
Homework for “Algorithms for Big-Data Analysis”

Beijing International Center for Mathematical Research
Peking University

February 17, 2024

Note: Please write up your solutions independently. If you get significant help from others, write down the source
of references. A formal mathematical proof for all your claims is required.

1. This exercise shows that an efficient procedure for updating a tableau can be derived from the SMW formula in
numerical linear algebra.

(a) Let C be an m×m invertible matrix and let u, v ∈ Rm be two vectors. Show that

(C + uv⊤)−1 = C−1 − C−1uv⊤C−1

1 + v⊤C−1u
.

(b) Assuming that C−1 is available, explain how to obtain (C + uv⊤)−1 using only O(m2) arithmetic opera-
tions.

(c) Let B and B̄ be basis matrices before and after an iteration of the simplex method. Let AB(l) and AB̄(l)

be the exiting and entering column, respectively. Show that

B̄ −B = (AB̄(l) −AB(l))e
⊤
l ,

where el is the lth unit vector.

(d) Note that e⊤i B
−1 is the ith row of B−1 and e⊤l B

−1 is the pivot row. Show that

e⊤i B̄
−1 = e⊤i B

−1 − gie
⊤
l B

−1, i = 1, . . . ,m,

for suitable scalars gi. Provide a formula for gi. Interpret the above equation in terms of the mechanics for
pivoting in the revised simplex method.

2. Let x be an element of the standard form polyhedron P = {x ∈ Rn | Ax = b, x ≥ 0}. Prove that a vector
d ∈ Rn is a feasible direction at x if and only if Ad = 0 and di ≥ 0 for every i such that xi = 0.

1

Homework for “Algorithms for Big-Data Analysis”

Beijing International Center for Mathematical Research
Peking University

March 20, 2024

Note: Please write up your solutions independently. If you get significant help from others, write down the source
of references. A formal mathematical proof for all your claims is required.

1. 给定矩阵A ∈ Rm×n，向量b ∈ Rn。考虑优化问题：

(1) min
x∈Rn

∥x∥1, s.t. Ax = b,

其中∥x∥1 =
∑n

i=1 |xi|。

(a) 写出问题(1)的对偶问题。

(b) 写出问题(1)的最优性(KKT)条件。

(c) 假设z 是问题(1)的最优解。如何进一步加强(b)里给出的最优性条件，使得z是唯一最优解并给出

证明。

(d) 假设z是方程组Ax = b非零元最少的解。证明z也是(1) 的最优解的充要条件是：对所有满
足Ah = 0的向量h有 ∑

i∈T

sign(zi)hi ≤
∑
i∈T c

|hi|,

其中T = {i | zi ̸= 0}，T c是T的补集，以及

sign(zi) =


1, if zi > 0,

0, if zi = 0,

−1, if zi < 0.

1

Project on “Optimal Transport”

Zaiwen Wen
Beijing International Center for Mathematical Research

Peking University

June 18, 2023

Consider the optimal transport problem:

(1)

min
π∈Rm×n

m∑
i=1

n∑
j=1

cijπij

s.t.
n∑
j=1

πij = αi, ∀i = 1, . . . ,m,

m∑
i=1

πij = βj , ∀j = 1, . . . , n,

πij ≥ 0,

where c, α and β are given, and
∑m
i=1 αi =

∑n
j=1 βj = 1, α ≥ 0 and β ≥ 0.

1. Solve (1) by calling mosek and gurobi directly in Matlab or python. The package “CVX” is not allowed to
use here. Compare the performance between the simplex methods, the interior point methods and the network
simplex method (if it is available).

2. Write down and implement the Sinkhorn method.

3. (Optional) Write down and implement a first-order method, for example, the alternating direction method of
multipliers.

4. Test problems:

• Generate the data c, α and β using the following code and images:
http://faculty.bicmr.pku.edu.cn/˜wenzw/bigdata/gen_ot_data.m

http://faculty.bicmr.pku.edu.cn/˜wenzw/bigdata/source.png

http://faculty.bicmr.pku.edu.cn/˜wenzw/bigdata/dest.png

• Choose two other images based on your own preference and generate the data.

5. Requirement:

(a) Compare the efficiency (cpu time) and accuracy (checking optimality condition) of different methods.

(b) Prepare a report including

• detailed answers to each question

1

• numerical results and their interpretation

(c) Pack all of your codes in one file named as “projot-name-ID.zip” and send it to TA:

pkuopt@163.com

(d) If you get significant help from others on one routine, write down the source of references at the beginning
of this routine.

2

Homework for “Algorithms for Big-Data Analysis”

Zaiwen Wen
Beijing International Center for Mathematical Research

Peking University

March 19, 2025

1 Submission Requirement

1. Prepare a report including

• detailed answers to each question

• numerical results and their iterpretation

2. The programming language can be either matlab, Python or c/c++.

3. Pack all of your codes named as “proj1mk-name-ID.zip” send it to TA: pkuopt@163.com

作业提交需要统一打包成压缩文件，命名格式为：proj1mk-学号-姓名，文件类型随意。文件名中不要
出现空格，最好不要出现中文。

4. 请勿大量将代码粘在报告中，涉及到实际结果需要打表或者作图，不要截图或者直接从命令行拷贝结
果。

5. 提交word的同学需要提供word原文件并将其转换成pdf文件。

6. If you get significant help from others on one routine, write down the source of references at the beginning of
this routine.

2 Algorithms for ℓ1 minimization

Consider the problem

(2.1) min
x

µ∥x∥1 +
1

2
∥Ax− b∥22,

where A ∈ Rm×n and b ∈ Rm are given. Test data are as follows:

n = 1024;

m = 512;

A = randn(m,n);

u = sprandn(n,1,0.1);

b = A*u;

1

mu = 1e-2;
See http://bicmr.pku.edu.cn/˜wenzw/bigdata/Test_BP.m

1. First write down an equivalent model of (2.1) which can be solved by calling mosek and gurobi directly, then
implement the code.
Mosek: http://www.mosek.com/
Gurobi: http://www.gurobi.com/

2. Write down and implement the proximal gradient method for (2.1).
Reference: Neal Parikh, Stephen Boyd, Proximal Algorithms, Foundations and Trends in Optimization, https:
//web.stanford.edu/˜boyd/papers/pdf/prox_algs.pdf

3. Write down and implement the alternating direction method of multipliers (ADMM) for the primal problem
(2.1) or its dual problem.
Reference: Junfeng Yang, Yin Zhang, Alternating direction algorithms for l1-problems in Compressed Sensing,
SIAM Journal on Scientific Computing, https://epubs.siam.org/doi/abs/10.1137/090777761

4. Reformulate problem (2.1) as a saddle-point problem and implement the primal-dual hybrid gradient algorithm
(PDHG).
Reference: Antonin Chambolle, Thomas Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, Journal of Mathematical Imaging and Vision, https://link.springer.com/
article/10.1007/s10851-010-0251-1

5. GPU acceleration for algorithms in questions 2, 3, and 4.

(a) Identify and analyze which specific computational steps in the proximal gradient method, ADMM, and
PDHG can be parallelized and accelerated using GPU capabilities. For each algorithm, consider opera-
tions such as matrix-vector multiplications, proximal operations, gradient computations, and dual updates.
Discuss the potential speedup and challenges associated with GPU implementation for these steps.
References: David Applegate, Mateo Diaz, Oliver Hinder, Haihao Lu, Miles Lubin, Brendan O’Donoghue,
Warren Schudy, PDLP: A Practical First-Order Method for Large-Scale Linear Programming, https:
//arxiv.org/abs/2501.07018

(b) (Optional) Implement the GPU-accelerated versions of the algorithms identified in part (a) using a pro-
gramming language of your choice (e.g., MATLAB, Python with CUDA/PyTorch, or Julia with CUDA.jl).
Provide a performance comparison between the CPU and GPU implementations, highlighting any ob-
served improvements or limitations.
References:
cuPDLP.jl, https://github.com/jinwen-yang/cuPDLP.jl
cuPDLP-C, https://github.com/COPT-Public/cuPDLP-C
https://ww2.mathworks.cn/help/parallel-computing/gpu-computing-in-matlab.

html

https://pytorch.org/docs/stable/cuda.html

https://cuda.juliagpu.org/stable/

6. Algorithm unrolling for the proximal gradient method in question 2:

(a) Write down the unrolled form of the proximal gradient method. Clearly specify the learnable parameters,
number of the unrolled layers. Define the training loss.

2

Reference: Vishal Monga, Yuelong Li, Yonina C. Eldar, Algorithm Unrolling: Interpretable, Efficient
Deep Learning for Signal and Image Processing, IEEE Signal Processing Magazine, https://ieeexplore.
ieee.org/document/9363511

(b) (Optional) Generate the training dataset for the unrolled proximal gradient method. Train the unrolled
algorithm using PyTorch and compare the trained one with the proximal gradient method.
Reference: Open-L2O, https://github.com/VITA-Group/Open-L2O

7. Requirements for questions 1-4:

(a) The interface of each method should be written in the following format

[x, out] = method_name(x0, A, b, mu, opts);

Here, x0 is a given input initial solution, A and b are given data, opts is a struct which stores the options
of the algorithm, out is a struct which saves all other output information.

(b) Compare the efficiency (cpu time) and accuracy (checking optimality condition) in the format as
http://bicmr.pku.edu.cn/˜wenzw/bigdata/Test_BP.m

3 Algorithms For Low-rank Recovery

Consider the model

(3.1) min
X∈Rm×n

µ∥X∥∗ +
∑

(i,j)∈Ω

(Xij −Mij)
2,

where the nuclear norm ∥X∥∗ =
∑

i σi(X).

1. Write down and implement a proximal gradient method for solving (3.1).

2. Write down and implement an alternating direction method of multipliers (ADMM) for solving (3.1).

3. The data M and Ω are specified in the following script:
http://bicmr.pku.edu.cn/˜wenzw/bigdata/Test_MC.m

Test your method for µ = 10−1, 10−2, 10−3.

4. (Optional) Design a method for solving the following problem:

(3.2) min
X∈Rm×n

µ∥X∥∗ +
∑

(i,j)∈Ω

|Xij −Mij |.

3

Homework for “Algorithms for Big-Data Analysis”

Beijing International Center for Mathematical Research
Peking University

February 17, 2024

Note: Please write up your solutions independently. If you get significant help from others, write down the source
of references. A formal mathematical proof for all your claims is required.

1. Consider the integer programming problem:

max x1 + 2x2

s.t. − 3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

x1, x2 ≥ 0

x1, x2 integer.

(a) What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer
programming problem?

(b) What is the convex hull of the set of all solutions to the integer programming problem?

(c) Illustrate how the Gomory cutting plane algorithm would work. Give the first cut.

(d) Solve the problem by branch and bound. Solve the linear programming relaxations graphically.

(e) Suppose you dualize the constraint −3x1 + 4x2 ≤ 4. What is the optimal value ZD of the Lagrangian
dual?

(f) Suppose you dualize the constraint 2x1 − x2 ≤ 5. What is the optimal value ZD of the Lagrangian dual?

1

Homework for “Algorithms For Big Data Analysis”

Zaiwen Wen
Beijing International Center for Mathematical Research

Peking University

February 17, 2024

1 Theoretical exercises

1. 令fi(x) ∈ Rn → R,∀i = 1, . . . , N ,是闭凸函数，存在次梯度。假设随机次梯度方差是一致有界，即存
在M，对任意x ∈ Rn以及随机下标sk，有

Esk [∥g∥2] ≤ M2 < +∞, ∀g ∈ ∂fsk(x).

考虑求解优化问题minx∈Rn f(x) = 1
N

∑N
i=1 fi(x)的随机梯度下降算法(SGD)：

xk+1 = xk − αkgk, gk ∈ ∂fsk(x
k),

其中sk是从{1, · · · , N}中随机等可能地抽取的一个样本，αk > 0为步长。

(a) 令x∗是优化问题的最优解。证明对所有的K ≥ 1，下面不等式成立：

K∑
k=1

αkE[f(xk)− f(x∗)] ≤ 1

2
E[∥x1 − x∗∥2] + 1

2

K∑
k=1

α2
kM

2.

(b) 令AK =
∑K

i=1 αi，定义x̄K = 1
AK

∑K
k=1 αkx

k，证明存在常数D，使得下面不等式成立：

E[f(x̄K)− f(x∗)] ≤
D +

∑K
k=1 α

2
kM

2

2
∑K

k=1 αk

.

2 Coding exercises

2.1 Submission Requirement

1. Prepare a report including

• detailed answers to each question

• numerical results and their iterpretation

2. The programming language can be either matlab, Python or c/c++.

1

3. Pack all of your codes named as ”sto-ID-name.zip” and upload the file to send it to TA: pkuopt@163.com

作业提交需要统一打包成压缩文件，命名格式为：sto-学号-姓名，文件类型随意。文件名中不要出现
空格，最好不要出现中文。

4. 请勿大量将代码粘在报告中，涉及到实际结果需要打表或者作图，不要截图或者直接从命令行拷贝结
果。

5. 提交word的同学需要提供word原文件并将其转换成pdf文件。

6. If you get significant help from others on one routine, write down the source of references at the beginning of
this routine.

2.2 Variants of Stochastic Gradients Algorithms

Consider the nonconvex problem

(2.1) min
w∈Rd

1

n

n∑
i=1

fi(w) + λ∥w∥22,

where fi(w) = 1− tanh(yiw
⊤xi), λ > 0 and (xi, yi) is the i-th data pair.

1. Write down and implement two of the following algorithms: Adagrad, adam, SVRG

2. You are encouraged to read the implementation in Pytorch, tensorflow as well as other packages. However, you
should implement the codes by yourself.

3. Download the datasets covtype and gisette from
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

If the testing set is not available, please split the data set into a training set and testing set randomly according
to a ratio 7 : 3 (Also check references on cross validation).

4. Test a few choices of λ (for example, 10, 1, 0.1, 0.001. This value probably depends on the data sets). Generate
figures on training error versus epoch, testing error versus epoch, training error versus time, testing error versus
time, etc.

5. Extra-credit: propose, implement and test one of the following algorithms

(a) stochastic quasi-Newton method

(b) any other better idea

2

Homework for “Algorithms For Big Data Analysis”

Zaiwen Wen
Beijing International Center for Mathematical Research

Peking University

February 17, 2024

1 Submission Requirement

1. Prepare a report including

• detailed answers to each question

• numerical results and their iterpretation

2. The programming language can be either matlab, Python or c/c++.

3. Pack all of your codes named as ”svd-ID-name.zip” and send it to TA: pkuopt@163.com

作业提交需要统一打包成压缩文件，命名格式为：svd-学号-姓名，文件类型随意。文件名中不要出现
空格，最好不要出现中文。

4. 请勿大量将代码粘在报告中，涉及到实际结果需要打表或者作图，不要截图或者直接从命令行拷贝结
果。

5. 提交word的同学需要提供word原文件并将其转换成pdf文件。

6. If you get significant help from others on one routine, write down the source of references at the beginning of
this routine.

2 Randomized Singular Value Decomposition Algorithms

Given a matrix A ∈ Rm×n, compute p-largest singular values and their corresponding left and right singular vectors.

1. Write down and implement one of the algorithms in (extra credit for choosing both algorithms)

• LinearTimeSVD Algorithm on page 166 of “Petros Drineas, Ravi Kannan, and Michael W. Mahoney, Fast
Monte Carlo Algorithms for Matrices II: Computing a Low-Rank Approximation to a Matrix, SIAM J.
Comput., 36(1), 158183”

• Prototype for Randomized SVD on page 227 of “N. Halko, P. G. Martinsson, and J. A. Tropp, Finding
Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decomposi-
tions,SIAM Rev., 53(2), 217288. ”

1

2. Compute r ∈ {5, 10, 15, 20} largest singular values and their corresponding singular vectors on the following
two examples.

• A random matrix A generated as follows:

m = 2048;

n = 512;

p = 20;

A = randn(m,p)*randn(p,n);

• Pick one of your favorite images. The smallest dimension of the image should be at least 1000. Suppose
that the file name of the image is “peppers.png”. The following matlab codes construct a matrix A.

A1 = imread(’peppers.png’); %read the image peppers.png

imshow(A1); %display the image

A = rgb2gray(A1); %Convert to grayscale

A = double(A); %convert the type of data to double

3. Extra-credit: Accelerate the speed for solving the following matrix completion problem using the randomized
SVD techniques:

min
X∈Rm×n

1

2

∑
(i,j)∈Ω

(Xij −Mij)
2 + µ∥X∥∗.

2

Homework for “Algorithms For Big Data Analysis”

Zaiwen Wen
Beijing International Center for Mathematical Research

Peking University

February 28, 2022

1 Submission Requirement

1. Prepare a report including

• detailed answers to each question

• numerical results and their iterpretation

2. The programming language can be either matlab, Python or c/c++.

3. Pack all of your codes named as “phase-ID-name.zip” and send it to TA: pkuopt@163.com

作业提交需要统一打包成压缩文件，命名格式为：phase-学号-姓名，文件类型随意。文件名中不要出
现空格，最好不要出现中文。

4. 请勿大量将代码粘在报告中，涉及到实际结果需要打表或者作图，不要截图或者直接从命令行拷贝结
果。

5. 提交word的同学需要提供word原文件并将其转换成pdf文件。

6. If you get significant help from others on one routine, write down the source of references at the beginning of
this routine.

