip(€, —¢, C), ALow, aHigh) ) €~ N(Ou U)

@ Target policy smoothing essentially serves as a regularizer for
the algorithm. It addresses a particular failure mode that can
happen in DDPG: if the Q-function approximator develops an
incorrect sharp peak for some actions, the policy will quickly
exploit that peak and then have brittle or incorrect behavior. This
can be averted by smoothing out the Q-function over similar
actions, which target policy smoothing is:designed to do. 45/48



clipped double-Q learning

@ Both Q-functions use a single target, calculated using whichever
of the two Q-functions gives a smaller target value:

y(r,s',d) =r+~(1—d) }g% Qo 1arg (s',d (5)),

and then both are learned by regressing to this target:
_ .
L(¢17D) = E <Q¢| (Sva) _y(rv sl7d)> )

(s,a,r,s’,d)~D

(s,a,r,s’ ,d)~D

-
L(¢2aD) = E <Q¢2(s,a) _y(rv sl’d)>

@ Using the smaller Q-value for the target, and regressing towards
that, helps fend off overestimation in the Q-function.
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@ the policy is learned just by maximizing Q,:

m;lX SED [Q(f)l (S, He (S)>] )

which is pretty much unchanged from DDPG. However, in TD3,
the policy is updated less frequently than the Q-functions are.
This helps damp the volatility that normally arises in DDPG
because of how a policy update changes the target.

@ Exploration vs. Exploitation: TD3 trains a deterministic policy
in an off-policy way. Because the policy is deterministic, if the
agent were to explore on-policy, in the beginning it would
probably not try a wide enough variety of actions to find useful
learning signals. To make TD3 policies explore better, we add
noise to their actions at training time, typically uncorrelated
mean-zero Gaussian noise. To facilitate getting higher-quality
training data, you may reduce the scale of the noise over the
course of training.
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Pseudocode: TD3

Algorithm 4 Twin Delayed DDPG

1: Input: initial policy 6, Q-function ¢y, ¢,, empty replay buffer D. Set barg < 6, dtarg,1 < 1, Ptarg,2 — P2
2: repeat
: Observe state s and select action a = clip(pg (s) + €, aow, agign), Where e ~ N

4 Execute a in the environment

5 Observe next state s’, reward r, and done signal d to indicate whether s’ is terminal
6 Store (s, a, r,s’, d) in replay buffer D

7: If s’ is terminal, reset environment state.

8: if it's time to update then

9 for j in range(however many updates) do

10: Randomly sample a batch of transitions, B = {(s, a, r, s", d) } from D
11: Compute target actions a’ (s") = clip (“gtarg (s") 4 clip(e, —c, ¢), agow, aH,»g/,) , e~ N(0,0)
12: Compute targets y(r, s",d) = r + v(1 — d) minj—; » Q(ﬁiarg‘i(s/’ a' (s"))
13: Update Q-functions by one gradient step: V. \;T\ 3 (ssayrs” d)EB (Q4,i(sya) — ¥(r, S’,d))z fori=1,2
14: if j mod policy_delay = 0then
15: Update policy by one step of gradient ascent using V¢ ﬁ >een 2,105, 1o (s))
16: Update target networks with
Ptarg,i < PPtarg,i + (1 —=p)gifori=1,2, Otarg < pbtarg + (1—p)o
17: end if
18: end for
19:  endif
20: until convergence
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Policy Gradient Methods

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Shipra Agrawal’s lecture notes
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Q Policy gradient methods
@ Finite horizon MDP
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Policy gradient methods

@ In Q-learning function approximation was used to approximate
Q-function, and policy was a greedy policy based on estimated
QO-function. In policy gradient methods, we approximate a
stochastic policy directly using a parametric function
approximator.

@ More formally, given an MDP (S, A, s, R, P), let g : § — A4
denote a randomized policy parameterized by parameter vector
0 € R4 For a scalable formulation, we want d << S|

@ For example, the policy my might be represented by a neural
network whose input is a representation of the state, whose
output is action selection probabilities, and whose weights form
the policy parameters 6. (The architecture for such a [deep]
neural network is similar to that for a multi-label classifier, with
input being a state, and labels being different actions. The
network should be trained to predict the probability of different
actions given an input state).

@
~



Policy gradient methods

@ For simplicity, assume that =y is differentiable with respect to 6,
i.e. M09 ayists. This is true for example, if a neural network
with differentiable activation functions is used to define my. Let
p (mg) denote the gain of policy my.This may be defined as long
term average reward, long term discounted reward or total
reward in an episode or finite horizon. Therefore, solving for
optimal policy reduces to the problem of solving

max p (mg)

@ In order to use stochastic gradient descent algorithm for finding a
stationary point of the above problem, we need to compute (an
unbiased) estimate of gradient of p (7y) with respect to 6.



Finite horizon MDP

@ Here performance measure to optimize is total expected reward
over a finite horizon H.

p(r) =E

H

t—1
E YT, s
=1

@ Let (s, a) denote the probability of action « in state s for
randomized policy 7. Let D™ (7) denote the probability distribution
of a trajectory (state-action sequence)

T = (s1,a1,%2,...,an—1,sy) Of states on starting from state s; and
following policy 7. That is,

H—1
D™(r) =[] 7 (s1,ai) P (si,ai,si41)
i=1



Finite horizon MDP

For finite horizon MDP (S,A, s, P,R, H), let R(7) be the total reward
for an sample trajectory 7, on following 7y for H steps, starting from
state s;. Then,

H—-1
Vop () = E- [R(1)Volog (D™(r))] = E- |R(r) Y _ Vi log (my (51, ar))

=1

Proof. Let R(7) be expected total reward for an entire sample
trajectory 7, on following 7y for H steps, starting from states;. That is,
given a sample trajectory 7 = (s, a1, 52, ...,an—1,sgy) from distribution
D70,

H-1
R(7) := Z YR (54, a;)
=1
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Proof of Theorem 2

Then,

p(mg) = Eroprg[R(T)]

Now, (the calculations below implicitly assume finite state and action
space, so that the distribution D(7) has a finite support)

dp (mo)
00

0
g B~ [R(7)]

0
W >
7:D"0(1)>0

> D) gy log (D7 (7)) R(r)

7:D™6 (7)>0 o6

E;pm [889 log (D™ (7)) R(7)

D™ (7)R(7)

7T



Proof of Theorem 2

Further, for a given sample trajectory 7'.

H-1
Vg log (D™ (Ti)) = Z Vg log (mg (sﬁ, ai)) + Vglog P (si,ai, S§+1)

1
= Vylog (7r9 (sﬁ, ai))

t=1

F1



Finite horizon MDP

@ The gradient representation given by above theorem is extremely
useful, as given a sample trajectory this can be computed only
using the policy parameter, and does not require knowledge of
the transition model P(-, -, -)! This does seem to require
knowledge of reward model, but that can be handled by
replacing R (%) by R (7') = ri +yr2 + ..., ¥~ 2ry_1, the total of
sample rewards observed in this trajectory.

@ Since, given a trajectory 7, the quantity D™ (7) is determined,
and E[R(7)|7] = R(7)

Veop (7o) 7 [R(T)Vglog (D™ (7))]

- [R(T)Vglog (D™ (7))]

H—1

- R(T) Z Vg log (g (s1,ar))

=1

E
E

I
=

©
~



Unbiased estimator of gradient from samples

@ From above, given sample trajectories 7/, i = 1,...,m, an
unbiased estimator for gradient Vyp (mp) is given as:

g = > R() Volog (0 ()

LS R () S Valog (mu ()

i=1 =1
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Baseline

@ Note that for any constant b (or b that is conditionally
independent of sampling from 7y given 6), we have:

o B
7T9 — 7T9 — To _
E. [bae log (D™ (7)) |6, sl] /89 (D bae /D (r)=0

@ Therefore, choosing any 'baseline’ b, following is also an
unbiased estimator of the Vyp (mp):

H— 1

z’": . —b Vglog (7r9 (st, ))

i=1 t=1



Baseline

@ Or, more generally, one could even use a state and time
dependent baseline b; (s!) conditionally is independent of
sampling from 7y given si, 6, to get estimator:

gznfli (R (') = by (s1)) Volog (my (shyal)) (1)

@ Below we show this is unbiased. The expectations below are
over trajectories (si,ay,...,anp—1,su), Wwhere a, ~ m (s, -), given
s;. For any fixed 6, 1, the baseline b; (s;) |s; needs to be
deterministic or independent of a|s,. For simplicity we assume it
is deterministic.
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Baseline

H—1
5,
E, Z b: () 2 log (g (1, ar)) ye,s1]

ZE [bt st) 0 log (o (Sz,a,))|s,] |t9,s1]
:th 1) [jlog(ﬂe (S,,at))|s,] |97S1]

th St ZWG Sty a 10g (7T6 (Sta ))|‘9751]
bt Zafﬂe Sty d ‘9 Sl]

m| T

Lt=1



Baseline

@ An example of such state dependent baseline b,(s), given s and
0, is Vi ,(s), i.e., the value of policy 7y, starting from state s at
time . We will see later that such a baseline is useful in reducing
the variance of gradient estimates.



Vanilla policy gradient algorithm

Initialize policy parameter 6, and baseline.
In each iteration,

@ Execute current policy 7y to obtain several sample trajectories 7/,
i=1,...,m.

@ Use these sample trajectories and chosen baseline to compute
the gradient estimator g as in (1)

@ Update 0 < 0 + ag

@ Update baseline as required.