2 Algorithms for phase retrieval

One popular formulation of the phase retrieval problem is solving a system of quadratic equations in the form

yr = |〈ar, z〉|2 , r = 1, 2, ...,m,(2.1)

where z ∈ Cn is the decision variable, ar ∈ Cn are known sampling vectors, 〈ar, z〉 is the inner product between ar

and z in Cn, |a| is the magnitude of a ∈ C, and yr ∈ R are the observed measurements.
Choose either a) or b). Write down and implement the algorithm.

a) (i) Write down an SDP relaxation for problem (2.1) from one of the following references.

• E. J. Candes, Y. Eldar, T. Strohmer and V. Voroninski. Phase retrieval via matrix completion. SIAM J. on
Imaging Sciences 6(1), 199–225.

1

• Irene Waldspurger, Alexandre dAspremont and Stephane Mallat, Phase recovery, MaxCut and complex
semidefinite programming, Mathematical Programming, Ser. A (2015) 149:4781

(ii) Design an alternating direction method of multipliers (ADMM) to solve this SDP.

b) Consider the nonlinear least squares problem:

(2.2) min
z

f(z) =
1

m

∑
| |〈ar, z〉|2 − yr|.

Write down a subgradient method to solve (2.2).

• Reference:
E. J. Candes, X. Li and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE
Transactions on Information Theory 61(4), 1985–2007.

c) Test problems:

• The 1D test problems in
https://viterbi-web.usc.edu/˜soltanol/WFcode.html

• A real image from Matlab:

imread(’ngc6543a.jpg’);

d) DO NOT copy the codes online directly!

2

Homework for “Algorithms for Big-Data Analysis”

Beijing International Center for Mathematical Research
Peking University

February 17, 2024

Note: Please write up your solutions independently. If you get significant help from others, write down the source
of references. A formal mathematical proof for all your claims is required.

1. 考虑有限情形的MDP(S,A, P,R, γ)，其中S是有限个离散状态的集合，A是有限个离散动作的集

合，R是奖励函数，γ ∈ (0, 1)是折扣因子。给定时刻t的状态s和动作a，下一时刻转移到状态s′的概率

是P (s′ | s, a) = P (st+1 = s′ | st = s, at = a)。令V (s)为价值函数，定义Bellman算子B：

BV (s) = max
a

{
R(s, a) + γ

∑
s′∈S

P (s′ | s, a)V (s′)

}
, ∀s ∈ S.

(a) 证明算子B是压缩映射，即：

∥BV −BV ′∥∞ ≤ γ∥V − V ′∥∞,

其中∥V − V ′∥∞ = maxs |V (s)− V ′(s)|。

(b) 从V0开始执行迭代算法：Vk+1 = BVk。对于任意k > 0，证明：

∥Vn+k − Vn∥∞ ≤ γn

1− γ
∥V1 − V0∥∞.

2. 令考虑有限步MDP (S,A, s1, P,R,H)，其中S为状态集合，A为动作集合，s1为初始状态，P为转移

概率矩阵，R为奖励矩阵，H为终止时间，γ为折扣因子。定义π(s, a)是在状态s根据随机策略π 执行

动作a的概率。定义τ = (s1, a1, s2, . . . , aH−1, sH)是从状态s1出发，执行策略π产生的轨道(状态-动作
对)，即at ∼ π(st, ·)。

(a) 写出轨道τ的概率表达式Dπ(τ)。

(b) 定义ρ(π)是有限步总奖励的均值，即：

ρ(π) = E

[
H∑
t=1

γt−1rt|π, s1

]
.

令R(τ)是在轨道τ获得的总奖励。写出ρ(π)关于R(τ)的表达式。

1

(c) 假设πθ(s, a)是参数化之后的策略，其中θ是参数。证明

∇θρ (πθ) = Eτ [R(τ)∇θ log (D
πθ (τ))] = Eτ

[
R(τ)

H−1∑
t=1

∇θ log (πθ (st, at))

]
.

(d) 给定状态st和参数θ，假设bt(st)条件独立于πθ产生的抽样。证明：

Eτ

[
H−1∑
t=1

bt (st)
∂

∂θj
log (πθ (st, at)) |θ, s1

]
= 0.

(e) 给出满足(d)里条件的一种bt(st)。

2

Project on Railway Timetabling

April 20, 2025

Train timetable defines the departure/arrival time of each train j ∈ J at the origin, destination and
intermediate stations. For example, in the Beijing-Shanghai line, each train departs from Beijing and
heads to Shanghai (called down direction) or departs from Shanghai and heads to Beijing (called up
direction). In the timetable, the total running time of train j is defined by the elapsed time from origin
station to destination station. There are so called ideal time schedule for some trains. However, they may
be modified to meet practical constraints such as track capacity, interval times, etc.

Now we consider the macro-scope rail timetabling problem, in which we do not consider the internal
operations within the station and assume that the station has only one track for up and down direction.
At the same time, in order to take care of the inter-station operation requirements, we define several
different types of time intervals to avoid any two trains being too close to each other. These assumptions
simplifies the complexity of modelling. In meso-scope or micro-scope models, it’s usually necessary to
consider the inner-station structure to construct a feasible and practical train timetabling plan, which
involves more complicated decision variables and constraints (more details in [Zhang et al., 2020b]).

In this note, we create a space-time network model to solve discretized-time train timetabling prob-
lem based on the model [Caprara et al., 2002], we create a space-time network model, and apply the
Lagrangian relaxation method to solve the problem. Results for a toy example involving 7 states and 16
trains are presented to show the effectiveness of our model and method.

1 Space-Time Network Model

We use a directed, acyclic and multiplicative graph G = (V,E) to characterize the train timetabling
problem. The node set V has the form {σ, τ} ∪U ∪W , where σ, τ denote artificial origin and destination
nodes, respectively. In addition to the artificial nodes, we further assume U denotes the set of arrival
nodes and W denotes the set of departure nodes. Each normal node v ∈ U ∪ V is denoted by a binary
vector v = (s(v), t(v)) where s(v) denotes the station and t(v) denotes the discrete time point.

虚拟终点站

虚拟始发站

站点

B1

B2

注：中间站点B拆成两个节点B1
和B2，这样可以分别表达入站和
出站信息. A-B2 为segment
arc，B2-B1 为station arc

注：中间节点C没有station
arc，表示这一站都不停车。
本项目数据中没有这种节点

同一行有多个节点，代表不同的时间上的节
点。本项目数据中每隔1分钟一个节点

t1 t2 t3 t4

The arcs E in graph G can be divided into the
following categories:

1. starting arcs (σ, v), where s(v) denotes the
starting station of certain train.

2. station arcs (u,w), u ∈ U,w ∈W, s(u) = s(w)
denotes that a certain train enters the station
s(u) at time t(u) and leave the same station
at time t(w).

3. segment arcs (w, u), u ∈ U,w ∈ W denotes
the route of some train, i.e., a train leaves
the station s(w) at time t(w) and arrive at
another station s(u) at time t(u).

1

4. ending arcs (u, τ), where s(u) is the terminal
of some train.

Since the route and timetable plan of each train
j ∈ J are fairly different, the available nodes and
arcs of each train are also different, so we define a
subgraph Gj ⊆ G for each train j. Any schedule
of each train can be viewed as a path in the sub-
graph Gj (also in the original graph G). Finding
the conflict-free paths for all the trains is defined as
the train timetable problem.

1.1 A Binary Integer Programming Model

First, we introduce our model parameters, decision variables, objective functions, and various types of
constraints.

Model Parameters

• pe : the ”profit” of using a certain arc e;

• σ, τ : the artificial origin and destination node;

• J : the set of trains;

• δ−j (v) : set of in arcs of node v in Ej ;

• δ+j (v) : set of out arcs of node v in Ej ;

• Ej : set of available arcs of train j;

• E : set of all arcs in graph G;

• V j : set of available nodes of train j;

• V : set of all nodes in graph G;

• T (v) : set of trains may passing through node v;

• N (v) : set of nodes conflicted with node v.

Decision Variables

• xe = {0, 1} : whether or not use the arc e ∈ E;

• yv : whether or not use the node v;

• zjv : whether or not node v is occupied by trainj.

2

Objective Function The objective defines as
∑

j∈J

∑
e∈Ej pexe, which represents the sum of the “prof-

its” of all occupied edges in a certain timetable. Although this objective is a simple linear function, we
can greatly enrich the practical meaning by interpreting different definition of ”profit” of each edge. For
example, if we set all p(σ,v) to 1 and all others to 0, the objective means we maximize the number of trains
in the timetable; if we set pe to the opposite of the block section running time, the objective means that
we minimize the total running time of all trains; on top of that, some artificial adjustments are made to
some pe, such as assigning smaller values to those arcs which may be more congested, then the objective
function indicates minimizing the total running time as well as considering congestion to some degree.
This idea is especially crucial in the subsequent Lagrangian relaxation method, which in essence is to
control the degree of congestion of arcs through adjusting the “profit” pe of each arc in the space-time
network.

Model Constraints Any feasible solution of the problem should satisfy the following constraints:

• For each train j, it can choose at most one starting/ending arcs. Some starting/ending occupied
means that there exists some train j in the timetable (to occupy this arc):∑

e∈δ+j (σ)

xe ≤ 1,
∑

e∈δ−j (τ)

xe ≤ 1, j ∈ J.

• Non-artificial nodes must have equal in and out degrees. Actually, the degree should be in {0, 1}.∑
e∈δ−j (v)

xe =
∑

e∈δ+j (v)

xe, j ∈ J, v ∈ V \{σ, τ}.

3

• Logic constraints: whether the node v is occupied by train j and whether the node v is occupied:

zjv =
∑

e∈δ−j (v)

xe, j ∈ J, v ∈ V j , and yv =
∑

j∈T (v)

zjv, v ∈ V j .

• Headway constraints between trains, which means that only one of the conflicting nodes can be
occupied. Headway constraints indicates that the trains departing/entering same station should
satisfy certain time lower limit to avoid collision. For any node v ∈ U ∪W , the neighbourhood
N (v) ⊆ V defines a clique constraint: ∑

v′∈N (v)

yv′ ≤ 1, v ∈ V.

For any train j ∈ J , the sets or parameters with superscript or subscript notation corresponds to
relevant object to j. The entire 0− 1 integer programming model is given by

max
x

∑
j∈J

∑
e∈Ej

pexe (1)

s.t.
∑

e∈δ+j (σ)

xe ≤ 1, j ∈ J (2)

∑
e∈δ−j (v)

xe =
∑

e∈δ+j (v)

xe, j ∈ J, v ∈ V \{σ, τ}, (3)

∑
e∈δ−j (τ)

xe ≤ 1, j ∈ J (4)

zjv =
∑

e∈δ−j (v)

xe, j ∈ J, v ∈ V j (5)

yv =
∑

j∈T (v)

zjv, v ∈ V j (6)

∑
v′∈N (v)

yv′ ≤ 1, v ∈ V (7)

xe ∈ {0, 1} e ∈ E, (8)

where (2), (3), (4) denotes the arcs of train j should form a valid path in G, (5), (6) represent the logical
relationship of x, y, z, (7) represents headway constraints.

This model is a pure binary programming problem with many variables and constraints, and may take
a long time to solve directly by a mathematical optimization solver (e.g. Gurobi or COPT).

1.2 The Lagrangian Relaxation Method

Note that constraint (3) is a flow conservation constraint, which means the in and out degree of v must
be balanced. Constraints (2) and (4) denote whether a certain train is in the timetable or not. If we only
consider constraints (2), (3), (4) and (8), then the model is separable respect to each train and the model
for train j is:

4

max
x

∑
e∈Ej

pexe (9)

s.t.
∑

e∈δ+j (σ)

xe ≤ 1, (10)

∑
e∈δ−j (v)

xe =
∑

e∈δ+j (v)

xe, v ∈ V \{σ, τ}, (11)

∑
e∈δ−j (τ)

xe ≤ 1, (12)

xe ∈ {0, 1} e ∈ E, (13)

The above problem is a shortest path problem which can be solved efficiently in a polynomial time.
Compared to the constraints (2)-(4), the constraints (5)-(7) are all coupling constraints involved with

multiple trains. Let {λv′} be the Lagrangian multiplier associated to the constraints (7). At the k-th
iteration, the Lagrangian relaxation method is to relax the constraints (7) and solves the subproblem

xk+1 = argmax
x

∑
j∈J

∑
e∈Ej

pexe −
∑
v∈V

λk
v(

∑
v′∈N (v)

yv′ − 1) (14)

s.t.
∑

e∈δ+j (σ)

xe ≤ 1, j ∈ J (15)

∑
e∈δ−j (v)

xe =
∑

e∈δ+j (v)

xe, j ∈ J, v ∈ V \{σ, τ}, (16)

∑
e∈δ−j (τ)

xe ≤ 1, j ∈ J (17)

zjv =
∑

e∈δ−j (v)

xe, j ∈ J, v ∈ V j (18)

yv =
∑

j∈T (v)

zjv, v ∈ V j (19)

xe ∈ {0, 1} e ∈ E. (20)

Although the constraints (18) and (19) are still kept in the model but they are eventually eliminated.
Thus, the model (14)-(20) only has variables xe, and both the objective function and constraints can be
decomposed into shortest path sub-problems for each train. Then, the Lagrangian multiplier is updated
as

λk+1
v = max{0, λk

v + η(
∑

v′∈N (v)

yv′ − 1)}.

One important drawback of Lagrangian relaxation is the violation of the relaxing constraints. It is
often necessary to obtain a feasible solution by some primal heuristic algorithm.

Primal heuristic algorithm The primal heuristic algorithm module is important for the success of the
Lagrangian relaxation method. Since the Lagrangian relaxation method can only obtain pairwise solutions
and cannot guarantee to satisfy the relaxation constraints, the heuristic algorithm directly determines the
quality of the final output feasible solution. One commonly used heuristic method is Algorithm 1. It
is based on the dual solution of Lagrangian relaxation, and constructs a primal solution by scheduling

5

the congested train first. Note that this heuristic works well when the timetable is not very crowed,
otherwise the problem needs to be solved with the aid of a mathematical optimization solver (e.g., gurobi
and COPT).

Algorithm 1 Ranking based SPP Primal Heuristic

Require: reordering trains by dual objective function (including multipliers) in descending order.
priority list← sort by desending order of dual obj(more congested train first)
while priority list Not Empty do

Step 1. j ← first train in priority list
Step 2. run the SPP algorithm in the origin graph, and remove all conflicting nodes and arcs. If

the algorithm succeed, then keep the train in the timetable, otherwise skip the train.
end while
Output all trains with feasible paths, which defines a timetable.

2 A Toy Example

In this section, we present a toy example involving 7 states and 16 trains. The object is to schedual a
timetable for these trains withing 160 minutes. The time interval is 1 minute, i.e., there are 161 time
nodes at each train station in the space-time network model.

Station Data Each column of Table 1 indicates the name of the station and the distance between each
station and starting station A.

station mile
A 0
B 50
C 100
D 170
E 210
F 250
G 300

Table 1: information of the train stations

Trains Data Each column of Table 2 indicates, from left to right, the train number, the train speed,
and the status of the train at this station. Specifically, 0 means that the train will pass through the
station directly and 1 means that this train must stop at the station. These information will determine
the available arcs Ej of train j.

6

trainNO speed A B C D E F G
G1 350 1 0 0 0 0 1 1
G3 350 1 1 1 0 1 0 1
G5 350 1 1 0 1 0 1 1
G7 350 1 1 0 0 1 0 1
G9 350 1 1 0 0 0 1 1
G11 350 1 1 0 0 1 0 1
G13 300 1 1 1 1 1 1 1
G15 300 1 1 1 1 1 1 1
G17 300 1 1 1 1 1 1 1
G19 300 1 1 1 1 1 1 1
G21 300 1 1 1 1 1 1 1
G23 300 1 1 1 1 1 1 1
G25 300 1 1 1 1 1 1 1
G27 300 1 1 1 1 1 1 1
G29 300 1 1 1 1 1 1 1
G31 300 1 1 1 1 1 1 1

Table 2: status at train stations

Block Section Data Each column of Table 3 indicates, from left to right, the name of the blocked
interval, the running time (minutes) of the train at the speed of 300 km/h, and the running time (minutes)
of the train at the speed of 350 km/h.

station runtime(300) runtime(350)
A-B 10 9
B-C 20 18
C-D 14 12
D-E 8 7
E-F 8 7
F-G 10 8

Table 3: Running time between stations

Other Parameter All kinds of headway time lower bound are set as 5 minutes. If a train stop at a
station, it needs to stop at least 2 mins and at most 15 mins.

Simulation Results We run the Lagrangian relaxation method on the sample data with stopping
criteria as ub− lb ≤ 0.1ub. Figure 1 shows the bound updated through iterations and Figure 2 shows the
output timetable.

7

Figure 1: Bound update through iterations

Figure 2: timetable generated by the Lagrangian relaxation method

8

3 Automated Optimization Modeling Using LLMs

In optimization practice, the most challenging aspect is often not the execution of algorithms, but the
mathematical modeling of the problem. Successful optimization modeling requires deep domain knowl-
edge, extensive experience, and a thorough understanding of the problem domain. With the development
of modern commercial solvers, many standard optimization problems can be efficiently solved by call-
ing these mature tools, but the modeling process still requires highly specialized skills, which limits the
widespread application of optimization techniques.

In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in under-
standing natural language and performing complex reasoning tasks, offering new possibilities for automat-
ing optimization modeling[Xiao et al., 2024, Astorga et al., 2024, Huang et al., 2025, Lu et al., 2025]. By
leveraging LLMs to transform natural language problem descriptions into formalized mathematical mod-
els or even generating code that calls solvers directly, the barrier to applying optimization techniques can
be significantly reduced, enabling non-specialists to utilize optimization methods for solving real-world
problems.