Above is essentially same as the REINFORCE algorithm introduced
by [Williams, 1988, 1992].
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Softmax policies

@ Consider policy set parameterized by 6 € R? such that given
s € S, probability of picking action a € A is given by:

T
ars
S 0Th
Ea’EAe st

where each ¢, is an d-dimensional feature vector characterizing
state-action pair s, a. This is a popular form of policy space
called softmax policies. Here,

mo(s,a) =

VG log (779 (S a (b&a - <Z Qbsa/ﬂ-Q ) ¢sa - a !~ (s) [¢sa’]

a’'€eA
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Gaussian policy for continuous action spaces

@ In continuous action spaces, it is natural to use Gaussian
policies. Given state s, the probability of action a is given as:

mo(s,a) =N ((b(s)TO,az)

for some constant 0. Here ¢(s) is a feature representation of s.
Then,
—(@a=0T¢()" _ (07¢(s) —a

( >:< ) )

202 o2

Vo log (me(s,a)) = Vg

172171



Outline

e Actor-critic methods



Actor-critic methods

@ Actor-only methods (vanilla policy gradient) work with a
parameterized family of policies.

@ The gradient of the performance, with respect to the actor
parameters, is directly estimated by simulation, and the
parameters are updated in a direction of improvement.

@ A possible drawback of such methods is that the gradient
estimators may have a large variance.

@ As the policy changes, a new gradient is estimated
independently of past estimates (by sampling trajectories).

@ There is no "learning”, in the sense of accumulation and
consolidation of older information.



Actor-critic methods

@ Critic-only methods (e.g., Q-learning, TD-learning) rely
exclusively on value function approximation and aim at learning
an approximate solution to the Bellman equation, which will then
hopefully prescribe a near-optimal policy.

@ Such methods are indirect in the sense that they do not try to
optimize directly over a policy space.

@ A method of this type may succeed in constructing a "good"
approximation of the value function, yet lack reliable guarantees
in terms of near-optimality of the resulting policy.
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Actor-critic methods

@ Actor-critic methods aim at combining the strong points of
actor-only and critic-only methods, by incorporating value
function approximation in the policy gradient methods.

@ We already saw the potential of using value function
approximation for picking baseline for variance reduction.

@ Another more obvious place to incorporate Q-value
approximation is for approximating Q-function in the policy
gradient expression. Recall, by policy gradient theorem:

Vop (me) = Z dre (S>Ea~7r(s) [(Qm9 (s,a) = b™(s)) Vg log (my(s, a))]

N

for any baseline b7 ().



Theorem 1 (Sutton et al. [1999])

If function f,, is compatible with policy parametrization @ in the sense
that for every s, a,

1

Vufu(s,a) = 60

Vomo(s,a) = Vglog (mg(s,a))

And, further we are given parameter w which is a stationary point of
the following least squares problem:

0 By o gy (s) [(Q7(5,@) = b(530) — fuls,))’]

where b(-; 0) is any baseline, which may depend on the current policy
mg. Then,

Vop (19) = Egndamo Bacr, (5) [fuo(s, @)V log (e (s, a))]

That is, function approximation f,, can be used in place of Q-function
to obtain gradient with respect to 6.
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Proof of Policy gradient theorem

(Here, we abuse the notation and use E;.,m [x] as a shorthand for
>-,d™(s)x. This is not technically correct in the discounted case since
in that case d™ (s) = E, [>_7°, Pr (s, = s;m,51)7'~'], which is not a
distribution. In fact in discounted case, (1 — v)d™ is a distribution.)
Proof. Given 0, for stationary point w of the least squares problem:

Eswd”@,wvwe(s,~) [(QTFG (S? a) - b(S; 9) —Jow (S, Cl)) waw(s, a)] =0
Substituting the compatibility condition:

1
Eyamo army(s,) | (Q7 (5,a) — b(s;0) — f(s,a)) Vewe(s,a)m =0
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Proof of Policy gradient theorem

Or,
Zd“ ZWWG 5,) (Q™(s,a) = b(s:0) — fu(s.a)) = 0
Since b(s; 6) 3, Voro(s,a) = 0
Zd”" va (s,q) ,a) —fu(s,a)) =0

using this with the policy gradient theorem, we get

Vop (mg) Zd’re ZV@TK‘@(S,CI) (s, a)



Example: softmax policy

@ Consider policy set parameterized by 6 such that given s € S,
probability of picking action a € A is given by:
e

Za’EA eHTqu/

where each ¢y, is an ¢-dimensional feature vector characterizing
state-action pair s, a. This is a popular form of parameterization.
Here,

mo(s,a) =

Vomo(s,a) = dsamo(s,a) (Z ¢m/7rg s,d ) mo(s,a)

a’ €A
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Example: softmax policy

@ Meeting the compatibility condition in Theorem 1 requires that

vwfw(sa Cl) =

Vomo(s, a) = dsa — Z Gsa' T (S,Cl,)

a’'eA

1
7r9(s,a)