A company has th ree
t ranspor ta t ion op t ions to

choose f rom to t ranspor t 25
tons o f ca rgo , namely

t rucks , a i rp lanes , and sh ips
w i th cos ts $100 , $120 , $80

per ton and capac i t ies o f 10 ,
20 , 30 tons respec t i ve ly .

The company can’ t choose
t rucks and sh ips toge ther .
How shou ld the company

op t im ize the se lec t ion and
a l loca t ion o f these methods
to m in im ize overa l l cos ts?

D e s c r i p t i o n

i m p o r t g u r o b i p y a s g p
f r o m g u r o b i p y i m p o r t G R B

C r e a t e M o d e l
m o d e l = g p . M o d e l (" C a r g o _ T r a n s p o r t a t i o n ")

D e f i n e d e c i s i o n v a r i a b l e s
y 1 = m o d e l . a d d V a r (v t y p e = G R B . C O N T I N U O U S ,
n a m e = " T r u c k s _ T o n s " , l b = 0)
… … … …
O b j e c t i v e s
m o d e l . s e t O b j e c t i v e (1 0 0 * y 1 + 1 2 0 * y 2 + 8 0 * y 3 ,
G R B . M I N I M I Z E)
C o n s t r a i n t s
m o d e l . a d d C o n s t r (y 1 + y 2 + y 3 > = 2 5 ,
" T o t a l _ C a r g o ")
… … … …
O p t i m i z e
m o d e l . o p t i m i z e ()
P r i n t t h e r e s u l t
i f m o d e l . s t a t u s = = G R B . O P T I M A L :
 … … … …

 V a r i a b l e s ：

O b j e c t i v e s :

 C o n s t r a i n t s :

F o r m u l a t i o n P y t h o n C o d e

N o n - n e g a t i v e c o n t i n u o u s v a r i a b l e s
i n d i c a t i n g t h e v o l u m e o f c a r g o .

0 - 1 v a r i a b l e s i n d i c a t i n g w h e t h e r
t r u c k s , a i r p l a n e s , a n d s h i p s a r e
a r e s e l e c t e d , r e s p e c t i v e l y .

Figure 3: An example of Automated Optimization Modeling Using LLMs

Figure 3 illustrates how LLMs can facilitate the transformation from a natural language problem
description to a formal optimization model and executable code. In this example, a transportation logistics
problem is presented in plain language, describing a company’s need to optimize cargo distribution across
three available modes of transportation (trucks, airplanes, and ships) with different costs and capacity
constraints.

The LLM first interprets this description to extract the essential elements of the optimization prob-
lem, formulating a mathematical model with clearly defined decision variables (binary variables indicating
transportation mode selection and continuous variables for cargo volume), an objective function (minimiz-
ing the total transportation cost), and constraints (capacity limitations, incompatibility between certain
modes, and total cargo requirements). This formalization process demonstrates the LLM’s ability to
recognize the underlying optimization structure from natural language.

The LLM then generates executable Python code that implements this mathematical formulation using
the Gurobi optimization package. The generated code includes all necessary imports, model initialization,
variable definitions, objective specification, constraint implementation, and solver execution commands.
This end-to-end pipeline—from problem description to ready-to-run code—exemplifies how LLMs can
democratize access to optimization techniques by bridging the gap between domain-specific problems
and their mathematical solutions, allowing users without specialized optimization knowledge to leverage
powerful solver technologies.

9

4 Questions

Submission requirement:

1. Prepare a report including

• detailed answers to each question

• numerical results and their interpretation

2. The programming language can be either matlab, Python or c/c++.

3. 6月22日晚12点前将书面报告(包括latex源文件，程序等等）打包,发email给助教(pkuopt@163.com).
提交的文件请全部打包，文件名为“train-name1-name2.zip”.
提交word 的同学需要提供word 原文件并将其转换成pdf 文件。

4. 请勿大量将代码粘在报告中，涉及到实际结果需要打表或者作图，不要截图或者直接从命令行拷贝
结果。

5. If you get significant help from others on one routine, write down the source of references at the
beginning of this routine.

Project Questions:

1. Read the description of the problem (1)-(8) carefully. Create the space-time network model and
write a code to construct the data of the toy example in section 2. Then solve the problem and its
LP relaxation by using either Gurobi or Mosek or COPT. Report the number of the variables and
constraints as well the CPU time. Plot the timetable similar to Figure 2.

2. Consider reformulating the problem using a job-shop scheduling approach instead of the space-time
network model. Compare these two modeling approaches in terms of their formulation differences,
solution times, model size, and practical advantages/disadvantages for train timetabling problems.A
few references are [Cebi et al., 2020, Sharma and Jain, 2016, ho Zeno. Yu, 2021]

3. Design a LLM-assisted optimization modeling pipeline to solve the problem (1)-(8).

• Read and understand the papers and code in [AhmadiTeshnizi et al., 2023]1. Prepare a de-
scription of the problem in natural language, then ask the large language model (LLM) using
its web interface to generate a corresponding mathematical model and executable code based
on your description.

• (Optional) Design a modular pipeline system by calling the API interface of LLM, referencing
the OptiMUS architecture. Your pipeline should include at least the following modules:

– Model generation module: Using LLM to generate mathematical model formulations

– Code generation module: Converting mathematical models into executable code

– Error correction module: Using different Large Language Models or user feedback to vali-
date and improve generated models and code

– RAG (Retrieval-Augmented Generation) module: Retrieving appropriate modeling tech-
niques and examples from relevant literature (Optional)

Complete the following tasks:

(a) Apply your pipeline to separately formulate the train timetabling problem as: (1) a space-
time network model, and (2) a job-shop scheduling model. Generate code for both formu-
lations using Gurobi and compare their effectiveness.

1https://github.com/teshnizi/OptiMUS

10

(b) Test your solution code on toy examples and provide detailed analysis

(c) Evaluate the performance differences of various Large Language Model APIs on this task

4. Implement the Lagrangian relaxation method for solving problem (1)-(8). Write down more detailed
description the Lagrangian relaxation method if your implementation is different from 1.2. Report
the CPU time and the violation of constraints:

feas :=
∑
v∈V

max

0,
∑

v′∈N (v)

yv′ − 1

 . (21)

Plot the timetable similar to Figure 2.
Requirements: feas should be zero. Otherwise, this solution is not meaningful.

5. Write down and implement either the augmented Lagrangian method or the alternating direction
method of multipliers for solving problem (1)-(8). Report the CPU time and the violation of
constraints defined in (21). Plot the timetable similar to Figure 2.
Requirements: feas should be zero. Otherwise, this solution is not meaningful.
Hints: The objective function of the subproblem with respect to the variable x is a general quadratic
function. A possible strategy is to linearize the objective function and add a proximal term. Since
x2
e = xe when xe ∈ {0, 1}, the resulted subproblem is still linear and can be solved the same as the

shortest path problem (9)-(13).

6. (Optional) Construct a more realistic dataset based on (1)-(8). Following the implementation of
OptMATH [Lu et al., 2025], design a concise pipeline to generate 100 high-quality data samples,
where each sample is a triplet consisting of (natural language problem description, mathematical
formulation, implementation code).

7. Propose a prototye reinforcement learning (RL) algorithm to solve the train time table problem.
A few references are [Lemos et al., 2019, Kool et al., 2018, Cappart et al., 2021, Zhang et al., 2020a,
Zhou et al., 2020, Mazyavkina et al., 2021, Joshi et al., 2022]. Unlike the standard job-shop schedul-
ing problem, the train timetable problem requires determining not only the departure times but also
the dwelling times at each station. These dwelling times directly influence the headway constraints,
rendering traditional priority-based rules insufficient.
Requirements:

• Formulate a Markov decision process (MDP), clearly defining the state space, action space,
transition function, and reward function.

• Explain how headway constraints are handled. Two possible strategies include: masking invalid
actions to prevent constraint violations, or incorporating the headway constraints into the
reward function to guide the learning process.

• Design the problem features and policy network architecture. The features should capture
both static problem data and dynamic decision-making context. The policy network should
take these features as input and output a distribution over the action space at each decision
step.

• Specify the RL training algorithm to be used.

• (Optional) Implement the proposed algorithm. Train the model using the dataset constructed
in Question 6. Compare its performance on the toy example against the traditional solvers
developed in Question 4 and 5.

Hints: When formulating the MDP, two distinct scheduling paradigms can be considered:

11

• Priority-Based Sequential Scheduling. Trains are scheduled sequentially based on a learned
priority order, with both departure times and dwelling times determined for each train in turn.

• Synchronized Time-Step Scheduling. At each decision step, first select a train currently dwelling
at a station, then decide whether to extend its dwell time or dispatch it. Note that decision
steps are aligned with real-time progression in this situation.

References

[AhmadiTeshnizi et al., 2023] AhmadiTeshnizi, A., Gao, W., and Udell, M. (2023). OptiMUS: Optimiza-
tion modeling using MIP solvers and large language models.

[Astorga et al., 2024] Astorga, N., Liu, T., Xiao, Y., and Schaar, M. v. d. (2024). Autoformulation of
mathematical optimization models using LLMs.

[Cappart et al., 2021] Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., and Veličković, P.
(2021). Combinatorial optimization and reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544.

[Caprara et al., 2002] Caprara, A., Fischetti, M., and Toth, P. (2002). Modeling and Solving the Train
Timetabling Problem. Operations Research, 50(5):851–861.

[Cebi et al., 2020] Cebi, C., Ata, E., and Sahingoz, O. K. (2020). Job shop scheduling problem and
solution algorithms: A review. 2020 11th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), pages 1–7.

[Gasse et al., 2019] Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi, A. (2019). Exact combi-
natorial optimization with graph convolutional neural networks. arXiv preprint arXiv:1906.01629.

[ho Zeno. Yu, 2021] ho Zeno. Yu, Y. (2021). A research review on job shop scheduling problem. E3S Web
of Conferences.

[Huang et al., 2025] Huang, C., Tang, Z., Hu, S., Jiang, R., Zheng, X., Ge, D., Wang, B., and Wang,
Z. (2025). ORLM: A customizable framework in training large models for automated optimization
modeling.

[Joshi et al., 2022] Joshi, C. K., Cappart, Q., Rousseau, L.-M., and Laurent, T. (2022). Learning the
travelling salesperson problem requires rethinking generalization. arXiv preprint arXiv:2006.07054.

[Karalias and Loukas, 2020] Karalias, N. and Loukas, A. (2020). Erdos goes neural: an unsupervised
learning framework for combinatorial optimization on graphs. Advances in Neural Information Pro-
cessing Systems, 33:6659–6672.

[Kool et al., 2018] Kool, W., Van Hoof, H., and Welling, M. (2018). Attention, learn to solve routing
problems! arXiv preprint arXiv:1803.08475.

[Lemos et al., 2019] Lemos, H., Prates, M., Avelar, P., and Lamb, L. (2019). Graph colouring meets
deep learning: Effective graph neural network models for combinatorial problems. In 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI), pages 879–885. IEEE.

[Li et al., 2018] Li, Z., Chen, Q., and Koltun, V. (2018). Combinatorial optimization with graph convo-
lutional networks and guided tree search. Advances in neural information processing systems, 31.

[Lu et al., 2025] Lu, H., Xie, Z., Wu, Y., Ren, C., Chen, Y., and Wen, Z. (2025). OptMATH: A scalable
bidirectional data synthesis framework for optimization modeling.

12

[Mazyavkina et al., 2021] Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. (2021). Reinforce-
ment learning for combinatorial optimization: A survey. Computers & Operations Research, 134:105400.

[Schuetz et al., 2022] Schuetz, M. J., Brubaker, J. K., and Katzgraber, H. G. (2022). Combinatorial
optimization with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377.

[Sharma and Jain, 2016] Sharma, P. and Jain, A. (2016). A review on job shop scheduling with setup
times. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manu-
facture, 230:517 – 533.

[Xiao et al., 2024] Xiao, Z., Zhang, D., Wu, Y., Xu, L., Wang, Y., Han, X., Fu, X., Zhong, T., Zeng,
J., Song, M., and Chen, G. (2024). Chain-of-experts: When llms meet complex operation research
problems. arXiv preprint.

[Zhang et al., 2020a] Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., and Chi, X. (2020a). Learning
to dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:1621–1632.

[Zhang et al., 2020b] Zhang, Q., Lusby, R. M., Shang, P., and Zhu, X. (2020b). Simultaneously re-
optimizing timetables and platform schedules under planned track maintenance for a high-speed railway
network. Transportation Research Part C: Emerging Technologies, 121:102823.

[Zhou et al., 2020] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M.
(2020). Graph neural networks: A review of methods and applications. AI open, 1:57–81.

13

1

A Customized Augmented Lagrangian Method
for Block-Structured Integer Programming

Rui Wang, Chuwen Zhang, Shanwen Pu, Jianjun Gao, Zaiwen Wen

Abstract—Integer programming with block structures has received considerable attention recently and is widely used in many practical
applications such as train timetabling and vehicle routing problems. It is known to be NP-hard due to the presence of integer variables.
We define a novel augmented Lagrangian function by directly penalizing the inequality constraints and establish the strong duality
between the primal problem and the augmented Lagrangian dual problem. Then, a customized augmented Lagrangian method is
proposed to address the block-structures. In particular, the minimization of the augmented Lagrangian function is decomposed into
multiple subproblems by decoupling the linking constraints and these subproblems can be efficiently solved using the block coordinate
descent method. We also establish the convergence property of the proposed method. To make the algorithm more practical, we
further introduce several refinement techniques to identify high-quality feasible solutions. Numerical experiments on a few interesting
scenarios show that our proposed algorithm often achieves a satisfactory solution and is quite effective.

Index Terms—Integer programming, augmented Lagrangian method, block coordinate descent, convergence

✦

1 INTRODUCTION

IN this paper, we consider a block-structured integer pro-
gramming problem:

min c⊤x (1a)
s.t. Ax ≤ b, (1b)

xj ∈ Xj , j = 1, 2, ..., p, (1c)

where xj ∈ Rnj is the j-th block variable of x ∈ Rn, i.e.,
x = (x1; ...; xp) for p ≥ 1 with n =

∑p
j=1 nj . In (1), A ∈

Rm×n, b ∈ Rm, c ∈ Rn and the constraint Xj is the set of
0, 1 vectors in a polyhedron, i.e.,

Xj := {xj ∈ {0, 1}nj : Bjxj ≤ dj}, j = 1, 2, ..., p.

The constraints (1c) can be reformulated as x ∈ X := {x ∈
{0, 1}n : Bx ≤ d} where the block diagonal matrix B ∈
Rq×n is formed by the small submatrices Bj as the main
diagonal and d = (d1; ...;dp). Correspondingly, c and A
can be rewritten as c = (c1; c2; ...; cp) with cj ∈ Rnj and
A = (A1 A2 ... Ap) with Aj ∈ Rm×nj .

Assume that these constraints (1c) are “nice” in the sense
that an integer program with just these constraints is easy.
Therefore, if the coupling constraints (1b) are ignored, the
remaining problem which is only composed of the con-
straints (1c) is easier to solve than the original problem
(1). For convenience, we assume X is not empty and (1)
is feasible. Denote by f IP the optimal value of the problem
(1). This block structure is closely related to an important

• Rui Wang and Zaiwen Wen are with the Beijing International Center for
Mathematical Research, Peking University, Beijing 100871, China (email:
ruiwang@bicmr.pku.edu.cn; wenzw@pku.edu.cn).

• Chuwen Zhang, Shanwen Pu and Jianjun Gao are with the School of In-
formation Management and Engineering, Shanghai University of Finance
and Economics, Shanghai 200433, China (email: chuwzhang@gmail.com;
2019212802@live.sufe.edu.cn;gao.jianjun@shufe.edu.cn).

This research is supported in part by the National Natural Science Foun-
dation of China (NSFC) grants 12331010, 72150001, 72225009, 72394360,
72394365.

model known as “n-fold integer programming (IP)” studied
extensively in computer vision [1], [2], machine learning
[3], [4] and theoretical computer science [5], [6], etc. The
theoretical foundations of n-fold IPs have significant im-
plications for efficient algorithm development in various
fields. For example, an algorithmic theory of integer pro-
gramming based on n-fold IP was proposed in [5]. Recent
advancements have been provided in [6]. Furthermore, the
progress in theory and application of integer programming
with a block structure was summarized in [7], [8]. While
existing works on n-fold IP mainly focus on asymptotic
analyses, this work aims to develop an efficient augmented
Lagrangian approach tailored to the block structure for
practical efficiency with a convergence guarantee.

1.1 Related Work

The branch and bound algorithm for general integer pro-
gramming (IP) was first introduced by Land and Doig [9].
Gomory [10] developed a cutting plane algorithm for inte-
ger programming problems. These two approaches are at
the heart of current state-of-the-art software for integer pro-
gramming. Unfortunately, these methods often suffer from
high computational burdens due to the discrete constraint,
thus they are not good choices for solving some large-scale
practical problems. Therefore, it is necessary to develop effi-
cient approaches to obtain feasible and desirable solutions,
even if they may not be globally optimal. Considering the
block structure of the integer linear programming (1), a
natural idea is to decompose a large global problem into
smaller local subproblems. There are three typical decom-
position methods for solving such problem: Benders [11],
Dantzig-Wolfe (DW) [12] and Lagrangian decompositions
[13]. The Benders decomposition method is used to deal
with mixed integer programming problems by decompos-
ing them into a master problem and a primal subproblem.
It generates cuts that are added to the master problem by

2

solving the dual of the primal subproblem. This method
is not suitable for (1), since our primal subproblem is an
integer programming problem, which is still NP-hard. The
DW decomposition method can solve block structured inte-
ger programming problem (1) based on resolution theorem.
To improve the tractability of large-scale problems, the DW
decomposition relies on column generation. However, it
might be harder or even intractable to solve the master prob-
lem by column generation if further constraints are applied
to Xj [14, Chapter 8.2]. The Lagrangian decomposition
introduces Lagrange multipliers and constructs a sequence
of simpler subproblems. Although the method itself has a
limitation due to its inherent solution symmetry for certain
practical problems, the Lagrangian duality bound is useful
in the branch-and-bound procedure. A Lagrangian heuristic
algorithm has also been proposed in [15] for solving a
real-world train timetabling problem, which decomposed
the problem into smaller subproblems using Lagrangian
relaxation and developed a heuristic algorithm based on
subgradient optimization to generate feasible solutions.