@ A natural form of f,,(s, a) satisfying this condition is:

ful(s,a) = wl <¢sa - Z dspo s, b))

beA

@ Thus f,, must be linear in the same features as the policy, except
normalized to be mean zero for each state. In this sense it is
better to think of £, as an approximation of the advantage
function, A™(s,a) = Q™ (s,a) — V™ (s), rather than Q™.
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Example: Gaussian policy for continuous action
spaces

@ In continuous action spaces, it is natural to use Gaussian policy.
Given state s, the probability of action a is given as:

mo(s,a) = N (6(s)76,0%)
for some constant 0. Here ¢(s) is a feature representation of s.
Then, compatibility condition for £, (s, a):

—(a—67¢(s))’ To(s) —a
Voko(s,a) = Volog (mo(s, @) = Vi ( 2902¢( ) (0 ¢§72> )M

@ For f,, to satisfy this, it must be linear in w, e.g.,

fuls,a) = 0= 5Ty,
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Policy iteration algorithm with function approximation

Let f.,(-,-) be such that Vf,(s,a) = Vylog my(s,a) for all w, 0, s, a.
Initialize 6, m := my,. Pick step sizes aj, as, .. ...
In iteration k =1,2,3, ...,

@ Policy evaluation: Find w, = w such that

Esnami Eqrr(s) [(Q™ (5, a) = bils) —fuo(s,a)) Vo log (mi(s, a))] = 0

(Here, d™ is not normalized to 1, and sums to 1/(1 —~).)
@ Policy improvement:

Okr1 4 Ok + B Byory(s) [fio (5, @) Vg log (mi (s, a))]

A similar algorithm appears in Konda and Tsitsiklis [1999].



Convergence Guarantees

Following version of convergence guarantees were provided by
Sutton et al. [1999] for infinite horizon MDPs (average or discounted).

Theorem 2 (Sutton et al. [1999])
Given oy, an, ..., such that

T T
lim E o = o0, lim g oz < 00
T—o0 —1 T—o0 —1

and maxg g4, azgg—fgj’“) < co. Then, for 6,65, ..., obtained by the
above algorithm,

klgf)lo Vop (9)|9k =0
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Pseudocode: Vanilla Policy Gradient Algorithm

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters 6y, initial value function parameters ¢

2 fork=0,1,2,...do

Collect set of trajectories Dy = {;} by running policy 7y = 7 (6y) in the environment.

Compute rewards-to-go R;.

Compute advantage estimates, A, (using any method of advantage estimation) based on the current value function V-

o kN

Estimate policy gradient as

& = Z Z Vglogﬂ-g(uds,)\@k Ay

‘Dk TEDy t=0
7: Compute policy update, either using standard gradient ascent,
Ort1 = O + iy,

or via another gradient ascent algorithm like Adam.
8: Fit value function by regression on mean-squared error:

T

brp1 = argmin —— > > (Vg () —R)?,

¢ |DA‘T €Dy 1=0

typically via some gradient descent algorithm.
9: end for
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Outline

© TRPO and PPO



Trust Region Policy Optimization (John Schulman, etc)

@ Assume start-state distribution d, is independent with policy
@ Total expected discounted reward with policy =

= E<[)_'r(s)]
t=0
@ Advantage function: A, (s,a) = Qx(s,a) — Vx(s)
@ Between any two different policy 7 and

(@) = n(r) + Ez[Y_v'Ar(s1,a,)]
t=0

+ZZP 5 = s[7) Z (als)y'Ax(s, a)

t=0 =

+ZZ’7P~W—S|W Z (als)Ar(s, a)

s =0

(7 —&-Zd%s Z?Tas Ar(s,a).

32/71



Trust Region Policy Optimization

@ Find new policy 7 to maximize n(7) — n(n) for given =, that is
maxn )+ Zd~ Z (als)Ax(s,a)
@ For simpleness, maximize the approximator
)+ Zdﬁ(s) Z 7(als)Ax (s, a)
@ Parameterize the policy w(als) := mg(als)

L‘ﬂ'e{,[d (mo) = n(mo,,) + Zdﬂe ,d Zﬂ—e (als)A o ,d ,a)



Why L, (m)?

@ A sufficiently small step 6,,; — 6 improves Ly, (mp) also improves 7

Lﬂ'eom (ﬂ-avld ) :n(ﬂ-anm)’

VoLr, (76)|0=0,0 =Vo1(70)]6=0,,-

old

@ Lower bounds on the improvement of n

2ey
77(7r9nm-) 2 L”%m (Wg””") B Waz

where

€= msaX |E“~7"9uewA7T@rld (S’ a)|

0

a =D7" (0,76, ) = max Dyy (g, (-15)[76,, (-5))
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Lower bound

@ TV divergence between two distribution p, g (discrete case)

Dry(pllq) = Z Ip(X
@ KL divergence between two distribution p, g (discrete case)
D.(pllg) = ZP log ;
® (Drv(pll9))* < Dra(pllg) (Pollard(2000),Ch.3)
@ Thus obtain a lower bound
H0.0) 2 Ly (70.0) = Tz

where

a = Dii"(mo,,||76,,) 1= max Dxr(ma,, (-]5)[| 7, (-]s))
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Practical algorithm

@ The penalty coefficient (12_‘—3)2 is large in practice, which yields small
update
@ Take a constraint on the KL divergence, i.e., a trust region constraint:

0

mOE:LX LTFS( 1d (7T9)

s.t. D%Zx(ﬂ'eom |7T9) <9
@ A heuristic approximation
max L, . (7o)
B 00t
s.t. DKL (71—901{1 |7T9) <90

where

P01
DKL old (71.0

wal|76) = Exy,, (Di(m,,(-15)||7o(-]s))
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TRPO

@ The objective and constraint are both zero when 6 = 6;.
Furthermore, the gradient of the constraint with respect to 6 is
zero when 0 = 6.

@ The theoretical TRPO update isn’t the easiest to work with, so
TRPO makes some approximations to get an answer quickly. We
Taylor expand the objective and constraint to leading order
around 6;:

L@k (0) ~ gT(H — Hk)
_ 1
D (0u]16) ~ 50 — 0)TH(O — 6;)
resulting in an approximate optimization problem,

Okt = arg max g (0 — 6

1
st (0 - 6)TH(O — 6;) < 6.

377



TRPO

@ By happy coincidence, the gradient g of the surrogate advantage
function with respect to 6, evaluated at 6 = 6,, is exactly equal to
the policy gradient, VyJ(my)

@ This approximate problem can be analytically solved by the
methods of Lagrangian duality, yielding the solution:

26

O =0 H g
k1 = O + oTH Tg 8
@ TRPO adds a modification to this update rule: a backtracking line
search,
; 26
=+ ——-H!
Ot1 = O + JTH g &

where a € (0, 1) is the backtracking coefficient, and j is the
smallest nonnegative integer such that 7y, satisfies the KL
constraint and produces a positive surrogate advantage.



TRPO

@ computing and storing the matrix inverse, H~!, is painfully
expensive when dealing with neural network policies with
thousands or millions of parameters. TRPO sidesteps the issue
by using the ‘conjugate gradient’ algorithm to solve Hx = g for
x = H'g, requiring only a function which can compute the
matrix-vector product Hx instead of computing and storing the
whole matrix H directly.

Hx =V, ((VQDKL(Hk]|9))Tx)



Pseudocode: TRPO

Algorithm 2 Trust Region Policy Optimization

1: Input: initial policy 6y, initial value function ¢, KL-divergence limit &, backtracking coefficient «
2:fork=0,1,2,...do

3: Collect set of trajectories Dy = {7;} by running policy 7, = = (6;) in the environment.

4: Compute rewards-to-go R;.

5: Compute advantage estimates, A (using any method of advantage estimation) based on the current value function Vd>k-
6: Estimate policy gradient as

1 I R
= T— Z Z Vo 10g779(a1|-il)\9k A
[P TEDy 1=0
7: Use the conjugate gradient algorithm to compute &, ~ I:lk’lgk, where A is the Hessian of the sample average KL-

divergence.

8: Update the policy by backtracking line search with 6, = 6; + of xk, where j is the smallest value which

improves the sample loss and satisfies the sample KL-divergence constraint.
9: Fit value function by regression on mean-squared error:

T
¢r+1 = argmin ST (Vs —R)?,
¢ |D‘<‘T €Dy 1=0

typically via some gradient descent algorithm.
10: end for
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Proximal Policy Optimization (PPO)

@ PPO is motivated by the same question as TRPO: how can we
take the biggest possible improvement step on a policy using the
data we currently have, without stepping so far that we
accidentally cause performance collapse? Where TRPO tries to
solve this problem with a complex second-order method, PPO is
a family of first-order methods that use a few other tricks to keep
new policies close to old.

@ PPO-Penalty approximately solves a KL-constrained update like
TRPO, but penalizes the KL-divergence in the objective function
instead of making it a hard constraint, and automatically adjusts
the penalty coefficient over the course of training so that it’s
scaled appropriately.

@ PPO-Clip doesn’t have a KL-divergence term in the objective
and doesn’t have a constraint at all. Instead relies on specialized
clipping in the objective function to remove incentives for the new
policy to get far from the old policy.
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Key Equations

@ PPO-clip updates policies via

9k+1 =argmax E [L(saaa 9k79)] ’

7] 5,anvTe,

typically taking multiple steps of (usually minibatch) SGD to
maximize the objective. Here L is given by

L(s,a,6,0) = min (ﬂe(aS)A”k (s,a), clip ( mo(als) A —e 1+ e> A% (S,a)> )

o, (als) o, (als)

in which e is a (small) hyperparameter which roughly says how
far away the new policy is allowed to go from the old.