Many techniques from continuous optimization includ-
ing the alternating direction method of multipliers (ADMM)
have been applied to solve integer programming recently.
The authors in [16] proposed an ℓp-box ADMM for solv-
ing a binary integer programming, where the binary con-
straint is replaced by the intersection of a box and an
ℓp-norm sphere. The authors in [17] proposed augmented
Lagrangian method (ALM) and ADMM based on the ℓ1
augmented Lagrangian function for two-block mixed inte-
ger linear programming (MILP). For the multi-block MILP
problem, an extended ADMM was proposed in [18] to em-
ploy a release-and-fix approach to solve the subproblems.
There are also some heuristic methods based on ADMM
[19], [20], [21], [22] that have been successfully applied to
various practical integer programming problems.

There are some other widespread approaches on the
relaxation of the binary constraint including linear pro-
gramming (LP) relaxation [23], [24] and semidefinite re-
laxation [25], [26]. For the multi-block MILP problem, sev-
eral inexact methods have been proposed including a dis-
tributed algorithm relying on primal decomposition [27],
a dual decomposition method [28], and a decomposition-
based outer approximation method [29]. By introducing
continuous variables to replace the discrete variables, the
exact penalty methods [30], [31], [32] have been studied
for solving the nonlinear IP problems. Then the problem
is transformed into an equivalent nonlinear continuous op-
timization problem.

1.2 Contributions
In this paper, we propose a customized ALM for solving (1).
Our main contributions are listed below.

(i) We define a novel augmented Lagrangian (AL) func-
tion that differs from the classical AL function and
establish strong duality theory for the augmented
Lagrangian relaxation of the block-structured integer
programming (1), which motivates us to utilize the
ALM for solving the problem (1).

(ii) Based on the special structure of (1), we propose two
block coordinate descent (BCD)-type methods that

are well-suited for solving the resulting subproblems
in our ALM framework. These methods utilize clas-
sical update and proximal linear update techniques,
denoted as ALM-C and ALM-P, respectively. We also
analyze their convergence properties under proper
conditions.

(iii) To address challenges in finding the global opti-
mal solution for practical problems such as train
timetabling, we introduce refinement strategies and
propose a customized ALM to enhance the quality
of solutions generated by the ALM. Our numerical
experiments demonstrate the effectiveness of the pro-
posed method in solving large-scale instances.

Note that the ADMM-based method in [21] solves each
subproblem only once per iteration for a fixed Lagrangian
multiplier. On the other hand, our ALM method involves
multiple iterations using the BCD method to minimize each
AL function until certain rules are satisfied. Once the AL
subproblem is solved exactly, the strong duality guarantees
that the ALM can converge to a global minimizer of the
problem (1). Therefore, achieving high accuracy in minimiz-
ing the AL function allows our ALM to achieve superior
solutions with fewer iterations, resulting in significantly
reduced computational time compared to the ADMM. This
claim is supported by our numerical tests. Additionally,
we introduce Assumptions 3.1 and 3.2, derived from the
structural characteristics of the practical problem in [20] and
[21], and subsequently analyze the theoretical properties
of the ALM-C method under these assumptions. However,
our ALM-P method has wider applicability and does not
require these specific assumptions. Moreover, the ALM can
be regarded as a dual ascent algorithm with respect to dual
variables, hence ensuring its convergence. In contrast, the
convergence analysis of the ADMM for solving this kind of
problem remains unclear.

The existing ALM-based methods for solving integer
programming in [33] mainly focused on the duality of
the augmented Lagrangian dual for MILP with equality
constraints, but numerical experiments were not available.
Moreover, our approach differs significantly in that we han-
dle inequality constraints directly, without introducing slack
variables. This approach has two key benefits: it reduces the
number of variables, thus decreasing computational burden
in high-dimensional cases, and it allows for more cus-
tomized algorithmic design based on the inherent structure
of the problem. In [17], the ℓ1 norm was considered as an
augmented term in the AL function for MILP such that the
minimization of the AL function can be decomposed into
multiple low-dimensional ℓ1-penalty subproblems due to
the separable blocks. These subproblems were then solved
in parallel using the Gurobi solver. In our work, we take
a different approach by using a quadratic term in the AL
function which allows the augmented Lagrangian subprob-
lem to be reduced to a linear programming under certain
conditions. Furthermore, we update the blocks of variables
sequentially one at a time.

1.3 Notation and Organization
Let Nm := {1, 2, ...,m}, Np := {1, 2, ..., p} and Rm

+ :=
{x ∈ Rm : xi ≥ 0 for all i}. The superscript “⊤” means

3

“transpose”. Denote ai by the i-th row of the matrix A
and bi by the i-th element of the vector b. For convenience,
we let AI,j denote the submatrix consisting of columns of
Aj indexed by I and bI denote the subvector consisting
of entries of b ∈ Rm indexed by I . A neighborhood of a
point x∗ is a set N (x∗, 1) consisting of all points x such that
∥x− x∗∥2 ≤ 1. Let 1 be a row vector of all ones.

This paper is structured as follows. An AL function
is defined and the strong duality of the problem (1) is
discussed in section 2. We propose a customized ALM
incorporating BCD methods and refinement strategies to
improve the quality of the ALM solutions in section 3. We
establish the convergence results of both the BCD methods
to minimize the AL function and the ALM applied to the
whole problem (1) in section 4. The proposed method is
applied to two practical problems in section 5. Concluding
remarks are made in the last section.

2 THE AL STRONG DUALITY

The Lagrangian relaxation (LR) of (1) with respect to the
constraint (1b) has the following form:

min
x∈X

L(x, λ) :=
p∑

j=1

c⊤j xj + λ⊤

 p∑
j=1

Ajxj − b

 , (2)

where λ ∈ Rm
+ is a Lagrange multiplier associated with

the constraint (1b). We can observe that (2) is much easier
to be solved than the original problem (1) since (2) can
be decomposed into p-block low-dimensional independent
subproblems. However, there may exist a non-zero duality
gap when certain constraints are relaxed by using classical
Lagrangian dual [33]. To reduce the duality gap, we add a
quadratic penalty function to the Lagrangian function in (2)
and solve the augmented Lagrangian dual problem which
is defined as follows.
Definition 2.1 (AL Dual). We define an AL function by

L(x, λ, ρ) =

p∑
j=1

c⊤j xj + λ⊤

 p∑
j=1

Ajxj − b


+
ρ

2

∥∥∥∥∥∥
 p∑

j=1

Ajxj − b


+

∥∥∥∥∥∥
2

, (3)

where λ ∈ Rm
+ , ρ > 0. The corresponding AL relaxation

of (1) is given by

d(λ, ρ) := min
x∈X

L(x, λ, ρ). (4)

We call the following maximization problem the AL dual
problem:

fLD
ρ := max

λ∈Rm
+

d(λ, ρ). (5)

Note that the classical AL function of (1) is given by

L̂(x, λ, ρ) = c⊤x +
ρ

2

∥∥∥∥∥
(
Ax− b+

λ

ρ

)
+

∥∥∥∥∥
2

− ∥λ∥
2

2ρ
. (6)

We prefer using the form of the AL function (3) rather than
the classical version (6) due to the absence of λ/ρ in the
quadratic term of the max function. This makes it possible to

convert the AL function into a linear function under certain
conditions, making the problem (4) easier to solve, which
will be explained in the next section. We also verify that
the quadratic term in (3) is an exact penalty and strong
duality holds between the AL dual problem (5) and the
primal problem (1).

Lemma 2.1 (Strong Duality). Suppose the problem (1) is
feasible and its optimal value is bounded. If a minimum
achievable non-zero slack exists, i.e., there is a δ such
that for any i ∈ Nm,

0 < δ ≤ min
x∈X
{(aix− bi)

2 : aix > bi}, (7)

then there exists a finite ρ∗ ∈ (0,+∞) such that

fLD
ρ∗ = min

Ax≤b,x∈X
c⊤x.

Proof For any λ ∈ Rm
+ and ρ > 0, since {x ∈ X : Ax− b ≤

0} ⊆ X , we have

d(λ, ρ) ≤ min
x∈X

Ax−b≤0

L(x, λ, ρ) ≤ min
x∈X

Ax−b≤0

c⊤x = f IP. (8)

Then fLD
ρ ≤ f IP.

Now it suffices to find a finite ρ∗ such that fLD
ρ∗ ≥ f IP.

We first let x0 be any arbitrary feasible solution of (1), that is,
x0 ∈ X and Ax0 ≤ b. Denote by fLP the linear programming
(LP) relaxation of f IP. Since the value of the LP relaxation of
(1) is bounded [34], i.e., −∞ < fLP ≤ c⊤x0 < +∞, we set
ρ∗ = 2(c⊤x0 − fLP)/δ, then 0 < ρ∗ < +∞. Moreover,

fLD ≥ max
λ∈Rm

+

d(λ, ρ∗) ≥ d(λ∗, ρ∗) = min
x∈X

L(x, λ∗, ρ∗), (9)

where λ∗ ∈ Rm
+ is a given parameter. Let I := {i ∈ Nm :

aix− bi > 0, x ∈ X}, we consider following two cases:
Case 1: I = ∅. In this case we have Ax ≤ b for all x ∈ X .

By letting λ̄ = 0, we can obtain that

L(x, λ̄, ρ∗) = c⊤x + λ̄⊤(Ax− b) +
ρ∗

2
∥ (Ax− b)+ ∥

2

= c⊤x ≥ f IP. (10)

Case 2: I ̸= ∅. Denote by λLP a positive optimal vector of
dual variables for Ax ≤ b in the LP relaxation of (1). In this
case we get

L(x, λLP, ρ∗) =c⊤x + (λLP)⊤(Ax− b) +
ρ∗

2

∑
i∈I

(aix− bi)
2

+
ρ∗

2

∑
i/∈I

((aix− bi)+)
2

=c⊤x + (λLP)⊤(Ax− b) +
ρ∗

2

∑
i∈I

(aix− bi)
2.

Since

ρ∗

2

∑
i∈I

(aix−bi)
2 ≥ ρ∗

2
min
i∈I

(aix−bi)
2

(7)
≥ ρ∗

2
δ = c⊤x0−fLP,

it yields

L(x, λLP, ρ∗) ≥ c⊤x + (λLP)⊤(Ax− b) + (c⊤x0 − fLP)

≥ fLP + (c⊤x0 − fLP) = c⊤x0 ≥ f IP, (11)

4

where the second inequality holds due to the definition of
λLP. Thus the inequalities (10) and (11) by letting λ∗ be λLR

and λ̄ imply that

d(λ∗, ρ∗) = minx∈X L(x, λ∗, ρ∗) ≥ f IP.

This together with (9) and (8) yields that

fLD
ρ∗ = d(λ∗, ρ∗) = f IP.

Hence we complete the proof. □

One can observe from the proof that there exists a finite
value ρ∗ such that for all ρ ≥ ρ∗, the strong duality still
holds. Therefore, given a sufficiently large penalty parame-
ter ρ, we can achieve a satisfactory feasibility of (1). Specif-
ically, as ρ increases beyond ρ∗, the augmented Lagrangian
method penalizes constraint violations (1b) more heavily,
thereby making the solution closer to the feasible region
of the problem. The strong duality allows us to obtain a
globally optimal solution to the problem (1) by solving the
augmented Lagrangian dual problem (5).

To utilize the concave structure of the dual function
d(λ, ρ), we apply the projected subgradient method for
solving (5) since the dual function is not differentiable. We
first give the definition of subgradient and subdifferential.

Definition 2.2. Let h : Rm → R be a convex function. The
vector s ∈ Rm is called a subgradient of h at x̄ ∈ Rm if

h(x)− h(x̄) ≥ s⊤(x− x̄), ∀x ∈ Rm.

The subdifferential of h at x̄ is the set of all subgradients
of h at x̄ which is given by

∂h(x) = {s ∈ Rm : h(x)−h(x̄) ≥ s⊤(x−x̄), ∀x ∈ Rm}.

Since d(λ, ρ) is concave, we adjust Definition 2.2 to cor-
respond to the set −∂(−d(λ, ρ)), allowing us to apply
properties of the subdifferential of a convex function to a
concave function.

Proposition 2.1. Consider the dual function d(λ, ρ) :
Rm+1 → R. Then the subdifferentials of d at λ and ρ
satisfy

Ax−b ∈ ∂λd(λ, ρ),
1

2
∥(Ax−b)+∥2 ∈ ∂ρd(λ, ρ), (12)

where x is a solution of (4) with input (λ, ρ).

Proof Let x be a solution of (4) with input (λ, ρ). Then for
any pair (λ̂, ρ̂) ∈ Rm

+ × R+, it holds that

d(λ̂, ρ̂) ≤ c⊤x + λ̂⊤(Ax− b) + ρ̂
2∥(Ax− b)+∥2

= c⊤x + λ⊤(Ax− b) + ρ
2∥(Ax− b)+∥2

+(λ̂− λ)⊤(Ax− b) + ρ̂−ρ
2 ∥(Ax− b)+∥2

= d(λ, ρ) + (λ̂− λ)⊤(Ax− b) + ρ̂−ρ
2 ∥(Ax− b)+∥2,

where the last equality holds due to the optimality of x.
Then by the definition of subgradient and subdifferential,
we arrive at (12). □

3 AUGMENTED LAGRANGIAN METHOD

In this section, we introduce an augmented Lagrangian
method framework. This method is composed of two steps
in solving the augmented Lagrangian dual problem (5). We
first use the primal information x to construct the subgradi-
ent of d at (λ, ρ). Since λ and ρ satisfy λ ≥ 0 and ρ > 0,
then we apply the projected subgradient method to update
parameters λ and ρ. Starting from λ0 ∈ Rm

+ and ρ0 > 0, we
can update λ and ρ at (k + 1)-th iteration by

λk+1 =
(
λk + αk(Axk+1 − b)

)
+
, (13a)

ρk+1 =

(
ρk +

αk

2

∥∥∥(Axk+1 − b)+

∥∥∥2)
+

= ρk +
αk

2

∥∥∥(Axk+1 − b)+

∥∥∥2 , (13b)

where xk+1 is an optimal solution of the augmented La-
grangian relaxation problem (4) at λk and ρk, that is,

xk+1 ∈ argmin
x∈X

L(x, λk, ρk). (14)

Therefore, the iterative processes (14), (13a) and (13b) con-
sisting of primal and dual variables make up the ALM
framework.

Solving the x-subproblem (14) is an important step in
ALM. While the subproblem (14) has no closed form solu-
tion in general, we can apply an iterative method to solve
it exactly or inexactly. Consequently, the ALM for solving
the problem (1) consists of outer and inner iterations. The
subscript k is used to denote the outer iteration number, and
the subscript t is used to denote the inner iteration number.

3.1 A BCD method for subproblem (14)

In this subsection, we present a BCD method for solving the
x-subproblem (14) in the ALM framework. The BCD method
minimizes the function L by iterating cyclically in order
x1, ..., xp, fixing the previous iteration during each iteration.
Denote xt =

(
xt1; xt2; ...; xtp

)
where xtj is the value of xj at its

t-th update. Let

Lt
j(xj , λ, ρ) = L(xt+1

1 , ..., xt+1
j−1, xj , xtj+1, ..., xtp, λ, ρ),

and

xt(j) =
(

xt+1
1 , xt+1

2 , ..., xt+1
j−1, xtj , xtj+1, ..., xtp

)
.

Therefore xt(1) =
(
xt1; xt2; ...; xtp

)
= xt and xt(p + 1) =(

xt+1
1 ; xt+1

2 ; ...; xt+1
p

)
= xt+1. Given fixed parameters λ ≥

0 and ρ > 0, we can also calculate the gradient of
L(xt(j), λ, ρ) at xj by

gj(xt) := ∇xjL(x
t(j), λ, ρ)

= cj +A⊤
j λ+ ρA⊤

j

(
Axt(j)− b

)
+
.

At each step, we consider two types of updates for every
xj ∈ Xj :

Classical: xt+1
j ∈ argmin

xj∈Xj

Lt
j(xj , λ, ρ), (15a)

Proximal linear:

xt+1
j ∈ argmin

xj∈Xj

{
⟨xj − xtj , gj(x

t)⟩+ 1

2τ
∥xj − xtj∥2

}
, (15b)

5

where τ > 0 is a step size. In fact, if one defines the
projection operator by

PX (v) ∈ argmin{∥u− v∥ : u ∈ X},

then we obtain the following equivalent form of (15b):

xt+1
j = PXj

(
xtj − τgj(xt)

)
.

In general, the classical subproblem (15a) is fundamen-
tally harder to solve because of the quadratic term in the
objective function. However, we derive a simplified form
of this subproblem under certain conditions, which will be
discussed in Subsection 3.1.2. By contrast, the prox-linear
subproblem (15b) is relatively easy to solve because the
objective function is linear with respect to xj . Now we
summarize the ALM for solving (1) in Algorithm 1, which
allows each xj to be updated by (15a) or (15b). We assume
that each block j is updated by the same scheme in (15a)
and (15b) for all iteration t.