@ https:
//openai.com/research/openai-baselines-ppo
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@ This is a pretty complex expression, and it’s hard to tell at first
glance what it's doing, or how it helps keep the new policy close
to the old policy. As it turns out, there’s a considerably simplified
version of this objective which is a bit easier to grapple with

L(s,a, 0, 0) = min (::((Z;))A”Gk (s,a), g(e,A™% (s,a))> ,

where
(I+e)A A>0

g(e,4) = { (1—e)A A<O.

@ To figure out what intuition to take away from this, let’s look at a
single state-action pair (s, a), and think of cases.



Pseudocode: PPO

Algorithm 3 PPO-Clip

1: Input: initial policy parameters 6y, initial value function parameters ¢
2:fork=0,1,2,...do

3: Collect set of trajectories Dy, = {7;} by running policy 7; = = (6;) in the environment.
4: Compute rewards-to-go R;.
5: Compute advantage estimates, A, (using any method of advantage estimation) based on the current value function V-
6: Update the policy by maximizing the PPO-Clip objective:

u mo(ails) my o

Oiy1 = argmax —— > Z ——— A"k (s, ar), g(e, A" Ok (s1,ar)) |
o ‘Dk‘T TEDy 1= “Bk(at\sr)
typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:
T
br41 = arg min STO5T (Vels) — k)2,
¢ |D“T TEDy 1=0

typically via some gradient descent algorithm.
8: end for




Reinforcement Learning from Human Feedback

RLHF: Nisan Stiennon, etc, Learning to summarize with human
feedback, NeurlPS 2020

© Collect human feedback © Train reward model © Train policy with PPO
A Reddit post is One post with Anew post is
sampled from two summaries sampled from the =
the Reddit judged by a dataset.
TL;DR dataset. human are fed
to the reward
P model. E —
o
l J’ The policy 1t
Various policies L The reward generates a
are used to = model summary for the
sample a set of caloulates a post.
summaries. Jrm— reward r for
! cach summary. ;
l l "l L"
Two summaries ¢ :
=) E ' B

are selected for ” \

evaluation. 0 = ; i s H
The loss is Y I — i The reward
calculated based 5 ; model calculates

Qaz?;";ﬁ%f; on the rewards K areward for the
and human label, * o= summary. i
summary of the ol gl % loss = log(ofr;- r,))
post update the
1 reward model. T The reward is d
used to update

the policy via
“jis better than k” “ is better than k” PPO.



InstructGPT

provide detailed, accurate, and instructive responses to user queries.

Step1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

!
\J

(=)

Some people went
to the moon..

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

cuptonaravy Eplan .

ol

Step3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Write a story
about frogs

Once upon a time.

\J

RM
o9

LRI,

Do
\

I
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ChatGPT

generate human-like text based on the input it’s given, and it can
carry out a wide-ranging conversation on various topics.

Step1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

>
7
Explain reinforcement

learning to a 6 year old.

'

®

Zz

We give treats and

punishments to teach...

{

SFT
o9
o8 e

Ny

2
BEEE

Step2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

Alabeler ranks the
outputs from best
to worst.

This data is used
totrain our
reward model.

~

~/
Explain reinforcement
learning to a 6 year old.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

g

Write a story
about otters.

|
\J

PPO

Once upon atime...

adlry



Outline

@ MCTS and AlphaGo Zero
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Monte-Carlo Tree Search (MCTS)

@ MCTS is a recent algorithm for sequential decision making

@ MCTS is a versatile algorithm (it does not require knowledge
about the problem)

@ especially, does not require any knowledge about the Bellman
value function

@ stable on high dimensional problems

@ it outperforms all other algorithms on some problems (difficult
games like Go, general game playing, ...)
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MCTS

Problems are represented as a tree structure:
@ blue circles = states
@ plain edges + red squares = decisions
@ dashed edges = stochastic transitions between two states

} Current state (root)

Explored decisions

t1

} Stochastic transitions

) } Explored states

t2
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Main steps of MCTS

selection expansion simulation propagation

th—s ) > > ->
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Main steps of MCTS

Starting from an initial state:
@ Selection: select the state we want to expand from

© Expansion: One (or more) child nodes are added to expand the
tree, according to the available actions.

© Simulation: A simulation is run from the new node(s) according
to the default policy (pick actions randomly) to produce an
outcome.

© Back-propagation of some information:
@ N(s,a) : number of times decision a has been simulated in s
@ N(s) : number of time s has been visited in simulations

@ QO(s,a) : mean reward of simulations where a was chosen in s
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Main steps of MCTS

1. selection 2. expansion 3. simulation 4. propagation
0 0 @
th—> ( [ > [ > [ > ‘ — tn+1

P r 9?29 99 e

X horizon

The selected decision
a,, = the most visited decision from the current state (root node)




Selection step

How to select the state to expand ?




How to select the state to expand ?

The selection phase is driven by Upper Confidence Bound (UCB):

log(2 + N(s))
scoreucb(s, a) = Q(s,a) + S NGa) NG.a)
1 N

2

@ mean reward of simulations including action « in state s
@ the uncertainty on this estimation of the action’s value
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How to select the state to expand ?

The selection phase is driven by Upper Confidence Bound (UCB):

B log(2 + N(s))
SCOI’eucb(s, Cl) = Q(S, Cl) + HN—M
1

2

The selected action:

a* = arg max SCOre|,qp (s, a)

55/71



Example: Back-propagation

Selection

(22)
® @

Expansion

¢2)
® ©

@ @

@@
@)

Simulation

(:2)
@ OO

@) ) (& ) @)
© O
@)

0/1

Backpropagation

(02)
Gy @

@)@ 6 @
@@
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AlphaZero

2018/12/7, AlphaZero at “Science”.

It demonstrates learning chess,

shogi and go, tabula rasa without any domain-specific human
knowledge or data, only using self-play. The evaluation is performed
against strongest programs available.

A

Chess
AIphaZero S. Stockflsh

W: 2.0% D:97.2% L:0.8%

Shogi

AlphaZero vs. EImo

Go
AlphaZero vs. AGO

2\H BT T T HBHE

W ¥

AE
%% %% | %% | %%

555555555

| ik

R EIESE RS

W:84.2% D:22% L:13.6%

W:98.2% D:0.0% L: 1.8%

W: 68.9% L:31.1%
53.7% L:46.3%

Figure 2 of the paper "A general reinforcement leaming algorithm that masters chess, shogi, and Go through self-play” by David Silver et al
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AlphaZero

@ AlphaZero uses a neural network predicting (p(s), v(s)) = f(s, 6)
for a given state s

e p(s) is a vector of move probabilities
@ v(s) is expected outcome of the game in range [—1, 1].

@ Unlike the standard MCTS, Alpha Go Zero does not use a
default policy to perform a rollout in order to achieve an estimate
of the value of a state.

@ By a sequence of simulated self-play games, the search can
improve the estimate of p and v, and can be considered a
powerful policy evaluation operator given a network f predicting
policy p and value estimate v, MCTS produces a more accurate
policy m and better value estimate w for a given state:

(m(s), w(s)) <= MCTS(p(s), v(s),f) for (p(s), v(s)) = £(s,0).



AlphaZero: MCTS

MCTS keeps a tree of currently explored states from a fixed root
state. Each node corresponds to a game state and to every non-root
node we got by performing an action « from the parent state. Each
state-action pair (s, a) stores the following set of statistics:

@ visit count N(s, a)
@ total action-value W(s,a)

@ mean action-value Q(s,a) = W(s,a)/N(s,a), which is not stored
explicitly

@ prior probability P(s,a) of selecting action a in state s



AlphaZero: UCB

@ Each simulation starts in the root node and finishes in a leaf
node s;. In a state s;, an action is selected using a variant of
PUCT algorithm as

a, = argmax  Q(s;,a) + U(sy,a)
a

where
N(s)

U(s,a) = C(s)P(s,a) m,

Chase

with C(s) = log (M> + Cinit-

@ In the Alphazero paper, ci,ir = 1.25 and cpase = 19652.
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AlphaZero

When reaching a leaf node s,
@ evaluate it by the network, generating (p, v)

@ add all its children with N = W = 0 and the prior probability p,
@ in the backward pass for all + < L, we update the statistics in
nodes by performing
® N(s;,a;) + N(s,a;) + 1, and
o W(ss,a;) + W(s,a,) £ v, depending on the player on turn.

a Select b Expand and evaluate € Backup d  Play
4 Repeat )
LB i 1 B
ﬁa\ + F’/ P Q %J //{;\0\
ﬁ gt (A ALN
Q+U fian, 04U / o/ \0 FEWA FaW e
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AlphaZero

@ The MCTS runs usually several hundreds simulations in a single
tree. The result is a distribution proportional to exponentiated
visit counts N (s, a)'/™ using a temperature (7 = 1 is mostly
used), together with the predicted value function.

@ The next move is chosen as either:
e proportional to visit counts N (s, -)'/™

71—mol(a) ~ N(Sroz)h ')]/T
o deterministically as the most visited action
Troor = ar'g maXN(Srooh a)
@ During self-play, the stochastic policy is used for the first 30
moves of the game, while the deterministic is used for the rest of
the moves. (This does not affect the internal MCTS search, there

we always sample according to PUCT rule.)
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AlphaZero: Loss function

@ The network is trained from self-play games.

@ A game is played by repeatedly running MCTS from a state s,
and choosing a move a, ~ 7, until a terminal position sz is
encountered, which is then scored according to game rules as
z€{-1,0,1}.

@ Finally, the network parameters are trained to minimize

L=(z—v)+x"logp+c|6]’

@ a mean squared error between the predicted outcome v and the
simulated outcome z

@ a crossentropy/KL divergence for the action distribution, i.e., the
similarity of the policy vector p and the search probabilities 7

e L2 regularization



AlphaGo Zero

How AlphaGo Zero chooses its next move

s e S 25
Each potentil action from a game
> et ot oo

A possible next
T
st N The number of times action a has.