Algorithm 1: ALM with BCD

Input: Initial point x0, λ0, ρ0.
Output: A feasible solution xk+1.

1 for k = 0, 1, ..., kmax do
2 for t = 0, 1, ..., tmax do
3 for j = 1, 2, ..., p do
4 Compute x(t+1)

j by (15a) or (15b);

5 if x(t+1) = x(t), then let xk+1 = x(t+1) and
break;

6 if ∥(Axk+1 − b)+∥2 = 0, then Teminate;
7 Update the Lagrangian multipliers λk+1 by (13a)

and the penalty coefficient ρk+1 by (13b).

Subsequently, we show more detailed information about
these two updates (15a) and (15b).

3.1.1 Proximal linear update of BCD
Before considering the proximal linear subproblem (15b), we
first give a definition of a linear operator, which is essential
in the BCD method.
Definition 3.1. The linear operator associated to a vector

v ∈ Rn is defined by

TΩ(v) = argmin
u∈Ω

v⊤u,

where Ω is a nonempty and closed set.

Benefiting from the good characteristics of x being a
binary variable, we have

∥xj∥2 = 1⊤xj , for ∀j ∈ Np, (16)

then the objective function in (15b) is linear. Therefore, we
can also rewrite (15b) as

xt+1
j ∈ argmin

xj∈Xj

{
x⊤j gj(x

t) +
1

2τ
1⊤xj −

1

τ
x⊤j xtj

}
= TXj

(
τgj(xt) +

1
2
− xtj

)
. (17)

Due to the discrete property of the feasible setXj , it is crucial
to choose the step size τ appropriately. If τ is too large, the

BCD method will not converge. If τ is too small, the BCD
method will be stuck at some points. The reason why this
happens will be explained in the convergence analysis.

3.1.2 Classical update of BCD

We start by giving the following assumption of model (1),
which is very common in many applications such as train
timetabling, vehicle routing, and allocation problems.

Assumption 3.1. The entries of the matrix A are either 1 or
0. The vector b equals 1.

Under this assumption, we consider the subproblem (15a).
For each j ∈ Np, if the condition Ajxt+1

j ≤ 1 always holds
for each iteration of the BCD method, then

xt+1
j ∈ argmin

xj∈Xj

Lt
j(xj , λ, ρ) (18)

= TXj

cj +A⊤
j λ+ ρA⊤

j

 p∑
l ̸=j

Alxtl(j)−
1
2


+

 .

To prove the above derivation, we introduce following two
notations at the t-th update:

I := {i ∈ Nm :
∑p

l ̸=j Ai,lxtl(j) = 0},
Ī := {i ∈ Nm :

∑p
l ̸=j Ai,lxtl(j) ≥ 1}, (19)

where xtl(j) =
{

xt+1
l , if l < j,

xtl , if l > j.
Obviously, I ∩Ī = ∅ and

I ∪ Ī = Nm. Therefore, we have∑p

l ̸=j
AĪ,lx

t
l(j)−

1Ī
2

=

(∑p

l ̸=j
AĪ,lx

t
l(j)−

1Ī
2

)
+

, (20)∑p

l ̸=j
AI,lxtl(j)−

1I
2

= 0, (21)

and(
AI,jxj +

p∑
l ̸=j

AI,lxtl(j)− 1I

)
+

= (AI,jxj − 1I)+=0,

AĪ,jxj +
∑p

l ̸=j AĪ,lx
t
l(j)− 1Ī ≥ 0.

(22)

Since the element in Ajxj is either 1 or 0, we have

∥Ajxj∥2 = 1⊤(Ajxj), ∀ j ∈ Np. (23)

Denote C =
∥∥∥∑p

l ̸=j AĪ,lx
t
l(j)− 1Ī

∥∥∥2. Then

∥∥∥∥(Ajxj +
∑p

l ̸=j Alxtl(j)− 1
)
+

∥∥∥∥2
(22)
= ∥AĪ,jxj∥2 + 2(AĪ,jxj)⊤

(∑p
l ̸=j AĪ,lx

t
l(j)− 1Ī

)
+ C

(23)
= 2(AĪ,jxj)⊤

(∑p
l ̸=j AĪ,lx

t
l(j)−

1Ī
2

)
+ C

(20)
= 2(AĪ,jxj)⊤

(∑p
l ̸=j AĪ,lx

t
l(j)−

1Ī
2

)
+
+ C

(21)
= 2(AĪ,jxj)⊤

(∑p
l ̸=j AĪ,lx

t
l(j)−

1Ī
2

)
+

+2(AI,jxj)⊤
(∑p

l ̸=j AI,lxtl(j)−
1I
2

)
+
+ C

= 2(Ajxj)⊤
(∑p

l ̸=j Alxtl(j)− 1
2

)
+
+ C.

6

Then the iterative scheme for x-update is given by

xt+1
j = argmin

xj∈Xj

Lt
j(xj , λ, ρ)

= argmin
xj∈Xj

{
c⊤j xj + λ⊤ (Ajxj − 1)

+ρ
2

∥∥∥∥(Ajxj +
∑p

l ̸=j Alxtl(j)− 1
)
+

∥∥∥∥2
}

(24)
= argminxj∈Xj

{
c⊤j xj + λ⊤ (Ajxj − 1)

+ρ(Ajxj)⊤
(∑p

l ̸=j Alxtl(j)− 1
2

)
+

}
= TXj

(
cj +A⊤

j λ+ ρA⊤
j

(∑p
l ̸=j Alxtl(j)− 1

2

)
+

)
.

We can observe that the condition Ax ≤ 1 induces the
decomposition of minimizing the augmented Lagrangian
function (3) into a set of subproblems with a linear objective
function, which makes (15a) easier to solve. Therefore, the
key point in the derivation of the linearization process is
utilizing the fact that the entries in Ajxj are either 1 or 0.
We next verify this condition is always true in each iteration
of the BCD method under the following assumption.
Assumption 3.2. Denote by TAj

the indices of columns of the
matrix Aj containing only zeros and cjs the s-th element
of cj . At least one of the following holds.

(i) For all j ∈ Np, there exists xj ∈ Xj such that Ajxj ≤
1 and {s ∈ Nnj

: cjs ̸= 0} ⊆ TAj
.

(ii) For all j ∈ Np, there is at most one nonzero element
in the vector cj and {xj ∈ Rnj : Ajxj ≤ 1} ⊆ {xj ∈
Rnj : xj ∈ Xj}.

Remark: (a) Assumption 3.2 (i) requires that if an element
xjs satisfies xjs = 1, then at least one of cjs and the s-th
column vector of Aj is zero. Assumption 3.2 (ii) requires
that if the block constraint set Xj is large enough such
that Ajxj ≤ 1 holds, then the weight cj corresponding
to each block variable has only one nonzero element. (b)
Assumption 3.2 usually holds when A and c are sparse. This
is particularly true in the train timetabling problem with
the objective of scheduling more trains, as will be shown in
Section 5.
Lemma 3.1. Suppose Assumption 3.2 hold. From any start-

ing point x0, the solution generated by the BCD method
with the classical update at each iteration satisfies
Ajxt+1

j ≤ 1 for all j ∈ Np and t = 0, 1, 2,

Proof Let xt+1
j be the solution generated by the BCD

method after t-th classical update. We argue by contra-
diction and suppose that there exists i ∈ Nm such that
Ai,jxt+1

j > 1. Then for any x̄j ∈ Xj satisfying Aj x̄j ≤ 1,
we have

Lt
j(x

t+1
j , λ, ρ) < Lt

j(x̄j , λ, ρ), ∀j ∈ Np,

which implies that for any j ∈ Np,cj +A⊤
j λ+ ρA⊤

j

 p∑
l ̸=j

Alxtl(j)−
1
2


+

⊤

(xt+1
j −x̄j) < 0,

then
c⊤j (x

t+1
j − x̄j) + λ⊤(Ajxt+1

j −Aj x̄j)+

ρ
(∑p

l ̸=j Alxtl(j)− 1
2

)⊤
+

(Ajxt+1
j −Aj x̄j) < 0.

(24)

We consider following two cases corresponding to As-
sumption 3.2:

Case 1: Assumption 3.2 (i) implies cjs = 0 for any
s ∈ Sj := {s ∈ Nnj

: xt+1
js

= 1,Ai,js = 1}. Taking
x̄j = (xt+1

j1
, ..., xt+1

js
− 1, ..., xt+1

jnj
) with s ∈ Sj such that

Aj x̄j ≤ 1 gives us

c⊤j (x
t+1
j −x̄j) =

∑
s
cjs = 0 and Ai,jxt+1

j −Ai,j x̄j ≥ 1. (25)

This contradicts (24) since λ ≥ 0, ρ > 0.
Case 2: Assumption 3.2 (ii) implies that there exists

x̄j = (xt+1
j1

, ..., x̄js′ , ..., xt+1
js
− 1, ..., xt+1

jnj
) with x̄js′ = 1 (26)

for any s ∈ Sj and s′ ̸= s such that Aj x̄j ≤ 1. If cjs′ ≥
0, we can apply the same procedure in Case 1 and arrive
at the contradiction. If cjs′ < 0, we take x̄j in (26), then
xt+1
js′
− x̄js′ ≤ 0. Hence,

c⊤j (x
t+1
j − x̄j) = cjs′ (x

t+1
js′
− x̄js′) ≥ 0, Ai,jxt+1

j −Ai,j x̄j ≥ 1,

which is a contradiction that completes the proof. □

Overall, we can reformulate the subproblem (15a) into
(18) based on the special structure of the model (1) under
certain conditions, and thus make it easier to solve. It is
worth noting that if Assumption 3.2 is not satisfied, we
can consider (18) as a linear approximation of (15a). This
linearization technique is widely used, including in works
[20] and [21]. However, they lacked theoretical guarantees.
Our main result shows that under specified assumptions,
using the update (18) in the ALM-C method is equivalent to
solving (15a) exactly, theoretically ensuring the effectiveness
of our method.

3.2 Finding a good feasible solution by set packing

Since the BCD method may not always yield a feasible
solution [35], we can adopt several refinement strategies that
are very useful to find a feasible solution to the problem (1)
in practice. Very often, (1) represents a problem where we
optimize under limited resources, and this provides us a
view of set packing problems. Since we produce candidate
solutions all along, a natural idea is to utilize past iterates
to construct a feasible solution. A simple strategy could be
constructing a solution pool for each j that includes the past
BCD iterates V k

j = {x1j , x2j , ..., xkj }, j = 1, ..., p. Intuitively,
the solution pool may include feasible or “nice” solutions in
some sense.

To illustrate the above approach, we first introduce the
iterative sequential technique.

3.2.1 A sweeping technique

The most simple technique is probably to select a subset
of blocks, one by one, until the infeasibility is detected. We
present this sequential method in Algorithm 2, which can be
understood by simply sweeping the blocks and selecting a
candidate solution from V k

j if feasibility is still guaranteed,
otherwise simply skip the current block and continue.

7

Algorithm 2: A sweeping technique

Input: The set of past BCD solutions V k
j , j = 1, ..., p.

Output: A feasible solution x̂k

1 while the termination is not satisfied do
2 for j = 1, 2, ..., p do
3 Select vj ∈ V k

j ;

4 if Ajvj +
j−1∑
l=1

Alx̂
k
l − b ≤ 0 then

5 let x̂kj = vj ,
6 else
7 let x̂kj = 0;

3.2.2 A packing technique
Let us further explore the idea of selecting solutions in
a systematic way. Formally, for each block j ∈ Np, we
introduce a set of binary variables µj that defines the current
selection:

x̂kj = Xk
j µj , µj ∈ {0, 1}k,

where Xk
j = [x1j ; x2j ; ...; xkj]. We consider the following prob-

lem:

min
µj∈{0,1}k

∑p

j=1
c⊤j X

k
j µj (27a)

s.t. µ⊤
j 1 ≤ 1, ∀j = 1, ..., p, (27b)∑p

j=1
AjX

k
j µj ≤ b. (27c)

In view of (27b), one may recognize the above problem as a
restricted master problem appearing in column generation
algorithms where (27c) stands for a set of knapsack con-
straints.

Specifically, the coupling constraints (27c) in our model
are cliques, representing complete subgraphs where each
pair of distinct nodes is connected. This allows us to refor-
mulate the model as a maximum independent set problem.
Therefore, we can find a feasible solution x∗ which satisfies
Ax∗ ≤ b by solving the problem (27). Since this problem
is still hard, we only solve the relaxation problem of the
maximal independent set. Now we go into details. Since the
knapsack (27c) means the candidate solutions may conflict,
we can construct a conflict graph F = (V,E). In this graph,
V represents the set of nodes, where each node corresponds
to a solution generated as the algorithm proceeds, and E
is the set of edges that connect two conflicting solutions,
meaning they violate the coupling constraints. In this view,
we only have to maintain the graph F and find a maximal
independent set K. Therefore, the output feasible point x∗j
corresponds to vj ∈ K for each j ∈ Np. If vj /∈ K,
then x∗j = 0. We summarize the maximal independent set
technique in Algorithm 3. We also note that Algorithm 2
can be seen as a special case of Algorithm 3.

Based on the above-mentioned techniques, we improve
the ALM and propose a customized ALM in Algorithm 4.

Although Algorithms 2 and 3 can help us find a feasible
solution to problem (1), the quality of output by them
remains unjustified. To evaluate and improve the quality
of the solution, the simple way is to estimate the upper
and lower bounds of the objective function value, and then

Algorithm 3: A packing (maximal independent set)
technique

Input: The BCD solution xk, last conflict graph
F k−1 = (V k−1, Ek−1)

Output: A feasible solution xk∗
1 Step 1: Conflict graph update
2 for j = 1, 2, ..., p do
3 Collect new candidate paths Ṽ k

j for block j;
4 (1.1 node-update) V k ← V k−1 + Ṽ k

j ;
5 (1.2 self-check) Ek ← Ek−1 + {(p, p′) | ∀p ̸=

p′, p ∈ V k
j , p′ ∈ V k

j };
6 (1.3 edge-completion) Ek ← Ek +

{
(p, p′) |

if p, p′are compatible for ∀p ∈ Ṽ k
j , p′ ∈ V k\V k

j

}
,

here ‘compatible’ means that these two nodes
(block variables) satisfy the binding constraints;

7 Step 2: Maximal independent set (MIS) for a
feasible solution

8 Select a candidate solution set K ⊂ V k;
9 for v ∈ K do

10 Compute a maximal independent set K(v) with
respect to v in O(|Ek|) iterations;

11 Compute x∗ = argmaxv K(v).

Algorithm 4: A customized ALM

Input: x0, λ0, ρ0 > 0 and the best objective function
value f∗ = +∞. Set k = 0.

Output: A local (global) optimal solution x∗.
1 while the termination is not satisfied do
2 Step 2: Construct solution using Alg. 1
3 Update the BCD solution xk+1 by the procedure

in lines 2-5 of Alg. 1;
4 Step 3: Generate a feasible solution
5 if the BCD solution is not feasible then
6 transform the BCD solution to a feasible

solution x̄k+1 by calling a refinement
method in Alg. 2 or 3;

7 else
8 let x̄k+1 = xk+1;

9 Step 4: Update the best solution
10 if c⊤x̄k+1 ≤ f∗ then
11 Set f∗ = c⊤x̄k+1 and x∗ = x̄k+1;

12 Update the Lagrangian multipliers λk+1 by (13a)
and the penalty coefficient ρk+1 by (13b). Let
k = k + 1.

8

calculate the gap between them. The smaller the gap, the
better the current solution. Obviously, our method can pro-
vide an upper bound of the objective function value. As for
the generation of the lower bound, we can use the following
method. (i) LP relaxation: by directly relaxing the binary
integer variables to [0, 1] continuous variables, we solve a
linear programming problem exactly to obtain the lower
bound of the objective function value. (ii) LR relaxation:
since the Lagrangian dual problem (2) is separable, we can
solve the decomposed subproblems exactly to obtain the
lower bound of the objective function value.

In general, the Lagrangian dual bound is at least as tight
as the linear programming bound obtained from the usual
linear programming relaxation [14]. Note that the relaxation
must be solved to optimality to yield a valid bound. There-
fore, we can use a combination of LR method and Alg. 4.
To be specific, LR aims at generating the lower bound of
the objective function value in (1), the solution is usually
infeasible. Steps 2 and 3 in Alg. 4 are used for generating fea-
sible solutions of (1). The smaller the gap between the lower
bound and the upper bound, the closer the feasible solution
is to the global optimal solution of the problem. It can be
seen from the iterative procedure that after many iterations,
this algorithm can generate many feasible solutions, and the
lower bound of the model is constantly improving. Finally,
we select the best solution. The combination of these two
methods takes advantage of the ALM and the LR method,
it not only finds a good feasible solution but also evaluates
the quality of the solution.

Compared with the ADMM-based method in [21], we
utilize BCD method to perform multiple iterations to solve
the subproblem (14) until the solutions remain unchanged,
which can improve the solution accuracy of the subproblem,
thereby reducing the total number of iterations. Moreover,
we adopt different refinement techniques to further enhance
the solution quality.

4 CONVERGENCE ANALYSIS

In this section, we present the convergence analysis of the
block coordinate descent method for solving the augmented
Lagrangian relaxation problem (4) and the augmented La-
grangian method for solving the dual problem (5). Unless
otherwise stated, the convergence results presented in this
section do not rely on Assumptions 3.1 and 3.2.

4.1 Convergence of BCD

We begin this section with the property of augmented La-
grangian function (3) that is fundamental in the convergence
analyis.

Proposition 4.1. The gradient of L(x, λ, ρ) at x is Lipschitz
continuous with constant κ on X , namely,

∥∇L(x, λ, ρ)−∇L(x̄, λ, ρ)∥ ≤ κ∥x− x̄∥

for all x, x̄ ∈ X , where κ = ρ∥A∥22. Furthermore,

L(x̄, λ, ρ) ≤ L(x, λ, ρ) + ⟨x̄− x,∇L(x, λ, ρ)⟩+ κ

2
∥x̄− x∥2

(28)
for all x, x̄ ∈ X .

Proof For any x, x̄ ∈ X ,

∥∇L(x, λ, ρ)−∇L(x̄, λ, ρ)∥

=
∥∥∥ρA⊤(Ax− b)+ − ρA⊤(Ax̄− b)+

∥∥∥
≤ρ∥A∥2 ∥(Ax− b)+ − (Ax̄− b)+∥
≤ρ∥A∥2 ∥Ax−Ax̄∥ ≤ ρ∥A∥22 ∥x− x̄∥ .

Then we have

⟨∇L(x, λ, ρ)−∇L(x̄, λ, ρ), x− x̄⟩
≤∥∇L(x, λ, ρ)−∇L(x̄, λ, ρ)∥∥x− x̄∥ ≤ κ∥x− x̄∥2.

It follows from the convexity of the function f(x) = κ
2 ∥x∥

2−
L(x, λ, ρ) that

f(x̄) ≥ f(x) +∇f(x)⊤(x− x̄),

which implies the estimate (28). □

Considering two different updates in the BCD method,
we first summarize the convergence property of the BCD
method for solving (15a), which has been presented in
[36]. Before that, we give the definition of the blockwise
optimal solution, which is also called coordinatewise min-
imum point in [37]. Given parameters λ and ρ, a feasible
solution x∗ is called a blockwise optimal solution of the
problem (4) if for each j ∈ Np, we have for all x =
(x∗1, ..., x∗j−1, xj , x∗j+1, ..., x∗p) ∈ X , L(x∗, λ, ρ) ≤ L(x, λ, ρ).
Lemma 4.1. Suppose Assumptions 3.1 and 3.2 hold. If the

starting point satisfies x0 ∈ X , then the BCD method for
solving (15a) is always executable and terminates after
a finite number of iterations with a blockwise optimal
solution of the problem (4).

Proof If Assumptions 3.1 and 3.2 hold, Lemma 3.1 tells us
that the subproblem (15a) can be solved exactly. (i) Since the
constraint set of each subproblem (15a) is bounded, then
all subproblems have an optimal solution. Therefore, the
BCD method for solving (15a) is executable. (ii) The result
in (i) illustrates that the sequence {xt} generated by the
BCD method exists. Thus the sequence of objective function
values {L(xt, λ, ρ)} can only take finitely many different
values. This together with the monotonically decreasing
property of the function L(x, λ, ρ) yields that L(xt, λ, ρ)
must become a constant. Then the BCD method is exe-
cutable. (iii) By the definition of the blockwise optimal
solution and the fact that the subproblem (15a) can be solved
exactly, we arrive at the conclusion. □

A similar conclusion can be found in [36], but it does not
clarify how to solve the subproblem. Note that each (global)
optimal solution of the model (4) is blockwise optimal, but
not vice versa. Subsequently, we analyze the convergence of
(15b). The following lemma ensures decreasing the function
value of L after each iteration if xt+1 ̸= xt and the step size
is chosen properly.
Lemma 4.2. Let {xt}t∈N be a sequence generated by (15b),

we obtain

(
1

2τ
− κ

2
)∥xt+1−xt∥2 ≤ L(xt, λ, ρ)−L(xt+1, λ, ρ). (29)

Proof Since

xt+1
j = TXj

(
τgj(xt)⊤xj +

1
2
− xtj

)

9

and xtj ∈ Xj for all j ∈ {1, 2, ..., p}, we have(
τgj(xt) +

1
2
− xtj

)⊤
xt+1
j ≤

(
τgj(xt) +

1
2
− xtj

)⊤
xtj ,

which implies that

2τ⟨xt+1
j − xtj , gj(x

t)⟩+ ∥xt+1
j − xtj∥2 ≤ 0. (30)

Proposition 4.1 tells us that

L(xt+1, λ, ρ)− L(xt, λ, ρ)

≤
∑p

j=1
⟨xt+1

j − xtj , gj(x
t)⟩+ κ

2

∑p

j=1
∥xt+1

j − xtj∥2. (31)

Combining inequalities (30) and (31) yields (29). The proof
is completed. □

This lemma tells us that a small step size satisfying τ <
1/κ leads to a decrease in the function value L when xt+1 ̸=
xt. However, the following lemma states that when the step
size is too small, the iteration returns the same result. We let
g(x) denote the gradient of L(x, λ, ρ) at x.
Lemma 4.3. If the step size satisfies 0 < τ < 1

2∥g(xt)∥ when
g(xt) ̸= 0, then it holds that

xt = TX
(
τg(xt) +

1

2
− xt

)
.

Proof If 0 < τ < 1
2∥g(xt)∥ , for all xt ̸= x ∈ X , we have

−2τg(xt)⊤(xt−x) ≤ 2τ∥g(xt)∥∥xt−x∥ ≤ ∥xt−x∥ < ∥xt−x∥2,

where the last inequality holds due to xt, x ∈ {0, 1}n. It
yields that(

τg(xt) +
1
2
− xt

)⊤
xt ≤

(
τg(xt) +

1
2
− xt

)⊤
x.

By the definition of the operator TX (·), we arrive at the
conclusion. □

Based on Lemma 4.3, the implementation of the BCD
method heavily relies on the choice of step size τ . Hence,
we give a definition of a τ -stationary point.
Definition 4.1. For the AL relaxation problem (4), if a point

x∗ satisfies

x∗ = TX
(
τg(x∗) +

1
2
− x∗

)
with τ > 0, then it is called a τ -stationary point.

For the augmented Lagrangian relaxation problem (4),
given parameters λ and ρ, we say that x∗ is a δ-local
minimizer if there is an integer δ > 0 such that

L(x, λ, ρ) ≥ L(x∗, λ, ρ), for all x ∈ N (x∗, δ) ∩ X .

Note that a n-local minimizer is a global minimizer due to
the fact ∥x − x∗∥ ≤ n for all x, x∗ ∈ X . The following im-
portant result reveals a relationship between a τ -stationary
point and a global minimizer of the problem (4).
Theorem 4.1. We have the following relationships between

the τ -stationary point and the local minimizer of the
problem (4).

(i) If x∗ is a local minimizer, then x∗ is a τ -stationary
point for any step size 0 < τ < 1/κ.

(ii) If x∗ is a τ -stationary point with τ > δ/2, then x∗

is a δ-local minimizer of the problem (4) under the
assumption that the entries in A, b, c, λ and ρ are
integral.

Proof (i) If x∗ is a local minimizer, then for any x ∈ X we
have

L(x∗, λ, ρ) ≤L(x, λ, ρ)

≤L(x∗, λ, ρ) + ⟨∇L(x∗, λ, ρ), x− x∗⟩+ κ

2
∥x− x∗∥2.

Therefore,

⟨∇L(x∗, λ, ρ), x− x∗⟩ ≥ −κ

2
∥x− x∗∥2 ≥ − 1

2τ
∥x− x∗∥2,

which implies that x∗ is a τ -stationary point.
(ii) Since x∗ is a stationary point, then for any x ∈ X we

have(
τg(x∗) +

1
2
− x∗

)⊤
x∗ ≤

(
τg(x∗) +

1
2
− x∗

)⊤
x. (32)

For any x ∈ X ∩N (x∗, δ), we define the index sets J := {l ∈
Nn : x∗

l = 0, xl = 1} and J̄ := {l ∈ Nn : x∗
l = 1, xl = 0}.

Then (
τg(x∗) +

1
2
− x∗

)⊤
(x− x∗)

=
∑

l∈J

(
τgl(x∗) +

1

2

)
−
∑

l∈J̄

(
τgl(x∗)−

1

2

)
≤ τ

(∑
l∈J

gl(x∗)−
∑

l∈J̄
gl(x∗)

)
+

δ

2
,

which together with (32) and τ > δ
2 yields that∑

l∈J
gl(x∗)−

∑
l∈J̄

gl(x∗) ≥ −
δ

2τ
> −1.

Since the entries in A, b, c, λ and ρ are integral, then gl(x∗)
is an integer for every l ∈ Nn. This implies that∑

l∈J
gl(x∗)−

∑
l∈J̄

gl(x∗) ≥ 0.

Then for any x ∈ X ∩N (x∗, δ), it follows from the convexity
of L that

L(x, λ, ρ)− L(x∗, λ, ρ)
≥ ⟨∇L(x∗, λ, ρ), x− x∗⟩
=

∑
l∈J

gl(x∗)(xl − x∗
l) +

∑
l∈J̄

gl(x∗)(xl − x∗
l)

=
∑

l∈J
gl(x∗)−

∑
l∈J̄

gl(x∗) ≥ 0.

Therefore, x∗ is a δ-local minimizer of the problem (4). □

We can observe from Theorem 4.1 that every block-
wise optimal solution of (4) is a τ -stationary point. Con-
versely, if the entries in A, b, c, λ and ρ are integral and
τ > 1

2 maxj{nj}, then every τ -stationary point of (4) is
blockwise optimal. These results on relationships between
τ -stationary point, blockwise optimal solution and local
(global) minimizer are summarized in Figure 1 intuitively.

We finally present the main result on the convergence of
the BCD method for solving (15b).
Theorem 4.2. (Convergence properties) Let {xt}t∈N be a

sequence generated by (15b). If the step size satisfies
0 < τ < 1

2κ , then we have

10

δ-local minimizer

τ -stationary point
Condition (a), τ > 1

2
maxj{nj}

blockwise optimal solution

Condition (a), τ > δ/2
0 < τ < 1/κ

Assumption 3.1

δ =
n

Fig. 1: The relationships among τ -stationary point, blockwise optimal solution and local minimizer. Condition(a): the
entries in A, b, c, λ and ρ are integral.

(i) The sequence {L(xt, λ, ρ)}t∈N is nonincreasing and
κ

2
∥xt+1 − xt∥2 ≤ L(xt, λ, ρ)− L(xt+1, λ, ρ). (33)

(ii) The sequence {xt} converges to a τ -stationary point
after at most ⌈ 2C

√
n+κn
κ ⌉ iterations, where C =

maxx∈X ∥∇L(x, λ, ρ)∥.

Proof (i) It is obvious from (29) that if 0 < τ < 1
2κ , then

(33) holds.
(ii) Given the parameters λ ∈ Rm

+ and ρ > 0, we can
observe that the model (4) can be equivalently written as

minF (x) := L(x, λ, ρ) + δX (x),

where δX (x) is the indicator function of the set X , i.e.,
δX (x) = +∞, if x ∈ X and 0 otherwise. To verify that the
sequence {xt} converges to a τ -stationary point, we examine
that the conditions in [38, Theorem 1] hold.

Firstly, since the set X = {x ∈ {0, 1}n : Bx ≤ d} is
semi-algebraic, then δX (x) is a Kurdyka-Łojasiewicz (KL)
function [38], [39]. It is obvious to see that L(x, λ, ρ) is also
a KL function, and hence the function F (x) satisfies the KL
property, which is a crucial condition ensuring convergence.

Secondly, the Lipschitz constant κ > 0 in Proposition 4.1
is bounded if ρ has an upper bound, and the problem (4) is
inf-bounded.

Thirdly, for any x, x̄ ∈ X with x̄ = (x1, ..., x̄j , ..., xp),

∥∇xjL(x, λ, ρ)−∇xjL(x̄, λ, ρ)∥

=
∥∥∥ρA⊤

j (Ax− b)+ − ρA⊤
j (Ax̄− b)+

∥∥∥
≤ ρ∥Aj∥2 ∥(Ax− b)+ − (Ax̄− b)+∥
≤ ρ∥Aj∥2 ∥Ax−Ax̄∥ ≤ ρ∥Aj∥22 ∥xj − x̄j∥ .

Therefore, the result follows from [38, Theorem 1].
Suppose x∗ is a τ -stationary point, then for every x ∈ X ,

we have

L(x, λ, ρ)− L(x∗, λ, ρ)

≤⟨∇L(x∗, λ, ρ), x− x∗⟩+ κ

2
∥x− x∗∥2

≤C∥x− x∗∥+ κ

2
∥x− x∗∥2 ≤ C

√
n+

κn

2
. (34)

If each iteration always finds a new point until arriving at
x∗, we get

κT

2
≤
∑T

t=0

(
L(xt, λ, ρ)− L(xt+1, λ, ρ)

)
≤ L(x0, λ, ρ)− L(x∗, λ, ρ), (35)

where the first inequality holds due to the conclusion in (i)
and the fact ∥xt+1 − xt∥ ≥ 1. Thus combining (34) with (35)

yields that T ≤ ⌈ 2C
√
n+κn
κ ⌉. It implies that we only need at

most ⌈ 2C
√
n+κn
κ ⌉ steps to arrive at a τ -stationary point. □

If each iteration of the BCD method always finds a
new point, then according to Theorem 4.2 (i), we have∑∞

t=0 ∥xt+1 − xt∥2 < +∞. By Theorem 1 in [38], we can
conclude that limt→∞ xt = x∗, where x∗ is a limit point
of the sequence {xt}t∈N. If we choose an initial point that
is already close to an optimal solution and an appropriate
step size τ , based on specific convergence criteria detailed
in Theorem 4.2, the BCD method can find a global solution
of problem (4).

4.2 Convergence of ALM
Assume the BCD method returns a global minimizer x∗ to
the augmented Lagrangian relaxation problem (4) in each
inner loop. In this subsection, we focus on the convergence
property of the projected subgradient method for solving
the dual problem (5). For convenience, we introduce the
following constants for subsequent analysis:

S := argmaxλ∈Rm
+ ,ρ>0 d(λ, ρ),

θ := min(λ,ρ)∈S ∥λ0 − λ∥2 + (ρ0 − ρ)2.

Let dkg denote the subgradient of d(λk, ρk). We estimate the
distance between the dual function value in each iteration
and the optimal value of the problem (1) in the following
theorem.
Theorem 4.3. If we take the step size αk = βk

∥dk
g∥

with βk =√
θ
K , then,

f IP − max
k∈{1,2,...,K}

d(λk, ρk) ≤ ζ

2

√
5θ

K
,

where ζ = maxx∈X ∥Ax− b∥4. Furthermore, if the posi-
tive sequence {βk}k∈N is bounded and

∑
k∈N β

2
k < +∞.

Then (λk, ρk) converges to some (λ∗, ρ∗) ∈ S.

Proof Let {(λk, ρk)}k∈N be the sequence generated by
Algorithm 1. We derive from the Lemma 3 in [17] that

f IP − max
k∈{1,2,...,K}

d(λk, ρk) ≤
θ +

∑K
k=1(α

k∥dkg∥)2

2
∑K

k=1 α
k

. (36)

For all k ∈ N, we have

∥dkg∥2 = ∥Axk−b∥2+1

4
∥(Axk−b)+∥4 ≤

5

4
∥Axk−b∥4 ≤ 5

4
ζ.

Then the right-hand side of (36) satisfies

θ +
∑K

k=1(α
k∥dkg∥)2

2
∑K

k=1 α
k

=

√
5ζ(θ +

∑K
k=1 β

2
k)

4
∑K

k=1 βk

=
ζ

2

√
5θ

K
.

11

Thus we arrive at the first result.
The second claim is then proved in [40, Theorem 7.4],

where the proof for the subgradient method is readily
extended to the projected subgradient method. □

Although the theoretical analysis of ALM-C relies on
Assumption 3.1, our tests show that ALM-C is also effective
in more general settings. Furthermore, we present the ALM-
P method as a versatile alternative not relying on this
assumption.

5 APPLICATIONS

In this section, we show the performance of the proposed
algorithms on two practical problems. One is the train
timetabling problem and the other is the vehicle routing
problem. To show the performance of compared methods,
we define three termination criteria: a maximum number
of iterations, a time limit, and an optimality gap based on
the difference between the objective value generated by our
methods and the best known value. All instances are tested
on a MacBook Pro 2019 with 8GB of memory and Intel Core
i5 (Turbo Boost up to 4.1 GHz) with 128 MB eDRAM.

5.1 Capacitated vehicle routing problem
We consider the capacitated vehicle routing problem with
time windows (CVRPTW). The problem is defined on
a complete directed graph G = (V,E), where V =
{0, 1, ..., n} is the node set and E is the edge set. Node
0 represents the depot where the vehicles are based, and
nodes 1 to n represent the customers that need to be served.
Each edge (s, t) in E has an associated travel time Tst. Each
customer s has a demand cs and a service time window
[as, bs]. We let dst be the distance from node s to node t and
M be a large constant. The objective is to construct a set of
least-cost vehicle routes starting and ending at the depot,
such that each customer is visited exactly once within their
time window, and the total demand of customers served in
each route does not exceed vehicle capacity C .