The action that
been taken from state s

maimizes Q + U

W The total value of the next state

Q@ The mean value of the next state

B The prior probability of selecting
action a

ofncde @ @480 O O@» - —— — — -
Garme state fed mto
et e tworic ¥

The gome state

iy tolised /
rodes -

ve probobilities

The current game state (=)




AlphaGo Zero

First. run the following simulation
1.600 times_.

Start at the root node of the tree (the current game state)

1. Choose the action that maximises_

Q+U
= ™~ A function of P and N that
increases if an action hasnt been
% '“:“";‘;“’ of explored much. relative to the other
IRESEh ISRl actions. or if the prior probabiity of
the action is high

Early on in the simulation. U dominates (more exploration).
but later: Q is more important (less exploration)

2. Continue until a leaf node is reached
The game state of the leaf node is passed into the neural
network. which outputs predictions about two things:

p Move probabilities
v Value of the state (for the current player)

The move probabilities p are attached to the new feasible
actions from the leaf node

3. Backup previous edges
Each edge that was traversed to get to the leaf node is updated

as follows:
N — N +1
W — W + v
Q = W/N



AlphaGo Zero

.then select a move
After 1,600 smulations, the move can either be chosen:

Thecuvertganesifs (5 Oﬂ\er‘ pOin+S
= The sub-tree from the chosen move is retained
N800 . for caleulating subsequent moves
Deterministically (for compefitive ploy) 600

Choose the action from the current state with greatest N N:200

= The rest of the treeis discanded
Stochastically (for exploratory play)
Choose the action from the current state from the distrbution
TE N ]K[ Chone Hismore et
~ 1 tdstc sanpe fromcategorcdsrbuon
where T is a femperature paramefer, controling exploration TU wihpoties 05, 0125, 0.375)
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AlphaGo Zero

SELF PLAY

Create a 'training set’

The best current player plays 25,000 games against itself
See MCTS section to understand how AlphaGo Zero selects each move

At each move, the following information is stored

T Y

The game state The search probabilities The winner
(see ‘What is a Game (from the MCTS) (1 if this player won, -1if
State section’) this player lost - added once

k the game has finished) J




AlphaGo Zero

K\NHAT IS A 'GAME STATE’

1if black stone here
0 if black stone not here

Current position of 19 x 19 x 17 stack
black’s stones

..and for the previous
7 time periods

Current position of
white's stones

..and for the previous

All1if black to play 7 time periods

All O if white to play

~

K This stack is the input to the deep neural network J




AlbhaGo Zero

KTHE DEEP NEURAL NETWORK ARCHITECTURE

How AlphaGo Zero assesses new positions

The network learns “tobula rasa’ (from a blank slate)
At no point is the network trained using human knowledge or expert moves.

The network
The value head b et e

Gama voke forcurrent player
e

Futy connected loyer

Rectifiar non-insartty

T
T ——
1 =

i

A convolutional layer
. - .
. - .

Rectifar non-Snearty

Batch rormatation

The policy head

19219 + 1 (For possd
o ko prabotdeies

Fusby conmected layer

A residual layer
- .

It

Botch narmabsaton
I I .
256
s 3n3)
mam =
Rechfier nan-tnearty =3
T s -
Botch mormabsaton
1
256 conuka
Clrora (3233
oot
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AlphaGo Zero

GETRAIN NETWORK =

Optimise the network weights

A TRAINING LOOP
Sample a mini-batch of 2048 positions from the last 500,000 games

Retrain the current neural network on these positions
— The game states are the input (see 'Deep Neurd Network Architecture’)

Loss function
Compares predictions from the neural network with the search probabilities and actual winner

p Cross-entropy , l

PREDICTIONS + ACTUAL

v Mean-squared error Y
+

Regularisation

k After every 1,000 training loops, evaluate the network )
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AlphaGo Zero

GVALUATE NETWORK )

Test to see if the new network is stronger

Play 400 games between the latest neural network and the current best
neural network

Both players use MCTS to select their moves, with their respective neural
networks to evaluate leaf nodes

Latest player must win 55% of games to be declared the new best player

L v¥

_J

TH/T



	0-课程简介
	1-经典问题简介
	2-凸优化对偶理论
	3.1-线性规划经典算法
	3.2-线性规划原始对偶算法
	4-压缩感知与稀疏优化简介
	5-稀疏优化算法
	6-矩阵低秩恢复算法
	7-最优传输
	8.1-整数规划建模
	8.2-整数规划算法
	9.1-大规模整数规划传统算法
	9.2-大规模整数规划机器学习
	10-次模优化
	11-随机优化算法
	12-随机奇异值分解
	13-相位恢复
	14-马尔可夫决策过程
	15-TD学习与Q学习
	16-策略梯度算法