To formulate this problem as an integer program, we de-
fine the following decision variables: (i) xj

st: binary variable
equal to 1 if edge (s, t) is used by vehicle j, 0 otherwise. (ii)
wj

s: continuous variable indicating the start of service time
at customer s by vehicle j. Then the block structured integer
linear programming formulation is:

min
∑

j∈Np

∑
(s,t)∈E

dstx
j
st (37a)

s.t.
∑

j∈Np

∑
t∈V :t̸=s

xj
st = 1, s ∈ V \0 (37b)∑

t∈V \s
xj
st =

∑
t∈V \s

xj
ts, i ∈ V, j ∈ Np (37c)∑

t∈V \0
xj
0t = 1, j ∈ Np (37d)∑

s∈V

∑
t∈V \s

csx
j
st ≤ C, j ∈ Np (37e)

wj
s + Tst −M(1− xj

st) ≤ wj
t , (s, t) ∈ E, j ∈ Np (37f)

as ≤ wj
s ≤ bs, s ∈ V, j ∈ Np (37g)

xj
st ∈ 0, 1, (s, t) ∈ E, j ∈ Np (37h)

The block structure lies in the routing variables xj
st for

each vehicle j, which are constrained by the flow balance,

capacity and time window constraints. By relaxing the
coupling constraints (37b), the problem decomposes into
separate routing subproblems per vehicle.

5.1.1 Parameter Setting

We let ALM-C and ALM-P denote Algorithm 4 using the
updates (15a) and (15b) in step 2, respectively. We compare
our proposed methods with the Gurobi solver (version
11.0.0) and OR-tools on all the instances from the Solomon
dataset [41]. Since the ADMM in [20] lacks adaptability for
all instances, then we do not compare with it. To illustrate
the scale of these instances, we present a subset of represen-
tative examples in Table 1. The notations |F |, |V | and |E|
represent the number of vehicles, the number of customers
and the number of edges. n and nw denote the number of
variables x and w, respectively. To evaluate the robustness
of the compared methods, we conduct experiments on the
C1-type instances with various problem sizes, as detailed
in Table 2. The results of all remaining instances from the
Solomon dataset are presented in Table 3.

We adopt a “vehicle and route-based” formulation to
model the CVRPTW problem, which is different from the
space-time network flow formulation used in [20]. There-
fore, the subproblem is a route problem with capacity and
time window constraints. We utilize the Gurobi solver to
solve the subproblem for convenience. Note that the for-
mulation does not affect Gurobi’s performance. To ensure a
fair comparison and maximize Gurobi’s utilization, we have
implemented efficient callback functions based on Danzig’s
formulation to fine-tune its performance. We set a time limit
of 2000 seconds for the compared methods, except for or-
tools where the time limit is set to 500 seconds, and use the
symbol “–” to signify that the solver failed to find a feasible
solution within the allotted time limit.

TABLE 1: A subset of representative examples of the
Solomon datasets

No. |F | |V | |E| m q n nw

R101-50 12 50 2,550 50 30,636 30,600 612
R201-50 6 50 2,550 50 15,318 15,300 306

RC101-50 8 50 2,550 50 20,424 20,400 408
RC201-50 5 50 2,550 50 12,765 12,750 255
C101-100 10 100 10,100 100 101,030 101,000 1,010
C201-100 3 100 10,100 100 30,309 30,300 303

5.1.2 Performances of the Proposed Algorithm

In the subsequent tables, the “f∗” and “f” columns corre-
spond to the best-known objective values and the objective
values of feasible solutions generated by these compared
methods, respectively. The “Time” column denotes the CPU
time (in seconds) that the methods taken by the algorithms
to meet the stopping criteria. The optimality gap is defined
by gap1 = |f − f∗|/|f∗|. Due to the lack of an inherent
termination criterion in OR-tools, it runs for the entire
limited time and outputs the corresponding feasible solu-
tion. Therefore, we do not report its solution time. Table 2
shows the stability of the compared methods under various
problem sizes on the C1-type instances. We can observe
that our methods outperform the OR-Tools and Gurobi,
and are more stable than the OR-Tools. From Table 3, we

12

can find that the ALM-C algorithm outperforms the OR-
Tools and Gurobi in most instances, achieving significantly
lower optimality gaps and competitive computation times.
The ALM-P algorithm also exhibits promising results, often
outperforming Gurobi in efficiency and solution quality.
Overall, both the proposed ALM-C and ALM-P algorithms
demonstrate their superiority and robustness in solving the
CVRPTW problem, providing high-quality solutions with
good computational efficiency when compared to existing
solvers and heuristic approaches.

To demonstrate the advantages of our methods, we
show the convergence curve of the primal bound and dual
bound of Gurobi, comparing it to the solution found by our
solver with the instance “C109.50” as an example. As we
can observe in Figure 2, our methods achieve near-optimal
solutions in around 15 seconds, significantly faster than
Gurobi which takes approximately 300 seconds. We notice
that as the objective values increase, the corresponding con-
straint violation decreases simultaneously, facilitating fast
convergence.

5.2 Train timetabling problem

We consider following space-time network model for the
train timetabling problem (TTP) on a macro level, which is
based on the model in [42]. We use a directed, acyclic and
multiplicative graph G = (V,E) to characterize the train
timetabling problem, where V and E denote the set of all
nodes and the set of all arcs. For each train j ∈ Np, the
sets or parameters with superscript or subscript notation
corresponds to relevant object to j. For each arc e ∈ Ej ,
we introduce a binary variable xe equal to 1 if the arc e is
selected. For each node v ∈ V , let δ+j (v) and δ−j (v) be the
sets of arcs in Ej leaving and entering node v, respectively.
Then the integer programming model of TTP is given by

max
∑

j∈Np

∑
e∈Ej

pexe (38a)

s.t.
∑

e∈δ+j (σ)
xe ≤ 1, j ∈ Np (38b)∑

e∈δ−j (v)

xe =
∑

e∈δ+j (v)

xe, j ∈ Np, v ∈ V \{σ, τ} (38c)

∑
e∈δ−j (τ)

xe ≤ 1, j ∈ Np (38d)∑
v′∈N (v)

∑
j∈T (v′)

∑
e∈δ−j (v′)

xe ≤ 1, v ∈ V (38e)∑
e∈C

xe ≤ 1, C ∈ C (38f)

xe ∈ {0, 1}, e ∈ E, (38g)

where pe is the “profit” of using a certain arc e. σ and τ
denote artificial origin and destination nodes, respectively.
T (v) andN (v) denote the set of trains may passing through
node v and the set of nodes conflicted with node v, respec-
tively. C denotes the (exponentially large) family of maximal
subsets C of pairwise incompatible arcs. In this model, (38b),
(38c), (38d) imply the arcs of train j should form a valid path
in G, (38e) represents headway constraints, (38f) forbids the
simultaneous selection of incompatible arcs, imposing the
track capacity constraints.

Let xj = {xe | e ∈ Ej}. Then we can rewrite this
space-time network model in the general form as (1). Our

goal is to show that the proposed Algorithm 4 is fully
capable to provide implementable time tables for the Jinghu
railway. Specifically, our algorithms are tested on the time-
tabling problem for Beijing-Shanghai high-speed railway
(or Jinghu high-speed railway in Mandarin). As one of the
busiest railways in the world, the Beijing-Shanghai high-
speed railway transported over 210 million passengers in
2019*. In our test case, the problem consists of 29 stations
and 292 trains in both directions (up and down), including
two major levels of speed: 300 km/h and 350 km/h. Several
numerical experiments are carried out based on the data
of Beijing-Shanghai high-speed railway to demonstrate the
feasibility and effectiveness of the proposed strategy.

We compare our proposed methods with the Gurobi
solver and ADMM [21] on small and real-world instances,
as presented in Tables 4 and 5. The notations |F |, |S| and
|T | represent the number of trains, the number of stations,
and the time window. In most large-scale cases, the Gurobi
solver takes a much longer time to solve, so we set a
time limit of two hours. Since (38a) maximizes the positive
revenue, we have a negative cost if reversing the objective to
a minimization problem, then both subproblems (15a) and
(15b) are solved by the Bellman-Ford algorithm, which is an
efficient tool for solving the shortest path problem.

5.2.1 Performances on small instances
We first validate our algorithm on a smaller sub-network
using a subset of stations of the Jinghu railway. We set the
revenue of each arc proportional to the distance between
two stations, which corresponds to an intuition that longer
rides should bear higher incomes. For our proposed meth-
ods, we set uniformly ρ0 = 20 and σ = 1.2 for all instances.
We set a time limit of 100 seconds for our algorithms.
Since the optimal value is unknown, we report the upper
bounds (UB) obtained by the Gurobi solver as a reference
for comparison in Table 4. We can observe that our ALM-C
performs competitively with the Gurobi solver in terms of
both the optimal value and computation time.

5.2.2 Performances on real-world instances
To verify the efficiency of the ALM-C and ALM-P on large-
scale data with all stations involved, we consider the fol-
lowing five examples of ascending problem size in Table
5. Similarly, we try to maximize the total revenue of our
schedule. In practice, the revenue of an arc may be am-
biguous. Besides, since Jinghu high-speed railway always
has a high level of utilization, introducing new trains is
always beneficial since it further covers unmet demand. In
this view, we introduce an alternative objective function to
simply maximize the number of scheduled trains. Perhaps
not surprisingly, this simplified objective can dramatically
speed up our methods for practical interest. This is due
to the fact that the coefficient pe in the objective function
is sparse, resulting in faster identification of the optimal
solution under this model.

For our proposed methods, we set ρ0 = 10−3 and σ =
2 for the instances No. 1-2, ρ0 = 10−2 and σ = 1.1 for
the instances No. 3 and No. 5, ρ0 = 10−3 and σ = 1.1

*. For details, see https://en.wikipedia.org/wiki/Beijing-
Shanghai high-speed railway.

13

TABLE 2: Performance comparison on Solomon’s C1 instances with varying problem size and perturbation. A time limit
of 500 seconds is set for OR-Tools.

ins. |V | |F | f∗ OR-Tools Gurobi ALM-P ALM-C
f gap1 f gap1 Time f gap1 Time f gap1 Time

c101 25 3 191.3 632.6 230.7% 191.8 0.3% 0.0 191.8 0.3% 2.4 191.8 0.3% 2.7
50 5 362.4 514.4 41.9% 363.2 0.2% 1.1 363.2 0.2% 5.9 363.2 0.2% 5.0
100 10 827.3 828.9 0.2% 828.9 0.2% 8.9 828.9 0.2% 57.8 828.9 0.2% 55.0

c102 25 3 190.3 786.1 313.1% 190.7 0.2% 1.9 190.7 0.2% 3.7 190.7 0.2% 4.6
50 5 361.4 667.9 84.8% 362.2 0.2% 25.5 362.2 0.2% 16.0 362.2 0.2% 15.3
100 10 827.3 828.9 0.2% - 2000 828.9 0.2% 167.4 828.9 0.2% 196.4

c103 25 3 190.3 786.1 313.1% 190.7 0.2% 7.0 190.7 0.2% 15.9 190.7 0.2% 11.0
50 5 361.4 667.9 84.8% 362.2 0.2% 1584.8 365.3 1.1% 40.0 362.2 0.2% 41.5
100 10 826.3 - - - 2000 839.0 1.5% 362.6 828.1 0.2% 259.9

c104 25 3 186.9 875.6 368.5% 187.4 0.3% 45.1 188.6 0.9% 33.5 188.6 0.9% 17.9
50 5 358.0 606.2 69.3% 360.1 0.6% 2000 362.2 1.2% 57.1 358.9 0.3% 319.8
100 10 822.9 1202.3 46.1% - 2000 890.9 8.3% 667.5 904.9 10.0% 363.3

c105 25 3 191.3 609.6 218.6% 191.8 0.3% 0.1 191.8 0.3% 3.3 191.8 0.3% 3.4
50 5 362.4 482.4 33.1% 363.2 0.2% 0.3 363.2 0.2% 6.4 363.2 0.2% 6.0
100 10 827.3 828.9 0.2% 828.9 0.2% 15.8 828.9 0.2% 53.3 828.9 0.2% 34.2

c106 25 3 191.3 639.6 234.3% 191.8 0.3% 0.1 191.8 0.3% 3.6 191.8 0.3% 3.8
50 5 362.4 430.4 18.8% 363.2 0.2% 1.4 363.2 0.2% 5.8 363.2 0.2% 5.9
100 10 827.3 828.9 0.2% 828.9 0.2% 650.6 828.9 0.2% 69.6 828.9 0.2% 47.0

c107 25 3 191.3 565.6 195.6% 191.8 0.3% 0.1 191.8 0.3% 3.2 191.8 0.3% 4.3
50 5 362.4 457.4 26.2% 363.2 0.2% 0.8 363.2 0.2% 6.1 363.2 0.2% 6.6
100 10 827.3 828.9 0.2% 828.9 0.2% 14.6 828.9 0.2% 65.2 828.9 0.2% 35.2

c108 25 3 191.3 564.6 195.1% 191.8 0.3% 0.9 191.8 0.3% 4.5 191.8 0.3% 4.4
50 5 362.4 - - 363.2 0.2% 18.6 363.2 0.2% 8.4 363.2 0.2% 14.2
100 10 827.3 - - - 2000 828.9 0.2% 98.0 828.9 0.2% 265.4

c109 25 3 191.3 475.6 148.6% 191.8 0.3% 9.6 191.8 0.3% 6.3 191.8 0.3% 9.7
50 5 362.4 363.2 0.2% 363.2 0.2% 1867.4 363.2 0.2% 12.3 363.2 0.2% 13.1
100 10 827.3 828.9 0.2% - 2000 828.9 0.2% 234.5 828.9 0.2% 304.3

(a) Objective Value (b) Constraint Violation (c) Primal and Dual Bound of Gurobi

Fig. 2: Comparison of Gurobi and our methods

for the instance No. 4. We set x0 and λ0 to be zero for all
instances. Both the number of variables and the number of
constraints of the model (38) are very large for this practical
TTP instance, whose dimensions are up to tens of millions.
Tables 6 and 7 show the performance results of our proposed
methods and the Gurobi solver, where gap2 := (UB− f)/f .

The results clearly demonstrate the high effectiveness of
our methods compared to Gurobi, especially when dealing
with large-scale data. For the instance No. 1, both ALM-
C and ALM-P can schedule 27 trains in a few seconds,
which are at least 1000 times faster than the Gurobi solver
and meanwhile obtain satisfactory accuracy performance. In
particular, when the scale of data is up to tens of millions in

instance No. 5, our ALM-C and ALM-P successfully sched-
ule all 292 trains. In contrast, the Gurobi solver produces a
relatively small number of trains, only 30 trains, and takes
much longer. The results of other instances also illustrate the
effectiveness of this technique. Therefore, we can conclude
that the customized ALM provides a fast and global optimal
solution for this practical problem.

6 CONCLUSION

In this paper, we study general integer programming with
block structure. Benefiting from its special structure, we
extend the augmented Lagrangian method, originally de-
signed for continuous problems, to effectively solve the

14

TABLE 3: Complete results on other Solomon’s instances, all instances are associated with 50 customers. A time limit of
500 seconds is set for OR-Tools.

ins. |J | f∗ OR-Tools Gurobi ALM-P ALM-C
f ε f ε t f ε t f ε t

c201.50 3 360.2 1622 350.3% 361.8 0.4% 0.1 361.8 0.4% 4.2 361.8 0.4% 3.4
c202.50 3 360.2 1622 350.3% 361.8 0.4% 5.7 361.8 0.4% 19.1 366.8 1.8% 7.1
c203.50 3 359.8 1713.4 376.2% 361.4 0.4% 113.5 361.4 0.4% 43.7 361.4 0.4% 76.8
c204.50 2 350.1 1435.3 310.0% 351.7 0.5% 2000 366.9 4.8% 55.7 351.7 0.5% 166.3
c205.50 3 359.8 1729 380.5% 361.4 0.4% 1.1 361.4 0.4% 7.9 361.4 0.4% 7.0
c206.50 3 359.8 1741.8 384.1% 361.4 0.4% 1.5 361.4 0.4% 14.4 361.4 0.4% 19.1
c207.50 3 359.6 1622.3 351.1% 361.2 0.4% 11.9 361.2 0.5% 25.0 361.2 0.4% 125.7
c208.50 2 350.5 1629.2 364.8% 352.1 0.5% 8.0 355.9 1.5% 14.2 352.1 0.5% 31.5

r101.50 12 1044 1541.9 47.7% 1046.7 0.3% 2.1 1046.7 0.3% 38.5 1046.7 0.3% 47.3
r102.50 11 909 1374.8 51.2% 911.4 0.3% 2000 939.5 3.4% 248.9 925.3 1.8% 317.2
r103.50 9 772.9 1069.1 38.3% - - 2000 806.4 4.3% 289.8 803.8 4.0% 256.1
r104.50 6 625.4 743.5 18.9% - - 2000 654.4 4.6% 472.1 686.6 9.8% 649.9
r105.50 9 899.3 1101.7 22.5% 901.9 0.3% 268.5 906.13 0.8% 61.1 901.9 0.3% 60.2
r106.50 5 793 937.8 18.3% - - 2000 - - - - - -
r107.50 7 711.1 790.5 11.2% - - 2000 816.47 14.8% 120.5 741.5 4.3% 336.2
r108.50 6 617.7 698.1 13.0% - - 2000 645.7 4.5% 215.1 643.9 4.2% 466.5
r109.50 8 786.8 873.2 11.0% 805.6 2.4% 2000 796.3 1.2% 77.2 788.7 0.2% 324.9
r110.50 7 697 887.1 27.3% - - 2000 754.9 8.3% 560.6 768.1 10.2% 225.4
r111.50 7 707.2 784.5 10.9% - - 2000 750.0 6.0% 297.8 801.9 13.4% 220.8
r112.50 6 630.2 730.6 15.9% - - 2000 665.7 5.6% 476.5 698.0 10.8% 300.2

r201.50 6 791.9 1196.9 51.1% 794.3 0.3% 5.2 803.5 1.5% 27.0 801.3 1.2% 30.4
r202.50 5 698.5 1173.2 68.0% 723.0 3.5% 2000 735.7 5.3% 437.0 726.3 4.0% 337.2
r203.50 5 605.3 1173.2 93.8% 608.0 0.4% 2000 639.4 5.6% 168.6 653.0 7.9% 380.9
r204.50 2 506.4 1127.9 122.7% 512.4 1.2% 2000 524.0 3.5% 75.8 583.8 15.3% 401.6
r205.50 4 690.1 1132.3 64.1% 700.2 1.5% 2000 732.4 6.1% 74.5 731.7 6.0% 87.8
r206.50 4 632.4 1066.9 68.7% 657.2 3.9% 2000 682.1 7.9% 188.4 677.2 7.1% 266.6
r207.50 3 361.6 1046.8 189.5% - - 2000 362.6 0.3% 13.1 364.1 0.7% 25.2
r208.50 1 328.2 1019.6 210.7% - - 2000 329.3 0.3% 11.9 329.3 0.3% 13.3
r209.50 4 600.6 1043.6 73.8% 639.6 6.5% 2000 608.5 1.3% 217.9 609.4 1.5% 58.5
r210.50 4 645.6 1119.5 73.4% 661.0 2.4% 2000 710.2 10.0% 288.6 669.2 3.7% 253.4
r211.50 3 535.5 958.7 79.0% - - 2000 590.4 10.3% 168.8 555.1 3.7% 339.8

rc101.50 8 944 1108.3 17.4% 945.6 0.2% 2000 945.6 0.2% 191.2 945.6 0.2% 78.8
rc102.50 7 822.5 940.7 14.4% - - 2000 823.1 0.1% 510.3 823.1 0.1% 242.9
rc103.50 6 710.9 834.9 17.4% - - 2000 736.4 3.6% 134.7 751.3 5.7% 335.2
rc104.50 5 545.8 641.4 17.5% - - 2000 546.5 0.1% 101.6 546.5 0.1% 91.5
rc105.50 8 855.3 1112.7 30.1% - - 2000 873.2 2.1% 99.0 902.7 5.5% 134.4
rc106.50 6 723.2 793 9.7% - - 2000 733.7 1.5% 79.3 728.1 0.7% 152.4
rc107.50 6 642.7 752.3 17.1% - - 2000 650.3 1.2% 235.2 644.0 0.2% 183.7
rc108.50 6 598.1 690.3 15.4% - - 2000 600.7 0.4% 256.1 599.2 0.2% 276.4

rc201.50 5 684.8 1904.7 178.1% 686.3 0.2% 12.5 687.7 0.4% 31.9 686.3 0.2% 14.8
rc202.50 5 613.6 1172.6 91.1% 615.0 0.2% 2000 615.6 0.3% 62.2 615.0 0.2% 85.9
rc203.50 4 555.3 1163.1 109.5% 556.5 0.2% 2000 590.4 6.3% 256.7 558.5 0.6% 265.8
rc204.50 3 444.2 1090.3 145.5% 509.4 14.7% 2000 451.8 1.7% 218.4 462.3 4.1% 153.7
rc205.50 5 630.2 1222.7 94.0% 632.0 0.3% 2000 632.0 0.3% 89.8 632.0 0.3% 56.0
rc206.50 5 610 1088.5 78.4% 611.7 0.3% 2000 611.7 0.3% 36.8 611.7 0.3% 42.9
rc207.50 4 558.6 998.3 78.7% - - 2000 591.7 5.9% 315.5 608.5 8.9% 281.1
rc208.50 2 269.1 936.9 248.2% - - 2000 269.6 0.2% 65.0 269.6 0.2% 109.1

problem (1). By introducing a novel augmented Lagrangian
function, we establish the strong duality and optimality for
the problem (1). Furthermore, we provide the convergence
results of the proposed methods for both the augmented
Lagrangian relaxation and dual problems. To obtain high-
quality feasible solutions, we develop a customized ALM
combined with refinement techniques to iteratively improve
the primal and dual solution quality simultaneously. The
numerical experiments demonstrate that the customized
ALM is time-saving and performs well for finding optimal
solutions to a wide variety of practical problems.

REFERENCES

[1] P. Wang, C. Shen, A. van den Hengel, and P. H. Torr, “Large-scale
binary quadratic optimization using semidefinite relaxation and
applications,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 3, pp. 470–485, 2016.

[2] B. S. Y. Lam and A. W.-C. Liew, “A fast binary quadratic pro-
gramming solver based on stochastic neighborhood search,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 1, pp. 32–49, 2020.

[3] X. Lin, Z. J. Hou, H. Ren, and F. Pan, “Approximate mixed-integer
programming solution with machine learning technique and lin-
ear programming relaxation,” in 2019 3rd International Conference
on Smart Grid and Smart Cities (ICSGSC). IEEE, 2019, pp. 101–107.

15

TABLE 4: Performance on four small examples on sub-networks of the Jinghu railway for maximizing the total revenue

|F | |S| |T | Gurobi ADMM ALM-P ALM-C

UB f Time f Time f Time f∗ Time

20 15 200 20952 20952 5.0 20952 14.2 20952 13.1 20952 10.0
25 15 200 23396 23396 11.5 23396 31.3 21085 22.1 23396 11.4
30 15 300 25707 25707 14.4 24552 14.1 25707 23.0 25707 9.2
40 15 300 34305 34305 24.3 31817 100.0 32061 100.0 34305 17.0

TABLE 5: Five examples of the large practical railway
network

No. |F | |S| |T | m q n

1 50 29 300 49,837 231,722 308,177
2 50 29 600 113,737 1,418,182 1,396,572
3 100 29 720 145,135 1,788,088 4,393,230
4 150 29 960 199,211 3,655,151 9,753,590
5 292 29 1080 228,584 13,625,558 26,891,567

[4] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P.
Vielma, “Strong mixed-integer programming formulations for
trained neural networks,” Mathematical Programming, vol. 183,
no. 1, pp. 3–39, 2020.

[5] F. Eisenbrand, C. Hunkenschröder, K.-M. Klein, M. Kouteckỳ,
A. Levin, and S. Onn, “An algorithmic theory of integer program-
ming,” arXiv preprint arXiv:1904.01361, 2019.

[6] J. Cslovjecsek, M. Kouteckỳ, A. Lassota, M. Pilipczuk, and A. Po-
lak, “Parameterized algorithms for block-structured integer pro-
grams with large entries,” in Proceedings of the 2024 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2024, pp.
740–751.

[7] J. A. De Loera, R. Hemmecke, S. Onn, and R. Weismantel, “N-
fold integer programming,” Discrete Optimization, vol. 5, no. 2, pp.
231–241, 2008.

[8] L. Chen, On Block-Structured Integer Programming and Its Applica-
tions. Cham: Springer International Publishing, 2019, pp. 153–177.

[9] A. H. Land and A. G. Doig, “An automatic method for solving dis-
crete programming problems,” in 50 Years of Integer Programming
1958-2008. Springer, 2010, pp. 105–132.

[10] R. E. Gomory, “Outline of an algorithm for integer solutions to
linear programs,” Bulletin of the American Mathematical Society,
vol. 64, pp. 275–278, 1958.

[11] J. F. Benders, “Partitioning procedures for solving mixed-variables
programming problems,” Numerische Mathematik, vol. 4, no. 1, pp.
238–252, 1962.

[12] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear
programs,” Operations Research, vol. 8, no. 1, pp. 101–111, 1960.

[13] A. M. Geoffrion, “Lagrangean relaxation for integer program-
ming,” in Approaches to Integer Programming. Springer, 1974, pp.
82–114.

[14] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer programming.
Springer, 2014, vol. 271.

[15] A. Caprara, M. Monaci, P. Toth, and P. L. Guida, “A lagrangian
heuristic algorithm for a real-world train timetabling problem,”
Discrete Applied Mathematics, vol. 154, no. 5, pp. 738–753, 2006.

[16] B. Wu and B. Ghanem, “ℓp-box ADMM: A versatile framework
for integer programming,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 41, no. 7, pp. 1695–1708, 2018.

[17] K. Sun, M. Sun, and W. Yin, “Decomposition methods for
global solutions of mixed-integer linear programs,” arXiv preprint
arXiv:2102.11980, 2021.

[18] M. Feizollahi, “Large-scale unit commitment: Decentralized mixed
integer programming approaches,” Ph.D. dissertation, Georgia
Institute of Technology, 2015.

[19] R. Takapoui, “The alternating direction method of multipliers
for mixed-integer optimization applications,” Ph.D. dissertation,
Stanford University, 2017.

[20] Y. Yao, X. Zhu, H. Dong, S. Wu, H. Wu, L. C. Tong, and X. Zhou,
“ADMM-based problem decomposition scheme for vehicle rout-
ing problem with time windows,” Transportation Research Part B:
Methodological, vol. 129, pp. 156–174, 2019.

[21] Q. Zhang, R. M. Lusby, P. Shang, and X. Zhu, “Simultaneously
re-optimizing timetables and platform schedules under planned
track maintenance for a high-speed railway network,” Transporta-
tion Research Part C: Emerging Technologies, vol. 121, p. 102823, 2020.

[22] Y. Kanno and S. Kitayama, “Alternating direction method of mul-
tipliers as a simple effective heuristic for mixed-integer nonlinear
optimization,” Structural and Multidisciplinary Optimization, vol. 58,
no. 3, pp. 1291–1295, 2018.

[23] E. L. Johnson, G. L. Nemhauser, and M. W. Savelsbergh, “Progress
in linear programming-based algorithms for integer program-
ming: An exposition,” Informs Journal on Computing, vol. 12, no. 1,
pp. 2–23, 2000.

[24] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear
programming to decode binary linear codes,” IEEE Transactions on
Information Theory, vol. 51, no. 3, pp. 954–972, 2005.

[25] M. Laurent and F. Rendl, “Semidefinite programming and integer
programming,” Handbooks in Operations Research and Management
Science, vol. 12, pp. 393–514, 2005.

[26] P. Wang, C. Shen, and A. Van Den Hengel, “A fast semidefinite
approach to solving binary quadratic problems,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 1312–1319.

[27] A. Camisa, I. Notarnicola, and G. Notarstefano, “A primal de-
composition method with suboptimality bounds for distributed
mixed-integer linear programming,” in 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 2018, pp. 3391–3396.

[28] R. Vujanic, P. M. Esfahani, P. J. Goulart, S. Mariéthoz, and
M. Morari, “A decomposition method for large scale MILPs,
with performance guarantees and a power system application,”
Automatica, vol. 67, pp. 144–156, 2016.

[29] P. Muts, I. Nowak, and E. M. Hendrix, “The decomposition-
based outer approximation algorithm for convex mixed-integer
nonlinear programming,” Journal of Global Optimization, vol. 77,
no. 1, pp. 75–96, 2020.

[30] W. Murray and K.-M. Ng, “An algorithm for nonlinear optimiza-
tion problems with binary variables,” Computational Optimization
and Applications, vol. 47, no. 2, pp. 257–288, 2010.

[31] S. Lucidi and F. Rinaldi, “Exact penalty functions for nonlinear
integer programming problems,” Journal of Optimization Theory and
Applications, vol. 145, no. 3, pp. 479–488, 2010.

[32] C. Yu, K. L. Teo, and Y. Bai, “An exact penalty function method for
nonlinear mixed discrete programming problems,” Optimization
Letters, vol. 7, no. 1, pp. 23–38, 2013.

[33] M. J. Feizollahi, S. Ahmed, and A. Sun, “Exact augmented La-
grangian duality for mixed integer linear programming,” Mathe-
matical Programming, vol. 161, no. 1, pp. 365–387, 2017.

[34] C. E. Blair and R. G. Jeroslow, “The value function of a mixed
integer program: I,” Discrete Mathematics, vol. 19, no. 2, pp. 121–
138, 1977.

[35] J. A. González and J. Castro, “A heuristic block coordinate descent
approach for controlled tabular adjustment,” Computers & Opera-
tions Research, vol. 38, no. 12, pp. 1826–1835, 2011.

[36] S. Jäger and A. Schöbel, “The blockwise coordinate descent
method for integer programs,” Mathematical Methods of Operations
Research, vol. 91, no. 2, pp. 357–381, 2020.

[37] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” Journal of Optimization Theory and
Applications, vol. 109, no. 3, pp. 475–494, 2001.

[38] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating lin-
earized minimization for nonconvex and nonsmooth problems,”
Mathematical Programming, vol. 146, no. 1, pp. 459–494, 2014.

[39] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent
methods for semi-algebraic and tame problems: proximal algo-
rithms, forward-backward splitting, and regularized Gauss-Seidel

16

TABLE 6: Performance comparison between the Gurobi solver, ADMM, ALM-P and ALM-C on the large networks for
maximizing total revenue in Table 5.

No. Gurobi ADMM ALM-P ALM-C

f gap2 Time f gap2 Time f gap2 Time f gap2 Time

1 6.18e+04 13.6% 7200.0 6.94e+04 3.0% 54.1 6.93e+04 3.1% 84.3 6.98e+04 2.5% 72.2
2 7.61e+04 45.3% 7200.0 1.34e+05 3.5% 96.2 1.34e+05 3.4% 144.4 1.35e+05 3.0% 126.1
3 9.69e+04 61.5% 7200.0 2.33e+05 7.3% 558.3 2.36e+05 6.3% 414.9 2.36e+05 6.3% 396.6
4 1.23e+05 74.5% 7200.0 4.38e+05 9.6% 1422.7 4.42e+05 8.7% 924.3 4.45e+05 8.1% 714.9
5 2.95e+05 74.0% 7200.0 9.15e+05 19.5% 3600.0 9.60e+05 15.6% 2094.2 9.63e+05 15.3% 1722.7

TABLE 7: Performance comparison between the Gurobi solver, ADMM, ALM-P and ALM-C on the large networks for
maximizing the number of trains in the timetable in Table 5

No. f∗ Gurobi ADMM ALM-P ALM-C

f gap1 Time f gap1 Time f gap1 Time f gap1 Time

1 – 27 – 3836.0 27 – 3.4 27 – 3.4 27 – 3.5
2 50 50 0 2965.8 50 0 8.2 50 0 8.1 50 0 8.2
3 100 11 89.0% 7200.0 89 11.0% 3001.4 100 0 127.4 100 0 96.4
4 150 14 90.7% 7200.0 148 1.3% 3005.3 150 0 99.5 150 0 96.4
5 292 30 89.7% 7200.0 286 2.1% 3003.8 292 0 203.1 292 0 172.1

methods,” Mathematical Programming, vol. 137, no. 1-2, pp. 91–129,
2013.

[40] A. Ruszczynski, Nonlinear Optimization. Princeton University
Press, 2011.

[41] M. M. Solomon, “Algorithms for the vehicle routing and schedul-
ing problems with time window constraints,” Operations research,
vol. 35, no. 2, pp. 254–265, 1987.

[42] A. Caprara, M. Fischetti, and P. Toth, “Modeling and solving the
train timetabling problem,” Operations Research, vol. 50, no. 5, pp.
851–861, 2002.

Rui Wang received the BSc degree and the
PhD degree in operational research from Bei-
jing Jiaotong University, Beijing, China, in 2015
and 2021. She held a postdoctoral position at
Peking University, Beijing, China from 2021 to
2023. She currently serves as a lecturer at South
Western University of Finance and Economics,
Chengdu, China. Her current research inter-
ests include large-scale classification optimiza-
tion problems, sparse optimization, and numeri-
cal computing.

Chu wen Zhang received the B.E. degree in
Industrial Engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2015. He rece-
iced a M.Sc. degree in Operations Research
from the University of Texas at Austin, in 2017.
He is currently a Ph.D. student with Shanghai
University of Finance and Economics, Shanghai.
His research interests include large-scale opti-
mization and public sector operations research.
Before that, he was an algorithm expert at Car-
dinal Operations Co., Ltd.

Shanwen Pu received his B.Sc. degree from
Nanjing University, Nanjing, China, in 2019. He
is currently pursuing his Ph.D. at the Shanghai
University of Finance and Economics, Shang-
hai. His research is focused on large-scale and
distributed mixed integer programming, as well
as the integration of artificial intelligence and
optimization.

Jianjun Gao received his B.E. degree from the
University of Science and Technology of China,
Hefei, China, in 2003, and his M. Phil and Ph.D
degrees in Systems Engineering and Engineer-
ing Management from the Chinese University
of Hong Kong, Hong Kong, in 2005 and 2009,
respectively. He joined the Shanghai Jiao Tong
University in China in 2012 the research pro-
fessor. Starting from 2016, he is the associate
professor in Shanghai University of Finance and
Economics. His research interests include opti-

mization theory, stochastic optimal control with applications in finance
and management science.

Zaiwen Wen is a Professor at Peking University.
He holds a Ph.D in Operations Research from
Columbia University (2009). His research inter-
ests include optimization algorithms and theory
and their applications in machine learning. He
was awarded the China Youth Science and Tech-
nology Award in 2016 and Beijing Outstanding
Youth Zhongguancun Award in 2020. He was
funded by the National Ten Thousand Talents
Program for Science and He is an associate ed-
itor of ”Journal of Scientific Computing”, ”Com-

munications in Mathematics and Statistics”, ”Journal of the Operations
Research Society of China”, ”Journal of Computational Mathematics”
and a technical editor of ”Mathematical Programming Computation”.

	3-线性规划
	4-稀疏优化
	6-最优传输实验
	7-期中实验
	8-整数规划
	10-随机优化
	11-奇异值分解实验
	12-相位提取实验
	13-马尔可夫决策过程
	14-期末实验
	14-期末实验参考

